]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/arm/kvm/arm.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
[linux.git] / arch / arm / kvm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/errno.h>
20 #include <linux/err.h>
21 #include <linux/kvm_host.h>
22 #include <linux/module.h>
23 #include <linux/vmalloc.h>
24 #include <linux/fs.h>
25 #include <linux/mman.h>
26 #include <linux/sched.h>
27 #include <linux/kvm.h>
28 #include <trace/events/kvm.h>
29
30 #define CREATE_TRACE_POINTS
31 #include "trace.h"
32
33 #include <asm/unified.h>
34 #include <asm/uaccess.h>
35 #include <asm/ptrace.h>
36 #include <asm/mman.h>
37 #include <asm/cputype.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
47 #include <asm/opcodes.h>
48
49 #ifdef REQUIRES_VIRT
50 __asm__(".arch_extension        virt");
51 #endif
52
53 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
54 static struct vfp_hard_struct __percpu *kvm_host_vfp_state;
55 static unsigned long hyp_default_vectors;
56
57 /* Per-CPU variable containing the currently running vcpu. */
58 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
59
60 /* The VMID used in the VTTBR */
61 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
62 static u8 kvm_next_vmid;
63 static DEFINE_SPINLOCK(kvm_vmid_lock);
64
65 static bool vgic_present;
66
67 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
68 {
69         BUG_ON(preemptible());
70         __get_cpu_var(kvm_arm_running_vcpu) = vcpu;
71 }
72
73 /**
74  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
75  * Must be called from non-preemptible context
76  */
77 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
78 {
79         BUG_ON(preemptible());
80         return __get_cpu_var(kvm_arm_running_vcpu);
81 }
82
83 /**
84  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
85  */
86 struct kvm_vcpu __percpu **kvm_get_running_vcpus(void)
87 {
88         return &kvm_arm_running_vcpu;
89 }
90
91 int kvm_arch_hardware_enable(void *garbage)
92 {
93         return 0;
94 }
95
96 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
97 {
98         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
99 }
100
101 void kvm_arch_hardware_disable(void *garbage)
102 {
103 }
104
105 int kvm_arch_hardware_setup(void)
106 {
107         return 0;
108 }
109
110 void kvm_arch_hardware_unsetup(void)
111 {
112 }
113
114 void kvm_arch_check_processor_compat(void *rtn)
115 {
116         *(int *)rtn = 0;
117 }
118
119 void kvm_arch_sync_events(struct kvm *kvm)
120 {
121 }
122
123 /**
124  * kvm_arch_init_vm - initializes a VM data structure
125  * @kvm:        pointer to the KVM struct
126  */
127 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
128 {
129         int ret = 0;
130
131         if (type)
132                 return -EINVAL;
133
134         ret = kvm_alloc_stage2_pgd(kvm);
135         if (ret)
136                 goto out_fail_alloc;
137
138         ret = create_hyp_mappings(kvm, kvm + 1);
139         if (ret)
140                 goto out_free_stage2_pgd;
141
142         /* Mark the initial VMID generation invalid */
143         kvm->arch.vmid_gen = 0;
144
145         return ret;
146 out_free_stage2_pgd:
147         kvm_free_stage2_pgd(kvm);
148 out_fail_alloc:
149         return ret;
150 }
151
152 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
153 {
154         return VM_FAULT_SIGBUS;
155 }
156
157 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
158                            struct kvm_memory_slot *dont)
159 {
160 }
161
162 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
163 {
164         return 0;
165 }
166
167 /**
168  * kvm_arch_destroy_vm - destroy the VM data structure
169  * @kvm:        pointer to the KVM struct
170  */
171 void kvm_arch_destroy_vm(struct kvm *kvm)
172 {
173         int i;
174
175         kvm_free_stage2_pgd(kvm);
176
177         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
178                 if (kvm->vcpus[i]) {
179                         kvm_arch_vcpu_free(kvm->vcpus[i]);
180                         kvm->vcpus[i] = NULL;
181                 }
182         }
183 }
184
185 int kvm_dev_ioctl_check_extension(long ext)
186 {
187         int r;
188         switch (ext) {
189         case KVM_CAP_IRQCHIP:
190                 r = vgic_present;
191                 break;
192         case KVM_CAP_USER_MEMORY:
193         case KVM_CAP_SYNC_MMU:
194         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
195         case KVM_CAP_ONE_REG:
196         case KVM_CAP_ARM_PSCI:
197                 r = 1;
198                 break;
199         case KVM_CAP_COALESCED_MMIO:
200                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
201                 break;
202         case KVM_CAP_ARM_SET_DEVICE_ADDR:
203                 r = 1;
204                 break;
205         case KVM_CAP_NR_VCPUS:
206                 r = num_online_cpus();
207                 break;
208         case KVM_CAP_MAX_VCPUS:
209                 r = KVM_MAX_VCPUS;
210                 break;
211         default:
212                 r = 0;
213                 break;
214         }
215         return r;
216 }
217
218 long kvm_arch_dev_ioctl(struct file *filp,
219                         unsigned int ioctl, unsigned long arg)
220 {
221         return -EINVAL;
222 }
223
224 int kvm_arch_set_memory_region(struct kvm *kvm,
225                                struct kvm_userspace_memory_region *mem,
226                                struct kvm_memory_slot old,
227                                int user_alloc)
228 {
229         return 0;
230 }
231
232 int kvm_arch_prepare_memory_region(struct kvm *kvm,
233                                    struct kvm_memory_slot *memslot,
234                                    struct kvm_memory_slot old,
235                                    struct kvm_userspace_memory_region *mem,
236                                    bool user_alloc)
237 {
238         return 0;
239 }
240
241 void kvm_arch_commit_memory_region(struct kvm *kvm,
242                                    struct kvm_userspace_memory_region *mem,
243                                    struct kvm_memory_slot old,
244                                    bool user_alloc)
245 {
246 }
247
248 void kvm_arch_flush_shadow_all(struct kvm *kvm)
249 {
250 }
251
252 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
253                                    struct kvm_memory_slot *slot)
254 {
255 }
256
257 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
258 {
259         int err;
260         struct kvm_vcpu *vcpu;
261
262         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
263         if (!vcpu) {
264                 err = -ENOMEM;
265                 goto out;
266         }
267
268         err = kvm_vcpu_init(vcpu, kvm, id);
269         if (err)
270                 goto free_vcpu;
271
272         err = create_hyp_mappings(vcpu, vcpu + 1);
273         if (err)
274                 goto vcpu_uninit;
275
276         return vcpu;
277 vcpu_uninit:
278         kvm_vcpu_uninit(vcpu);
279 free_vcpu:
280         kmem_cache_free(kvm_vcpu_cache, vcpu);
281 out:
282         return ERR_PTR(err);
283 }
284
285 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
286 {
287         return 0;
288 }
289
290 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
291 {
292         kvm_mmu_free_memory_caches(vcpu);
293         kvm_timer_vcpu_terminate(vcpu);
294         kmem_cache_free(kvm_vcpu_cache, vcpu);
295 }
296
297 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
298 {
299         kvm_arch_vcpu_free(vcpu);
300 }
301
302 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
303 {
304         return 0;
305 }
306
307 int __attribute_const__ kvm_target_cpu(void)
308 {
309         unsigned long implementor = read_cpuid_implementor();
310         unsigned long part_number = read_cpuid_part_number();
311
312         if (implementor != ARM_CPU_IMP_ARM)
313                 return -EINVAL;
314
315         switch (part_number) {
316         case ARM_CPU_PART_CORTEX_A15:
317                 return KVM_ARM_TARGET_CORTEX_A15;
318         default:
319                 return -EINVAL;
320         }
321 }
322
323 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
324 {
325         int ret;
326
327         /* Force users to call KVM_ARM_VCPU_INIT */
328         vcpu->arch.target = -1;
329
330         /* Set up VGIC */
331         ret = kvm_vgic_vcpu_init(vcpu);
332         if (ret)
333                 return ret;
334
335         /* Set up the timer */
336         kvm_timer_vcpu_init(vcpu);
337
338         return 0;
339 }
340
341 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
342 {
343 }
344
345 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
346 {
347         vcpu->cpu = cpu;
348         vcpu->arch.vfp_host = this_cpu_ptr(kvm_host_vfp_state);
349
350         /*
351          * Check whether this vcpu requires the cache to be flushed on
352          * this physical CPU. This is a consequence of doing dcache
353          * operations by set/way on this vcpu. We do it here to be in
354          * a non-preemptible section.
355          */
356         if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush))
357                 flush_cache_all(); /* We'd really want v7_flush_dcache_all() */
358
359         kvm_arm_set_running_vcpu(vcpu);
360 }
361
362 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
363 {
364         kvm_arm_set_running_vcpu(NULL);
365 }
366
367 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
368                                         struct kvm_guest_debug *dbg)
369 {
370         return -EINVAL;
371 }
372
373
374 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
375                                     struct kvm_mp_state *mp_state)
376 {
377         return -EINVAL;
378 }
379
380 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
381                                     struct kvm_mp_state *mp_state)
382 {
383         return -EINVAL;
384 }
385
386 /**
387  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
388  * @v:          The VCPU pointer
389  *
390  * If the guest CPU is not waiting for interrupts or an interrupt line is
391  * asserted, the CPU is by definition runnable.
392  */
393 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
394 {
395         return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
396 }
397
398 /* Just ensure a guest exit from a particular CPU */
399 static void exit_vm_noop(void *info)
400 {
401 }
402
403 void force_vm_exit(const cpumask_t *mask)
404 {
405         smp_call_function_many(mask, exit_vm_noop, NULL, true);
406 }
407
408 /**
409  * need_new_vmid_gen - check that the VMID is still valid
410  * @kvm: The VM's VMID to checkt
411  *
412  * return true if there is a new generation of VMIDs being used
413  *
414  * The hardware supports only 256 values with the value zero reserved for the
415  * host, so we check if an assigned value belongs to a previous generation,
416  * which which requires us to assign a new value. If we're the first to use a
417  * VMID for the new generation, we must flush necessary caches and TLBs on all
418  * CPUs.
419  */
420 static bool need_new_vmid_gen(struct kvm *kvm)
421 {
422         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
423 }
424
425 /**
426  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
427  * @kvm The guest that we are about to run
428  *
429  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
430  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
431  * caches and TLBs.
432  */
433 static void update_vttbr(struct kvm *kvm)
434 {
435         phys_addr_t pgd_phys;
436         u64 vmid;
437
438         if (!need_new_vmid_gen(kvm))
439                 return;
440
441         spin_lock(&kvm_vmid_lock);
442
443         /*
444          * We need to re-check the vmid_gen here to ensure that if another vcpu
445          * already allocated a valid vmid for this vm, then this vcpu should
446          * use the same vmid.
447          */
448         if (!need_new_vmid_gen(kvm)) {
449                 spin_unlock(&kvm_vmid_lock);
450                 return;
451         }
452
453         /* First user of a new VMID generation? */
454         if (unlikely(kvm_next_vmid == 0)) {
455                 atomic64_inc(&kvm_vmid_gen);
456                 kvm_next_vmid = 1;
457
458                 /*
459                  * On SMP we know no other CPUs can use this CPU's or each
460                  * other's VMID after force_vm_exit returns since the
461                  * kvm_vmid_lock blocks them from reentry to the guest.
462                  */
463                 force_vm_exit(cpu_all_mask);
464                 /*
465                  * Now broadcast TLB + ICACHE invalidation over the inner
466                  * shareable domain to make sure all data structures are
467                  * clean.
468                  */
469                 kvm_call_hyp(__kvm_flush_vm_context);
470         }
471
472         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
473         kvm->arch.vmid = kvm_next_vmid;
474         kvm_next_vmid++;
475
476         /* update vttbr to be used with the new vmid */
477         pgd_phys = virt_to_phys(kvm->arch.pgd);
478         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
479         kvm->arch.vttbr = pgd_phys & VTTBR_BADDR_MASK;
480         kvm->arch.vttbr |= vmid;
481
482         spin_unlock(&kvm_vmid_lock);
483 }
484
485 static int handle_svc_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run)
486 {
487         /* SVC called from Hyp mode should never get here */
488         kvm_debug("SVC called from Hyp mode shouldn't go here\n");
489         BUG();
490         return -EINVAL; /* Squash warning */
491 }
492
493 static int handle_hvc(struct kvm_vcpu *vcpu, struct kvm_run *run)
494 {
495         trace_kvm_hvc(*vcpu_pc(vcpu), *vcpu_reg(vcpu, 0),
496                       vcpu->arch.hsr & HSR_HVC_IMM_MASK);
497
498         if (kvm_psci_call(vcpu))
499                 return 1;
500
501         kvm_inject_undefined(vcpu);
502         return 1;
503 }
504
505 static int handle_smc(struct kvm_vcpu *vcpu, struct kvm_run *run)
506 {
507         if (kvm_psci_call(vcpu))
508                 return 1;
509
510         kvm_inject_undefined(vcpu);
511         return 1;
512 }
513
514 static int handle_pabt_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run)
515 {
516         /* The hypervisor should never cause aborts */
517         kvm_err("Prefetch Abort taken from Hyp mode at %#08x (HSR: %#08x)\n",
518                 vcpu->arch.hxfar, vcpu->arch.hsr);
519         return -EFAULT;
520 }
521
522 static int handle_dabt_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run)
523 {
524         /* This is either an error in the ws. code or an external abort */
525         kvm_err("Data Abort taken from Hyp mode at %#08x (HSR: %#08x)\n",
526                 vcpu->arch.hxfar, vcpu->arch.hsr);
527         return -EFAULT;
528 }
529
530 typedef int (*exit_handle_fn)(struct kvm_vcpu *, struct kvm_run *);
531 static exit_handle_fn arm_exit_handlers[] = {
532         [HSR_EC_WFI]            = kvm_handle_wfi,
533         [HSR_EC_CP15_32]        = kvm_handle_cp15_32,
534         [HSR_EC_CP15_64]        = kvm_handle_cp15_64,
535         [HSR_EC_CP14_MR]        = kvm_handle_cp14_access,
536         [HSR_EC_CP14_LS]        = kvm_handle_cp14_load_store,
537         [HSR_EC_CP14_64]        = kvm_handle_cp14_access,
538         [HSR_EC_CP_0_13]        = kvm_handle_cp_0_13_access,
539         [HSR_EC_CP10_ID]        = kvm_handle_cp10_id,
540         [HSR_EC_SVC_HYP]        = handle_svc_hyp,
541         [HSR_EC_HVC]            = handle_hvc,
542         [HSR_EC_SMC]            = handle_smc,
543         [HSR_EC_IABT]           = kvm_handle_guest_abort,
544         [HSR_EC_IABT_HYP]       = handle_pabt_hyp,
545         [HSR_EC_DABT]           = kvm_handle_guest_abort,
546         [HSR_EC_DABT_HYP]       = handle_dabt_hyp,
547 };
548
549 /*
550  * A conditional instruction is allowed to trap, even though it
551  * wouldn't be executed.  So let's re-implement the hardware, in
552  * software!
553  */
554 static bool kvm_condition_valid(struct kvm_vcpu *vcpu)
555 {
556         unsigned long cpsr, cond, insn;
557
558         /*
559          * Exception Code 0 can only happen if we set HCR.TGE to 1, to
560          * catch undefined instructions, and then we won't get past
561          * the arm_exit_handlers test anyway.
562          */
563         BUG_ON(((vcpu->arch.hsr & HSR_EC) >> HSR_EC_SHIFT) == 0);
564
565         /* Top two bits non-zero?  Unconditional. */
566         if (vcpu->arch.hsr >> 30)
567                 return true;
568
569         cpsr = *vcpu_cpsr(vcpu);
570
571         /* Is condition field valid? */
572         if ((vcpu->arch.hsr & HSR_CV) >> HSR_CV_SHIFT)
573                 cond = (vcpu->arch.hsr & HSR_COND) >> HSR_COND_SHIFT;
574         else {
575                 /* This can happen in Thumb mode: examine IT state. */
576                 unsigned long it;
577
578                 it = ((cpsr >> 8) & 0xFC) | ((cpsr >> 25) & 0x3);
579
580                 /* it == 0 => unconditional. */
581                 if (it == 0)
582                         return true;
583
584                 /* The cond for this insn works out as the top 4 bits. */
585                 cond = (it >> 4);
586         }
587
588         /* Shift makes it look like an ARM-mode instruction */
589         insn = cond << 28;
590         return arm_check_condition(insn, cpsr) != ARM_OPCODE_CONDTEST_FAIL;
591 }
592
593 /*
594  * Return > 0 to return to guest, < 0 on error, 0 (and set exit_reason) on
595  * proper exit to QEMU.
596  */
597 static int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run,
598                        int exception_index)
599 {
600         unsigned long hsr_ec;
601
602         switch (exception_index) {
603         case ARM_EXCEPTION_IRQ:
604                 return 1;
605         case ARM_EXCEPTION_UNDEFINED:
606                 kvm_err("Undefined exception in Hyp mode at: %#08x\n",
607                         vcpu->arch.hyp_pc);
608                 BUG();
609                 panic("KVM: Hypervisor undefined exception!\n");
610         case ARM_EXCEPTION_DATA_ABORT:
611         case ARM_EXCEPTION_PREF_ABORT:
612         case ARM_EXCEPTION_HVC:
613                 hsr_ec = (vcpu->arch.hsr & HSR_EC) >> HSR_EC_SHIFT;
614
615                 if (hsr_ec >= ARRAY_SIZE(arm_exit_handlers)
616                     || !arm_exit_handlers[hsr_ec]) {
617                         kvm_err("Unknown exception class: %#08lx, "
618                                 "hsr: %#08x\n", hsr_ec,
619                                 (unsigned int)vcpu->arch.hsr);
620                         BUG();
621                 }
622
623                 /*
624                  * See ARM ARM B1.14.1: "Hyp traps on instructions
625                  * that fail their condition code check"
626                  */
627                 if (!kvm_condition_valid(vcpu)) {
628                         bool is_wide = vcpu->arch.hsr & HSR_IL;
629                         kvm_skip_instr(vcpu, is_wide);
630                         return 1;
631                 }
632
633                 return arm_exit_handlers[hsr_ec](vcpu, run);
634         default:
635                 kvm_pr_unimpl("Unsupported exception type: %d",
636                               exception_index);
637                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
638                 return 0;
639         }
640 }
641
642 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
643 {
644         if (likely(vcpu->arch.has_run_once))
645                 return 0;
646
647         vcpu->arch.has_run_once = true;
648
649         /*
650          * Initialize the VGIC before running a vcpu the first time on
651          * this VM.
652          */
653         if (irqchip_in_kernel(vcpu->kvm) &&
654             unlikely(!vgic_initialized(vcpu->kvm))) {
655                 int ret = kvm_vgic_init(vcpu->kvm);
656                 if (ret)
657                         return ret;
658         }
659
660         /*
661          * Handle the "start in power-off" case by calling into the
662          * PSCI code.
663          */
664         if (test_and_clear_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features)) {
665                 *vcpu_reg(vcpu, 0) = KVM_PSCI_FN_CPU_OFF;
666                 kvm_psci_call(vcpu);
667         }
668
669         return 0;
670 }
671
672 static void vcpu_pause(struct kvm_vcpu *vcpu)
673 {
674         wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
675
676         wait_event_interruptible(*wq, !vcpu->arch.pause);
677 }
678
679 /**
680  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
681  * @vcpu:       The VCPU pointer
682  * @run:        The kvm_run structure pointer used for userspace state exchange
683  *
684  * This function is called through the VCPU_RUN ioctl called from user space. It
685  * will execute VM code in a loop until the time slice for the process is used
686  * or some emulation is needed from user space in which case the function will
687  * return with return value 0 and with the kvm_run structure filled in with the
688  * required data for the requested emulation.
689  */
690 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
691 {
692         int ret;
693         sigset_t sigsaved;
694
695         /* Make sure they initialize the vcpu with KVM_ARM_VCPU_INIT */
696         if (unlikely(vcpu->arch.target < 0))
697                 return -ENOEXEC;
698
699         ret = kvm_vcpu_first_run_init(vcpu);
700         if (ret)
701                 return ret;
702
703         if (run->exit_reason == KVM_EXIT_MMIO) {
704                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
705                 if (ret)
706                         return ret;
707         }
708
709         if (vcpu->sigset_active)
710                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
711
712         ret = 1;
713         run->exit_reason = KVM_EXIT_UNKNOWN;
714         while (ret > 0) {
715                 /*
716                  * Check conditions before entering the guest
717                  */
718                 cond_resched();
719
720                 update_vttbr(vcpu->kvm);
721
722                 if (vcpu->arch.pause)
723                         vcpu_pause(vcpu);
724
725                 kvm_vgic_flush_hwstate(vcpu);
726                 kvm_timer_flush_hwstate(vcpu);
727
728                 local_irq_disable();
729
730                 /*
731                  * Re-check atomic conditions
732                  */
733                 if (signal_pending(current)) {
734                         ret = -EINTR;
735                         run->exit_reason = KVM_EXIT_INTR;
736                 }
737
738                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
739                         local_irq_enable();
740                         kvm_timer_sync_hwstate(vcpu);
741                         kvm_vgic_sync_hwstate(vcpu);
742                         continue;
743                 }
744
745                 /**************************************************************
746                  * Enter the guest
747                  */
748                 trace_kvm_entry(*vcpu_pc(vcpu));
749                 kvm_guest_enter();
750                 vcpu->mode = IN_GUEST_MODE;
751
752                 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
753
754                 vcpu->mode = OUTSIDE_GUEST_MODE;
755                 vcpu->arch.last_pcpu = smp_processor_id();
756                 kvm_guest_exit();
757                 trace_kvm_exit(*vcpu_pc(vcpu));
758                 /*
759                  * We may have taken a host interrupt in HYP mode (ie
760                  * while executing the guest). This interrupt is still
761                  * pending, as we haven't serviced it yet!
762                  *
763                  * We're now back in SVC mode, with interrupts
764                  * disabled.  Enabling the interrupts now will have
765                  * the effect of taking the interrupt again, in SVC
766                  * mode this time.
767                  */
768                 local_irq_enable();
769
770                 /*
771                  * Back from guest
772                  *************************************************************/
773
774                 kvm_timer_sync_hwstate(vcpu);
775                 kvm_vgic_sync_hwstate(vcpu);
776
777                 ret = handle_exit(vcpu, run, ret);
778         }
779
780         if (vcpu->sigset_active)
781                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
782         return ret;
783 }
784
785 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
786 {
787         int bit_index;
788         bool set;
789         unsigned long *ptr;
790
791         if (number == KVM_ARM_IRQ_CPU_IRQ)
792                 bit_index = __ffs(HCR_VI);
793         else /* KVM_ARM_IRQ_CPU_FIQ */
794                 bit_index = __ffs(HCR_VF);
795
796         ptr = (unsigned long *)&vcpu->arch.irq_lines;
797         if (level)
798                 set = test_and_set_bit(bit_index, ptr);
799         else
800                 set = test_and_clear_bit(bit_index, ptr);
801
802         /*
803          * If we didn't change anything, no need to wake up or kick other CPUs
804          */
805         if (set == level)
806                 return 0;
807
808         /*
809          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
810          * trigger a world-switch round on the running physical CPU to set the
811          * virtual IRQ/FIQ fields in the HCR appropriately.
812          */
813         kvm_vcpu_kick(vcpu);
814
815         return 0;
816 }
817
818 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level)
819 {
820         u32 irq = irq_level->irq;
821         unsigned int irq_type, vcpu_idx, irq_num;
822         int nrcpus = atomic_read(&kvm->online_vcpus);
823         struct kvm_vcpu *vcpu = NULL;
824         bool level = irq_level->level;
825
826         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
827         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
828         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
829
830         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
831
832         switch (irq_type) {
833         case KVM_ARM_IRQ_TYPE_CPU:
834                 if (irqchip_in_kernel(kvm))
835                         return -ENXIO;
836
837                 if (vcpu_idx >= nrcpus)
838                         return -EINVAL;
839
840                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
841                 if (!vcpu)
842                         return -EINVAL;
843
844                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
845                         return -EINVAL;
846
847                 return vcpu_interrupt_line(vcpu, irq_num, level);
848         case KVM_ARM_IRQ_TYPE_PPI:
849                 if (!irqchip_in_kernel(kvm))
850                         return -ENXIO;
851
852                 if (vcpu_idx >= nrcpus)
853                         return -EINVAL;
854
855                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
856                 if (!vcpu)
857                         return -EINVAL;
858
859                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
860                         return -EINVAL;
861
862                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
863         case KVM_ARM_IRQ_TYPE_SPI:
864                 if (!irqchip_in_kernel(kvm))
865                         return -ENXIO;
866
867                 if (irq_num < VGIC_NR_PRIVATE_IRQS ||
868                     irq_num > KVM_ARM_IRQ_GIC_MAX)
869                         return -EINVAL;
870
871                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
872         }
873
874         return -EINVAL;
875 }
876
877 long kvm_arch_vcpu_ioctl(struct file *filp,
878                          unsigned int ioctl, unsigned long arg)
879 {
880         struct kvm_vcpu *vcpu = filp->private_data;
881         void __user *argp = (void __user *)arg;
882
883         switch (ioctl) {
884         case KVM_ARM_VCPU_INIT: {
885                 struct kvm_vcpu_init init;
886
887                 if (copy_from_user(&init, argp, sizeof(init)))
888                         return -EFAULT;
889
890                 return kvm_vcpu_set_target(vcpu, &init);
891
892         }
893         case KVM_SET_ONE_REG:
894         case KVM_GET_ONE_REG: {
895                 struct kvm_one_reg reg;
896                 if (copy_from_user(&reg, argp, sizeof(reg)))
897                         return -EFAULT;
898                 if (ioctl == KVM_SET_ONE_REG)
899                         return kvm_arm_set_reg(vcpu, &reg);
900                 else
901                         return kvm_arm_get_reg(vcpu, &reg);
902         }
903         case KVM_GET_REG_LIST: {
904                 struct kvm_reg_list __user *user_list = argp;
905                 struct kvm_reg_list reg_list;
906                 unsigned n;
907
908                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
909                         return -EFAULT;
910                 n = reg_list.n;
911                 reg_list.n = kvm_arm_num_regs(vcpu);
912                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
913                         return -EFAULT;
914                 if (n < reg_list.n)
915                         return -E2BIG;
916                 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
917         }
918         default:
919                 return -EINVAL;
920         }
921 }
922
923 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
924 {
925         return -EINVAL;
926 }
927
928 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
929                                         struct kvm_arm_device_addr *dev_addr)
930 {
931         unsigned long dev_id, type;
932
933         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
934                 KVM_ARM_DEVICE_ID_SHIFT;
935         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
936                 KVM_ARM_DEVICE_TYPE_SHIFT;
937
938         switch (dev_id) {
939         case KVM_ARM_DEVICE_VGIC_V2:
940                 if (!vgic_present)
941                         return -ENXIO;
942                 return kvm_vgic_set_addr(kvm, type, dev_addr->addr);
943         default:
944                 return -ENODEV;
945         }
946 }
947
948 long kvm_arch_vm_ioctl(struct file *filp,
949                        unsigned int ioctl, unsigned long arg)
950 {
951         struct kvm *kvm = filp->private_data;
952         void __user *argp = (void __user *)arg;
953
954         switch (ioctl) {
955         case KVM_CREATE_IRQCHIP: {
956                 if (vgic_present)
957                         return kvm_vgic_create(kvm);
958                 else
959                         return -ENXIO;
960         }
961         case KVM_ARM_SET_DEVICE_ADDR: {
962                 struct kvm_arm_device_addr dev_addr;
963
964                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
965                         return -EFAULT;
966                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
967         }
968         default:
969                 return -EINVAL;
970         }
971 }
972
973 static void cpu_init_hyp_mode(void *vector)
974 {
975         unsigned long long pgd_ptr;
976         unsigned long pgd_low, pgd_high;
977         unsigned long hyp_stack_ptr;
978         unsigned long stack_page;
979         unsigned long vector_ptr;
980
981         /* Switch from the HYP stub to our own HYP init vector */
982         __hyp_set_vectors((unsigned long)vector);
983
984         pgd_ptr = (unsigned long long)kvm_mmu_get_httbr();
985         pgd_low = (pgd_ptr & ((1ULL << 32) - 1));
986         pgd_high = (pgd_ptr >> 32ULL);
987         stack_page = __get_cpu_var(kvm_arm_hyp_stack_page);
988         hyp_stack_ptr = stack_page + PAGE_SIZE;
989         vector_ptr = (unsigned long)__kvm_hyp_vector;
990
991         /*
992          * Call initialization code, and switch to the full blown
993          * HYP code. The init code doesn't need to preserve these registers as
994          * r1-r3 and r12 are already callee save according to the AAPCS.
995          * Note that we slightly misuse the prototype by casing the pgd_low to
996          * a void *.
997          */
998         kvm_call_hyp((void *)pgd_low, pgd_high, hyp_stack_ptr, vector_ptr);
999 }
1000
1001 /**
1002  * Inits Hyp-mode on all online CPUs
1003  */
1004 static int init_hyp_mode(void)
1005 {
1006         phys_addr_t init_phys_addr;
1007         int cpu;
1008         int err = 0;
1009
1010         /*
1011          * Allocate Hyp PGD and setup Hyp identity mapping
1012          */
1013         err = kvm_mmu_init();
1014         if (err)
1015                 goto out_err;
1016
1017         /*
1018          * It is probably enough to obtain the default on one
1019          * CPU. It's unlikely to be different on the others.
1020          */
1021         hyp_default_vectors = __hyp_get_vectors();
1022
1023         /*
1024          * Allocate stack pages for Hypervisor-mode
1025          */
1026         for_each_possible_cpu(cpu) {
1027                 unsigned long stack_page;
1028
1029                 stack_page = __get_free_page(GFP_KERNEL);
1030                 if (!stack_page) {
1031                         err = -ENOMEM;
1032                         goto out_free_stack_pages;
1033                 }
1034
1035                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1036         }
1037
1038         /*
1039          * Execute the init code on each CPU.
1040          *
1041          * Note: The stack is not mapped yet, so don't do anything else than
1042          * initializing the hypervisor mode on each CPU using a local stack
1043          * space for temporary storage.
1044          */
1045         init_phys_addr = virt_to_phys(__kvm_hyp_init);
1046         for_each_online_cpu(cpu) {
1047                 smp_call_function_single(cpu, cpu_init_hyp_mode,
1048                                          (void *)(long)init_phys_addr, 1);
1049         }
1050
1051         /*
1052          * Unmap the identity mapping
1053          */
1054         kvm_clear_hyp_idmap();
1055
1056         /*
1057          * Map the Hyp-code called directly from the host
1058          */
1059         err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
1060         if (err) {
1061                 kvm_err("Cannot map world-switch code\n");
1062                 goto out_free_mappings;
1063         }
1064
1065         /*
1066          * Map the Hyp stack pages
1067          */
1068         for_each_possible_cpu(cpu) {
1069                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1070                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
1071
1072                 if (err) {
1073                         kvm_err("Cannot map hyp stack\n");
1074                         goto out_free_mappings;
1075                 }
1076         }
1077
1078         /*
1079          * Map the host VFP structures
1080          */
1081         kvm_host_vfp_state = alloc_percpu(struct vfp_hard_struct);
1082         if (!kvm_host_vfp_state) {
1083                 err = -ENOMEM;
1084                 kvm_err("Cannot allocate host VFP state\n");
1085                 goto out_free_mappings;
1086         }
1087
1088         for_each_possible_cpu(cpu) {
1089                 struct vfp_hard_struct *vfp;
1090
1091                 vfp = per_cpu_ptr(kvm_host_vfp_state, cpu);
1092                 err = create_hyp_mappings(vfp, vfp + 1);
1093
1094                 if (err) {
1095                         kvm_err("Cannot map host VFP state: %d\n", err);
1096                         goto out_free_vfp;
1097                 }
1098         }
1099
1100         /*
1101          * Init HYP view of VGIC
1102          */
1103         err = kvm_vgic_hyp_init();
1104         if (err)
1105                 goto out_free_vfp;
1106
1107 #ifdef CONFIG_KVM_ARM_VGIC
1108                 vgic_present = true;
1109 #endif
1110
1111         /*
1112          * Init HYP architected timer support
1113          */
1114         err = kvm_timer_hyp_init();
1115         if (err)
1116                 goto out_free_mappings;
1117
1118         kvm_info("Hyp mode initialized successfully\n");
1119         return 0;
1120 out_free_vfp:
1121         free_percpu(kvm_host_vfp_state);
1122 out_free_mappings:
1123         free_hyp_pmds();
1124 out_free_stack_pages:
1125         for_each_possible_cpu(cpu)
1126                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1127 out_err:
1128         kvm_err("error initializing Hyp mode: %d\n", err);
1129         return err;
1130 }
1131
1132 /**
1133  * Initialize Hyp-mode and memory mappings on all CPUs.
1134  */
1135 int kvm_arch_init(void *opaque)
1136 {
1137         int err;
1138
1139         if (!is_hyp_mode_available()) {
1140                 kvm_err("HYP mode not available\n");
1141                 return -ENODEV;
1142         }
1143
1144         if (kvm_target_cpu() < 0) {
1145                 kvm_err("Target CPU not supported!\n");
1146                 return -ENODEV;
1147         }
1148
1149         err = init_hyp_mode();
1150         if (err)
1151                 goto out_err;
1152
1153         kvm_coproc_table_init();
1154         return 0;
1155 out_err:
1156         return err;
1157 }
1158
1159 /* NOP: Compiling as a module not supported */
1160 void kvm_arch_exit(void)
1161 {
1162 }
1163
1164 static int arm_init(void)
1165 {
1166         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1167         return rc;
1168 }
1169
1170 module_init(arm_init);