]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/arm64/kernel/cpufeature.c
a2542ef3ff25c59140dcbc063cd6fa1be2a257ff
[linux.git] / arch / arm64 / kernel / cpufeature.c
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/sort.h>
24 #include <linux/stop_machine.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <asm/cpu.h>
28 #include <asm/cpufeature.h>
29 #include <asm/cpu_ops.h>
30 #include <asm/mmu_context.h>
31 #include <asm/processor.h>
32 #include <asm/sysreg.h>
33 #include <asm/traps.h>
34 #include <asm/virt.h>
35
36 unsigned long elf_hwcap __read_mostly;
37 EXPORT_SYMBOL_GPL(elf_hwcap);
38
39 #ifdef CONFIG_COMPAT
40 #define COMPAT_ELF_HWCAP_DEFAULT        \
41                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
42                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
43                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
44                                  COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
45                                  COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
46                                  COMPAT_HWCAP_LPAE)
47 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
48 unsigned int compat_elf_hwcap2 __read_mostly;
49 #endif
50
51 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
52 EXPORT_SYMBOL(cpu_hwcaps);
53
54 static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
55 {
56         /* file-wide pr_fmt adds "CPU features: " prefix */
57         pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
58         return 0;
59 }
60
61 static struct notifier_block cpu_hwcaps_notifier = {
62         .notifier_call = dump_cpu_hwcaps
63 };
64
65 static int __init register_cpu_hwcaps_dumper(void)
66 {
67         atomic_notifier_chain_register(&panic_notifier_list,
68                                        &cpu_hwcaps_notifier);
69         return 0;
70 }
71 __initcall(register_cpu_hwcaps_dumper);
72
73 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
74 EXPORT_SYMBOL(cpu_hwcap_keys);
75
76 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
77         {                                               \
78                 .sign = SIGNED,                         \
79                 .visible = VISIBLE,                     \
80                 .strict = STRICT,                       \
81                 .type = TYPE,                           \
82                 .shift = SHIFT,                         \
83                 .width = WIDTH,                         \
84                 .safe_val = SAFE_VAL,                   \
85         }
86
87 /* Define a feature with unsigned values */
88 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
89         __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
90
91 /* Define a feature with a signed value */
92 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
93         __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
94
95 #define ARM64_FTR_END                                   \
96         {                                               \
97                 .width = 0,                             \
98         }
99
100 /* meta feature for alternatives */
101 static bool __maybe_unused
102 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
103
104
105 /*
106  * NOTE: Any changes to the visibility of features should be kept in
107  * sync with the documentation of the CPU feature register ABI.
108  */
109 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
110         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
111         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
112         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
113         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
114         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
115         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
116         ARM64_FTR_END,
117 };
118
119 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
120         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
121         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
122         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
123         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
124         ARM64_FTR_END,
125 };
126
127 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
128         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
129         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
130         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
131         /* Linux doesn't care about the EL3 */
132         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
133         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
134         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
135         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
136         ARM64_FTR_END,
137 };
138
139 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
140         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
141         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
142         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
143         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
144         /* Linux shouldn't care about secure memory */
145         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
146         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
147         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
148         /*
149          * Differing PARange is fine as long as all peripherals and memory are mapped
150          * within the minimum PARange of all CPUs
151          */
152         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
153         ARM64_FTR_END,
154 };
155
156 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
157         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
158         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
159         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
160         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
161         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
162         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
163         ARM64_FTR_END,
164 };
165
166 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
167         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
168         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
169         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
170         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
171         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
172         ARM64_FTR_END,
173 };
174
175 static const struct arm64_ftr_bits ftr_ctr[] = {
176         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1),   /* RAO */
177         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),     /* CWG */
178         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),      /* ERG */
179         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1),      /* DminLine */
180         /*
181          * Linux can handle differing I-cache policies. Userspace JITs will
182          * make use of *minLine.
183          * If we have differing I-cache policies, report it as the weakest - VIPT.
184          */
185         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT),       /* L1Ip */
186         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),       /* IminLine */
187         ARM64_FTR_END,
188 };
189
190 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
191         .name           = "SYS_CTR_EL0",
192         .ftr_bits       = ftr_ctr
193 };
194
195 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
196         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 28, 4, 0xf),        /* InnerShr */
197         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 24, 4, 0),    /* FCSE */
198         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),    /* AuxReg */
199         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 16, 4, 0),    /* TCM */
200         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 12, 4, 0),    /* ShareLvl */
201         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 8, 4, 0xf), /* OuterShr */
202         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0),     /* PMSA */
203         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0),     /* VMSA */
204         ARM64_FTR_END,
205 };
206
207 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
208         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
209         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
210         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
211         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
212         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
213         /*
214          * We can instantiate multiple PMU instances with different levels
215          * of support.
216          */
217         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
218         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
219         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
220         ARM64_FTR_END,
221 };
222
223 static const struct arm64_ftr_bits ftr_mvfr2[] = {
224         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0),             /* FPMisc */
225         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0),             /* SIMDMisc */
226         ARM64_FTR_END,
227 };
228
229 static const struct arm64_ftr_bits ftr_dczid[] = {
230         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1),            /* DZP */
231         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),       /* BS */
232         ARM64_FTR_END,
233 };
234
235
236 static const struct arm64_ftr_bits ftr_id_isar5[] = {
237         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
238         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
239         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
240         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
241         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
242         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
243         ARM64_FTR_END,
244 };
245
246 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
247         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0),             /* ac2 */
248         ARM64_FTR_END,
249 };
250
251 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
252         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 12, 4, 0),    /* State3 */
253         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 8, 4, 0),             /* State2 */
254         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0),             /* State1 */
255         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0),             /* State0 */
256         ARM64_FTR_END,
257 };
258
259 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
260         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
261         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),   /* PerfMon */
262         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
263         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
264         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
265         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
266         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
267         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
268         ARM64_FTR_END,
269 };
270
271 /*
272  * Common ftr bits for a 32bit register with all hidden, strict
273  * attributes, with 4bit feature fields and a default safe value of
274  * 0. Covers the following 32bit registers:
275  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
276  */
277 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
278         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
279         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
280         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
281         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
282         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
283         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
284         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
285         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
286         ARM64_FTR_END,
287 };
288
289 /* Table for a single 32bit feature value */
290 static const struct arm64_ftr_bits ftr_single32[] = {
291         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
292         ARM64_FTR_END,
293 };
294
295 static const struct arm64_ftr_bits ftr_raz[] = {
296         ARM64_FTR_END,
297 };
298
299 #define ARM64_FTR_REG(id, table) {              \
300         .sys_id = id,                           \
301         .reg =  &(struct arm64_ftr_reg){        \
302                 .name = #id,                    \
303                 .ftr_bits = &((table)[0]),      \
304         }}
305
306 static const struct __ftr_reg_entry {
307         u32                     sys_id;
308         struct arm64_ftr_reg    *reg;
309 } arm64_ftr_regs[] = {
310
311         /* Op1 = 0, CRn = 0, CRm = 1 */
312         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
313         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
314         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
315         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
316         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
317         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
318         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
319
320         /* Op1 = 0, CRn = 0, CRm = 2 */
321         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
322         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
323         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
324         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
325         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
326         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
327         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
328
329         /* Op1 = 0, CRn = 0, CRm = 3 */
330         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
331         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
332         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
333
334         /* Op1 = 0, CRn = 0, CRm = 4 */
335         ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
336         ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_raz),
337
338         /* Op1 = 0, CRn = 0, CRm = 5 */
339         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
340         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
341
342         /* Op1 = 0, CRn = 0, CRm = 6 */
343         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
344         ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
345
346         /* Op1 = 0, CRn = 0, CRm = 7 */
347         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
348         ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
349         ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
350
351         /* Op1 = 3, CRn = 0, CRm = 0 */
352         { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
353         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
354
355         /* Op1 = 3, CRn = 14, CRm = 0 */
356         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
357 };
358
359 static int search_cmp_ftr_reg(const void *id, const void *regp)
360 {
361         return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
362 }
363
364 /*
365  * get_arm64_ftr_reg - Lookup a feature register entry using its
366  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
367  * ascending order of sys_id , we use binary search to find a matching
368  * entry.
369  *
370  * returns - Upon success,  matching ftr_reg entry for id.
371  *         - NULL on failure. It is upto the caller to decide
372  *           the impact of a failure.
373  */
374 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
375 {
376         const struct __ftr_reg_entry *ret;
377
378         ret = bsearch((const void *)(unsigned long)sys_id,
379                         arm64_ftr_regs,
380                         ARRAY_SIZE(arm64_ftr_regs),
381                         sizeof(arm64_ftr_regs[0]),
382                         search_cmp_ftr_reg);
383         if (ret)
384                 return ret->reg;
385         return NULL;
386 }
387
388 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
389                                s64 ftr_val)
390 {
391         u64 mask = arm64_ftr_mask(ftrp);
392
393         reg &= ~mask;
394         reg |= (ftr_val << ftrp->shift) & mask;
395         return reg;
396 }
397
398 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
399                                 s64 cur)
400 {
401         s64 ret = 0;
402
403         switch (ftrp->type) {
404         case FTR_EXACT:
405                 ret = ftrp->safe_val;
406                 break;
407         case FTR_LOWER_SAFE:
408                 ret = new < cur ? new : cur;
409                 break;
410         case FTR_HIGHER_SAFE:
411                 ret = new > cur ? new : cur;
412                 break;
413         default:
414                 BUG();
415         }
416
417         return ret;
418 }
419
420 static void __init sort_ftr_regs(void)
421 {
422         int i;
423
424         /* Check that the array is sorted so that we can do the binary search */
425         for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
426                 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
427 }
428
429 /*
430  * Initialise the CPU feature register from Boot CPU values.
431  * Also initiliases the strict_mask for the register.
432  * Any bits that are not covered by an arm64_ftr_bits entry are considered
433  * RES0 for the system-wide value, and must strictly match.
434  */
435 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
436 {
437         u64 val = 0;
438         u64 strict_mask = ~0x0ULL;
439         u64 user_mask = 0;
440         u64 valid_mask = 0;
441
442         const struct arm64_ftr_bits *ftrp;
443         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
444
445         BUG_ON(!reg);
446
447         for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
448                 u64 ftr_mask = arm64_ftr_mask(ftrp);
449                 s64 ftr_new = arm64_ftr_value(ftrp, new);
450
451                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
452
453                 valid_mask |= ftr_mask;
454                 if (!ftrp->strict)
455                         strict_mask &= ~ftr_mask;
456                 if (ftrp->visible)
457                         user_mask |= ftr_mask;
458                 else
459                         reg->user_val = arm64_ftr_set_value(ftrp,
460                                                             reg->user_val,
461                                                             ftrp->safe_val);
462         }
463
464         val &= valid_mask;
465
466         reg->sys_val = val;
467         reg->strict_mask = strict_mask;
468         reg->user_mask = user_mask;
469 }
470
471 void __init init_cpu_features(struct cpuinfo_arm64 *info)
472 {
473         /* Before we start using the tables, make sure it is sorted */
474         sort_ftr_regs();
475
476         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
477         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
478         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
479         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
480         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
481         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
482         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
483         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
484         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
485         init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
486         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
487         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
488
489         if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
490                 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
491                 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
492                 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
493                 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
494                 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
495                 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
496                 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
497                 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
498                 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
499                 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
500                 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
501                 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
502                 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
503                 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
504                 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
505                 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
506         }
507
508 }
509
510 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
511 {
512         const struct arm64_ftr_bits *ftrp;
513
514         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
515                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
516                 s64 ftr_new = arm64_ftr_value(ftrp, new);
517
518                 if (ftr_cur == ftr_new)
519                         continue;
520                 /* Find a safe value */
521                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
522                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
523         }
524
525 }
526
527 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
528 {
529         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
530
531         BUG_ON(!regp);
532         update_cpu_ftr_reg(regp, val);
533         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
534                 return 0;
535         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
536                         regp->name, boot, cpu, val);
537         return 1;
538 }
539
540 /*
541  * Update system wide CPU feature registers with the values from a
542  * non-boot CPU. Also performs SANITY checks to make sure that there
543  * aren't any insane variations from that of the boot CPU.
544  */
545 void update_cpu_features(int cpu,
546                          struct cpuinfo_arm64 *info,
547                          struct cpuinfo_arm64 *boot)
548 {
549         int taint = 0;
550
551         /*
552          * The kernel can handle differing I-cache policies, but otherwise
553          * caches should look identical. Userspace JITs will make use of
554          * *minLine.
555          */
556         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
557                                       info->reg_ctr, boot->reg_ctr);
558
559         /*
560          * Userspace may perform DC ZVA instructions. Mismatched block sizes
561          * could result in too much or too little memory being zeroed if a
562          * process is preempted and migrated between CPUs.
563          */
564         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
565                                       info->reg_dczid, boot->reg_dczid);
566
567         /* If different, timekeeping will be broken (especially with KVM) */
568         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
569                                       info->reg_cntfrq, boot->reg_cntfrq);
570
571         /*
572          * The kernel uses self-hosted debug features and expects CPUs to
573          * support identical debug features. We presently need CTX_CMPs, WRPs,
574          * and BRPs to be identical.
575          * ID_AA64DFR1 is currently RES0.
576          */
577         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
578                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
579         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
580                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
581         /*
582          * Even in big.LITTLE, processors should be identical instruction-set
583          * wise.
584          */
585         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
586                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
587         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
588                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
589
590         /*
591          * Differing PARange support is fine as long as all peripherals and
592          * memory are mapped within the minimum PARange of all CPUs.
593          * Linux should not care about secure memory.
594          */
595         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
596                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
597         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
598                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
599         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
600                                       info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
601
602         /*
603          * EL3 is not our concern.
604          * ID_AA64PFR1 is currently RES0.
605          */
606         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
607                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
608         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
609                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
610
611         /*
612          * If we have AArch32, we care about 32-bit features for compat.
613          * If the system doesn't support AArch32, don't update them.
614          */
615         if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
616                 id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
617
618                 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
619                                         info->reg_id_dfr0, boot->reg_id_dfr0);
620                 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
621                                         info->reg_id_isar0, boot->reg_id_isar0);
622                 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
623                                         info->reg_id_isar1, boot->reg_id_isar1);
624                 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
625                                         info->reg_id_isar2, boot->reg_id_isar2);
626                 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
627                                         info->reg_id_isar3, boot->reg_id_isar3);
628                 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
629                                         info->reg_id_isar4, boot->reg_id_isar4);
630                 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
631                                         info->reg_id_isar5, boot->reg_id_isar5);
632
633                 /*
634                  * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
635                  * ACTLR formats could differ across CPUs and therefore would have to
636                  * be trapped for virtualization anyway.
637                  */
638                 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
639                                         info->reg_id_mmfr0, boot->reg_id_mmfr0);
640                 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
641                                         info->reg_id_mmfr1, boot->reg_id_mmfr1);
642                 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
643                                         info->reg_id_mmfr2, boot->reg_id_mmfr2);
644                 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
645                                         info->reg_id_mmfr3, boot->reg_id_mmfr3);
646                 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
647                                         info->reg_id_pfr0, boot->reg_id_pfr0);
648                 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
649                                         info->reg_id_pfr1, boot->reg_id_pfr1);
650                 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
651                                         info->reg_mvfr0, boot->reg_mvfr0);
652                 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
653                                         info->reg_mvfr1, boot->reg_mvfr1);
654                 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
655                                         info->reg_mvfr2, boot->reg_mvfr2);
656         }
657
658         /*
659          * Mismatched CPU features are a recipe for disaster. Don't even
660          * pretend to support them.
661          */
662         if (taint) {
663                 pr_warn_once("Unsupported CPU feature variation detected.\n");
664                 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
665         }
666 }
667
668 u64 read_sanitised_ftr_reg(u32 id)
669 {
670         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
671
672         /* We shouldn't get a request for an unsupported register */
673         BUG_ON(!regp);
674         return regp->sys_val;
675 }
676
677 #define read_sysreg_case(r)     \
678         case r:         return read_sysreg_s(r)
679
680 /*
681  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
682  * Read the system register on the current CPU
683  */
684 static u64 __read_sysreg_by_encoding(u32 sys_id)
685 {
686         switch (sys_id) {
687         read_sysreg_case(SYS_ID_PFR0_EL1);
688         read_sysreg_case(SYS_ID_PFR1_EL1);
689         read_sysreg_case(SYS_ID_DFR0_EL1);
690         read_sysreg_case(SYS_ID_MMFR0_EL1);
691         read_sysreg_case(SYS_ID_MMFR1_EL1);
692         read_sysreg_case(SYS_ID_MMFR2_EL1);
693         read_sysreg_case(SYS_ID_MMFR3_EL1);
694         read_sysreg_case(SYS_ID_ISAR0_EL1);
695         read_sysreg_case(SYS_ID_ISAR1_EL1);
696         read_sysreg_case(SYS_ID_ISAR2_EL1);
697         read_sysreg_case(SYS_ID_ISAR3_EL1);
698         read_sysreg_case(SYS_ID_ISAR4_EL1);
699         read_sysreg_case(SYS_ID_ISAR5_EL1);
700         read_sysreg_case(SYS_MVFR0_EL1);
701         read_sysreg_case(SYS_MVFR1_EL1);
702         read_sysreg_case(SYS_MVFR2_EL1);
703
704         read_sysreg_case(SYS_ID_AA64PFR0_EL1);
705         read_sysreg_case(SYS_ID_AA64PFR1_EL1);
706         read_sysreg_case(SYS_ID_AA64DFR0_EL1);
707         read_sysreg_case(SYS_ID_AA64DFR1_EL1);
708         read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
709         read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
710         read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
711         read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
712         read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
713
714         read_sysreg_case(SYS_CNTFRQ_EL0);
715         read_sysreg_case(SYS_CTR_EL0);
716         read_sysreg_case(SYS_DCZID_EL0);
717
718         default:
719                 BUG();
720                 return 0;
721         }
722 }
723
724 #include <linux/irqchip/arm-gic-v3.h>
725
726 static bool
727 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
728 {
729         int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
730
731         return val >= entry->min_field_value;
732 }
733
734 static bool
735 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
736 {
737         u64 val;
738
739         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
740         if (scope == SCOPE_SYSTEM)
741                 val = read_sanitised_ftr_reg(entry->sys_reg);
742         else
743                 val = __read_sysreg_by_encoding(entry->sys_reg);
744
745         return feature_matches(val, entry);
746 }
747
748 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
749 {
750         bool has_sre;
751
752         if (!has_cpuid_feature(entry, scope))
753                 return false;
754
755         has_sre = gic_enable_sre();
756         if (!has_sre)
757                 pr_warn_once("%s present but disabled by higher exception level\n",
758                              entry->desc);
759
760         return has_sre;
761 }
762
763 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
764 {
765         u32 midr = read_cpuid_id();
766
767         /* Cavium ThunderX pass 1.x and 2.x */
768         return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
769                 MIDR_CPU_VAR_REV(0, 0),
770                 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
771 }
772
773 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
774 {
775         return is_kernel_in_hyp_mode();
776 }
777
778 static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
779                            int __unused)
780 {
781         phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start);
782
783         /*
784          * Activate the lower HYP offset only if:
785          * - the idmap doesn't clash with it,
786          * - the kernel is not running at EL2.
787          */
788         return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
789 }
790
791 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
792 {
793         u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
794
795         return cpuid_feature_extract_signed_field(pfr0,
796                                         ID_AA64PFR0_FP_SHIFT) < 0;
797 }
798
799 static const struct arm64_cpu_capabilities arm64_features[] = {
800         {
801                 .desc = "GIC system register CPU interface",
802                 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
803                 .def_scope = SCOPE_SYSTEM,
804                 .matches = has_useable_gicv3_cpuif,
805                 .sys_reg = SYS_ID_AA64PFR0_EL1,
806                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
807                 .sign = FTR_UNSIGNED,
808                 .min_field_value = 1,
809         },
810 #ifdef CONFIG_ARM64_PAN
811         {
812                 .desc = "Privileged Access Never",
813                 .capability = ARM64_HAS_PAN,
814                 .def_scope = SCOPE_SYSTEM,
815                 .matches = has_cpuid_feature,
816                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
817                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
818                 .sign = FTR_UNSIGNED,
819                 .min_field_value = 1,
820                 .enable = cpu_enable_pan,
821         },
822 #endif /* CONFIG_ARM64_PAN */
823 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
824         {
825                 .desc = "LSE atomic instructions",
826                 .capability = ARM64_HAS_LSE_ATOMICS,
827                 .def_scope = SCOPE_SYSTEM,
828                 .matches = has_cpuid_feature,
829                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
830                 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
831                 .sign = FTR_UNSIGNED,
832                 .min_field_value = 2,
833         },
834 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
835         {
836                 .desc = "Software prefetching using PRFM",
837                 .capability = ARM64_HAS_NO_HW_PREFETCH,
838                 .def_scope = SCOPE_SYSTEM,
839                 .matches = has_no_hw_prefetch,
840         },
841 #ifdef CONFIG_ARM64_UAO
842         {
843                 .desc = "User Access Override",
844                 .capability = ARM64_HAS_UAO,
845                 .def_scope = SCOPE_SYSTEM,
846                 .matches = has_cpuid_feature,
847                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
848                 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
849                 .min_field_value = 1,
850                 /*
851                  * We rely on stop_machine() calling uao_thread_switch() to set
852                  * UAO immediately after patching.
853                  */
854         },
855 #endif /* CONFIG_ARM64_UAO */
856 #ifdef CONFIG_ARM64_PAN
857         {
858                 .capability = ARM64_ALT_PAN_NOT_UAO,
859                 .def_scope = SCOPE_SYSTEM,
860                 .matches = cpufeature_pan_not_uao,
861         },
862 #endif /* CONFIG_ARM64_PAN */
863         {
864                 .desc = "Virtualization Host Extensions",
865                 .capability = ARM64_HAS_VIRT_HOST_EXTN,
866                 .def_scope = SCOPE_SYSTEM,
867                 .matches = runs_at_el2,
868         },
869         {
870                 .desc = "32-bit EL0 Support",
871                 .capability = ARM64_HAS_32BIT_EL0,
872                 .def_scope = SCOPE_SYSTEM,
873                 .matches = has_cpuid_feature,
874                 .sys_reg = SYS_ID_AA64PFR0_EL1,
875                 .sign = FTR_UNSIGNED,
876                 .field_pos = ID_AA64PFR0_EL0_SHIFT,
877                 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
878         },
879         {
880                 .desc = "Reduced HYP mapping offset",
881                 .capability = ARM64_HYP_OFFSET_LOW,
882                 .def_scope = SCOPE_SYSTEM,
883                 .matches = hyp_offset_low,
884         },
885         {
886                 /* FP/SIMD is not implemented */
887                 .capability = ARM64_HAS_NO_FPSIMD,
888                 .def_scope = SCOPE_SYSTEM,
889                 .min_field_value = 0,
890                 .matches = has_no_fpsimd,
891         },
892         {},
893 };
894
895 #define HWCAP_CAP(reg, field, s, min_value, type, cap)  \
896         {                                                       \
897                 .desc = #cap,                                   \
898                 .def_scope = SCOPE_SYSTEM,                      \
899                 .matches = has_cpuid_feature,                   \
900                 .sys_reg = reg,                                 \
901                 .field_pos = field,                             \
902                 .sign = s,                                      \
903                 .min_field_value = min_value,                   \
904                 .hwcap_type = type,                             \
905                 .hwcap = cap,                                   \
906         }
907
908 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
909         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
910         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
911         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
912         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
913         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
914         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
915         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
916         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
917         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
918         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
919         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
920         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_DCPOP),
921         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
922         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
923         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
924         {},
925 };
926
927 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
928 #ifdef CONFIG_COMPAT
929         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
930         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
931         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
932         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
933         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
934 #endif
935         {},
936 };
937
938 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
939 {
940         switch (cap->hwcap_type) {
941         case CAP_HWCAP:
942                 elf_hwcap |= cap->hwcap;
943                 break;
944 #ifdef CONFIG_COMPAT
945         case CAP_COMPAT_HWCAP:
946                 compat_elf_hwcap |= (u32)cap->hwcap;
947                 break;
948         case CAP_COMPAT_HWCAP2:
949                 compat_elf_hwcap2 |= (u32)cap->hwcap;
950                 break;
951 #endif
952         default:
953                 WARN_ON(1);
954                 break;
955         }
956 }
957
958 /* Check if we have a particular HWCAP enabled */
959 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
960 {
961         bool rc;
962
963         switch (cap->hwcap_type) {
964         case CAP_HWCAP:
965                 rc = (elf_hwcap & cap->hwcap) != 0;
966                 break;
967 #ifdef CONFIG_COMPAT
968         case CAP_COMPAT_HWCAP:
969                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
970                 break;
971         case CAP_COMPAT_HWCAP2:
972                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
973                 break;
974 #endif
975         default:
976                 WARN_ON(1);
977                 rc = false;
978         }
979
980         return rc;
981 }
982
983 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
984 {
985         /* We support emulation of accesses to CPU ID feature registers */
986         elf_hwcap |= HWCAP_CPUID;
987         for (; hwcaps->matches; hwcaps++)
988                 if (hwcaps->matches(hwcaps, hwcaps->def_scope))
989                         cap_set_elf_hwcap(hwcaps);
990 }
991
992 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
993                             const char *info)
994 {
995         for (; caps->matches; caps++) {
996                 if (!caps->matches(caps, caps->def_scope))
997                         continue;
998
999                 if (!cpus_have_cap(caps->capability) && caps->desc)
1000                         pr_info("%s %s\n", info, caps->desc);
1001                 cpus_set_cap(caps->capability);
1002         }
1003 }
1004
1005 /*
1006  * Run through the enabled capabilities and enable() it on all active
1007  * CPUs
1008  */
1009 void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
1010 {
1011         for (; caps->matches; caps++) {
1012                 unsigned int num = caps->capability;
1013
1014                 if (!cpus_have_cap(num))
1015                         continue;
1016
1017                 /* Ensure cpus_have_const_cap(num) works */
1018                 static_branch_enable(&cpu_hwcap_keys[num]);
1019
1020                 if (caps->enable) {
1021                         /*
1022                          * Use stop_machine() as it schedules the work allowing
1023                          * us to modify PSTATE, instead of on_each_cpu() which
1024                          * uses an IPI, giving us a PSTATE that disappears when
1025                          * we return.
1026                          */
1027                         stop_machine(caps->enable, NULL, cpu_online_mask);
1028                 }
1029         }
1030 }
1031
1032 /*
1033  * Flag to indicate if we have computed the system wide
1034  * capabilities based on the boot time active CPUs. This
1035  * will be used to determine if a new booting CPU should
1036  * go through the verification process to make sure that it
1037  * supports the system capabilities, without using a hotplug
1038  * notifier.
1039  */
1040 static bool sys_caps_initialised;
1041
1042 static inline void set_sys_caps_initialised(void)
1043 {
1044         sys_caps_initialised = true;
1045 }
1046
1047 /*
1048  * Check for CPU features that are used in early boot
1049  * based on the Boot CPU value.
1050  */
1051 static void check_early_cpu_features(void)
1052 {
1053         verify_cpu_run_el();
1054         verify_cpu_asid_bits();
1055 }
1056
1057 static void
1058 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1059 {
1060
1061         for (; caps->matches; caps++)
1062                 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1063                         pr_crit("CPU%d: missing HWCAP: %s\n",
1064                                         smp_processor_id(), caps->desc);
1065                         cpu_die_early();
1066                 }
1067 }
1068
1069 static void
1070 verify_local_cpu_features(const struct arm64_cpu_capabilities *caps)
1071 {
1072         for (; caps->matches; caps++) {
1073                 if (!cpus_have_cap(caps->capability))
1074                         continue;
1075                 /*
1076                  * If the new CPU misses an advertised feature, we cannot proceed
1077                  * further, park the cpu.
1078                  */
1079                 if (!caps->matches(caps, SCOPE_LOCAL_CPU)) {
1080                         pr_crit("CPU%d: missing feature: %s\n",
1081                                         smp_processor_id(), caps->desc);
1082                         cpu_die_early();
1083                 }
1084                 if (caps->enable)
1085                         caps->enable(NULL);
1086         }
1087 }
1088
1089 /*
1090  * Run through the enabled system capabilities and enable() it on this CPU.
1091  * The capabilities were decided based on the available CPUs at the boot time.
1092  * Any new CPU should match the system wide status of the capability. If the
1093  * new CPU doesn't have a capability which the system now has enabled, we
1094  * cannot do anything to fix it up and could cause unexpected failures. So
1095  * we park the CPU.
1096  */
1097 static void verify_local_cpu_capabilities(void)
1098 {
1099         verify_local_cpu_errata_workarounds();
1100         verify_local_cpu_features(arm64_features);
1101         verify_local_elf_hwcaps(arm64_elf_hwcaps);
1102         if (system_supports_32bit_el0())
1103                 verify_local_elf_hwcaps(compat_elf_hwcaps);
1104 }
1105
1106 void check_local_cpu_capabilities(void)
1107 {
1108         /*
1109          * All secondary CPUs should conform to the early CPU features
1110          * in use by the kernel based on boot CPU.
1111          */
1112         check_early_cpu_features();
1113
1114         /*
1115          * If we haven't finalised the system capabilities, this CPU gets
1116          * a chance to update the errata work arounds.
1117          * Otherwise, this CPU should verify that it has all the system
1118          * advertised capabilities.
1119          */
1120         if (!sys_caps_initialised)
1121                 update_cpu_errata_workarounds();
1122         else
1123                 verify_local_cpu_capabilities();
1124 }
1125
1126 static void __init setup_feature_capabilities(void)
1127 {
1128         update_cpu_capabilities(arm64_features, "detected feature:");
1129         enable_cpu_capabilities(arm64_features);
1130 }
1131
1132 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
1133 EXPORT_SYMBOL(arm64_const_caps_ready);
1134
1135 static void __init mark_const_caps_ready(void)
1136 {
1137         static_branch_enable(&arm64_const_caps_ready);
1138 }
1139
1140 /*
1141  * Check if the current CPU has a given feature capability.
1142  * Should be called from non-preemptible context.
1143  */
1144 static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities *cap_array,
1145                                unsigned int cap)
1146 {
1147         const struct arm64_cpu_capabilities *caps;
1148
1149         if (WARN_ON(preemptible()))
1150                 return false;
1151
1152         for (caps = cap_array; caps->desc; caps++)
1153                 if (caps->capability == cap && caps->matches)
1154                         return caps->matches(caps, SCOPE_LOCAL_CPU);
1155
1156         return false;
1157 }
1158
1159 extern const struct arm64_cpu_capabilities arm64_errata[];
1160
1161 bool this_cpu_has_cap(unsigned int cap)
1162 {
1163         return (__this_cpu_has_cap(arm64_features, cap) ||
1164                 __this_cpu_has_cap(arm64_errata, cap));
1165 }
1166
1167 void __init setup_cpu_features(void)
1168 {
1169         u32 cwg;
1170         int cls;
1171
1172         /* Set the CPU feature capabilies */
1173         setup_feature_capabilities();
1174         enable_errata_workarounds();
1175         mark_const_caps_ready();
1176         setup_elf_hwcaps(arm64_elf_hwcaps);
1177
1178         if (system_supports_32bit_el0())
1179                 setup_elf_hwcaps(compat_elf_hwcaps);
1180
1181         /* Advertise that we have computed the system capabilities */
1182         set_sys_caps_initialised();
1183
1184         /*
1185          * Check for sane CTR_EL0.CWG value.
1186          */
1187         cwg = cache_type_cwg();
1188         cls = cache_line_size();
1189         if (!cwg)
1190                 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1191                         cls);
1192         if (L1_CACHE_BYTES < cls)
1193                 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1194                         L1_CACHE_BYTES, cls);
1195 }
1196
1197 static bool __maybe_unused
1198 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1199 {
1200         return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
1201 }
1202
1203 /*
1204  * We emulate only the following system register space.
1205  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
1206  * See Table C5-6 System instruction encodings for System register accesses,
1207  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
1208  */
1209 static inline bool __attribute_const__ is_emulated(u32 id)
1210 {
1211         return (sys_reg_Op0(id) == 0x3 &&
1212                 sys_reg_CRn(id) == 0x0 &&
1213                 sys_reg_Op1(id) == 0x0 &&
1214                 (sys_reg_CRm(id) == 0 ||
1215                  ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
1216 }
1217
1218 /*
1219  * With CRm == 0, reg should be one of :
1220  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
1221  */
1222 static inline int emulate_id_reg(u32 id, u64 *valp)
1223 {
1224         switch (id) {
1225         case SYS_MIDR_EL1:
1226                 *valp = read_cpuid_id();
1227                 break;
1228         case SYS_MPIDR_EL1:
1229                 *valp = SYS_MPIDR_SAFE_VAL;
1230                 break;
1231         case SYS_REVIDR_EL1:
1232                 /* IMPLEMENTATION DEFINED values are emulated with 0 */
1233                 *valp = 0;
1234                 break;
1235         default:
1236                 return -EINVAL;
1237         }
1238
1239         return 0;
1240 }
1241
1242 static int emulate_sys_reg(u32 id, u64 *valp)
1243 {
1244         struct arm64_ftr_reg *regp;
1245
1246         if (!is_emulated(id))
1247                 return -EINVAL;
1248
1249         if (sys_reg_CRm(id) == 0)
1250                 return emulate_id_reg(id, valp);
1251
1252         regp = get_arm64_ftr_reg(id);
1253         if (regp)
1254                 *valp = arm64_ftr_reg_user_value(regp);
1255         else
1256                 /*
1257                  * The untracked registers are either IMPLEMENTATION DEFINED
1258                  * (e.g, ID_AFR0_EL1) or reserved RAZ.
1259                  */
1260                 *valp = 0;
1261         return 0;
1262 }
1263
1264 static int emulate_mrs(struct pt_regs *regs, u32 insn)
1265 {
1266         int rc;
1267         u32 sys_reg, dst;
1268         u64 val;
1269
1270         /*
1271          * sys_reg values are defined as used in mrs/msr instruction.
1272          * shift the imm value to get the encoding.
1273          */
1274         sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
1275         rc = emulate_sys_reg(sys_reg, &val);
1276         if (!rc) {
1277                 dst = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
1278                 pt_regs_write_reg(regs, dst, val);
1279                 regs->pc += 4;
1280         }
1281
1282         return rc;
1283 }
1284
1285 static struct undef_hook mrs_hook = {
1286         .instr_mask = 0xfff00000,
1287         .instr_val  = 0xd5300000,
1288         .pstate_mask = COMPAT_PSR_MODE_MASK,
1289         .pstate_val = PSR_MODE_EL0t,
1290         .fn = emulate_mrs,
1291 };
1292
1293 static int __init enable_mrs_emulation(void)
1294 {
1295         register_undef_hook(&mrs_hook);
1296         return 0;
1297 }
1298
1299 late_initcall(enable_mrs_emulation);