]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/arm64/kernel/module-plts.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 234
[linux.git] / arch / arm64 / kernel / module-plts.c
1 /*
2  * Copyright (C) 2014-2017 Linaro Ltd. <ard.biesheuvel@linaro.org>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8
9 #include <linux/elf.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/sort.h>
13
14 static struct plt_entry __get_adrp_add_pair(u64 dst, u64 pc,
15                                             enum aarch64_insn_register reg)
16 {
17         u32 adrp, add;
18
19         adrp = aarch64_insn_gen_adr(pc, dst, reg, AARCH64_INSN_ADR_TYPE_ADRP);
20         add = aarch64_insn_gen_add_sub_imm(reg, reg, dst % SZ_4K,
21                                            AARCH64_INSN_VARIANT_64BIT,
22                                            AARCH64_INSN_ADSB_ADD);
23
24         return (struct plt_entry){ cpu_to_le32(adrp), cpu_to_le32(add) };
25 }
26
27 struct plt_entry get_plt_entry(u64 dst, void *pc)
28 {
29         struct plt_entry plt;
30         static u32 br;
31
32         if (!br)
33                 br = aarch64_insn_gen_branch_reg(AARCH64_INSN_REG_16,
34                                                  AARCH64_INSN_BRANCH_NOLINK);
35
36         plt = __get_adrp_add_pair(dst, (u64)pc, AARCH64_INSN_REG_16);
37         plt.br = cpu_to_le32(br);
38
39         return plt;
40 }
41
42 bool plt_entries_equal(const struct plt_entry *a, const struct plt_entry *b)
43 {
44         u64 p, q;
45
46         /*
47          * Check whether both entries refer to the same target:
48          * do the cheapest checks first.
49          * If the 'add' or 'br' opcodes are different, then the target
50          * cannot be the same.
51          */
52         if (a->add != b->add || a->br != b->br)
53                 return false;
54
55         p = ALIGN_DOWN((u64)a, SZ_4K);
56         q = ALIGN_DOWN((u64)b, SZ_4K);
57
58         /*
59          * If the 'adrp' opcodes are the same then we just need to check
60          * that they refer to the same 4k region.
61          */
62         if (a->adrp == b->adrp && p == q)
63                 return true;
64
65         return (p + aarch64_insn_adrp_get_offset(le32_to_cpu(a->adrp))) ==
66                (q + aarch64_insn_adrp_get_offset(le32_to_cpu(b->adrp)));
67 }
68
69 static bool in_init(const struct module *mod, void *loc)
70 {
71         return (u64)loc - (u64)mod->init_layout.base < mod->init_layout.size;
72 }
73
74 u64 module_emit_plt_entry(struct module *mod, Elf64_Shdr *sechdrs,
75                           void *loc, const Elf64_Rela *rela,
76                           Elf64_Sym *sym)
77 {
78         struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core :
79                                                           &mod->arch.init;
80         struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr;
81         int i = pltsec->plt_num_entries;
82         int j = i - 1;
83         u64 val = sym->st_value + rela->r_addend;
84
85         if (is_forbidden_offset_for_adrp(&plt[i].adrp))
86                 i++;
87
88         plt[i] = get_plt_entry(val, &plt[i]);
89
90         /*
91          * Check if the entry we just created is a duplicate. Given that the
92          * relocations are sorted, this will be the last entry we allocated.
93          * (if one exists).
94          */
95         if (j >= 0 && plt_entries_equal(plt + i, plt + j))
96                 return (u64)&plt[j];
97
98         pltsec->plt_num_entries += i - j;
99         if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
100                 return 0;
101
102         return (u64)&plt[i];
103 }
104
105 #ifdef CONFIG_ARM64_ERRATUM_843419
106 u64 module_emit_veneer_for_adrp(struct module *mod, Elf64_Shdr *sechdrs,
107                                 void *loc, u64 val)
108 {
109         struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core :
110                                                           &mod->arch.init;
111         struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr;
112         int i = pltsec->plt_num_entries++;
113         u32 br;
114         int rd;
115
116         if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
117                 return 0;
118
119         if (is_forbidden_offset_for_adrp(&plt[i].adrp))
120                 i = pltsec->plt_num_entries++;
121
122         /* get the destination register of the ADRP instruction */
123         rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD,
124                                           le32_to_cpup((__le32 *)loc));
125
126         br = aarch64_insn_gen_branch_imm((u64)&plt[i].br, (u64)loc + 4,
127                                          AARCH64_INSN_BRANCH_NOLINK);
128
129         plt[i] = __get_adrp_add_pair(val, (u64)&plt[i], rd);
130         plt[i].br = cpu_to_le32(br);
131
132         return (u64)&plt[i];
133 }
134 #endif
135
136 #define cmp_3way(a,b)   ((a) < (b) ? -1 : (a) > (b))
137
138 static int cmp_rela(const void *a, const void *b)
139 {
140         const Elf64_Rela *x = a, *y = b;
141         int i;
142
143         /* sort by type, symbol index and addend */
144         i = cmp_3way(ELF64_R_TYPE(x->r_info), ELF64_R_TYPE(y->r_info));
145         if (i == 0)
146                 i = cmp_3way(ELF64_R_SYM(x->r_info), ELF64_R_SYM(y->r_info));
147         if (i == 0)
148                 i = cmp_3way(x->r_addend, y->r_addend);
149         return i;
150 }
151
152 static bool duplicate_rel(const Elf64_Rela *rela, int num)
153 {
154         /*
155          * Entries are sorted by type, symbol index and addend. That means
156          * that, if a duplicate entry exists, it must be in the preceding
157          * slot.
158          */
159         return num > 0 && cmp_rela(rela + num, rela + num - 1) == 0;
160 }
161
162 static unsigned int count_plts(Elf64_Sym *syms, Elf64_Rela *rela, int num,
163                                Elf64_Word dstidx, Elf_Shdr *dstsec)
164 {
165         unsigned int ret = 0;
166         Elf64_Sym *s;
167         int i;
168
169         for (i = 0; i < num; i++) {
170                 u64 min_align;
171
172                 switch (ELF64_R_TYPE(rela[i].r_info)) {
173                 case R_AARCH64_JUMP26:
174                 case R_AARCH64_CALL26:
175                         if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
176                                 break;
177
178                         /*
179                          * We only have to consider branch targets that resolve
180                          * to symbols that are defined in a different section.
181                          * This is not simply a heuristic, it is a fundamental
182                          * limitation, since there is no guaranteed way to emit
183                          * PLT entries sufficiently close to the branch if the
184                          * section size exceeds the range of a branch
185                          * instruction. So ignore relocations against defined
186                          * symbols if they live in the same section as the
187                          * relocation target.
188                          */
189                         s = syms + ELF64_R_SYM(rela[i].r_info);
190                         if (s->st_shndx == dstidx)
191                                 break;
192
193                         /*
194                          * Jump relocations with non-zero addends against
195                          * undefined symbols are supported by the ELF spec, but
196                          * do not occur in practice (e.g., 'jump n bytes past
197                          * the entry point of undefined function symbol f').
198                          * So we need to support them, but there is no need to
199                          * take them into consideration when trying to optimize
200                          * this code. So let's only check for duplicates when
201                          * the addend is zero: this allows us to record the PLT
202                          * entry address in the symbol table itself, rather than
203                          * having to search the list for duplicates each time we
204                          * emit one.
205                          */
206                         if (rela[i].r_addend != 0 || !duplicate_rel(rela, i))
207                                 ret++;
208                         break;
209                 case R_AARCH64_ADR_PREL_PG_HI21_NC:
210                 case R_AARCH64_ADR_PREL_PG_HI21:
211                         if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_843419) ||
212                             !cpus_have_const_cap(ARM64_WORKAROUND_843419))
213                                 break;
214
215                         /*
216                          * Determine the minimal safe alignment for this ADRP
217                          * instruction: the section alignment at which it is
218                          * guaranteed not to appear at a vulnerable offset.
219                          *
220                          * This comes down to finding the least significant zero
221                          * bit in bits [11:3] of the section offset, and
222                          * increasing the section's alignment so that the
223                          * resulting address of this instruction is guaranteed
224                          * to equal the offset in that particular bit (as well
225                          * as all less signficant bits). This ensures that the
226                          * address modulo 4 KB != 0xfff8 or 0xfffc (which would
227                          * have all ones in bits [11:3])
228                          */
229                         min_align = 2ULL << ffz(rela[i].r_offset | 0x7);
230
231                         /*
232                          * Allocate veneer space for each ADRP that may appear
233                          * at a vulnerable offset nonetheless. At relocation
234                          * time, some of these will remain unused since some
235                          * ADRP instructions can be patched to ADR instructions
236                          * instead.
237                          */
238                         if (min_align > SZ_4K)
239                                 ret++;
240                         else
241                                 dstsec->sh_addralign = max(dstsec->sh_addralign,
242                                                            min_align);
243                         break;
244                 }
245         }
246
247         if (IS_ENABLED(CONFIG_ARM64_ERRATUM_843419) &&
248             cpus_have_const_cap(ARM64_WORKAROUND_843419))
249                 /*
250                  * Add some slack so we can skip PLT slots that may trigger
251                  * the erratum due to the placement of the ADRP instruction.
252                  */
253                 ret += DIV_ROUND_UP(ret, (SZ_4K / sizeof(struct plt_entry)));
254
255         return ret;
256 }
257
258 int module_frob_arch_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
259                               char *secstrings, struct module *mod)
260 {
261         unsigned long core_plts = 0;
262         unsigned long init_plts = 0;
263         Elf64_Sym *syms = NULL;
264         Elf_Shdr *pltsec, *tramp = NULL;
265         int i;
266
267         /*
268          * Find the empty .plt section so we can expand it to store the PLT
269          * entries. Record the symtab address as well.
270          */
271         for (i = 0; i < ehdr->e_shnum; i++) {
272                 if (!strcmp(secstrings + sechdrs[i].sh_name, ".plt"))
273                         mod->arch.core.plt_shndx = i;
274                 else if (!strcmp(secstrings + sechdrs[i].sh_name, ".init.plt"))
275                         mod->arch.init.plt_shndx = i;
276                 else if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE) &&
277                          !strcmp(secstrings + sechdrs[i].sh_name,
278                                  ".text.ftrace_trampoline"))
279                         tramp = sechdrs + i;
280                 else if (sechdrs[i].sh_type == SHT_SYMTAB)
281                         syms = (Elf64_Sym *)sechdrs[i].sh_addr;
282         }
283
284         if (!mod->arch.core.plt_shndx || !mod->arch.init.plt_shndx) {
285                 pr_err("%s: module PLT section(s) missing\n", mod->name);
286                 return -ENOEXEC;
287         }
288         if (!syms) {
289                 pr_err("%s: module symtab section missing\n", mod->name);
290                 return -ENOEXEC;
291         }
292
293         for (i = 0; i < ehdr->e_shnum; i++) {
294                 Elf64_Rela *rels = (void *)ehdr + sechdrs[i].sh_offset;
295                 int numrels = sechdrs[i].sh_size / sizeof(Elf64_Rela);
296                 Elf64_Shdr *dstsec = sechdrs + sechdrs[i].sh_info;
297
298                 if (sechdrs[i].sh_type != SHT_RELA)
299                         continue;
300
301                 /* ignore relocations that operate on non-exec sections */
302                 if (!(dstsec->sh_flags & SHF_EXECINSTR))
303                         continue;
304
305                 /* sort by type, symbol index and addend */
306                 sort(rels, numrels, sizeof(Elf64_Rela), cmp_rela, NULL);
307
308                 if (strncmp(secstrings + dstsec->sh_name, ".init", 5) != 0)
309                         core_plts += count_plts(syms, rels, numrels,
310                                                 sechdrs[i].sh_info, dstsec);
311                 else
312                         init_plts += count_plts(syms, rels, numrels,
313                                                 sechdrs[i].sh_info, dstsec);
314         }
315
316         pltsec = sechdrs + mod->arch.core.plt_shndx;
317         pltsec->sh_type = SHT_NOBITS;
318         pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
319         pltsec->sh_addralign = L1_CACHE_BYTES;
320         pltsec->sh_size = (core_plts  + 1) * sizeof(struct plt_entry);
321         mod->arch.core.plt_num_entries = 0;
322         mod->arch.core.plt_max_entries = core_plts;
323
324         pltsec = sechdrs + mod->arch.init.plt_shndx;
325         pltsec->sh_type = SHT_NOBITS;
326         pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
327         pltsec->sh_addralign = L1_CACHE_BYTES;
328         pltsec->sh_size = (init_plts + 1) * sizeof(struct plt_entry);
329         mod->arch.init.plt_num_entries = 0;
330         mod->arch.init.plt_max_entries = init_plts;
331
332         if (tramp) {
333                 tramp->sh_type = SHT_NOBITS;
334                 tramp->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
335                 tramp->sh_addralign = __alignof__(struct plt_entry);
336                 tramp->sh_size = sizeof(struct plt_entry);
337         }
338
339         return 0;
340 }