]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/arm64/kernel/topology.c
PM / QoS: Remove global notifiers
[linux.git] / arch / arm64 / kernel / topology.c
1 /*
2  * arch/arm64/kernel/topology.c
3  *
4  * Copyright (C) 2011,2013,2014 Linaro Limited.
5  *
6  * Based on the arm32 version written by Vincent Guittot in turn based on
7  * arch/sh/kernel/topology.c
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13
14 #include <linux/cpu.h>
15 #include <linux/cpumask.h>
16 #include <linux/init.h>
17 #include <linux/percpu.h>
18 #include <linux/node.h>
19 #include <linux/nodemask.h>
20 #include <linux/of.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
23 #include <linux/string.h>
24 #include <linux/cpufreq.h>
25
26 #include <asm/cpu.h>
27 #include <asm/cputype.h>
28 #include <asm/topology.h>
29
30 static DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
31 static DEFINE_MUTEX(cpu_scale_mutex);
32
33 unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
34 {
35         return per_cpu(cpu_scale, cpu);
36 }
37
38 static void set_capacity_scale(unsigned int cpu, unsigned long capacity)
39 {
40         per_cpu(cpu_scale, cpu) = capacity;
41 }
42
43 #ifdef CONFIG_PROC_SYSCTL
44 static ssize_t cpu_capacity_show(struct device *dev,
45                                  struct device_attribute *attr,
46                                  char *buf)
47 {
48         struct cpu *cpu = container_of(dev, struct cpu, dev);
49
50         return sprintf(buf, "%lu\n",
51                         arch_scale_cpu_capacity(NULL, cpu->dev.id));
52 }
53
54 static ssize_t cpu_capacity_store(struct device *dev,
55                                   struct device_attribute *attr,
56                                   const char *buf,
57                                   size_t count)
58 {
59         struct cpu *cpu = container_of(dev, struct cpu, dev);
60         int this_cpu = cpu->dev.id, i;
61         unsigned long new_capacity;
62         ssize_t ret;
63
64         if (count) {
65                 ret = kstrtoul(buf, 0, &new_capacity);
66                 if (ret)
67                         return ret;
68                 if (new_capacity > SCHED_CAPACITY_SCALE)
69                         return -EINVAL;
70
71                 mutex_lock(&cpu_scale_mutex);
72                 for_each_cpu(i, &cpu_topology[this_cpu].core_sibling)
73                         set_capacity_scale(i, new_capacity);
74                 mutex_unlock(&cpu_scale_mutex);
75         }
76
77         return count;
78 }
79
80 static DEVICE_ATTR_RW(cpu_capacity);
81
82 static int register_cpu_capacity_sysctl(void)
83 {
84         int i;
85         struct device *cpu;
86
87         for_each_possible_cpu(i) {
88                 cpu = get_cpu_device(i);
89                 if (!cpu) {
90                         pr_err("%s: too early to get CPU%d device!\n",
91                                __func__, i);
92                         continue;
93                 }
94                 device_create_file(cpu, &dev_attr_cpu_capacity);
95         }
96
97         return 0;
98 }
99 subsys_initcall(register_cpu_capacity_sysctl);
100 #endif
101
102 static u32 capacity_scale;
103 static u32 *raw_capacity;
104 static bool cap_parsing_failed;
105
106 static void __init parse_cpu_capacity(struct device_node *cpu_node, int cpu)
107 {
108         int ret;
109         u32 cpu_capacity;
110
111         if (cap_parsing_failed)
112                 return;
113
114         ret = of_property_read_u32(cpu_node,
115                                    "capacity-dmips-mhz",
116                                    &cpu_capacity);
117         if (!ret) {
118                 if (!raw_capacity) {
119                         raw_capacity = kcalloc(num_possible_cpus(),
120                                                sizeof(*raw_capacity),
121                                                GFP_KERNEL);
122                         if (!raw_capacity) {
123                                 pr_err("cpu_capacity: failed to allocate memory for raw capacities\n");
124                                 cap_parsing_failed = true;
125                                 return;
126                         }
127                 }
128                 capacity_scale = max(cpu_capacity, capacity_scale);
129                 raw_capacity[cpu] = cpu_capacity;
130                 pr_debug("cpu_capacity: %s cpu_capacity=%u (raw)\n",
131                         cpu_node->full_name, raw_capacity[cpu]);
132         } else {
133                 if (raw_capacity) {
134                         pr_err("cpu_capacity: missing %s raw capacity\n",
135                                 cpu_node->full_name);
136                         pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
137                 }
138                 cap_parsing_failed = true;
139                 kfree(raw_capacity);
140         }
141 }
142
143 static void normalize_cpu_capacity(void)
144 {
145         u64 capacity;
146         int cpu;
147
148         if (!raw_capacity || cap_parsing_failed)
149                 return;
150
151         pr_debug("cpu_capacity: capacity_scale=%u\n", capacity_scale);
152         mutex_lock(&cpu_scale_mutex);
153         for_each_possible_cpu(cpu) {
154                 pr_debug("cpu_capacity: cpu=%d raw_capacity=%u\n",
155                          cpu, raw_capacity[cpu]);
156                 capacity = (raw_capacity[cpu] << SCHED_CAPACITY_SHIFT)
157                         / capacity_scale;
158                 set_capacity_scale(cpu, capacity);
159                 pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
160                         cpu, arch_scale_cpu_capacity(NULL, cpu));
161         }
162         mutex_unlock(&cpu_scale_mutex);
163 }
164
165 #ifdef CONFIG_CPU_FREQ
166 static cpumask_var_t cpus_to_visit;
167 static bool cap_parsing_done;
168 static void parsing_done_workfn(struct work_struct *work);
169 static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
170
171 static int
172 init_cpu_capacity_callback(struct notifier_block *nb,
173                            unsigned long val,
174                            void *data)
175 {
176         struct cpufreq_policy *policy = data;
177         int cpu;
178
179         if (cap_parsing_failed || cap_parsing_done)
180                 return 0;
181
182         switch (val) {
183         case CPUFREQ_NOTIFY:
184                 pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
185                                 cpumask_pr_args(policy->related_cpus),
186                                 cpumask_pr_args(cpus_to_visit));
187                 cpumask_andnot(cpus_to_visit,
188                                cpus_to_visit,
189                                policy->related_cpus);
190                 for_each_cpu(cpu, policy->related_cpus) {
191                         raw_capacity[cpu] = arch_scale_cpu_capacity(NULL, cpu) *
192                                             policy->cpuinfo.max_freq / 1000UL;
193                         capacity_scale = max(raw_capacity[cpu], capacity_scale);
194                 }
195                 if (cpumask_empty(cpus_to_visit)) {
196                         normalize_cpu_capacity();
197                         kfree(raw_capacity);
198                         pr_debug("cpu_capacity: parsing done\n");
199                         cap_parsing_done = true;
200                         schedule_work(&parsing_done_work);
201                 }
202         }
203         return 0;
204 }
205
206 static struct notifier_block init_cpu_capacity_notifier = {
207         .notifier_call = init_cpu_capacity_callback,
208 };
209
210 static int __init register_cpufreq_notifier(void)
211 {
212         if (cap_parsing_failed)
213                 return -EINVAL;
214
215         if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) {
216                 pr_err("cpu_capacity: failed to allocate memory for cpus_to_visit\n");
217                 return -ENOMEM;
218         }
219         cpumask_copy(cpus_to_visit, cpu_possible_mask);
220
221         return cpufreq_register_notifier(&init_cpu_capacity_notifier,
222                                          CPUFREQ_POLICY_NOTIFIER);
223 }
224 core_initcall(register_cpufreq_notifier);
225
226 static void parsing_done_workfn(struct work_struct *work)
227 {
228         cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
229                                          CPUFREQ_POLICY_NOTIFIER);
230 }
231
232 #else
233 static int __init free_raw_capacity(void)
234 {
235         kfree(raw_capacity);
236
237         return 0;
238 }
239 core_initcall(free_raw_capacity);
240 #endif
241
242 static int __init get_cpu_for_node(struct device_node *node)
243 {
244         struct device_node *cpu_node;
245         int cpu;
246
247         cpu_node = of_parse_phandle(node, "cpu", 0);
248         if (!cpu_node)
249                 return -1;
250
251         for_each_possible_cpu(cpu) {
252                 if (of_get_cpu_node(cpu, NULL) == cpu_node) {
253                         parse_cpu_capacity(cpu_node, cpu);
254                         of_node_put(cpu_node);
255                         return cpu;
256                 }
257         }
258
259         pr_crit("Unable to find CPU node for %s\n", cpu_node->full_name);
260
261         of_node_put(cpu_node);
262         return -1;
263 }
264
265 static int __init parse_core(struct device_node *core, int cluster_id,
266                              int core_id)
267 {
268         char name[10];
269         bool leaf = true;
270         int i = 0;
271         int cpu;
272         struct device_node *t;
273
274         do {
275                 snprintf(name, sizeof(name), "thread%d", i);
276                 t = of_get_child_by_name(core, name);
277                 if (t) {
278                         leaf = false;
279                         cpu = get_cpu_for_node(t);
280                         if (cpu >= 0) {
281                                 cpu_topology[cpu].cluster_id = cluster_id;
282                                 cpu_topology[cpu].core_id = core_id;
283                                 cpu_topology[cpu].thread_id = i;
284                         } else {
285                                 pr_err("%s: Can't get CPU for thread\n",
286                                        t->full_name);
287                                 of_node_put(t);
288                                 return -EINVAL;
289                         }
290                         of_node_put(t);
291                 }
292                 i++;
293         } while (t);
294
295         cpu = get_cpu_for_node(core);
296         if (cpu >= 0) {
297                 if (!leaf) {
298                         pr_err("%s: Core has both threads and CPU\n",
299                                core->full_name);
300                         return -EINVAL;
301                 }
302
303                 cpu_topology[cpu].cluster_id = cluster_id;
304                 cpu_topology[cpu].core_id = core_id;
305         } else if (leaf) {
306                 pr_err("%s: Can't get CPU for leaf core\n", core->full_name);
307                 return -EINVAL;
308         }
309
310         return 0;
311 }
312
313 static int __init parse_cluster(struct device_node *cluster, int depth)
314 {
315         char name[10];
316         bool leaf = true;
317         bool has_cores = false;
318         struct device_node *c;
319         static int cluster_id __initdata;
320         int core_id = 0;
321         int i, ret;
322
323         /*
324          * First check for child clusters; we currently ignore any
325          * information about the nesting of clusters and present the
326          * scheduler with a flat list of them.
327          */
328         i = 0;
329         do {
330                 snprintf(name, sizeof(name), "cluster%d", i);
331                 c = of_get_child_by_name(cluster, name);
332                 if (c) {
333                         leaf = false;
334                         ret = parse_cluster(c, depth + 1);
335                         of_node_put(c);
336                         if (ret != 0)
337                                 return ret;
338                 }
339                 i++;
340         } while (c);
341
342         /* Now check for cores */
343         i = 0;
344         do {
345                 snprintf(name, sizeof(name), "core%d", i);
346                 c = of_get_child_by_name(cluster, name);
347                 if (c) {
348                         has_cores = true;
349
350                         if (depth == 0) {
351                                 pr_err("%s: cpu-map children should be clusters\n",
352                                        c->full_name);
353                                 of_node_put(c);
354                                 return -EINVAL;
355                         }
356
357                         if (leaf) {
358                                 ret = parse_core(c, cluster_id, core_id++);
359                         } else {
360                                 pr_err("%s: Non-leaf cluster with core %s\n",
361                                        cluster->full_name, name);
362                                 ret = -EINVAL;
363                         }
364
365                         of_node_put(c);
366                         if (ret != 0)
367                                 return ret;
368                 }
369                 i++;
370         } while (c);
371
372         if (leaf && !has_cores)
373                 pr_warn("%s: empty cluster\n", cluster->full_name);
374
375         if (leaf)
376                 cluster_id++;
377
378         return 0;
379 }
380
381 static int __init parse_dt_topology(void)
382 {
383         struct device_node *cn, *map;
384         int ret = 0;
385         int cpu;
386
387         cn = of_find_node_by_path("/cpus");
388         if (!cn) {
389                 pr_err("No CPU information found in DT\n");
390                 return 0;
391         }
392
393         /*
394          * When topology is provided cpu-map is essentially a root
395          * cluster with restricted subnodes.
396          */
397         map = of_get_child_by_name(cn, "cpu-map");
398         if (!map) {
399                 cap_parsing_failed = true;
400                 goto out;
401         }
402
403         ret = parse_cluster(map, 0);
404         if (ret != 0)
405                 goto out_map;
406
407         normalize_cpu_capacity();
408
409         /*
410          * Check that all cores are in the topology; the SMP code will
411          * only mark cores described in the DT as possible.
412          */
413         for_each_possible_cpu(cpu)
414                 if (cpu_topology[cpu].cluster_id == -1)
415                         ret = -EINVAL;
416
417 out_map:
418         of_node_put(map);
419 out:
420         of_node_put(cn);
421         return ret;
422 }
423
424 /*
425  * cpu topology table
426  */
427 struct cpu_topology cpu_topology[NR_CPUS];
428 EXPORT_SYMBOL_GPL(cpu_topology);
429
430 const struct cpumask *cpu_coregroup_mask(int cpu)
431 {
432         return &cpu_topology[cpu].core_sibling;
433 }
434
435 static void update_siblings_masks(unsigned int cpuid)
436 {
437         struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
438         int cpu;
439
440         /* update core and thread sibling masks */
441         for_each_possible_cpu(cpu) {
442                 cpu_topo = &cpu_topology[cpu];
443
444                 if (cpuid_topo->cluster_id != cpu_topo->cluster_id)
445                         continue;
446
447                 cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
448                 if (cpu != cpuid)
449                         cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
450
451                 if (cpuid_topo->core_id != cpu_topo->core_id)
452                         continue;
453
454                 cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
455                 if (cpu != cpuid)
456                         cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
457         }
458 }
459
460 void store_cpu_topology(unsigned int cpuid)
461 {
462         struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
463         u64 mpidr;
464
465         if (cpuid_topo->cluster_id != -1)
466                 goto topology_populated;
467
468         mpidr = read_cpuid_mpidr();
469
470         /* Uniprocessor systems can rely on default topology values */
471         if (mpidr & MPIDR_UP_BITMASK)
472                 return;
473
474         /* Create cpu topology mapping based on MPIDR. */
475         if (mpidr & MPIDR_MT_BITMASK) {
476                 /* Multiprocessor system : Multi-threads per core */
477                 cpuid_topo->thread_id  = MPIDR_AFFINITY_LEVEL(mpidr, 0);
478                 cpuid_topo->core_id    = MPIDR_AFFINITY_LEVEL(mpidr, 1);
479                 cpuid_topo->cluster_id = MPIDR_AFFINITY_LEVEL(mpidr, 2) |
480                                          MPIDR_AFFINITY_LEVEL(mpidr, 3) << 8;
481         } else {
482                 /* Multiprocessor system : Single-thread per core */
483                 cpuid_topo->thread_id  = -1;
484                 cpuid_topo->core_id    = MPIDR_AFFINITY_LEVEL(mpidr, 0);
485                 cpuid_topo->cluster_id = MPIDR_AFFINITY_LEVEL(mpidr, 1) |
486                                          MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8 |
487                                          MPIDR_AFFINITY_LEVEL(mpidr, 3) << 16;
488         }
489
490         pr_debug("CPU%u: cluster %d core %d thread %d mpidr %#016llx\n",
491                  cpuid, cpuid_topo->cluster_id, cpuid_topo->core_id,
492                  cpuid_topo->thread_id, mpidr);
493
494 topology_populated:
495         update_siblings_masks(cpuid);
496 }
497
498 static void __init reset_cpu_topology(void)
499 {
500         unsigned int cpu;
501
502         for_each_possible_cpu(cpu) {
503                 struct cpu_topology *cpu_topo = &cpu_topology[cpu];
504
505                 cpu_topo->thread_id = -1;
506                 cpu_topo->core_id = 0;
507                 cpu_topo->cluster_id = -1;
508
509                 cpumask_clear(&cpu_topo->core_sibling);
510                 cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
511                 cpumask_clear(&cpu_topo->thread_sibling);
512                 cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
513         }
514 }
515
516 void __init init_cpu_topology(void)
517 {
518         reset_cpu_topology();
519
520         /*
521          * Discard anything that was parsed if we hit an error so we
522          * don't use partial information.
523          */
524         if (of_have_populated_dt() && parse_dt_topology())
525                 reset_cpu_topology();
526 }