]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/arm64/mm/fault.c
Linux 5.6-rc7
[linux.git] / arch / arm64 / mm / fault.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/fault.c
4  *
5  * Copyright (C) 1995  Linus Torvalds
6  * Copyright (C) 1995-2004 Russell King
7  * Copyright (C) 2012 ARM Ltd.
8  */
9
10 #include <linux/acpi.h>
11 #include <linux/bitfield.h>
12 #include <linux/extable.h>
13 #include <linux/signal.h>
14 #include <linux/mm.h>
15 #include <linux/hardirq.h>
16 #include <linux/init.h>
17 #include <linux/kprobes.h>
18 #include <linux/uaccess.h>
19 #include <linux/page-flags.h>
20 #include <linux/sched/signal.h>
21 #include <linux/sched/debug.h>
22 #include <linux/highmem.h>
23 #include <linux/perf_event.h>
24 #include <linux/preempt.h>
25 #include <linux/hugetlb.h>
26
27 #include <asm/acpi.h>
28 #include <asm/bug.h>
29 #include <asm/cmpxchg.h>
30 #include <asm/cpufeature.h>
31 #include <asm/exception.h>
32 #include <asm/daifflags.h>
33 #include <asm/debug-monitors.h>
34 #include <asm/esr.h>
35 #include <asm/kprobes.h>
36 #include <asm/processor.h>
37 #include <asm/sysreg.h>
38 #include <asm/system_misc.h>
39 #include <asm/pgtable.h>
40 #include <asm/tlbflush.h>
41 #include <asm/traps.h>
42
43 struct fault_info {
44         int     (*fn)(unsigned long addr, unsigned int esr,
45                       struct pt_regs *regs);
46         int     sig;
47         int     code;
48         const char *name;
49 };
50
51 static const struct fault_info fault_info[];
52 static struct fault_info debug_fault_info[];
53
54 static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
55 {
56         return fault_info + (esr & ESR_ELx_FSC);
57 }
58
59 static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr)
60 {
61         return debug_fault_info + DBG_ESR_EVT(esr);
62 }
63
64 static void data_abort_decode(unsigned int esr)
65 {
66         pr_alert("Data abort info:\n");
67
68         if (esr & ESR_ELx_ISV) {
69                 pr_alert("  Access size = %u byte(s)\n",
70                          1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
71                 pr_alert("  SSE = %lu, SRT = %lu\n",
72                          (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
73                          (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
74                 pr_alert("  SF = %lu, AR = %lu\n",
75                          (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
76                          (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
77         } else {
78                 pr_alert("  ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
79         }
80
81         pr_alert("  CM = %lu, WnR = %lu\n",
82                  (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
83                  (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
84 }
85
86 static void mem_abort_decode(unsigned int esr)
87 {
88         pr_alert("Mem abort info:\n");
89
90         pr_alert("  ESR = 0x%08x\n", esr);
91         pr_alert("  EC = 0x%02lx: %s, IL = %u bits\n",
92                  ESR_ELx_EC(esr), esr_get_class_string(esr),
93                  (esr & ESR_ELx_IL) ? 32 : 16);
94         pr_alert("  SET = %lu, FnV = %lu\n",
95                  (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
96                  (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
97         pr_alert("  EA = %lu, S1PTW = %lu\n",
98                  (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
99                  (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
100
101         if (esr_is_data_abort(esr))
102                 data_abort_decode(esr);
103 }
104
105 static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm)
106 {
107         /* Either init_pg_dir or swapper_pg_dir */
108         if (mm == &init_mm)
109                 return __pa_symbol(mm->pgd);
110
111         return (unsigned long)virt_to_phys(mm->pgd);
112 }
113
114 /*
115  * Dump out the page tables associated with 'addr' in the currently active mm.
116  */
117 static void show_pte(unsigned long addr)
118 {
119         struct mm_struct *mm;
120         pgd_t *pgdp;
121         pgd_t pgd;
122
123         if (is_ttbr0_addr(addr)) {
124                 /* TTBR0 */
125                 mm = current->active_mm;
126                 if (mm == &init_mm) {
127                         pr_alert("[%016lx] user address but active_mm is swapper\n",
128                                  addr);
129                         return;
130                 }
131         } else if (is_ttbr1_addr(addr)) {
132                 /* TTBR1 */
133                 mm = &init_mm;
134         } else {
135                 pr_alert("[%016lx] address between user and kernel address ranges\n",
136                          addr);
137                 return;
138         }
139
140         pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
141                  mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
142                  vabits_actual, mm_to_pgd_phys(mm));
143         pgdp = pgd_offset(mm, addr);
144         pgd = READ_ONCE(*pgdp);
145         pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
146
147         do {
148                 pud_t *pudp, pud;
149                 pmd_t *pmdp, pmd;
150                 pte_t *ptep, pte;
151
152                 if (pgd_none(pgd) || pgd_bad(pgd))
153                         break;
154
155                 pudp = pud_offset(pgdp, addr);
156                 pud = READ_ONCE(*pudp);
157                 pr_cont(", pud=%016llx", pud_val(pud));
158                 if (pud_none(pud) || pud_bad(pud))
159                         break;
160
161                 pmdp = pmd_offset(pudp, addr);
162                 pmd = READ_ONCE(*pmdp);
163                 pr_cont(", pmd=%016llx", pmd_val(pmd));
164                 if (pmd_none(pmd) || pmd_bad(pmd))
165                         break;
166
167                 ptep = pte_offset_map(pmdp, addr);
168                 pte = READ_ONCE(*ptep);
169                 pr_cont(", pte=%016llx", pte_val(pte));
170                 pte_unmap(ptep);
171         } while(0);
172
173         pr_cont("\n");
174 }
175
176 /*
177  * This function sets the access flags (dirty, accessed), as well as write
178  * permission, and only to a more permissive setting.
179  *
180  * It needs to cope with hardware update of the accessed/dirty state by other
181  * agents in the system and can safely skip the __sync_icache_dcache() call as,
182  * like set_pte_at(), the PTE is never changed from no-exec to exec here.
183  *
184  * Returns whether or not the PTE actually changed.
185  */
186 int ptep_set_access_flags(struct vm_area_struct *vma,
187                           unsigned long address, pte_t *ptep,
188                           pte_t entry, int dirty)
189 {
190         pteval_t old_pteval, pteval;
191         pte_t pte = READ_ONCE(*ptep);
192
193         if (pte_same(pte, entry))
194                 return 0;
195
196         /* only preserve the access flags and write permission */
197         pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
198
199         /*
200          * Setting the flags must be done atomically to avoid racing with the
201          * hardware update of the access/dirty state. The PTE_RDONLY bit must
202          * be set to the most permissive (lowest value) of *ptep and entry
203          * (calculated as: a & b == ~(~a | ~b)).
204          */
205         pte_val(entry) ^= PTE_RDONLY;
206         pteval = pte_val(pte);
207         do {
208                 old_pteval = pteval;
209                 pteval ^= PTE_RDONLY;
210                 pteval |= pte_val(entry);
211                 pteval ^= PTE_RDONLY;
212                 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
213         } while (pteval != old_pteval);
214
215         flush_tlb_fix_spurious_fault(vma, address);
216         return 1;
217 }
218
219 static bool is_el1_instruction_abort(unsigned int esr)
220 {
221         return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
222 }
223
224 static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr,
225                                            struct pt_regs *regs)
226 {
227         unsigned int ec       = ESR_ELx_EC(esr);
228         unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
229
230         if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
231                 return false;
232
233         if (fsc_type == ESR_ELx_FSC_PERM)
234                 return true;
235
236         if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
237                 return fsc_type == ESR_ELx_FSC_FAULT &&
238                         (regs->pstate & PSR_PAN_BIT);
239
240         return false;
241 }
242
243 static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
244                                                         unsigned int esr,
245                                                         struct pt_regs *regs)
246 {
247         unsigned long flags;
248         u64 par, dfsc;
249
250         if (ESR_ELx_EC(esr) != ESR_ELx_EC_DABT_CUR ||
251             (esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT)
252                 return false;
253
254         local_irq_save(flags);
255         asm volatile("at s1e1r, %0" :: "r" (addr));
256         isb();
257         par = read_sysreg(par_el1);
258         local_irq_restore(flags);
259
260         /*
261          * If we now have a valid translation, treat the translation fault as
262          * spurious.
263          */
264         if (!(par & SYS_PAR_EL1_F))
265                 return true;
266
267         /*
268          * If we got a different type of fault from the AT instruction,
269          * treat the translation fault as spurious.
270          */
271         dfsc = FIELD_GET(SYS_PAR_EL1_FST, par);
272         return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT;
273 }
274
275 static void die_kernel_fault(const char *msg, unsigned long addr,
276                              unsigned int esr, struct pt_regs *regs)
277 {
278         bust_spinlocks(1);
279
280         pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
281                  addr);
282
283         mem_abort_decode(esr);
284
285         show_pte(addr);
286         die("Oops", regs, esr);
287         bust_spinlocks(0);
288         do_exit(SIGKILL);
289 }
290
291 static void __do_kernel_fault(unsigned long addr, unsigned int esr,
292                               struct pt_regs *regs)
293 {
294         const char *msg;
295
296         /*
297          * Are we prepared to handle this kernel fault?
298          * We are almost certainly not prepared to handle instruction faults.
299          */
300         if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
301                 return;
302
303         if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
304             "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr))
305                 return;
306
307         if (is_el1_permission_fault(addr, esr, regs)) {
308                 if (esr & ESR_ELx_WNR)
309                         msg = "write to read-only memory";
310                 else if (is_el1_instruction_abort(esr))
311                         msg = "execute from non-executable memory";
312                 else
313                         msg = "read from unreadable memory";
314         } else if (addr < PAGE_SIZE) {
315                 msg = "NULL pointer dereference";
316         } else {
317                 msg = "paging request";
318         }
319
320         die_kernel_fault(msg, addr, esr, regs);
321 }
322
323 static void set_thread_esr(unsigned long address, unsigned int esr)
324 {
325         current->thread.fault_address = address;
326
327         /*
328          * If the faulting address is in the kernel, we must sanitize the ESR.
329          * From userspace's point of view, kernel-only mappings don't exist
330          * at all, so we report them as level 0 translation faults.
331          * (This is not quite the way that "no mapping there at all" behaves:
332          * an alignment fault not caused by the memory type would take
333          * precedence over translation fault for a real access to empty
334          * space. Unfortunately we can't easily distinguish "alignment fault
335          * not caused by memory type" from "alignment fault caused by memory
336          * type", so we ignore this wrinkle and just return the translation
337          * fault.)
338          */
339         if (!is_ttbr0_addr(current->thread.fault_address)) {
340                 switch (ESR_ELx_EC(esr)) {
341                 case ESR_ELx_EC_DABT_LOW:
342                         /*
343                          * These bits provide only information about the
344                          * faulting instruction, which userspace knows already.
345                          * We explicitly clear bits which are architecturally
346                          * RES0 in case they are given meanings in future.
347                          * We always report the ESR as if the fault was taken
348                          * to EL1 and so ISV and the bits in ISS[23:14] are
349                          * clear. (In fact it always will be a fault to EL1.)
350                          */
351                         esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
352                                 ESR_ELx_CM | ESR_ELx_WNR;
353                         esr |= ESR_ELx_FSC_FAULT;
354                         break;
355                 case ESR_ELx_EC_IABT_LOW:
356                         /*
357                          * Claim a level 0 translation fault.
358                          * All other bits are architecturally RES0 for faults
359                          * reported with that DFSC value, so we clear them.
360                          */
361                         esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
362                         esr |= ESR_ELx_FSC_FAULT;
363                         break;
364                 default:
365                         /*
366                          * This should never happen (entry.S only brings us
367                          * into this code for insn and data aborts from a lower
368                          * exception level). Fail safe by not providing an ESR
369                          * context record at all.
370                          */
371                         WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
372                         esr = 0;
373                         break;
374                 }
375         }
376
377         current->thread.fault_code = esr;
378 }
379
380 static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
381 {
382         /*
383          * If we are in kernel mode at this point, we have no context to
384          * handle this fault with.
385          */
386         if (user_mode(regs)) {
387                 const struct fault_info *inf = esr_to_fault_info(esr);
388
389                 set_thread_esr(addr, esr);
390                 arm64_force_sig_fault(inf->sig, inf->code, (void __user *)addr,
391                                       inf->name);
392         } else {
393                 __do_kernel_fault(addr, esr, regs);
394         }
395 }
396
397 #define VM_FAULT_BADMAP         0x010000
398 #define VM_FAULT_BADACCESS      0x020000
399
400 static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr,
401                            unsigned int mm_flags, unsigned long vm_flags)
402 {
403         struct vm_area_struct *vma = find_vma(mm, addr);
404
405         if (unlikely(!vma))
406                 return VM_FAULT_BADMAP;
407
408         /*
409          * Ok, we have a good vm_area for this memory access, so we can handle
410          * it.
411          */
412         if (unlikely(vma->vm_start > addr)) {
413                 if (!(vma->vm_flags & VM_GROWSDOWN))
414                         return VM_FAULT_BADMAP;
415                 if (expand_stack(vma, addr))
416                         return VM_FAULT_BADMAP;
417         }
418
419         /*
420          * Check that the permissions on the VMA allow for the fault which
421          * occurred.
422          */
423         if (!(vma->vm_flags & vm_flags))
424                 return VM_FAULT_BADACCESS;
425         return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
426 }
427
428 static bool is_el0_instruction_abort(unsigned int esr)
429 {
430         return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
431 }
432
433 /*
434  * Note: not valid for EL1 DC IVAC, but we never use that such that it
435  * should fault. EL0 cannot issue DC IVAC (undef).
436  */
437 static bool is_write_abort(unsigned int esr)
438 {
439         return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
440 }
441
442 static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
443                                    struct pt_regs *regs)
444 {
445         const struct fault_info *inf;
446         struct mm_struct *mm = current->mm;
447         vm_fault_t fault, major = 0;
448         unsigned long vm_flags = VM_READ | VM_WRITE | VM_EXEC;
449         unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
450
451         if (kprobe_page_fault(regs, esr))
452                 return 0;
453
454         /*
455          * If we're in an interrupt or have no user context, we must not take
456          * the fault.
457          */
458         if (faulthandler_disabled() || !mm)
459                 goto no_context;
460
461         if (user_mode(regs))
462                 mm_flags |= FAULT_FLAG_USER;
463
464         if (is_el0_instruction_abort(esr)) {
465                 vm_flags = VM_EXEC;
466                 mm_flags |= FAULT_FLAG_INSTRUCTION;
467         } else if (is_write_abort(esr)) {
468                 vm_flags = VM_WRITE;
469                 mm_flags |= FAULT_FLAG_WRITE;
470         }
471
472         if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
473                 /* regs->orig_addr_limit may be 0 if we entered from EL0 */
474                 if (regs->orig_addr_limit == KERNEL_DS)
475                         die_kernel_fault("access to user memory with fs=KERNEL_DS",
476                                          addr, esr, regs);
477
478                 if (is_el1_instruction_abort(esr))
479                         die_kernel_fault("execution of user memory",
480                                          addr, esr, regs);
481
482                 if (!search_exception_tables(regs->pc))
483                         die_kernel_fault("access to user memory outside uaccess routines",
484                                          addr, esr, regs);
485         }
486
487         perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
488
489         /*
490          * As per x86, we may deadlock here. However, since the kernel only
491          * validly references user space from well defined areas of the code,
492          * we can bug out early if this is from code which shouldn't.
493          */
494         if (!down_read_trylock(&mm->mmap_sem)) {
495                 if (!user_mode(regs) && !search_exception_tables(regs->pc))
496                         goto no_context;
497 retry:
498                 down_read(&mm->mmap_sem);
499         } else {
500                 /*
501                  * The above down_read_trylock() might have succeeded in which
502                  * case, we'll have missed the might_sleep() from down_read().
503                  */
504                 might_sleep();
505 #ifdef CONFIG_DEBUG_VM
506                 if (!user_mode(regs) && !search_exception_tables(regs->pc)) {
507                         up_read(&mm->mmap_sem);
508                         goto no_context;
509                 }
510 #endif
511         }
512
513         fault = __do_page_fault(mm, addr, mm_flags, vm_flags);
514         major |= fault & VM_FAULT_MAJOR;
515
516         if (fault & VM_FAULT_RETRY) {
517                 /*
518                  * If we need to retry but a fatal signal is pending,
519                  * handle the signal first. We do not need to release
520                  * the mmap_sem because it would already be released
521                  * in __lock_page_or_retry in mm/filemap.c.
522                  */
523                 if (fatal_signal_pending(current)) {
524                         if (!user_mode(regs))
525                                 goto no_context;
526                         return 0;
527                 }
528
529                 /*
530                  * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
531                  * starvation.
532                  */
533                 if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
534                         mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
535                         mm_flags |= FAULT_FLAG_TRIED;
536                         goto retry;
537                 }
538         }
539         up_read(&mm->mmap_sem);
540
541         /*
542          * Handle the "normal" (no error) case first.
543          */
544         if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
545                               VM_FAULT_BADACCESS)))) {
546                 /*
547                  * Major/minor page fault accounting is only done
548                  * once. If we go through a retry, it is extremely
549                  * likely that the page will be found in page cache at
550                  * that point.
551                  */
552                 if (major) {
553                         current->maj_flt++;
554                         perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
555                                       addr);
556                 } else {
557                         current->min_flt++;
558                         perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
559                                       addr);
560                 }
561
562                 return 0;
563         }
564
565         /*
566          * If we are in kernel mode at this point, we have no context to
567          * handle this fault with.
568          */
569         if (!user_mode(regs))
570                 goto no_context;
571
572         if (fault & VM_FAULT_OOM) {
573                 /*
574                  * We ran out of memory, call the OOM killer, and return to
575                  * userspace (which will retry the fault, or kill us if we got
576                  * oom-killed).
577                  */
578                 pagefault_out_of_memory();
579                 return 0;
580         }
581
582         inf = esr_to_fault_info(esr);
583         set_thread_esr(addr, esr);
584         if (fault & VM_FAULT_SIGBUS) {
585                 /*
586                  * We had some memory, but were unable to successfully fix up
587                  * this page fault.
588                  */
589                 arm64_force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)addr,
590                                       inf->name);
591         } else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
592                 unsigned int lsb;
593
594                 lsb = PAGE_SHIFT;
595                 if (fault & VM_FAULT_HWPOISON_LARGE)
596                         lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
597
598                 arm64_force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr, lsb,
599                                        inf->name);
600         } else {
601                 /*
602                  * Something tried to access memory that isn't in our memory
603                  * map.
604                  */
605                 arm64_force_sig_fault(SIGSEGV,
606                                       fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
607                                       (void __user *)addr,
608                                       inf->name);
609         }
610
611         return 0;
612
613 no_context:
614         __do_kernel_fault(addr, esr, regs);
615         return 0;
616 }
617
618 static int __kprobes do_translation_fault(unsigned long addr,
619                                           unsigned int esr,
620                                           struct pt_regs *regs)
621 {
622         if (is_ttbr0_addr(addr))
623                 return do_page_fault(addr, esr, regs);
624
625         do_bad_area(addr, esr, regs);
626         return 0;
627 }
628
629 static int do_alignment_fault(unsigned long addr, unsigned int esr,
630                               struct pt_regs *regs)
631 {
632         do_bad_area(addr, esr, regs);
633         return 0;
634 }
635
636 static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
637 {
638         return 1; /* "fault" */
639 }
640
641 static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
642 {
643         const struct fault_info *inf;
644         void __user *siaddr;
645
646         inf = esr_to_fault_info(esr);
647
648         /*
649          * Return value ignored as we rely on signal merging.
650          * Future patches will make this more robust.
651          */
652         apei_claim_sea(regs);
653
654         if (esr & ESR_ELx_FnV)
655                 siaddr = NULL;
656         else
657                 siaddr  = (void __user *)addr;
658         arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
659
660         return 0;
661 }
662
663 static const struct fault_info fault_info[] = {
664         { do_bad,               SIGKILL, SI_KERNEL,     "ttbr address size fault"       },
665         { do_bad,               SIGKILL, SI_KERNEL,     "level 1 address size fault"    },
666         { do_bad,               SIGKILL, SI_KERNEL,     "level 2 address size fault"    },
667         { do_bad,               SIGKILL, SI_KERNEL,     "level 3 address size fault"    },
668         { do_translation_fault, SIGSEGV, SEGV_MAPERR,   "level 0 translation fault"     },
669         { do_translation_fault, SIGSEGV, SEGV_MAPERR,   "level 1 translation fault"     },
670         { do_translation_fault, SIGSEGV, SEGV_MAPERR,   "level 2 translation fault"     },
671         { do_translation_fault, SIGSEGV, SEGV_MAPERR,   "level 3 translation fault"     },
672         { do_bad,               SIGKILL, SI_KERNEL,     "unknown 8"                     },
673         { do_page_fault,        SIGSEGV, SEGV_ACCERR,   "level 1 access flag fault"     },
674         { do_page_fault,        SIGSEGV, SEGV_ACCERR,   "level 2 access flag fault"     },
675         { do_page_fault,        SIGSEGV, SEGV_ACCERR,   "level 3 access flag fault"     },
676         { do_bad,               SIGKILL, SI_KERNEL,     "unknown 12"                    },
677         { do_page_fault,        SIGSEGV, SEGV_ACCERR,   "level 1 permission fault"      },
678         { do_page_fault,        SIGSEGV, SEGV_ACCERR,   "level 2 permission fault"      },
679         { do_page_fault,        SIGSEGV, SEGV_ACCERR,   "level 3 permission fault"      },
680         { do_sea,               SIGBUS,  BUS_OBJERR,    "synchronous external abort"    },
681         { do_bad,               SIGKILL, SI_KERNEL,     "unknown 17"                    },
682         { do_bad,               SIGKILL, SI_KERNEL,     "unknown 18"                    },
683         { do_bad,               SIGKILL, SI_KERNEL,     "unknown 19"                    },
684         { do_sea,               SIGKILL, SI_KERNEL,     "level 0 (translation table walk)"      },
685         { do_sea,               SIGKILL, SI_KERNEL,     "level 1 (translation table walk)"      },
686         { do_sea,               SIGKILL, SI_KERNEL,     "level 2 (translation table walk)"      },
687         { do_sea,               SIGKILL, SI_KERNEL,     "level 3 (translation table walk)"      },
688         { do_sea,               SIGBUS,  BUS_OBJERR,    "synchronous parity or ECC error" },    // Reserved when RAS is implemented
689         { do_bad,               SIGKILL, SI_KERNEL,     "unknown 25"                    },
690         { do_bad,               SIGKILL, SI_KERNEL,     "unknown 26"                    },
691         { do_bad,               SIGKILL, SI_KERNEL,     "unknown 27"                    },
692         { do_sea,               SIGKILL, SI_KERNEL,     "level 0 synchronous parity error (translation table walk)"     },      // Reserved when RAS is implemented
693         { do_sea,               SIGKILL, SI_KERNEL,     "level 1 synchronous parity error (translation table walk)"     },      // Reserved when RAS is implemented
694         { do_sea,               SIGKILL, SI_KERNEL,     "level 2 synchronous parity error (translation table walk)"     },      // Reserved when RAS is implemented
695         { do_sea,               SIGKILL, SI_KERNEL,     "level 3 synchronous parity error (translation table walk)"     },      // Reserved when RAS is implemented
696         { do_bad,               SIGKILL, SI_KERNEL,     "unknown 32"                    },
697         { do_alignment_fault,   SIGBUS,  BUS_ADRALN,    "alignment fault"               },
698         { do_bad,               SIGKILL, SI_KERNEL,     "unknown 34"                    },
699         { do_bad,               SIGKILL, SI_KERNEL,     "unknown 35"                    },
700         { do_bad,               SIGKILL, SI_KERNEL,     "unknown 36"                    },
701         { do_bad,               SIGKILL, SI_KERNEL,     "unknown 37"                    },
702         { do_bad,               SIGKILL, SI_KERNEL,     "unknown 38"                    },
703         { do_bad,               SIGKILL, SI_KERNEL,     "unknown 39"                    },
704         { do_bad,               SIGKILL, SI_KERNEL,     "unknown 40"                    },
705         { do_bad,               SIGKILL, SI_KERNEL,     "unknown 41"                    },
706         { do_bad,               SIGKILL, SI_KERNEL,     "unknown 42"                    },
707         { do_bad,               SIGKILL, SI_KERNEL,     "unknown 43"                    },
708         { do_bad,               SIGKILL, SI_KERNEL,     "unknown 44"                    },
709         { do_bad,               SIGKILL, SI_KERNEL,     "unknown 45"                    },
710         { do_bad,               SIGKILL, SI_KERNEL,     "unknown 46"                    },
711         { do_bad,               SIGKILL, SI_KERNEL,     "unknown 47"                    },
712         { do_bad,               SIGKILL, SI_KERNEL,     "TLB conflict abort"            },
713         { do_bad,               SIGKILL, SI_KERNEL,     "Unsupported atomic hardware update fault"      },
714         { do_bad,               SIGKILL, SI_KERNEL,     "unknown 50"                    },
715         { do_bad,               SIGKILL, SI_KERNEL,     "unknown 51"                    },
716         { do_bad,               SIGKILL, SI_KERNEL,     "implementation fault (lockdown abort)" },
717         { do_bad,               SIGBUS,  BUS_OBJERR,    "implementation fault (unsupported exclusive)" },
718         { do_bad,               SIGKILL, SI_KERNEL,     "unknown 54"                    },
719         { do_bad,               SIGKILL, SI_KERNEL,     "unknown 55"                    },
720         { do_bad,               SIGKILL, SI_KERNEL,     "unknown 56"                    },
721         { do_bad,               SIGKILL, SI_KERNEL,     "unknown 57"                    },
722         { do_bad,               SIGKILL, SI_KERNEL,     "unknown 58"                    },
723         { do_bad,               SIGKILL, SI_KERNEL,     "unknown 59"                    },
724         { do_bad,               SIGKILL, SI_KERNEL,     "unknown 60"                    },
725         { do_bad,               SIGKILL, SI_KERNEL,     "section domain fault"          },
726         { do_bad,               SIGKILL, SI_KERNEL,     "page domain fault"             },
727         { do_bad,               SIGKILL, SI_KERNEL,     "unknown 63"                    },
728 };
729
730 void do_mem_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs)
731 {
732         const struct fault_info *inf = esr_to_fault_info(esr);
733
734         if (!inf->fn(addr, esr, regs))
735                 return;
736
737         if (!user_mode(regs)) {
738                 pr_alert("Unhandled fault at 0x%016lx\n", addr);
739                 mem_abort_decode(esr);
740                 show_pte(addr);
741         }
742
743         arm64_notify_die(inf->name, regs,
744                          inf->sig, inf->code, (void __user *)addr, esr);
745 }
746 NOKPROBE_SYMBOL(do_mem_abort);
747
748 void do_el0_irq_bp_hardening(void)
749 {
750         /* PC has already been checked in entry.S */
751         arm64_apply_bp_hardening();
752 }
753 NOKPROBE_SYMBOL(do_el0_irq_bp_hardening);
754
755 void do_sp_pc_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs)
756 {
757         arm64_notify_die("SP/PC alignment exception", regs,
758                          SIGBUS, BUS_ADRALN, (void __user *)addr, esr);
759 }
760 NOKPROBE_SYMBOL(do_sp_pc_abort);
761
762 int __init early_brk64(unsigned long addr, unsigned int esr,
763                        struct pt_regs *regs);
764
765 /*
766  * __refdata because early_brk64 is __init, but the reference to it is
767  * clobbered at arch_initcall time.
768  * See traps.c and debug-monitors.c:debug_traps_init().
769  */
770 static struct fault_info __refdata debug_fault_info[] = {
771         { do_bad,       SIGTRAP,        TRAP_HWBKPT,    "hardware breakpoint"   },
772         { do_bad,       SIGTRAP,        TRAP_HWBKPT,    "hardware single-step"  },
773         { do_bad,       SIGTRAP,        TRAP_HWBKPT,    "hardware watchpoint"   },
774         { do_bad,       SIGKILL,        SI_KERNEL,      "unknown 3"             },
775         { do_bad,       SIGTRAP,        TRAP_BRKPT,     "aarch32 BKPT"          },
776         { do_bad,       SIGKILL,        SI_KERNEL,      "aarch32 vector catch"  },
777         { early_brk64,  SIGTRAP,        TRAP_BRKPT,     "aarch64 BRK"           },
778         { do_bad,       SIGKILL,        SI_KERNEL,      "unknown 7"             },
779 };
780
781 void __init hook_debug_fault_code(int nr,
782                                   int (*fn)(unsigned long, unsigned int, struct pt_regs *),
783                                   int sig, int code, const char *name)
784 {
785         BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
786
787         debug_fault_info[nr].fn         = fn;
788         debug_fault_info[nr].sig        = sig;
789         debug_fault_info[nr].code       = code;
790         debug_fault_info[nr].name       = name;
791 }
792
793 /*
794  * In debug exception context, we explicitly disable preemption despite
795  * having interrupts disabled.
796  * This serves two purposes: it makes it much less likely that we would
797  * accidentally schedule in exception context and it will force a warning
798  * if we somehow manage to schedule by accident.
799  */
800 static void debug_exception_enter(struct pt_regs *regs)
801 {
802         /*
803          * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
804          * already disabled to preserve the last enabled/disabled addresses.
805          */
806         if (interrupts_enabled(regs))
807                 trace_hardirqs_off();
808
809         if (user_mode(regs)) {
810                 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
811         } else {
812                 /*
813                  * We might have interrupted pretty much anything.  In
814                  * fact, if we're a debug exception, we can even interrupt
815                  * NMI processing. We don't want this code makes in_nmi()
816                  * to return true, but we need to notify RCU.
817                  */
818                 rcu_nmi_enter();
819         }
820
821         preempt_disable();
822
823         /* This code is a bit fragile.  Test it. */
824         RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
825 }
826 NOKPROBE_SYMBOL(debug_exception_enter);
827
828 static void debug_exception_exit(struct pt_regs *regs)
829 {
830         preempt_enable_no_resched();
831
832         if (!user_mode(regs))
833                 rcu_nmi_exit();
834
835         if (interrupts_enabled(regs))
836                 trace_hardirqs_on();
837 }
838 NOKPROBE_SYMBOL(debug_exception_exit);
839
840 #ifdef CONFIG_ARM64_ERRATUM_1463225
841 DECLARE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);
842
843 static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
844 {
845         if (user_mode(regs))
846                 return 0;
847
848         if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa))
849                 return 0;
850
851         /*
852          * We've taken a dummy step exception from the kernel to ensure
853          * that interrupts are re-enabled on the syscall path. Return back
854          * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
855          * masked so that we can safely restore the mdscr and get on with
856          * handling the syscall.
857          */
858         regs->pstate |= PSR_D_BIT;
859         return 1;
860 }
861 #else
862 static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
863 {
864         return 0;
865 }
866 #endif /* CONFIG_ARM64_ERRATUM_1463225 */
867 NOKPROBE_SYMBOL(cortex_a76_erratum_1463225_debug_handler);
868
869 void do_debug_exception(unsigned long addr_if_watchpoint, unsigned int esr,
870                         struct pt_regs *regs)
871 {
872         const struct fault_info *inf = esr_to_debug_fault_info(esr);
873         unsigned long pc = instruction_pointer(regs);
874
875         if (cortex_a76_erratum_1463225_debug_handler(regs))
876                 return;
877
878         debug_exception_enter(regs);
879
880         if (user_mode(regs) && !is_ttbr0_addr(pc))
881                 arm64_apply_bp_hardening();
882
883         if (inf->fn(addr_if_watchpoint, esr, regs)) {
884                 arm64_notify_die(inf->name, regs,
885                                  inf->sig, inf->code, (void __user *)pc, esr);
886         }
887
888         debug_exception_exit(regs);
889 }
890 NOKPROBE_SYMBOL(do_debug_exception);