]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/mips/kvm/emulate.c
Merge tag 'trace-v4.11' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[linux.git] / arch / mips / kvm / emulate.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: Instruction/Exception emulation
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/ktime.h>
15 #include <linux/kvm_host.h>
16 #include <linux/vmalloc.h>
17 #include <linux/fs.h>
18 #include <linux/bootmem.h>
19 #include <linux/random.h>
20 #include <asm/page.h>
21 #include <asm/cacheflush.h>
22 #include <asm/cacheops.h>
23 #include <asm/cpu-info.h>
24 #include <asm/mmu_context.h>
25 #include <asm/tlbflush.h>
26 #include <asm/inst.h>
27
28 #undef CONFIG_MIPS_MT
29 #include <asm/r4kcache.h>
30 #define CONFIG_MIPS_MT
31
32 #include "interrupt.h"
33 #include "commpage.h"
34
35 #include "trace.h"
36
37 /*
38  * Compute the return address and do emulate branch simulation, if required.
39  * This function should be called only in branch delay slot active.
40  */
41 static int kvm_compute_return_epc(struct kvm_vcpu *vcpu, unsigned long instpc,
42                                   unsigned long *out)
43 {
44         unsigned int dspcontrol;
45         union mips_instruction insn;
46         struct kvm_vcpu_arch *arch = &vcpu->arch;
47         long epc = instpc;
48         long nextpc;
49         int err;
50
51         if (epc & 3) {
52                 kvm_err("%s: unaligned epc\n", __func__);
53                 return -EINVAL;
54         }
55
56         /* Read the instruction */
57         err = kvm_get_badinstrp((u32 *)epc, vcpu, &insn.word);
58         if (err)
59                 return err;
60
61         switch (insn.i_format.opcode) {
62                 /* jr and jalr are in r_format format. */
63         case spec_op:
64                 switch (insn.r_format.func) {
65                 case jalr_op:
66                         arch->gprs[insn.r_format.rd] = epc + 8;
67                         /* Fall through */
68                 case jr_op:
69                         nextpc = arch->gprs[insn.r_format.rs];
70                         break;
71                 default:
72                         return -EINVAL;
73                 }
74                 break;
75
76                 /*
77                  * This group contains:
78                  * bltz_op, bgez_op, bltzl_op, bgezl_op,
79                  * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
80                  */
81         case bcond_op:
82                 switch (insn.i_format.rt) {
83                 case bltz_op:
84                 case bltzl_op:
85                         if ((long)arch->gprs[insn.i_format.rs] < 0)
86                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
87                         else
88                                 epc += 8;
89                         nextpc = epc;
90                         break;
91
92                 case bgez_op:
93                 case bgezl_op:
94                         if ((long)arch->gprs[insn.i_format.rs] >= 0)
95                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
96                         else
97                                 epc += 8;
98                         nextpc = epc;
99                         break;
100
101                 case bltzal_op:
102                 case bltzall_op:
103                         arch->gprs[31] = epc + 8;
104                         if ((long)arch->gprs[insn.i_format.rs] < 0)
105                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
106                         else
107                                 epc += 8;
108                         nextpc = epc;
109                         break;
110
111                 case bgezal_op:
112                 case bgezall_op:
113                         arch->gprs[31] = epc + 8;
114                         if ((long)arch->gprs[insn.i_format.rs] >= 0)
115                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
116                         else
117                                 epc += 8;
118                         nextpc = epc;
119                         break;
120                 case bposge32_op:
121                         if (!cpu_has_dsp) {
122                                 kvm_err("%s: DSP branch but not DSP ASE\n",
123                                         __func__);
124                                 return -EINVAL;
125                         }
126
127                         dspcontrol = rddsp(0x01);
128
129                         if (dspcontrol >= 32)
130                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
131                         else
132                                 epc += 8;
133                         nextpc = epc;
134                         break;
135                 default:
136                         return -EINVAL;
137                 }
138                 break;
139
140                 /* These are unconditional and in j_format. */
141         case jal_op:
142                 arch->gprs[31] = instpc + 8;
143         case j_op:
144                 epc += 4;
145                 epc >>= 28;
146                 epc <<= 28;
147                 epc |= (insn.j_format.target << 2);
148                 nextpc = epc;
149                 break;
150
151                 /* These are conditional and in i_format. */
152         case beq_op:
153         case beql_op:
154                 if (arch->gprs[insn.i_format.rs] ==
155                     arch->gprs[insn.i_format.rt])
156                         epc = epc + 4 + (insn.i_format.simmediate << 2);
157                 else
158                         epc += 8;
159                 nextpc = epc;
160                 break;
161
162         case bne_op:
163         case bnel_op:
164                 if (arch->gprs[insn.i_format.rs] !=
165                     arch->gprs[insn.i_format.rt])
166                         epc = epc + 4 + (insn.i_format.simmediate << 2);
167                 else
168                         epc += 8;
169                 nextpc = epc;
170                 break;
171
172         case blez_op:   /* POP06 */
173 #ifndef CONFIG_CPU_MIPSR6
174         case blezl_op:  /* removed in R6 */
175 #endif
176                 if (insn.i_format.rt != 0)
177                         goto compact_branch;
178                 if ((long)arch->gprs[insn.i_format.rs] <= 0)
179                         epc = epc + 4 + (insn.i_format.simmediate << 2);
180                 else
181                         epc += 8;
182                 nextpc = epc;
183                 break;
184
185         case bgtz_op:   /* POP07 */
186 #ifndef CONFIG_CPU_MIPSR6
187         case bgtzl_op:  /* removed in R6 */
188 #endif
189                 if (insn.i_format.rt != 0)
190                         goto compact_branch;
191                 if ((long)arch->gprs[insn.i_format.rs] > 0)
192                         epc = epc + 4 + (insn.i_format.simmediate << 2);
193                 else
194                         epc += 8;
195                 nextpc = epc;
196                 break;
197
198                 /* And now the FPA/cp1 branch instructions. */
199         case cop1_op:
200                 kvm_err("%s: unsupported cop1_op\n", __func__);
201                 return -EINVAL;
202
203 #ifdef CONFIG_CPU_MIPSR6
204         /* R6 added the following compact branches with forbidden slots */
205         case blezl_op:  /* POP26 */
206         case bgtzl_op:  /* POP27 */
207                 /* only rt == 0 isn't compact branch */
208                 if (insn.i_format.rt != 0)
209                         goto compact_branch;
210                 return -EINVAL;
211         case pop10_op:
212         case pop30_op:
213                 /* only rs == rt == 0 is reserved, rest are compact branches */
214                 if (insn.i_format.rs != 0 || insn.i_format.rt != 0)
215                         goto compact_branch;
216                 return -EINVAL;
217         case pop66_op:
218         case pop76_op:
219                 /* only rs == 0 isn't compact branch */
220                 if (insn.i_format.rs != 0)
221                         goto compact_branch;
222                 return -EINVAL;
223 compact_branch:
224                 /*
225                  * If we've hit an exception on the forbidden slot, then
226                  * the branch must not have been taken.
227                  */
228                 epc += 8;
229                 nextpc = epc;
230                 break;
231 #else
232 compact_branch:
233                 /* Fall through - Compact branches not supported before R6 */
234 #endif
235         default:
236                 return -EINVAL;
237         }
238
239         *out = nextpc;
240         return 0;
241 }
242
243 enum emulation_result update_pc(struct kvm_vcpu *vcpu, u32 cause)
244 {
245         int err;
246
247         if (cause & CAUSEF_BD) {
248                 err = kvm_compute_return_epc(vcpu, vcpu->arch.pc,
249                                              &vcpu->arch.pc);
250                 if (err)
251                         return EMULATE_FAIL;
252         } else {
253                 vcpu->arch.pc += 4;
254         }
255
256         kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
257
258         return EMULATE_DONE;
259 }
260
261 /**
262  * kvm_get_badinstr() - Get bad instruction encoding.
263  * @opc:        Guest pointer to faulting instruction.
264  * @vcpu:       KVM VCPU information.
265  *
266  * Gets the instruction encoding of the faulting instruction, using the saved
267  * BadInstr register value if it exists, otherwise falling back to reading guest
268  * memory at @opc.
269  *
270  * Returns:     The instruction encoding of the faulting instruction.
271  */
272 int kvm_get_badinstr(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
273 {
274         if (cpu_has_badinstr) {
275                 *out = vcpu->arch.host_cp0_badinstr;
276                 return 0;
277         } else {
278                 return kvm_get_inst(opc, vcpu, out);
279         }
280 }
281
282 /**
283  * kvm_get_badinstrp() - Get bad prior instruction encoding.
284  * @opc:        Guest pointer to prior faulting instruction.
285  * @vcpu:       KVM VCPU information.
286  *
287  * Gets the instruction encoding of the prior faulting instruction (the branch
288  * containing the delay slot which faulted), using the saved BadInstrP register
289  * value if it exists, otherwise falling back to reading guest memory at @opc.
290  *
291  * Returns:     The instruction encoding of the prior faulting instruction.
292  */
293 int kvm_get_badinstrp(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
294 {
295         if (cpu_has_badinstrp) {
296                 *out = vcpu->arch.host_cp0_badinstrp;
297                 return 0;
298         } else {
299                 return kvm_get_inst(opc, vcpu, out);
300         }
301 }
302
303 /**
304  * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
305  * @vcpu:       Virtual CPU.
306  *
307  * Returns:     1 if the CP0_Count timer is disabled by either the guest
308  *              CP0_Cause.DC bit or the count_ctl.DC bit.
309  *              0 otherwise (in which case CP0_Count timer is running).
310  */
311 static inline int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
312 {
313         struct mips_coproc *cop0 = vcpu->arch.cop0;
314
315         return  (vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
316                 (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
317 }
318
319 /**
320  * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
321  *
322  * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
323  *
324  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
325  */
326 static u32 kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
327 {
328         s64 now_ns, periods;
329         u64 delta;
330
331         now_ns = ktime_to_ns(now);
332         delta = now_ns + vcpu->arch.count_dyn_bias;
333
334         if (delta >= vcpu->arch.count_period) {
335                 /* If delta is out of safe range the bias needs adjusting */
336                 periods = div64_s64(now_ns, vcpu->arch.count_period);
337                 vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
338                 /* Recalculate delta with new bias */
339                 delta = now_ns + vcpu->arch.count_dyn_bias;
340         }
341
342         /*
343          * We've ensured that:
344          *   delta < count_period
345          *
346          * Therefore the intermediate delta*count_hz will never overflow since
347          * at the boundary condition:
348          *   delta = count_period
349          *   delta = NSEC_PER_SEC * 2^32 / count_hz
350          *   delta * count_hz = NSEC_PER_SEC * 2^32
351          */
352         return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
353 }
354
355 /**
356  * kvm_mips_count_time() - Get effective current time.
357  * @vcpu:       Virtual CPU.
358  *
359  * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
360  * except when the master disable bit is set in count_ctl, in which case it is
361  * count_resume, i.e. the time that the count was disabled.
362  *
363  * Returns:     Effective monotonic ktime for CP0_Count.
364  */
365 static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
366 {
367         if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
368                 return vcpu->arch.count_resume;
369
370         return ktime_get();
371 }
372
373 /**
374  * kvm_mips_read_count_running() - Read the current count value as if running.
375  * @vcpu:       Virtual CPU.
376  * @now:        Kernel time to read CP0_Count at.
377  *
378  * Returns the current guest CP0_Count register at time @now and handles if the
379  * timer interrupt is pending and hasn't been handled yet.
380  *
381  * Returns:     The current value of the guest CP0_Count register.
382  */
383 static u32 kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
384 {
385         struct mips_coproc *cop0 = vcpu->arch.cop0;
386         ktime_t expires, threshold;
387         u32 count, compare;
388         int running;
389
390         /* Calculate the biased and scaled guest CP0_Count */
391         count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
392         compare = kvm_read_c0_guest_compare(cop0);
393
394         /*
395          * Find whether CP0_Count has reached the closest timer interrupt. If
396          * not, we shouldn't inject it.
397          */
398         if ((s32)(count - compare) < 0)
399                 return count;
400
401         /*
402          * The CP0_Count we're going to return has already reached the closest
403          * timer interrupt. Quickly check if it really is a new interrupt by
404          * looking at whether the interval until the hrtimer expiry time is
405          * less than 1/4 of the timer period.
406          */
407         expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
408         threshold = ktime_add_ns(now, vcpu->arch.count_period / 4);
409         if (ktime_before(expires, threshold)) {
410                 /*
411                  * Cancel it while we handle it so there's no chance of
412                  * interference with the timeout handler.
413                  */
414                 running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
415
416                 /* Nothing should be waiting on the timeout */
417                 kvm_mips_callbacks->queue_timer_int(vcpu);
418
419                 /*
420                  * Restart the timer if it was running based on the expiry time
421                  * we read, so that we don't push it back 2 periods.
422                  */
423                 if (running) {
424                         expires = ktime_add_ns(expires,
425                                                vcpu->arch.count_period);
426                         hrtimer_start(&vcpu->arch.comparecount_timer, expires,
427                                       HRTIMER_MODE_ABS);
428                 }
429         }
430
431         return count;
432 }
433
434 /**
435  * kvm_mips_read_count() - Read the current count value.
436  * @vcpu:       Virtual CPU.
437  *
438  * Read the current guest CP0_Count value, taking into account whether the timer
439  * is stopped.
440  *
441  * Returns:     The current guest CP0_Count value.
442  */
443 u32 kvm_mips_read_count(struct kvm_vcpu *vcpu)
444 {
445         struct mips_coproc *cop0 = vcpu->arch.cop0;
446
447         /* If count disabled just read static copy of count */
448         if (kvm_mips_count_disabled(vcpu))
449                 return kvm_read_c0_guest_count(cop0);
450
451         return kvm_mips_read_count_running(vcpu, ktime_get());
452 }
453
454 /**
455  * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
456  * @vcpu:       Virtual CPU.
457  * @count:      Output pointer for CP0_Count value at point of freeze.
458  *
459  * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
460  * at the point it was frozen. It is guaranteed that any pending interrupts at
461  * the point it was frozen are handled, and none after that point.
462  *
463  * This is useful where the time/CP0_Count is needed in the calculation of the
464  * new parameters.
465  *
466  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
467  *
468  * Returns:     The ktime at the point of freeze.
469  */
470 static ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu, u32 *count)
471 {
472         ktime_t now;
473
474         /* stop hrtimer before finding time */
475         hrtimer_cancel(&vcpu->arch.comparecount_timer);
476         now = ktime_get();
477
478         /* find count at this point and handle pending hrtimer */
479         *count = kvm_mips_read_count_running(vcpu, now);
480
481         return now;
482 }
483
484 /**
485  * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
486  * @vcpu:       Virtual CPU.
487  * @now:        ktime at point of resume.
488  * @count:      CP0_Count at point of resume.
489  *
490  * Resumes the timer and updates the timer expiry based on @now and @count.
491  * This can be used in conjunction with kvm_mips_freeze_timer() when timer
492  * parameters need to be changed.
493  *
494  * It is guaranteed that a timer interrupt immediately after resume will be
495  * handled, but not if CP_Compare is exactly at @count. That case is already
496  * handled by kvm_mips_freeze_timer().
497  *
498  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
499  */
500 static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
501                                     ktime_t now, u32 count)
502 {
503         struct mips_coproc *cop0 = vcpu->arch.cop0;
504         u32 compare;
505         u64 delta;
506         ktime_t expire;
507
508         /* Calculate timeout (wrap 0 to 2^32) */
509         compare = kvm_read_c0_guest_compare(cop0);
510         delta = (u64)(u32)(compare - count - 1) + 1;
511         delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
512         expire = ktime_add_ns(now, delta);
513
514         /* Update hrtimer to use new timeout */
515         hrtimer_cancel(&vcpu->arch.comparecount_timer);
516         hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
517 }
518
519 /**
520  * kvm_mips_write_count() - Modify the count and update timer.
521  * @vcpu:       Virtual CPU.
522  * @count:      Guest CP0_Count value to set.
523  *
524  * Sets the CP0_Count value and updates the timer accordingly.
525  */
526 void kvm_mips_write_count(struct kvm_vcpu *vcpu, u32 count)
527 {
528         struct mips_coproc *cop0 = vcpu->arch.cop0;
529         ktime_t now;
530
531         /* Calculate bias */
532         now = kvm_mips_count_time(vcpu);
533         vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
534
535         if (kvm_mips_count_disabled(vcpu))
536                 /* The timer's disabled, adjust the static count */
537                 kvm_write_c0_guest_count(cop0, count);
538         else
539                 /* Update timeout */
540                 kvm_mips_resume_hrtimer(vcpu, now, count);
541 }
542
543 /**
544  * kvm_mips_init_count() - Initialise timer.
545  * @vcpu:       Virtual CPU.
546  *
547  * Initialise the timer to a sensible frequency, namely 100MHz, zero it, and set
548  * it going if it's enabled.
549  */
550 void kvm_mips_init_count(struct kvm_vcpu *vcpu)
551 {
552         /* 100 MHz */
553         vcpu->arch.count_hz = 100*1000*1000;
554         vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32,
555                                           vcpu->arch.count_hz);
556         vcpu->arch.count_dyn_bias = 0;
557
558         /* Starting at 0 */
559         kvm_mips_write_count(vcpu, 0);
560 }
561
562 /**
563  * kvm_mips_set_count_hz() - Update the frequency of the timer.
564  * @vcpu:       Virtual CPU.
565  * @count_hz:   Frequency of CP0_Count timer in Hz.
566  *
567  * Change the frequency of the CP0_Count timer. This is done atomically so that
568  * CP0_Count is continuous and no timer interrupt is lost.
569  *
570  * Returns:     -EINVAL if @count_hz is out of range.
571  *              0 on success.
572  */
573 int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
574 {
575         struct mips_coproc *cop0 = vcpu->arch.cop0;
576         int dc;
577         ktime_t now;
578         u32 count;
579
580         /* ensure the frequency is in a sensible range... */
581         if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
582                 return -EINVAL;
583         /* ... and has actually changed */
584         if (vcpu->arch.count_hz == count_hz)
585                 return 0;
586
587         /* Safely freeze timer so we can keep it continuous */
588         dc = kvm_mips_count_disabled(vcpu);
589         if (dc) {
590                 now = kvm_mips_count_time(vcpu);
591                 count = kvm_read_c0_guest_count(cop0);
592         } else {
593                 now = kvm_mips_freeze_hrtimer(vcpu, &count);
594         }
595
596         /* Update the frequency */
597         vcpu->arch.count_hz = count_hz;
598         vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
599         vcpu->arch.count_dyn_bias = 0;
600
601         /* Calculate adjusted bias so dynamic count is unchanged */
602         vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
603
604         /* Update and resume hrtimer */
605         if (!dc)
606                 kvm_mips_resume_hrtimer(vcpu, now, count);
607         return 0;
608 }
609
610 /**
611  * kvm_mips_write_compare() - Modify compare and update timer.
612  * @vcpu:       Virtual CPU.
613  * @compare:    New CP0_Compare value.
614  * @ack:        Whether to acknowledge timer interrupt.
615  *
616  * Update CP0_Compare to a new value and update the timeout.
617  * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
618  * any pending timer interrupt is preserved.
619  */
620 void kvm_mips_write_compare(struct kvm_vcpu *vcpu, u32 compare, bool ack)
621 {
622         struct mips_coproc *cop0 = vcpu->arch.cop0;
623         int dc;
624         u32 old_compare = kvm_read_c0_guest_compare(cop0);
625         ktime_t now;
626         u32 count;
627
628         /* if unchanged, must just be an ack */
629         if (old_compare == compare) {
630                 if (!ack)
631                         return;
632                 kvm_mips_callbacks->dequeue_timer_int(vcpu);
633                 kvm_write_c0_guest_compare(cop0, compare);
634                 return;
635         }
636
637         /* freeze_hrtimer() takes care of timer interrupts <= count */
638         dc = kvm_mips_count_disabled(vcpu);
639         if (!dc)
640                 now = kvm_mips_freeze_hrtimer(vcpu, &count);
641
642         if (ack)
643                 kvm_mips_callbacks->dequeue_timer_int(vcpu);
644
645         kvm_write_c0_guest_compare(cop0, compare);
646
647         /* resume_hrtimer() takes care of timer interrupts > count */
648         if (!dc)
649                 kvm_mips_resume_hrtimer(vcpu, now, count);
650 }
651
652 /**
653  * kvm_mips_count_disable() - Disable count.
654  * @vcpu:       Virtual CPU.
655  *
656  * Disable the CP0_Count timer. A timer interrupt on or before the final stop
657  * time will be handled but not after.
658  *
659  * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
660  * count_ctl.DC has been set (count disabled).
661  *
662  * Returns:     The time that the timer was stopped.
663  */
664 static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
665 {
666         struct mips_coproc *cop0 = vcpu->arch.cop0;
667         u32 count;
668         ktime_t now;
669
670         /* Stop hrtimer */
671         hrtimer_cancel(&vcpu->arch.comparecount_timer);
672
673         /* Set the static count from the dynamic count, handling pending TI */
674         now = ktime_get();
675         count = kvm_mips_read_count_running(vcpu, now);
676         kvm_write_c0_guest_count(cop0, count);
677
678         return now;
679 }
680
681 /**
682  * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
683  * @vcpu:       Virtual CPU.
684  *
685  * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
686  * before the final stop time will be handled if the timer isn't disabled by
687  * count_ctl.DC, but not after.
688  *
689  * Assumes CP0_Cause.DC is clear (count enabled).
690  */
691 void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
692 {
693         struct mips_coproc *cop0 = vcpu->arch.cop0;
694
695         kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
696         if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
697                 kvm_mips_count_disable(vcpu);
698 }
699
700 /**
701  * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
702  * @vcpu:       Virtual CPU.
703  *
704  * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
705  * the start time will be handled if the timer isn't disabled by count_ctl.DC,
706  * potentially before even returning, so the caller should be careful with
707  * ordering of CP0_Cause modifications so as not to lose it.
708  *
709  * Assumes CP0_Cause.DC is set (count disabled).
710  */
711 void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
712 {
713         struct mips_coproc *cop0 = vcpu->arch.cop0;
714         u32 count;
715
716         kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
717
718         /*
719          * Set the dynamic count to match the static count.
720          * This starts the hrtimer if count_ctl.DC allows it.
721          * Otherwise it conveniently updates the biases.
722          */
723         count = kvm_read_c0_guest_count(cop0);
724         kvm_mips_write_count(vcpu, count);
725 }
726
727 /**
728  * kvm_mips_set_count_ctl() - Update the count control KVM register.
729  * @vcpu:       Virtual CPU.
730  * @count_ctl:  Count control register new value.
731  *
732  * Set the count control KVM register. The timer is updated accordingly.
733  *
734  * Returns:     -EINVAL if reserved bits are set.
735  *              0 on success.
736  */
737 int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
738 {
739         struct mips_coproc *cop0 = vcpu->arch.cop0;
740         s64 changed = count_ctl ^ vcpu->arch.count_ctl;
741         s64 delta;
742         ktime_t expire, now;
743         u32 count, compare;
744
745         /* Only allow defined bits to be changed */
746         if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
747                 return -EINVAL;
748
749         /* Apply new value */
750         vcpu->arch.count_ctl = count_ctl;
751
752         /* Master CP0_Count disable */
753         if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
754                 /* Is CP0_Cause.DC already disabling CP0_Count? */
755                 if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
756                         if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
757                                 /* Just record the current time */
758                                 vcpu->arch.count_resume = ktime_get();
759                 } else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
760                         /* disable timer and record current time */
761                         vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
762                 } else {
763                         /*
764                          * Calculate timeout relative to static count at resume
765                          * time (wrap 0 to 2^32).
766                          */
767                         count = kvm_read_c0_guest_count(cop0);
768                         compare = kvm_read_c0_guest_compare(cop0);
769                         delta = (u64)(u32)(compare - count - 1) + 1;
770                         delta = div_u64(delta * NSEC_PER_SEC,
771                                         vcpu->arch.count_hz);
772                         expire = ktime_add_ns(vcpu->arch.count_resume, delta);
773
774                         /* Handle pending interrupt */
775                         now = ktime_get();
776                         if (ktime_compare(now, expire) >= 0)
777                                 /* Nothing should be waiting on the timeout */
778                                 kvm_mips_callbacks->queue_timer_int(vcpu);
779
780                         /* Resume hrtimer without changing bias */
781                         count = kvm_mips_read_count_running(vcpu, now);
782                         kvm_mips_resume_hrtimer(vcpu, now, count);
783                 }
784         }
785
786         return 0;
787 }
788
789 /**
790  * kvm_mips_set_count_resume() - Update the count resume KVM register.
791  * @vcpu:               Virtual CPU.
792  * @count_resume:       Count resume register new value.
793  *
794  * Set the count resume KVM register.
795  *
796  * Returns:     -EINVAL if out of valid range (0..now).
797  *              0 on success.
798  */
799 int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
800 {
801         /*
802          * It doesn't make sense for the resume time to be in the future, as it
803          * would be possible for the next interrupt to be more than a full
804          * period in the future.
805          */
806         if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
807                 return -EINVAL;
808
809         vcpu->arch.count_resume = ns_to_ktime(count_resume);
810         return 0;
811 }
812
813 /**
814  * kvm_mips_count_timeout() - Push timer forward on timeout.
815  * @vcpu:       Virtual CPU.
816  *
817  * Handle an hrtimer event by push the hrtimer forward a period.
818  *
819  * Returns:     The hrtimer_restart value to return to the hrtimer subsystem.
820  */
821 enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
822 {
823         /* Add the Count period to the current expiry time */
824         hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
825                                vcpu->arch.count_period);
826         return HRTIMER_RESTART;
827 }
828
829 enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
830 {
831         struct mips_coproc *cop0 = vcpu->arch.cop0;
832         enum emulation_result er = EMULATE_DONE;
833
834         if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
835                 kvm_clear_c0_guest_status(cop0, ST0_ERL);
836                 vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
837         } else if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
838                 kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
839                           kvm_read_c0_guest_epc(cop0));
840                 kvm_clear_c0_guest_status(cop0, ST0_EXL);
841                 vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
842
843         } else {
844                 kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
845                         vcpu->arch.pc);
846                 er = EMULATE_FAIL;
847         }
848
849         return er;
850 }
851
852 enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
853 {
854         kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
855                   vcpu->arch.pending_exceptions);
856
857         ++vcpu->stat.wait_exits;
858         trace_kvm_exit(vcpu, KVM_TRACE_EXIT_WAIT);
859         if (!vcpu->arch.pending_exceptions) {
860                 vcpu->arch.wait = 1;
861                 kvm_vcpu_block(vcpu);
862
863                 /*
864                  * We we are runnable, then definitely go off to user space to
865                  * check if any I/O interrupts are pending.
866                  */
867                 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
868                         clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
869                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
870                 }
871         }
872
873         return EMULATE_DONE;
874 }
875
876 /*
877  * XXXKYMA: Linux doesn't seem to use TLBR, return EMULATE_FAIL for now so that
878  * we can catch this, if things ever change
879  */
880 enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
881 {
882         struct mips_coproc *cop0 = vcpu->arch.cop0;
883         unsigned long pc = vcpu->arch.pc;
884
885         kvm_err("[%#lx] COP0_TLBR [%ld]\n", pc, kvm_read_c0_guest_index(cop0));
886         return EMULATE_FAIL;
887 }
888
889 /**
890  * kvm_mips_invalidate_guest_tlb() - Indicates a change in guest MMU map.
891  * @vcpu:       VCPU with changed mappings.
892  * @tlb:        TLB entry being removed.
893  *
894  * This is called to indicate a single change in guest MMU mappings, so that we
895  * can arrange TLB flushes on this and other CPUs.
896  */
897 static void kvm_mips_invalidate_guest_tlb(struct kvm_vcpu *vcpu,
898                                           struct kvm_mips_tlb *tlb)
899 {
900         struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm;
901         struct mm_struct *user_mm = &vcpu->arch.guest_user_mm;
902         int cpu, i;
903         bool user;
904
905         /* No need to flush for entries which are already invalid */
906         if (!((tlb->tlb_lo[0] | tlb->tlb_lo[1]) & ENTRYLO_V))
907                 return;
908         /* Don't touch host kernel page tables or TLB mappings */
909         if ((unsigned long)tlb->tlb_hi > 0x7fffffff)
910                 return;
911         /* User address space doesn't need flushing for KSeg2/3 changes */
912         user = tlb->tlb_hi < KVM_GUEST_KSEG0;
913
914         preempt_disable();
915
916         /* Invalidate page table entries */
917         kvm_trap_emul_invalidate_gva(vcpu, tlb->tlb_hi & VPN2_MASK, user);
918
919         /*
920          * Probe the shadow host TLB for the entry being overwritten, if one
921          * matches, invalidate it
922          */
923         kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi, user, true);
924
925         /* Invalidate the whole ASID on other CPUs */
926         cpu = smp_processor_id();
927         for_each_possible_cpu(i) {
928                 if (i == cpu)
929                         continue;
930                 if (user)
931                         cpu_context(i, user_mm) = 0;
932                 cpu_context(i, kern_mm) = 0;
933         }
934
935         preempt_enable();
936 }
937
938 /* Write Guest TLB Entry @ Index */
939 enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
940 {
941         struct mips_coproc *cop0 = vcpu->arch.cop0;
942         int index = kvm_read_c0_guest_index(cop0);
943         struct kvm_mips_tlb *tlb = NULL;
944         unsigned long pc = vcpu->arch.pc;
945
946         if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
947                 kvm_debug("%s: illegal index: %d\n", __func__, index);
948                 kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
949                           pc, index, kvm_read_c0_guest_entryhi(cop0),
950                           kvm_read_c0_guest_entrylo0(cop0),
951                           kvm_read_c0_guest_entrylo1(cop0),
952                           kvm_read_c0_guest_pagemask(cop0));
953                 index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
954         }
955
956         tlb = &vcpu->arch.guest_tlb[index];
957
958         kvm_mips_invalidate_guest_tlb(vcpu, tlb);
959
960         tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
961         tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
962         tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
963         tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
964
965         kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
966                   pc, index, kvm_read_c0_guest_entryhi(cop0),
967                   kvm_read_c0_guest_entrylo0(cop0),
968                   kvm_read_c0_guest_entrylo1(cop0),
969                   kvm_read_c0_guest_pagemask(cop0));
970
971         return EMULATE_DONE;
972 }
973
974 /* Write Guest TLB Entry @ Random Index */
975 enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
976 {
977         struct mips_coproc *cop0 = vcpu->arch.cop0;
978         struct kvm_mips_tlb *tlb = NULL;
979         unsigned long pc = vcpu->arch.pc;
980         int index;
981
982         get_random_bytes(&index, sizeof(index));
983         index &= (KVM_MIPS_GUEST_TLB_SIZE - 1);
984
985         tlb = &vcpu->arch.guest_tlb[index];
986
987         kvm_mips_invalidate_guest_tlb(vcpu, tlb);
988
989         tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
990         tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
991         tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
992         tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
993
994         kvm_debug("[%#lx] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
995                   pc, index, kvm_read_c0_guest_entryhi(cop0),
996                   kvm_read_c0_guest_entrylo0(cop0),
997                   kvm_read_c0_guest_entrylo1(cop0));
998
999         return EMULATE_DONE;
1000 }
1001
1002 enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
1003 {
1004         struct mips_coproc *cop0 = vcpu->arch.cop0;
1005         long entryhi = kvm_read_c0_guest_entryhi(cop0);
1006         unsigned long pc = vcpu->arch.pc;
1007         int index = -1;
1008
1009         index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
1010
1011         kvm_write_c0_guest_index(cop0, index);
1012
1013         kvm_debug("[%#lx] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
1014                   index);
1015
1016         return EMULATE_DONE;
1017 }
1018
1019 /**
1020  * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
1021  * @vcpu:       Virtual CPU.
1022  *
1023  * Finds the mask of bits which are writable in the guest's Config1 CP0
1024  * register, by userland (currently read-only to the guest).
1025  */
1026 unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu)
1027 {
1028         unsigned int mask = 0;
1029
1030         /* Permit FPU to be present if FPU is supported */
1031         if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
1032                 mask |= MIPS_CONF1_FP;
1033
1034         return mask;
1035 }
1036
1037 /**
1038  * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
1039  * @vcpu:       Virtual CPU.
1040  *
1041  * Finds the mask of bits which are writable in the guest's Config3 CP0
1042  * register, by userland (currently read-only to the guest).
1043  */
1044 unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu)
1045 {
1046         /* Config4 and ULRI are optional */
1047         unsigned int mask = MIPS_CONF_M | MIPS_CONF3_ULRI;
1048
1049         /* Permit MSA to be present if MSA is supported */
1050         if (kvm_mips_guest_can_have_msa(&vcpu->arch))
1051                 mask |= MIPS_CONF3_MSA;
1052
1053         return mask;
1054 }
1055
1056 /**
1057  * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
1058  * @vcpu:       Virtual CPU.
1059  *
1060  * Finds the mask of bits which are writable in the guest's Config4 CP0
1061  * register, by userland (currently read-only to the guest).
1062  */
1063 unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu)
1064 {
1065         /* Config5 is optional */
1066         unsigned int mask = MIPS_CONF_M;
1067
1068         /* KScrExist */
1069         mask |= 0xfc << MIPS_CONF4_KSCREXIST_SHIFT;
1070
1071         return mask;
1072 }
1073
1074 /**
1075  * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
1076  * @vcpu:       Virtual CPU.
1077  *
1078  * Finds the mask of bits which are writable in the guest's Config5 CP0
1079  * register, by the guest itself.
1080  */
1081 unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu)
1082 {
1083         unsigned int mask = 0;
1084
1085         /* Permit MSAEn changes if MSA supported and enabled */
1086         if (kvm_mips_guest_has_msa(&vcpu->arch))
1087                 mask |= MIPS_CONF5_MSAEN;
1088
1089         /*
1090          * Permit guest FPU mode changes if FPU is enabled and the relevant
1091          * feature exists according to FIR register.
1092          */
1093         if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1094                 if (cpu_has_fre)
1095                         mask |= MIPS_CONF5_FRE;
1096                 /* We don't support UFR or UFE */
1097         }
1098
1099         return mask;
1100 }
1101
1102 enum emulation_result kvm_mips_emulate_CP0(union mips_instruction inst,
1103                                            u32 *opc, u32 cause,
1104                                            struct kvm_run *run,
1105                                            struct kvm_vcpu *vcpu)
1106 {
1107         struct mips_coproc *cop0 = vcpu->arch.cop0;
1108         struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm;
1109         enum emulation_result er = EMULATE_DONE;
1110         u32 rt, rd, sel;
1111         unsigned long curr_pc;
1112         int cpu, i;
1113
1114         /*
1115          * Update PC and hold onto current PC in case there is
1116          * an error and we want to rollback the PC
1117          */
1118         curr_pc = vcpu->arch.pc;
1119         er = update_pc(vcpu, cause);
1120         if (er == EMULATE_FAIL)
1121                 return er;
1122
1123         if (inst.co_format.co) {
1124                 switch (inst.co_format.func) {
1125                 case tlbr_op:   /*  Read indexed TLB entry  */
1126                         er = kvm_mips_emul_tlbr(vcpu);
1127                         break;
1128                 case tlbwi_op:  /*  Write indexed  */
1129                         er = kvm_mips_emul_tlbwi(vcpu);
1130                         break;
1131                 case tlbwr_op:  /*  Write random  */
1132                         er = kvm_mips_emul_tlbwr(vcpu);
1133                         break;
1134                 case tlbp_op:   /* TLB Probe */
1135                         er = kvm_mips_emul_tlbp(vcpu);
1136                         break;
1137                 case rfe_op:
1138                         kvm_err("!!!COP0_RFE!!!\n");
1139                         break;
1140                 case eret_op:
1141                         er = kvm_mips_emul_eret(vcpu);
1142                         goto dont_update_pc;
1143                 case wait_op:
1144                         er = kvm_mips_emul_wait(vcpu);
1145                         break;
1146                 }
1147         } else {
1148                 rt = inst.c0r_format.rt;
1149                 rd = inst.c0r_format.rd;
1150                 sel = inst.c0r_format.sel;
1151
1152                 switch (inst.c0r_format.rs) {
1153                 case mfc_op:
1154 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1155                         cop0->stat[rd][sel]++;
1156 #endif
1157                         /* Get reg */
1158                         if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1159                                 vcpu->arch.gprs[rt] =
1160                                     (s32)kvm_mips_read_count(vcpu);
1161                         } else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
1162                                 vcpu->arch.gprs[rt] = 0x0;
1163 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1164                                 kvm_mips_trans_mfc0(inst, opc, vcpu);
1165 #endif
1166                         } else {
1167                                 vcpu->arch.gprs[rt] = (s32)cop0->reg[rd][sel];
1168
1169 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1170                                 kvm_mips_trans_mfc0(inst, opc, vcpu);
1171 #endif
1172                         }
1173
1174                         trace_kvm_hwr(vcpu, KVM_TRACE_MFC0,
1175                                       KVM_TRACE_COP0(rd, sel),
1176                                       vcpu->arch.gprs[rt]);
1177                         break;
1178
1179                 case dmfc_op:
1180                         vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1181
1182                         trace_kvm_hwr(vcpu, KVM_TRACE_DMFC0,
1183                                       KVM_TRACE_COP0(rd, sel),
1184                                       vcpu->arch.gprs[rt]);
1185                         break;
1186
1187                 case mtc_op:
1188 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1189                         cop0->stat[rd][sel]++;
1190 #endif
1191                         trace_kvm_hwr(vcpu, KVM_TRACE_MTC0,
1192                                       KVM_TRACE_COP0(rd, sel),
1193                                       vcpu->arch.gprs[rt]);
1194
1195                         if ((rd == MIPS_CP0_TLB_INDEX)
1196                             && (vcpu->arch.gprs[rt] >=
1197                                 KVM_MIPS_GUEST_TLB_SIZE)) {
1198                                 kvm_err("Invalid TLB Index: %ld",
1199                                         vcpu->arch.gprs[rt]);
1200                                 er = EMULATE_FAIL;
1201                                 break;
1202                         }
1203                         if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
1204                                 /*
1205                                  * Preserve core number, and keep the exception
1206                                  * base in guest KSeg0.
1207                                  */
1208                                 kvm_change_c0_guest_ebase(cop0, 0x1ffff000,
1209                                                           vcpu->arch.gprs[rt]);
1210                         } else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
1211                                 u32 nasid =
1212                                         vcpu->arch.gprs[rt] & KVM_ENTRYHI_ASID;
1213                                 if (((kvm_read_c0_guest_entryhi(cop0) &
1214                                       KVM_ENTRYHI_ASID) != nasid)) {
1215                                         trace_kvm_asid_change(vcpu,
1216                                                 kvm_read_c0_guest_entryhi(cop0)
1217                                                         & KVM_ENTRYHI_ASID,
1218                                                 nasid);
1219
1220                                         /*
1221                                          * Flush entries from the GVA page
1222                                          * tables.
1223                                          * Guest user page table will get
1224                                          * flushed lazily on re-entry to guest
1225                                          * user if the guest ASID actually
1226                                          * changes.
1227                                          */
1228                                         kvm_mips_flush_gva_pt(kern_mm->pgd,
1229                                                               KMF_KERN);
1230
1231                                         /*
1232                                          * Regenerate/invalidate kernel MMU
1233                                          * context.
1234                                          * The user MMU context will be
1235                                          * regenerated lazily on re-entry to
1236                                          * guest user if the guest ASID actually
1237                                          * changes.
1238                                          */
1239                                         preempt_disable();
1240                                         cpu = smp_processor_id();
1241                                         get_new_mmu_context(kern_mm, cpu);
1242                                         for_each_possible_cpu(i)
1243                                                 if (i != cpu)
1244                                                         cpu_context(i, kern_mm) = 0;
1245                                         preempt_enable();
1246                                 }
1247                                 kvm_write_c0_guest_entryhi(cop0,
1248                                                            vcpu->arch.gprs[rt]);
1249                         }
1250                         /* Are we writing to COUNT */
1251                         else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1252                                 kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
1253                                 goto done;
1254                         } else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
1255                                 /* If we are writing to COMPARE */
1256                                 /* Clear pending timer interrupt, if any */
1257                                 kvm_mips_write_compare(vcpu,
1258                                                        vcpu->arch.gprs[rt],
1259                                                        true);
1260                         } else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
1261                                 unsigned int old_val, val, change;
1262
1263                                 old_val = kvm_read_c0_guest_status(cop0);
1264                                 val = vcpu->arch.gprs[rt];
1265                                 change = val ^ old_val;
1266
1267                                 /* Make sure that the NMI bit is never set */
1268                                 val &= ~ST0_NMI;
1269
1270                                 /*
1271                                  * Don't allow CU1 or FR to be set unless FPU
1272                                  * capability enabled and exists in guest
1273                                  * configuration.
1274                                  */
1275                                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1276                                         val &= ~(ST0_CU1 | ST0_FR);
1277
1278                                 /*
1279                                  * Also don't allow FR to be set if host doesn't
1280                                  * support it.
1281                                  */
1282                                 if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64))
1283                                         val &= ~ST0_FR;
1284
1285
1286                                 /* Handle changes in FPU mode */
1287                                 preempt_disable();
1288
1289                                 /*
1290                                  * FPU and Vector register state is made
1291                                  * UNPREDICTABLE by a change of FR, so don't
1292                                  * even bother saving it.
1293                                  */
1294                                 if (change & ST0_FR)
1295                                         kvm_drop_fpu(vcpu);
1296
1297                                 /*
1298                                  * If MSA state is already live, it is undefined
1299                                  * how it interacts with FR=0 FPU state, and we
1300                                  * don't want to hit reserved instruction
1301                                  * exceptions trying to save the MSA state later
1302                                  * when CU=1 && FR=1, so play it safe and save
1303                                  * it first.
1304                                  */
1305                                 if (change & ST0_CU1 && !(val & ST0_FR) &&
1306                                     vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1307                                         kvm_lose_fpu(vcpu);
1308
1309                                 /*
1310                                  * Propagate CU1 (FPU enable) changes
1311                                  * immediately if the FPU context is already
1312                                  * loaded. When disabling we leave the context
1313                                  * loaded so it can be quickly enabled again in
1314                                  * the near future.
1315                                  */
1316                                 if (change & ST0_CU1 &&
1317                                     vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1318                                         change_c0_status(ST0_CU1, val);
1319
1320                                 preempt_enable();
1321
1322                                 kvm_write_c0_guest_status(cop0, val);
1323
1324 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1325                                 /*
1326                                  * If FPU present, we need CU1/FR bits to take
1327                                  * effect fairly soon.
1328                                  */
1329                                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1330                                         kvm_mips_trans_mtc0(inst, opc, vcpu);
1331 #endif
1332                         } else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1333                                 unsigned int old_val, val, change, wrmask;
1334
1335                                 old_val = kvm_read_c0_guest_config5(cop0);
1336                                 val = vcpu->arch.gprs[rt];
1337
1338                                 /* Only a few bits are writable in Config5 */
1339                                 wrmask = kvm_mips_config5_wrmask(vcpu);
1340                                 change = (val ^ old_val) & wrmask;
1341                                 val = old_val ^ change;
1342
1343
1344                                 /* Handle changes in FPU/MSA modes */
1345                                 preempt_disable();
1346
1347                                 /*
1348                                  * Propagate FRE changes immediately if the FPU
1349                                  * context is already loaded.
1350                                  */
1351                                 if (change & MIPS_CONF5_FRE &&
1352                                     vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1353                                         change_c0_config5(MIPS_CONF5_FRE, val);
1354
1355                                 /*
1356                                  * Propagate MSAEn changes immediately if the
1357                                  * MSA context is already loaded. When disabling
1358                                  * we leave the context loaded so it can be
1359                                  * quickly enabled again in the near future.
1360                                  */
1361                                 if (change & MIPS_CONF5_MSAEN &&
1362                                     vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1363                                         change_c0_config5(MIPS_CONF5_MSAEN,
1364                                                           val);
1365
1366                                 preempt_enable();
1367
1368                                 kvm_write_c0_guest_config5(cop0, val);
1369                         } else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1370                                 u32 old_cause, new_cause;
1371
1372                                 old_cause = kvm_read_c0_guest_cause(cop0);
1373                                 new_cause = vcpu->arch.gprs[rt];
1374                                 /* Update R/W bits */
1375                                 kvm_change_c0_guest_cause(cop0, 0x08800300,
1376                                                           new_cause);
1377                                 /* DC bit enabling/disabling timer? */
1378                                 if ((old_cause ^ new_cause) & CAUSEF_DC) {
1379                                         if (new_cause & CAUSEF_DC)
1380                                                 kvm_mips_count_disable_cause(vcpu);
1381                                         else
1382                                                 kvm_mips_count_enable_cause(vcpu);
1383                                 }
1384                         } else if ((rd == MIPS_CP0_HWRENA) && (sel == 0)) {
1385                                 u32 mask = MIPS_HWRENA_CPUNUM |
1386                                            MIPS_HWRENA_SYNCISTEP |
1387                                            MIPS_HWRENA_CC |
1388                                            MIPS_HWRENA_CCRES;
1389
1390                                 if (kvm_read_c0_guest_config3(cop0) &
1391                                     MIPS_CONF3_ULRI)
1392                                         mask |= MIPS_HWRENA_ULR;
1393                                 cop0->reg[rd][sel] = vcpu->arch.gprs[rt] & mask;
1394                         } else {
1395                                 cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
1396 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1397                                 kvm_mips_trans_mtc0(inst, opc, vcpu);
1398 #endif
1399                         }
1400                         break;
1401
1402                 case dmtc_op:
1403                         kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
1404                                 vcpu->arch.pc, rt, rd, sel);
1405                         trace_kvm_hwr(vcpu, KVM_TRACE_DMTC0,
1406                                       KVM_TRACE_COP0(rd, sel),
1407                                       vcpu->arch.gprs[rt]);
1408                         er = EMULATE_FAIL;
1409                         break;
1410
1411                 case mfmc0_op:
1412 #ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
1413                         cop0->stat[MIPS_CP0_STATUS][0]++;
1414 #endif
1415                         if (rt != 0)
1416                                 vcpu->arch.gprs[rt] =
1417                                     kvm_read_c0_guest_status(cop0);
1418                         /* EI */
1419                         if (inst.mfmc0_format.sc) {
1420                                 kvm_debug("[%#lx] mfmc0_op: EI\n",
1421                                           vcpu->arch.pc);
1422                                 kvm_set_c0_guest_status(cop0, ST0_IE);
1423                         } else {
1424                                 kvm_debug("[%#lx] mfmc0_op: DI\n",
1425                                           vcpu->arch.pc);
1426                                 kvm_clear_c0_guest_status(cop0, ST0_IE);
1427                         }
1428
1429                         break;
1430
1431                 case wrpgpr_op:
1432                         {
1433                                 u32 css = cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
1434                                 u32 pss =
1435                                     (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
1436                                 /*
1437                                  * We don't support any shadow register sets, so
1438                                  * SRSCtl[PSS] == SRSCtl[CSS] = 0
1439                                  */
1440                                 if (css || pss) {
1441                                         er = EMULATE_FAIL;
1442                                         break;
1443                                 }
1444                                 kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
1445                                           vcpu->arch.gprs[rt]);
1446                                 vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
1447                         }
1448                         break;
1449                 default:
1450                         kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
1451                                 vcpu->arch.pc, inst.c0r_format.rs);
1452                         er = EMULATE_FAIL;
1453                         break;
1454                 }
1455         }
1456
1457 done:
1458         /* Rollback PC only if emulation was unsuccessful */
1459         if (er == EMULATE_FAIL)
1460                 vcpu->arch.pc = curr_pc;
1461
1462 dont_update_pc:
1463         /*
1464          * This is for special instructions whose emulation
1465          * updates the PC, so do not overwrite the PC under
1466          * any circumstances
1467          */
1468
1469         return er;
1470 }
1471
1472 enum emulation_result kvm_mips_emulate_store(union mips_instruction inst,
1473                                              u32 cause,
1474                                              struct kvm_run *run,
1475                                              struct kvm_vcpu *vcpu)
1476 {
1477         enum emulation_result er = EMULATE_DO_MMIO;
1478         u32 rt;
1479         u32 bytes;
1480         void *data = run->mmio.data;
1481         unsigned long curr_pc;
1482
1483         /*
1484          * Update PC and hold onto current PC in case there is
1485          * an error and we want to rollback the PC
1486          */
1487         curr_pc = vcpu->arch.pc;
1488         er = update_pc(vcpu, cause);
1489         if (er == EMULATE_FAIL)
1490                 return er;
1491
1492         rt = inst.i_format.rt;
1493
1494         switch (inst.i_format.opcode) {
1495         case sb_op:
1496                 bytes = 1;
1497                 if (bytes > sizeof(run->mmio.data)) {
1498                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1499                                run->mmio.len);
1500                 }
1501                 run->mmio.phys_addr =
1502                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1503                                                    host_cp0_badvaddr);
1504                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1505                         er = EMULATE_FAIL;
1506                         break;
1507                 }
1508                 run->mmio.len = bytes;
1509                 run->mmio.is_write = 1;
1510                 vcpu->mmio_needed = 1;
1511                 vcpu->mmio_is_write = 1;
1512                 *(u8 *) data = vcpu->arch.gprs[rt];
1513                 kvm_debug("OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1514                           vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt],
1515                           *(u8 *) data);
1516
1517                 break;
1518
1519         case sw_op:
1520                 bytes = 4;
1521                 if (bytes > sizeof(run->mmio.data)) {
1522                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1523                                run->mmio.len);
1524                 }
1525                 run->mmio.phys_addr =
1526                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1527                                                    host_cp0_badvaddr);
1528                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1529                         er = EMULATE_FAIL;
1530                         break;
1531                 }
1532
1533                 run->mmio.len = bytes;
1534                 run->mmio.is_write = 1;
1535                 vcpu->mmio_needed = 1;
1536                 vcpu->mmio_is_write = 1;
1537                 *(u32 *) data = vcpu->arch.gprs[rt];
1538
1539                 kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1540                           vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1541                           vcpu->arch.gprs[rt], *(u32 *) data);
1542                 break;
1543
1544         case sh_op:
1545                 bytes = 2;
1546                 if (bytes > sizeof(run->mmio.data)) {
1547                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1548                                run->mmio.len);
1549                 }
1550                 run->mmio.phys_addr =
1551                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1552                                                    host_cp0_badvaddr);
1553                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1554                         er = EMULATE_FAIL;
1555                         break;
1556                 }
1557
1558                 run->mmio.len = bytes;
1559                 run->mmio.is_write = 1;
1560                 vcpu->mmio_needed = 1;
1561                 vcpu->mmio_is_write = 1;
1562                 *(u16 *) data = vcpu->arch.gprs[rt];
1563
1564                 kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1565                           vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1566                           vcpu->arch.gprs[rt], *(u32 *) data);
1567                 break;
1568
1569         default:
1570                 kvm_err("Store not yet supported (inst=0x%08x)\n",
1571                         inst.word);
1572                 er = EMULATE_FAIL;
1573                 break;
1574         }
1575
1576         /* Rollback PC if emulation was unsuccessful */
1577         if (er == EMULATE_FAIL)
1578                 vcpu->arch.pc = curr_pc;
1579
1580         return er;
1581 }
1582
1583 enum emulation_result kvm_mips_emulate_load(union mips_instruction inst,
1584                                             u32 cause, struct kvm_run *run,
1585                                             struct kvm_vcpu *vcpu)
1586 {
1587         enum emulation_result er = EMULATE_DO_MMIO;
1588         unsigned long curr_pc;
1589         u32 op, rt;
1590         u32 bytes;
1591
1592         rt = inst.i_format.rt;
1593         op = inst.i_format.opcode;
1594
1595         /*
1596          * Find the resume PC now while we have safe and easy access to the
1597          * prior branch instruction, and save it for
1598          * kvm_mips_complete_mmio_load() to restore later.
1599          */
1600         curr_pc = vcpu->arch.pc;
1601         er = update_pc(vcpu, cause);
1602         if (er == EMULATE_FAIL)
1603                 return er;
1604         vcpu->arch.io_pc = vcpu->arch.pc;
1605         vcpu->arch.pc = curr_pc;
1606
1607         vcpu->arch.io_gpr = rt;
1608
1609         switch (op) {
1610         case lw_op:
1611                 bytes = 4;
1612                 if (bytes > sizeof(run->mmio.data)) {
1613                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1614                                run->mmio.len);
1615                         er = EMULATE_FAIL;
1616                         break;
1617                 }
1618                 run->mmio.phys_addr =
1619                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1620                                                    host_cp0_badvaddr);
1621                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1622                         er = EMULATE_FAIL;
1623                         break;
1624                 }
1625
1626                 run->mmio.len = bytes;
1627                 run->mmio.is_write = 0;
1628                 vcpu->mmio_needed = 1;
1629                 vcpu->mmio_is_write = 0;
1630                 break;
1631
1632         case lh_op:
1633         case lhu_op:
1634                 bytes = 2;
1635                 if (bytes > sizeof(run->mmio.data)) {
1636                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1637                                run->mmio.len);
1638                         er = EMULATE_FAIL;
1639                         break;
1640                 }
1641                 run->mmio.phys_addr =
1642                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1643                                                    host_cp0_badvaddr);
1644                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1645                         er = EMULATE_FAIL;
1646                         break;
1647                 }
1648
1649                 run->mmio.len = bytes;
1650                 run->mmio.is_write = 0;
1651                 vcpu->mmio_needed = 1;
1652                 vcpu->mmio_is_write = 0;
1653
1654                 if (op == lh_op)
1655                         vcpu->mmio_needed = 2;
1656                 else
1657                         vcpu->mmio_needed = 1;
1658
1659                 break;
1660
1661         case lbu_op:
1662         case lb_op:
1663                 bytes = 1;
1664                 if (bytes > sizeof(run->mmio.data)) {
1665                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1666                                run->mmio.len);
1667                         er = EMULATE_FAIL;
1668                         break;
1669                 }
1670                 run->mmio.phys_addr =
1671                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1672                                                    host_cp0_badvaddr);
1673                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1674                         er = EMULATE_FAIL;
1675                         break;
1676                 }
1677
1678                 run->mmio.len = bytes;
1679                 run->mmio.is_write = 0;
1680                 vcpu->mmio_is_write = 0;
1681
1682                 if (op == lb_op)
1683                         vcpu->mmio_needed = 2;
1684                 else
1685                         vcpu->mmio_needed = 1;
1686
1687                 break;
1688
1689         default:
1690                 kvm_err("Load not yet supported (inst=0x%08x)\n",
1691                         inst.word);
1692                 er = EMULATE_FAIL;
1693                 break;
1694         }
1695
1696         return er;
1697 }
1698
1699 static enum emulation_result kvm_mips_guest_cache_op(int (*fn)(unsigned long),
1700                                                      unsigned long curr_pc,
1701                                                      unsigned long addr,
1702                                                      struct kvm_run *run,
1703                                                      struct kvm_vcpu *vcpu,
1704                                                      u32 cause)
1705 {
1706         int err;
1707
1708         for (;;) {
1709                 /* Carefully attempt the cache operation */
1710                 kvm_trap_emul_gva_lockless_begin(vcpu);
1711                 err = fn(addr);
1712                 kvm_trap_emul_gva_lockless_end(vcpu);
1713
1714                 if (likely(!err))
1715                         return EMULATE_DONE;
1716
1717                 /*
1718                  * Try to handle the fault and retry, maybe we just raced with a
1719                  * GVA invalidation.
1720                  */
1721                 switch (kvm_trap_emul_gva_fault(vcpu, addr, false)) {
1722                 case KVM_MIPS_GVA:
1723                 case KVM_MIPS_GPA:
1724                         /* bad virtual or physical address */
1725                         return EMULATE_FAIL;
1726                 case KVM_MIPS_TLB:
1727                         /* no matching guest TLB */
1728                         vcpu->arch.host_cp0_badvaddr = addr;
1729                         vcpu->arch.pc = curr_pc;
1730                         kvm_mips_emulate_tlbmiss_ld(cause, NULL, run, vcpu);
1731                         return EMULATE_EXCEPT;
1732                 case KVM_MIPS_TLBINV:
1733                         /* invalid matching guest TLB */
1734                         vcpu->arch.host_cp0_badvaddr = addr;
1735                         vcpu->arch.pc = curr_pc;
1736                         kvm_mips_emulate_tlbinv_ld(cause, NULL, run, vcpu);
1737                         return EMULATE_EXCEPT;
1738                 default:
1739                         break;
1740                 };
1741         }
1742 }
1743
1744 enum emulation_result kvm_mips_emulate_cache(union mips_instruction inst,
1745                                              u32 *opc, u32 cause,
1746                                              struct kvm_run *run,
1747                                              struct kvm_vcpu *vcpu)
1748 {
1749         enum emulation_result er = EMULATE_DONE;
1750         u32 cache, op_inst, op, base;
1751         s16 offset;
1752         struct kvm_vcpu_arch *arch = &vcpu->arch;
1753         unsigned long va;
1754         unsigned long curr_pc;
1755
1756         /*
1757          * Update PC and hold onto current PC in case there is
1758          * an error and we want to rollback the PC
1759          */
1760         curr_pc = vcpu->arch.pc;
1761         er = update_pc(vcpu, cause);
1762         if (er == EMULATE_FAIL)
1763                 return er;
1764
1765         base = inst.i_format.rs;
1766         op_inst = inst.i_format.rt;
1767         if (cpu_has_mips_r6)
1768                 offset = inst.spec3_format.simmediate;
1769         else
1770                 offset = inst.i_format.simmediate;
1771         cache = op_inst & CacheOp_Cache;
1772         op = op_inst & CacheOp_Op;
1773
1774         va = arch->gprs[base] + offset;
1775
1776         kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1777                   cache, op, base, arch->gprs[base], offset);
1778
1779         /*
1780          * Treat INDEX_INV as a nop, basically issued by Linux on startup to
1781          * invalidate the caches entirely by stepping through all the
1782          * ways/indexes
1783          */
1784         if (op == Index_Writeback_Inv) {
1785                 kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1786                           vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
1787                           arch->gprs[base], offset);
1788
1789                 if (cache == Cache_D)
1790                         r4k_blast_dcache();
1791                 else if (cache == Cache_I)
1792                         r4k_blast_icache();
1793                 else {
1794                         kvm_err("%s: unsupported CACHE INDEX operation\n",
1795                                 __func__);
1796                         return EMULATE_FAIL;
1797                 }
1798
1799 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1800                 kvm_mips_trans_cache_index(inst, opc, vcpu);
1801 #endif
1802                 goto done;
1803         }
1804
1805         /* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
1806         if (op_inst == Hit_Writeback_Inv_D || op_inst == Hit_Invalidate_D) {
1807                 /*
1808                  * Perform the dcache part of icache synchronisation on the
1809                  * guest's behalf.
1810                  */
1811                 er = kvm_mips_guest_cache_op(protected_writeback_dcache_line,
1812                                              curr_pc, va, run, vcpu, cause);
1813                 if (er != EMULATE_DONE)
1814                         goto done;
1815 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1816                 /*
1817                  * Replace the CACHE instruction, with a SYNCI, not the same,
1818                  * but avoids a trap
1819                  */
1820                 kvm_mips_trans_cache_va(inst, opc, vcpu);
1821 #endif
1822         } else if (op_inst == Hit_Invalidate_I) {
1823                 /* Perform the icache synchronisation on the guest's behalf */
1824                 er = kvm_mips_guest_cache_op(protected_writeback_dcache_line,
1825                                              curr_pc, va, run, vcpu, cause);
1826                 if (er != EMULATE_DONE)
1827                         goto done;
1828                 er = kvm_mips_guest_cache_op(protected_flush_icache_line,
1829                                              curr_pc, va, run, vcpu, cause);
1830                 if (er != EMULATE_DONE)
1831                         goto done;
1832
1833 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1834                 /* Replace the CACHE instruction, with a SYNCI */
1835                 kvm_mips_trans_cache_va(inst, opc, vcpu);
1836 #endif
1837         } else {
1838                 kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1839                         cache, op, base, arch->gprs[base], offset);
1840                 er = EMULATE_FAIL;
1841         }
1842
1843 done:
1844         /* Rollback PC only if emulation was unsuccessful */
1845         if (er == EMULATE_FAIL)
1846                 vcpu->arch.pc = curr_pc;
1847         /* Guest exception needs guest to resume */
1848         if (er == EMULATE_EXCEPT)
1849                 er = EMULATE_DONE;
1850
1851         return er;
1852 }
1853
1854 enum emulation_result kvm_mips_emulate_inst(u32 cause, u32 *opc,
1855                                             struct kvm_run *run,
1856                                             struct kvm_vcpu *vcpu)
1857 {
1858         union mips_instruction inst;
1859         enum emulation_result er = EMULATE_DONE;
1860         int err;
1861
1862         /* Fetch the instruction. */
1863         if (cause & CAUSEF_BD)
1864                 opc += 1;
1865         err = kvm_get_badinstr(opc, vcpu, &inst.word);
1866         if (err)
1867                 return EMULATE_FAIL;
1868
1869         switch (inst.r_format.opcode) {
1870         case cop0_op:
1871                 er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu);
1872                 break;
1873         case sb_op:
1874         case sh_op:
1875         case sw_op:
1876                 er = kvm_mips_emulate_store(inst, cause, run, vcpu);
1877                 break;
1878         case lb_op:
1879         case lbu_op:
1880         case lhu_op:
1881         case lh_op:
1882         case lw_op:
1883                 er = kvm_mips_emulate_load(inst, cause, run, vcpu);
1884                 break;
1885
1886 #ifndef CONFIG_CPU_MIPSR6
1887         case cache_op:
1888                 ++vcpu->stat.cache_exits;
1889                 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
1890                 er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu);
1891                 break;
1892 #else
1893         case spec3_op:
1894                 switch (inst.spec3_format.func) {
1895                 case cache6_op:
1896                         ++vcpu->stat.cache_exits;
1897                         trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
1898                         er = kvm_mips_emulate_cache(inst, opc, cause, run,
1899                                                     vcpu);
1900                         break;
1901                 default:
1902                         goto unknown;
1903                 };
1904                 break;
1905 unknown:
1906 #endif
1907
1908         default:
1909                 kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
1910                         inst.word);
1911                 kvm_arch_vcpu_dump_regs(vcpu);
1912                 er = EMULATE_FAIL;
1913                 break;
1914         }
1915
1916         return er;
1917 }
1918
1919 /**
1920  * kvm_mips_guest_exception_base() - Find guest exception vector base address.
1921  *
1922  * Returns:     The base address of the current guest exception vector, taking
1923  *              both Guest.CP0_Status.BEV and Guest.CP0_EBase into account.
1924  */
1925 long kvm_mips_guest_exception_base(struct kvm_vcpu *vcpu)
1926 {
1927         struct mips_coproc *cop0 = vcpu->arch.cop0;
1928
1929         if (kvm_read_c0_guest_status(cop0) & ST0_BEV)
1930                 return KVM_GUEST_CKSEG1ADDR(0x1fc00200);
1931         else
1932                 return kvm_read_c0_guest_ebase(cop0) & MIPS_EBASE_BASE;
1933 }
1934
1935 enum emulation_result kvm_mips_emulate_syscall(u32 cause,
1936                                                u32 *opc,
1937                                                struct kvm_run *run,
1938                                                struct kvm_vcpu *vcpu)
1939 {
1940         struct mips_coproc *cop0 = vcpu->arch.cop0;
1941         struct kvm_vcpu_arch *arch = &vcpu->arch;
1942         enum emulation_result er = EMULATE_DONE;
1943
1944         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1945                 /* save old pc */
1946                 kvm_write_c0_guest_epc(cop0, arch->pc);
1947                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1948
1949                 if (cause & CAUSEF_BD)
1950                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1951                 else
1952                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1953
1954                 kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
1955
1956                 kvm_change_c0_guest_cause(cop0, (0xff),
1957                                           (EXCCODE_SYS << CAUSEB_EXCCODE));
1958
1959                 /* Set PC to the exception entry point */
1960                 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
1961
1962         } else {
1963                 kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
1964                 er = EMULATE_FAIL;
1965         }
1966
1967         return er;
1968 }
1969
1970 enum emulation_result kvm_mips_emulate_tlbmiss_ld(u32 cause,
1971                                                   u32 *opc,
1972                                                   struct kvm_run *run,
1973                                                   struct kvm_vcpu *vcpu)
1974 {
1975         struct mips_coproc *cop0 = vcpu->arch.cop0;
1976         struct kvm_vcpu_arch *arch = &vcpu->arch;
1977         unsigned long entryhi = (vcpu->arch.  host_cp0_badvaddr & VPN2_MASK) |
1978                         (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1979
1980         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1981                 /* save old pc */
1982                 kvm_write_c0_guest_epc(cop0, arch->pc);
1983                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1984
1985                 if (cause & CAUSEF_BD)
1986                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1987                 else
1988                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1989
1990                 kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
1991                           arch->pc);
1992
1993                 /* set pc to the exception entry point */
1994                 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x0;
1995
1996         } else {
1997                 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1998                           arch->pc);
1999
2000                 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2001         }
2002
2003         kvm_change_c0_guest_cause(cop0, (0xff),
2004                                   (EXCCODE_TLBL << CAUSEB_EXCCODE));
2005
2006         /* setup badvaddr, context and entryhi registers for the guest */
2007         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2008         /* XXXKYMA: is the context register used by linux??? */
2009         kvm_write_c0_guest_entryhi(cop0, entryhi);
2010
2011         return EMULATE_DONE;
2012 }
2013
2014 enum emulation_result kvm_mips_emulate_tlbinv_ld(u32 cause,
2015                                                  u32 *opc,
2016                                                  struct kvm_run *run,
2017                                                  struct kvm_vcpu *vcpu)
2018 {
2019         struct mips_coproc *cop0 = vcpu->arch.cop0;
2020         struct kvm_vcpu_arch *arch = &vcpu->arch;
2021         unsigned long entryhi =
2022                 (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2023                 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2024
2025         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2026                 /* save old pc */
2027                 kvm_write_c0_guest_epc(cop0, arch->pc);
2028                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2029
2030                 if (cause & CAUSEF_BD)
2031                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2032                 else
2033                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2034
2035                 kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
2036                           arch->pc);
2037         } else {
2038                 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
2039                           arch->pc);
2040         }
2041
2042         /* set pc to the exception entry point */
2043         arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2044
2045         kvm_change_c0_guest_cause(cop0, (0xff),
2046                                   (EXCCODE_TLBL << CAUSEB_EXCCODE));
2047
2048         /* setup badvaddr, context and entryhi registers for the guest */
2049         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2050         /* XXXKYMA: is the context register used by linux??? */
2051         kvm_write_c0_guest_entryhi(cop0, entryhi);
2052
2053         return EMULATE_DONE;
2054 }
2055
2056 enum emulation_result kvm_mips_emulate_tlbmiss_st(u32 cause,
2057                                                   u32 *opc,
2058                                                   struct kvm_run *run,
2059                                                   struct kvm_vcpu *vcpu)
2060 {
2061         struct mips_coproc *cop0 = vcpu->arch.cop0;
2062         struct kvm_vcpu_arch *arch = &vcpu->arch;
2063         unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2064                         (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2065
2066         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2067                 /* save old pc */
2068                 kvm_write_c0_guest_epc(cop0, arch->pc);
2069                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2070
2071                 if (cause & CAUSEF_BD)
2072                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2073                 else
2074                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2075
2076                 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
2077                           arch->pc);
2078
2079                 /* Set PC to the exception entry point */
2080                 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x0;
2081         } else {
2082                 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
2083                           arch->pc);
2084                 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2085         }
2086
2087         kvm_change_c0_guest_cause(cop0, (0xff),
2088                                   (EXCCODE_TLBS << CAUSEB_EXCCODE));
2089
2090         /* setup badvaddr, context and entryhi registers for the guest */
2091         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2092         /* XXXKYMA: is the context register used by linux??? */
2093         kvm_write_c0_guest_entryhi(cop0, entryhi);
2094
2095         return EMULATE_DONE;
2096 }
2097
2098 enum emulation_result kvm_mips_emulate_tlbinv_st(u32 cause,
2099                                                  u32 *opc,
2100                                                  struct kvm_run *run,
2101                                                  struct kvm_vcpu *vcpu)
2102 {
2103         struct mips_coproc *cop0 = vcpu->arch.cop0;
2104         struct kvm_vcpu_arch *arch = &vcpu->arch;
2105         unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2106                 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2107
2108         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2109                 /* save old pc */
2110                 kvm_write_c0_guest_epc(cop0, arch->pc);
2111                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2112
2113                 if (cause & CAUSEF_BD)
2114                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2115                 else
2116                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2117
2118                 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
2119                           arch->pc);
2120         } else {
2121                 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
2122                           arch->pc);
2123         }
2124
2125         /* Set PC to the exception entry point */
2126         arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2127
2128         kvm_change_c0_guest_cause(cop0, (0xff),
2129                                   (EXCCODE_TLBS << CAUSEB_EXCCODE));
2130
2131         /* setup badvaddr, context and entryhi registers for the guest */
2132         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2133         /* XXXKYMA: is the context register used by linux??? */
2134         kvm_write_c0_guest_entryhi(cop0, entryhi);
2135
2136         return EMULATE_DONE;
2137 }
2138
2139 enum emulation_result kvm_mips_emulate_tlbmod(u32 cause,
2140                                               u32 *opc,
2141                                               struct kvm_run *run,
2142                                               struct kvm_vcpu *vcpu)
2143 {
2144         struct mips_coproc *cop0 = vcpu->arch.cop0;
2145         unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2146                         (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2147         struct kvm_vcpu_arch *arch = &vcpu->arch;
2148
2149         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2150                 /* save old pc */
2151                 kvm_write_c0_guest_epc(cop0, arch->pc);
2152                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2153
2154                 if (cause & CAUSEF_BD)
2155                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2156                 else
2157                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2158
2159                 kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
2160                           arch->pc);
2161         } else {
2162                 kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
2163                           arch->pc);
2164         }
2165
2166         arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2167
2168         kvm_change_c0_guest_cause(cop0, (0xff),
2169                                   (EXCCODE_MOD << CAUSEB_EXCCODE));
2170
2171         /* setup badvaddr, context and entryhi registers for the guest */
2172         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2173         /* XXXKYMA: is the context register used by linux??? */
2174         kvm_write_c0_guest_entryhi(cop0, entryhi);
2175
2176         return EMULATE_DONE;
2177 }
2178
2179 enum emulation_result kvm_mips_emulate_fpu_exc(u32 cause,
2180                                                u32 *opc,
2181                                                struct kvm_run *run,
2182                                                struct kvm_vcpu *vcpu)
2183 {
2184         struct mips_coproc *cop0 = vcpu->arch.cop0;
2185         struct kvm_vcpu_arch *arch = &vcpu->arch;
2186
2187         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2188                 /* save old pc */
2189                 kvm_write_c0_guest_epc(cop0, arch->pc);
2190                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2191
2192                 if (cause & CAUSEF_BD)
2193                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2194                 else
2195                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2196
2197         }
2198
2199         arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2200
2201         kvm_change_c0_guest_cause(cop0, (0xff),
2202                                   (EXCCODE_CPU << CAUSEB_EXCCODE));
2203         kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
2204
2205         return EMULATE_DONE;
2206 }
2207
2208 enum emulation_result kvm_mips_emulate_ri_exc(u32 cause,
2209                                               u32 *opc,
2210                                               struct kvm_run *run,
2211                                               struct kvm_vcpu *vcpu)
2212 {
2213         struct mips_coproc *cop0 = vcpu->arch.cop0;
2214         struct kvm_vcpu_arch *arch = &vcpu->arch;
2215         enum emulation_result er = EMULATE_DONE;
2216
2217         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2218                 /* save old pc */
2219                 kvm_write_c0_guest_epc(cop0, arch->pc);
2220                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2221
2222                 if (cause & CAUSEF_BD)
2223                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2224                 else
2225                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2226
2227                 kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
2228
2229                 kvm_change_c0_guest_cause(cop0, (0xff),
2230                                           (EXCCODE_RI << CAUSEB_EXCCODE));
2231
2232                 /* Set PC to the exception entry point */
2233                 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2234
2235         } else {
2236                 kvm_err("Trying to deliver RI when EXL is already set\n");
2237                 er = EMULATE_FAIL;
2238         }
2239
2240         return er;
2241 }
2242
2243 enum emulation_result kvm_mips_emulate_bp_exc(u32 cause,
2244                                               u32 *opc,
2245                                               struct kvm_run *run,
2246                                               struct kvm_vcpu *vcpu)
2247 {
2248         struct mips_coproc *cop0 = vcpu->arch.cop0;
2249         struct kvm_vcpu_arch *arch = &vcpu->arch;
2250         enum emulation_result er = EMULATE_DONE;
2251
2252         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2253                 /* save old pc */
2254                 kvm_write_c0_guest_epc(cop0, arch->pc);
2255                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2256
2257                 if (cause & CAUSEF_BD)
2258                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2259                 else
2260                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2261
2262                 kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
2263
2264                 kvm_change_c0_guest_cause(cop0, (0xff),
2265                                           (EXCCODE_BP << CAUSEB_EXCCODE));
2266
2267                 /* Set PC to the exception entry point */
2268                 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2269
2270         } else {
2271                 kvm_err("Trying to deliver BP when EXL is already set\n");
2272                 er = EMULATE_FAIL;
2273         }
2274
2275         return er;
2276 }
2277
2278 enum emulation_result kvm_mips_emulate_trap_exc(u32 cause,
2279                                                 u32 *opc,
2280                                                 struct kvm_run *run,
2281                                                 struct kvm_vcpu *vcpu)
2282 {
2283         struct mips_coproc *cop0 = vcpu->arch.cop0;
2284         struct kvm_vcpu_arch *arch = &vcpu->arch;
2285         enum emulation_result er = EMULATE_DONE;
2286
2287         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2288                 /* save old pc */
2289                 kvm_write_c0_guest_epc(cop0, arch->pc);
2290                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2291
2292                 if (cause & CAUSEF_BD)
2293                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2294                 else
2295                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2296
2297                 kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc);
2298
2299                 kvm_change_c0_guest_cause(cop0, (0xff),
2300                                           (EXCCODE_TR << CAUSEB_EXCCODE));
2301
2302                 /* Set PC to the exception entry point */
2303                 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2304
2305         } else {
2306                 kvm_err("Trying to deliver TRAP when EXL is already set\n");
2307                 er = EMULATE_FAIL;
2308         }
2309
2310         return er;
2311 }
2312
2313 enum emulation_result kvm_mips_emulate_msafpe_exc(u32 cause,
2314                                                   u32 *opc,
2315                                                   struct kvm_run *run,
2316                                                   struct kvm_vcpu *vcpu)
2317 {
2318         struct mips_coproc *cop0 = vcpu->arch.cop0;
2319         struct kvm_vcpu_arch *arch = &vcpu->arch;
2320         enum emulation_result er = EMULATE_DONE;
2321
2322         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2323                 /* save old pc */
2324                 kvm_write_c0_guest_epc(cop0, arch->pc);
2325                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2326
2327                 if (cause & CAUSEF_BD)
2328                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2329                 else
2330                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2331
2332                 kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc);
2333
2334                 kvm_change_c0_guest_cause(cop0, (0xff),
2335                                           (EXCCODE_MSAFPE << CAUSEB_EXCCODE));
2336
2337                 /* Set PC to the exception entry point */
2338                 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2339
2340         } else {
2341                 kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
2342                 er = EMULATE_FAIL;
2343         }
2344
2345         return er;
2346 }
2347
2348 enum emulation_result kvm_mips_emulate_fpe_exc(u32 cause,
2349                                                u32 *opc,
2350                                                struct kvm_run *run,
2351                                                struct kvm_vcpu *vcpu)
2352 {
2353         struct mips_coproc *cop0 = vcpu->arch.cop0;
2354         struct kvm_vcpu_arch *arch = &vcpu->arch;
2355         enum emulation_result er = EMULATE_DONE;
2356
2357         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2358                 /* save old pc */
2359                 kvm_write_c0_guest_epc(cop0, arch->pc);
2360                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2361
2362                 if (cause & CAUSEF_BD)
2363                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2364                 else
2365                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2366
2367                 kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc);
2368
2369                 kvm_change_c0_guest_cause(cop0, (0xff),
2370                                           (EXCCODE_FPE << CAUSEB_EXCCODE));
2371
2372                 /* Set PC to the exception entry point */
2373                 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2374
2375         } else {
2376                 kvm_err("Trying to deliver FPE when EXL is already set\n");
2377                 er = EMULATE_FAIL;
2378         }
2379
2380         return er;
2381 }
2382
2383 enum emulation_result kvm_mips_emulate_msadis_exc(u32 cause,
2384                                                   u32 *opc,
2385                                                   struct kvm_run *run,
2386                                                   struct kvm_vcpu *vcpu)
2387 {
2388         struct mips_coproc *cop0 = vcpu->arch.cop0;
2389         struct kvm_vcpu_arch *arch = &vcpu->arch;
2390         enum emulation_result er = EMULATE_DONE;
2391
2392         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2393                 /* save old pc */
2394                 kvm_write_c0_guest_epc(cop0, arch->pc);
2395                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2396
2397                 if (cause & CAUSEF_BD)
2398                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2399                 else
2400                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2401
2402                 kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc);
2403
2404                 kvm_change_c0_guest_cause(cop0, (0xff),
2405                                           (EXCCODE_MSADIS << CAUSEB_EXCCODE));
2406
2407                 /* Set PC to the exception entry point */
2408                 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2409
2410         } else {
2411                 kvm_err("Trying to deliver MSADIS when EXL is already set\n");
2412                 er = EMULATE_FAIL;
2413         }
2414
2415         return er;
2416 }
2417
2418 enum emulation_result kvm_mips_handle_ri(u32 cause, u32 *opc,
2419                                          struct kvm_run *run,
2420                                          struct kvm_vcpu *vcpu)
2421 {
2422         struct mips_coproc *cop0 = vcpu->arch.cop0;
2423         struct kvm_vcpu_arch *arch = &vcpu->arch;
2424         enum emulation_result er = EMULATE_DONE;
2425         unsigned long curr_pc;
2426         union mips_instruction inst;
2427         int err;
2428
2429         /*
2430          * Update PC and hold onto current PC in case there is
2431          * an error and we want to rollback the PC
2432          */
2433         curr_pc = vcpu->arch.pc;
2434         er = update_pc(vcpu, cause);
2435         if (er == EMULATE_FAIL)
2436                 return er;
2437
2438         /* Fetch the instruction. */
2439         if (cause & CAUSEF_BD)
2440                 opc += 1;
2441         err = kvm_get_badinstr(opc, vcpu, &inst.word);
2442         if (err) {
2443                 kvm_err("%s: Cannot get inst @ %p (%d)\n", __func__, opc, err);
2444                 return EMULATE_FAIL;
2445         }
2446
2447         if (inst.r_format.opcode == spec3_op &&
2448             inst.r_format.func == rdhwr_op &&
2449             inst.r_format.rs == 0 &&
2450             (inst.r_format.re >> 3) == 0) {
2451                 int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2452                 int rd = inst.r_format.rd;
2453                 int rt = inst.r_format.rt;
2454                 int sel = inst.r_format.re & 0x7;
2455
2456                 /* If usermode, check RDHWR rd is allowed by guest HWREna */
2457                 if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
2458                         kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
2459                                   rd, opc);
2460                         goto emulate_ri;
2461                 }
2462                 switch (rd) {
2463                 case MIPS_HWR_CPUNUM:           /* CPU number */
2464                         arch->gprs[rt] = vcpu->vcpu_id;
2465                         break;
2466                 case MIPS_HWR_SYNCISTEP:        /* SYNCI length */
2467                         arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
2468                                              current_cpu_data.icache.linesz);
2469                         break;
2470                 case MIPS_HWR_CC:               /* Read count register */
2471                         arch->gprs[rt] = (s32)kvm_mips_read_count(vcpu);
2472                         break;
2473                 case MIPS_HWR_CCRES:            /* Count register resolution */
2474                         switch (current_cpu_data.cputype) {
2475                         case CPU_20KC:
2476                         case CPU_25KF:
2477                                 arch->gprs[rt] = 1;
2478                                 break;
2479                         default:
2480                                 arch->gprs[rt] = 2;
2481                         }
2482                         break;
2483                 case MIPS_HWR_ULR:              /* Read UserLocal register */
2484                         arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
2485                         break;
2486
2487                 default:
2488                         kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
2489                         goto emulate_ri;
2490                 }
2491
2492                 trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR, KVM_TRACE_HWR(rd, sel),
2493                               vcpu->arch.gprs[rt]);
2494         } else {
2495                 kvm_debug("Emulate RI not supported @ %p: %#x\n",
2496                           opc, inst.word);
2497                 goto emulate_ri;
2498         }
2499
2500         return EMULATE_DONE;
2501
2502 emulate_ri:
2503         /*
2504          * Rollback PC (if in branch delay slot then the PC already points to
2505          * branch target), and pass the RI exception to the guest OS.
2506          */
2507         vcpu->arch.pc = curr_pc;
2508         return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
2509 }
2510
2511 enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu,
2512                                                   struct kvm_run *run)
2513 {
2514         unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
2515         enum emulation_result er = EMULATE_DONE;
2516
2517         if (run->mmio.len > sizeof(*gpr)) {
2518                 kvm_err("Bad MMIO length: %d", run->mmio.len);
2519                 er = EMULATE_FAIL;
2520                 goto done;
2521         }
2522
2523         /* Restore saved resume PC */
2524         vcpu->arch.pc = vcpu->arch.io_pc;
2525
2526         switch (run->mmio.len) {
2527         case 4:
2528                 *gpr = *(s32 *) run->mmio.data;
2529                 break;
2530
2531         case 2:
2532                 if (vcpu->mmio_needed == 2)
2533                         *gpr = *(s16 *) run->mmio.data;
2534                 else
2535                         *gpr = *(u16 *)run->mmio.data;
2536
2537                 break;
2538         case 1:
2539                 if (vcpu->mmio_needed == 2)
2540                         *gpr = *(s8 *) run->mmio.data;
2541                 else
2542                         *gpr = *(u8 *) run->mmio.data;
2543                 break;
2544         }
2545
2546 done:
2547         return er;
2548 }
2549
2550 static enum emulation_result kvm_mips_emulate_exc(u32 cause,
2551                                                   u32 *opc,
2552                                                   struct kvm_run *run,
2553                                                   struct kvm_vcpu *vcpu)
2554 {
2555         u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2556         struct mips_coproc *cop0 = vcpu->arch.cop0;
2557         struct kvm_vcpu_arch *arch = &vcpu->arch;
2558         enum emulation_result er = EMULATE_DONE;
2559
2560         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2561                 /* save old pc */
2562                 kvm_write_c0_guest_epc(cop0, arch->pc);
2563                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2564
2565                 if (cause & CAUSEF_BD)
2566                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2567                 else
2568                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2569
2570                 kvm_change_c0_guest_cause(cop0, (0xff),
2571                                           (exccode << CAUSEB_EXCCODE));
2572
2573                 /* Set PC to the exception entry point */
2574                 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2575                 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2576
2577                 kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
2578                           exccode, kvm_read_c0_guest_epc(cop0),
2579                           kvm_read_c0_guest_badvaddr(cop0));
2580         } else {
2581                 kvm_err("Trying to deliver EXC when EXL is already set\n");
2582                 er = EMULATE_FAIL;
2583         }
2584
2585         return er;
2586 }
2587
2588 enum emulation_result kvm_mips_check_privilege(u32 cause,
2589                                                u32 *opc,
2590                                                struct kvm_run *run,
2591                                                struct kvm_vcpu *vcpu)
2592 {
2593         enum emulation_result er = EMULATE_DONE;
2594         u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2595         unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
2596
2597         int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2598
2599         if (usermode) {
2600                 switch (exccode) {
2601                 case EXCCODE_INT:
2602                 case EXCCODE_SYS:
2603                 case EXCCODE_BP:
2604                 case EXCCODE_RI:
2605                 case EXCCODE_TR:
2606                 case EXCCODE_MSAFPE:
2607                 case EXCCODE_FPE:
2608                 case EXCCODE_MSADIS:
2609                         break;
2610
2611                 case EXCCODE_CPU:
2612                         if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
2613                                 er = EMULATE_PRIV_FAIL;
2614                         break;
2615
2616                 case EXCCODE_MOD:
2617                         break;
2618
2619                 case EXCCODE_TLBL:
2620                         /*
2621                          * We we are accessing Guest kernel space, then send an
2622                          * address error exception to the guest
2623                          */
2624                         if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2625                                 kvm_debug("%s: LD MISS @ %#lx\n", __func__,
2626                                           badvaddr);
2627                                 cause &= ~0xff;
2628                                 cause |= (EXCCODE_ADEL << CAUSEB_EXCCODE);
2629                                 er = EMULATE_PRIV_FAIL;
2630                         }
2631                         break;
2632
2633                 case EXCCODE_TLBS:
2634                         /*
2635                          * We we are accessing Guest kernel space, then send an
2636                          * address error exception to the guest
2637                          */
2638                         if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2639                                 kvm_debug("%s: ST MISS @ %#lx\n", __func__,
2640                                           badvaddr);
2641                                 cause &= ~0xff;
2642                                 cause |= (EXCCODE_ADES << CAUSEB_EXCCODE);
2643                                 er = EMULATE_PRIV_FAIL;
2644                         }
2645                         break;
2646
2647                 case EXCCODE_ADES:
2648                         kvm_debug("%s: address error ST @ %#lx\n", __func__,
2649                                   badvaddr);
2650                         if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2651                                 cause &= ~0xff;
2652                                 cause |= (EXCCODE_TLBS << CAUSEB_EXCCODE);
2653                         }
2654                         er = EMULATE_PRIV_FAIL;
2655                         break;
2656                 case EXCCODE_ADEL:
2657                         kvm_debug("%s: address error LD @ %#lx\n", __func__,
2658                                   badvaddr);
2659                         if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2660                                 cause &= ~0xff;
2661                                 cause |= (EXCCODE_TLBL << CAUSEB_EXCCODE);
2662                         }
2663                         er = EMULATE_PRIV_FAIL;
2664                         break;
2665                 default:
2666                         er = EMULATE_PRIV_FAIL;
2667                         break;
2668                 }
2669         }
2670
2671         if (er == EMULATE_PRIV_FAIL)
2672                 kvm_mips_emulate_exc(cause, opc, run, vcpu);
2673
2674         return er;
2675 }
2676
2677 /*
2678  * User Address (UA) fault, this could happen if
2679  * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
2680  *     case we pass on the fault to the guest kernel and let it handle it.
2681  * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
2682  *     case we inject the TLB from the Guest TLB into the shadow host TLB
2683  */
2684 enum emulation_result kvm_mips_handle_tlbmiss(u32 cause,
2685                                               u32 *opc,
2686                                               struct kvm_run *run,
2687                                               struct kvm_vcpu *vcpu,
2688                                               bool write_fault)
2689 {
2690         enum emulation_result er = EMULATE_DONE;
2691         u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2692         unsigned long va = vcpu->arch.host_cp0_badvaddr;
2693         int index;
2694
2695         kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx\n",
2696                   vcpu->arch.host_cp0_badvaddr);
2697
2698         /*
2699          * KVM would not have got the exception if this entry was valid in the
2700          * shadow host TLB. Check the Guest TLB, if the entry is not there then
2701          * send the guest an exception. The guest exc handler should then inject
2702          * an entry into the guest TLB.
2703          */
2704         index = kvm_mips_guest_tlb_lookup(vcpu,
2705                       (va & VPN2_MASK) |
2706                       (kvm_read_c0_guest_entryhi(vcpu->arch.cop0) &
2707                        KVM_ENTRYHI_ASID));
2708         if (index < 0) {
2709                 if (exccode == EXCCODE_TLBL) {
2710                         er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu);
2711                 } else if (exccode == EXCCODE_TLBS) {
2712                         er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu);
2713                 } else {
2714                         kvm_err("%s: invalid exc code: %d\n", __func__,
2715                                 exccode);
2716                         er = EMULATE_FAIL;
2717                 }
2718         } else {
2719                 struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
2720
2721                 /*
2722                  * Check if the entry is valid, if not then setup a TLB invalid
2723                  * exception to the guest
2724                  */
2725                 if (!TLB_IS_VALID(*tlb, va)) {
2726                         if (exccode == EXCCODE_TLBL) {
2727                                 er = kvm_mips_emulate_tlbinv_ld(cause, opc, run,
2728                                                                 vcpu);
2729                         } else if (exccode == EXCCODE_TLBS) {
2730                                 er = kvm_mips_emulate_tlbinv_st(cause, opc, run,
2731                                                                 vcpu);
2732                         } else {
2733                                 kvm_err("%s: invalid exc code: %d\n", __func__,
2734                                         exccode);
2735                                 er = EMULATE_FAIL;
2736                         }
2737                 } else {
2738                         kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
2739                                   tlb->tlb_hi, tlb->tlb_lo[0], tlb->tlb_lo[1]);
2740                         /*
2741                          * OK we have a Guest TLB entry, now inject it into the
2742                          * shadow host TLB
2743                          */
2744                         if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, va,
2745                                                                  write_fault)) {
2746                                 kvm_err("%s: handling mapped seg tlb fault for %lx, index: %u, vcpu: %p, ASID: %#lx\n",
2747                                         __func__, va, index, vcpu,
2748                                         read_c0_entryhi());
2749                                 er = EMULATE_FAIL;
2750                         }
2751                 }
2752         }
2753
2754         return er;
2755 }