]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/mips/kvm/mips.c
9200b3def440a70ef6fbda756addf506532daf2e
[linux.git] / arch / mips / kvm / mips.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: MIPS specific KVM APIs
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/bitops.h>
13 #include <linux/errno.h>
14 #include <linux/err.h>
15 #include <linux/kdebug.h>
16 #include <linux/module.h>
17 #include <linux/uaccess.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sched/signal.h>
20 #include <linux/fs.h>
21 #include <linux/bootmem.h>
22
23 #include <asm/fpu.h>
24 #include <asm/page.h>
25 #include <asm/cacheflush.h>
26 #include <asm/mmu_context.h>
27 #include <asm/pgalloc.h>
28 #include <asm/pgtable.h>
29
30 #include <linux/kvm_host.h>
31
32 #include "interrupt.h"
33 #include "commpage.h"
34
35 #define CREATE_TRACE_POINTS
36 #include "trace.h"
37
38 #ifndef VECTORSPACING
39 #define VECTORSPACING 0x100     /* for EI/VI mode */
40 #endif
41
42 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
43 struct kvm_stats_debugfs_item debugfs_entries[] = {
44         { "wait",         VCPU_STAT(wait_exits),         KVM_STAT_VCPU },
45         { "cache",        VCPU_STAT(cache_exits),        KVM_STAT_VCPU },
46         { "signal",       VCPU_STAT(signal_exits),       KVM_STAT_VCPU },
47         { "interrupt",    VCPU_STAT(int_exits),          KVM_STAT_VCPU },
48         { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
49         { "tlbmod",       VCPU_STAT(tlbmod_exits),       KVM_STAT_VCPU },
50         { "tlbmiss_ld",   VCPU_STAT(tlbmiss_ld_exits),   KVM_STAT_VCPU },
51         { "tlbmiss_st",   VCPU_STAT(tlbmiss_st_exits),   KVM_STAT_VCPU },
52         { "addrerr_st",   VCPU_STAT(addrerr_st_exits),   KVM_STAT_VCPU },
53         { "addrerr_ld",   VCPU_STAT(addrerr_ld_exits),   KVM_STAT_VCPU },
54         { "syscall",      VCPU_STAT(syscall_exits),      KVM_STAT_VCPU },
55         { "resvd_inst",   VCPU_STAT(resvd_inst_exits),   KVM_STAT_VCPU },
56         { "break_inst",   VCPU_STAT(break_inst_exits),   KVM_STAT_VCPU },
57         { "trap_inst",    VCPU_STAT(trap_inst_exits),    KVM_STAT_VCPU },
58         { "msa_fpe",      VCPU_STAT(msa_fpe_exits),      KVM_STAT_VCPU },
59         { "fpe",          VCPU_STAT(fpe_exits),          KVM_STAT_VCPU },
60         { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
61         { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
62 #ifdef CONFIG_KVM_MIPS_VZ
63         { "vz_gpsi",      VCPU_STAT(vz_gpsi_exits),      KVM_STAT_VCPU },
64         { "vz_gsfc",      VCPU_STAT(vz_gsfc_exits),      KVM_STAT_VCPU },
65         { "vz_hc",        VCPU_STAT(vz_hc_exits),        KVM_STAT_VCPU },
66         { "vz_grr",       VCPU_STAT(vz_grr_exits),       KVM_STAT_VCPU },
67         { "vz_gva",       VCPU_STAT(vz_gva_exits),       KVM_STAT_VCPU },
68         { "vz_ghfc",      VCPU_STAT(vz_ghfc_exits),      KVM_STAT_VCPU },
69         { "vz_gpa",       VCPU_STAT(vz_gpa_exits),       KVM_STAT_VCPU },
70         { "vz_resvd",     VCPU_STAT(vz_resvd_exits),     KVM_STAT_VCPU },
71 #endif
72         { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
73         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
74         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
75         { "halt_wakeup",  VCPU_STAT(halt_wakeup),        KVM_STAT_VCPU },
76         {NULL}
77 };
78
79 bool kvm_trace_guest_mode_change;
80
81 int kvm_guest_mode_change_trace_reg(void)
82 {
83         kvm_trace_guest_mode_change = 1;
84         return 0;
85 }
86
87 void kvm_guest_mode_change_trace_unreg(void)
88 {
89         kvm_trace_guest_mode_change = 0;
90 }
91
92 /*
93  * XXXKYMA: We are simulatoring a processor that has the WII bit set in
94  * Config7, so we are "runnable" if interrupts are pending
95  */
96 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
97 {
98         return !!(vcpu->arch.pending_exceptions);
99 }
100
101 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
102 {
103         return false;
104 }
105
106 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
107 {
108         return 1;
109 }
110
111 int kvm_arch_hardware_enable(void)
112 {
113         return kvm_mips_callbacks->hardware_enable();
114 }
115
116 void kvm_arch_hardware_disable(void)
117 {
118         kvm_mips_callbacks->hardware_disable();
119 }
120
121 int kvm_arch_hardware_setup(void)
122 {
123         return 0;
124 }
125
126 void kvm_arch_check_processor_compat(void *rtn)
127 {
128         *(int *)rtn = 0;
129 }
130
131 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
132 {
133         switch (type) {
134 #ifdef CONFIG_KVM_MIPS_VZ
135         case KVM_VM_MIPS_VZ:
136 #else
137         case KVM_VM_MIPS_TE:
138 #endif
139                 break;
140         default:
141                 /* Unsupported KVM type */
142                 return -EINVAL;
143         };
144
145         /* Allocate page table to map GPA -> RPA */
146         kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
147         if (!kvm->arch.gpa_mm.pgd)
148                 return -ENOMEM;
149
150         return 0;
151 }
152
153 bool kvm_arch_has_vcpu_debugfs(void)
154 {
155         return false;
156 }
157
158 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
159 {
160         return 0;
161 }
162
163 void kvm_mips_free_vcpus(struct kvm *kvm)
164 {
165         unsigned int i;
166         struct kvm_vcpu *vcpu;
167
168         kvm_for_each_vcpu(i, vcpu, kvm) {
169                 kvm_arch_vcpu_free(vcpu);
170         }
171
172         mutex_lock(&kvm->lock);
173
174         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
175                 kvm->vcpus[i] = NULL;
176
177         atomic_set(&kvm->online_vcpus, 0);
178
179         mutex_unlock(&kvm->lock);
180 }
181
182 static void kvm_mips_free_gpa_pt(struct kvm *kvm)
183 {
184         /* It should always be safe to remove after flushing the whole range */
185         WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
186         pgd_free(NULL, kvm->arch.gpa_mm.pgd);
187 }
188
189 void kvm_arch_destroy_vm(struct kvm *kvm)
190 {
191         kvm_mips_free_vcpus(kvm);
192         kvm_mips_free_gpa_pt(kvm);
193 }
194
195 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
196                         unsigned long arg)
197 {
198         return -ENOIOCTLCMD;
199 }
200
201 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
202                             unsigned long npages)
203 {
204         return 0;
205 }
206
207 void kvm_arch_flush_shadow_all(struct kvm *kvm)
208 {
209         /* Flush whole GPA */
210         kvm_mips_flush_gpa_pt(kvm, 0, ~0);
211
212         /* Let implementation do the rest */
213         kvm_mips_callbacks->flush_shadow_all(kvm);
214 }
215
216 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
217                                    struct kvm_memory_slot *slot)
218 {
219         /*
220          * The slot has been made invalid (ready for moving or deletion), so we
221          * need to ensure that it can no longer be accessed by any guest VCPUs.
222          */
223
224         spin_lock(&kvm->mmu_lock);
225         /* Flush slot from GPA */
226         kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
227                               slot->base_gfn + slot->npages - 1);
228         /* Let implementation do the rest */
229         kvm_mips_callbacks->flush_shadow_memslot(kvm, slot);
230         spin_unlock(&kvm->mmu_lock);
231 }
232
233 int kvm_arch_prepare_memory_region(struct kvm *kvm,
234                                    struct kvm_memory_slot *memslot,
235                                    const struct kvm_userspace_memory_region *mem,
236                                    enum kvm_mr_change change)
237 {
238         return 0;
239 }
240
241 void kvm_arch_commit_memory_region(struct kvm *kvm,
242                                    const struct kvm_userspace_memory_region *mem,
243                                    const struct kvm_memory_slot *old,
244                                    const struct kvm_memory_slot *new,
245                                    enum kvm_mr_change change)
246 {
247         int needs_flush;
248
249         kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
250                   __func__, kvm, mem->slot, mem->guest_phys_addr,
251                   mem->memory_size, mem->userspace_addr);
252
253         /*
254          * If dirty page logging is enabled, write protect all pages in the slot
255          * ready for dirty logging.
256          *
257          * There is no need to do this in any of the following cases:
258          * CREATE:      No dirty mappings will already exist.
259          * MOVE/DELETE: The old mappings will already have been cleaned up by
260          *              kvm_arch_flush_shadow_memslot()
261          */
262         if (change == KVM_MR_FLAGS_ONLY &&
263             (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
264              new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
265                 spin_lock(&kvm->mmu_lock);
266                 /* Write protect GPA page table entries */
267                 needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
268                                         new->base_gfn + new->npages - 1);
269                 /* Let implementation do the rest */
270                 if (needs_flush)
271                         kvm_mips_callbacks->flush_shadow_memslot(kvm, new);
272                 spin_unlock(&kvm->mmu_lock);
273         }
274 }
275
276 static inline void dump_handler(const char *symbol, void *start, void *end)
277 {
278         u32 *p;
279
280         pr_debug("LEAF(%s)\n", symbol);
281
282         pr_debug("\t.set push\n");
283         pr_debug("\t.set noreorder\n");
284
285         for (p = start; p < (u32 *)end; ++p)
286                 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
287
288         pr_debug("\t.set\tpop\n");
289
290         pr_debug("\tEND(%s)\n", symbol);
291 }
292
293 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
294 {
295         int err, size;
296         void *gebase, *p, *handler, *refill_start, *refill_end;
297         int i;
298
299         struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
300
301         if (!vcpu) {
302                 err = -ENOMEM;
303                 goto out;
304         }
305
306         err = kvm_vcpu_init(vcpu, kvm, id);
307
308         if (err)
309                 goto out_free_cpu;
310
311         kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
312
313         /*
314          * Allocate space for host mode exception handlers that handle
315          * guest mode exits
316          */
317         if (cpu_has_veic || cpu_has_vint)
318                 size = 0x200 + VECTORSPACING * 64;
319         else
320                 size = 0x4000;
321
322         gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
323
324         if (!gebase) {
325                 err = -ENOMEM;
326                 goto out_uninit_cpu;
327         }
328         kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
329                   ALIGN(size, PAGE_SIZE), gebase);
330
331         /*
332          * Check new ebase actually fits in CP0_EBase. The lack of a write gate
333          * limits us to the low 512MB of physical address space. If the memory
334          * we allocate is out of range, just give up now.
335          */
336         if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
337                 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
338                         gebase);
339                 err = -ENOMEM;
340                 goto out_free_gebase;
341         }
342
343         /* Save new ebase */
344         vcpu->arch.guest_ebase = gebase;
345
346         /* Build guest exception vectors dynamically in unmapped memory */
347         handler = gebase + 0x2000;
348
349         /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
350         refill_start = gebase;
351         if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && IS_ENABLED(CONFIG_64BIT))
352                 refill_start += 0x080;
353         refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
354
355         /* General Exception Entry point */
356         kvm_mips_build_exception(gebase + 0x180, handler);
357
358         /* For vectored interrupts poke the exception code @ all offsets 0-7 */
359         for (i = 0; i < 8; i++) {
360                 kvm_debug("L1 Vectored handler @ %p\n",
361                           gebase + 0x200 + (i * VECTORSPACING));
362                 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
363                                          handler);
364         }
365
366         /* General exit handler */
367         p = handler;
368         p = kvm_mips_build_exit(p);
369
370         /* Guest entry routine */
371         vcpu->arch.vcpu_run = p;
372         p = kvm_mips_build_vcpu_run(p);
373
374         /* Dump the generated code */
375         pr_debug("#include <asm/asm.h>\n");
376         pr_debug("#include <asm/regdef.h>\n");
377         pr_debug("\n");
378         dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
379         dump_handler("kvm_tlb_refill", refill_start, refill_end);
380         dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
381         dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
382
383         /* Invalidate the icache for these ranges */
384         flush_icache_range((unsigned long)gebase,
385                            (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
386
387         /*
388          * Allocate comm page for guest kernel, a TLB will be reserved for
389          * mapping GVA @ 0xFFFF8000 to this page
390          */
391         vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
392
393         if (!vcpu->arch.kseg0_commpage) {
394                 err = -ENOMEM;
395                 goto out_free_gebase;
396         }
397
398         kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
399         kvm_mips_commpage_init(vcpu);
400
401         /* Init */
402         vcpu->arch.last_sched_cpu = -1;
403         vcpu->arch.last_exec_cpu = -1;
404
405         return vcpu;
406
407 out_free_gebase:
408         kfree(gebase);
409
410 out_uninit_cpu:
411         kvm_vcpu_uninit(vcpu);
412
413 out_free_cpu:
414         kfree(vcpu);
415
416 out:
417         return ERR_PTR(err);
418 }
419
420 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
421 {
422         hrtimer_cancel(&vcpu->arch.comparecount_timer);
423
424         kvm_vcpu_uninit(vcpu);
425
426         kvm_mips_dump_stats(vcpu);
427
428         kvm_mmu_free_memory_caches(vcpu);
429         kfree(vcpu->arch.guest_ebase);
430         kfree(vcpu->arch.kseg0_commpage);
431         kfree(vcpu);
432 }
433
434 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
435 {
436         kvm_arch_vcpu_free(vcpu);
437 }
438
439 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
440                                         struct kvm_guest_debug *dbg)
441 {
442         return -ENOIOCTLCMD;
443 }
444
445 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
446 {
447         int r = -EINTR;
448
449         vcpu_load(vcpu);
450
451         kvm_sigset_activate(vcpu);
452
453         if (vcpu->mmio_needed) {
454                 if (!vcpu->mmio_is_write)
455                         kvm_mips_complete_mmio_load(vcpu, run);
456                 vcpu->mmio_needed = 0;
457         }
458
459         if (run->immediate_exit)
460                 goto out;
461
462         lose_fpu(1);
463
464         local_irq_disable();
465         guest_enter_irqoff();
466         trace_kvm_enter(vcpu);
467
468         /*
469          * Make sure the read of VCPU requests in vcpu_run() callback is not
470          * reordered ahead of the write to vcpu->mode, or we could miss a TLB
471          * flush request while the requester sees the VCPU as outside of guest
472          * mode and not needing an IPI.
473          */
474         smp_store_mb(vcpu->mode, IN_GUEST_MODE);
475
476         r = kvm_mips_callbacks->vcpu_run(run, vcpu);
477
478         trace_kvm_out(vcpu);
479         guest_exit_irqoff();
480         local_irq_enable();
481
482 out:
483         kvm_sigset_deactivate(vcpu);
484
485         vcpu_put(vcpu);
486         return r;
487 }
488
489 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
490                              struct kvm_mips_interrupt *irq)
491 {
492         int intr = (int)irq->irq;
493         struct kvm_vcpu *dvcpu = NULL;
494
495         if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
496                 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
497                           (int)intr);
498
499         if (irq->cpu == -1)
500                 dvcpu = vcpu;
501         else
502                 dvcpu = vcpu->kvm->vcpus[irq->cpu];
503
504         if (intr == 2 || intr == 3 || intr == 4) {
505                 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
506
507         } else if (intr == -2 || intr == -3 || intr == -4) {
508                 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
509         } else {
510                 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
511                         irq->cpu, irq->irq);
512                 return -EINVAL;
513         }
514
515         dvcpu->arch.wait = 0;
516
517         if (swq_has_sleeper(&dvcpu->wq))
518                 swake_up(&dvcpu->wq);
519
520         return 0;
521 }
522
523 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
524                                     struct kvm_mp_state *mp_state)
525 {
526         return -ENOIOCTLCMD;
527 }
528
529 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
530                                     struct kvm_mp_state *mp_state)
531 {
532         return -ENOIOCTLCMD;
533 }
534
535 static u64 kvm_mips_get_one_regs[] = {
536         KVM_REG_MIPS_R0,
537         KVM_REG_MIPS_R1,
538         KVM_REG_MIPS_R2,
539         KVM_REG_MIPS_R3,
540         KVM_REG_MIPS_R4,
541         KVM_REG_MIPS_R5,
542         KVM_REG_MIPS_R6,
543         KVM_REG_MIPS_R7,
544         KVM_REG_MIPS_R8,
545         KVM_REG_MIPS_R9,
546         KVM_REG_MIPS_R10,
547         KVM_REG_MIPS_R11,
548         KVM_REG_MIPS_R12,
549         KVM_REG_MIPS_R13,
550         KVM_REG_MIPS_R14,
551         KVM_REG_MIPS_R15,
552         KVM_REG_MIPS_R16,
553         KVM_REG_MIPS_R17,
554         KVM_REG_MIPS_R18,
555         KVM_REG_MIPS_R19,
556         KVM_REG_MIPS_R20,
557         KVM_REG_MIPS_R21,
558         KVM_REG_MIPS_R22,
559         KVM_REG_MIPS_R23,
560         KVM_REG_MIPS_R24,
561         KVM_REG_MIPS_R25,
562         KVM_REG_MIPS_R26,
563         KVM_REG_MIPS_R27,
564         KVM_REG_MIPS_R28,
565         KVM_REG_MIPS_R29,
566         KVM_REG_MIPS_R30,
567         KVM_REG_MIPS_R31,
568
569 #ifndef CONFIG_CPU_MIPSR6
570         KVM_REG_MIPS_HI,
571         KVM_REG_MIPS_LO,
572 #endif
573         KVM_REG_MIPS_PC,
574 };
575
576 static u64 kvm_mips_get_one_regs_fpu[] = {
577         KVM_REG_MIPS_FCR_IR,
578         KVM_REG_MIPS_FCR_CSR,
579 };
580
581 static u64 kvm_mips_get_one_regs_msa[] = {
582         KVM_REG_MIPS_MSA_IR,
583         KVM_REG_MIPS_MSA_CSR,
584 };
585
586 static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
587 {
588         unsigned long ret;
589
590         ret = ARRAY_SIZE(kvm_mips_get_one_regs);
591         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
592                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
593                 /* odd doubles */
594                 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
595                         ret += 16;
596         }
597         if (kvm_mips_guest_can_have_msa(&vcpu->arch))
598                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
599         ret += kvm_mips_callbacks->num_regs(vcpu);
600
601         return ret;
602 }
603
604 static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
605 {
606         u64 index;
607         unsigned int i;
608
609         if (copy_to_user(indices, kvm_mips_get_one_regs,
610                          sizeof(kvm_mips_get_one_regs)))
611                 return -EFAULT;
612         indices += ARRAY_SIZE(kvm_mips_get_one_regs);
613
614         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
615                 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
616                                  sizeof(kvm_mips_get_one_regs_fpu)))
617                         return -EFAULT;
618                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
619
620                 for (i = 0; i < 32; ++i) {
621                         index = KVM_REG_MIPS_FPR_32(i);
622                         if (copy_to_user(indices, &index, sizeof(index)))
623                                 return -EFAULT;
624                         ++indices;
625
626                         /* skip odd doubles if no F64 */
627                         if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
628                                 continue;
629
630                         index = KVM_REG_MIPS_FPR_64(i);
631                         if (copy_to_user(indices, &index, sizeof(index)))
632                                 return -EFAULT;
633                         ++indices;
634                 }
635         }
636
637         if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
638                 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
639                                  sizeof(kvm_mips_get_one_regs_msa)))
640                         return -EFAULT;
641                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
642
643                 for (i = 0; i < 32; ++i) {
644                         index = KVM_REG_MIPS_VEC_128(i);
645                         if (copy_to_user(indices, &index, sizeof(index)))
646                                 return -EFAULT;
647                         ++indices;
648                 }
649         }
650
651         return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
652 }
653
654 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
655                             const struct kvm_one_reg *reg)
656 {
657         struct mips_coproc *cop0 = vcpu->arch.cop0;
658         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
659         int ret;
660         s64 v;
661         s64 vs[2];
662         unsigned int idx;
663
664         switch (reg->id) {
665         /* General purpose registers */
666         case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
667                 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
668                 break;
669 #ifndef CONFIG_CPU_MIPSR6
670         case KVM_REG_MIPS_HI:
671                 v = (long)vcpu->arch.hi;
672                 break;
673         case KVM_REG_MIPS_LO:
674                 v = (long)vcpu->arch.lo;
675                 break;
676 #endif
677         case KVM_REG_MIPS_PC:
678                 v = (long)vcpu->arch.pc;
679                 break;
680
681         /* Floating point registers */
682         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
683                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
684                         return -EINVAL;
685                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
686                 /* Odd singles in top of even double when FR=0 */
687                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
688                         v = get_fpr32(&fpu->fpr[idx], 0);
689                 else
690                         v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
691                 break;
692         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
693                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
694                         return -EINVAL;
695                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
696                 /* Can't access odd doubles in FR=0 mode */
697                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
698                         return -EINVAL;
699                 v = get_fpr64(&fpu->fpr[idx], 0);
700                 break;
701         case KVM_REG_MIPS_FCR_IR:
702                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
703                         return -EINVAL;
704                 v = boot_cpu_data.fpu_id;
705                 break;
706         case KVM_REG_MIPS_FCR_CSR:
707                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
708                         return -EINVAL;
709                 v = fpu->fcr31;
710                 break;
711
712         /* MIPS SIMD Architecture (MSA) registers */
713         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
714                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
715                         return -EINVAL;
716                 /* Can't access MSA registers in FR=0 mode */
717                 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
718                         return -EINVAL;
719                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
720 #ifdef CONFIG_CPU_LITTLE_ENDIAN
721                 /* least significant byte first */
722                 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
723                 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
724 #else
725                 /* most significant byte first */
726                 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
727                 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
728 #endif
729                 break;
730         case KVM_REG_MIPS_MSA_IR:
731                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
732                         return -EINVAL;
733                 v = boot_cpu_data.msa_id;
734                 break;
735         case KVM_REG_MIPS_MSA_CSR:
736                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
737                         return -EINVAL;
738                 v = fpu->msacsr;
739                 break;
740
741         /* registers to be handled specially */
742         default:
743                 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
744                 if (ret)
745                         return ret;
746                 break;
747         }
748         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
749                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
750
751                 return put_user(v, uaddr64);
752         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
753                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
754                 u32 v32 = (u32)v;
755
756                 return put_user(v32, uaddr32);
757         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
758                 void __user *uaddr = (void __user *)(long)reg->addr;
759
760                 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
761         } else {
762                 return -EINVAL;
763         }
764 }
765
766 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
767                             const struct kvm_one_reg *reg)
768 {
769         struct mips_coproc *cop0 = vcpu->arch.cop0;
770         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
771         s64 v;
772         s64 vs[2];
773         unsigned int idx;
774
775         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
776                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
777
778                 if (get_user(v, uaddr64) != 0)
779                         return -EFAULT;
780         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
781                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
782                 s32 v32;
783
784                 if (get_user(v32, uaddr32) != 0)
785                         return -EFAULT;
786                 v = (s64)v32;
787         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
788                 void __user *uaddr = (void __user *)(long)reg->addr;
789
790                 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
791         } else {
792                 return -EINVAL;
793         }
794
795         switch (reg->id) {
796         /* General purpose registers */
797         case KVM_REG_MIPS_R0:
798                 /* Silently ignore requests to set $0 */
799                 break;
800         case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
801                 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
802                 break;
803 #ifndef CONFIG_CPU_MIPSR6
804         case KVM_REG_MIPS_HI:
805                 vcpu->arch.hi = v;
806                 break;
807         case KVM_REG_MIPS_LO:
808                 vcpu->arch.lo = v;
809                 break;
810 #endif
811         case KVM_REG_MIPS_PC:
812                 vcpu->arch.pc = v;
813                 break;
814
815         /* Floating point registers */
816         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
817                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
818                         return -EINVAL;
819                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
820                 /* Odd singles in top of even double when FR=0 */
821                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
822                         set_fpr32(&fpu->fpr[idx], 0, v);
823                 else
824                         set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
825                 break;
826         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
827                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
828                         return -EINVAL;
829                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
830                 /* Can't access odd doubles in FR=0 mode */
831                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
832                         return -EINVAL;
833                 set_fpr64(&fpu->fpr[idx], 0, v);
834                 break;
835         case KVM_REG_MIPS_FCR_IR:
836                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
837                         return -EINVAL;
838                 /* Read-only */
839                 break;
840         case KVM_REG_MIPS_FCR_CSR:
841                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
842                         return -EINVAL;
843                 fpu->fcr31 = v;
844                 break;
845
846         /* MIPS SIMD Architecture (MSA) registers */
847         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
848                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
849                         return -EINVAL;
850                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
851 #ifdef CONFIG_CPU_LITTLE_ENDIAN
852                 /* least significant byte first */
853                 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
854                 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
855 #else
856                 /* most significant byte first */
857                 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
858                 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
859 #endif
860                 break;
861         case KVM_REG_MIPS_MSA_IR:
862                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
863                         return -EINVAL;
864                 /* Read-only */
865                 break;
866         case KVM_REG_MIPS_MSA_CSR:
867                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
868                         return -EINVAL;
869                 fpu->msacsr = v;
870                 break;
871
872         /* registers to be handled specially */
873         default:
874                 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
875         }
876         return 0;
877 }
878
879 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
880                                      struct kvm_enable_cap *cap)
881 {
882         int r = 0;
883
884         if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
885                 return -EINVAL;
886         if (cap->flags)
887                 return -EINVAL;
888         if (cap->args[0])
889                 return -EINVAL;
890
891         switch (cap->cap) {
892         case KVM_CAP_MIPS_FPU:
893                 vcpu->arch.fpu_enabled = true;
894                 break;
895         case KVM_CAP_MIPS_MSA:
896                 vcpu->arch.msa_enabled = true;
897                 break;
898         default:
899                 r = -EINVAL;
900                 break;
901         }
902
903         return r;
904 }
905
906 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
907                          unsigned long arg)
908 {
909         struct kvm_vcpu *vcpu = filp->private_data;
910         void __user *argp = (void __user *)arg;
911         long r;
912
913         if (ioctl == KVM_INTERRUPT) {
914                 struct kvm_mips_interrupt irq;
915
916                 if (copy_from_user(&irq, argp, sizeof(irq)))
917                         return -EFAULT;
918                 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
919                           irq.irq);
920
921                 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
922         }
923
924         vcpu_load(vcpu);
925
926         switch (ioctl) {
927         case KVM_SET_ONE_REG:
928         case KVM_GET_ONE_REG: {
929                 struct kvm_one_reg reg;
930
931                 r = -EFAULT;
932                 if (copy_from_user(&reg, argp, sizeof(reg)))
933                         break;
934                 if (ioctl == KVM_SET_ONE_REG)
935                         r = kvm_mips_set_reg(vcpu, &reg);
936                 else
937                         r = kvm_mips_get_reg(vcpu, &reg);
938                 break;
939         }
940         case KVM_GET_REG_LIST: {
941                 struct kvm_reg_list __user *user_list = argp;
942                 struct kvm_reg_list reg_list;
943                 unsigned n;
944
945                 r = -EFAULT;
946                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
947                         break;
948                 n = reg_list.n;
949                 reg_list.n = kvm_mips_num_regs(vcpu);
950                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
951                         break;
952                 r = -E2BIG;
953                 if (n < reg_list.n)
954                         break;
955                 r = kvm_mips_copy_reg_indices(vcpu, user_list->reg);
956                 break;
957         }
958         case KVM_ENABLE_CAP: {
959                 struct kvm_enable_cap cap;
960
961                 r = -EFAULT;
962                 if (copy_from_user(&cap, argp, sizeof(cap)))
963                         break;
964                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
965                 break;
966         }
967         default:
968                 r = -ENOIOCTLCMD;
969         }
970
971         vcpu_put(vcpu);
972         return r;
973 }
974
975 /**
976  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
977  * @kvm: kvm instance
978  * @log: slot id and address to which we copy the log
979  *
980  * Steps 1-4 below provide general overview of dirty page logging. See
981  * kvm_get_dirty_log_protect() function description for additional details.
982  *
983  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
984  * always flush the TLB (step 4) even if previous step failed  and the dirty
985  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
986  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
987  * writes will be marked dirty for next log read.
988  *
989  *   1. Take a snapshot of the bit and clear it if needed.
990  *   2. Write protect the corresponding page.
991  *   3. Copy the snapshot to the userspace.
992  *   4. Flush TLB's if needed.
993  */
994 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
995 {
996         struct kvm_memslots *slots;
997         struct kvm_memory_slot *memslot;
998         bool is_dirty = false;
999         int r;
1000
1001         mutex_lock(&kvm->slots_lock);
1002
1003         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1004
1005         if (is_dirty) {
1006                 slots = kvm_memslots(kvm);
1007                 memslot = id_to_memslot(slots, log->slot);
1008
1009                 /* Let implementation handle TLB/GVA invalidation */
1010                 kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot);
1011         }
1012
1013         mutex_unlock(&kvm->slots_lock);
1014         return r;
1015 }
1016
1017 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1018 {
1019         long r;
1020
1021         switch (ioctl) {
1022         default:
1023                 r = -ENOIOCTLCMD;
1024         }
1025
1026         return r;
1027 }
1028
1029 int kvm_arch_init(void *opaque)
1030 {
1031         if (kvm_mips_callbacks) {
1032                 kvm_err("kvm: module already exists\n");
1033                 return -EEXIST;
1034         }
1035
1036         return kvm_mips_emulation_init(&kvm_mips_callbacks);
1037 }
1038
1039 void kvm_arch_exit(void)
1040 {
1041         kvm_mips_callbacks = NULL;
1042 }
1043
1044 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1045                                   struct kvm_sregs *sregs)
1046 {
1047         return -ENOIOCTLCMD;
1048 }
1049
1050 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1051                                   struct kvm_sregs *sregs)
1052 {
1053         return -ENOIOCTLCMD;
1054 }
1055
1056 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1057 {
1058 }
1059
1060 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1061 {
1062         return -ENOIOCTLCMD;
1063 }
1064
1065 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1066 {
1067         return -ENOIOCTLCMD;
1068 }
1069
1070 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1071 {
1072         return VM_FAULT_SIGBUS;
1073 }
1074
1075 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1076 {
1077         int r;
1078
1079         switch (ext) {
1080         case KVM_CAP_ONE_REG:
1081         case KVM_CAP_ENABLE_CAP:
1082         case KVM_CAP_READONLY_MEM:
1083         case KVM_CAP_SYNC_MMU:
1084         case KVM_CAP_IMMEDIATE_EXIT:
1085                 r = 1;
1086                 break;
1087         case KVM_CAP_NR_VCPUS:
1088                 r = num_online_cpus();
1089                 break;
1090         case KVM_CAP_MAX_VCPUS:
1091                 r = KVM_MAX_VCPUS;
1092                 break;
1093         case KVM_CAP_MIPS_FPU:
1094                 /* We don't handle systems with inconsistent cpu_has_fpu */
1095                 r = !!raw_cpu_has_fpu;
1096                 break;
1097         case KVM_CAP_MIPS_MSA:
1098                 /*
1099                  * We don't support MSA vector partitioning yet:
1100                  * 1) It would require explicit support which can't be tested
1101                  *    yet due to lack of support in current hardware.
1102                  * 2) It extends the state that would need to be saved/restored
1103                  *    by e.g. QEMU for migration.
1104                  *
1105                  * When vector partitioning hardware becomes available, support
1106                  * could be added by requiring a flag when enabling
1107                  * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1108                  * to save/restore the appropriate extra state.
1109                  */
1110                 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1111                 break;
1112         default:
1113                 r = kvm_mips_callbacks->check_extension(kvm, ext);
1114                 break;
1115         }
1116         return r;
1117 }
1118
1119 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1120 {
1121         return kvm_mips_pending_timer(vcpu) ||
1122                 kvm_read_c0_guest_cause(vcpu->arch.cop0) & C_TI;
1123 }
1124
1125 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1126 {
1127         int i;
1128         struct mips_coproc *cop0;
1129
1130         if (!vcpu)
1131                 return -1;
1132
1133         kvm_debug("VCPU Register Dump:\n");
1134         kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1135         kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1136
1137         for (i = 0; i < 32; i += 4) {
1138                 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1139                        vcpu->arch.gprs[i],
1140                        vcpu->arch.gprs[i + 1],
1141                        vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1142         }
1143         kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1144         kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1145
1146         cop0 = vcpu->arch.cop0;
1147         kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1148                   kvm_read_c0_guest_status(cop0),
1149                   kvm_read_c0_guest_cause(cop0));
1150
1151         kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1152
1153         return 0;
1154 }
1155
1156 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1157 {
1158         int i;
1159
1160         vcpu_load(vcpu);
1161
1162         for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1163                 vcpu->arch.gprs[i] = regs->gpr[i];
1164         vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1165         vcpu->arch.hi = regs->hi;
1166         vcpu->arch.lo = regs->lo;
1167         vcpu->arch.pc = regs->pc;
1168
1169         vcpu_put(vcpu);
1170         return 0;
1171 }
1172
1173 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1174 {
1175         int i;
1176
1177         vcpu_load(vcpu);
1178
1179         for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1180                 regs->gpr[i] = vcpu->arch.gprs[i];
1181
1182         regs->hi = vcpu->arch.hi;
1183         regs->lo = vcpu->arch.lo;
1184         regs->pc = vcpu->arch.pc;
1185
1186         vcpu_put(vcpu);
1187         return 0;
1188 }
1189
1190 static void kvm_mips_comparecount_func(unsigned long data)
1191 {
1192         struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1193
1194         kvm_mips_callbacks->queue_timer_int(vcpu);
1195
1196         vcpu->arch.wait = 0;
1197         if (swq_has_sleeper(&vcpu->wq))
1198                 swake_up(&vcpu->wq);
1199 }
1200
1201 /* low level hrtimer wake routine */
1202 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1203 {
1204         struct kvm_vcpu *vcpu;
1205
1206         vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1207         kvm_mips_comparecount_func((unsigned long) vcpu);
1208         return kvm_mips_count_timeout(vcpu);
1209 }
1210
1211 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1212 {
1213         int err;
1214
1215         err = kvm_mips_callbacks->vcpu_init(vcpu);
1216         if (err)
1217                 return err;
1218
1219         hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1220                      HRTIMER_MODE_REL);
1221         vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1222         return 0;
1223 }
1224
1225 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1226 {
1227         kvm_mips_callbacks->vcpu_uninit(vcpu);
1228 }
1229
1230 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1231                                   struct kvm_translation *tr)
1232 {
1233         return 0;
1234 }
1235
1236 /* Initial guest state */
1237 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1238 {
1239         return kvm_mips_callbacks->vcpu_setup(vcpu);
1240 }
1241
1242 static void kvm_mips_set_c0_status(void)
1243 {
1244         u32 status = read_c0_status();
1245
1246         if (cpu_has_dsp)
1247                 status |= (ST0_MX);
1248
1249         write_c0_status(status);
1250         ehb();
1251 }
1252
1253 /*
1254  * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1255  */
1256 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1257 {
1258         u32 cause = vcpu->arch.host_cp0_cause;
1259         u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1260         u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1261         unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1262         enum emulation_result er = EMULATE_DONE;
1263         u32 inst;
1264         int ret = RESUME_GUEST;
1265
1266         vcpu->mode = OUTSIDE_GUEST_MODE;
1267
1268         /* re-enable HTW before enabling interrupts */
1269         if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1270                 htw_start();
1271
1272         /* Set a default exit reason */
1273         run->exit_reason = KVM_EXIT_UNKNOWN;
1274         run->ready_for_interrupt_injection = 1;
1275
1276         /*
1277          * Set the appropriate status bits based on host CPU features,
1278          * before we hit the scheduler
1279          */
1280         kvm_mips_set_c0_status();
1281
1282         local_irq_enable();
1283
1284         kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1285                         cause, opc, run, vcpu);
1286         trace_kvm_exit(vcpu, exccode);
1287
1288         if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1289                 /*
1290                  * Do a privilege check, if in UM most of these exit conditions
1291                  * end up causing an exception to be delivered to the Guest
1292                  * Kernel
1293                  */
1294                 er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1295                 if (er == EMULATE_PRIV_FAIL) {
1296                         goto skip_emul;
1297                 } else if (er == EMULATE_FAIL) {
1298                         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1299                         ret = RESUME_HOST;
1300                         goto skip_emul;
1301                 }
1302         }
1303
1304         switch (exccode) {
1305         case EXCCODE_INT:
1306                 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1307
1308                 ++vcpu->stat.int_exits;
1309
1310                 if (need_resched())
1311                         cond_resched();
1312
1313                 ret = RESUME_GUEST;
1314                 break;
1315
1316         case EXCCODE_CPU:
1317                 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1318
1319                 ++vcpu->stat.cop_unusable_exits;
1320                 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1321                 /* XXXKYMA: Might need to return to user space */
1322                 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1323                         ret = RESUME_HOST;
1324                 break;
1325
1326         case EXCCODE_MOD:
1327                 ++vcpu->stat.tlbmod_exits;
1328                 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1329                 break;
1330
1331         case EXCCODE_TLBS:
1332                 kvm_debug("TLB ST fault:  cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1333                           cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1334                           badvaddr);
1335
1336                 ++vcpu->stat.tlbmiss_st_exits;
1337                 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1338                 break;
1339
1340         case EXCCODE_TLBL:
1341                 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1342                           cause, opc, badvaddr);
1343
1344                 ++vcpu->stat.tlbmiss_ld_exits;
1345                 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1346                 break;
1347
1348         case EXCCODE_ADES:
1349                 ++vcpu->stat.addrerr_st_exits;
1350                 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1351                 break;
1352
1353         case EXCCODE_ADEL:
1354                 ++vcpu->stat.addrerr_ld_exits;
1355                 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1356                 break;
1357
1358         case EXCCODE_SYS:
1359                 ++vcpu->stat.syscall_exits;
1360                 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1361                 break;
1362
1363         case EXCCODE_RI:
1364                 ++vcpu->stat.resvd_inst_exits;
1365                 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1366                 break;
1367
1368         case EXCCODE_BP:
1369                 ++vcpu->stat.break_inst_exits;
1370                 ret = kvm_mips_callbacks->handle_break(vcpu);
1371                 break;
1372
1373         case EXCCODE_TR:
1374                 ++vcpu->stat.trap_inst_exits;
1375                 ret = kvm_mips_callbacks->handle_trap(vcpu);
1376                 break;
1377
1378         case EXCCODE_MSAFPE:
1379                 ++vcpu->stat.msa_fpe_exits;
1380                 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1381                 break;
1382
1383         case EXCCODE_FPE:
1384                 ++vcpu->stat.fpe_exits;
1385                 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1386                 break;
1387
1388         case EXCCODE_MSADIS:
1389                 ++vcpu->stat.msa_disabled_exits;
1390                 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1391                 break;
1392
1393         case EXCCODE_GE:
1394                 /* defer exit accounting to handler */
1395                 ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
1396                 break;
1397
1398         default:
1399                 if (cause & CAUSEF_BD)
1400                         opc += 1;
1401                 inst = 0;
1402                 kvm_get_badinstr(opc, vcpu, &inst);
1403                 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#x\n",
1404                         exccode, opc, inst, badvaddr,
1405                         kvm_read_c0_guest_status(vcpu->arch.cop0));
1406                 kvm_arch_vcpu_dump_regs(vcpu);
1407                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1408                 ret = RESUME_HOST;
1409                 break;
1410
1411         }
1412
1413 skip_emul:
1414         local_irq_disable();
1415
1416         if (ret == RESUME_GUEST)
1417                 kvm_vz_acquire_htimer(vcpu);
1418
1419         if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1420                 kvm_mips_deliver_interrupts(vcpu, cause);
1421
1422         if (!(ret & RESUME_HOST)) {
1423                 /* Only check for signals if not already exiting to userspace */
1424                 if (signal_pending(current)) {
1425                         run->exit_reason = KVM_EXIT_INTR;
1426                         ret = (-EINTR << 2) | RESUME_HOST;
1427                         ++vcpu->stat.signal_exits;
1428                         trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1429                 }
1430         }
1431
1432         if (ret == RESUME_GUEST) {
1433                 trace_kvm_reenter(vcpu);
1434
1435                 /*
1436                  * Make sure the read of VCPU requests in vcpu_reenter()
1437                  * callback is not reordered ahead of the write to vcpu->mode,
1438                  * or we could miss a TLB flush request while the requester sees
1439                  * the VCPU as outside of guest mode and not needing an IPI.
1440                  */
1441                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1442
1443                 kvm_mips_callbacks->vcpu_reenter(run, vcpu);
1444
1445                 /*
1446                  * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1447                  * is live), restore FCR31 / MSACSR.
1448                  *
1449                  * This should be before returning to the guest exception
1450                  * vector, as it may well cause an [MSA] FP exception if there
1451                  * are pending exception bits unmasked. (see
1452                  * kvm_mips_csr_die_notifier() for how that is handled).
1453                  */
1454                 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1455                     read_c0_status() & ST0_CU1)
1456                         __kvm_restore_fcsr(&vcpu->arch);
1457
1458                 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1459                     read_c0_config5() & MIPS_CONF5_MSAEN)
1460                         __kvm_restore_msacsr(&vcpu->arch);
1461         }
1462
1463         /* Disable HTW before returning to guest or host */
1464         if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1465                 htw_stop();
1466
1467         return ret;
1468 }
1469
1470 /* Enable FPU for guest and restore context */
1471 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1472 {
1473         struct mips_coproc *cop0 = vcpu->arch.cop0;
1474         unsigned int sr, cfg5;
1475
1476         preempt_disable();
1477
1478         sr = kvm_read_c0_guest_status(cop0);
1479
1480         /*
1481          * If MSA state is already live, it is undefined how it interacts with
1482          * FR=0 FPU state, and we don't want to hit reserved instruction
1483          * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1484          * play it safe and save it first.
1485          *
1486          * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1487          * get called when guest CU1 is set, however we can't trust the guest
1488          * not to clobber the status register directly via the commpage.
1489          */
1490         if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1491             vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1492                 kvm_lose_fpu(vcpu);
1493
1494         /*
1495          * Enable FPU for guest
1496          * We set FR and FRE according to guest context
1497          */
1498         change_c0_status(ST0_CU1 | ST0_FR, sr);
1499         if (cpu_has_fre) {
1500                 cfg5 = kvm_read_c0_guest_config5(cop0);
1501                 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1502         }
1503         enable_fpu_hazard();
1504
1505         /* If guest FPU state not active, restore it now */
1506         if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1507                 __kvm_restore_fpu(&vcpu->arch);
1508                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1509                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1510         } else {
1511                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1512         }
1513
1514         preempt_enable();
1515 }
1516
1517 #ifdef CONFIG_CPU_HAS_MSA
1518 /* Enable MSA for guest and restore context */
1519 void kvm_own_msa(struct kvm_vcpu *vcpu)
1520 {
1521         struct mips_coproc *cop0 = vcpu->arch.cop0;
1522         unsigned int sr, cfg5;
1523
1524         preempt_disable();
1525
1526         /*
1527          * Enable FPU if enabled in guest, since we're restoring FPU context
1528          * anyway. We set FR and FRE according to guest context.
1529          */
1530         if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1531                 sr = kvm_read_c0_guest_status(cop0);
1532
1533                 /*
1534                  * If FR=0 FPU state is already live, it is undefined how it
1535                  * interacts with MSA state, so play it safe and save it first.
1536                  */
1537                 if (!(sr & ST0_FR) &&
1538                     (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1539                                 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1540                         kvm_lose_fpu(vcpu);
1541
1542                 change_c0_status(ST0_CU1 | ST0_FR, sr);
1543                 if (sr & ST0_CU1 && cpu_has_fre) {
1544                         cfg5 = kvm_read_c0_guest_config5(cop0);
1545                         change_c0_config5(MIPS_CONF5_FRE, cfg5);
1546                 }
1547         }
1548
1549         /* Enable MSA for guest */
1550         set_c0_config5(MIPS_CONF5_MSAEN);
1551         enable_fpu_hazard();
1552
1553         switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1554         case KVM_MIPS_AUX_FPU:
1555                 /*
1556                  * Guest FPU state already loaded, only restore upper MSA state
1557                  */
1558                 __kvm_restore_msa_upper(&vcpu->arch);
1559                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1560                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1561                 break;
1562         case 0:
1563                 /* Neither FPU or MSA already active, restore full MSA state */
1564                 __kvm_restore_msa(&vcpu->arch);
1565                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1566                 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1567                         vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1568                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1569                               KVM_TRACE_AUX_FPU_MSA);
1570                 break;
1571         default:
1572                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1573                 break;
1574         }
1575
1576         preempt_enable();
1577 }
1578 #endif
1579
1580 /* Drop FPU & MSA without saving it */
1581 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1582 {
1583         preempt_disable();
1584         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1585                 disable_msa();
1586                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1587                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1588         }
1589         if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1590                 clear_c0_status(ST0_CU1 | ST0_FR);
1591                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1592                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1593         }
1594         preempt_enable();
1595 }
1596
1597 /* Save and disable FPU & MSA */
1598 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1599 {
1600         /*
1601          * With T&E, FPU & MSA get disabled in root context (hardware) when it
1602          * is disabled in guest context (software), but the register state in
1603          * the hardware may still be in use.
1604          * This is why we explicitly re-enable the hardware before saving.
1605          */
1606
1607         preempt_disable();
1608         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1609                 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1610                         set_c0_config5(MIPS_CONF5_MSAEN);
1611                         enable_fpu_hazard();
1612                 }
1613
1614                 __kvm_save_msa(&vcpu->arch);
1615                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1616
1617                 /* Disable MSA & FPU */
1618                 disable_msa();
1619                 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1620                         clear_c0_status(ST0_CU1 | ST0_FR);
1621                         disable_fpu_hazard();
1622                 }
1623                 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1624         } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1625                 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1626                         set_c0_status(ST0_CU1);
1627                         enable_fpu_hazard();
1628                 }
1629
1630                 __kvm_save_fpu(&vcpu->arch);
1631                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1632                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1633
1634                 /* Disable FPU */
1635                 clear_c0_status(ST0_CU1 | ST0_FR);
1636                 disable_fpu_hazard();
1637         }
1638         preempt_enable();
1639 }
1640
1641 /*
1642  * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1643  * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1644  * exception if cause bits are set in the value being written.
1645  */
1646 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1647                                    unsigned long cmd, void *ptr)
1648 {
1649         struct die_args *args = (struct die_args *)ptr;
1650         struct pt_regs *regs = args->regs;
1651         unsigned long pc;
1652
1653         /* Only interested in FPE and MSAFPE */
1654         if (cmd != DIE_FP && cmd != DIE_MSAFP)
1655                 return NOTIFY_DONE;
1656
1657         /* Return immediately if guest context isn't active */
1658         if (!(current->flags & PF_VCPU))
1659                 return NOTIFY_DONE;
1660
1661         /* Should never get here from user mode */
1662         BUG_ON(user_mode(regs));
1663
1664         pc = instruction_pointer(regs);
1665         switch (cmd) {
1666         case DIE_FP:
1667                 /* match 2nd instruction in __kvm_restore_fcsr */
1668                 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1669                         return NOTIFY_DONE;
1670                 break;
1671         case DIE_MSAFP:
1672                 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1673                 if (!cpu_has_msa ||
1674                     pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1675                     pc > (unsigned long)&__kvm_restore_msacsr + 8)
1676                         return NOTIFY_DONE;
1677                 break;
1678         }
1679
1680         /* Move PC forward a little and continue executing */
1681         instruction_pointer(regs) += 4;
1682
1683         return NOTIFY_STOP;
1684 }
1685
1686 static struct notifier_block kvm_mips_csr_die_notifier = {
1687         .notifier_call = kvm_mips_csr_die_notify,
1688 };
1689
1690 static int __init kvm_mips_init(void)
1691 {
1692         int ret;
1693
1694         ret = kvm_mips_entry_setup();
1695         if (ret)
1696                 return ret;
1697
1698         ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1699
1700         if (ret)
1701                 return ret;
1702
1703         register_die_notifier(&kvm_mips_csr_die_notifier);
1704
1705         return 0;
1706 }
1707
1708 static void __exit kvm_mips_exit(void)
1709 {
1710         kvm_exit();
1711
1712         unregister_die_notifier(&kvm_mips_csr_die_notifier);
1713 }
1714
1715 module_init(kvm_mips_init);
1716 module_exit(kvm_mips_exit);
1717
1718 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);