]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/powerpc/kernel/process.c
Merge tag 'powerpc-4.17-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
[linux.git] / arch / powerpc / kernel / process.c
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/stddef.h>
26 #include <linux/unistd.h>
27 #include <linux/ptrace.h>
28 #include <linux/slab.h>
29 #include <linux/user.h>
30 #include <linux/elf.h>
31 #include <linux/prctl.h>
32 #include <linux/init_task.h>
33 #include <linux/export.h>
34 #include <linux/kallsyms.h>
35 #include <linux/mqueue.h>
36 #include <linux/hardirq.h>
37 #include <linux/utsname.h>
38 #include <linux/ftrace.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/personality.h>
41 #include <linux/random.h>
42 #include <linux/hw_breakpoint.h>
43 #include <linux/uaccess.h>
44 #include <linux/elf-randomize.h>
45 #include <linux/pkeys.h>
46
47 #include <asm/pgtable.h>
48 #include <asm/io.h>
49 #include <asm/processor.h>
50 #include <asm/mmu.h>
51 #include <asm/prom.h>
52 #include <asm/machdep.h>
53 #include <asm/time.h>
54 #include <asm/runlatch.h>
55 #include <asm/syscalls.h>
56 #include <asm/switch_to.h>
57 #include <asm/tm.h>
58 #include <asm/debug.h>
59 #ifdef CONFIG_PPC64
60 #include <asm/firmware.h>
61 #include <asm/hw_irq.h>
62 #endif
63 #include <asm/code-patching.h>
64 #include <asm/exec.h>
65 #include <asm/livepatch.h>
66 #include <asm/cpu_has_feature.h>
67 #include <asm/asm-prototypes.h>
68
69 #include <linux/kprobes.h>
70 #include <linux/kdebug.h>
71
72 /* Transactional Memory debug */
73 #ifdef TM_DEBUG_SW
74 #define TM_DEBUG(x...) printk(KERN_INFO x)
75 #else
76 #define TM_DEBUG(x...) do { } while(0)
77 #endif
78
79 extern unsigned long _get_SP(void);
80
81 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
82 /*
83  * Are we running in "Suspend disabled" mode? If so we have to block any
84  * sigreturn that would get us into suspended state, and we also warn in some
85  * other paths that we should never reach with suspend disabled.
86  */
87 bool tm_suspend_disabled __ro_after_init = false;
88
89 static void check_if_tm_restore_required(struct task_struct *tsk)
90 {
91         /*
92          * If we are saving the current thread's registers, and the
93          * thread is in a transactional state, set the TIF_RESTORE_TM
94          * bit so that we know to restore the registers before
95          * returning to userspace.
96          */
97         if (tsk == current && tsk->thread.regs &&
98             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
99             !test_thread_flag(TIF_RESTORE_TM)) {
100                 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
101                 set_thread_flag(TIF_RESTORE_TM);
102         }
103 }
104
105 static inline bool msr_tm_active(unsigned long msr)
106 {
107         return MSR_TM_ACTIVE(msr);
108 }
109
110 static bool tm_active_with_fp(struct task_struct *tsk)
111 {
112         return msr_tm_active(tsk->thread.regs->msr) &&
113                 (tsk->thread.ckpt_regs.msr & MSR_FP);
114 }
115
116 static bool tm_active_with_altivec(struct task_struct *tsk)
117 {
118         return msr_tm_active(tsk->thread.regs->msr) &&
119                 (tsk->thread.ckpt_regs.msr & MSR_VEC);
120 }
121 #else
122 static inline bool msr_tm_active(unsigned long msr) { return false; }
123 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
124 static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; }
125 static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; }
126 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
127
128 bool strict_msr_control;
129 EXPORT_SYMBOL(strict_msr_control);
130
131 static int __init enable_strict_msr_control(char *str)
132 {
133         strict_msr_control = true;
134         pr_info("Enabling strict facility control\n");
135
136         return 0;
137 }
138 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
139
140 unsigned long msr_check_and_set(unsigned long bits)
141 {
142         unsigned long oldmsr = mfmsr();
143         unsigned long newmsr;
144
145         newmsr = oldmsr | bits;
146
147 #ifdef CONFIG_VSX
148         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
149                 newmsr |= MSR_VSX;
150 #endif
151
152         if (oldmsr != newmsr)
153                 mtmsr_isync(newmsr);
154
155         return newmsr;
156 }
157
158 void __msr_check_and_clear(unsigned long bits)
159 {
160         unsigned long oldmsr = mfmsr();
161         unsigned long newmsr;
162
163         newmsr = oldmsr & ~bits;
164
165 #ifdef CONFIG_VSX
166         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
167                 newmsr &= ~MSR_VSX;
168 #endif
169
170         if (oldmsr != newmsr)
171                 mtmsr_isync(newmsr);
172 }
173 EXPORT_SYMBOL(__msr_check_and_clear);
174
175 #ifdef CONFIG_PPC_FPU
176 static void __giveup_fpu(struct task_struct *tsk)
177 {
178         unsigned long msr;
179
180         save_fpu(tsk);
181         msr = tsk->thread.regs->msr;
182         msr &= ~MSR_FP;
183 #ifdef CONFIG_VSX
184         if (cpu_has_feature(CPU_FTR_VSX))
185                 msr &= ~MSR_VSX;
186 #endif
187         tsk->thread.regs->msr = msr;
188 }
189
190 void giveup_fpu(struct task_struct *tsk)
191 {
192         check_if_tm_restore_required(tsk);
193
194         msr_check_and_set(MSR_FP);
195         __giveup_fpu(tsk);
196         msr_check_and_clear(MSR_FP);
197 }
198 EXPORT_SYMBOL(giveup_fpu);
199
200 /*
201  * Make sure the floating-point register state in the
202  * the thread_struct is up to date for task tsk.
203  */
204 void flush_fp_to_thread(struct task_struct *tsk)
205 {
206         if (tsk->thread.regs) {
207                 /*
208                  * We need to disable preemption here because if we didn't,
209                  * another process could get scheduled after the regs->msr
210                  * test but before we have finished saving the FP registers
211                  * to the thread_struct.  That process could take over the
212                  * FPU, and then when we get scheduled again we would store
213                  * bogus values for the remaining FP registers.
214                  */
215                 preempt_disable();
216                 if (tsk->thread.regs->msr & MSR_FP) {
217                         /*
218                          * This should only ever be called for current or
219                          * for a stopped child process.  Since we save away
220                          * the FP register state on context switch,
221                          * there is something wrong if a stopped child appears
222                          * to still have its FP state in the CPU registers.
223                          */
224                         BUG_ON(tsk != current);
225                         giveup_fpu(tsk);
226                 }
227                 preempt_enable();
228         }
229 }
230 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
231
232 void enable_kernel_fp(void)
233 {
234         unsigned long cpumsr;
235
236         WARN_ON(preemptible());
237
238         cpumsr = msr_check_and_set(MSR_FP);
239
240         if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
241                 check_if_tm_restore_required(current);
242                 /*
243                  * If a thread has already been reclaimed then the
244                  * checkpointed registers are on the CPU but have definitely
245                  * been saved by the reclaim code. Don't need to and *cannot*
246                  * giveup as this would save  to the 'live' structure not the
247                  * checkpointed structure.
248                  */
249                 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
250                         return;
251                 __giveup_fpu(current);
252         }
253 }
254 EXPORT_SYMBOL(enable_kernel_fp);
255
256 static int restore_fp(struct task_struct *tsk)
257 {
258         if (tsk->thread.load_fp || tm_active_with_fp(tsk)) {
259                 load_fp_state(&current->thread.fp_state);
260                 current->thread.load_fp++;
261                 return 1;
262         }
263         return 0;
264 }
265 #else
266 static int restore_fp(struct task_struct *tsk) { return 0; }
267 #endif /* CONFIG_PPC_FPU */
268
269 #ifdef CONFIG_ALTIVEC
270 #define loadvec(thr) ((thr).load_vec)
271
272 static void __giveup_altivec(struct task_struct *tsk)
273 {
274         unsigned long msr;
275
276         save_altivec(tsk);
277         msr = tsk->thread.regs->msr;
278         msr &= ~MSR_VEC;
279 #ifdef CONFIG_VSX
280         if (cpu_has_feature(CPU_FTR_VSX))
281                 msr &= ~MSR_VSX;
282 #endif
283         tsk->thread.regs->msr = msr;
284 }
285
286 void giveup_altivec(struct task_struct *tsk)
287 {
288         check_if_tm_restore_required(tsk);
289
290         msr_check_and_set(MSR_VEC);
291         __giveup_altivec(tsk);
292         msr_check_and_clear(MSR_VEC);
293 }
294 EXPORT_SYMBOL(giveup_altivec);
295
296 void enable_kernel_altivec(void)
297 {
298         unsigned long cpumsr;
299
300         WARN_ON(preemptible());
301
302         cpumsr = msr_check_and_set(MSR_VEC);
303
304         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
305                 check_if_tm_restore_required(current);
306                 /*
307                  * If a thread has already been reclaimed then the
308                  * checkpointed registers are on the CPU but have definitely
309                  * been saved by the reclaim code. Don't need to and *cannot*
310                  * giveup as this would save  to the 'live' structure not the
311                  * checkpointed structure.
312                  */
313                 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
314                         return;
315                 __giveup_altivec(current);
316         }
317 }
318 EXPORT_SYMBOL(enable_kernel_altivec);
319
320 /*
321  * Make sure the VMX/Altivec register state in the
322  * the thread_struct is up to date for task tsk.
323  */
324 void flush_altivec_to_thread(struct task_struct *tsk)
325 {
326         if (tsk->thread.regs) {
327                 preempt_disable();
328                 if (tsk->thread.regs->msr & MSR_VEC) {
329                         BUG_ON(tsk != current);
330                         giveup_altivec(tsk);
331                 }
332                 preempt_enable();
333         }
334 }
335 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
336
337 static int restore_altivec(struct task_struct *tsk)
338 {
339         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
340                 (tsk->thread.load_vec || tm_active_with_altivec(tsk))) {
341                 load_vr_state(&tsk->thread.vr_state);
342                 tsk->thread.used_vr = 1;
343                 tsk->thread.load_vec++;
344
345                 return 1;
346         }
347         return 0;
348 }
349 #else
350 #define loadvec(thr) 0
351 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
352 #endif /* CONFIG_ALTIVEC */
353
354 #ifdef CONFIG_VSX
355 static void __giveup_vsx(struct task_struct *tsk)
356 {
357         unsigned long msr = tsk->thread.regs->msr;
358
359         /*
360          * We should never be ssetting MSR_VSX without also setting
361          * MSR_FP and MSR_VEC
362          */
363         WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
364
365         /* __giveup_fpu will clear MSR_VSX */
366         if (msr & MSR_FP)
367                 __giveup_fpu(tsk);
368         if (msr & MSR_VEC)
369                 __giveup_altivec(tsk);
370 }
371
372 static void giveup_vsx(struct task_struct *tsk)
373 {
374         check_if_tm_restore_required(tsk);
375
376         msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
377         __giveup_vsx(tsk);
378         msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
379 }
380
381 void enable_kernel_vsx(void)
382 {
383         unsigned long cpumsr;
384
385         WARN_ON(preemptible());
386
387         cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
388
389         if (current->thread.regs &&
390             (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
391                 check_if_tm_restore_required(current);
392                 /*
393                  * If a thread has already been reclaimed then the
394                  * checkpointed registers are on the CPU but have definitely
395                  * been saved by the reclaim code. Don't need to and *cannot*
396                  * giveup as this would save  to the 'live' structure not the
397                  * checkpointed structure.
398                  */
399                 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
400                         return;
401                 __giveup_vsx(current);
402         }
403 }
404 EXPORT_SYMBOL(enable_kernel_vsx);
405
406 void flush_vsx_to_thread(struct task_struct *tsk)
407 {
408         if (tsk->thread.regs) {
409                 preempt_disable();
410                 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
411                         BUG_ON(tsk != current);
412                         giveup_vsx(tsk);
413                 }
414                 preempt_enable();
415         }
416 }
417 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
418
419 static int restore_vsx(struct task_struct *tsk)
420 {
421         if (cpu_has_feature(CPU_FTR_VSX)) {
422                 tsk->thread.used_vsr = 1;
423                 return 1;
424         }
425
426         return 0;
427 }
428 #else
429 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
430 #endif /* CONFIG_VSX */
431
432 #ifdef CONFIG_SPE
433 void giveup_spe(struct task_struct *tsk)
434 {
435         check_if_tm_restore_required(tsk);
436
437         msr_check_and_set(MSR_SPE);
438         __giveup_spe(tsk);
439         msr_check_and_clear(MSR_SPE);
440 }
441 EXPORT_SYMBOL(giveup_spe);
442
443 void enable_kernel_spe(void)
444 {
445         WARN_ON(preemptible());
446
447         msr_check_and_set(MSR_SPE);
448
449         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
450                 check_if_tm_restore_required(current);
451                 __giveup_spe(current);
452         }
453 }
454 EXPORT_SYMBOL(enable_kernel_spe);
455
456 void flush_spe_to_thread(struct task_struct *tsk)
457 {
458         if (tsk->thread.regs) {
459                 preempt_disable();
460                 if (tsk->thread.regs->msr & MSR_SPE) {
461                         BUG_ON(tsk != current);
462                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
463                         giveup_spe(tsk);
464                 }
465                 preempt_enable();
466         }
467 }
468 #endif /* CONFIG_SPE */
469
470 static unsigned long msr_all_available;
471
472 static int __init init_msr_all_available(void)
473 {
474 #ifdef CONFIG_PPC_FPU
475         msr_all_available |= MSR_FP;
476 #endif
477 #ifdef CONFIG_ALTIVEC
478         if (cpu_has_feature(CPU_FTR_ALTIVEC))
479                 msr_all_available |= MSR_VEC;
480 #endif
481 #ifdef CONFIG_VSX
482         if (cpu_has_feature(CPU_FTR_VSX))
483                 msr_all_available |= MSR_VSX;
484 #endif
485 #ifdef CONFIG_SPE
486         if (cpu_has_feature(CPU_FTR_SPE))
487                 msr_all_available |= MSR_SPE;
488 #endif
489
490         return 0;
491 }
492 early_initcall(init_msr_all_available);
493
494 void giveup_all(struct task_struct *tsk)
495 {
496         unsigned long usermsr;
497
498         if (!tsk->thread.regs)
499                 return;
500
501         usermsr = tsk->thread.regs->msr;
502
503         if ((usermsr & msr_all_available) == 0)
504                 return;
505
506         msr_check_and_set(msr_all_available);
507         check_if_tm_restore_required(tsk);
508
509         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
510
511 #ifdef CONFIG_PPC_FPU
512         if (usermsr & MSR_FP)
513                 __giveup_fpu(tsk);
514 #endif
515 #ifdef CONFIG_ALTIVEC
516         if (usermsr & MSR_VEC)
517                 __giveup_altivec(tsk);
518 #endif
519 #ifdef CONFIG_SPE
520         if (usermsr & MSR_SPE)
521                 __giveup_spe(tsk);
522 #endif
523
524         msr_check_and_clear(msr_all_available);
525 }
526 EXPORT_SYMBOL(giveup_all);
527
528 void restore_math(struct pt_regs *regs)
529 {
530         unsigned long msr;
531
532         if (!msr_tm_active(regs->msr) &&
533                 !current->thread.load_fp && !loadvec(current->thread))
534                 return;
535
536         msr = regs->msr;
537         msr_check_and_set(msr_all_available);
538
539         /*
540          * Only reload if the bit is not set in the user MSR, the bit BEING set
541          * indicates that the registers are hot
542          */
543         if ((!(msr & MSR_FP)) && restore_fp(current))
544                 msr |= MSR_FP | current->thread.fpexc_mode;
545
546         if ((!(msr & MSR_VEC)) && restore_altivec(current))
547                 msr |= MSR_VEC;
548
549         if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
550                         restore_vsx(current)) {
551                 msr |= MSR_VSX;
552         }
553
554         msr_check_and_clear(msr_all_available);
555
556         regs->msr = msr;
557 }
558
559 static void save_all(struct task_struct *tsk)
560 {
561         unsigned long usermsr;
562
563         if (!tsk->thread.regs)
564                 return;
565
566         usermsr = tsk->thread.regs->msr;
567
568         if ((usermsr & msr_all_available) == 0)
569                 return;
570
571         msr_check_and_set(msr_all_available);
572
573         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
574
575         if (usermsr & MSR_FP)
576                 save_fpu(tsk);
577
578         if (usermsr & MSR_VEC)
579                 save_altivec(tsk);
580
581         if (usermsr & MSR_SPE)
582                 __giveup_spe(tsk);
583
584         msr_check_and_clear(msr_all_available);
585 }
586
587 void flush_all_to_thread(struct task_struct *tsk)
588 {
589         if (tsk->thread.regs) {
590                 preempt_disable();
591                 BUG_ON(tsk != current);
592                 save_all(tsk);
593
594 #ifdef CONFIG_SPE
595                 if (tsk->thread.regs->msr & MSR_SPE)
596                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
597 #endif
598
599                 preempt_enable();
600         }
601 }
602 EXPORT_SYMBOL(flush_all_to_thread);
603
604 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
605 void do_send_trap(struct pt_regs *regs, unsigned long address,
606                   unsigned long error_code, int breakpt)
607 {
608         current->thread.trap_nr = TRAP_HWBKPT;
609         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
610                         11, SIGSEGV) == NOTIFY_STOP)
611                 return;
612
613         /* Deliver the signal to userspace */
614         force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
615                                     (void __user *)address);
616 }
617 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
618 void do_break (struct pt_regs *regs, unsigned long address,
619                     unsigned long error_code)
620 {
621         siginfo_t info;
622
623         current->thread.trap_nr = TRAP_HWBKPT;
624         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
625                         11, SIGSEGV) == NOTIFY_STOP)
626                 return;
627
628         if (debugger_break_match(regs))
629                 return;
630
631         /* Clear the breakpoint */
632         hw_breakpoint_disable();
633
634         /* Deliver the signal to userspace */
635         info.si_signo = SIGTRAP;
636         info.si_errno = 0;
637         info.si_code = TRAP_HWBKPT;
638         info.si_addr = (void __user *)address;
639         force_sig_info(SIGTRAP, &info, current);
640 }
641 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
642
643 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
644
645 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
646 /*
647  * Set the debug registers back to their default "safe" values.
648  */
649 static void set_debug_reg_defaults(struct thread_struct *thread)
650 {
651         thread->debug.iac1 = thread->debug.iac2 = 0;
652 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
653         thread->debug.iac3 = thread->debug.iac4 = 0;
654 #endif
655         thread->debug.dac1 = thread->debug.dac2 = 0;
656 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
657         thread->debug.dvc1 = thread->debug.dvc2 = 0;
658 #endif
659         thread->debug.dbcr0 = 0;
660 #ifdef CONFIG_BOOKE
661         /*
662          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
663          */
664         thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
665                         DBCR1_IAC3US | DBCR1_IAC4US;
666         /*
667          * Force Data Address Compare User/Supervisor bits to be User-only
668          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
669          */
670         thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
671 #else
672         thread->debug.dbcr1 = 0;
673 #endif
674 }
675
676 static void prime_debug_regs(struct debug_reg *debug)
677 {
678         /*
679          * We could have inherited MSR_DE from userspace, since
680          * it doesn't get cleared on exception entry.  Make sure
681          * MSR_DE is clear before we enable any debug events.
682          */
683         mtmsr(mfmsr() & ~MSR_DE);
684
685         mtspr(SPRN_IAC1, debug->iac1);
686         mtspr(SPRN_IAC2, debug->iac2);
687 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
688         mtspr(SPRN_IAC3, debug->iac3);
689         mtspr(SPRN_IAC4, debug->iac4);
690 #endif
691         mtspr(SPRN_DAC1, debug->dac1);
692         mtspr(SPRN_DAC2, debug->dac2);
693 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
694         mtspr(SPRN_DVC1, debug->dvc1);
695         mtspr(SPRN_DVC2, debug->dvc2);
696 #endif
697         mtspr(SPRN_DBCR0, debug->dbcr0);
698         mtspr(SPRN_DBCR1, debug->dbcr1);
699 #ifdef CONFIG_BOOKE
700         mtspr(SPRN_DBCR2, debug->dbcr2);
701 #endif
702 }
703 /*
704  * Unless neither the old or new thread are making use of the
705  * debug registers, set the debug registers from the values
706  * stored in the new thread.
707  */
708 void switch_booke_debug_regs(struct debug_reg *new_debug)
709 {
710         if ((current->thread.debug.dbcr0 & DBCR0_IDM)
711                 || (new_debug->dbcr0 & DBCR0_IDM))
712                         prime_debug_regs(new_debug);
713 }
714 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
715 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
716 #ifndef CONFIG_HAVE_HW_BREAKPOINT
717 static void set_debug_reg_defaults(struct thread_struct *thread)
718 {
719         thread->hw_brk.address = 0;
720         thread->hw_brk.type = 0;
721         if (ppc_breakpoint_available())
722                 set_breakpoint(&thread->hw_brk);
723 }
724 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
725 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
726
727 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
728 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
729 {
730         mtspr(SPRN_DAC1, dabr);
731 #ifdef CONFIG_PPC_47x
732         isync();
733 #endif
734         return 0;
735 }
736 #elif defined(CONFIG_PPC_BOOK3S)
737 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
738 {
739         mtspr(SPRN_DABR, dabr);
740         if (cpu_has_feature(CPU_FTR_DABRX))
741                 mtspr(SPRN_DABRX, dabrx);
742         return 0;
743 }
744 #elif defined(CONFIG_PPC_8xx)
745 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
746 {
747         unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
748         unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
749         unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
750
751         if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
752                 lctrl1 |= 0xa0000;
753         else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
754                 lctrl1 |= 0xf0000;
755         else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
756                 lctrl2 = 0;
757
758         mtspr(SPRN_LCTRL2, 0);
759         mtspr(SPRN_CMPE, addr);
760         mtspr(SPRN_CMPF, addr + 4);
761         mtspr(SPRN_LCTRL1, lctrl1);
762         mtspr(SPRN_LCTRL2, lctrl2);
763
764         return 0;
765 }
766 #else
767 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
768 {
769         return -EINVAL;
770 }
771 #endif
772
773 static inline int set_dabr(struct arch_hw_breakpoint *brk)
774 {
775         unsigned long dabr, dabrx;
776
777         dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
778         dabrx = ((brk->type >> 3) & 0x7);
779
780         if (ppc_md.set_dabr)
781                 return ppc_md.set_dabr(dabr, dabrx);
782
783         return __set_dabr(dabr, dabrx);
784 }
785
786 static inline int set_dawr(struct arch_hw_breakpoint *brk)
787 {
788         unsigned long dawr, dawrx, mrd;
789
790         dawr = brk->address;
791
792         dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
793                                    << (63 - 58); //* read/write bits */
794         dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
795                                    << (63 - 59); //* translate */
796         dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
797                                    >> 3; //* PRIM bits */
798         /* dawr length is stored in field MDR bits 48:53.  Matches range in
799            doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
800            0b111111=64DW.
801            brk->len is in bytes.
802            This aligns up to double word size, shifts and does the bias.
803         */
804         mrd = ((brk->len + 7) >> 3) - 1;
805         dawrx |= (mrd & 0x3f) << (63 - 53);
806
807         if (ppc_md.set_dawr)
808                 return ppc_md.set_dawr(dawr, dawrx);
809         mtspr(SPRN_DAWR, dawr);
810         mtspr(SPRN_DAWRX, dawrx);
811         return 0;
812 }
813
814 void __set_breakpoint(struct arch_hw_breakpoint *brk)
815 {
816         memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
817
818         if (cpu_has_feature(CPU_FTR_DAWR))
819                 // Power8 or later
820                 set_dawr(brk);
821         else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
822                 // Power7 or earlier
823                 set_dabr(brk);
824         else
825                 // Shouldn't happen due to higher level checks
826                 WARN_ON_ONCE(1);
827 }
828
829 void set_breakpoint(struct arch_hw_breakpoint *brk)
830 {
831         preempt_disable();
832         __set_breakpoint(brk);
833         preempt_enable();
834 }
835
836 /* Check if we have DAWR or DABR hardware */
837 bool ppc_breakpoint_available(void)
838 {
839         if (cpu_has_feature(CPU_FTR_DAWR))
840                 return true; /* POWER8 DAWR */
841         if (cpu_has_feature(CPU_FTR_ARCH_207S))
842                 return false; /* POWER9 with DAWR disabled */
843         /* DABR: Everything but POWER8 and POWER9 */
844         return true;
845 }
846 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
847
848 #ifdef CONFIG_PPC64
849 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
850 #endif
851
852 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
853                               struct arch_hw_breakpoint *b)
854 {
855         if (a->address != b->address)
856                 return false;
857         if (a->type != b->type)
858                 return false;
859         if (a->len != b->len)
860                 return false;
861         return true;
862 }
863
864 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
865
866 static inline bool tm_enabled(struct task_struct *tsk)
867 {
868         return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
869 }
870
871 static void tm_reclaim_thread(struct thread_struct *thr,
872                               struct thread_info *ti, uint8_t cause)
873 {
874         /*
875          * Use the current MSR TM suspended bit to track if we have
876          * checkpointed state outstanding.
877          * On signal delivery, we'd normally reclaim the checkpointed
878          * state to obtain stack pointer (see:get_tm_stackpointer()).
879          * This will then directly return to userspace without going
880          * through __switch_to(). However, if the stack frame is bad,
881          * we need to exit this thread which calls __switch_to() which
882          * will again attempt to reclaim the already saved tm state.
883          * Hence we need to check that we've not already reclaimed
884          * this state.
885          * We do this using the current MSR, rather tracking it in
886          * some specific thread_struct bit, as it has the additional
887          * benefit of checking for a potential TM bad thing exception.
888          */
889         if (!MSR_TM_SUSPENDED(mfmsr()))
890                 return;
891
892         giveup_all(container_of(thr, struct task_struct, thread));
893
894         tm_reclaim(thr, cause);
895
896         /*
897          * If we are in a transaction and FP is off then we can't have
898          * used FP inside that transaction. Hence the checkpointed
899          * state is the same as the live state. We need to copy the
900          * live state to the checkpointed state so that when the
901          * transaction is restored, the checkpointed state is correct
902          * and the aborted transaction sees the correct state. We use
903          * ckpt_regs.msr here as that's what tm_reclaim will use to
904          * determine if it's going to write the checkpointed state or
905          * not. So either this will write the checkpointed registers,
906          * or reclaim will. Similarly for VMX.
907          */
908         if ((thr->ckpt_regs.msr & MSR_FP) == 0)
909                 memcpy(&thr->ckfp_state, &thr->fp_state,
910                        sizeof(struct thread_fp_state));
911         if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
912                 memcpy(&thr->ckvr_state, &thr->vr_state,
913                        sizeof(struct thread_vr_state));
914 }
915
916 void tm_reclaim_current(uint8_t cause)
917 {
918         tm_enable();
919         tm_reclaim_thread(&current->thread, current_thread_info(), cause);
920 }
921
922 static inline void tm_reclaim_task(struct task_struct *tsk)
923 {
924         /* We have to work out if we're switching from/to a task that's in the
925          * middle of a transaction.
926          *
927          * In switching we need to maintain a 2nd register state as
928          * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
929          * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
930          * ckvr_state
931          *
932          * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
933          */
934         struct thread_struct *thr = &tsk->thread;
935
936         if (!thr->regs)
937                 return;
938
939         if (!MSR_TM_ACTIVE(thr->regs->msr))
940                 goto out_and_saveregs;
941
942         WARN_ON(tm_suspend_disabled);
943
944         TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
945                  "ccr=%lx, msr=%lx, trap=%lx)\n",
946                  tsk->pid, thr->regs->nip,
947                  thr->regs->ccr, thr->regs->msr,
948                  thr->regs->trap);
949
950         tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
951
952         TM_DEBUG("--- tm_reclaim on pid %d complete\n",
953                  tsk->pid);
954
955 out_and_saveregs:
956         /* Always save the regs here, even if a transaction's not active.
957          * This context-switches a thread's TM info SPRs.  We do it here to
958          * be consistent with the restore path (in recheckpoint) which
959          * cannot happen later in _switch().
960          */
961         tm_save_sprs(thr);
962 }
963
964 extern void __tm_recheckpoint(struct thread_struct *thread);
965
966 void tm_recheckpoint(struct thread_struct *thread)
967 {
968         unsigned long flags;
969
970         if (!(thread->regs->msr & MSR_TM))
971                 return;
972
973         /* We really can't be interrupted here as the TEXASR registers can't
974          * change and later in the trecheckpoint code, we have a userspace R1.
975          * So let's hard disable over this region.
976          */
977         local_irq_save(flags);
978         hard_irq_disable();
979
980         /* The TM SPRs are restored here, so that TEXASR.FS can be set
981          * before the trecheckpoint and no explosion occurs.
982          */
983         tm_restore_sprs(thread);
984
985         __tm_recheckpoint(thread);
986
987         local_irq_restore(flags);
988 }
989
990 static inline void tm_recheckpoint_new_task(struct task_struct *new)
991 {
992         if (!cpu_has_feature(CPU_FTR_TM))
993                 return;
994
995         /* Recheckpoint the registers of the thread we're about to switch to.
996          *
997          * If the task was using FP, we non-lazily reload both the original and
998          * the speculative FP register states.  This is because the kernel
999          * doesn't see if/when a TM rollback occurs, so if we take an FP
1000          * unavailable later, we are unable to determine which set of FP regs
1001          * need to be restored.
1002          */
1003         if (!tm_enabled(new))
1004                 return;
1005
1006         if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1007                 tm_restore_sprs(&new->thread);
1008                 return;
1009         }
1010         /* Recheckpoint to restore original checkpointed register state. */
1011         TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1012                  new->pid, new->thread.regs->msr);
1013
1014         tm_recheckpoint(&new->thread);
1015
1016         /*
1017          * The checkpointed state has been restored but the live state has
1018          * not, ensure all the math functionality is turned off to trigger
1019          * restore_math() to reload.
1020          */
1021         new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1022
1023         TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1024                  "(kernel msr 0x%lx)\n",
1025                  new->pid, mfmsr());
1026 }
1027
1028 static inline void __switch_to_tm(struct task_struct *prev,
1029                 struct task_struct *new)
1030 {
1031         if (cpu_has_feature(CPU_FTR_TM)) {
1032                 if (tm_enabled(prev) || tm_enabled(new))
1033                         tm_enable();
1034
1035                 if (tm_enabled(prev)) {
1036                         prev->thread.load_tm++;
1037                         tm_reclaim_task(prev);
1038                         if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1039                                 prev->thread.regs->msr &= ~MSR_TM;
1040                 }
1041
1042                 tm_recheckpoint_new_task(new);
1043         }
1044 }
1045
1046 /*
1047  * This is called if we are on the way out to userspace and the
1048  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1049  * FP and/or vector state and does so if necessary.
1050  * If userspace is inside a transaction (whether active or
1051  * suspended) and FP/VMX/VSX instructions have ever been enabled
1052  * inside that transaction, then we have to keep them enabled
1053  * and keep the FP/VMX/VSX state loaded while ever the transaction
1054  * continues.  The reason is that if we didn't, and subsequently
1055  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1056  * we don't know whether it's the same transaction, and thus we
1057  * don't know which of the checkpointed state and the transactional
1058  * state to use.
1059  */
1060 void restore_tm_state(struct pt_regs *regs)
1061 {
1062         unsigned long msr_diff;
1063
1064         /*
1065          * This is the only moment we should clear TIF_RESTORE_TM as
1066          * it is here that ckpt_regs.msr and pt_regs.msr become the same
1067          * again, anything else could lead to an incorrect ckpt_msr being
1068          * saved and therefore incorrect signal contexts.
1069          */
1070         clear_thread_flag(TIF_RESTORE_TM);
1071         if (!MSR_TM_ACTIVE(regs->msr))
1072                 return;
1073
1074         msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1075         msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1076
1077         /* Ensure that restore_math() will restore */
1078         if (msr_diff & MSR_FP)
1079                 current->thread.load_fp = 1;
1080 #ifdef CONFIG_ALTIVEC
1081         if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1082                 current->thread.load_vec = 1;
1083 #endif
1084         restore_math(regs);
1085
1086         regs->msr |= msr_diff;
1087 }
1088
1089 #else
1090 #define tm_recheckpoint_new_task(new)
1091 #define __switch_to_tm(prev, new)
1092 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1093
1094 static inline void save_sprs(struct thread_struct *t)
1095 {
1096 #ifdef CONFIG_ALTIVEC
1097         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1098                 t->vrsave = mfspr(SPRN_VRSAVE);
1099 #endif
1100 #ifdef CONFIG_PPC_BOOK3S_64
1101         if (cpu_has_feature(CPU_FTR_DSCR))
1102                 t->dscr = mfspr(SPRN_DSCR);
1103
1104         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1105                 t->bescr = mfspr(SPRN_BESCR);
1106                 t->ebbhr = mfspr(SPRN_EBBHR);
1107                 t->ebbrr = mfspr(SPRN_EBBRR);
1108
1109                 t->fscr = mfspr(SPRN_FSCR);
1110
1111                 /*
1112                  * Note that the TAR is not available for use in the kernel.
1113                  * (To provide this, the TAR should be backed up/restored on
1114                  * exception entry/exit instead, and be in pt_regs.  FIXME,
1115                  * this should be in pt_regs anyway (for debug).)
1116                  */
1117                 t->tar = mfspr(SPRN_TAR);
1118         }
1119 #endif
1120
1121         thread_pkey_regs_save(t);
1122 }
1123
1124 static inline void restore_sprs(struct thread_struct *old_thread,
1125                                 struct thread_struct *new_thread)
1126 {
1127 #ifdef CONFIG_ALTIVEC
1128         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1129             old_thread->vrsave != new_thread->vrsave)
1130                 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1131 #endif
1132 #ifdef CONFIG_PPC_BOOK3S_64
1133         if (cpu_has_feature(CPU_FTR_DSCR)) {
1134                 u64 dscr = get_paca()->dscr_default;
1135                 if (new_thread->dscr_inherit)
1136                         dscr = new_thread->dscr;
1137
1138                 if (old_thread->dscr != dscr)
1139                         mtspr(SPRN_DSCR, dscr);
1140         }
1141
1142         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1143                 if (old_thread->bescr != new_thread->bescr)
1144                         mtspr(SPRN_BESCR, new_thread->bescr);
1145                 if (old_thread->ebbhr != new_thread->ebbhr)
1146                         mtspr(SPRN_EBBHR, new_thread->ebbhr);
1147                 if (old_thread->ebbrr != new_thread->ebbrr)
1148                         mtspr(SPRN_EBBRR, new_thread->ebbrr);
1149
1150                 if (old_thread->fscr != new_thread->fscr)
1151                         mtspr(SPRN_FSCR, new_thread->fscr);
1152
1153                 if (old_thread->tar != new_thread->tar)
1154                         mtspr(SPRN_TAR, new_thread->tar);
1155         }
1156
1157         if (cpu_has_feature(CPU_FTR_ARCH_300) &&
1158             old_thread->tidr != new_thread->tidr)
1159                 mtspr(SPRN_TIDR, new_thread->tidr);
1160 #endif
1161
1162         thread_pkey_regs_restore(new_thread, old_thread);
1163 }
1164
1165 #ifdef CONFIG_PPC_BOOK3S_64
1166 #define CP_SIZE 128
1167 static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
1168 #endif
1169
1170 struct task_struct *__switch_to(struct task_struct *prev,
1171         struct task_struct *new)
1172 {
1173         struct thread_struct *new_thread, *old_thread;
1174         struct task_struct *last;
1175 #ifdef CONFIG_PPC_BOOK3S_64
1176         struct ppc64_tlb_batch *batch;
1177 #endif
1178
1179         new_thread = &new->thread;
1180         old_thread = &current->thread;
1181
1182         WARN_ON(!irqs_disabled());
1183
1184 #ifdef CONFIG_PPC64
1185         /*
1186          * Collect processor utilization data per process
1187          */
1188         if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1189                 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1190                 long unsigned start_tb, current_tb;
1191                 start_tb = old_thread->start_tb;
1192                 cu->current_tb = current_tb = mfspr(SPRN_PURR);
1193                 old_thread->accum_tb += (current_tb - start_tb);
1194                 new_thread->start_tb = current_tb;
1195         }
1196 #endif /* CONFIG_PPC64 */
1197
1198 #ifdef CONFIG_PPC_BOOK3S_64
1199         batch = this_cpu_ptr(&ppc64_tlb_batch);
1200         if (batch->active) {
1201                 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1202                 if (batch->index)
1203                         __flush_tlb_pending(batch);
1204                 batch->active = 0;
1205         }
1206 #endif /* CONFIG_PPC_BOOK3S_64 */
1207
1208 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1209         switch_booke_debug_regs(&new->thread.debug);
1210 #else
1211 /*
1212  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1213  * schedule DABR
1214  */
1215 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1216         if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1217                 __set_breakpoint(&new->thread.hw_brk);
1218 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1219 #endif
1220
1221         /*
1222          * We need to save SPRs before treclaim/trecheckpoint as these will
1223          * change a number of them.
1224          */
1225         save_sprs(&prev->thread);
1226
1227         /* Save FPU, Altivec, VSX and SPE state */
1228         giveup_all(prev);
1229
1230         __switch_to_tm(prev, new);
1231
1232         if (!radix_enabled()) {
1233                 /*
1234                  * We can't take a PMU exception inside _switch() since there
1235                  * is a window where the kernel stack SLB and the kernel stack
1236                  * are out of sync. Hard disable here.
1237                  */
1238                 hard_irq_disable();
1239         }
1240
1241         /*
1242          * Call restore_sprs() before calling _switch(). If we move it after
1243          * _switch() then we miss out on calling it for new tasks. The reason
1244          * for this is we manually create a stack frame for new tasks that
1245          * directly returns through ret_from_fork() or
1246          * ret_from_kernel_thread(). See copy_thread() for details.
1247          */
1248         restore_sprs(old_thread, new_thread);
1249
1250         last = _switch(old_thread, new_thread);
1251
1252 #ifdef CONFIG_PPC_BOOK3S_64
1253         if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1254                 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1255                 batch = this_cpu_ptr(&ppc64_tlb_batch);
1256                 batch->active = 1;
1257         }
1258
1259         if (current_thread_info()->task->thread.regs) {
1260                 restore_math(current_thread_info()->task->thread.regs);
1261
1262                 /*
1263                  * The copy-paste buffer can only store into foreign real
1264                  * addresses, so unprivileged processes can not see the
1265                  * data or use it in any way unless they have foreign real
1266                  * mappings. If the new process has the foreign real address
1267                  * mappings, we must issue a cp_abort to clear any state and
1268                  * prevent snooping, corruption or a covert channel.
1269                  *
1270                  * DD1 allows paste into normal system memory so we do an
1271                  * unpaired copy, rather than cp_abort, to clear the buffer,
1272                  * since cp_abort is quite expensive.
1273                  */
1274                 if (current_thread_info()->task->thread.used_vas) {
1275                         asm volatile(PPC_CP_ABORT);
1276                 } else if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
1277                         asm volatile(PPC_COPY(%0, %1)
1278                                         : : "r"(dummy_copy_buffer), "r"(0));
1279                 }
1280         }
1281 #endif /* CONFIG_PPC_BOOK3S_64 */
1282
1283         return last;
1284 }
1285
1286 static int instructions_to_print = 16;
1287
1288 static void show_instructions(struct pt_regs *regs)
1289 {
1290         int i;
1291         unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1292                         sizeof(int));
1293
1294         printk("Instruction dump:");
1295
1296         for (i = 0; i < instructions_to_print; i++) {
1297                 int instr;
1298
1299                 if (!(i % 8))
1300                         pr_cont("\n");
1301
1302 #if !defined(CONFIG_BOOKE)
1303                 /* If executing with the IMMU off, adjust pc rather
1304                  * than print XXXXXXXX.
1305                  */
1306                 if (!(regs->msr & MSR_IR))
1307                         pc = (unsigned long)phys_to_virt(pc);
1308 #endif
1309
1310                 if (!__kernel_text_address(pc) ||
1311                      probe_kernel_address((unsigned int __user *)pc, instr)) {
1312                         pr_cont("XXXXXXXX ");
1313                 } else {
1314                         if (regs->nip == pc)
1315                                 pr_cont("<%08x> ", instr);
1316                         else
1317                                 pr_cont("%08x ", instr);
1318                 }
1319
1320                 pc += sizeof(int);
1321         }
1322
1323         pr_cont("\n");
1324 }
1325
1326 struct regbit {
1327         unsigned long bit;
1328         const char *name;
1329 };
1330
1331 static struct regbit msr_bits[] = {
1332 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1333         {MSR_SF,        "SF"},
1334         {MSR_HV,        "HV"},
1335 #endif
1336         {MSR_VEC,       "VEC"},
1337         {MSR_VSX,       "VSX"},
1338 #ifdef CONFIG_BOOKE
1339         {MSR_CE,        "CE"},
1340 #endif
1341         {MSR_EE,        "EE"},
1342         {MSR_PR,        "PR"},
1343         {MSR_FP,        "FP"},
1344         {MSR_ME,        "ME"},
1345 #ifdef CONFIG_BOOKE
1346         {MSR_DE,        "DE"},
1347 #else
1348         {MSR_SE,        "SE"},
1349         {MSR_BE,        "BE"},
1350 #endif
1351         {MSR_IR,        "IR"},
1352         {MSR_DR,        "DR"},
1353         {MSR_PMM,       "PMM"},
1354 #ifndef CONFIG_BOOKE
1355         {MSR_RI,        "RI"},
1356         {MSR_LE,        "LE"},
1357 #endif
1358         {0,             NULL}
1359 };
1360
1361 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1362 {
1363         const char *s = "";
1364
1365         for (; bits->bit; ++bits)
1366                 if (val & bits->bit) {
1367                         pr_cont("%s%s", s, bits->name);
1368                         s = sep;
1369                 }
1370 }
1371
1372 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1373 static struct regbit msr_tm_bits[] = {
1374         {MSR_TS_T,      "T"},
1375         {MSR_TS_S,      "S"},
1376         {MSR_TM,        "E"},
1377         {0,             NULL}
1378 };
1379
1380 static void print_tm_bits(unsigned long val)
1381 {
1382 /*
1383  * This only prints something if at least one of the TM bit is set.
1384  * Inside the TM[], the output means:
1385  *   E: Enabled         (bit 32)
1386  *   S: Suspended       (bit 33)
1387  *   T: Transactional   (bit 34)
1388  */
1389         if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1390                 pr_cont(",TM[");
1391                 print_bits(val, msr_tm_bits, "");
1392                 pr_cont("]");
1393         }
1394 }
1395 #else
1396 static void print_tm_bits(unsigned long val) {}
1397 #endif
1398
1399 static void print_msr_bits(unsigned long val)
1400 {
1401         pr_cont("<");
1402         print_bits(val, msr_bits, ",");
1403         print_tm_bits(val);
1404         pr_cont(">");
1405 }
1406
1407 #ifdef CONFIG_PPC64
1408 #define REG             "%016lx"
1409 #define REGS_PER_LINE   4
1410 #define LAST_VOLATILE   13
1411 #else
1412 #define REG             "%08lx"
1413 #define REGS_PER_LINE   8
1414 #define LAST_VOLATILE   12
1415 #endif
1416
1417 void show_regs(struct pt_regs * regs)
1418 {
1419         int i, trap;
1420
1421         show_regs_print_info(KERN_DEFAULT);
1422
1423         printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1424                regs->nip, regs->link, regs->ctr);
1425         printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1426                regs, regs->trap, print_tainted(), init_utsname()->release);
1427         printk("MSR:  "REG" ", regs->msr);
1428         print_msr_bits(regs->msr);
1429         pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1430         trap = TRAP(regs);
1431         if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1432                 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1433         if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1434 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1435                 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1436 #else
1437                 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1438 #endif
1439 #ifdef CONFIG_PPC64
1440         pr_cont("SOFTE: %ld ", regs->softe);
1441 #endif
1442 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1443         if (MSR_TM_ACTIVE(regs->msr))
1444                 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1445 #endif
1446
1447         for (i = 0;  i < 32;  i++) {
1448                 if ((i % REGS_PER_LINE) == 0)
1449                         pr_cont("\nGPR%02d: ", i);
1450                 pr_cont(REG " ", regs->gpr[i]);
1451                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1452                         break;
1453         }
1454         pr_cont("\n");
1455 #ifdef CONFIG_KALLSYMS
1456         /*
1457          * Lookup NIP late so we have the best change of getting the
1458          * above info out without failing
1459          */
1460         printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1461         printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1462 #endif
1463         show_stack(current, (unsigned long *) regs->gpr[1]);
1464         if (!user_mode(regs))
1465                 show_instructions(regs);
1466 }
1467
1468 void flush_thread(void)
1469 {
1470 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1471         flush_ptrace_hw_breakpoint(current);
1472 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1473         set_debug_reg_defaults(&current->thread);
1474 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1475 }
1476
1477 int set_thread_uses_vas(void)
1478 {
1479 #ifdef CONFIG_PPC_BOOK3S_64
1480         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1481                 return -EINVAL;
1482
1483         current->thread.used_vas = 1;
1484
1485         /*
1486          * Even a process that has no foreign real address mapping can use
1487          * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
1488          * to clear any pending COPY and prevent a covert channel.
1489          *
1490          * __switch_to() will issue CP_ABORT on future context switches.
1491          */
1492         asm volatile(PPC_CP_ABORT);
1493
1494 #endif /* CONFIG_PPC_BOOK3S_64 */
1495         return 0;
1496 }
1497
1498 #ifdef CONFIG_PPC64
1499 static DEFINE_SPINLOCK(vas_thread_id_lock);
1500 static DEFINE_IDA(vas_thread_ida);
1501
1502 /*
1503  * We need to assign a unique thread id to each thread in a process.
1504  *
1505  * This thread id, referred to as TIDR, and separate from the Linux's tgid,
1506  * is intended to be used to direct an ASB_Notify from the hardware to the
1507  * thread, when a suitable event occurs in the system.
1508  *
1509  * One such event is a "paste" instruction in the context of Fast Thread
1510  * Wakeup (aka Core-to-core wake up in the Virtual Accelerator Switchboard
1511  * (VAS) in POWER9.
1512  *
1513  * To get a unique TIDR per process we could simply reuse task_pid_nr() but
1514  * the problem is that task_pid_nr() is not yet available copy_thread() is
1515  * called. Fixing that would require changing more intrusive arch-neutral
1516  * code in code path in copy_process()?.
1517  *
1518  * Further, to assign unique TIDRs within each process, we need an atomic
1519  * field (or an IDR) in task_struct, which again intrudes into the arch-
1520  * neutral code. So try to assign globally unique TIDRs for now.
1521  *
1522  * NOTE: TIDR 0 indicates that the thread does not need a TIDR value.
1523  *       For now, only threads that expect to be notified by the VAS
1524  *       hardware need a TIDR value and we assign values > 0 for those.
1525  */
1526 #define MAX_THREAD_CONTEXT      ((1 << 16) - 1)
1527 static int assign_thread_tidr(void)
1528 {
1529         int index;
1530         int err;
1531         unsigned long flags;
1532
1533 again:
1534         if (!ida_pre_get(&vas_thread_ida, GFP_KERNEL))
1535                 return -ENOMEM;
1536
1537         spin_lock_irqsave(&vas_thread_id_lock, flags);
1538         err = ida_get_new_above(&vas_thread_ida, 1, &index);
1539         spin_unlock_irqrestore(&vas_thread_id_lock, flags);
1540
1541         if (err == -EAGAIN)
1542                 goto again;
1543         else if (err)
1544                 return err;
1545
1546         if (index > MAX_THREAD_CONTEXT) {
1547                 spin_lock_irqsave(&vas_thread_id_lock, flags);
1548                 ida_remove(&vas_thread_ida, index);
1549                 spin_unlock_irqrestore(&vas_thread_id_lock, flags);
1550                 return -ENOMEM;
1551         }
1552
1553         return index;
1554 }
1555
1556 static void free_thread_tidr(int id)
1557 {
1558         unsigned long flags;
1559
1560         spin_lock_irqsave(&vas_thread_id_lock, flags);
1561         ida_remove(&vas_thread_ida, id);
1562         spin_unlock_irqrestore(&vas_thread_id_lock, flags);
1563 }
1564
1565 /*
1566  * Clear any TIDR value assigned to this thread.
1567  */
1568 void clear_thread_tidr(struct task_struct *t)
1569 {
1570         if (!t->thread.tidr)
1571                 return;
1572
1573         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1574                 WARN_ON_ONCE(1);
1575                 return;
1576         }
1577
1578         mtspr(SPRN_TIDR, 0);
1579         free_thread_tidr(t->thread.tidr);
1580         t->thread.tidr = 0;
1581 }
1582
1583 void arch_release_task_struct(struct task_struct *t)
1584 {
1585         clear_thread_tidr(t);
1586 }
1587
1588 /*
1589  * Assign a unique TIDR (thread id) for task @t and set it in the thread
1590  * structure. For now, we only support setting TIDR for 'current' task.
1591  */
1592 int set_thread_tidr(struct task_struct *t)
1593 {
1594         int rc;
1595
1596         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1597                 return -EINVAL;
1598
1599         if (t != current)
1600                 return -EINVAL;
1601
1602         if (t->thread.tidr)
1603                 return 0;
1604
1605         rc = assign_thread_tidr();
1606         if (rc < 0)
1607                 return rc;
1608
1609         t->thread.tidr = rc;
1610         mtspr(SPRN_TIDR, t->thread.tidr);
1611
1612         return 0;
1613 }
1614 EXPORT_SYMBOL_GPL(set_thread_tidr);
1615
1616 #endif /* CONFIG_PPC64 */
1617
1618 void
1619 release_thread(struct task_struct *t)
1620 {
1621 }
1622
1623 /*
1624  * this gets called so that we can store coprocessor state into memory and
1625  * copy the current task into the new thread.
1626  */
1627 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1628 {
1629         flush_all_to_thread(src);
1630         /*
1631          * Flush TM state out so we can copy it.  __switch_to_tm() does this
1632          * flush but it removes the checkpointed state from the current CPU and
1633          * transitions the CPU out of TM mode.  Hence we need to call
1634          * tm_recheckpoint_new_task() (on the same task) to restore the
1635          * checkpointed state back and the TM mode.
1636          *
1637          * Can't pass dst because it isn't ready. Doesn't matter, passing
1638          * dst is only important for __switch_to()
1639          */
1640         __switch_to_tm(src, src);
1641
1642         *dst = *src;
1643
1644         clear_task_ebb(dst);
1645
1646         return 0;
1647 }
1648
1649 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1650 {
1651 #ifdef CONFIG_PPC_BOOK3S_64
1652         unsigned long sp_vsid;
1653         unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1654
1655         if (radix_enabled())
1656                 return;
1657
1658         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1659                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1660                         << SLB_VSID_SHIFT_1T;
1661         else
1662                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1663                         << SLB_VSID_SHIFT;
1664         sp_vsid |= SLB_VSID_KERNEL | llp;
1665         p->thread.ksp_vsid = sp_vsid;
1666 #endif
1667 }
1668
1669 /*
1670  * Copy a thread..
1671  */
1672
1673 /*
1674  * Copy architecture-specific thread state
1675  */
1676 int copy_thread(unsigned long clone_flags, unsigned long usp,
1677                 unsigned long kthread_arg, struct task_struct *p)
1678 {
1679         struct pt_regs *childregs, *kregs;
1680         extern void ret_from_fork(void);
1681         extern void ret_from_kernel_thread(void);
1682         void (*f)(void);
1683         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1684         struct thread_info *ti = task_thread_info(p);
1685
1686         klp_init_thread_info(ti);
1687
1688         /* Copy registers */
1689         sp -= sizeof(struct pt_regs);
1690         childregs = (struct pt_regs *) sp;
1691         if (unlikely(p->flags & PF_KTHREAD)) {
1692                 /* kernel thread */
1693                 memset(childregs, 0, sizeof(struct pt_regs));
1694                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1695                 /* function */
1696                 if (usp)
1697                         childregs->gpr[14] = ppc_function_entry((void *)usp);
1698 #ifdef CONFIG_PPC64
1699                 clear_tsk_thread_flag(p, TIF_32BIT);
1700                 childregs->softe = IRQS_ENABLED;
1701 #endif
1702                 childregs->gpr[15] = kthread_arg;
1703                 p->thread.regs = NULL;  /* no user register state */
1704                 ti->flags |= _TIF_RESTOREALL;
1705                 f = ret_from_kernel_thread;
1706         } else {
1707                 /* user thread */
1708                 struct pt_regs *regs = current_pt_regs();
1709                 CHECK_FULL_REGS(regs);
1710                 *childregs = *regs;
1711                 if (usp)
1712                         childregs->gpr[1] = usp;
1713                 p->thread.regs = childregs;
1714                 childregs->gpr[3] = 0;  /* Result from fork() */
1715                 if (clone_flags & CLONE_SETTLS) {
1716 #ifdef CONFIG_PPC64
1717                         if (!is_32bit_task())
1718                                 childregs->gpr[13] = childregs->gpr[6];
1719                         else
1720 #endif
1721                                 childregs->gpr[2] = childregs->gpr[6];
1722                 }
1723
1724                 f = ret_from_fork;
1725         }
1726         childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1727         sp -= STACK_FRAME_OVERHEAD;
1728
1729         /*
1730          * The way this works is that at some point in the future
1731          * some task will call _switch to switch to the new task.
1732          * That will pop off the stack frame created below and start
1733          * the new task running at ret_from_fork.  The new task will
1734          * do some house keeping and then return from the fork or clone
1735          * system call, using the stack frame created above.
1736          */
1737         ((unsigned long *)sp)[0] = 0;
1738         sp -= sizeof(struct pt_regs);
1739         kregs = (struct pt_regs *) sp;
1740         sp -= STACK_FRAME_OVERHEAD;
1741         p->thread.ksp = sp;
1742 #ifdef CONFIG_PPC32
1743         p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1744                                 _ALIGN_UP(sizeof(struct thread_info), 16);
1745 #endif
1746 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1747         p->thread.ptrace_bps[0] = NULL;
1748 #endif
1749
1750         p->thread.fp_save_area = NULL;
1751 #ifdef CONFIG_ALTIVEC
1752         p->thread.vr_save_area = NULL;
1753 #endif
1754
1755         setup_ksp_vsid(p, sp);
1756
1757 #ifdef CONFIG_PPC64 
1758         if (cpu_has_feature(CPU_FTR_DSCR)) {
1759                 p->thread.dscr_inherit = current->thread.dscr_inherit;
1760                 p->thread.dscr = mfspr(SPRN_DSCR);
1761         }
1762         if (cpu_has_feature(CPU_FTR_HAS_PPR))
1763                 p->thread.ppr = INIT_PPR;
1764
1765         p->thread.tidr = 0;
1766 #endif
1767         kregs->nip = ppc_function_entry(f);
1768         return 0;
1769 }
1770
1771 /*
1772  * Set up a thread for executing a new program
1773  */
1774 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1775 {
1776 #ifdef CONFIG_PPC64
1777         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1778 #endif
1779
1780         /*
1781          * If we exec out of a kernel thread then thread.regs will not be
1782          * set.  Do it now.
1783          */
1784         if (!current->thread.regs) {
1785                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1786                 current->thread.regs = regs - 1;
1787         }
1788
1789 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1790         /*
1791          * Clear any transactional state, we're exec()ing. The cause is
1792          * not important as there will never be a recheckpoint so it's not
1793          * user visible.
1794          */
1795         if (MSR_TM_SUSPENDED(mfmsr()))
1796                 tm_reclaim_current(0);
1797 #endif
1798
1799         memset(regs->gpr, 0, sizeof(regs->gpr));
1800         regs->ctr = 0;
1801         regs->link = 0;
1802         regs->xer = 0;
1803         regs->ccr = 0;
1804         regs->gpr[1] = sp;
1805
1806         /*
1807          * We have just cleared all the nonvolatile GPRs, so make
1808          * FULL_REGS(regs) return true.  This is necessary to allow
1809          * ptrace to examine the thread immediately after exec.
1810          */
1811         regs->trap &= ~1UL;
1812
1813 #ifdef CONFIG_PPC32
1814         regs->mq = 0;
1815         regs->nip = start;
1816         regs->msr = MSR_USER;
1817 #else
1818         if (!is_32bit_task()) {
1819                 unsigned long entry;
1820
1821                 if (is_elf2_task()) {
1822                         /* Look ma, no function descriptors! */
1823                         entry = start;
1824
1825                         /*
1826                          * Ulrich says:
1827                          *   The latest iteration of the ABI requires that when
1828                          *   calling a function (at its global entry point),
1829                          *   the caller must ensure r12 holds the entry point
1830                          *   address (so that the function can quickly
1831                          *   establish addressability).
1832                          */
1833                         regs->gpr[12] = start;
1834                         /* Make sure that's restored on entry to userspace. */
1835                         set_thread_flag(TIF_RESTOREALL);
1836                 } else {
1837                         unsigned long toc;
1838
1839                         /* start is a relocated pointer to the function
1840                          * descriptor for the elf _start routine.  The first
1841                          * entry in the function descriptor is the entry
1842                          * address of _start and the second entry is the TOC
1843                          * value we need to use.
1844                          */
1845                         __get_user(entry, (unsigned long __user *)start);
1846                         __get_user(toc, (unsigned long __user *)start+1);
1847
1848                         /* Check whether the e_entry function descriptor entries
1849                          * need to be relocated before we can use them.
1850                          */
1851                         if (load_addr != 0) {
1852                                 entry += load_addr;
1853                                 toc   += load_addr;
1854                         }
1855                         regs->gpr[2] = toc;
1856                 }
1857                 regs->nip = entry;
1858                 regs->msr = MSR_USER64;
1859         } else {
1860                 regs->nip = start;
1861                 regs->gpr[2] = 0;
1862                 regs->msr = MSR_USER32;
1863         }
1864 #endif
1865 #ifdef CONFIG_VSX
1866         current->thread.used_vsr = 0;
1867 #endif
1868         current->thread.load_fp = 0;
1869         memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1870         current->thread.fp_save_area = NULL;
1871 #ifdef CONFIG_ALTIVEC
1872         memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1873         current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1874         current->thread.vr_save_area = NULL;
1875         current->thread.vrsave = 0;
1876         current->thread.used_vr = 0;
1877         current->thread.load_vec = 0;
1878 #endif /* CONFIG_ALTIVEC */
1879 #ifdef CONFIG_SPE
1880         memset(current->thread.evr, 0, sizeof(current->thread.evr));
1881         current->thread.acc = 0;
1882         current->thread.spefscr = 0;
1883         current->thread.used_spe = 0;
1884 #endif /* CONFIG_SPE */
1885 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1886         current->thread.tm_tfhar = 0;
1887         current->thread.tm_texasr = 0;
1888         current->thread.tm_tfiar = 0;
1889         current->thread.load_tm = 0;
1890 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1891
1892         thread_pkey_regs_init(&current->thread);
1893 }
1894 EXPORT_SYMBOL(start_thread);
1895
1896 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1897                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1898
1899 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1900 {
1901         struct pt_regs *regs = tsk->thread.regs;
1902
1903         /* This is a bit hairy.  If we are an SPE enabled  processor
1904          * (have embedded fp) we store the IEEE exception enable flags in
1905          * fpexc_mode.  fpexc_mode is also used for setting FP exception
1906          * mode (asyn, precise, disabled) for 'Classic' FP. */
1907         if (val & PR_FP_EXC_SW_ENABLE) {
1908 #ifdef CONFIG_SPE
1909                 if (cpu_has_feature(CPU_FTR_SPE)) {
1910                         /*
1911                          * When the sticky exception bits are set
1912                          * directly by userspace, it must call prctl
1913                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1914                          * in the existing prctl settings) or
1915                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1916                          * the bits being set).  <fenv.h> functions
1917                          * saving and restoring the whole
1918                          * floating-point environment need to do so
1919                          * anyway to restore the prctl settings from
1920                          * the saved environment.
1921                          */
1922                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1923                         tsk->thread.fpexc_mode = val &
1924                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1925                         return 0;
1926                 } else {
1927                         return -EINVAL;
1928                 }
1929 #else
1930                 return -EINVAL;
1931 #endif
1932         }
1933
1934         /* on a CONFIG_SPE this does not hurt us.  The bits that
1935          * __pack_fe01 use do not overlap with bits used for
1936          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1937          * on CONFIG_SPE implementations are reserved so writing to
1938          * them does not change anything */
1939         if (val > PR_FP_EXC_PRECISE)
1940                 return -EINVAL;
1941         tsk->thread.fpexc_mode = __pack_fe01(val);
1942         if (regs != NULL && (regs->msr & MSR_FP) != 0)
1943                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1944                         | tsk->thread.fpexc_mode;
1945         return 0;
1946 }
1947
1948 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1949 {
1950         unsigned int val;
1951
1952         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1953 #ifdef CONFIG_SPE
1954                 if (cpu_has_feature(CPU_FTR_SPE)) {
1955                         /*
1956                          * When the sticky exception bits are set
1957                          * directly by userspace, it must call prctl
1958                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1959                          * in the existing prctl settings) or
1960                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1961                          * the bits being set).  <fenv.h> functions
1962                          * saving and restoring the whole
1963                          * floating-point environment need to do so
1964                          * anyway to restore the prctl settings from
1965                          * the saved environment.
1966                          */
1967                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1968                         val = tsk->thread.fpexc_mode;
1969                 } else
1970                         return -EINVAL;
1971 #else
1972                 return -EINVAL;
1973 #endif
1974         else
1975                 val = __unpack_fe01(tsk->thread.fpexc_mode);
1976         return put_user(val, (unsigned int __user *) adr);
1977 }
1978
1979 int set_endian(struct task_struct *tsk, unsigned int val)
1980 {
1981         struct pt_regs *regs = tsk->thread.regs;
1982
1983         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1984             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1985                 return -EINVAL;
1986
1987         if (regs == NULL)
1988                 return -EINVAL;
1989
1990         if (val == PR_ENDIAN_BIG)
1991                 regs->msr &= ~MSR_LE;
1992         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1993                 regs->msr |= MSR_LE;
1994         else
1995                 return -EINVAL;
1996
1997         return 0;
1998 }
1999
2000 int get_endian(struct task_struct *tsk, unsigned long adr)
2001 {
2002         struct pt_regs *regs = tsk->thread.regs;
2003         unsigned int val;
2004
2005         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
2006             !cpu_has_feature(CPU_FTR_REAL_LE))
2007                 return -EINVAL;
2008
2009         if (regs == NULL)
2010                 return -EINVAL;
2011
2012         if (regs->msr & MSR_LE) {
2013                 if (cpu_has_feature(CPU_FTR_REAL_LE))
2014                         val = PR_ENDIAN_LITTLE;
2015                 else
2016                         val = PR_ENDIAN_PPC_LITTLE;
2017         } else
2018                 val = PR_ENDIAN_BIG;
2019
2020         return put_user(val, (unsigned int __user *)adr);
2021 }
2022
2023 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
2024 {
2025         tsk->thread.align_ctl = val;
2026         return 0;
2027 }
2028
2029 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
2030 {
2031         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
2032 }
2033
2034 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
2035                                   unsigned long nbytes)
2036 {
2037         unsigned long stack_page;
2038         unsigned long cpu = task_cpu(p);
2039
2040         /*
2041          * Avoid crashing if the stack has overflowed and corrupted
2042          * task_cpu(p), which is in the thread_info struct.
2043          */
2044         if (cpu < NR_CPUS && cpu_possible(cpu)) {
2045                 stack_page = (unsigned long) hardirq_ctx[cpu];
2046                 if (sp >= stack_page + sizeof(struct thread_struct)
2047                     && sp <= stack_page + THREAD_SIZE - nbytes)
2048                         return 1;
2049
2050                 stack_page = (unsigned long) softirq_ctx[cpu];
2051                 if (sp >= stack_page + sizeof(struct thread_struct)
2052                     && sp <= stack_page + THREAD_SIZE - nbytes)
2053                         return 1;
2054         }
2055         return 0;
2056 }
2057
2058 int validate_sp(unsigned long sp, struct task_struct *p,
2059                        unsigned long nbytes)
2060 {
2061         unsigned long stack_page = (unsigned long)task_stack_page(p);
2062
2063         if (sp >= stack_page + sizeof(struct thread_struct)
2064             && sp <= stack_page + THREAD_SIZE - nbytes)
2065                 return 1;
2066
2067         return valid_irq_stack(sp, p, nbytes);
2068 }
2069
2070 EXPORT_SYMBOL(validate_sp);
2071
2072 unsigned long get_wchan(struct task_struct *p)
2073 {
2074         unsigned long ip, sp;
2075         int count = 0;
2076
2077         if (!p || p == current || p->state == TASK_RUNNING)
2078                 return 0;
2079
2080         sp = p->thread.ksp;
2081         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2082                 return 0;
2083
2084         do {
2085                 sp = *(unsigned long *)sp;
2086                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2087                     p->state == TASK_RUNNING)
2088                         return 0;
2089                 if (count > 0) {
2090                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2091                         if (!in_sched_functions(ip))
2092                                 return ip;
2093                 }
2094         } while (count++ < 16);
2095         return 0;
2096 }
2097
2098 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2099
2100 void show_stack(struct task_struct *tsk, unsigned long *stack)
2101 {
2102         unsigned long sp, ip, lr, newsp;
2103         int count = 0;
2104         int firstframe = 1;
2105 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2106         int curr_frame = current->curr_ret_stack;
2107         extern void return_to_handler(void);
2108         unsigned long rth = (unsigned long)return_to_handler;
2109 #endif
2110
2111         sp = (unsigned long) stack;
2112         if (tsk == NULL)
2113                 tsk = current;
2114         if (sp == 0) {
2115                 if (tsk == current)
2116                         sp = current_stack_pointer();
2117                 else
2118                         sp = tsk->thread.ksp;
2119         }
2120
2121         lr = 0;
2122         printk("Call Trace:\n");
2123         do {
2124                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2125                         return;
2126
2127                 stack = (unsigned long *) sp;
2128                 newsp = stack[0];
2129                 ip = stack[STACK_FRAME_LR_SAVE];
2130                 if (!firstframe || ip != lr) {
2131                         printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
2132 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2133                         if ((ip == rth) && curr_frame >= 0) {
2134                                 pr_cont(" (%pS)",
2135                                        (void *)current->ret_stack[curr_frame].ret);
2136                                 curr_frame--;
2137                         }
2138 #endif
2139                         if (firstframe)
2140                                 pr_cont(" (unreliable)");
2141                         pr_cont("\n");
2142                 }
2143                 firstframe = 0;
2144
2145                 /*
2146                  * See if this is an exception frame.
2147                  * We look for the "regshere" marker in the current frame.
2148                  */
2149                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2150                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2151                         struct pt_regs *regs = (struct pt_regs *)
2152                                 (sp + STACK_FRAME_OVERHEAD);
2153                         lr = regs->link;
2154                         printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
2155                                regs->trap, (void *)regs->nip, (void *)lr);
2156                         firstframe = 1;
2157                 }
2158
2159                 sp = newsp;
2160         } while (count++ < kstack_depth_to_print);
2161 }
2162
2163 #ifdef CONFIG_PPC64
2164 /* Called with hard IRQs off */
2165 void notrace __ppc64_runlatch_on(void)
2166 {
2167         struct thread_info *ti = current_thread_info();
2168
2169         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2170                 /*
2171                  * Least significant bit (RUN) is the only writable bit of
2172                  * the CTRL register, so we can avoid mfspr. 2.06 is not the
2173                  * earliest ISA where this is the case, but it's convenient.
2174                  */
2175                 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2176         } else {
2177                 unsigned long ctrl;
2178
2179                 /*
2180                  * Some architectures (e.g., Cell) have writable fields other
2181                  * than RUN, so do the read-modify-write.
2182                  */
2183                 ctrl = mfspr(SPRN_CTRLF);
2184                 ctrl |= CTRL_RUNLATCH;
2185                 mtspr(SPRN_CTRLT, ctrl);
2186         }
2187
2188         ti->local_flags |= _TLF_RUNLATCH;
2189 }
2190
2191 /* Called with hard IRQs off */
2192 void notrace __ppc64_runlatch_off(void)
2193 {
2194         struct thread_info *ti = current_thread_info();
2195
2196         ti->local_flags &= ~_TLF_RUNLATCH;
2197
2198         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2199                 mtspr(SPRN_CTRLT, 0);
2200         } else {
2201                 unsigned long ctrl;
2202
2203                 ctrl = mfspr(SPRN_CTRLF);
2204                 ctrl &= ~CTRL_RUNLATCH;
2205                 mtspr(SPRN_CTRLT, ctrl);
2206         }
2207 }
2208 #endif /* CONFIG_PPC64 */
2209
2210 unsigned long arch_align_stack(unsigned long sp)
2211 {
2212         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2213                 sp -= get_random_int() & ~PAGE_MASK;
2214         return sp & ~0xf;
2215 }
2216
2217 static inline unsigned long brk_rnd(void)
2218 {
2219         unsigned long rnd = 0;
2220
2221         /* 8MB for 32bit, 1GB for 64bit */
2222         if (is_32bit_task())
2223                 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2224         else
2225                 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2226
2227         return rnd << PAGE_SHIFT;
2228 }
2229
2230 unsigned long arch_randomize_brk(struct mm_struct *mm)
2231 {
2232         unsigned long base = mm->brk;
2233         unsigned long ret;
2234
2235 #ifdef CONFIG_PPC_BOOK3S_64
2236         /*
2237          * If we are using 1TB segments and we are allowed to randomise
2238          * the heap, we can put it above 1TB so it is backed by a 1TB
2239          * segment. Otherwise the heap will be in the bottom 1TB
2240          * which always uses 256MB segments and this may result in a
2241          * performance penalty. We don't need to worry about radix. For
2242          * radix, mmu_highuser_ssize remains unchanged from 256MB.
2243          */
2244         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2245                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2246 #endif
2247
2248         ret = PAGE_ALIGN(base + brk_rnd());
2249
2250         if (ret < mm->brk)
2251                 return mm->brk;
2252
2253         return ret;
2254 }
2255