]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/powerpc/kvm/book3s_hv.c
powerpc/64s: Allocate LPPACAs individually
[linux.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20
21 #include <linux/kvm_host.h>
22 #include <linux/kernel.h>
23 #include <linux/err.h>
24 #include <linux/slab.h>
25 #include <linux/preempt.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sched/stat.h>
28 #include <linux/delay.h>
29 #include <linux/export.h>
30 #include <linux/fs.h>
31 #include <linux/anon_inodes.h>
32 #include <linux/cpu.h>
33 #include <linux/cpumask.h>
34 #include <linux/spinlock.h>
35 #include <linux/page-flags.h>
36 #include <linux/srcu.h>
37 #include <linux/miscdevice.h>
38 #include <linux/debugfs.h>
39 #include <linux/gfp.h>
40 #include <linux/vmalloc.h>
41 #include <linux/highmem.h>
42 #include <linux/hugetlb.h>
43 #include <linux/kvm_irqfd.h>
44 #include <linux/irqbypass.h>
45 #include <linux/module.h>
46 #include <linux/compiler.h>
47 #include <linux/of.h>
48
49 #include <asm/reg.h>
50 #include <asm/ppc-opcode.h>
51 #include <asm/asm-prototypes.h>
52 #include <asm/disassemble.h>
53 #include <asm/cputable.h>
54 #include <asm/cacheflush.h>
55 #include <asm/tlbflush.h>
56 #include <linux/uaccess.h>
57 #include <asm/io.h>
58 #include <asm/kvm_ppc.h>
59 #include <asm/kvm_book3s.h>
60 #include <asm/mmu_context.h>
61 #include <asm/lppaca.h>
62 #include <asm/processor.h>
63 #include <asm/cputhreads.h>
64 #include <asm/page.h>
65 #include <asm/hvcall.h>
66 #include <asm/switch_to.h>
67 #include <asm/smp.h>
68 #include <asm/dbell.h>
69 #include <asm/hmi.h>
70 #include <asm/pnv-pci.h>
71 #include <asm/mmu.h>
72 #include <asm/opal.h>
73 #include <asm/xics.h>
74 #include <asm/xive.h>
75
76 #include "book3s.h"
77
78 #define CREATE_TRACE_POINTS
79 #include "trace_hv.h"
80
81 /* #define EXIT_DEBUG */
82 /* #define EXIT_DEBUG_SIMPLE */
83 /* #define EXIT_DEBUG_INT */
84
85 /* Used to indicate that a guest page fault needs to be handled */
86 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
87 /* Used to indicate that a guest passthrough interrupt needs to be handled */
88 #define RESUME_PASSTHROUGH      (RESUME_GUEST | RESUME_FLAG_ARCH2)
89
90 /* Used as a "null" value for timebase values */
91 #define TB_NIL  (~(u64)0)
92
93 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
94
95 static int dynamic_mt_modes = 6;
96 module_param(dynamic_mt_modes, int, 0644);
97 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
98 static int target_smt_mode;
99 module_param(target_smt_mode, int, 0644);
100 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
101
102 static bool indep_threads_mode = true;
103 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
104 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
105
106 #ifdef CONFIG_KVM_XICS
107 static struct kernel_param_ops module_param_ops = {
108         .set = param_set_int,
109         .get = param_get_int,
110 };
111
112 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
113 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
114
115 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
116 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
117 #endif
118
119 /* If set, the threads on each CPU core have to be in the same MMU mode */
120 static bool no_mixing_hpt_and_radix;
121
122 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
123 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
124
125 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
126                 int *ip)
127 {
128         int i = *ip;
129         struct kvm_vcpu *vcpu;
130
131         while (++i < MAX_SMT_THREADS) {
132                 vcpu = READ_ONCE(vc->runnable_threads[i]);
133                 if (vcpu) {
134                         *ip = i;
135                         return vcpu;
136                 }
137         }
138         return NULL;
139 }
140
141 /* Used to traverse the list of runnable threads for a given vcore */
142 #define for_each_runnable_thread(i, vcpu, vc) \
143         for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
144
145 static bool kvmppc_ipi_thread(int cpu)
146 {
147         unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
148
149         /* On POWER9 we can use msgsnd to IPI any cpu */
150         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
151                 msg |= get_hard_smp_processor_id(cpu);
152                 smp_mb();
153                 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
154                 return true;
155         }
156
157         /* On POWER8 for IPIs to threads in the same core, use msgsnd */
158         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
159                 preempt_disable();
160                 if (cpu_first_thread_sibling(cpu) ==
161                     cpu_first_thread_sibling(smp_processor_id())) {
162                         msg |= cpu_thread_in_core(cpu);
163                         smp_mb();
164                         __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
165                         preempt_enable();
166                         return true;
167                 }
168                 preempt_enable();
169         }
170
171 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
172         if (cpu >= 0 && cpu < nr_cpu_ids) {
173                 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
174                         xics_wake_cpu(cpu);
175                         return true;
176                 }
177                 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
178                 return true;
179         }
180 #endif
181
182         return false;
183 }
184
185 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
186 {
187         int cpu;
188         struct swait_queue_head *wqp;
189
190         wqp = kvm_arch_vcpu_wq(vcpu);
191         if (swq_has_sleeper(wqp)) {
192                 swake_up(wqp);
193                 ++vcpu->stat.halt_wakeup;
194         }
195
196         cpu = READ_ONCE(vcpu->arch.thread_cpu);
197         if (cpu >= 0 && kvmppc_ipi_thread(cpu))
198                 return;
199
200         /* CPU points to the first thread of the core */
201         cpu = vcpu->cpu;
202         if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
203                 smp_send_reschedule(cpu);
204 }
205
206 /*
207  * We use the vcpu_load/put functions to measure stolen time.
208  * Stolen time is counted as time when either the vcpu is able to
209  * run as part of a virtual core, but the task running the vcore
210  * is preempted or sleeping, or when the vcpu needs something done
211  * in the kernel by the task running the vcpu, but that task is
212  * preempted or sleeping.  Those two things have to be counted
213  * separately, since one of the vcpu tasks will take on the job
214  * of running the core, and the other vcpu tasks in the vcore will
215  * sleep waiting for it to do that, but that sleep shouldn't count
216  * as stolen time.
217  *
218  * Hence we accumulate stolen time when the vcpu can run as part of
219  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
220  * needs its task to do other things in the kernel (for example,
221  * service a page fault) in busy_stolen.  We don't accumulate
222  * stolen time for a vcore when it is inactive, or for a vcpu
223  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
224  * a misnomer; it means that the vcpu task is not executing in
225  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
226  * the kernel.  We don't have any way of dividing up that time
227  * between time that the vcpu is genuinely stopped, time that
228  * the task is actively working on behalf of the vcpu, and time
229  * that the task is preempted, so we don't count any of it as
230  * stolen.
231  *
232  * Updates to busy_stolen are protected by arch.tbacct_lock;
233  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
234  * lock.  The stolen times are measured in units of timebase ticks.
235  * (Note that the != TB_NIL checks below are purely defensive;
236  * they should never fail.)
237  */
238
239 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
240 {
241         unsigned long flags;
242
243         spin_lock_irqsave(&vc->stoltb_lock, flags);
244         vc->preempt_tb = mftb();
245         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
246 }
247
248 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
249 {
250         unsigned long flags;
251
252         spin_lock_irqsave(&vc->stoltb_lock, flags);
253         if (vc->preempt_tb != TB_NIL) {
254                 vc->stolen_tb += mftb() - vc->preempt_tb;
255                 vc->preempt_tb = TB_NIL;
256         }
257         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
258 }
259
260 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
261 {
262         struct kvmppc_vcore *vc = vcpu->arch.vcore;
263         unsigned long flags;
264
265         /*
266          * We can test vc->runner without taking the vcore lock,
267          * because only this task ever sets vc->runner to this
268          * vcpu, and once it is set to this vcpu, only this task
269          * ever sets it to NULL.
270          */
271         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
272                 kvmppc_core_end_stolen(vc);
273
274         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
275         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
276             vcpu->arch.busy_preempt != TB_NIL) {
277                 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
278                 vcpu->arch.busy_preempt = TB_NIL;
279         }
280         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
281 }
282
283 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
284 {
285         struct kvmppc_vcore *vc = vcpu->arch.vcore;
286         unsigned long flags;
287
288         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
289                 kvmppc_core_start_stolen(vc);
290
291         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
292         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
293                 vcpu->arch.busy_preempt = mftb();
294         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
295 }
296
297 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
298 {
299         /*
300          * Check for illegal transactional state bit combination
301          * and if we find it, force the TS field to a safe state.
302          */
303         if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
304                 msr &= ~MSR_TS_MASK;
305         vcpu->arch.shregs.msr = msr;
306         kvmppc_end_cede(vcpu);
307 }
308
309 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
310 {
311         vcpu->arch.pvr = pvr;
312 }
313
314 /* Dummy value used in computing PCR value below */
315 #define PCR_ARCH_300    (PCR_ARCH_207 << 1)
316
317 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
318 {
319         unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
320         struct kvmppc_vcore *vc = vcpu->arch.vcore;
321
322         /* We can (emulate) our own architecture version and anything older */
323         if (cpu_has_feature(CPU_FTR_ARCH_300))
324                 host_pcr_bit = PCR_ARCH_300;
325         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
326                 host_pcr_bit = PCR_ARCH_207;
327         else if (cpu_has_feature(CPU_FTR_ARCH_206))
328                 host_pcr_bit = PCR_ARCH_206;
329         else
330                 host_pcr_bit = PCR_ARCH_205;
331
332         /* Determine lowest PCR bit needed to run guest in given PVR level */
333         guest_pcr_bit = host_pcr_bit;
334         if (arch_compat) {
335                 switch (arch_compat) {
336                 case PVR_ARCH_205:
337                         guest_pcr_bit = PCR_ARCH_205;
338                         break;
339                 case PVR_ARCH_206:
340                 case PVR_ARCH_206p:
341                         guest_pcr_bit = PCR_ARCH_206;
342                         break;
343                 case PVR_ARCH_207:
344                         guest_pcr_bit = PCR_ARCH_207;
345                         break;
346                 case PVR_ARCH_300:
347                         guest_pcr_bit = PCR_ARCH_300;
348                         break;
349                 default:
350                         return -EINVAL;
351                 }
352         }
353
354         /* Check requested PCR bits don't exceed our capabilities */
355         if (guest_pcr_bit > host_pcr_bit)
356                 return -EINVAL;
357
358         spin_lock(&vc->lock);
359         vc->arch_compat = arch_compat;
360         /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
361         vc->pcr = host_pcr_bit - guest_pcr_bit;
362         spin_unlock(&vc->lock);
363
364         return 0;
365 }
366
367 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
368 {
369         int r;
370
371         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
372         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
373                vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
374         for (r = 0; r < 16; ++r)
375                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
376                        r, kvmppc_get_gpr(vcpu, r),
377                        r+16, kvmppc_get_gpr(vcpu, r+16));
378         pr_err("ctr = %.16lx  lr  = %.16lx\n",
379                vcpu->arch.ctr, vcpu->arch.lr);
380         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
381                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
382         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
383                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
384         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
385                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
386         pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
387                vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
388         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
389         pr_err("fault dar = %.16lx dsisr = %.8x\n",
390                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
391         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
392         for (r = 0; r < vcpu->arch.slb_max; ++r)
393                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
394                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
395         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
396                vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
397                vcpu->arch.last_inst);
398 }
399
400 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
401 {
402         struct kvm_vcpu *ret;
403
404         mutex_lock(&kvm->lock);
405         ret = kvm_get_vcpu_by_id(kvm, id);
406         mutex_unlock(&kvm->lock);
407         return ret;
408 }
409
410 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
411 {
412         vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
413         vpa->yield_count = cpu_to_be32(1);
414 }
415
416 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
417                    unsigned long addr, unsigned long len)
418 {
419         /* check address is cacheline aligned */
420         if (addr & (L1_CACHE_BYTES - 1))
421                 return -EINVAL;
422         spin_lock(&vcpu->arch.vpa_update_lock);
423         if (v->next_gpa != addr || v->len != len) {
424                 v->next_gpa = addr;
425                 v->len = addr ? len : 0;
426                 v->update_pending = 1;
427         }
428         spin_unlock(&vcpu->arch.vpa_update_lock);
429         return 0;
430 }
431
432 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
433 struct reg_vpa {
434         u32 dummy;
435         union {
436                 __be16 hword;
437                 __be32 word;
438         } length;
439 };
440
441 static int vpa_is_registered(struct kvmppc_vpa *vpap)
442 {
443         if (vpap->update_pending)
444                 return vpap->next_gpa != 0;
445         return vpap->pinned_addr != NULL;
446 }
447
448 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
449                                        unsigned long flags,
450                                        unsigned long vcpuid, unsigned long vpa)
451 {
452         struct kvm *kvm = vcpu->kvm;
453         unsigned long len, nb;
454         void *va;
455         struct kvm_vcpu *tvcpu;
456         int err;
457         int subfunc;
458         struct kvmppc_vpa *vpap;
459
460         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
461         if (!tvcpu)
462                 return H_PARAMETER;
463
464         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
465         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
466             subfunc == H_VPA_REG_SLB) {
467                 /* Registering new area - address must be cache-line aligned */
468                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
469                         return H_PARAMETER;
470
471                 /* convert logical addr to kernel addr and read length */
472                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
473                 if (va == NULL)
474                         return H_PARAMETER;
475                 if (subfunc == H_VPA_REG_VPA)
476                         len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
477                 else
478                         len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
479                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
480
481                 /* Check length */
482                 if (len > nb || len < sizeof(struct reg_vpa))
483                         return H_PARAMETER;
484         } else {
485                 vpa = 0;
486                 len = 0;
487         }
488
489         err = H_PARAMETER;
490         vpap = NULL;
491         spin_lock(&tvcpu->arch.vpa_update_lock);
492
493         switch (subfunc) {
494         case H_VPA_REG_VPA:             /* register VPA */
495                 /*
496                  * The size of our lppaca is 1kB because of the way we align
497                  * it for the guest to avoid crossing a 4kB boundary. We only
498                  * use 640 bytes of the structure though, so we should accept
499                  * clients that set a size of 640.
500                  */
501                 BUILD_BUG_ON(sizeof(struct lppaca) != 640);
502                 if (len < sizeof(struct lppaca))
503                         break;
504                 vpap = &tvcpu->arch.vpa;
505                 err = 0;
506                 break;
507
508         case H_VPA_REG_DTL:             /* register DTL */
509                 if (len < sizeof(struct dtl_entry))
510                         break;
511                 len -= len % sizeof(struct dtl_entry);
512
513                 /* Check that they have previously registered a VPA */
514                 err = H_RESOURCE;
515                 if (!vpa_is_registered(&tvcpu->arch.vpa))
516                         break;
517
518                 vpap = &tvcpu->arch.dtl;
519                 err = 0;
520                 break;
521
522         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
523                 /* Check that they have previously registered a VPA */
524                 err = H_RESOURCE;
525                 if (!vpa_is_registered(&tvcpu->arch.vpa))
526                         break;
527
528                 vpap = &tvcpu->arch.slb_shadow;
529                 err = 0;
530                 break;
531
532         case H_VPA_DEREG_VPA:           /* deregister VPA */
533                 /* Check they don't still have a DTL or SLB buf registered */
534                 err = H_RESOURCE;
535                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
536                     vpa_is_registered(&tvcpu->arch.slb_shadow))
537                         break;
538
539                 vpap = &tvcpu->arch.vpa;
540                 err = 0;
541                 break;
542
543         case H_VPA_DEREG_DTL:           /* deregister DTL */
544                 vpap = &tvcpu->arch.dtl;
545                 err = 0;
546                 break;
547
548         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
549                 vpap = &tvcpu->arch.slb_shadow;
550                 err = 0;
551                 break;
552         }
553
554         if (vpap) {
555                 vpap->next_gpa = vpa;
556                 vpap->len = len;
557                 vpap->update_pending = 1;
558         }
559
560         spin_unlock(&tvcpu->arch.vpa_update_lock);
561
562         return err;
563 }
564
565 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
566 {
567         struct kvm *kvm = vcpu->kvm;
568         void *va;
569         unsigned long nb;
570         unsigned long gpa;
571
572         /*
573          * We need to pin the page pointed to by vpap->next_gpa,
574          * but we can't call kvmppc_pin_guest_page under the lock
575          * as it does get_user_pages() and down_read().  So we
576          * have to drop the lock, pin the page, then get the lock
577          * again and check that a new area didn't get registered
578          * in the meantime.
579          */
580         for (;;) {
581                 gpa = vpap->next_gpa;
582                 spin_unlock(&vcpu->arch.vpa_update_lock);
583                 va = NULL;
584                 nb = 0;
585                 if (gpa)
586                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
587                 spin_lock(&vcpu->arch.vpa_update_lock);
588                 if (gpa == vpap->next_gpa)
589                         break;
590                 /* sigh... unpin that one and try again */
591                 if (va)
592                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
593         }
594
595         vpap->update_pending = 0;
596         if (va && nb < vpap->len) {
597                 /*
598                  * If it's now too short, it must be that userspace
599                  * has changed the mappings underlying guest memory,
600                  * so unregister the region.
601                  */
602                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
603                 va = NULL;
604         }
605         if (vpap->pinned_addr)
606                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
607                                         vpap->dirty);
608         vpap->gpa = gpa;
609         vpap->pinned_addr = va;
610         vpap->dirty = false;
611         if (va)
612                 vpap->pinned_end = va + vpap->len;
613 }
614
615 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
616 {
617         if (!(vcpu->arch.vpa.update_pending ||
618               vcpu->arch.slb_shadow.update_pending ||
619               vcpu->arch.dtl.update_pending))
620                 return;
621
622         spin_lock(&vcpu->arch.vpa_update_lock);
623         if (vcpu->arch.vpa.update_pending) {
624                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
625                 if (vcpu->arch.vpa.pinned_addr)
626                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
627         }
628         if (vcpu->arch.dtl.update_pending) {
629                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
630                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
631                 vcpu->arch.dtl_index = 0;
632         }
633         if (vcpu->arch.slb_shadow.update_pending)
634                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
635         spin_unlock(&vcpu->arch.vpa_update_lock);
636 }
637
638 /*
639  * Return the accumulated stolen time for the vcore up until `now'.
640  * The caller should hold the vcore lock.
641  */
642 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
643 {
644         u64 p;
645         unsigned long flags;
646
647         spin_lock_irqsave(&vc->stoltb_lock, flags);
648         p = vc->stolen_tb;
649         if (vc->vcore_state != VCORE_INACTIVE &&
650             vc->preempt_tb != TB_NIL)
651                 p += now - vc->preempt_tb;
652         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
653         return p;
654 }
655
656 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
657                                     struct kvmppc_vcore *vc)
658 {
659         struct dtl_entry *dt;
660         struct lppaca *vpa;
661         unsigned long stolen;
662         unsigned long core_stolen;
663         u64 now;
664         unsigned long flags;
665
666         dt = vcpu->arch.dtl_ptr;
667         vpa = vcpu->arch.vpa.pinned_addr;
668         now = mftb();
669         core_stolen = vcore_stolen_time(vc, now);
670         stolen = core_stolen - vcpu->arch.stolen_logged;
671         vcpu->arch.stolen_logged = core_stolen;
672         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
673         stolen += vcpu->arch.busy_stolen;
674         vcpu->arch.busy_stolen = 0;
675         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
676         if (!dt || !vpa)
677                 return;
678         memset(dt, 0, sizeof(struct dtl_entry));
679         dt->dispatch_reason = 7;
680         dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
681         dt->timebase = cpu_to_be64(now + vc->tb_offset);
682         dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
683         dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
684         dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
685         ++dt;
686         if (dt == vcpu->arch.dtl.pinned_end)
687                 dt = vcpu->arch.dtl.pinned_addr;
688         vcpu->arch.dtl_ptr = dt;
689         /* order writing *dt vs. writing vpa->dtl_idx */
690         smp_wmb();
691         vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
692         vcpu->arch.dtl.dirty = true;
693 }
694
695 /* See if there is a doorbell interrupt pending for a vcpu */
696 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
697 {
698         int thr;
699         struct kvmppc_vcore *vc;
700
701         if (vcpu->arch.doorbell_request)
702                 return true;
703         /*
704          * Ensure that the read of vcore->dpdes comes after the read
705          * of vcpu->doorbell_request.  This barrier matches the
706          * lwsync in book3s_hv_rmhandlers.S just before the
707          * fast_guest_return label.
708          */
709         smp_rmb();
710         vc = vcpu->arch.vcore;
711         thr = vcpu->vcpu_id - vc->first_vcpuid;
712         return !!(vc->dpdes & (1 << thr));
713 }
714
715 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
716 {
717         if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
718                 return true;
719         if ((!vcpu->arch.vcore->arch_compat) &&
720             cpu_has_feature(CPU_FTR_ARCH_207S))
721                 return true;
722         return false;
723 }
724
725 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
726                              unsigned long resource, unsigned long value1,
727                              unsigned long value2)
728 {
729         switch (resource) {
730         case H_SET_MODE_RESOURCE_SET_CIABR:
731                 if (!kvmppc_power8_compatible(vcpu))
732                         return H_P2;
733                 if (value2)
734                         return H_P4;
735                 if (mflags)
736                         return H_UNSUPPORTED_FLAG_START;
737                 /* Guests can't breakpoint the hypervisor */
738                 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
739                         return H_P3;
740                 vcpu->arch.ciabr  = value1;
741                 return H_SUCCESS;
742         case H_SET_MODE_RESOURCE_SET_DAWR:
743                 if (!kvmppc_power8_compatible(vcpu))
744                         return H_P2;
745                 if (mflags)
746                         return H_UNSUPPORTED_FLAG_START;
747                 if (value2 & DABRX_HYP)
748                         return H_P4;
749                 vcpu->arch.dawr  = value1;
750                 vcpu->arch.dawrx = value2;
751                 return H_SUCCESS;
752         default:
753                 return H_TOO_HARD;
754         }
755 }
756
757 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
758 {
759         struct kvmppc_vcore *vcore = target->arch.vcore;
760
761         /*
762          * We expect to have been called by the real mode handler
763          * (kvmppc_rm_h_confer()) which would have directly returned
764          * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
765          * have useful work to do and should not confer) so we don't
766          * recheck that here.
767          */
768
769         spin_lock(&vcore->lock);
770         if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
771             vcore->vcore_state != VCORE_INACTIVE &&
772             vcore->runner)
773                 target = vcore->runner;
774         spin_unlock(&vcore->lock);
775
776         return kvm_vcpu_yield_to(target);
777 }
778
779 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
780 {
781         int yield_count = 0;
782         struct lppaca *lppaca;
783
784         spin_lock(&vcpu->arch.vpa_update_lock);
785         lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
786         if (lppaca)
787                 yield_count = be32_to_cpu(lppaca->yield_count);
788         spin_unlock(&vcpu->arch.vpa_update_lock);
789         return yield_count;
790 }
791
792 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
793 {
794         unsigned long req = kvmppc_get_gpr(vcpu, 3);
795         unsigned long target, ret = H_SUCCESS;
796         int yield_count;
797         struct kvm_vcpu *tvcpu;
798         int idx, rc;
799
800         if (req <= MAX_HCALL_OPCODE &&
801             !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
802                 return RESUME_HOST;
803
804         switch (req) {
805         case H_CEDE:
806                 break;
807         case H_PROD:
808                 target = kvmppc_get_gpr(vcpu, 4);
809                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
810                 if (!tvcpu) {
811                         ret = H_PARAMETER;
812                         break;
813                 }
814                 tvcpu->arch.prodded = 1;
815                 smp_mb();
816                 if (tvcpu->arch.ceded)
817                         kvmppc_fast_vcpu_kick_hv(tvcpu);
818                 break;
819         case H_CONFER:
820                 target = kvmppc_get_gpr(vcpu, 4);
821                 if (target == -1)
822                         break;
823                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
824                 if (!tvcpu) {
825                         ret = H_PARAMETER;
826                         break;
827                 }
828                 yield_count = kvmppc_get_gpr(vcpu, 5);
829                 if (kvmppc_get_yield_count(tvcpu) != yield_count)
830                         break;
831                 kvm_arch_vcpu_yield_to(tvcpu);
832                 break;
833         case H_REGISTER_VPA:
834                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
835                                         kvmppc_get_gpr(vcpu, 5),
836                                         kvmppc_get_gpr(vcpu, 6));
837                 break;
838         case H_RTAS:
839                 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
840                         return RESUME_HOST;
841
842                 idx = srcu_read_lock(&vcpu->kvm->srcu);
843                 rc = kvmppc_rtas_hcall(vcpu);
844                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
845
846                 if (rc == -ENOENT)
847                         return RESUME_HOST;
848                 else if (rc == 0)
849                         break;
850
851                 /* Send the error out to userspace via KVM_RUN */
852                 return rc;
853         case H_LOGICAL_CI_LOAD:
854                 ret = kvmppc_h_logical_ci_load(vcpu);
855                 if (ret == H_TOO_HARD)
856                         return RESUME_HOST;
857                 break;
858         case H_LOGICAL_CI_STORE:
859                 ret = kvmppc_h_logical_ci_store(vcpu);
860                 if (ret == H_TOO_HARD)
861                         return RESUME_HOST;
862                 break;
863         case H_SET_MODE:
864                 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
865                                         kvmppc_get_gpr(vcpu, 5),
866                                         kvmppc_get_gpr(vcpu, 6),
867                                         kvmppc_get_gpr(vcpu, 7));
868                 if (ret == H_TOO_HARD)
869                         return RESUME_HOST;
870                 break;
871         case H_XIRR:
872         case H_CPPR:
873         case H_EOI:
874         case H_IPI:
875         case H_IPOLL:
876         case H_XIRR_X:
877                 if (kvmppc_xics_enabled(vcpu)) {
878                         if (xive_enabled()) {
879                                 ret = H_NOT_AVAILABLE;
880                                 return RESUME_GUEST;
881                         }
882                         ret = kvmppc_xics_hcall(vcpu, req);
883                         break;
884                 }
885                 return RESUME_HOST;
886         case H_PUT_TCE:
887                 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
888                                                 kvmppc_get_gpr(vcpu, 5),
889                                                 kvmppc_get_gpr(vcpu, 6));
890                 if (ret == H_TOO_HARD)
891                         return RESUME_HOST;
892                 break;
893         case H_PUT_TCE_INDIRECT:
894                 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
895                                                 kvmppc_get_gpr(vcpu, 5),
896                                                 kvmppc_get_gpr(vcpu, 6),
897                                                 kvmppc_get_gpr(vcpu, 7));
898                 if (ret == H_TOO_HARD)
899                         return RESUME_HOST;
900                 break;
901         case H_STUFF_TCE:
902                 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
903                                                 kvmppc_get_gpr(vcpu, 5),
904                                                 kvmppc_get_gpr(vcpu, 6),
905                                                 kvmppc_get_gpr(vcpu, 7));
906                 if (ret == H_TOO_HARD)
907                         return RESUME_HOST;
908                 break;
909         default:
910                 return RESUME_HOST;
911         }
912         kvmppc_set_gpr(vcpu, 3, ret);
913         vcpu->arch.hcall_needed = 0;
914         return RESUME_GUEST;
915 }
916
917 static int kvmppc_hcall_impl_hv(unsigned long cmd)
918 {
919         switch (cmd) {
920         case H_CEDE:
921         case H_PROD:
922         case H_CONFER:
923         case H_REGISTER_VPA:
924         case H_SET_MODE:
925         case H_LOGICAL_CI_LOAD:
926         case H_LOGICAL_CI_STORE:
927 #ifdef CONFIG_KVM_XICS
928         case H_XIRR:
929         case H_CPPR:
930         case H_EOI:
931         case H_IPI:
932         case H_IPOLL:
933         case H_XIRR_X:
934 #endif
935                 return 1;
936         }
937
938         /* See if it's in the real-mode table */
939         return kvmppc_hcall_impl_hv_realmode(cmd);
940 }
941
942 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
943                                         struct kvm_vcpu *vcpu)
944 {
945         u32 last_inst;
946
947         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
948                                         EMULATE_DONE) {
949                 /*
950                  * Fetch failed, so return to guest and
951                  * try executing it again.
952                  */
953                 return RESUME_GUEST;
954         }
955
956         if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
957                 run->exit_reason = KVM_EXIT_DEBUG;
958                 run->debug.arch.address = kvmppc_get_pc(vcpu);
959                 return RESUME_HOST;
960         } else {
961                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
962                 return RESUME_GUEST;
963         }
964 }
965
966 static void do_nothing(void *x)
967 {
968 }
969
970 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
971 {
972         int thr, cpu, pcpu, nthreads;
973         struct kvm_vcpu *v;
974         unsigned long dpdes;
975
976         nthreads = vcpu->kvm->arch.emul_smt_mode;
977         dpdes = 0;
978         cpu = vcpu->vcpu_id & ~(nthreads - 1);
979         for (thr = 0; thr < nthreads; ++thr, ++cpu) {
980                 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
981                 if (!v)
982                         continue;
983                 /*
984                  * If the vcpu is currently running on a physical cpu thread,
985                  * interrupt it in order to pull it out of the guest briefly,
986                  * which will update its vcore->dpdes value.
987                  */
988                 pcpu = READ_ONCE(v->cpu);
989                 if (pcpu >= 0)
990                         smp_call_function_single(pcpu, do_nothing, NULL, 1);
991                 if (kvmppc_doorbell_pending(v))
992                         dpdes |= 1 << thr;
993         }
994         return dpdes;
995 }
996
997 /*
998  * On POWER9, emulate doorbell-related instructions in order to
999  * give the guest the illusion of running on a multi-threaded core.
1000  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1001  * and mfspr DPDES.
1002  */
1003 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1004 {
1005         u32 inst, rb, thr;
1006         unsigned long arg;
1007         struct kvm *kvm = vcpu->kvm;
1008         struct kvm_vcpu *tvcpu;
1009
1010         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1011                 return RESUME_GUEST;
1012         if (get_op(inst) != 31)
1013                 return EMULATE_FAIL;
1014         rb = get_rb(inst);
1015         thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1016         switch (get_xop(inst)) {
1017         case OP_31_XOP_MSGSNDP:
1018                 arg = kvmppc_get_gpr(vcpu, rb);
1019                 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1020                         break;
1021                 arg &= 0x3f;
1022                 if (arg >= kvm->arch.emul_smt_mode)
1023                         break;
1024                 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1025                 if (!tvcpu)
1026                         break;
1027                 if (!tvcpu->arch.doorbell_request) {
1028                         tvcpu->arch.doorbell_request = 1;
1029                         kvmppc_fast_vcpu_kick_hv(tvcpu);
1030                 }
1031                 break;
1032         case OP_31_XOP_MSGCLRP:
1033                 arg = kvmppc_get_gpr(vcpu, rb);
1034                 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1035                         break;
1036                 vcpu->arch.vcore->dpdes = 0;
1037                 vcpu->arch.doorbell_request = 0;
1038                 break;
1039         case OP_31_XOP_MFSPR:
1040                 switch (get_sprn(inst)) {
1041                 case SPRN_TIR:
1042                         arg = thr;
1043                         break;
1044                 case SPRN_DPDES:
1045                         arg = kvmppc_read_dpdes(vcpu);
1046                         break;
1047                 default:
1048                         return EMULATE_FAIL;
1049                 }
1050                 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1051                 break;
1052         default:
1053                 return EMULATE_FAIL;
1054         }
1055         kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1056         return RESUME_GUEST;
1057 }
1058
1059 /* Called with vcpu->arch.vcore->lock held */
1060 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1061                                  struct task_struct *tsk)
1062 {
1063         int r = RESUME_HOST;
1064
1065         vcpu->stat.sum_exits++;
1066
1067         /*
1068          * This can happen if an interrupt occurs in the last stages
1069          * of guest entry or the first stages of guest exit (i.e. after
1070          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1071          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1072          * That can happen due to a bug, or due to a machine check
1073          * occurring at just the wrong time.
1074          */
1075         if (vcpu->arch.shregs.msr & MSR_HV) {
1076                 printk(KERN_EMERG "KVM trap in HV mode!\n");
1077                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1078                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1079                         vcpu->arch.shregs.msr);
1080                 kvmppc_dump_regs(vcpu);
1081                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1082                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1083                 return RESUME_HOST;
1084         }
1085         run->exit_reason = KVM_EXIT_UNKNOWN;
1086         run->ready_for_interrupt_injection = 1;
1087         switch (vcpu->arch.trap) {
1088         /* We're good on these - the host merely wanted to get our attention */
1089         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1090                 vcpu->stat.dec_exits++;
1091                 r = RESUME_GUEST;
1092                 break;
1093         case BOOK3S_INTERRUPT_EXTERNAL:
1094         case BOOK3S_INTERRUPT_H_DOORBELL:
1095         case BOOK3S_INTERRUPT_H_VIRT:
1096                 vcpu->stat.ext_intr_exits++;
1097                 r = RESUME_GUEST;
1098                 break;
1099         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1100         case BOOK3S_INTERRUPT_HMI:
1101         case BOOK3S_INTERRUPT_PERFMON:
1102         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1103                 r = RESUME_GUEST;
1104                 break;
1105         case BOOK3S_INTERRUPT_MACHINE_CHECK:
1106                 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1107                 run->exit_reason = KVM_EXIT_NMI;
1108                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1109                 /* Clear out the old NMI status from run->flags */
1110                 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1111                 /* Now set the NMI status */
1112                 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1113                         run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1114                 else
1115                         run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1116
1117                 r = RESUME_HOST;
1118                 /* Print the MCE event to host console. */
1119                 machine_check_print_event_info(&vcpu->arch.mce_evt, false);
1120                 break;
1121         case BOOK3S_INTERRUPT_PROGRAM:
1122         {
1123                 ulong flags;
1124                 /*
1125                  * Normally program interrupts are delivered directly
1126                  * to the guest by the hardware, but we can get here
1127                  * as a result of a hypervisor emulation interrupt
1128                  * (e40) getting turned into a 700 by BML RTAS.
1129                  */
1130                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1131                 kvmppc_core_queue_program(vcpu, flags);
1132                 r = RESUME_GUEST;
1133                 break;
1134         }
1135         case BOOK3S_INTERRUPT_SYSCALL:
1136         {
1137                 /* hcall - punt to userspace */
1138                 int i;
1139
1140                 /* hypercall with MSR_PR has already been handled in rmode,
1141                  * and never reaches here.
1142                  */
1143
1144                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1145                 for (i = 0; i < 9; ++i)
1146                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1147                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1148                 vcpu->arch.hcall_needed = 1;
1149                 r = RESUME_HOST;
1150                 break;
1151         }
1152         /*
1153          * We get these next two if the guest accesses a page which it thinks
1154          * it has mapped but which is not actually present, either because
1155          * it is for an emulated I/O device or because the corresonding
1156          * host page has been paged out.  Any other HDSI/HISI interrupts
1157          * have been handled already.
1158          */
1159         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1160                 r = RESUME_PAGE_FAULT;
1161                 break;
1162         case BOOK3S_INTERRUPT_H_INST_STORAGE:
1163                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1164                 vcpu->arch.fault_dsisr = 0;
1165                 r = RESUME_PAGE_FAULT;
1166                 break;
1167         /*
1168          * This occurs if the guest executes an illegal instruction.
1169          * If the guest debug is disabled, generate a program interrupt
1170          * to the guest. If guest debug is enabled, we need to check
1171          * whether the instruction is a software breakpoint instruction.
1172          * Accordingly return to Guest or Host.
1173          */
1174         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1175                 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1176                         vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1177                                 swab32(vcpu->arch.emul_inst) :
1178                                 vcpu->arch.emul_inst;
1179                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1180                         /* Need vcore unlocked to call kvmppc_get_last_inst */
1181                         spin_unlock(&vcpu->arch.vcore->lock);
1182                         r = kvmppc_emulate_debug_inst(run, vcpu);
1183                         spin_lock(&vcpu->arch.vcore->lock);
1184                 } else {
1185                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1186                         r = RESUME_GUEST;
1187                 }
1188                 break;
1189         /*
1190          * This occurs if the guest (kernel or userspace), does something that
1191          * is prohibited by HFSCR.
1192          * On POWER9, this could be a doorbell instruction that we need
1193          * to emulate.
1194          * Otherwise, we just generate a program interrupt to the guest.
1195          */
1196         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1197                 r = EMULATE_FAIL;
1198                 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1199                     cpu_has_feature(CPU_FTR_ARCH_300)) {
1200                         /* Need vcore unlocked to call kvmppc_get_last_inst */
1201                         spin_unlock(&vcpu->arch.vcore->lock);
1202                         r = kvmppc_emulate_doorbell_instr(vcpu);
1203                         spin_lock(&vcpu->arch.vcore->lock);
1204                 }
1205                 if (r == EMULATE_FAIL) {
1206                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1207                         r = RESUME_GUEST;
1208                 }
1209                 break;
1210         case BOOK3S_INTERRUPT_HV_RM_HARD:
1211                 r = RESUME_PASSTHROUGH;
1212                 break;
1213         default:
1214                 kvmppc_dump_regs(vcpu);
1215                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1216                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1217                         vcpu->arch.shregs.msr);
1218                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1219                 r = RESUME_HOST;
1220                 break;
1221         }
1222
1223         return r;
1224 }
1225
1226 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1227                                             struct kvm_sregs *sregs)
1228 {
1229         int i;
1230
1231         memset(sregs, 0, sizeof(struct kvm_sregs));
1232         sregs->pvr = vcpu->arch.pvr;
1233         for (i = 0; i < vcpu->arch.slb_max; i++) {
1234                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1235                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1236         }
1237
1238         return 0;
1239 }
1240
1241 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1242                                             struct kvm_sregs *sregs)
1243 {
1244         int i, j;
1245
1246         /* Only accept the same PVR as the host's, since we can't spoof it */
1247         if (sregs->pvr != vcpu->arch.pvr)
1248                 return -EINVAL;
1249
1250         j = 0;
1251         for (i = 0; i < vcpu->arch.slb_nr; i++) {
1252                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1253                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1254                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1255                         ++j;
1256                 }
1257         }
1258         vcpu->arch.slb_max = j;
1259
1260         return 0;
1261 }
1262
1263 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1264                 bool preserve_top32)
1265 {
1266         struct kvm *kvm = vcpu->kvm;
1267         struct kvmppc_vcore *vc = vcpu->arch.vcore;
1268         u64 mask;
1269
1270         mutex_lock(&kvm->lock);
1271         spin_lock(&vc->lock);
1272         /*
1273          * If ILE (interrupt little-endian) has changed, update the
1274          * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1275          */
1276         if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1277                 struct kvm_vcpu *vcpu;
1278                 int i;
1279
1280                 kvm_for_each_vcpu(i, vcpu, kvm) {
1281                         if (vcpu->arch.vcore != vc)
1282                                 continue;
1283                         if (new_lpcr & LPCR_ILE)
1284                                 vcpu->arch.intr_msr |= MSR_LE;
1285                         else
1286                                 vcpu->arch.intr_msr &= ~MSR_LE;
1287                 }
1288         }
1289
1290         /*
1291          * Userspace can only modify DPFD (default prefetch depth),
1292          * ILE (interrupt little-endian) and TC (translation control).
1293          * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1294          */
1295         mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1296         if (cpu_has_feature(CPU_FTR_ARCH_207S))
1297                 mask |= LPCR_AIL;
1298         /*
1299          * On POWER9, allow userspace to enable large decrementer for the
1300          * guest, whether or not the host has it enabled.
1301          */
1302         if (cpu_has_feature(CPU_FTR_ARCH_300))
1303                 mask |= LPCR_LD;
1304
1305         /* Broken 32-bit version of LPCR must not clear top bits */
1306         if (preserve_top32)
1307                 mask &= 0xFFFFFFFF;
1308         vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1309         spin_unlock(&vc->lock);
1310         mutex_unlock(&kvm->lock);
1311 }
1312
1313 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1314                                  union kvmppc_one_reg *val)
1315 {
1316         int r = 0;
1317         long int i;
1318
1319         switch (id) {
1320         case KVM_REG_PPC_DEBUG_INST:
1321                 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1322                 break;
1323         case KVM_REG_PPC_HIOR:
1324                 *val = get_reg_val(id, 0);
1325                 break;
1326         case KVM_REG_PPC_DABR:
1327                 *val = get_reg_val(id, vcpu->arch.dabr);
1328                 break;
1329         case KVM_REG_PPC_DABRX:
1330                 *val = get_reg_val(id, vcpu->arch.dabrx);
1331                 break;
1332         case KVM_REG_PPC_DSCR:
1333                 *val = get_reg_val(id, vcpu->arch.dscr);
1334                 break;
1335         case KVM_REG_PPC_PURR:
1336                 *val = get_reg_val(id, vcpu->arch.purr);
1337                 break;
1338         case KVM_REG_PPC_SPURR:
1339                 *val = get_reg_val(id, vcpu->arch.spurr);
1340                 break;
1341         case KVM_REG_PPC_AMR:
1342                 *val = get_reg_val(id, vcpu->arch.amr);
1343                 break;
1344         case KVM_REG_PPC_UAMOR:
1345                 *val = get_reg_val(id, vcpu->arch.uamor);
1346                 break;
1347         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1348                 i = id - KVM_REG_PPC_MMCR0;
1349                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1350                 break;
1351         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1352                 i = id - KVM_REG_PPC_PMC1;
1353                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1354                 break;
1355         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1356                 i = id - KVM_REG_PPC_SPMC1;
1357                 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1358                 break;
1359         case KVM_REG_PPC_SIAR:
1360                 *val = get_reg_val(id, vcpu->arch.siar);
1361                 break;
1362         case KVM_REG_PPC_SDAR:
1363                 *val = get_reg_val(id, vcpu->arch.sdar);
1364                 break;
1365         case KVM_REG_PPC_SIER:
1366                 *val = get_reg_val(id, vcpu->arch.sier);
1367                 break;
1368         case KVM_REG_PPC_IAMR:
1369                 *val = get_reg_val(id, vcpu->arch.iamr);
1370                 break;
1371         case KVM_REG_PPC_PSPB:
1372                 *val = get_reg_val(id, vcpu->arch.pspb);
1373                 break;
1374         case KVM_REG_PPC_DPDES:
1375                 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1376                 break;
1377         case KVM_REG_PPC_VTB:
1378                 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1379                 break;
1380         case KVM_REG_PPC_DAWR:
1381                 *val = get_reg_val(id, vcpu->arch.dawr);
1382                 break;
1383         case KVM_REG_PPC_DAWRX:
1384                 *val = get_reg_val(id, vcpu->arch.dawrx);
1385                 break;
1386         case KVM_REG_PPC_CIABR:
1387                 *val = get_reg_val(id, vcpu->arch.ciabr);
1388                 break;
1389         case KVM_REG_PPC_CSIGR:
1390                 *val = get_reg_val(id, vcpu->arch.csigr);
1391                 break;
1392         case KVM_REG_PPC_TACR:
1393                 *val = get_reg_val(id, vcpu->arch.tacr);
1394                 break;
1395         case KVM_REG_PPC_TCSCR:
1396                 *val = get_reg_val(id, vcpu->arch.tcscr);
1397                 break;
1398         case KVM_REG_PPC_PID:
1399                 *val = get_reg_val(id, vcpu->arch.pid);
1400                 break;
1401         case KVM_REG_PPC_ACOP:
1402                 *val = get_reg_val(id, vcpu->arch.acop);
1403                 break;
1404         case KVM_REG_PPC_WORT:
1405                 *val = get_reg_val(id, vcpu->arch.wort);
1406                 break;
1407         case KVM_REG_PPC_TIDR:
1408                 *val = get_reg_val(id, vcpu->arch.tid);
1409                 break;
1410         case KVM_REG_PPC_PSSCR:
1411                 *val = get_reg_val(id, vcpu->arch.psscr);
1412                 break;
1413         case KVM_REG_PPC_VPA_ADDR:
1414                 spin_lock(&vcpu->arch.vpa_update_lock);
1415                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1416                 spin_unlock(&vcpu->arch.vpa_update_lock);
1417                 break;
1418         case KVM_REG_PPC_VPA_SLB:
1419                 spin_lock(&vcpu->arch.vpa_update_lock);
1420                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1421                 val->vpaval.length = vcpu->arch.slb_shadow.len;
1422                 spin_unlock(&vcpu->arch.vpa_update_lock);
1423                 break;
1424         case KVM_REG_PPC_VPA_DTL:
1425                 spin_lock(&vcpu->arch.vpa_update_lock);
1426                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1427                 val->vpaval.length = vcpu->arch.dtl.len;
1428                 spin_unlock(&vcpu->arch.vpa_update_lock);
1429                 break;
1430         case KVM_REG_PPC_TB_OFFSET:
1431                 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1432                 break;
1433         case KVM_REG_PPC_LPCR:
1434         case KVM_REG_PPC_LPCR_64:
1435                 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1436                 break;
1437         case KVM_REG_PPC_PPR:
1438                 *val = get_reg_val(id, vcpu->arch.ppr);
1439                 break;
1440 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1441         case KVM_REG_PPC_TFHAR:
1442                 *val = get_reg_val(id, vcpu->arch.tfhar);
1443                 break;
1444         case KVM_REG_PPC_TFIAR:
1445                 *val = get_reg_val(id, vcpu->arch.tfiar);
1446                 break;
1447         case KVM_REG_PPC_TEXASR:
1448                 *val = get_reg_val(id, vcpu->arch.texasr);
1449                 break;
1450         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1451                 i = id - KVM_REG_PPC_TM_GPR0;
1452                 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1453                 break;
1454         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1455         {
1456                 int j;
1457                 i = id - KVM_REG_PPC_TM_VSR0;
1458                 if (i < 32)
1459                         for (j = 0; j < TS_FPRWIDTH; j++)
1460                                 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1461                 else {
1462                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1463                                 val->vval = vcpu->arch.vr_tm.vr[i-32];
1464                         else
1465                                 r = -ENXIO;
1466                 }
1467                 break;
1468         }
1469         case KVM_REG_PPC_TM_CR:
1470                 *val = get_reg_val(id, vcpu->arch.cr_tm);
1471                 break;
1472         case KVM_REG_PPC_TM_XER:
1473                 *val = get_reg_val(id, vcpu->arch.xer_tm);
1474                 break;
1475         case KVM_REG_PPC_TM_LR:
1476                 *val = get_reg_val(id, vcpu->arch.lr_tm);
1477                 break;
1478         case KVM_REG_PPC_TM_CTR:
1479                 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1480                 break;
1481         case KVM_REG_PPC_TM_FPSCR:
1482                 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1483                 break;
1484         case KVM_REG_PPC_TM_AMR:
1485                 *val = get_reg_val(id, vcpu->arch.amr_tm);
1486                 break;
1487         case KVM_REG_PPC_TM_PPR:
1488                 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1489                 break;
1490         case KVM_REG_PPC_TM_VRSAVE:
1491                 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1492                 break;
1493         case KVM_REG_PPC_TM_VSCR:
1494                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1495                         *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1496                 else
1497                         r = -ENXIO;
1498                 break;
1499         case KVM_REG_PPC_TM_DSCR:
1500                 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1501                 break;
1502         case KVM_REG_PPC_TM_TAR:
1503                 *val = get_reg_val(id, vcpu->arch.tar_tm);
1504                 break;
1505 #endif
1506         case KVM_REG_PPC_ARCH_COMPAT:
1507                 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1508                 break;
1509         case KVM_REG_PPC_DEC_EXPIRY:
1510                 *val = get_reg_val(id, vcpu->arch.dec_expires +
1511                                    vcpu->arch.vcore->tb_offset);
1512                 break;
1513         default:
1514                 r = -EINVAL;
1515                 break;
1516         }
1517
1518         return r;
1519 }
1520
1521 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1522                                  union kvmppc_one_reg *val)
1523 {
1524         int r = 0;
1525         long int i;
1526         unsigned long addr, len;
1527
1528         switch (id) {
1529         case KVM_REG_PPC_HIOR:
1530                 /* Only allow this to be set to zero */
1531                 if (set_reg_val(id, *val))
1532                         r = -EINVAL;
1533                 break;
1534         case KVM_REG_PPC_DABR:
1535                 vcpu->arch.dabr = set_reg_val(id, *val);
1536                 break;
1537         case KVM_REG_PPC_DABRX:
1538                 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1539                 break;
1540         case KVM_REG_PPC_DSCR:
1541                 vcpu->arch.dscr = set_reg_val(id, *val);
1542                 break;
1543         case KVM_REG_PPC_PURR:
1544                 vcpu->arch.purr = set_reg_val(id, *val);
1545                 break;
1546         case KVM_REG_PPC_SPURR:
1547                 vcpu->arch.spurr = set_reg_val(id, *val);
1548                 break;
1549         case KVM_REG_PPC_AMR:
1550                 vcpu->arch.amr = set_reg_val(id, *val);
1551                 break;
1552         case KVM_REG_PPC_UAMOR:
1553                 vcpu->arch.uamor = set_reg_val(id, *val);
1554                 break;
1555         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1556                 i = id - KVM_REG_PPC_MMCR0;
1557                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1558                 break;
1559         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1560                 i = id - KVM_REG_PPC_PMC1;
1561                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1562                 break;
1563         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1564                 i = id - KVM_REG_PPC_SPMC1;
1565                 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1566                 break;
1567         case KVM_REG_PPC_SIAR:
1568                 vcpu->arch.siar = set_reg_val(id, *val);
1569                 break;
1570         case KVM_REG_PPC_SDAR:
1571                 vcpu->arch.sdar = set_reg_val(id, *val);
1572                 break;
1573         case KVM_REG_PPC_SIER:
1574                 vcpu->arch.sier = set_reg_val(id, *val);
1575                 break;
1576         case KVM_REG_PPC_IAMR:
1577                 vcpu->arch.iamr = set_reg_val(id, *val);
1578                 break;
1579         case KVM_REG_PPC_PSPB:
1580                 vcpu->arch.pspb = set_reg_val(id, *val);
1581                 break;
1582         case KVM_REG_PPC_DPDES:
1583                 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1584                 break;
1585         case KVM_REG_PPC_VTB:
1586                 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1587                 break;
1588         case KVM_REG_PPC_DAWR:
1589                 vcpu->arch.dawr = set_reg_val(id, *val);
1590                 break;
1591         case KVM_REG_PPC_DAWRX:
1592                 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1593                 break;
1594         case KVM_REG_PPC_CIABR:
1595                 vcpu->arch.ciabr = set_reg_val(id, *val);
1596                 /* Don't allow setting breakpoints in hypervisor code */
1597                 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1598                         vcpu->arch.ciabr &= ~CIABR_PRIV;        /* disable */
1599                 break;
1600         case KVM_REG_PPC_CSIGR:
1601                 vcpu->arch.csigr = set_reg_val(id, *val);
1602                 break;
1603         case KVM_REG_PPC_TACR:
1604                 vcpu->arch.tacr = set_reg_val(id, *val);
1605                 break;
1606         case KVM_REG_PPC_TCSCR:
1607                 vcpu->arch.tcscr = set_reg_val(id, *val);
1608                 break;
1609         case KVM_REG_PPC_PID:
1610                 vcpu->arch.pid = set_reg_val(id, *val);
1611                 break;
1612         case KVM_REG_PPC_ACOP:
1613                 vcpu->arch.acop = set_reg_val(id, *val);
1614                 break;
1615         case KVM_REG_PPC_WORT:
1616                 vcpu->arch.wort = set_reg_val(id, *val);
1617                 break;
1618         case KVM_REG_PPC_TIDR:
1619                 vcpu->arch.tid = set_reg_val(id, *val);
1620                 break;
1621         case KVM_REG_PPC_PSSCR:
1622                 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1623                 break;
1624         case KVM_REG_PPC_VPA_ADDR:
1625                 addr = set_reg_val(id, *val);
1626                 r = -EINVAL;
1627                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1628                               vcpu->arch.dtl.next_gpa))
1629                         break;
1630                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1631                 break;
1632         case KVM_REG_PPC_VPA_SLB:
1633                 addr = val->vpaval.addr;
1634                 len = val->vpaval.length;
1635                 r = -EINVAL;
1636                 if (addr && !vcpu->arch.vpa.next_gpa)
1637                         break;
1638                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1639                 break;
1640         case KVM_REG_PPC_VPA_DTL:
1641                 addr = val->vpaval.addr;
1642                 len = val->vpaval.length;
1643                 r = -EINVAL;
1644                 if (addr && (len < sizeof(struct dtl_entry) ||
1645                              !vcpu->arch.vpa.next_gpa))
1646                         break;
1647                 len -= len % sizeof(struct dtl_entry);
1648                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1649                 break;
1650         case KVM_REG_PPC_TB_OFFSET:
1651                 /*
1652                  * POWER9 DD1 has an erratum where writing TBU40 causes
1653                  * the timebase to lose ticks.  So we don't let the
1654                  * timebase offset be changed on P9 DD1.  (It is
1655                  * initialized to zero.)
1656                  */
1657                 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
1658                         break;
1659                 /* round up to multiple of 2^24 */
1660                 vcpu->arch.vcore->tb_offset =
1661                         ALIGN(set_reg_val(id, *val), 1UL << 24);
1662                 break;
1663         case KVM_REG_PPC_LPCR:
1664                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1665                 break;
1666         case KVM_REG_PPC_LPCR_64:
1667                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1668                 break;
1669         case KVM_REG_PPC_PPR:
1670                 vcpu->arch.ppr = set_reg_val(id, *val);
1671                 break;
1672 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1673         case KVM_REG_PPC_TFHAR:
1674                 vcpu->arch.tfhar = set_reg_val(id, *val);
1675                 break;
1676         case KVM_REG_PPC_TFIAR:
1677                 vcpu->arch.tfiar = set_reg_val(id, *val);
1678                 break;
1679         case KVM_REG_PPC_TEXASR:
1680                 vcpu->arch.texasr = set_reg_val(id, *val);
1681                 break;
1682         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1683                 i = id - KVM_REG_PPC_TM_GPR0;
1684                 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1685                 break;
1686         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1687         {
1688                 int j;
1689                 i = id - KVM_REG_PPC_TM_VSR0;
1690                 if (i < 32)
1691                         for (j = 0; j < TS_FPRWIDTH; j++)
1692                                 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1693                 else
1694                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1695                                 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1696                         else
1697                                 r = -ENXIO;
1698                 break;
1699         }
1700         case KVM_REG_PPC_TM_CR:
1701                 vcpu->arch.cr_tm = set_reg_val(id, *val);
1702                 break;
1703         case KVM_REG_PPC_TM_XER:
1704                 vcpu->arch.xer_tm = set_reg_val(id, *val);
1705                 break;
1706         case KVM_REG_PPC_TM_LR:
1707                 vcpu->arch.lr_tm = set_reg_val(id, *val);
1708                 break;
1709         case KVM_REG_PPC_TM_CTR:
1710                 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1711                 break;
1712         case KVM_REG_PPC_TM_FPSCR:
1713                 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1714                 break;
1715         case KVM_REG_PPC_TM_AMR:
1716                 vcpu->arch.amr_tm = set_reg_val(id, *val);
1717                 break;
1718         case KVM_REG_PPC_TM_PPR:
1719                 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1720                 break;
1721         case KVM_REG_PPC_TM_VRSAVE:
1722                 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1723                 break;
1724         case KVM_REG_PPC_TM_VSCR:
1725                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1726                         vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1727                 else
1728                         r = - ENXIO;
1729                 break;
1730         case KVM_REG_PPC_TM_DSCR:
1731                 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1732                 break;
1733         case KVM_REG_PPC_TM_TAR:
1734                 vcpu->arch.tar_tm = set_reg_val(id, *val);
1735                 break;
1736 #endif
1737         case KVM_REG_PPC_ARCH_COMPAT:
1738                 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1739                 break;
1740         case KVM_REG_PPC_DEC_EXPIRY:
1741                 vcpu->arch.dec_expires = set_reg_val(id, *val) -
1742                         vcpu->arch.vcore->tb_offset;
1743                 break;
1744         default:
1745                 r = -EINVAL;
1746                 break;
1747         }
1748
1749         return r;
1750 }
1751
1752 /*
1753  * On POWER9, threads are independent and can be in different partitions.
1754  * Therefore we consider each thread to be a subcore.
1755  * There is a restriction that all threads have to be in the same
1756  * MMU mode (radix or HPT), unfortunately, but since we only support
1757  * HPT guests on a HPT host so far, that isn't an impediment yet.
1758  */
1759 static int threads_per_vcore(struct kvm *kvm)
1760 {
1761         if (kvm->arch.threads_indep)
1762                 return 1;
1763         return threads_per_subcore;
1764 }
1765
1766 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1767 {
1768         struct kvmppc_vcore *vcore;
1769
1770         vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1771
1772         if (vcore == NULL)
1773                 return NULL;
1774
1775         spin_lock_init(&vcore->lock);
1776         spin_lock_init(&vcore->stoltb_lock);
1777         init_swait_queue_head(&vcore->wq);
1778         vcore->preempt_tb = TB_NIL;
1779         vcore->lpcr = kvm->arch.lpcr;
1780         vcore->first_vcpuid = core * kvm->arch.smt_mode;
1781         vcore->kvm = kvm;
1782         INIT_LIST_HEAD(&vcore->preempt_list);
1783
1784         return vcore;
1785 }
1786
1787 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1788 static struct debugfs_timings_element {
1789         const char *name;
1790         size_t offset;
1791 } timings[] = {
1792         {"rm_entry",    offsetof(struct kvm_vcpu, arch.rm_entry)},
1793         {"rm_intr",     offsetof(struct kvm_vcpu, arch.rm_intr)},
1794         {"rm_exit",     offsetof(struct kvm_vcpu, arch.rm_exit)},
1795         {"guest",       offsetof(struct kvm_vcpu, arch.guest_time)},
1796         {"cede",        offsetof(struct kvm_vcpu, arch.cede_time)},
1797 };
1798
1799 #define N_TIMINGS       (ARRAY_SIZE(timings))
1800
1801 struct debugfs_timings_state {
1802         struct kvm_vcpu *vcpu;
1803         unsigned int    buflen;
1804         char            buf[N_TIMINGS * 100];
1805 };
1806
1807 static int debugfs_timings_open(struct inode *inode, struct file *file)
1808 {
1809         struct kvm_vcpu *vcpu = inode->i_private;
1810         struct debugfs_timings_state *p;
1811
1812         p = kzalloc(sizeof(*p), GFP_KERNEL);
1813         if (!p)
1814                 return -ENOMEM;
1815
1816         kvm_get_kvm(vcpu->kvm);
1817         p->vcpu = vcpu;
1818         file->private_data = p;
1819
1820         return nonseekable_open(inode, file);
1821 }
1822
1823 static int debugfs_timings_release(struct inode *inode, struct file *file)
1824 {
1825         struct debugfs_timings_state *p = file->private_data;
1826
1827         kvm_put_kvm(p->vcpu->kvm);
1828         kfree(p);
1829         return 0;
1830 }
1831
1832 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1833                                     size_t len, loff_t *ppos)
1834 {
1835         struct debugfs_timings_state *p = file->private_data;
1836         struct kvm_vcpu *vcpu = p->vcpu;
1837         char *s, *buf_end;
1838         struct kvmhv_tb_accumulator tb;
1839         u64 count;
1840         loff_t pos;
1841         ssize_t n;
1842         int i, loops;
1843         bool ok;
1844
1845         if (!p->buflen) {
1846                 s = p->buf;
1847                 buf_end = s + sizeof(p->buf);
1848                 for (i = 0; i < N_TIMINGS; ++i) {
1849                         struct kvmhv_tb_accumulator *acc;
1850
1851                         acc = (struct kvmhv_tb_accumulator *)
1852                                 ((unsigned long)vcpu + timings[i].offset);
1853                         ok = false;
1854                         for (loops = 0; loops < 1000; ++loops) {
1855                                 count = acc->seqcount;
1856                                 if (!(count & 1)) {
1857                                         smp_rmb();
1858                                         tb = *acc;
1859                                         smp_rmb();
1860                                         if (count == acc->seqcount) {
1861                                                 ok = true;
1862                                                 break;
1863                                         }
1864                                 }
1865                                 udelay(1);
1866                         }
1867                         if (!ok)
1868                                 snprintf(s, buf_end - s, "%s: stuck\n",
1869                                         timings[i].name);
1870                         else
1871                                 snprintf(s, buf_end - s,
1872                                         "%s: %llu %llu %llu %llu\n",
1873                                         timings[i].name, count / 2,
1874                                         tb_to_ns(tb.tb_total),
1875                                         tb_to_ns(tb.tb_min),
1876                                         tb_to_ns(tb.tb_max));
1877                         s += strlen(s);
1878                 }
1879                 p->buflen = s - p->buf;
1880         }
1881
1882         pos = *ppos;
1883         if (pos >= p->buflen)
1884                 return 0;
1885         if (len > p->buflen - pos)
1886                 len = p->buflen - pos;
1887         n = copy_to_user(buf, p->buf + pos, len);
1888         if (n) {
1889                 if (n == len)
1890                         return -EFAULT;
1891                 len -= n;
1892         }
1893         *ppos = pos + len;
1894         return len;
1895 }
1896
1897 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1898                                      size_t len, loff_t *ppos)
1899 {
1900         return -EACCES;
1901 }
1902
1903 static const struct file_operations debugfs_timings_ops = {
1904         .owner   = THIS_MODULE,
1905         .open    = debugfs_timings_open,
1906         .release = debugfs_timings_release,
1907         .read    = debugfs_timings_read,
1908         .write   = debugfs_timings_write,
1909         .llseek  = generic_file_llseek,
1910 };
1911
1912 /* Create a debugfs directory for the vcpu */
1913 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1914 {
1915         char buf[16];
1916         struct kvm *kvm = vcpu->kvm;
1917
1918         snprintf(buf, sizeof(buf), "vcpu%u", id);
1919         if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1920                 return;
1921         vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1922         if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1923                 return;
1924         vcpu->arch.debugfs_timings =
1925                 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1926                                     vcpu, &debugfs_timings_ops);
1927 }
1928
1929 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1930 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1931 {
1932 }
1933 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1934
1935 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1936                                                    unsigned int id)
1937 {
1938         struct kvm_vcpu *vcpu;
1939         int err;
1940         int core;
1941         struct kvmppc_vcore *vcore;
1942
1943         err = -ENOMEM;
1944         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1945         if (!vcpu)
1946                 goto out;
1947
1948         err = kvm_vcpu_init(vcpu, kvm, id);
1949         if (err)
1950                 goto free_vcpu;
1951
1952         vcpu->arch.shared = &vcpu->arch.shregs;
1953 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1954         /*
1955          * The shared struct is never shared on HV,
1956          * so we can always use host endianness
1957          */
1958 #ifdef __BIG_ENDIAN__
1959         vcpu->arch.shared_big_endian = true;
1960 #else
1961         vcpu->arch.shared_big_endian = false;
1962 #endif
1963 #endif
1964         vcpu->arch.mmcr[0] = MMCR0_FC;
1965         vcpu->arch.ctrl = CTRL_RUNLATCH;
1966         /* default to host PVR, since we can't spoof it */
1967         kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1968         spin_lock_init(&vcpu->arch.vpa_update_lock);
1969         spin_lock_init(&vcpu->arch.tbacct_lock);
1970         vcpu->arch.busy_preempt = TB_NIL;
1971         vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1972
1973         /*
1974          * Set the default HFSCR for the guest from the host value.
1975          * This value is only used on POWER9.
1976          * On POWER9 DD1, TM doesn't work, so we make sure to
1977          * prevent the guest from using it.
1978          * On POWER9, we want to virtualize the doorbell facility, so we
1979          * turn off the HFSCR bit, which causes those instructions to trap.
1980          */
1981         vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
1982         if (!cpu_has_feature(CPU_FTR_TM))
1983                 vcpu->arch.hfscr &= ~HFSCR_TM;
1984         if (cpu_has_feature(CPU_FTR_ARCH_300))
1985                 vcpu->arch.hfscr &= ~HFSCR_MSGP;
1986
1987         kvmppc_mmu_book3s_hv_init(vcpu);
1988
1989         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1990
1991         init_waitqueue_head(&vcpu->arch.cpu_run);
1992
1993         mutex_lock(&kvm->lock);
1994         vcore = NULL;
1995         err = -EINVAL;
1996         core = id / kvm->arch.smt_mode;
1997         if (core < KVM_MAX_VCORES) {
1998                 vcore = kvm->arch.vcores[core];
1999                 if (!vcore) {
2000                         err = -ENOMEM;
2001                         vcore = kvmppc_vcore_create(kvm, core);
2002                         kvm->arch.vcores[core] = vcore;
2003                         kvm->arch.online_vcores++;
2004                 }
2005         }
2006         mutex_unlock(&kvm->lock);
2007
2008         if (!vcore)
2009                 goto free_vcpu;
2010
2011         spin_lock(&vcore->lock);
2012         ++vcore->num_threads;
2013         spin_unlock(&vcore->lock);
2014         vcpu->arch.vcore = vcore;
2015         vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2016         vcpu->arch.thread_cpu = -1;
2017         vcpu->arch.prev_cpu = -1;
2018
2019         vcpu->arch.cpu_type = KVM_CPU_3S_64;
2020         kvmppc_sanity_check(vcpu);
2021
2022         debugfs_vcpu_init(vcpu, id);
2023
2024         return vcpu;
2025
2026 free_vcpu:
2027         kmem_cache_free(kvm_vcpu_cache, vcpu);
2028 out:
2029         return ERR_PTR(err);
2030 }
2031
2032 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2033                               unsigned long flags)
2034 {
2035         int err;
2036         int esmt = 0;
2037
2038         if (flags)
2039                 return -EINVAL;
2040         if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2041                 return -EINVAL;
2042         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2043                 /*
2044                  * On POWER8 (or POWER7), the threading mode is "strict",
2045                  * so we pack smt_mode vcpus per vcore.
2046                  */
2047                 if (smt_mode > threads_per_subcore)
2048                         return -EINVAL;
2049         } else {
2050                 /*
2051                  * On POWER9, the threading mode is "loose",
2052                  * so each vcpu gets its own vcore.
2053                  */
2054                 esmt = smt_mode;
2055                 smt_mode = 1;
2056         }
2057         mutex_lock(&kvm->lock);
2058         err = -EBUSY;
2059         if (!kvm->arch.online_vcores) {
2060                 kvm->arch.smt_mode = smt_mode;
2061                 kvm->arch.emul_smt_mode = esmt;
2062                 err = 0;
2063         }
2064         mutex_unlock(&kvm->lock);
2065
2066         return err;
2067 }
2068
2069 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2070 {
2071         if (vpa->pinned_addr)
2072                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2073                                         vpa->dirty);
2074 }
2075
2076 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2077 {
2078         spin_lock(&vcpu->arch.vpa_update_lock);
2079         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2080         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2081         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2082         spin_unlock(&vcpu->arch.vpa_update_lock);
2083         kvm_vcpu_uninit(vcpu);
2084         kmem_cache_free(kvm_vcpu_cache, vcpu);
2085 }
2086
2087 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2088 {
2089         /* Indicate we want to get back into the guest */
2090         return 1;
2091 }
2092
2093 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2094 {
2095         unsigned long dec_nsec, now;
2096
2097         now = get_tb();
2098         if (now > vcpu->arch.dec_expires) {
2099                 /* decrementer has already gone negative */
2100                 kvmppc_core_queue_dec(vcpu);
2101                 kvmppc_core_prepare_to_enter(vcpu);
2102                 return;
2103         }
2104         dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
2105                    / tb_ticks_per_sec;
2106         hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2107         vcpu->arch.timer_running = 1;
2108 }
2109
2110 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2111 {
2112         vcpu->arch.ceded = 0;
2113         if (vcpu->arch.timer_running) {
2114                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2115                 vcpu->arch.timer_running = 0;
2116         }
2117 }
2118
2119 extern int __kvmppc_vcore_entry(void);
2120
2121 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2122                                    struct kvm_vcpu *vcpu)
2123 {
2124         u64 now;
2125
2126         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2127                 return;
2128         spin_lock_irq(&vcpu->arch.tbacct_lock);
2129         now = mftb();
2130         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2131                 vcpu->arch.stolen_logged;
2132         vcpu->arch.busy_preempt = now;
2133         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2134         spin_unlock_irq(&vcpu->arch.tbacct_lock);
2135         --vc->n_runnable;
2136         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2137 }
2138
2139 static int kvmppc_grab_hwthread(int cpu)
2140 {
2141         struct paca_struct *tpaca;
2142         long timeout = 10000;
2143
2144         tpaca = paca_ptrs[cpu];
2145
2146         /* Ensure the thread won't go into the kernel if it wakes */
2147         tpaca->kvm_hstate.kvm_vcpu = NULL;
2148         tpaca->kvm_hstate.kvm_vcore = NULL;
2149         tpaca->kvm_hstate.napping = 0;
2150         smp_wmb();
2151         tpaca->kvm_hstate.hwthread_req = 1;
2152
2153         /*
2154          * If the thread is already executing in the kernel (e.g. handling
2155          * a stray interrupt), wait for it to get back to nap mode.
2156          * The smp_mb() is to ensure that our setting of hwthread_req
2157          * is visible before we look at hwthread_state, so if this
2158          * races with the code at system_reset_pSeries and the thread
2159          * misses our setting of hwthread_req, we are sure to see its
2160          * setting of hwthread_state, and vice versa.
2161          */
2162         smp_mb();
2163         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2164                 if (--timeout <= 0) {
2165                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
2166                         return -EBUSY;
2167                 }
2168                 udelay(1);
2169         }
2170         return 0;
2171 }
2172
2173 static void kvmppc_release_hwthread(int cpu)
2174 {
2175         struct paca_struct *tpaca;
2176
2177         tpaca = paca_ptrs[cpu];
2178         tpaca->kvm_hstate.hwthread_req = 0;
2179         tpaca->kvm_hstate.kvm_vcpu = NULL;
2180         tpaca->kvm_hstate.kvm_vcore = NULL;
2181         tpaca->kvm_hstate.kvm_split_mode = NULL;
2182 }
2183
2184 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2185 {
2186         int i;
2187
2188         cpu = cpu_first_thread_sibling(cpu);
2189         cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2190         /*
2191          * Make sure setting of bit in need_tlb_flush precedes
2192          * testing of cpu_in_guest bits.  The matching barrier on
2193          * the other side is the first smp_mb() in kvmppc_run_core().
2194          */
2195         smp_mb();
2196         for (i = 0; i < threads_per_core; ++i)
2197                 if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
2198                         smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2199 }
2200
2201 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2202 {
2203         struct kvm *kvm = vcpu->kvm;
2204
2205         /*
2206          * With radix, the guest can do TLB invalidations itself,
2207          * and it could choose to use the local form (tlbiel) if
2208          * it is invalidating a translation that has only ever been
2209          * used on one vcpu.  However, that doesn't mean it has
2210          * only ever been used on one physical cpu, since vcpus
2211          * can move around between pcpus.  To cope with this, when
2212          * a vcpu moves from one pcpu to another, we need to tell
2213          * any vcpus running on the same core as this vcpu previously
2214          * ran to flush the TLB.  The TLB is shared between threads,
2215          * so we use a single bit in .need_tlb_flush for all 4 threads.
2216          */
2217         if (vcpu->arch.prev_cpu != pcpu) {
2218                 if (vcpu->arch.prev_cpu >= 0 &&
2219                     cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
2220                     cpu_first_thread_sibling(pcpu))
2221                         radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
2222                 vcpu->arch.prev_cpu = pcpu;
2223         }
2224 }
2225
2226 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2227 {
2228         int cpu;
2229         struct paca_struct *tpaca;
2230         struct kvm *kvm = vc->kvm;
2231
2232         cpu = vc->pcpu;
2233         if (vcpu) {
2234                 if (vcpu->arch.timer_running) {
2235                         hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2236                         vcpu->arch.timer_running = 0;
2237                 }
2238                 cpu += vcpu->arch.ptid;
2239                 vcpu->cpu = vc->pcpu;
2240                 vcpu->arch.thread_cpu = cpu;
2241                 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2242         }
2243         tpaca = paca_ptrs[cpu];
2244         tpaca->kvm_hstate.kvm_vcpu = vcpu;
2245         tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2246         /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2247         smp_wmb();
2248         tpaca->kvm_hstate.kvm_vcore = vc;
2249         if (cpu != smp_processor_id())
2250                 kvmppc_ipi_thread(cpu);
2251 }
2252
2253 static void kvmppc_wait_for_nap(int n_threads)
2254 {
2255         int cpu = smp_processor_id();
2256         int i, loops;
2257
2258         if (n_threads <= 1)
2259                 return;
2260         for (loops = 0; loops < 1000000; ++loops) {
2261                 /*
2262                  * Check if all threads are finished.
2263                  * We set the vcore pointer when starting a thread
2264                  * and the thread clears it when finished, so we look
2265                  * for any threads that still have a non-NULL vcore ptr.
2266                  */
2267                 for (i = 1; i < n_threads; ++i)
2268                         if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2269                                 break;
2270                 if (i == n_threads) {
2271                         HMT_medium();
2272                         return;
2273                 }
2274                 HMT_low();
2275         }
2276         HMT_medium();
2277         for (i = 1; i < n_threads; ++i)
2278                 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2279                         pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2280 }
2281
2282 /*
2283  * Check that we are on thread 0 and that any other threads in
2284  * this core are off-line.  Then grab the threads so they can't
2285  * enter the kernel.
2286  */
2287 static int on_primary_thread(void)
2288 {
2289         int cpu = smp_processor_id();
2290         int thr;
2291
2292         /* Are we on a primary subcore? */
2293         if (cpu_thread_in_subcore(cpu))
2294                 return 0;
2295
2296         thr = 0;
2297         while (++thr < threads_per_subcore)
2298                 if (cpu_online(cpu + thr))
2299                         return 0;
2300
2301         /* Grab all hw threads so they can't go into the kernel */
2302         for (thr = 1; thr < threads_per_subcore; ++thr) {
2303                 if (kvmppc_grab_hwthread(cpu + thr)) {
2304                         /* Couldn't grab one; let the others go */
2305                         do {
2306                                 kvmppc_release_hwthread(cpu + thr);
2307                         } while (--thr > 0);
2308                         return 0;
2309                 }
2310         }
2311         return 1;
2312 }
2313
2314 /*
2315  * A list of virtual cores for each physical CPU.
2316  * These are vcores that could run but their runner VCPU tasks are
2317  * (or may be) preempted.
2318  */
2319 struct preempted_vcore_list {
2320         struct list_head        list;
2321         spinlock_t              lock;
2322 };
2323
2324 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2325
2326 static void init_vcore_lists(void)
2327 {
2328         int cpu;
2329
2330         for_each_possible_cpu(cpu) {
2331                 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2332                 spin_lock_init(&lp->lock);
2333                 INIT_LIST_HEAD(&lp->list);
2334         }
2335 }
2336
2337 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2338 {
2339         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2340
2341         vc->vcore_state = VCORE_PREEMPT;
2342         vc->pcpu = smp_processor_id();
2343         if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2344                 spin_lock(&lp->lock);
2345                 list_add_tail(&vc->preempt_list, &lp->list);
2346                 spin_unlock(&lp->lock);
2347         }
2348
2349         /* Start accumulating stolen time */
2350         kvmppc_core_start_stolen(vc);
2351 }
2352
2353 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2354 {
2355         struct preempted_vcore_list *lp;
2356
2357         kvmppc_core_end_stolen(vc);
2358         if (!list_empty(&vc->preempt_list)) {
2359                 lp = &per_cpu(preempted_vcores, vc->pcpu);
2360                 spin_lock(&lp->lock);
2361                 list_del_init(&vc->preempt_list);
2362                 spin_unlock(&lp->lock);
2363         }
2364         vc->vcore_state = VCORE_INACTIVE;
2365 }
2366
2367 /*
2368  * This stores information about the virtual cores currently
2369  * assigned to a physical core.
2370  */
2371 struct core_info {
2372         int             n_subcores;
2373         int             max_subcore_threads;
2374         int             total_threads;
2375         int             subcore_threads[MAX_SUBCORES];
2376         struct kvmppc_vcore *vc[MAX_SUBCORES];
2377 };
2378
2379 /*
2380  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2381  * respectively in 2-way micro-threading (split-core) mode on POWER8.
2382  */
2383 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2384
2385 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2386 {
2387         memset(cip, 0, sizeof(*cip));
2388         cip->n_subcores = 1;
2389         cip->max_subcore_threads = vc->num_threads;
2390         cip->total_threads = vc->num_threads;
2391         cip->subcore_threads[0] = vc->num_threads;
2392         cip->vc[0] = vc;
2393 }
2394
2395 static bool subcore_config_ok(int n_subcores, int n_threads)
2396 {
2397         /*
2398          * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2399          * split-core mode, with one thread per subcore.
2400          */
2401         if (cpu_has_feature(CPU_FTR_ARCH_300))
2402                 return n_subcores <= 4 && n_threads == 1;
2403
2404         /* On POWER8, can only dynamically split if unsplit to begin with */
2405         if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2406                 return false;
2407         if (n_subcores > MAX_SUBCORES)
2408                 return false;
2409         if (n_subcores > 1) {
2410                 if (!(dynamic_mt_modes & 2))
2411                         n_subcores = 4;
2412                 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2413                         return false;
2414         }
2415
2416         return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2417 }
2418
2419 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2420 {
2421         vc->entry_exit_map = 0;
2422         vc->in_guest = 0;
2423         vc->napping_threads = 0;
2424         vc->conferring_threads = 0;
2425 }
2426
2427 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2428 {
2429         int n_threads = vc->num_threads;
2430         int sub;
2431
2432         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2433                 return false;
2434
2435         /* Some POWER9 chips require all threads to be in the same MMU mode */
2436         if (no_mixing_hpt_and_radix &&
2437             kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2438                 return false;
2439
2440         if (n_threads < cip->max_subcore_threads)
2441                 n_threads = cip->max_subcore_threads;
2442         if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2443                 return false;
2444         cip->max_subcore_threads = n_threads;
2445
2446         sub = cip->n_subcores;
2447         ++cip->n_subcores;
2448         cip->total_threads += vc->num_threads;
2449         cip->subcore_threads[sub] = vc->num_threads;
2450         cip->vc[sub] = vc;
2451         init_vcore_to_run(vc);
2452         list_del_init(&vc->preempt_list);
2453
2454         return true;
2455 }
2456
2457 /*
2458  * Work out whether it is possible to piggyback the execution of
2459  * vcore *pvc onto the execution of the other vcores described in *cip.
2460  */
2461 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2462                           int target_threads)
2463 {
2464         if (cip->total_threads + pvc->num_threads > target_threads)
2465                 return false;
2466
2467         return can_dynamic_split(pvc, cip);
2468 }
2469
2470 static void prepare_threads(struct kvmppc_vcore *vc)
2471 {
2472         int i;
2473         struct kvm_vcpu *vcpu;
2474
2475         for_each_runnable_thread(i, vcpu, vc) {
2476                 if (signal_pending(vcpu->arch.run_task))
2477                         vcpu->arch.ret = -EINTR;
2478                 else if (vcpu->arch.vpa.update_pending ||
2479                          vcpu->arch.slb_shadow.update_pending ||
2480                          vcpu->arch.dtl.update_pending)
2481                         vcpu->arch.ret = RESUME_GUEST;
2482                 else
2483                         continue;
2484                 kvmppc_remove_runnable(vc, vcpu);
2485                 wake_up(&vcpu->arch.cpu_run);
2486         }
2487 }
2488
2489 static void collect_piggybacks(struct core_info *cip, int target_threads)
2490 {
2491         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2492         struct kvmppc_vcore *pvc, *vcnext;
2493
2494         spin_lock(&lp->lock);
2495         list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2496                 if (!spin_trylock(&pvc->lock))
2497                         continue;
2498                 prepare_threads(pvc);
2499                 if (!pvc->n_runnable) {
2500                         list_del_init(&pvc->preempt_list);
2501                         if (pvc->runner == NULL) {
2502                                 pvc->vcore_state = VCORE_INACTIVE;
2503                                 kvmppc_core_end_stolen(pvc);
2504                         }
2505                         spin_unlock(&pvc->lock);
2506                         continue;
2507                 }
2508                 if (!can_piggyback(pvc, cip, target_threads)) {
2509                         spin_unlock(&pvc->lock);
2510                         continue;
2511                 }
2512                 kvmppc_core_end_stolen(pvc);
2513                 pvc->vcore_state = VCORE_PIGGYBACK;
2514                 if (cip->total_threads >= target_threads)
2515                         break;
2516         }
2517         spin_unlock(&lp->lock);
2518 }
2519
2520 static bool recheck_signals(struct core_info *cip)
2521 {
2522         int sub, i;
2523         struct kvm_vcpu *vcpu;
2524
2525         for (sub = 0; sub < cip->n_subcores; ++sub)
2526                 for_each_runnable_thread(i, vcpu, cip->vc[sub])
2527                         if (signal_pending(vcpu->arch.run_task))
2528                                 return true;
2529         return false;
2530 }
2531
2532 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2533 {
2534         int still_running = 0, i;
2535         u64 now;
2536         long ret;
2537         struct kvm_vcpu *vcpu;
2538
2539         spin_lock(&vc->lock);
2540         now = get_tb();
2541         for_each_runnable_thread(i, vcpu, vc) {
2542                 /* cancel pending dec exception if dec is positive */
2543                 if (now < vcpu->arch.dec_expires &&
2544                     kvmppc_core_pending_dec(vcpu))
2545                         kvmppc_core_dequeue_dec(vcpu);
2546
2547                 trace_kvm_guest_exit(vcpu);
2548
2549                 ret = RESUME_GUEST;
2550                 if (vcpu->arch.trap)
2551                         ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2552                                                     vcpu->arch.run_task);
2553
2554                 vcpu->arch.ret = ret;
2555                 vcpu->arch.trap = 0;
2556
2557                 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2558                         if (vcpu->arch.pending_exceptions)
2559                                 kvmppc_core_prepare_to_enter(vcpu);
2560                         if (vcpu->arch.ceded)
2561                                 kvmppc_set_timer(vcpu);
2562                         else
2563                                 ++still_running;
2564                 } else {
2565                         kvmppc_remove_runnable(vc, vcpu);
2566                         wake_up(&vcpu->arch.cpu_run);
2567                 }
2568         }
2569         if (!is_master) {
2570                 if (still_running > 0) {
2571                         kvmppc_vcore_preempt(vc);
2572                 } else if (vc->runner) {
2573                         vc->vcore_state = VCORE_PREEMPT;
2574                         kvmppc_core_start_stolen(vc);
2575                 } else {
2576                         vc->vcore_state = VCORE_INACTIVE;
2577                 }
2578                 if (vc->n_runnable > 0 && vc->runner == NULL) {
2579                         /* make sure there's a candidate runner awake */
2580                         i = -1;
2581                         vcpu = next_runnable_thread(vc, &i);
2582                         wake_up(&vcpu->arch.cpu_run);
2583                 }
2584         }
2585         spin_unlock(&vc->lock);
2586 }
2587
2588 /*
2589  * Clear core from the list of active host cores as we are about to
2590  * enter the guest. Only do this if it is the primary thread of the
2591  * core (not if a subcore) that is entering the guest.
2592  */
2593 static inline int kvmppc_clear_host_core(unsigned int cpu)
2594 {
2595         int core;
2596
2597         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2598                 return 0;
2599         /*
2600          * Memory barrier can be omitted here as we will do a smp_wmb()
2601          * later in kvmppc_start_thread and we need ensure that state is
2602          * visible to other CPUs only after we enter guest.
2603          */
2604         core = cpu >> threads_shift;
2605         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2606         return 0;
2607 }
2608
2609 /*
2610  * Advertise this core as an active host core since we exited the guest
2611  * Only need to do this if it is the primary thread of the core that is
2612  * exiting.
2613  */
2614 static inline int kvmppc_set_host_core(unsigned int cpu)
2615 {
2616         int core;
2617
2618         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2619                 return 0;
2620
2621         /*
2622          * Memory barrier can be omitted here because we do a spin_unlock
2623          * immediately after this which provides the memory barrier.
2624          */
2625         core = cpu >> threads_shift;
2626         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2627         return 0;
2628 }
2629
2630 static void set_irq_happened(int trap)
2631 {
2632         switch (trap) {
2633         case BOOK3S_INTERRUPT_EXTERNAL:
2634                 local_paca->irq_happened |= PACA_IRQ_EE;
2635                 break;
2636         case BOOK3S_INTERRUPT_H_DOORBELL:
2637                 local_paca->irq_happened |= PACA_IRQ_DBELL;
2638                 break;
2639         case BOOK3S_INTERRUPT_HMI:
2640                 local_paca->irq_happened |= PACA_IRQ_HMI;
2641                 break;
2642         case BOOK3S_INTERRUPT_SYSTEM_RESET:
2643                 replay_system_reset();
2644                 break;
2645         }
2646 }
2647
2648 /*
2649  * Run a set of guest threads on a physical core.
2650  * Called with vc->lock held.
2651  */
2652 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2653 {
2654         struct kvm_vcpu *vcpu;
2655         int i;
2656         int srcu_idx;
2657         struct core_info core_info;
2658         struct kvmppc_vcore *pvc;
2659         struct kvm_split_mode split_info, *sip;
2660         int split, subcore_size, active;
2661         int sub;
2662         bool thr0_done;
2663         unsigned long cmd_bit, stat_bit;
2664         int pcpu, thr;
2665         int target_threads;
2666         int controlled_threads;
2667         int trap;
2668         bool is_power8;
2669         bool hpt_on_radix;
2670
2671         /*
2672          * Remove from the list any threads that have a signal pending
2673          * or need a VPA update done
2674          */
2675         prepare_threads(vc);
2676
2677         /* if the runner is no longer runnable, let the caller pick a new one */
2678         if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2679                 return;
2680
2681         /*
2682          * Initialize *vc.
2683          */
2684         init_vcore_to_run(vc);
2685         vc->preempt_tb = TB_NIL;
2686
2687         /*
2688          * Number of threads that we will be controlling: the same as
2689          * the number of threads per subcore, except on POWER9,
2690          * where it's 1 because the threads are (mostly) independent.
2691          */
2692         controlled_threads = threads_per_vcore(vc->kvm);
2693
2694         /*
2695          * Make sure we are running on primary threads, and that secondary
2696          * threads are offline.  Also check if the number of threads in this
2697          * guest are greater than the current system threads per guest.
2698          * On POWER9, we need to be not in independent-threads mode if
2699          * this is a HPT guest on a radix host machine where the
2700          * CPU threads may not be in different MMU modes.
2701          */
2702         hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
2703                 !kvm_is_radix(vc->kvm);
2704         if (((controlled_threads > 1) &&
2705              ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
2706             (hpt_on_radix && vc->kvm->arch.threads_indep)) {
2707                 for_each_runnable_thread(i, vcpu, vc) {
2708                         vcpu->arch.ret = -EBUSY;
2709                         kvmppc_remove_runnable(vc, vcpu);
2710                         wake_up(&vcpu->arch.cpu_run);
2711                 }
2712                 goto out;
2713         }
2714
2715         /*
2716          * See if we could run any other vcores on the physical core
2717          * along with this one.
2718          */
2719         init_core_info(&core_info, vc);
2720         pcpu = smp_processor_id();
2721         target_threads = controlled_threads;
2722         if (target_smt_mode && target_smt_mode < target_threads)
2723                 target_threads = target_smt_mode;
2724         if (vc->num_threads < target_threads)
2725                 collect_piggybacks(&core_info, target_threads);
2726
2727         /*
2728          * On radix, arrange for TLB flushing if necessary.
2729          * This has to be done before disabling interrupts since
2730          * it uses smp_call_function().
2731          */
2732         pcpu = smp_processor_id();
2733         if (kvm_is_radix(vc->kvm)) {
2734                 for (sub = 0; sub < core_info.n_subcores; ++sub)
2735                         for_each_runnable_thread(i, vcpu, core_info.vc[sub])
2736                                 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
2737         }
2738
2739         /*
2740          * Hard-disable interrupts, and check resched flag and signals.
2741          * If we need to reschedule or deliver a signal, clean up
2742          * and return without going into the guest(s).
2743          * If the mmu_ready flag has been cleared, don't go into the
2744          * guest because that means a HPT resize operation is in progress.
2745          */
2746         local_irq_disable();
2747         hard_irq_disable();
2748         if (lazy_irq_pending() || need_resched() ||
2749             recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) {
2750                 local_irq_enable();
2751                 vc->vcore_state = VCORE_INACTIVE;
2752                 /* Unlock all except the primary vcore */
2753                 for (sub = 1; sub < core_info.n_subcores; ++sub) {
2754                         pvc = core_info.vc[sub];
2755                         /* Put back on to the preempted vcores list */
2756                         kvmppc_vcore_preempt(pvc);
2757                         spin_unlock(&pvc->lock);
2758                 }
2759                 for (i = 0; i < controlled_threads; ++i)
2760                         kvmppc_release_hwthread(pcpu + i);
2761                 return;
2762         }
2763
2764         kvmppc_clear_host_core(pcpu);
2765
2766         /* Decide on micro-threading (split-core) mode */
2767         subcore_size = threads_per_subcore;
2768         cmd_bit = stat_bit = 0;
2769         split = core_info.n_subcores;
2770         sip = NULL;
2771         is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
2772                 && !cpu_has_feature(CPU_FTR_ARCH_300);
2773
2774         if (split > 1 || hpt_on_radix) {
2775                 sip = &split_info;
2776                 memset(&split_info, 0, sizeof(split_info));
2777                 for (sub = 0; sub < core_info.n_subcores; ++sub)
2778                         split_info.vc[sub] = core_info.vc[sub];
2779
2780                 if (is_power8) {
2781                         if (split == 2 && (dynamic_mt_modes & 2)) {
2782                                 cmd_bit = HID0_POWER8_1TO2LPAR;
2783                                 stat_bit = HID0_POWER8_2LPARMODE;
2784                         } else {
2785                                 split = 4;
2786                                 cmd_bit = HID0_POWER8_1TO4LPAR;
2787                                 stat_bit = HID0_POWER8_4LPARMODE;
2788                         }
2789                         subcore_size = MAX_SMT_THREADS / split;
2790                         split_info.rpr = mfspr(SPRN_RPR);
2791                         split_info.pmmar = mfspr(SPRN_PMMAR);
2792                         split_info.ldbar = mfspr(SPRN_LDBAR);
2793                         split_info.subcore_size = subcore_size;
2794                 } else {
2795                         split_info.subcore_size = 1;
2796                         if (hpt_on_radix) {
2797                                 /* Use the split_info for LPCR/LPIDR changes */
2798                                 split_info.lpcr_req = vc->lpcr;
2799                                 split_info.lpidr_req = vc->kvm->arch.lpid;
2800                                 split_info.host_lpcr = vc->kvm->arch.host_lpcr;
2801                                 split_info.do_set = 1;
2802                         }
2803                 }
2804
2805                 /* order writes to split_info before kvm_split_mode pointer */
2806                 smp_wmb();
2807         }
2808
2809         for (thr = 0; thr < controlled_threads; ++thr) {
2810                 struct paca_struct *paca = paca_ptrs[pcpu + thr];
2811
2812                 paca->kvm_hstate.tid = thr;
2813                 paca->kvm_hstate.napping = 0;
2814                 paca->kvm_hstate.kvm_split_mode = sip;
2815         }
2816
2817         /* Initiate micro-threading (split-core) on POWER8 if required */
2818         if (cmd_bit) {
2819                 unsigned long hid0 = mfspr(SPRN_HID0);
2820
2821                 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2822                 mb();
2823                 mtspr(SPRN_HID0, hid0);
2824                 isync();
2825                 for (;;) {
2826                         hid0 = mfspr(SPRN_HID0);
2827                         if (hid0 & stat_bit)
2828                                 break;
2829                         cpu_relax();
2830                 }
2831         }
2832
2833         /* Start all the threads */
2834         active = 0;
2835         for (sub = 0; sub < core_info.n_subcores; ++sub) {
2836                 thr = is_power8 ? subcore_thread_map[sub] : sub;
2837                 thr0_done = false;
2838                 active |= 1 << thr;
2839                 pvc = core_info.vc[sub];
2840                 pvc->pcpu = pcpu + thr;
2841                 for_each_runnable_thread(i, vcpu, pvc) {
2842                         kvmppc_start_thread(vcpu, pvc);
2843                         kvmppc_create_dtl_entry(vcpu, pvc);
2844                         trace_kvm_guest_enter(vcpu);
2845                         if (!vcpu->arch.ptid)
2846                                 thr0_done = true;
2847                         active |= 1 << (thr + vcpu->arch.ptid);
2848                 }
2849                 /*
2850                  * We need to start the first thread of each subcore
2851                  * even if it doesn't have a vcpu.
2852                  */
2853                 if (!thr0_done)
2854                         kvmppc_start_thread(NULL, pvc);
2855         }
2856
2857         /*
2858          * Ensure that split_info.do_nap is set after setting
2859          * the vcore pointer in the PACA of the secondaries.
2860          */
2861         smp_mb();
2862
2863         /*
2864          * When doing micro-threading, poke the inactive threads as well.
2865          * This gets them to the nap instruction after kvm_do_nap,
2866          * which reduces the time taken to unsplit later.
2867          * For POWER9 HPT guest on radix host, we need all the secondary
2868          * threads woken up so they can do the LPCR/LPIDR change.
2869          */
2870         if (cmd_bit || hpt_on_radix) {
2871                 split_info.do_nap = 1;  /* ask secondaries to nap when done */
2872                 for (thr = 1; thr < threads_per_subcore; ++thr)
2873                         if (!(active & (1 << thr)))
2874                                 kvmppc_ipi_thread(pcpu + thr);
2875         }
2876
2877         vc->vcore_state = VCORE_RUNNING;
2878         preempt_disable();
2879
2880         trace_kvmppc_run_core(vc, 0);
2881
2882         for (sub = 0; sub < core_info.n_subcores; ++sub)
2883                 spin_unlock(&core_info.vc[sub]->lock);
2884
2885         /*
2886          * Interrupts will be enabled once we get into the guest,
2887          * so tell lockdep that we're about to enable interrupts.
2888          */
2889         trace_hardirqs_on();
2890
2891         guest_enter();
2892
2893         srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2894
2895         trap = __kvmppc_vcore_entry();
2896
2897         srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2898
2899         guest_exit();
2900
2901         trace_hardirqs_off();
2902         set_irq_happened(trap);
2903
2904         spin_lock(&vc->lock);
2905         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
2906         vc->vcore_state = VCORE_EXITING;
2907
2908         /* wait for secondary threads to finish writing their state to memory */
2909         kvmppc_wait_for_nap(controlled_threads);
2910
2911         /* Return to whole-core mode if we split the core earlier */
2912         if (cmd_bit) {
2913                 unsigned long hid0 = mfspr(SPRN_HID0);
2914                 unsigned long loops = 0;
2915
2916                 hid0 &= ~HID0_POWER8_DYNLPARDIS;
2917                 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
2918                 mb();
2919                 mtspr(SPRN_HID0, hid0);
2920                 isync();
2921                 for (;;) {
2922                         hid0 = mfspr(SPRN_HID0);
2923                         if (!(hid0 & stat_bit))
2924                                 break;
2925                         cpu_relax();
2926                         ++loops;
2927                 }
2928         } else if (hpt_on_radix) {
2929                 /* Wait for all threads to have seen final sync */
2930                 for (thr = 1; thr < controlled_threads; ++thr) {
2931                         struct paca_struct *paca = paca_ptrs[pcpu + thr];
2932
2933                         while (paca->kvm_hstate.kvm_split_mode) {
2934                                 HMT_low();
2935                                 barrier();
2936                         }
2937                         HMT_medium();
2938                 }
2939         }
2940         split_info.do_nap = 0;
2941
2942         kvmppc_set_host_core(pcpu);
2943
2944         local_irq_enable();
2945
2946         /* Let secondaries go back to the offline loop */
2947         for (i = 0; i < controlled_threads; ++i) {
2948                 kvmppc_release_hwthread(pcpu + i);
2949                 if (sip && sip->napped[i])
2950                         kvmppc_ipi_thread(pcpu + i);
2951                 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
2952         }
2953
2954         spin_unlock(&vc->lock);
2955
2956         /* make sure updates to secondary vcpu structs are visible now */
2957         smp_mb();
2958
2959         preempt_enable();
2960
2961         for (sub = 0; sub < core_info.n_subcores; ++sub) {
2962                 pvc = core_info.vc[sub];
2963                 post_guest_process(pvc, pvc == vc);
2964         }
2965
2966         spin_lock(&vc->lock);
2967
2968  out:
2969         vc->vcore_state = VCORE_INACTIVE;
2970         trace_kvmppc_run_core(vc, 1);
2971 }
2972
2973 /*
2974  * Wait for some other vcpu thread to execute us, and
2975  * wake us up when we need to handle something in the host.
2976  */
2977 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
2978                                  struct kvm_vcpu *vcpu, int wait_state)
2979 {
2980         DEFINE_WAIT(wait);
2981
2982         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2983         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2984                 spin_unlock(&vc->lock);
2985                 schedule();
2986                 spin_lock(&vc->lock);
2987         }
2988         finish_wait(&vcpu->arch.cpu_run, &wait);
2989 }
2990
2991 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
2992 {
2993         /* 10us base */
2994         if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
2995                 vc->halt_poll_ns = 10000;
2996         else
2997                 vc->halt_poll_ns *= halt_poll_ns_grow;
2998 }
2999
3000 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
3001 {
3002         if (halt_poll_ns_shrink == 0)
3003                 vc->halt_poll_ns = 0;
3004         else
3005                 vc->halt_poll_ns /= halt_poll_ns_shrink;
3006 }
3007
3008 #ifdef CONFIG_KVM_XICS
3009 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3010 {
3011         if (!xive_enabled())
3012                 return false;
3013         return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3014                 vcpu->arch.xive_saved_state.cppr;
3015 }
3016 #else
3017 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3018 {
3019         return false;
3020 }
3021 #endif /* CONFIG_KVM_XICS */
3022
3023 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3024 {
3025         if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3026             kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3027                 return true;
3028
3029         return false;
3030 }
3031
3032 /*
3033  * Check to see if any of the runnable vcpus on the vcore have pending
3034  * exceptions or are no longer ceded
3035  */
3036 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3037 {
3038         struct kvm_vcpu *vcpu;
3039         int i;
3040
3041         for_each_runnable_thread(i, vcpu, vc) {
3042                 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3043                         return 1;
3044         }
3045
3046         return 0;
3047 }
3048
3049 /*
3050  * All the vcpus in this vcore are idle, so wait for a decrementer
3051  * or external interrupt to one of the vcpus.  vc->lock is held.
3052  */
3053 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3054 {
3055         ktime_t cur, start_poll, start_wait;
3056         int do_sleep = 1;
3057         u64 block_ns;
3058         DECLARE_SWAITQUEUE(wait);
3059
3060         /* Poll for pending exceptions and ceded state */
3061         cur = start_poll = ktime_get();
3062         if (vc->halt_poll_ns) {
3063                 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3064                 ++vc->runner->stat.halt_attempted_poll;
3065
3066                 vc->vcore_state = VCORE_POLLING;
3067                 spin_unlock(&vc->lock);
3068
3069                 do {
3070                         if (kvmppc_vcore_check_block(vc)) {
3071                                 do_sleep = 0;
3072                                 break;
3073                         }
3074                         cur = ktime_get();
3075                 } while (single_task_running() && ktime_before(cur, stop));
3076
3077                 spin_lock(&vc->lock);
3078                 vc->vcore_state = VCORE_INACTIVE;
3079
3080                 if (!do_sleep) {
3081                         ++vc->runner->stat.halt_successful_poll;
3082                         goto out;
3083                 }
3084         }
3085
3086         prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3087
3088         if (kvmppc_vcore_check_block(vc)) {
3089                 finish_swait(&vc->wq, &wait);
3090                 do_sleep = 0;
3091                 /* If we polled, count this as a successful poll */
3092                 if (vc->halt_poll_ns)
3093                         ++vc->runner->stat.halt_successful_poll;
3094                 goto out;
3095         }
3096
3097         start_wait = ktime_get();
3098
3099         vc->vcore_state = VCORE_SLEEPING;
3100         trace_kvmppc_vcore_blocked(vc, 0);
3101         spin_unlock(&vc->lock);
3102         schedule();
3103         finish_swait(&vc->wq, &wait);
3104         spin_lock(&vc->lock);
3105         vc->vcore_state = VCORE_INACTIVE;
3106         trace_kvmppc_vcore_blocked(vc, 1);
3107         ++vc->runner->stat.halt_successful_wait;
3108
3109         cur = ktime_get();
3110
3111 out:
3112         block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3113
3114         /* Attribute wait time */
3115         if (do_sleep) {
3116                 vc->runner->stat.halt_wait_ns +=
3117                         ktime_to_ns(cur) - ktime_to_ns(start_wait);
3118                 /* Attribute failed poll time */
3119                 if (vc->halt_poll_ns)
3120                         vc->runner->stat.halt_poll_fail_ns +=
3121                                 ktime_to_ns(start_wait) -
3122                                 ktime_to_ns(start_poll);
3123         } else {
3124                 /* Attribute successful poll time */
3125                 if (vc->halt_poll_ns)
3126                         vc->runner->stat.halt_poll_success_ns +=
3127                                 ktime_to_ns(cur) -
3128                                 ktime_to_ns(start_poll);
3129         }
3130
3131         /* Adjust poll time */
3132         if (halt_poll_ns) {
3133                 if (block_ns <= vc->halt_poll_ns)
3134                         ;
3135                 /* We slept and blocked for longer than the max halt time */
3136                 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3137                         shrink_halt_poll_ns(vc);
3138                 /* We slept and our poll time is too small */
3139                 else if (vc->halt_poll_ns < halt_poll_ns &&
3140                                 block_ns < halt_poll_ns)
3141                         grow_halt_poll_ns(vc);
3142                 if (vc->halt_poll_ns > halt_poll_ns)
3143                         vc->halt_poll_ns = halt_poll_ns;
3144         } else
3145                 vc->halt_poll_ns = 0;
3146
3147         trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3148 }
3149
3150 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3151 {
3152         int r = 0;
3153         struct kvm *kvm = vcpu->kvm;
3154
3155         mutex_lock(&kvm->lock);
3156         if (!kvm->arch.mmu_ready) {
3157                 if (!kvm_is_radix(kvm))
3158                         r = kvmppc_hv_setup_htab_rma(vcpu);
3159                 if (!r) {
3160                         if (cpu_has_feature(CPU_FTR_ARCH_300))
3161                                 kvmppc_setup_partition_table(kvm);
3162                         kvm->arch.mmu_ready = 1;
3163                 }
3164         }
3165         mutex_unlock(&kvm->lock);
3166         return r;
3167 }
3168
3169 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3170 {
3171         int n_ceded, i, r;
3172         struct kvmppc_vcore *vc;
3173         struct kvm_vcpu *v;
3174
3175         trace_kvmppc_run_vcpu_enter(vcpu);
3176
3177         kvm_run->exit_reason = 0;
3178         vcpu->arch.ret = RESUME_GUEST;
3179         vcpu->arch.trap = 0;
3180         kvmppc_update_vpas(vcpu);
3181
3182         /*
3183          * Synchronize with other threads in this virtual core
3184          */
3185         vc = vcpu->arch.vcore;
3186         spin_lock(&vc->lock);
3187         vcpu->arch.ceded = 0;
3188         vcpu->arch.run_task = current;
3189         vcpu->arch.kvm_run = kvm_run;
3190         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3191         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3192         vcpu->arch.busy_preempt = TB_NIL;
3193         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3194         ++vc->n_runnable;
3195
3196         /*
3197          * This happens the first time this is called for a vcpu.
3198          * If the vcore is already running, we may be able to start
3199          * this thread straight away and have it join in.
3200          */
3201         if (!signal_pending(current)) {
3202                 if ((vc->vcore_state == VCORE_PIGGYBACK ||
3203                      vc->vcore_state == VCORE_RUNNING) &&
3204                            !VCORE_IS_EXITING(vc)) {
3205                         kvmppc_create_dtl_entry(vcpu, vc);
3206                         kvmppc_start_thread(vcpu, vc);
3207                         trace_kvm_guest_enter(vcpu);
3208                 } else if (vc->vcore_state == VCORE_SLEEPING) {
3209                         swake_up(&vc->wq);
3210                 }
3211
3212         }
3213
3214         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3215                !signal_pending(current)) {
3216                 /* See if the MMU is ready to go */
3217                 if (!vcpu->kvm->arch.mmu_ready) {
3218                         spin_unlock(&vc->lock);
3219                         r = kvmhv_setup_mmu(vcpu);
3220                         spin_lock(&vc->lock);
3221                         if (r) {
3222                                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3223                                 kvm_run->fail_entry.
3224                                         hardware_entry_failure_reason = 0;
3225                                 vcpu->arch.ret = r;
3226                                 break;
3227                         }
3228                 }
3229
3230                 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3231                         kvmppc_vcore_end_preempt(vc);
3232
3233                 if (vc->vcore_state != VCORE_INACTIVE) {
3234                         kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3235                         continue;
3236                 }
3237                 for_each_runnable_thread(i, v, vc) {
3238                         kvmppc_core_prepare_to_enter(v);
3239                         if (signal_pending(v->arch.run_task)) {
3240                                 kvmppc_remove_runnable(vc, v);
3241                                 v->stat.signal_exits++;
3242                                 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3243                                 v->arch.ret = -EINTR;
3244                                 wake_up(&v->arch.cpu_run);
3245                         }
3246                 }
3247                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3248                         break;
3249                 n_ceded = 0;
3250                 for_each_runnable_thread(i, v, vc) {
3251                         if (!kvmppc_vcpu_woken(v))
3252                                 n_ceded += v->arch.ceded;
3253                         else
3254                                 v->arch.ceded = 0;
3255                 }
3256                 vc->runner = vcpu;
3257                 if (n_ceded == vc->n_runnable) {
3258                         kvmppc_vcore_blocked(vc);
3259                 } else if (need_resched()) {
3260                         kvmppc_vcore_preempt(vc);
3261                         /* Let something else run */
3262                         cond_resched_lock(&vc->lock);
3263                         if (vc->vcore_state == VCORE_PREEMPT)
3264                                 kvmppc_vcore_end_preempt(vc);
3265                 } else {
3266                         kvmppc_run_core(vc);
3267                 }
3268                 vc->runner = NULL;
3269         }
3270
3271         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3272                (vc->vcore_state == VCORE_RUNNING ||
3273                 vc->vcore_state == VCORE_EXITING ||
3274                 vc->vcore_state == VCORE_PIGGYBACK))
3275                 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3276
3277         if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3278                 kvmppc_vcore_end_preempt(vc);
3279
3280         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3281                 kvmppc_remove_runnable(vc, vcpu);
3282                 vcpu->stat.signal_exits++;
3283                 kvm_run->exit_reason = KVM_EXIT_INTR;
3284                 vcpu->arch.ret = -EINTR;
3285         }
3286
3287         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
3288                 /* Wake up some vcpu to run the core */
3289                 i = -1;
3290                 v = next_runnable_thread(vc, &i);
3291                 wake_up(&v->arch.cpu_run);
3292         }
3293
3294         trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3295         spin_unlock(&vc->lock);
3296         return vcpu->arch.ret;
3297 }
3298
3299 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
3300 {
3301         int r;
3302         int srcu_idx;
3303         unsigned long ebb_regs[3] = {}; /* shut up GCC */
3304         unsigned long user_tar = 0;
3305         unsigned int user_vrsave;
3306         struct kvm *kvm;
3307
3308         if (!vcpu->arch.sane) {
3309                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3310                 return -EINVAL;
3311         }
3312
3313         /*
3314          * Don't allow entry with a suspended transaction, because
3315          * the guest entry/exit code will lose it.
3316          * If the guest has TM enabled, save away their TM-related SPRs
3317          * (they will get restored by the TM unavailable interrupt).
3318          */
3319 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
3320         if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
3321             (current->thread.regs->msr & MSR_TM)) {
3322                 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
3323                         run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3324                         run->fail_entry.hardware_entry_failure_reason = 0;
3325                         return -EINVAL;
3326                 }
3327                 /* Enable TM so we can read the TM SPRs */
3328                 mtmsr(mfmsr() | MSR_TM);
3329                 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
3330                 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
3331                 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
3332                 current->thread.regs->msr &= ~MSR_TM;
3333         }
3334 #endif
3335
3336         kvmppc_core_prepare_to_enter(vcpu);
3337
3338         /* No need to go into the guest when all we'll do is come back out */
3339         if (signal_pending(current)) {
3340                 run->exit_reason = KVM_EXIT_INTR;
3341                 return -EINTR;
3342         }
3343
3344         kvm = vcpu->kvm;
3345         atomic_inc(&kvm->arch.vcpus_running);
3346         /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
3347         smp_mb();
3348
3349         flush_all_to_thread(current);
3350
3351         /* Save userspace EBB and other register values */
3352         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3353                 ebb_regs[0] = mfspr(SPRN_EBBHR);
3354                 ebb_regs[1] = mfspr(SPRN_EBBRR);
3355                 ebb_regs[2] = mfspr(SPRN_BESCR);
3356                 user_tar = mfspr(SPRN_TAR);
3357         }
3358         user_vrsave = mfspr(SPRN_VRSAVE);
3359
3360         vcpu->arch.wqp = &vcpu->arch.vcore->wq;
3361         vcpu->arch.pgdir = current->mm->pgd;
3362         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3363
3364         do {
3365                 r = kvmppc_run_vcpu(run, vcpu);
3366
3367                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
3368                     !(vcpu->arch.shregs.msr & MSR_PR)) {
3369                         trace_kvm_hcall_enter(vcpu);
3370                         r = kvmppc_pseries_do_hcall(vcpu);
3371                         trace_kvm_hcall_exit(vcpu, r);
3372                         kvmppc_core_prepare_to_enter(vcpu);
3373                 } else if (r == RESUME_PAGE_FAULT) {
3374                         srcu_idx = srcu_read_lock(&kvm->srcu);
3375                         r = kvmppc_book3s_hv_page_fault(run, vcpu,
3376                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
3377                         srcu_read_unlock(&kvm->srcu, srcu_idx);
3378                 } else if (r == RESUME_PASSTHROUGH) {
3379                         if (WARN_ON(xive_enabled()))
3380                                 r = H_SUCCESS;
3381                         else
3382                                 r = kvmppc_xics_rm_complete(vcpu, 0);
3383                 }
3384         } while (is_kvmppc_resume_guest(r));
3385
3386         /* Restore userspace EBB and other register values */
3387         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3388                 mtspr(SPRN_EBBHR, ebb_regs[0]);
3389                 mtspr(SPRN_EBBRR, ebb_regs[1]);
3390                 mtspr(SPRN_BESCR, ebb_regs[2]);
3391                 mtspr(SPRN_TAR, user_tar);
3392                 mtspr(SPRN_FSCR, current->thread.fscr);
3393         }
3394         mtspr(SPRN_VRSAVE, user_vrsave);
3395
3396         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3397         atomic_dec(&kvm->arch.vcpus_running);
3398         return r;
3399 }
3400
3401 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
3402                                      int shift, int sllp)
3403 {
3404         (*sps)->page_shift = shift;
3405         (*sps)->slb_enc = sllp;
3406         (*sps)->enc[0].page_shift = shift;
3407         (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
3408         /*
3409          * Add 16MB MPSS support (may get filtered out by userspace)
3410          */
3411         if (shift != 24) {
3412                 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
3413                 if (penc != -1) {
3414                         (*sps)->enc[1].page_shift = 24;
3415                         (*sps)->enc[1].pte_enc = penc;
3416                 }
3417         }
3418         (*sps)++;
3419 }
3420
3421 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
3422                                          struct kvm_ppc_smmu_info *info)
3423 {
3424         struct kvm_ppc_one_seg_page_size *sps;
3425
3426         /*
3427          * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
3428          * POWER7 doesn't support keys for instruction accesses,
3429          * POWER8 and POWER9 do.
3430          */
3431         info->data_keys = 32;
3432         info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
3433
3434         /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
3435         info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
3436         info->slb_size = 32;
3437
3438         /* We only support these sizes for now, and no muti-size segments */
3439         sps = &info->sps[0];
3440         kvmppc_add_seg_page_size(&sps, 12, 0);
3441         kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
3442         kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
3443
3444         return 0;
3445 }
3446
3447 /*
3448  * Get (and clear) the dirty memory log for a memory slot.
3449  */
3450 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
3451                                          struct kvm_dirty_log *log)
3452 {
3453         struct kvm_memslots *slots;
3454         struct kvm_memory_slot *memslot;
3455         int i, r;
3456         unsigned long n;
3457         unsigned long *buf, *p;
3458         struct kvm_vcpu *vcpu;
3459
3460         mutex_lock(&kvm->slots_lock);
3461
3462         r = -EINVAL;
3463         if (log->slot >= KVM_USER_MEM_SLOTS)
3464                 goto out;
3465
3466         slots = kvm_memslots(kvm);
3467         memslot = id_to_memslot(slots, log->slot);
3468         r = -ENOENT;
3469         if (!memslot->dirty_bitmap)
3470                 goto out;
3471
3472         /*
3473          * Use second half of bitmap area because both HPT and radix
3474          * accumulate bits in the first half.
3475          */
3476         n = kvm_dirty_bitmap_bytes(memslot);
3477         buf = memslot->dirty_bitmap + n / sizeof(long);
3478         memset(buf, 0, n);
3479
3480         if (kvm_is_radix(kvm))
3481                 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
3482         else
3483                 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
3484         if (r)
3485                 goto out;
3486
3487         /*
3488          * We accumulate dirty bits in the first half of the
3489          * memslot's dirty_bitmap area, for when pages are paged
3490          * out or modified by the host directly.  Pick up these
3491          * bits and add them to the map.
3492          */
3493         p = memslot->dirty_bitmap;
3494         for (i = 0; i < n / sizeof(long); ++i)
3495                 buf[i] |= xchg(&p[i], 0);
3496
3497         /* Harvest dirty bits from VPA and DTL updates */
3498         /* Note: we never modify the SLB shadow buffer areas */
3499         kvm_for_each_vcpu(i, vcpu, kvm) {
3500                 spin_lock(&vcpu->arch.vpa_update_lock);
3501                 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
3502                 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
3503                 spin_unlock(&vcpu->arch.vpa_update_lock);
3504         }
3505
3506         r = -EFAULT;
3507         if (copy_to_user(log->dirty_bitmap, buf, n))
3508                 goto out;
3509
3510         r = 0;
3511 out:
3512         mutex_unlock(&kvm->slots_lock);
3513         return r;
3514 }
3515
3516 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
3517                                         struct kvm_memory_slot *dont)
3518 {
3519         if (!dont || free->arch.rmap != dont->arch.rmap) {
3520                 vfree(free->arch.rmap);
3521                 free->arch.rmap = NULL;
3522         }
3523 }
3524
3525 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
3526                                          unsigned long npages)
3527 {
3528         slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
3529         if (!slot->arch.rmap)
3530                 return -ENOMEM;
3531
3532         return 0;
3533 }
3534
3535 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
3536                                         struct kvm_memory_slot *memslot,
3537                                         const struct kvm_userspace_memory_region *mem)
3538 {
3539         return 0;
3540 }
3541
3542 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
3543                                 const struct kvm_userspace_memory_region *mem,
3544                                 const struct kvm_memory_slot *old,
3545                                 const struct kvm_memory_slot *new)
3546 {
3547         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
3548
3549         /*
3550          * If we are making a new memslot, it might make
3551          * some address that was previously cached as emulated
3552          * MMIO be no longer emulated MMIO, so invalidate
3553          * all the caches of emulated MMIO translations.
3554          */
3555         if (npages)
3556                 atomic64_inc(&kvm->arch.mmio_update);
3557 }
3558
3559 /*
3560  * Update LPCR values in kvm->arch and in vcores.
3561  * Caller must hold kvm->lock.
3562  */
3563 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
3564 {
3565         long int i;
3566         u32 cores_done = 0;
3567
3568         if ((kvm->arch.lpcr & mask) == lpcr)
3569                 return;
3570
3571         kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
3572
3573         for (i = 0; i < KVM_MAX_VCORES; ++i) {
3574                 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
3575                 if (!vc)
3576                         continue;
3577                 spin_lock(&vc->lock);
3578                 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
3579                 spin_unlock(&vc->lock);
3580                 if (++cores_done >= kvm->arch.online_vcores)
3581                         break;
3582         }
3583 }
3584
3585 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
3586 {
3587         return;
3588 }
3589
3590 void kvmppc_setup_partition_table(struct kvm *kvm)
3591 {
3592         unsigned long dw0, dw1;
3593
3594         if (!kvm_is_radix(kvm)) {
3595                 /* PS field - page size for VRMA */
3596                 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
3597                         ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
3598                 /* HTABSIZE and HTABORG fields */
3599                 dw0 |= kvm->arch.sdr1;
3600
3601                 /* Second dword as set by userspace */
3602                 dw1 = kvm->arch.process_table;
3603         } else {
3604                 dw0 = PATB_HR | radix__get_tree_size() |
3605                         __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
3606                 dw1 = PATB_GR | kvm->arch.process_table;
3607         }
3608
3609         mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
3610 }
3611
3612 /*
3613  * Set up HPT (hashed page table) and RMA (real-mode area).
3614  * Must be called with kvm->lock held.
3615  */
3616 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3617 {
3618         int err = 0;
3619         struct kvm *kvm = vcpu->kvm;
3620         unsigned long hva;
3621         struct kvm_memory_slot *memslot;
3622         struct vm_area_struct *vma;
3623         unsigned long lpcr = 0, senc;
3624         unsigned long psize, porder;
3625         int srcu_idx;
3626
3627         /* Allocate hashed page table (if not done already) and reset it */
3628         if (!kvm->arch.hpt.virt) {
3629                 int order = KVM_DEFAULT_HPT_ORDER;
3630                 struct kvm_hpt_info info;
3631
3632                 err = kvmppc_allocate_hpt(&info, order);
3633                 /* If we get here, it means userspace didn't specify a
3634                  * size explicitly.  So, try successively smaller
3635                  * sizes if the default failed. */
3636                 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
3637                         err  = kvmppc_allocate_hpt(&info, order);
3638
3639                 if (err < 0) {
3640                         pr_err("KVM: Couldn't alloc HPT\n");
3641                         goto out;
3642                 }
3643
3644                 kvmppc_set_hpt(kvm, &info);
3645         }
3646
3647         /* Look up the memslot for guest physical address 0 */
3648         srcu_idx = srcu_read_lock(&kvm->srcu);
3649         memslot = gfn_to_memslot(kvm, 0);
3650
3651         /* We must have some memory at 0 by now */
3652         err = -EINVAL;
3653         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3654                 goto out_srcu;
3655
3656         /* Look up the VMA for the start of this memory slot */
3657         hva = memslot->userspace_addr;
3658         down_read(&current->mm->mmap_sem);
3659         vma = find_vma(current->mm, hva);
3660         if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
3661                 goto up_out;
3662
3663         psize = vma_kernel_pagesize(vma);
3664         porder = __ilog2(psize);
3665
3666         up_read(&current->mm->mmap_sem);
3667
3668         /* We can handle 4k, 64k or 16M pages in the VRMA */
3669         err = -EINVAL;
3670         if (!(psize == 0x1000 || psize == 0x10000 ||
3671               psize == 0x1000000))
3672                 goto out_srcu;
3673
3674         senc = slb_pgsize_encoding(psize);
3675         kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
3676                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3677         /* Create HPTEs in the hash page table for the VRMA */
3678         kvmppc_map_vrma(vcpu, memslot, porder);
3679
3680         /* Update VRMASD field in the LPCR */
3681         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3682                 /* the -4 is to account for senc values starting at 0x10 */
3683                 lpcr = senc << (LPCR_VRMASD_SH - 4);
3684                 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
3685         }
3686
3687         /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
3688         smp_wmb();
3689         err = 0;
3690  out_srcu:
3691         srcu_read_unlock(&kvm->srcu, srcu_idx);
3692  out:
3693         return err;
3694
3695  up_out:
3696         up_read(&current->mm->mmap_sem);
3697         goto out_srcu;
3698 }
3699
3700 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
3701 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
3702 {
3703         kvmppc_free_radix(kvm);
3704         kvmppc_update_lpcr(kvm, LPCR_VPM1,
3705                            LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
3706         kvmppc_rmap_reset(kvm);
3707         kvm->arch.radix = 0;
3708         kvm->arch.process_table = 0;
3709         return 0;
3710 }
3711
3712 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
3713 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
3714 {
3715         int err;
3716
3717         err = kvmppc_init_vm_radix(kvm);
3718         if (err)
3719                 return err;
3720
3721         kvmppc_free_hpt(&kvm->arch.hpt);
3722         kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
3723                            LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
3724         kvm->arch.radix = 1;
3725         return 0;
3726 }
3727
3728 #ifdef CONFIG_KVM_XICS
3729 /*
3730  * Allocate a per-core structure for managing state about which cores are
3731  * running in the host versus the guest and for exchanging data between
3732  * real mode KVM and CPU running in the host.
3733  * This is only done for the first VM.
3734  * The allocated structure stays even if all VMs have stopped.
3735  * It is only freed when the kvm-hv module is unloaded.
3736  * It's OK for this routine to fail, we just don't support host
3737  * core operations like redirecting H_IPI wakeups.
3738  */
3739 void kvmppc_alloc_host_rm_ops(void)
3740 {
3741         struct kvmppc_host_rm_ops *ops;
3742         unsigned long l_ops;
3743         int cpu, core;
3744         int size;
3745
3746         /* Not the first time here ? */
3747         if (kvmppc_host_rm_ops_hv != NULL)
3748                 return;
3749
3750         ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
3751         if (!ops)
3752                 return;
3753
3754         size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
3755         ops->rm_core = kzalloc(size, GFP_KERNEL);
3756
3757         if (!ops->rm_core) {
3758                 kfree(ops);
3759                 return;
3760         }
3761
3762         cpus_read_lock();
3763
3764         for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
3765                 if (!cpu_online(cpu))
3766                         continue;
3767
3768                 core = cpu >> threads_shift;
3769                 ops->rm_core[core].rm_state.in_host = 1;
3770         }
3771
3772         ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
3773
3774         /*
3775          * Make the contents of the kvmppc_host_rm_ops structure visible
3776          * to other CPUs before we assign it to the global variable.
3777          * Do an atomic assignment (no locks used here), but if someone
3778          * beats us to it, just free our copy and return.
3779          */
3780         smp_wmb();
3781         l_ops = (unsigned long) ops;
3782
3783         if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3784                 cpus_read_unlock();
3785                 kfree(ops->rm_core);
3786                 kfree(ops);
3787                 return;
3788         }
3789
3790         cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
3791                                              "ppc/kvm_book3s:prepare",
3792                                              kvmppc_set_host_core,
3793                                              kvmppc_clear_host_core);
3794         cpus_read_unlock();
3795 }
3796
3797 void kvmppc_free_host_rm_ops(void)
3798 {
3799         if (kvmppc_host_rm_ops_hv) {
3800                 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
3801                 kfree(kvmppc_host_rm_ops_hv->rm_core);
3802                 kfree(kvmppc_host_rm_ops_hv);
3803                 kvmppc_host_rm_ops_hv = NULL;
3804         }
3805 }
3806 #endif
3807
3808 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3809 {
3810         unsigned long lpcr, lpid;
3811         char buf[32];
3812         int ret;
3813
3814         /* Allocate the guest's logical partition ID */
3815
3816         lpid = kvmppc_alloc_lpid();
3817         if ((long)lpid < 0)
3818                 return -ENOMEM;
3819         kvm->arch.lpid = lpid;
3820
3821         kvmppc_alloc_host_rm_ops();
3822
3823         /*
3824          * Since we don't flush the TLB when tearing down a VM,
3825          * and this lpid might have previously been used,
3826          * make sure we flush on each core before running the new VM.
3827          * On POWER9, the tlbie in mmu_partition_table_set_entry()
3828          * does this flush for us.
3829          */
3830         if (!cpu_has_feature(CPU_FTR_ARCH_300))
3831                 cpumask_setall(&kvm->arch.need_tlb_flush);
3832
3833         /* Start out with the default set of hcalls enabled */
3834         memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3835                sizeof(kvm->arch.enabled_hcalls));
3836
3837         if (!cpu_has_feature(CPU_FTR_ARCH_300))
3838                 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3839
3840         /* Init LPCR for virtual RMA mode */
3841         kvm->arch.host_lpid = mfspr(SPRN_LPID);
3842         kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3843         lpcr &= LPCR_PECE | LPCR_LPES;
3844         lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3845                 LPCR_VPM0 | LPCR_VPM1;
3846         kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3847                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3848         /* On POWER8 turn on online bit to enable PURR/SPURR */
3849         if (cpu_has_feature(CPU_FTR_ARCH_207S))
3850                 lpcr |= LPCR_ONL;
3851         /*
3852          * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
3853          * Set HVICE bit to enable hypervisor virtualization interrupts.
3854          * Set HEIC to prevent OS interrupts to go to hypervisor (should
3855          * be unnecessary but better safe than sorry in case we re-enable
3856          * EE in HV mode with this LPCR still set)
3857          */
3858         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3859                 lpcr &= ~LPCR_VPM0;
3860                 lpcr |= LPCR_HVICE | LPCR_HEIC;
3861
3862                 /*
3863                  * If xive is enabled, we route 0x500 interrupts directly
3864                  * to the guest.
3865                  */
3866                 if (xive_enabled())
3867                         lpcr |= LPCR_LPES;
3868         }
3869
3870         /*
3871          * If the host uses radix, the guest starts out as radix.
3872          */
3873         if (radix_enabled()) {
3874                 kvm->arch.radix = 1;
3875                 kvm->arch.mmu_ready = 1;
3876                 lpcr &= ~LPCR_VPM1;
3877                 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
3878                 ret = kvmppc_init_vm_radix(kvm);
3879                 if (ret) {
3880                         kvmppc_free_lpid(kvm->arch.lpid);
3881                         return ret;
3882                 }
3883                 kvmppc_setup_partition_table(kvm);
3884         }
3885
3886         kvm->arch.lpcr = lpcr;
3887
3888         /* Initialization for future HPT resizes */
3889         kvm->arch.resize_hpt = NULL;
3890
3891         /*
3892          * Work out how many sets the TLB has, for the use of
3893          * the TLB invalidation loop in book3s_hv_rmhandlers.S.
3894          */
3895         if (radix_enabled())
3896                 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;     /* 128 */
3897         else if (cpu_has_feature(CPU_FTR_ARCH_300))
3898                 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;      /* 256 */
3899         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
3900                 kvm->arch.tlb_sets = POWER8_TLB_SETS;           /* 512 */
3901         else
3902                 kvm->arch.tlb_sets = POWER7_TLB_SETS;           /* 128 */
3903
3904         /*
3905          * Track that we now have a HV mode VM active. This blocks secondary
3906          * CPU threads from coming online.
3907          * On POWER9, we only need to do this if the "indep_threads_mode"
3908          * module parameter has been set to N.
3909          */
3910         if (cpu_has_feature(CPU_FTR_ARCH_300))
3911                 kvm->arch.threads_indep = indep_threads_mode;
3912         if (!kvm->arch.threads_indep)
3913                 kvm_hv_vm_activated();
3914
3915         /*
3916          * Initialize smt_mode depending on processor.
3917          * POWER8 and earlier have to use "strict" threading, where
3918          * all vCPUs in a vcore have to run on the same (sub)core,
3919          * whereas on POWER9 the threads can each run a different
3920          * guest.
3921          */
3922         if (!cpu_has_feature(CPU_FTR_ARCH_300))
3923                 kvm->arch.smt_mode = threads_per_subcore;
3924         else
3925                 kvm->arch.smt_mode = 1;
3926         kvm->arch.emul_smt_mode = 1;
3927
3928         /*
3929          * Create a debugfs directory for the VM
3930          */
3931         snprintf(buf, sizeof(buf), "vm%d", current->pid);
3932         kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
3933         if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
3934                 kvmppc_mmu_debugfs_init(kvm);
3935
3936         return 0;
3937 }
3938
3939 static void kvmppc_free_vcores(struct kvm *kvm)
3940 {
3941         long int i;
3942
3943         for (i = 0; i < KVM_MAX_VCORES; ++i)
3944                 kfree(kvm->arch.vcores[i]);
3945         kvm->arch.online_vcores = 0;
3946 }
3947
3948 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3949 {
3950         debugfs_remove_recursive(kvm->arch.debugfs_dir);
3951
3952         if (!kvm->arch.threads_indep)
3953                 kvm_hv_vm_deactivated();
3954
3955         kvmppc_free_vcores(kvm);
3956
3957         kvmppc_free_lpid(kvm->arch.lpid);
3958
3959         if (kvm_is_radix(kvm))
3960                 kvmppc_free_radix(kvm);
3961         else
3962                 kvmppc_free_hpt(&kvm->arch.hpt);
3963
3964         kvmppc_free_pimap(kvm);
3965 }
3966
3967 /* We don't need to emulate any privileged instructions or dcbz */
3968 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
3969                                      unsigned int inst, int *advance)
3970 {
3971         return EMULATE_FAIL;
3972 }
3973
3974 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
3975                                         ulong spr_val)
3976 {
3977         return EMULATE_FAIL;
3978 }
3979
3980 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
3981                                         ulong *spr_val)
3982 {
3983         return EMULATE_FAIL;
3984 }
3985
3986 static int kvmppc_core_check_processor_compat_hv(void)
3987 {
3988         if (!cpu_has_feature(CPU_FTR_HVMODE) ||
3989             !cpu_has_feature(CPU_FTR_ARCH_206))
3990                 return -EIO;
3991
3992         return 0;
3993 }
3994
3995 #ifdef CONFIG_KVM_XICS
3996
3997 void kvmppc_free_pimap(struct kvm *kvm)
3998 {
3999         kfree(kvm->arch.pimap);
4000 }
4001
4002 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
4003 {
4004         return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
4005 }
4006
4007 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4008 {
4009         struct irq_desc *desc;
4010         struct kvmppc_irq_map *irq_map;
4011         struct kvmppc_passthru_irqmap *pimap;
4012         struct irq_chip *chip;
4013         int i, rc = 0;
4014
4015         if (!kvm_irq_bypass)
4016                 return 1;
4017
4018         desc = irq_to_desc(host_irq);
4019         if (!desc)
4020                 return -EIO;
4021
4022         mutex_lock(&kvm->lock);
4023
4024         pimap = kvm->arch.pimap;
4025         if (pimap == NULL) {
4026                 /* First call, allocate structure to hold IRQ map */
4027                 pimap = kvmppc_alloc_pimap();
4028                 if (pimap == NULL) {
4029                         mutex_unlock(&kvm->lock);
4030                         return -ENOMEM;
4031                 }
4032                 kvm->arch.pimap = pimap;
4033         }
4034
4035         /*
4036          * For now, we only support interrupts for which the EOI operation
4037          * is an OPAL call followed by a write to XIRR, since that's
4038          * what our real-mode EOI code does, or a XIVE interrupt
4039          */
4040         chip = irq_data_get_irq_chip(&desc->irq_data);
4041         if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
4042                 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
4043                         host_irq, guest_gsi);
4044                 mutex_unlock(&kvm->lock);
4045                 return -ENOENT;
4046         }
4047
4048         /*
4049          * See if we already have an entry for this guest IRQ number.
4050          * If it's mapped to a hardware IRQ number, that's an error,
4051          * otherwise re-use this entry.
4052          */
4053         for (i = 0; i < pimap->n_mapped; i++) {
4054                 if (guest_gsi == pimap->mapped[i].v_hwirq) {
4055                         if (pimap->mapped[i].r_hwirq) {
4056                                 mutex_unlock(&kvm->lock);
4057                                 return -EINVAL;
4058                         }
4059                         break;
4060                 }
4061         }
4062
4063         if (i == KVMPPC_PIRQ_MAPPED) {
4064                 mutex_unlock(&kvm->lock);
4065                 return -EAGAIN;         /* table is full */
4066         }
4067
4068         irq_map = &pimap->mapped[i];
4069
4070         irq_map->v_hwirq = guest_gsi;
4071         irq_map->desc = desc;
4072
4073         /*
4074          * Order the above two stores before the next to serialize with
4075          * the KVM real mode handler.
4076          */
4077         smp_wmb();
4078         irq_map->r_hwirq = desc->irq_data.hwirq;
4079
4080         if (i == pimap->n_mapped)
4081                 pimap->n_mapped++;
4082
4083         if (xive_enabled())
4084                 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
4085         else
4086                 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
4087         if (rc)
4088                 irq_map->r_hwirq = 0;
4089
4090         mutex_unlock(&kvm->lock);
4091
4092         return 0;
4093 }
4094
4095 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4096 {
4097         struct irq_desc *desc;
4098         struct kvmppc_passthru_irqmap *pimap;
4099         int i, rc = 0;
4100
4101         if (!kvm_irq_bypass)
4102                 return 0;
4103
4104         desc = irq_to_desc(host_irq);
4105         if (!desc)
4106                 return -EIO;
4107
4108         mutex_lock(&kvm->lock);
4109         if (!kvm->arch.pimap)
4110                 goto unlock;
4111
4112         pimap = kvm->arch.pimap;
4113
4114         for (i = 0; i < pimap->n_mapped; i++) {
4115                 if (guest_gsi == pimap->mapped[i].v_hwirq)
4116                         break;
4117         }
4118
4119         if (i == pimap->n_mapped) {
4120                 mutex_unlock(&kvm->lock);
4121                 return -ENODEV;
4122         }
4123
4124         if (xive_enabled())
4125                 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
4126         else
4127                 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
4128
4129         /* invalidate the entry (what do do on error from the above ?) */
4130         pimap->mapped[i].r_hwirq = 0;
4131
4132         /*
4133          * We don't free this structure even when the count goes to
4134          * zero. The structure is freed when we destroy the VM.
4135          */
4136  unlock:
4137         mutex_unlock(&kvm->lock);
4138         return rc;
4139 }
4140
4141 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
4142                                              struct irq_bypass_producer *prod)
4143 {
4144         int ret = 0;
4145         struct kvm_kernel_irqfd *irqfd =
4146                 container_of(cons, struct kvm_kernel_irqfd, consumer);
4147
4148         irqfd->producer = prod;
4149
4150         ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4151         if (ret)
4152                 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
4153                         prod->irq, irqfd->gsi, ret);
4154
4155         return ret;
4156 }
4157
4158 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
4159                                               struct irq_bypass_producer *prod)
4160 {
4161         int ret;
4162         struct kvm_kernel_irqfd *irqfd =
4163                 container_of(cons, struct kvm_kernel_irqfd, consumer);
4164
4165         irqfd->producer = NULL;
4166
4167         /*
4168          * When producer of consumer is unregistered, we change back to
4169          * default external interrupt handling mode - KVM real mode
4170          * will switch back to host.
4171          */
4172         ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4173         if (ret)
4174                 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
4175                         prod->irq, irqfd->gsi, ret);
4176 }
4177 #endif
4178
4179 static long kvm_arch_vm_ioctl_hv(struct file *filp,
4180                                  unsigned int ioctl, unsigned long arg)
4181 {
4182         struct kvm *kvm __maybe_unused = filp->private_data;
4183         void __user *argp = (void __user *)arg;
4184         long r;
4185
4186         switch (ioctl) {
4187
4188         case KVM_PPC_ALLOCATE_HTAB: {
4189                 u32 htab_order;
4190
4191                 r = -EFAULT;
4192                 if (get_user(htab_order, (u32 __user *)argp))
4193                         break;
4194                 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
4195                 if (r)
4196                         break;
4197                 r = 0;
4198                 break;
4199         }
4200
4201         case KVM_PPC_GET_HTAB_FD: {
4202                 struct kvm_get_htab_fd ghf;
4203
4204                 r = -EFAULT;
4205                 if (copy_from_user(&ghf, argp, sizeof(ghf)))
4206                         break;
4207                 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
4208                 break;
4209         }
4210
4211         case KVM_PPC_RESIZE_HPT_PREPARE: {
4212                 struct kvm_ppc_resize_hpt rhpt;
4213
4214                 r = -EFAULT;
4215                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4216                         break;
4217
4218                 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
4219                 break;
4220         }
4221
4222         case KVM_PPC_RESIZE_HPT_COMMIT: {
4223                 struct kvm_ppc_resize_hpt rhpt;
4224
4225                 r = -EFAULT;
4226                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4227                         break;
4228
4229                 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
4230                 break;
4231         }
4232
4233         default:
4234                 r = -ENOTTY;
4235         }
4236
4237         return r;
4238 }
4239
4240 /*
4241  * List of hcall numbers to enable by default.
4242  * For compatibility with old userspace, we enable by default
4243  * all hcalls that were implemented before the hcall-enabling
4244  * facility was added.  Note this list should not include H_RTAS.
4245  */
4246 static unsigned int default_hcall_list[] = {
4247         H_REMOVE,
4248         H_ENTER,
4249         H_READ,
4250         H_PROTECT,
4251         H_BULK_REMOVE,
4252         H_GET_TCE,
4253         H_PUT_TCE,
4254         H_SET_DABR,
4255         H_SET_XDABR,
4256         H_CEDE,
4257         H_PROD,
4258         H_CONFER,
4259         H_REGISTER_VPA,
4260 #ifdef CONFIG_KVM_XICS
4261         H_EOI,
4262         H_CPPR,
4263         H_IPI,
4264         H_IPOLL,
4265         H_XIRR,
4266         H_XIRR_X,
4267 #endif
4268         0
4269 };
4270
4271 static void init_default_hcalls(void)
4272 {
4273         int i;
4274         unsigned int hcall;
4275
4276         for (i = 0; default_hcall_list[i]; ++i) {
4277                 hcall = default_hcall_list[i];
4278                 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
4279                 __set_bit(hcall / 4, default_enabled_hcalls);
4280         }
4281 }
4282
4283 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
4284 {
4285         unsigned long lpcr;
4286         int radix;
4287         int err;
4288
4289         /* If not on a POWER9, reject it */
4290         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4291                 return -ENODEV;
4292
4293         /* If any unknown flags set, reject it */
4294         if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
4295                 return -EINVAL;
4296
4297         /* GR (guest radix) bit in process_table field must match */
4298         radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
4299         if (!!(cfg->process_table & PATB_GR) != radix)
4300                 return -EINVAL;
4301
4302         /* Process table size field must be reasonable, i.e. <= 24 */
4303         if ((cfg->process_table & PRTS_MASK) > 24)
4304                 return -EINVAL;
4305
4306         /* We can change a guest to/from radix now, if the host is radix */
4307         if (radix && !radix_enabled())
4308                 return -EINVAL;
4309
4310         mutex_lock(&kvm->lock);
4311         if (radix != kvm_is_radix(kvm)) {
4312                 if (kvm->arch.mmu_ready) {
4313                         kvm->arch.mmu_ready = 0;
4314                         /* order mmu_ready vs. vcpus_running */
4315                         smp_mb();
4316                         if (atomic_read(&kvm->arch.vcpus_running)) {
4317                                 kvm->arch.mmu_ready = 1;
4318                                 err = -EBUSY;
4319                                 goto out_unlock;
4320                         }
4321                 }
4322                 if (radix)
4323                         err = kvmppc_switch_mmu_to_radix(kvm);
4324                 else
4325                         err = kvmppc_switch_mmu_to_hpt(kvm);
4326                 if (err)
4327                         goto out_unlock;
4328         }
4329
4330         kvm->arch.process_table = cfg->process_table;
4331         kvmppc_setup_partition_table(kvm);
4332
4333         lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
4334         kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
4335         err = 0;
4336
4337  out_unlock:
4338         mutex_unlock(&kvm->lock);
4339         return err;
4340 }
4341
4342 static struct kvmppc_ops kvm_ops_hv = {
4343         .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
4344         .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
4345         .get_one_reg = kvmppc_get_one_reg_hv,
4346         .set_one_reg = kvmppc_set_one_reg_hv,
4347         .vcpu_load   = kvmppc_core_vcpu_load_hv,
4348         .vcpu_put    = kvmppc_core_vcpu_put_hv,
4349         .set_msr     = kvmppc_set_msr_hv,
4350         .vcpu_run    = kvmppc_vcpu_run_hv,
4351         .vcpu_create = kvmppc_core_vcpu_create_hv,
4352         .vcpu_free   = kvmppc_core_vcpu_free_hv,
4353         .check_requests = kvmppc_core_check_requests_hv,
4354         .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
4355         .flush_memslot  = kvmppc_core_flush_memslot_hv,
4356         .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
4357         .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
4358         .unmap_hva = kvm_unmap_hva_hv,
4359         .unmap_hva_range = kvm_unmap_hva_range_hv,
4360         .age_hva  = kvm_age_hva_hv,
4361         .test_age_hva = kvm_test_age_hva_hv,
4362         .set_spte_hva = kvm_set_spte_hva_hv,
4363         .mmu_destroy  = kvmppc_mmu_destroy_hv,
4364         .free_memslot = kvmppc_core_free_memslot_hv,
4365         .create_memslot = kvmppc_core_create_memslot_hv,
4366         .init_vm =  kvmppc_core_init_vm_hv,
4367         .destroy_vm = kvmppc_core_destroy_vm_hv,
4368         .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
4369         .emulate_op = kvmppc_core_emulate_op_hv,
4370         .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
4371         .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
4372         .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
4373         .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
4374         .hcall_implemented = kvmppc_hcall_impl_hv,
4375 #ifdef CONFIG_KVM_XICS
4376         .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
4377         .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
4378 #endif
4379         .configure_mmu = kvmhv_configure_mmu,
4380         .get_rmmu_info = kvmhv_get_rmmu_info,
4381         .set_smt_mode = kvmhv_set_smt_mode,
4382 };
4383
4384 static int kvm_init_subcore_bitmap(void)
4385 {
4386         int i, j;
4387         int nr_cores = cpu_nr_cores();
4388         struct sibling_subcore_state *sibling_subcore_state;
4389
4390         for (i = 0; i < nr_cores; i++) {
4391                 int first_cpu = i * threads_per_core;
4392                 int node = cpu_to_node(first_cpu);
4393
4394                 /* Ignore if it is already allocated. */
4395                 if (paca_ptrs[first_cpu]->sibling_subcore_state)
4396                         continue;
4397
4398                 sibling_subcore_state =
4399                         kmalloc_node(sizeof(struct sibling_subcore_state),
4400                                                         GFP_KERNEL, node);
4401                 if (!sibling_subcore_state)
4402                         return -ENOMEM;
4403
4404                 memset(sibling_subcore_state, 0,
4405                                 sizeof(struct sibling_subcore_state));
4406
4407                 for (j = 0; j < threads_per_core; j++) {
4408                         int cpu = first_cpu + j;
4409
4410                         paca_ptrs[cpu]->sibling_subcore_state =
4411                                                 sibling_subcore_state;
4412                 }
4413         }
4414         return 0;
4415 }
4416
4417 static int kvmppc_radix_possible(void)
4418 {
4419         return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
4420 }
4421
4422 static int kvmppc_book3s_init_hv(void)
4423 {
4424         int r;
4425         /*
4426          * FIXME!! Do we need to check on all cpus ?
4427          */
4428         r = kvmppc_core_check_processor_compat_hv();
4429         if (r < 0)
4430                 return -ENODEV;
4431
4432         r = kvm_init_subcore_bitmap();
4433         if (r)
4434                 return r;
4435
4436         /*
4437          * We need a way of accessing the XICS interrupt controller,
4438          * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
4439          * indirectly, via OPAL.
4440          */
4441 #ifdef CONFIG_SMP
4442         if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
4443                 struct device_node *np;
4444
4445                 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
4446                 if (!np) {
4447                         pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
4448                         return -ENODEV;
4449                 }
4450         }
4451 #endif
4452
4453         kvm_ops_hv.owner = THIS_MODULE;
4454         kvmppc_hv_ops = &kvm_ops_hv;
4455
4456         init_default_hcalls();
4457
4458         init_vcore_lists();
4459
4460         r = kvmppc_mmu_hv_init();
4461         if (r)
4462                 return r;
4463
4464         if (kvmppc_radix_possible())
4465                 r = kvmppc_radix_init();
4466
4467         /*
4468          * POWER9 chips before version 2.02 can't have some threads in
4469          * HPT mode and some in radix mode on the same core.
4470          */
4471         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4472                 unsigned int pvr = mfspr(SPRN_PVR);
4473                 if ((pvr >> 16) == PVR_POWER9 &&
4474                     (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
4475                      ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
4476                         no_mixing_hpt_and_radix = true;
4477         }
4478
4479         return r;
4480 }
4481
4482 static void kvmppc_book3s_exit_hv(void)
4483 {
4484         kvmppc_free_host_rm_ops();
4485         if (kvmppc_radix_possible())
4486                 kvmppc_radix_exit();
4487         kvmppc_hv_ops = NULL;
4488 }
4489
4490 module_init(kvmppc_book3s_init_hv);
4491 module_exit(kvmppc_book3s_exit_hv);
4492 MODULE_LICENSE("GPL");
4493 MODULE_ALIAS_MISCDEV(KVM_MINOR);
4494 MODULE_ALIAS("devname:kvm");