]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/powerpc/kvm/book3s_hv.c
Merge branch 'hugepage-fallbacks' (hugepatch patches from David Rientjes)
[linux.git] / arch / powerpc / kvm / book3s_hv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5  *
6  * Authors:
7  *    Paul Mackerras <paulus@au1.ibm.com>
8  *    Alexander Graf <agraf@suse.de>
9  *    Kevin Wolf <mail@kevin-wolf.de>
10  *
11  * Description: KVM functions specific to running on Book 3S
12  * processors in hypervisor mode (specifically POWER7 and later).
13  *
14  * This file is derived from arch/powerpc/kvm/book3s.c,
15  * by Alexander Graf <agraf@suse.de>.
16  */
17
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/preempt.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/stat.h>
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/fs.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/cpu.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 #include <linux/gfp.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/hugetlb.h>
40 #include <linux/kvm_irqfd.h>
41 #include <linux/irqbypass.h>
42 #include <linux/module.h>
43 #include <linux/compiler.h>
44 #include <linux/of.h>
45
46 #include <asm/ftrace.h>
47 #include <asm/reg.h>
48 #include <asm/ppc-opcode.h>
49 #include <asm/asm-prototypes.h>
50 #include <asm/archrandom.h>
51 #include <asm/debug.h>
52 #include <asm/disassemble.h>
53 #include <asm/cputable.h>
54 #include <asm/cacheflush.h>
55 #include <linux/uaccess.h>
56 #include <asm/io.h>
57 #include <asm/kvm_ppc.h>
58 #include <asm/kvm_book3s.h>
59 #include <asm/mmu_context.h>
60 #include <asm/lppaca.h>
61 #include <asm/processor.h>
62 #include <asm/cputhreads.h>
63 #include <asm/page.h>
64 #include <asm/hvcall.h>
65 #include <asm/switch_to.h>
66 #include <asm/smp.h>
67 #include <asm/dbell.h>
68 #include <asm/hmi.h>
69 #include <asm/pnv-pci.h>
70 #include <asm/mmu.h>
71 #include <asm/opal.h>
72 #include <asm/xics.h>
73 #include <asm/xive.h>
74 #include <asm/hw_breakpoint.h>
75
76 #include "book3s.h"
77
78 #define CREATE_TRACE_POINTS
79 #include "trace_hv.h"
80
81 /* #define EXIT_DEBUG */
82 /* #define EXIT_DEBUG_SIMPLE */
83 /* #define EXIT_DEBUG_INT */
84
85 /* Used to indicate that a guest page fault needs to be handled */
86 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
87 /* Used to indicate that a guest passthrough interrupt needs to be handled */
88 #define RESUME_PASSTHROUGH      (RESUME_GUEST | RESUME_FLAG_ARCH2)
89
90 /* Used as a "null" value for timebase values */
91 #define TB_NIL  (~(u64)0)
92
93 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
94
95 static int dynamic_mt_modes = 6;
96 module_param(dynamic_mt_modes, int, 0644);
97 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
98 static int target_smt_mode;
99 module_param(target_smt_mode, int, 0644);
100 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
101
102 static bool indep_threads_mode = true;
103 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
104 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
105
106 static bool one_vm_per_core;
107 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
108 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)");
109
110 #ifdef CONFIG_KVM_XICS
111 static struct kernel_param_ops module_param_ops = {
112         .set = param_set_int,
113         .get = param_get_int,
114 };
115
116 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
117 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
118
119 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
120 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
121 #endif
122
123 /* If set, guests are allowed to create and control nested guests */
124 static bool nested = true;
125 module_param(nested, bool, S_IRUGO | S_IWUSR);
126 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
127
128 static inline bool nesting_enabled(struct kvm *kvm)
129 {
130         return kvm->arch.nested_enable && kvm_is_radix(kvm);
131 }
132
133 /* If set, the threads on each CPU core have to be in the same MMU mode */
134 static bool no_mixing_hpt_and_radix;
135
136 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
137 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
138
139 /*
140  * RWMR values for POWER8.  These control the rate at which PURR
141  * and SPURR count and should be set according to the number of
142  * online threads in the vcore being run.
143  */
144 #define RWMR_RPA_P8_1THREAD     0x164520C62609AECAUL
145 #define RWMR_RPA_P8_2THREAD     0x7FFF2908450D8DA9UL
146 #define RWMR_RPA_P8_3THREAD     0x164520C62609AECAUL
147 #define RWMR_RPA_P8_4THREAD     0x199A421245058DA9UL
148 #define RWMR_RPA_P8_5THREAD     0x164520C62609AECAUL
149 #define RWMR_RPA_P8_6THREAD     0x164520C62609AECAUL
150 #define RWMR_RPA_P8_7THREAD     0x164520C62609AECAUL
151 #define RWMR_RPA_P8_8THREAD     0x164520C62609AECAUL
152
153 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
154         RWMR_RPA_P8_1THREAD,
155         RWMR_RPA_P8_1THREAD,
156         RWMR_RPA_P8_2THREAD,
157         RWMR_RPA_P8_3THREAD,
158         RWMR_RPA_P8_4THREAD,
159         RWMR_RPA_P8_5THREAD,
160         RWMR_RPA_P8_6THREAD,
161         RWMR_RPA_P8_7THREAD,
162         RWMR_RPA_P8_8THREAD,
163 };
164
165 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
166                 int *ip)
167 {
168         int i = *ip;
169         struct kvm_vcpu *vcpu;
170
171         while (++i < MAX_SMT_THREADS) {
172                 vcpu = READ_ONCE(vc->runnable_threads[i]);
173                 if (vcpu) {
174                         *ip = i;
175                         return vcpu;
176                 }
177         }
178         return NULL;
179 }
180
181 /* Used to traverse the list of runnable threads for a given vcore */
182 #define for_each_runnable_thread(i, vcpu, vc) \
183         for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
184
185 static bool kvmppc_ipi_thread(int cpu)
186 {
187         unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
188
189         /* If we're a nested hypervisor, fall back to ordinary IPIs for now */
190         if (kvmhv_on_pseries())
191                 return false;
192
193         /* On POWER9 we can use msgsnd to IPI any cpu */
194         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
195                 msg |= get_hard_smp_processor_id(cpu);
196                 smp_mb();
197                 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
198                 return true;
199         }
200
201         /* On POWER8 for IPIs to threads in the same core, use msgsnd */
202         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
203                 preempt_disable();
204                 if (cpu_first_thread_sibling(cpu) ==
205                     cpu_first_thread_sibling(smp_processor_id())) {
206                         msg |= cpu_thread_in_core(cpu);
207                         smp_mb();
208                         __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
209                         preempt_enable();
210                         return true;
211                 }
212                 preempt_enable();
213         }
214
215 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
216         if (cpu >= 0 && cpu < nr_cpu_ids) {
217                 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
218                         xics_wake_cpu(cpu);
219                         return true;
220                 }
221                 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
222                 return true;
223         }
224 #endif
225
226         return false;
227 }
228
229 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
230 {
231         int cpu;
232         struct swait_queue_head *wqp;
233
234         wqp = kvm_arch_vcpu_wq(vcpu);
235         if (swq_has_sleeper(wqp)) {
236                 swake_up_one(wqp);
237                 ++vcpu->stat.halt_wakeup;
238         }
239
240         cpu = READ_ONCE(vcpu->arch.thread_cpu);
241         if (cpu >= 0 && kvmppc_ipi_thread(cpu))
242                 return;
243
244         /* CPU points to the first thread of the core */
245         cpu = vcpu->cpu;
246         if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
247                 smp_send_reschedule(cpu);
248 }
249
250 /*
251  * We use the vcpu_load/put functions to measure stolen time.
252  * Stolen time is counted as time when either the vcpu is able to
253  * run as part of a virtual core, but the task running the vcore
254  * is preempted or sleeping, or when the vcpu needs something done
255  * in the kernel by the task running the vcpu, but that task is
256  * preempted or sleeping.  Those two things have to be counted
257  * separately, since one of the vcpu tasks will take on the job
258  * of running the core, and the other vcpu tasks in the vcore will
259  * sleep waiting for it to do that, but that sleep shouldn't count
260  * as stolen time.
261  *
262  * Hence we accumulate stolen time when the vcpu can run as part of
263  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
264  * needs its task to do other things in the kernel (for example,
265  * service a page fault) in busy_stolen.  We don't accumulate
266  * stolen time for a vcore when it is inactive, or for a vcpu
267  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
268  * a misnomer; it means that the vcpu task is not executing in
269  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
270  * the kernel.  We don't have any way of dividing up that time
271  * between time that the vcpu is genuinely stopped, time that
272  * the task is actively working on behalf of the vcpu, and time
273  * that the task is preempted, so we don't count any of it as
274  * stolen.
275  *
276  * Updates to busy_stolen are protected by arch.tbacct_lock;
277  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
278  * lock.  The stolen times are measured in units of timebase ticks.
279  * (Note that the != TB_NIL checks below are purely defensive;
280  * they should never fail.)
281  */
282
283 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
284 {
285         unsigned long flags;
286
287         spin_lock_irqsave(&vc->stoltb_lock, flags);
288         vc->preempt_tb = mftb();
289         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
290 }
291
292 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
293 {
294         unsigned long flags;
295
296         spin_lock_irqsave(&vc->stoltb_lock, flags);
297         if (vc->preempt_tb != TB_NIL) {
298                 vc->stolen_tb += mftb() - vc->preempt_tb;
299                 vc->preempt_tb = TB_NIL;
300         }
301         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
302 }
303
304 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
305 {
306         struct kvmppc_vcore *vc = vcpu->arch.vcore;
307         unsigned long flags;
308
309         /*
310          * We can test vc->runner without taking the vcore lock,
311          * because only this task ever sets vc->runner to this
312          * vcpu, and once it is set to this vcpu, only this task
313          * ever sets it to NULL.
314          */
315         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
316                 kvmppc_core_end_stolen(vc);
317
318         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
319         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
320             vcpu->arch.busy_preempt != TB_NIL) {
321                 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
322                 vcpu->arch.busy_preempt = TB_NIL;
323         }
324         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
325 }
326
327 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
328 {
329         struct kvmppc_vcore *vc = vcpu->arch.vcore;
330         unsigned long flags;
331
332         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
333                 kvmppc_core_start_stolen(vc);
334
335         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
336         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
337                 vcpu->arch.busy_preempt = mftb();
338         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
339 }
340
341 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
342 {
343         /*
344          * Check for illegal transactional state bit combination
345          * and if we find it, force the TS field to a safe state.
346          */
347         if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
348                 msr &= ~MSR_TS_MASK;
349         vcpu->arch.shregs.msr = msr;
350         kvmppc_end_cede(vcpu);
351 }
352
353 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
354 {
355         vcpu->arch.pvr = pvr;
356 }
357
358 /* Dummy value used in computing PCR value below */
359 #define PCR_ARCH_300    (PCR_ARCH_207 << 1)
360
361 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
362 {
363         unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
364         struct kvmppc_vcore *vc = vcpu->arch.vcore;
365
366         /* We can (emulate) our own architecture version and anything older */
367         if (cpu_has_feature(CPU_FTR_ARCH_300))
368                 host_pcr_bit = PCR_ARCH_300;
369         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
370                 host_pcr_bit = PCR_ARCH_207;
371         else if (cpu_has_feature(CPU_FTR_ARCH_206))
372                 host_pcr_bit = PCR_ARCH_206;
373         else
374                 host_pcr_bit = PCR_ARCH_205;
375
376         /* Determine lowest PCR bit needed to run guest in given PVR level */
377         guest_pcr_bit = host_pcr_bit;
378         if (arch_compat) {
379                 switch (arch_compat) {
380                 case PVR_ARCH_205:
381                         guest_pcr_bit = PCR_ARCH_205;
382                         break;
383                 case PVR_ARCH_206:
384                 case PVR_ARCH_206p:
385                         guest_pcr_bit = PCR_ARCH_206;
386                         break;
387                 case PVR_ARCH_207:
388                         guest_pcr_bit = PCR_ARCH_207;
389                         break;
390                 case PVR_ARCH_300:
391                         guest_pcr_bit = PCR_ARCH_300;
392                         break;
393                 default:
394                         return -EINVAL;
395                 }
396         }
397
398         /* Check requested PCR bits don't exceed our capabilities */
399         if (guest_pcr_bit > host_pcr_bit)
400                 return -EINVAL;
401
402         spin_lock(&vc->lock);
403         vc->arch_compat = arch_compat;
404         /*
405          * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
406          * Also set all reserved PCR bits
407          */
408         vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
409         spin_unlock(&vc->lock);
410
411         return 0;
412 }
413
414 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
415 {
416         int r;
417
418         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
419         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
420                vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
421         for (r = 0; r < 16; ++r)
422                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
423                        r, kvmppc_get_gpr(vcpu, r),
424                        r+16, kvmppc_get_gpr(vcpu, r+16));
425         pr_err("ctr = %.16lx  lr  = %.16lx\n",
426                vcpu->arch.regs.ctr, vcpu->arch.regs.link);
427         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
428                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
429         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
430                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
431         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
432                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
433         pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
434                vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
435         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
436         pr_err("fault dar = %.16lx dsisr = %.8x\n",
437                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
438         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
439         for (r = 0; r < vcpu->arch.slb_max; ++r)
440                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
441                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
442         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
443                vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
444                vcpu->arch.last_inst);
445 }
446
447 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
448 {
449         return kvm_get_vcpu_by_id(kvm, id);
450 }
451
452 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
453 {
454         vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
455         vpa->yield_count = cpu_to_be32(1);
456 }
457
458 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
459                    unsigned long addr, unsigned long len)
460 {
461         /* check address is cacheline aligned */
462         if (addr & (L1_CACHE_BYTES - 1))
463                 return -EINVAL;
464         spin_lock(&vcpu->arch.vpa_update_lock);
465         if (v->next_gpa != addr || v->len != len) {
466                 v->next_gpa = addr;
467                 v->len = addr ? len : 0;
468                 v->update_pending = 1;
469         }
470         spin_unlock(&vcpu->arch.vpa_update_lock);
471         return 0;
472 }
473
474 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
475 struct reg_vpa {
476         u32 dummy;
477         union {
478                 __be16 hword;
479                 __be32 word;
480         } length;
481 };
482
483 static int vpa_is_registered(struct kvmppc_vpa *vpap)
484 {
485         if (vpap->update_pending)
486                 return vpap->next_gpa != 0;
487         return vpap->pinned_addr != NULL;
488 }
489
490 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
491                                        unsigned long flags,
492                                        unsigned long vcpuid, unsigned long vpa)
493 {
494         struct kvm *kvm = vcpu->kvm;
495         unsigned long len, nb;
496         void *va;
497         struct kvm_vcpu *tvcpu;
498         int err;
499         int subfunc;
500         struct kvmppc_vpa *vpap;
501
502         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
503         if (!tvcpu)
504                 return H_PARAMETER;
505
506         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
507         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
508             subfunc == H_VPA_REG_SLB) {
509                 /* Registering new area - address must be cache-line aligned */
510                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
511                         return H_PARAMETER;
512
513                 /* convert logical addr to kernel addr and read length */
514                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
515                 if (va == NULL)
516                         return H_PARAMETER;
517                 if (subfunc == H_VPA_REG_VPA)
518                         len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
519                 else
520                         len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
521                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
522
523                 /* Check length */
524                 if (len > nb || len < sizeof(struct reg_vpa))
525                         return H_PARAMETER;
526         } else {
527                 vpa = 0;
528                 len = 0;
529         }
530
531         err = H_PARAMETER;
532         vpap = NULL;
533         spin_lock(&tvcpu->arch.vpa_update_lock);
534
535         switch (subfunc) {
536         case H_VPA_REG_VPA:             /* register VPA */
537                 /*
538                  * The size of our lppaca is 1kB because of the way we align
539                  * it for the guest to avoid crossing a 4kB boundary. We only
540                  * use 640 bytes of the structure though, so we should accept
541                  * clients that set a size of 640.
542                  */
543                 BUILD_BUG_ON(sizeof(struct lppaca) != 640);
544                 if (len < sizeof(struct lppaca))
545                         break;
546                 vpap = &tvcpu->arch.vpa;
547                 err = 0;
548                 break;
549
550         case H_VPA_REG_DTL:             /* register DTL */
551                 if (len < sizeof(struct dtl_entry))
552                         break;
553                 len -= len % sizeof(struct dtl_entry);
554
555                 /* Check that they have previously registered a VPA */
556                 err = H_RESOURCE;
557                 if (!vpa_is_registered(&tvcpu->arch.vpa))
558                         break;
559
560                 vpap = &tvcpu->arch.dtl;
561                 err = 0;
562                 break;
563
564         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
565                 /* Check that they have previously registered a VPA */
566                 err = H_RESOURCE;
567                 if (!vpa_is_registered(&tvcpu->arch.vpa))
568                         break;
569
570                 vpap = &tvcpu->arch.slb_shadow;
571                 err = 0;
572                 break;
573
574         case H_VPA_DEREG_VPA:           /* deregister VPA */
575                 /* Check they don't still have a DTL or SLB buf registered */
576                 err = H_RESOURCE;
577                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
578                     vpa_is_registered(&tvcpu->arch.slb_shadow))
579                         break;
580
581                 vpap = &tvcpu->arch.vpa;
582                 err = 0;
583                 break;
584
585         case H_VPA_DEREG_DTL:           /* deregister DTL */
586                 vpap = &tvcpu->arch.dtl;
587                 err = 0;
588                 break;
589
590         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
591                 vpap = &tvcpu->arch.slb_shadow;
592                 err = 0;
593                 break;
594         }
595
596         if (vpap) {
597                 vpap->next_gpa = vpa;
598                 vpap->len = len;
599                 vpap->update_pending = 1;
600         }
601
602         spin_unlock(&tvcpu->arch.vpa_update_lock);
603
604         return err;
605 }
606
607 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
608 {
609         struct kvm *kvm = vcpu->kvm;
610         void *va;
611         unsigned long nb;
612         unsigned long gpa;
613
614         /*
615          * We need to pin the page pointed to by vpap->next_gpa,
616          * but we can't call kvmppc_pin_guest_page under the lock
617          * as it does get_user_pages() and down_read().  So we
618          * have to drop the lock, pin the page, then get the lock
619          * again and check that a new area didn't get registered
620          * in the meantime.
621          */
622         for (;;) {
623                 gpa = vpap->next_gpa;
624                 spin_unlock(&vcpu->arch.vpa_update_lock);
625                 va = NULL;
626                 nb = 0;
627                 if (gpa)
628                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
629                 spin_lock(&vcpu->arch.vpa_update_lock);
630                 if (gpa == vpap->next_gpa)
631                         break;
632                 /* sigh... unpin that one and try again */
633                 if (va)
634                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
635         }
636
637         vpap->update_pending = 0;
638         if (va && nb < vpap->len) {
639                 /*
640                  * If it's now too short, it must be that userspace
641                  * has changed the mappings underlying guest memory,
642                  * so unregister the region.
643                  */
644                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
645                 va = NULL;
646         }
647         if (vpap->pinned_addr)
648                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
649                                         vpap->dirty);
650         vpap->gpa = gpa;
651         vpap->pinned_addr = va;
652         vpap->dirty = false;
653         if (va)
654                 vpap->pinned_end = va + vpap->len;
655 }
656
657 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
658 {
659         if (!(vcpu->arch.vpa.update_pending ||
660               vcpu->arch.slb_shadow.update_pending ||
661               vcpu->arch.dtl.update_pending))
662                 return;
663
664         spin_lock(&vcpu->arch.vpa_update_lock);
665         if (vcpu->arch.vpa.update_pending) {
666                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
667                 if (vcpu->arch.vpa.pinned_addr)
668                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
669         }
670         if (vcpu->arch.dtl.update_pending) {
671                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
672                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
673                 vcpu->arch.dtl_index = 0;
674         }
675         if (vcpu->arch.slb_shadow.update_pending)
676                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
677         spin_unlock(&vcpu->arch.vpa_update_lock);
678 }
679
680 /*
681  * Return the accumulated stolen time for the vcore up until `now'.
682  * The caller should hold the vcore lock.
683  */
684 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
685 {
686         u64 p;
687         unsigned long flags;
688
689         spin_lock_irqsave(&vc->stoltb_lock, flags);
690         p = vc->stolen_tb;
691         if (vc->vcore_state != VCORE_INACTIVE &&
692             vc->preempt_tb != TB_NIL)
693                 p += now - vc->preempt_tb;
694         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
695         return p;
696 }
697
698 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
699                                     struct kvmppc_vcore *vc)
700 {
701         struct dtl_entry *dt;
702         struct lppaca *vpa;
703         unsigned long stolen;
704         unsigned long core_stolen;
705         u64 now;
706         unsigned long flags;
707
708         dt = vcpu->arch.dtl_ptr;
709         vpa = vcpu->arch.vpa.pinned_addr;
710         now = mftb();
711         core_stolen = vcore_stolen_time(vc, now);
712         stolen = core_stolen - vcpu->arch.stolen_logged;
713         vcpu->arch.stolen_logged = core_stolen;
714         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
715         stolen += vcpu->arch.busy_stolen;
716         vcpu->arch.busy_stolen = 0;
717         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
718         if (!dt || !vpa)
719                 return;
720         memset(dt, 0, sizeof(struct dtl_entry));
721         dt->dispatch_reason = 7;
722         dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
723         dt->timebase = cpu_to_be64(now + vc->tb_offset);
724         dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
725         dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
726         dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
727         ++dt;
728         if (dt == vcpu->arch.dtl.pinned_end)
729                 dt = vcpu->arch.dtl.pinned_addr;
730         vcpu->arch.dtl_ptr = dt;
731         /* order writing *dt vs. writing vpa->dtl_idx */
732         smp_wmb();
733         vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
734         vcpu->arch.dtl.dirty = true;
735 }
736
737 /* See if there is a doorbell interrupt pending for a vcpu */
738 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
739 {
740         int thr;
741         struct kvmppc_vcore *vc;
742
743         if (vcpu->arch.doorbell_request)
744                 return true;
745         /*
746          * Ensure that the read of vcore->dpdes comes after the read
747          * of vcpu->doorbell_request.  This barrier matches the
748          * smp_wmb() in kvmppc_guest_entry_inject().
749          */
750         smp_rmb();
751         vc = vcpu->arch.vcore;
752         thr = vcpu->vcpu_id - vc->first_vcpuid;
753         return !!(vc->dpdes & (1 << thr));
754 }
755
756 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
757 {
758         if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
759                 return true;
760         if ((!vcpu->arch.vcore->arch_compat) &&
761             cpu_has_feature(CPU_FTR_ARCH_207S))
762                 return true;
763         return false;
764 }
765
766 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
767                              unsigned long resource, unsigned long value1,
768                              unsigned long value2)
769 {
770         switch (resource) {
771         case H_SET_MODE_RESOURCE_SET_CIABR:
772                 if (!kvmppc_power8_compatible(vcpu))
773                         return H_P2;
774                 if (value2)
775                         return H_P4;
776                 if (mflags)
777                         return H_UNSUPPORTED_FLAG_START;
778                 /* Guests can't breakpoint the hypervisor */
779                 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
780                         return H_P3;
781                 vcpu->arch.ciabr  = value1;
782                 return H_SUCCESS;
783         case H_SET_MODE_RESOURCE_SET_DAWR:
784                 if (!kvmppc_power8_compatible(vcpu))
785                         return H_P2;
786                 if (!ppc_breakpoint_available())
787                         return H_P2;
788                 if (mflags)
789                         return H_UNSUPPORTED_FLAG_START;
790                 if (value2 & DABRX_HYP)
791                         return H_P4;
792                 vcpu->arch.dawr  = value1;
793                 vcpu->arch.dawrx = value2;
794                 return H_SUCCESS;
795         default:
796                 return H_TOO_HARD;
797         }
798 }
799
800 /* Copy guest memory in place - must reside within a single memslot */
801 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
802                                   unsigned long len)
803 {
804         struct kvm_memory_slot *to_memslot = NULL;
805         struct kvm_memory_slot *from_memslot = NULL;
806         unsigned long to_addr, from_addr;
807         int r;
808
809         /* Get HPA for from address */
810         from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
811         if (!from_memslot)
812                 return -EFAULT;
813         if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
814                              << PAGE_SHIFT))
815                 return -EINVAL;
816         from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
817         if (kvm_is_error_hva(from_addr))
818                 return -EFAULT;
819         from_addr |= (from & (PAGE_SIZE - 1));
820
821         /* Get HPA for to address */
822         to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
823         if (!to_memslot)
824                 return -EFAULT;
825         if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
826                            << PAGE_SHIFT))
827                 return -EINVAL;
828         to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
829         if (kvm_is_error_hva(to_addr))
830                 return -EFAULT;
831         to_addr |= (to & (PAGE_SIZE - 1));
832
833         /* Perform copy */
834         r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
835                              len);
836         if (r)
837                 return -EFAULT;
838         mark_page_dirty(kvm, to >> PAGE_SHIFT);
839         return 0;
840 }
841
842 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
843                                unsigned long dest, unsigned long src)
844 {
845         u64 pg_sz = SZ_4K;              /* 4K page size */
846         u64 pg_mask = SZ_4K - 1;
847         int ret;
848
849         /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
850         if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
851                       H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
852                 return H_PARAMETER;
853
854         /* dest (and src if copy_page flag set) must be page aligned */
855         if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
856                 return H_PARAMETER;
857
858         /* zero and/or copy the page as determined by the flags */
859         if (flags & H_COPY_PAGE) {
860                 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
861                 if (ret < 0)
862                         return H_PARAMETER;
863         } else if (flags & H_ZERO_PAGE) {
864                 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
865                 if (ret < 0)
866                         return H_PARAMETER;
867         }
868
869         /* We can ignore the remaining flags */
870
871         return H_SUCCESS;
872 }
873
874 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
875 {
876         struct kvmppc_vcore *vcore = target->arch.vcore;
877
878         /*
879          * We expect to have been called by the real mode handler
880          * (kvmppc_rm_h_confer()) which would have directly returned
881          * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
882          * have useful work to do and should not confer) so we don't
883          * recheck that here.
884          */
885
886         spin_lock(&vcore->lock);
887         if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
888             vcore->vcore_state != VCORE_INACTIVE &&
889             vcore->runner)
890                 target = vcore->runner;
891         spin_unlock(&vcore->lock);
892
893         return kvm_vcpu_yield_to(target);
894 }
895
896 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
897 {
898         int yield_count = 0;
899         struct lppaca *lppaca;
900
901         spin_lock(&vcpu->arch.vpa_update_lock);
902         lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
903         if (lppaca)
904                 yield_count = be32_to_cpu(lppaca->yield_count);
905         spin_unlock(&vcpu->arch.vpa_update_lock);
906         return yield_count;
907 }
908
909 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
910 {
911         unsigned long req = kvmppc_get_gpr(vcpu, 3);
912         unsigned long target, ret = H_SUCCESS;
913         int yield_count;
914         struct kvm_vcpu *tvcpu;
915         int idx, rc;
916
917         if (req <= MAX_HCALL_OPCODE &&
918             !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
919                 return RESUME_HOST;
920
921         switch (req) {
922         case H_CEDE:
923                 break;
924         case H_PROD:
925                 target = kvmppc_get_gpr(vcpu, 4);
926                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
927                 if (!tvcpu) {
928                         ret = H_PARAMETER;
929                         break;
930                 }
931                 tvcpu->arch.prodded = 1;
932                 smp_mb();
933                 if (tvcpu->arch.ceded)
934                         kvmppc_fast_vcpu_kick_hv(tvcpu);
935                 break;
936         case H_CONFER:
937                 target = kvmppc_get_gpr(vcpu, 4);
938                 if (target == -1)
939                         break;
940                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
941                 if (!tvcpu) {
942                         ret = H_PARAMETER;
943                         break;
944                 }
945                 yield_count = kvmppc_get_gpr(vcpu, 5);
946                 if (kvmppc_get_yield_count(tvcpu) != yield_count)
947                         break;
948                 kvm_arch_vcpu_yield_to(tvcpu);
949                 break;
950         case H_REGISTER_VPA:
951                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
952                                         kvmppc_get_gpr(vcpu, 5),
953                                         kvmppc_get_gpr(vcpu, 6));
954                 break;
955         case H_RTAS:
956                 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
957                         return RESUME_HOST;
958
959                 idx = srcu_read_lock(&vcpu->kvm->srcu);
960                 rc = kvmppc_rtas_hcall(vcpu);
961                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
962
963                 if (rc == -ENOENT)
964                         return RESUME_HOST;
965                 else if (rc == 0)
966                         break;
967
968                 /* Send the error out to userspace via KVM_RUN */
969                 return rc;
970         case H_LOGICAL_CI_LOAD:
971                 ret = kvmppc_h_logical_ci_load(vcpu);
972                 if (ret == H_TOO_HARD)
973                         return RESUME_HOST;
974                 break;
975         case H_LOGICAL_CI_STORE:
976                 ret = kvmppc_h_logical_ci_store(vcpu);
977                 if (ret == H_TOO_HARD)
978                         return RESUME_HOST;
979                 break;
980         case H_SET_MODE:
981                 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
982                                         kvmppc_get_gpr(vcpu, 5),
983                                         kvmppc_get_gpr(vcpu, 6),
984                                         kvmppc_get_gpr(vcpu, 7));
985                 if (ret == H_TOO_HARD)
986                         return RESUME_HOST;
987                 break;
988         case H_XIRR:
989         case H_CPPR:
990         case H_EOI:
991         case H_IPI:
992         case H_IPOLL:
993         case H_XIRR_X:
994                 if (kvmppc_xics_enabled(vcpu)) {
995                         if (xics_on_xive()) {
996                                 ret = H_NOT_AVAILABLE;
997                                 return RESUME_GUEST;
998                         }
999                         ret = kvmppc_xics_hcall(vcpu, req);
1000                         break;
1001                 }
1002                 return RESUME_HOST;
1003         case H_SET_DABR:
1004                 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
1005                 break;
1006         case H_SET_XDABR:
1007                 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1008                                                 kvmppc_get_gpr(vcpu, 5));
1009                 break;
1010 #ifdef CONFIG_SPAPR_TCE_IOMMU
1011         case H_GET_TCE:
1012                 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1013                                                 kvmppc_get_gpr(vcpu, 5));
1014                 if (ret == H_TOO_HARD)
1015                         return RESUME_HOST;
1016                 break;
1017         case H_PUT_TCE:
1018                 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1019                                                 kvmppc_get_gpr(vcpu, 5),
1020                                                 kvmppc_get_gpr(vcpu, 6));
1021                 if (ret == H_TOO_HARD)
1022                         return RESUME_HOST;
1023                 break;
1024         case H_PUT_TCE_INDIRECT:
1025                 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1026                                                 kvmppc_get_gpr(vcpu, 5),
1027                                                 kvmppc_get_gpr(vcpu, 6),
1028                                                 kvmppc_get_gpr(vcpu, 7));
1029                 if (ret == H_TOO_HARD)
1030                         return RESUME_HOST;
1031                 break;
1032         case H_STUFF_TCE:
1033                 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1034                                                 kvmppc_get_gpr(vcpu, 5),
1035                                                 kvmppc_get_gpr(vcpu, 6),
1036                                                 kvmppc_get_gpr(vcpu, 7));
1037                 if (ret == H_TOO_HARD)
1038                         return RESUME_HOST;
1039                 break;
1040 #endif
1041         case H_RANDOM:
1042                 if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4]))
1043                         ret = H_HARDWARE;
1044                 break;
1045
1046         case H_SET_PARTITION_TABLE:
1047                 ret = H_FUNCTION;
1048                 if (nesting_enabled(vcpu->kvm))
1049                         ret = kvmhv_set_partition_table(vcpu);
1050                 break;
1051         case H_ENTER_NESTED:
1052                 ret = H_FUNCTION;
1053                 if (!nesting_enabled(vcpu->kvm))
1054                         break;
1055                 ret = kvmhv_enter_nested_guest(vcpu);
1056                 if (ret == H_INTERRUPT) {
1057                         kvmppc_set_gpr(vcpu, 3, 0);
1058                         vcpu->arch.hcall_needed = 0;
1059                         return -EINTR;
1060                 } else if (ret == H_TOO_HARD) {
1061                         kvmppc_set_gpr(vcpu, 3, 0);
1062                         vcpu->arch.hcall_needed = 0;
1063                         return RESUME_HOST;
1064                 }
1065                 break;
1066         case H_TLB_INVALIDATE:
1067                 ret = H_FUNCTION;
1068                 if (nesting_enabled(vcpu->kvm))
1069                         ret = kvmhv_do_nested_tlbie(vcpu);
1070                 break;
1071         case H_COPY_TOFROM_GUEST:
1072                 ret = H_FUNCTION;
1073                 if (nesting_enabled(vcpu->kvm))
1074                         ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1075                 break;
1076         case H_PAGE_INIT:
1077                 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1078                                          kvmppc_get_gpr(vcpu, 5),
1079                                          kvmppc_get_gpr(vcpu, 6));
1080                 break;
1081         default:
1082                 return RESUME_HOST;
1083         }
1084         kvmppc_set_gpr(vcpu, 3, ret);
1085         vcpu->arch.hcall_needed = 0;
1086         return RESUME_GUEST;
1087 }
1088
1089 /*
1090  * Handle H_CEDE in the nested virtualization case where we haven't
1091  * called the real-mode hcall handlers in book3s_hv_rmhandlers.S.
1092  * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1093  * that the cede logic in kvmppc_run_single_vcpu() works properly.
1094  */
1095 static void kvmppc_nested_cede(struct kvm_vcpu *vcpu)
1096 {
1097         vcpu->arch.shregs.msr |= MSR_EE;
1098         vcpu->arch.ceded = 1;
1099         smp_mb();
1100         if (vcpu->arch.prodded) {
1101                 vcpu->arch.prodded = 0;
1102                 smp_mb();
1103                 vcpu->arch.ceded = 0;
1104         }
1105 }
1106
1107 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1108 {
1109         switch (cmd) {
1110         case H_CEDE:
1111         case H_PROD:
1112         case H_CONFER:
1113         case H_REGISTER_VPA:
1114         case H_SET_MODE:
1115         case H_LOGICAL_CI_LOAD:
1116         case H_LOGICAL_CI_STORE:
1117 #ifdef CONFIG_KVM_XICS
1118         case H_XIRR:
1119         case H_CPPR:
1120         case H_EOI:
1121         case H_IPI:
1122         case H_IPOLL:
1123         case H_XIRR_X:
1124 #endif
1125         case H_PAGE_INIT:
1126                 return 1;
1127         }
1128
1129         /* See if it's in the real-mode table */
1130         return kvmppc_hcall_impl_hv_realmode(cmd);
1131 }
1132
1133 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
1134                                         struct kvm_vcpu *vcpu)
1135 {
1136         u32 last_inst;
1137
1138         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1139                                         EMULATE_DONE) {
1140                 /*
1141                  * Fetch failed, so return to guest and
1142                  * try executing it again.
1143                  */
1144                 return RESUME_GUEST;
1145         }
1146
1147         if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
1148                 run->exit_reason = KVM_EXIT_DEBUG;
1149                 run->debug.arch.address = kvmppc_get_pc(vcpu);
1150                 return RESUME_HOST;
1151         } else {
1152                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1153                 return RESUME_GUEST;
1154         }
1155 }
1156
1157 static void do_nothing(void *x)
1158 {
1159 }
1160
1161 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1162 {
1163         int thr, cpu, pcpu, nthreads;
1164         struct kvm_vcpu *v;
1165         unsigned long dpdes;
1166
1167         nthreads = vcpu->kvm->arch.emul_smt_mode;
1168         dpdes = 0;
1169         cpu = vcpu->vcpu_id & ~(nthreads - 1);
1170         for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1171                 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1172                 if (!v)
1173                         continue;
1174                 /*
1175                  * If the vcpu is currently running on a physical cpu thread,
1176                  * interrupt it in order to pull it out of the guest briefly,
1177                  * which will update its vcore->dpdes value.
1178                  */
1179                 pcpu = READ_ONCE(v->cpu);
1180                 if (pcpu >= 0)
1181                         smp_call_function_single(pcpu, do_nothing, NULL, 1);
1182                 if (kvmppc_doorbell_pending(v))
1183                         dpdes |= 1 << thr;
1184         }
1185         return dpdes;
1186 }
1187
1188 /*
1189  * On POWER9, emulate doorbell-related instructions in order to
1190  * give the guest the illusion of running on a multi-threaded core.
1191  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1192  * and mfspr DPDES.
1193  */
1194 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1195 {
1196         u32 inst, rb, thr;
1197         unsigned long arg;
1198         struct kvm *kvm = vcpu->kvm;
1199         struct kvm_vcpu *tvcpu;
1200
1201         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1202                 return RESUME_GUEST;
1203         if (get_op(inst) != 31)
1204                 return EMULATE_FAIL;
1205         rb = get_rb(inst);
1206         thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1207         switch (get_xop(inst)) {
1208         case OP_31_XOP_MSGSNDP:
1209                 arg = kvmppc_get_gpr(vcpu, rb);
1210                 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1211                         break;
1212                 arg &= 0x3f;
1213                 if (arg >= kvm->arch.emul_smt_mode)
1214                         break;
1215                 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1216                 if (!tvcpu)
1217                         break;
1218                 if (!tvcpu->arch.doorbell_request) {
1219                         tvcpu->arch.doorbell_request = 1;
1220                         kvmppc_fast_vcpu_kick_hv(tvcpu);
1221                 }
1222                 break;
1223         case OP_31_XOP_MSGCLRP:
1224                 arg = kvmppc_get_gpr(vcpu, rb);
1225                 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1226                         break;
1227                 vcpu->arch.vcore->dpdes = 0;
1228                 vcpu->arch.doorbell_request = 0;
1229                 break;
1230         case OP_31_XOP_MFSPR:
1231                 switch (get_sprn(inst)) {
1232                 case SPRN_TIR:
1233                         arg = thr;
1234                         break;
1235                 case SPRN_DPDES:
1236                         arg = kvmppc_read_dpdes(vcpu);
1237                         break;
1238                 default:
1239                         return EMULATE_FAIL;
1240                 }
1241                 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1242                 break;
1243         default:
1244                 return EMULATE_FAIL;
1245         }
1246         kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1247         return RESUME_GUEST;
1248 }
1249
1250 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1251                                  struct task_struct *tsk)
1252 {
1253         int r = RESUME_HOST;
1254
1255         vcpu->stat.sum_exits++;
1256
1257         /*
1258          * This can happen if an interrupt occurs in the last stages
1259          * of guest entry or the first stages of guest exit (i.e. after
1260          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1261          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1262          * That can happen due to a bug, or due to a machine check
1263          * occurring at just the wrong time.
1264          */
1265         if (vcpu->arch.shregs.msr & MSR_HV) {
1266                 printk(KERN_EMERG "KVM trap in HV mode!\n");
1267                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1268                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1269                         vcpu->arch.shregs.msr);
1270                 kvmppc_dump_regs(vcpu);
1271                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1272                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1273                 return RESUME_HOST;
1274         }
1275         run->exit_reason = KVM_EXIT_UNKNOWN;
1276         run->ready_for_interrupt_injection = 1;
1277         switch (vcpu->arch.trap) {
1278         /* We're good on these - the host merely wanted to get our attention */
1279         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1280                 vcpu->stat.dec_exits++;
1281                 r = RESUME_GUEST;
1282                 break;
1283         case BOOK3S_INTERRUPT_EXTERNAL:
1284         case BOOK3S_INTERRUPT_H_DOORBELL:
1285         case BOOK3S_INTERRUPT_H_VIRT:
1286                 vcpu->stat.ext_intr_exits++;
1287                 r = RESUME_GUEST;
1288                 break;
1289         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1290         case BOOK3S_INTERRUPT_HMI:
1291         case BOOK3S_INTERRUPT_PERFMON:
1292         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1293                 r = RESUME_GUEST;
1294                 break;
1295         case BOOK3S_INTERRUPT_MACHINE_CHECK:
1296                 /* Print the MCE event to host console. */
1297                 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1298
1299                 /*
1300                  * If the guest can do FWNMI, exit to userspace so it can
1301                  * deliver a FWNMI to the guest.
1302                  * Otherwise we synthesize a machine check for the guest
1303                  * so that it knows that the machine check occurred.
1304                  */
1305                 if (!vcpu->kvm->arch.fwnmi_enabled) {
1306                         ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
1307                         kvmppc_core_queue_machine_check(vcpu, flags);
1308                         r = RESUME_GUEST;
1309                         break;
1310                 }
1311
1312                 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1313                 run->exit_reason = KVM_EXIT_NMI;
1314                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1315                 /* Clear out the old NMI status from run->flags */
1316                 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1317                 /* Now set the NMI status */
1318                 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1319                         run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1320                 else
1321                         run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1322
1323                 r = RESUME_HOST;
1324                 break;
1325         case BOOK3S_INTERRUPT_PROGRAM:
1326         {
1327                 ulong flags;
1328                 /*
1329                  * Normally program interrupts are delivered directly
1330                  * to the guest by the hardware, but we can get here
1331                  * as a result of a hypervisor emulation interrupt
1332                  * (e40) getting turned into a 700 by BML RTAS.
1333                  */
1334                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1335                 kvmppc_core_queue_program(vcpu, flags);
1336                 r = RESUME_GUEST;
1337                 break;
1338         }
1339         case BOOK3S_INTERRUPT_SYSCALL:
1340         {
1341                 /* hcall - punt to userspace */
1342                 int i;
1343
1344                 /* hypercall with MSR_PR has already been handled in rmode,
1345                  * and never reaches here.
1346                  */
1347
1348                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1349                 for (i = 0; i < 9; ++i)
1350                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1351                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1352                 vcpu->arch.hcall_needed = 1;
1353                 r = RESUME_HOST;
1354                 break;
1355         }
1356         /*
1357          * We get these next two if the guest accesses a page which it thinks
1358          * it has mapped but which is not actually present, either because
1359          * it is for an emulated I/O device or because the corresonding
1360          * host page has been paged out.  Any other HDSI/HISI interrupts
1361          * have been handled already.
1362          */
1363         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1364                 r = RESUME_PAGE_FAULT;
1365                 break;
1366         case BOOK3S_INTERRUPT_H_INST_STORAGE:
1367                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1368                 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1369                         DSISR_SRR1_MATCH_64S;
1370                 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1371                         vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1372                 r = RESUME_PAGE_FAULT;
1373                 break;
1374         /*
1375          * This occurs if the guest executes an illegal instruction.
1376          * If the guest debug is disabled, generate a program interrupt
1377          * to the guest. If guest debug is enabled, we need to check
1378          * whether the instruction is a software breakpoint instruction.
1379          * Accordingly return to Guest or Host.
1380          */
1381         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1382                 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1383                         vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1384                                 swab32(vcpu->arch.emul_inst) :
1385                                 vcpu->arch.emul_inst;
1386                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1387                         r = kvmppc_emulate_debug_inst(run, vcpu);
1388                 } else {
1389                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1390                         r = RESUME_GUEST;
1391                 }
1392                 break;
1393         /*
1394          * This occurs if the guest (kernel or userspace), does something that
1395          * is prohibited by HFSCR.
1396          * On POWER9, this could be a doorbell instruction that we need
1397          * to emulate.
1398          * Otherwise, we just generate a program interrupt to the guest.
1399          */
1400         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1401                 r = EMULATE_FAIL;
1402                 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1403                     cpu_has_feature(CPU_FTR_ARCH_300))
1404                         r = kvmppc_emulate_doorbell_instr(vcpu);
1405                 if (r == EMULATE_FAIL) {
1406                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1407                         r = RESUME_GUEST;
1408                 }
1409                 break;
1410
1411 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1412         case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1413                 /*
1414                  * This occurs for various TM-related instructions that
1415                  * we need to emulate on POWER9 DD2.2.  We have already
1416                  * handled the cases where the guest was in real-suspend
1417                  * mode and was transitioning to transactional state.
1418                  */
1419                 r = kvmhv_p9_tm_emulation(vcpu);
1420                 break;
1421 #endif
1422
1423         case BOOK3S_INTERRUPT_HV_RM_HARD:
1424                 r = RESUME_PASSTHROUGH;
1425                 break;
1426         default:
1427                 kvmppc_dump_regs(vcpu);
1428                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1429                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1430                         vcpu->arch.shregs.msr);
1431                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1432                 r = RESUME_HOST;
1433                 break;
1434         }
1435
1436         return r;
1437 }
1438
1439 static int kvmppc_handle_nested_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1440 {
1441         int r;
1442         int srcu_idx;
1443
1444         vcpu->stat.sum_exits++;
1445
1446         /*
1447          * This can happen if an interrupt occurs in the last stages
1448          * of guest entry or the first stages of guest exit (i.e. after
1449          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1450          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1451          * That can happen due to a bug, or due to a machine check
1452          * occurring at just the wrong time.
1453          */
1454         if (vcpu->arch.shregs.msr & MSR_HV) {
1455                 pr_emerg("KVM trap in HV mode while nested!\n");
1456                 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1457                          vcpu->arch.trap, kvmppc_get_pc(vcpu),
1458                          vcpu->arch.shregs.msr);
1459                 kvmppc_dump_regs(vcpu);
1460                 return RESUME_HOST;
1461         }
1462         switch (vcpu->arch.trap) {
1463         /* We're good on these - the host merely wanted to get our attention */
1464         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1465                 vcpu->stat.dec_exits++;
1466                 r = RESUME_GUEST;
1467                 break;
1468         case BOOK3S_INTERRUPT_EXTERNAL:
1469                 vcpu->stat.ext_intr_exits++;
1470                 r = RESUME_HOST;
1471                 break;
1472         case BOOK3S_INTERRUPT_H_DOORBELL:
1473         case BOOK3S_INTERRUPT_H_VIRT:
1474                 vcpu->stat.ext_intr_exits++;
1475                 r = RESUME_GUEST;
1476                 break;
1477         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1478         case BOOK3S_INTERRUPT_HMI:
1479         case BOOK3S_INTERRUPT_PERFMON:
1480         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1481                 r = RESUME_GUEST;
1482                 break;
1483         case BOOK3S_INTERRUPT_MACHINE_CHECK:
1484                 /* Pass the machine check to the L1 guest */
1485                 r = RESUME_HOST;
1486                 /* Print the MCE event to host console. */
1487                 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1488                 break;
1489         /*
1490          * We get these next two if the guest accesses a page which it thinks
1491          * it has mapped but which is not actually present, either because
1492          * it is for an emulated I/O device or because the corresonding
1493          * host page has been paged out.
1494          */
1495         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1496                 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1497                 r = kvmhv_nested_page_fault(run, vcpu);
1498                 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1499                 break;
1500         case BOOK3S_INTERRUPT_H_INST_STORAGE:
1501                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1502                 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1503                                          DSISR_SRR1_MATCH_64S;
1504                 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1505                         vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1506                 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1507                 r = kvmhv_nested_page_fault(run, vcpu);
1508                 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1509                 break;
1510
1511 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1512         case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1513                 /*
1514                  * This occurs for various TM-related instructions that
1515                  * we need to emulate on POWER9 DD2.2.  We have already
1516                  * handled the cases where the guest was in real-suspend
1517                  * mode and was transitioning to transactional state.
1518                  */
1519                 r = kvmhv_p9_tm_emulation(vcpu);
1520                 break;
1521 #endif
1522
1523         case BOOK3S_INTERRUPT_HV_RM_HARD:
1524                 vcpu->arch.trap = 0;
1525                 r = RESUME_GUEST;
1526                 if (!xics_on_xive())
1527                         kvmppc_xics_rm_complete(vcpu, 0);
1528                 break;
1529         default:
1530                 r = RESUME_HOST;
1531                 break;
1532         }
1533
1534         return r;
1535 }
1536
1537 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1538                                             struct kvm_sregs *sregs)
1539 {
1540         int i;
1541
1542         memset(sregs, 0, sizeof(struct kvm_sregs));
1543         sregs->pvr = vcpu->arch.pvr;
1544         for (i = 0; i < vcpu->arch.slb_max; i++) {
1545                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1546                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1547         }
1548
1549         return 0;
1550 }
1551
1552 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1553                                             struct kvm_sregs *sregs)
1554 {
1555         int i, j;
1556
1557         /* Only accept the same PVR as the host's, since we can't spoof it */
1558         if (sregs->pvr != vcpu->arch.pvr)
1559                 return -EINVAL;
1560
1561         j = 0;
1562         for (i = 0; i < vcpu->arch.slb_nr; i++) {
1563                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1564                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1565                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1566                         ++j;
1567                 }
1568         }
1569         vcpu->arch.slb_max = j;
1570
1571         return 0;
1572 }
1573
1574 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1575                 bool preserve_top32)
1576 {
1577         struct kvm *kvm = vcpu->kvm;
1578         struct kvmppc_vcore *vc = vcpu->arch.vcore;
1579         u64 mask;
1580
1581         spin_lock(&vc->lock);
1582         /*
1583          * If ILE (interrupt little-endian) has changed, update the
1584          * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1585          */
1586         if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1587                 struct kvm_vcpu *vcpu;
1588                 int i;
1589
1590                 kvm_for_each_vcpu(i, vcpu, kvm) {
1591                         if (vcpu->arch.vcore != vc)
1592                                 continue;
1593                         if (new_lpcr & LPCR_ILE)
1594                                 vcpu->arch.intr_msr |= MSR_LE;
1595                         else
1596                                 vcpu->arch.intr_msr &= ~MSR_LE;
1597                 }
1598         }
1599
1600         /*
1601          * Userspace can only modify DPFD (default prefetch depth),
1602          * ILE (interrupt little-endian) and TC (translation control).
1603          * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1604          */
1605         mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1606         if (cpu_has_feature(CPU_FTR_ARCH_207S))
1607                 mask |= LPCR_AIL;
1608         /*
1609          * On POWER9, allow userspace to enable large decrementer for the
1610          * guest, whether or not the host has it enabled.
1611          */
1612         if (cpu_has_feature(CPU_FTR_ARCH_300))
1613                 mask |= LPCR_LD;
1614
1615         /* Broken 32-bit version of LPCR must not clear top bits */
1616         if (preserve_top32)
1617                 mask &= 0xFFFFFFFF;
1618         vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1619         spin_unlock(&vc->lock);
1620 }
1621
1622 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1623                                  union kvmppc_one_reg *val)
1624 {
1625         int r = 0;
1626         long int i;
1627
1628         switch (id) {
1629         case KVM_REG_PPC_DEBUG_INST:
1630                 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1631                 break;
1632         case KVM_REG_PPC_HIOR:
1633                 *val = get_reg_val(id, 0);
1634                 break;
1635         case KVM_REG_PPC_DABR:
1636                 *val = get_reg_val(id, vcpu->arch.dabr);
1637                 break;
1638         case KVM_REG_PPC_DABRX:
1639                 *val = get_reg_val(id, vcpu->arch.dabrx);
1640                 break;
1641         case KVM_REG_PPC_DSCR:
1642                 *val = get_reg_val(id, vcpu->arch.dscr);
1643                 break;
1644         case KVM_REG_PPC_PURR:
1645                 *val = get_reg_val(id, vcpu->arch.purr);
1646                 break;
1647         case KVM_REG_PPC_SPURR:
1648                 *val = get_reg_val(id, vcpu->arch.spurr);
1649                 break;
1650         case KVM_REG_PPC_AMR:
1651                 *val = get_reg_val(id, vcpu->arch.amr);
1652                 break;
1653         case KVM_REG_PPC_UAMOR:
1654                 *val = get_reg_val(id, vcpu->arch.uamor);
1655                 break;
1656         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1657                 i = id - KVM_REG_PPC_MMCR0;
1658                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1659                 break;
1660         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1661                 i = id - KVM_REG_PPC_PMC1;
1662                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1663                 break;
1664         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1665                 i = id - KVM_REG_PPC_SPMC1;
1666                 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1667                 break;
1668         case KVM_REG_PPC_SIAR:
1669                 *val = get_reg_val(id, vcpu->arch.siar);
1670                 break;
1671         case KVM_REG_PPC_SDAR:
1672                 *val = get_reg_val(id, vcpu->arch.sdar);
1673                 break;
1674         case KVM_REG_PPC_SIER:
1675                 *val = get_reg_val(id, vcpu->arch.sier);
1676                 break;
1677         case KVM_REG_PPC_IAMR:
1678                 *val = get_reg_val(id, vcpu->arch.iamr);
1679                 break;
1680         case KVM_REG_PPC_PSPB:
1681                 *val = get_reg_val(id, vcpu->arch.pspb);
1682                 break;
1683         case KVM_REG_PPC_DPDES:
1684                 /*
1685                  * On POWER9, where we are emulating msgsndp etc.,
1686                  * we return 1 bit for each vcpu, which can come from
1687                  * either vcore->dpdes or doorbell_request.
1688                  * On POWER8, doorbell_request is 0.
1689                  */
1690                 *val = get_reg_val(id, vcpu->arch.vcore->dpdes |
1691                                    vcpu->arch.doorbell_request);
1692                 break;
1693         case KVM_REG_PPC_VTB:
1694                 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1695                 break;
1696         case KVM_REG_PPC_DAWR:
1697                 *val = get_reg_val(id, vcpu->arch.dawr);
1698                 break;
1699         case KVM_REG_PPC_DAWRX:
1700                 *val = get_reg_val(id, vcpu->arch.dawrx);
1701                 break;
1702         case KVM_REG_PPC_CIABR:
1703                 *val = get_reg_val(id, vcpu->arch.ciabr);
1704                 break;
1705         case KVM_REG_PPC_CSIGR:
1706                 *val = get_reg_val(id, vcpu->arch.csigr);
1707                 break;
1708         case KVM_REG_PPC_TACR:
1709                 *val = get_reg_val(id, vcpu->arch.tacr);
1710                 break;
1711         case KVM_REG_PPC_TCSCR:
1712                 *val = get_reg_val(id, vcpu->arch.tcscr);
1713                 break;
1714         case KVM_REG_PPC_PID:
1715                 *val = get_reg_val(id, vcpu->arch.pid);
1716                 break;
1717         case KVM_REG_PPC_ACOP:
1718                 *val = get_reg_val(id, vcpu->arch.acop);
1719                 break;
1720         case KVM_REG_PPC_WORT:
1721                 *val = get_reg_val(id, vcpu->arch.wort);
1722                 break;
1723         case KVM_REG_PPC_TIDR:
1724                 *val = get_reg_val(id, vcpu->arch.tid);
1725                 break;
1726         case KVM_REG_PPC_PSSCR:
1727                 *val = get_reg_val(id, vcpu->arch.psscr);
1728                 break;
1729         case KVM_REG_PPC_VPA_ADDR:
1730                 spin_lock(&vcpu->arch.vpa_update_lock);
1731                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1732                 spin_unlock(&vcpu->arch.vpa_update_lock);
1733                 break;
1734         case KVM_REG_PPC_VPA_SLB:
1735                 spin_lock(&vcpu->arch.vpa_update_lock);
1736                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1737                 val->vpaval.length = vcpu->arch.slb_shadow.len;
1738                 spin_unlock(&vcpu->arch.vpa_update_lock);
1739                 break;
1740         case KVM_REG_PPC_VPA_DTL:
1741                 spin_lock(&vcpu->arch.vpa_update_lock);
1742                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1743                 val->vpaval.length = vcpu->arch.dtl.len;
1744                 spin_unlock(&vcpu->arch.vpa_update_lock);
1745                 break;
1746         case KVM_REG_PPC_TB_OFFSET:
1747                 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1748                 break;
1749         case KVM_REG_PPC_LPCR:
1750         case KVM_REG_PPC_LPCR_64:
1751                 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1752                 break;
1753         case KVM_REG_PPC_PPR:
1754                 *val = get_reg_val(id, vcpu->arch.ppr);
1755                 break;
1756 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1757         case KVM_REG_PPC_TFHAR:
1758                 *val = get_reg_val(id, vcpu->arch.tfhar);
1759                 break;
1760         case KVM_REG_PPC_TFIAR:
1761                 *val = get_reg_val(id, vcpu->arch.tfiar);
1762                 break;
1763         case KVM_REG_PPC_TEXASR:
1764                 *val = get_reg_val(id, vcpu->arch.texasr);
1765                 break;
1766         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1767                 i = id - KVM_REG_PPC_TM_GPR0;
1768                 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1769                 break;
1770         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1771         {
1772                 int j;
1773                 i = id - KVM_REG_PPC_TM_VSR0;
1774                 if (i < 32)
1775                         for (j = 0; j < TS_FPRWIDTH; j++)
1776                                 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1777                 else {
1778                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1779                                 val->vval = vcpu->arch.vr_tm.vr[i-32];
1780                         else
1781                                 r = -ENXIO;
1782                 }
1783                 break;
1784         }
1785         case KVM_REG_PPC_TM_CR:
1786                 *val = get_reg_val(id, vcpu->arch.cr_tm);
1787                 break;
1788         case KVM_REG_PPC_TM_XER:
1789                 *val = get_reg_val(id, vcpu->arch.xer_tm);
1790                 break;
1791         case KVM_REG_PPC_TM_LR:
1792                 *val = get_reg_val(id, vcpu->arch.lr_tm);
1793                 break;
1794         case KVM_REG_PPC_TM_CTR:
1795                 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1796                 break;
1797         case KVM_REG_PPC_TM_FPSCR:
1798                 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1799                 break;
1800         case KVM_REG_PPC_TM_AMR:
1801                 *val = get_reg_val(id, vcpu->arch.amr_tm);
1802                 break;
1803         case KVM_REG_PPC_TM_PPR:
1804                 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1805                 break;
1806         case KVM_REG_PPC_TM_VRSAVE:
1807                 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1808                 break;
1809         case KVM_REG_PPC_TM_VSCR:
1810                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1811                         *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1812                 else
1813                         r = -ENXIO;
1814                 break;
1815         case KVM_REG_PPC_TM_DSCR:
1816                 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1817                 break;
1818         case KVM_REG_PPC_TM_TAR:
1819                 *val = get_reg_val(id, vcpu->arch.tar_tm);
1820                 break;
1821 #endif
1822         case KVM_REG_PPC_ARCH_COMPAT:
1823                 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1824                 break;
1825         case KVM_REG_PPC_DEC_EXPIRY:
1826                 *val = get_reg_val(id, vcpu->arch.dec_expires +
1827                                    vcpu->arch.vcore->tb_offset);
1828                 break;
1829         case KVM_REG_PPC_ONLINE:
1830                 *val = get_reg_val(id, vcpu->arch.online);
1831                 break;
1832         case KVM_REG_PPC_PTCR:
1833                 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
1834                 break;
1835         default:
1836                 r = -EINVAL;
1837                 break;
1838         }
1839
1840         return r;
1841 }
1842
1843 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1844                                  union kvmppc_one_reg *val)
1845 {
1846         int r = 0;
1847         long int i;
1848         unsigned long addr, len;
1849
1850         switch (id) {
1851         case KVM_REG_PPC_HIOR:
1852                 /* Only allow this to be set to zero */
1853                 if (set_reg_val(id, *val))
1854                         r = -EINVAL;
1855                 break;
1856         case KVM_REG_PPC_DABR:
1857                 vcpu->arch.dabr = set_reg_val(id, *val);
1858                 break;
1859         case KVM_REG_PPC_DABRX:
1860                 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1861                 break;
1862         case KVM_REG_PPC_DSCR:
1863                 vcpu->arch.dscr = set_reg_val(id, *val);
1864                 break;
1865         case KVM_REG_PPC_PURR:
1866                 vcpu->arch.purr = set_reg_val(id, *val);
1867                 break;
1868         case KVM_REG_PPC_SPURR:
1869                 vcpu->arch.spurr = set_reg_val(id, *val);
1870                 break;
1871         case KVM_REG_PPC_AMR:
1872                 vcpu->arch.amr = set_reg_val(id, *val);
1873                 break;
1874         case KVM_REG_PPC_UAMOR:
1875                 vcpu->arch.uamor = set_reg_val(id, *val);
1876                 break;
1877         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1878                 i = id - KVM_REG_PPC_MMCR0;
1879                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1880                 break;
1881         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1882                 i = id - KVM_REG_PPC_PMC1;
1883                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1884                 break;
1885         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1886                 i = id - KVM_REG_PPC_SPMC1;
1887                 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1888                 break;
1889         case KVM_REG_PPC_SIAR:
1890                 vcpu->arch.siar = set_reg_val(id, *val);
1891                 break;
1892         case KVM_REG_PPC_SDAR:
1893                 vcpu->arch.sdar = set_reg_val(id, *val);
1894                 break;
1895         case KVM_REG_PPC_SIER:
1896                 vcpu->arch.sier = set_reg_val(id, *val);
1897                 break;
1898         case KVM_REG_PPC_IAMR:
1899                 vcpu->arch.iamr = set_reg_val(id, *val);
1900                 break;
1901         case KVM_REG_PPC_PSPB:
1902                 vcpu->arch.pspb = set_reg_val(id, *val);
1903                 break;
1904         case KVM_REG_PPC_DPDES:
1905                 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1906                 break;
1907         case KVM_REG_PPC_VTB:
1908                 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1909                 break;
1910         case KVM_REG_PPC_DAWR:
1911                 vcpu->arch.dawr = set_reg_val(id, *val);
1912                 break;
1913         case KVM_REG_PPC_DAWRX:
1914                 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1915                 break;
1916         case KVM_REG_PPC_CIABR:
1917                 vcpu->arch.ciabr = set_reg_val(id, *val);
1918                 /* Don't allow setting breakpoints in hypervisor code */
1919                 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1920                         vcpu->arch.ciabr &= ~CIABR_PRIV;        /* disable */
1921                 break;
1922         case KVM_REG_PPC_CSIGR:
1923                 vcpu->arch.csigr = set_reg_val(id, *val);
1924                 break;
1925         case KVM_REG_PPC_TACR:
1926                 vcpu->arch.tacr = set_reg_val(id, *val);
1927                 break;
1928         case KVM_REG_PPC_TCSCR:
1929                 vcpu->arch.tcscr = set_reg_val(id, *val);
1930                 break;
1931         case KVM_REG_PPC_PID:
1932                 vcpu->arch.pid = set_reg_val(id, *val);
1933                 break;
1934         case KVM_REG_PPC_ACOP:
1935                 vcpu->arch.acop = set_reg_val(id, *val);
1936                 break;
1937         case KVM_REG_PPC_WORT:
1938                 vcpu->arch.wort = set_reg_val(id, *val);
1939                 break;
1940         case KVM_REG_PPC_TIDR:
1941                 vcpu->arch.tid = set_reg_val(id, *val);
1942                 break;
1943         case KVM_REG_PPC_PSSCR:
1944                 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1945                 break;
1946         case KVM_REG_PPC_VPA_ADDR:
1947                 addr = set_reg_val(id, *val);
1948                 r = -EINVAL;
1949                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1950                               vcpu->arch.dtl.next_gpa))
1951                         break;
1952                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1953                 break;
1954         case KVM_REG_PPC_VPA_SLB:
1955                 addr = val->vpaval.addr;
1956                 len = val->vpaval.length;
1957                 r = -EINVAL;
1958                 if (addr && !vcpu->arch.vpa.next_gpa)
1959                         break;
1960                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1961                 break;
1962         case KVM_REG_PPC_VPA_DTL:
1963                 addr = val->vpaval.addr;
1964                 len = val->vpaval.length;
1965                 r = -EINVAL;
1966                 if (addr && (len < sizeof(struct dtl_entry) ||
1967                              !vcpu->arch.vpa.next_gpa))
1968                         break;
1969                 len -= len % sizeof(struct dtl_entry);
1970                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1971                 break;
1972         case KVM_REG_PPC_TB_OFFSET:
1973                 /* round up to multiple of 2^24 */
1974                 vcpu->arch.vcore->tb_offset =
1975                         ALIGN(set_reg_val(id, *val), 1UL << 24);
1976                 break;
1977         case KVM_REG_PPC_LPCR:
1978                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1979                 break;
1980         case KVM_REG_PPC_LPCR_64:
1981                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1982                 break;
1983         case KVM_REG_PPC_PPR:
1984                 vcpu->arch.ppr = set_reg_val(id, *val);
1985                 break;
1986 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1987         case KVM_REG_PPC_TFHAR:
1988                 vcpu->arch.tfhar = set_reg_val(id, *val);
1989                 break;
1990         case KVM_REG_PPC_TFIAR:
1991                 vcpu->arch.tfiar = set_reg_val(id, *val);
1992                 break;
1993         case KVM_REG_PPC_TEXASR:
1994                 vcpu->arch.texasr = set_reg_val(id, *val);
1995                 break;
1996         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1997                 i = id - KVM_REG_PPC_TM_GPR0;
1998                 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1999                 break;
2000         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2001         {
2002                 int j;
2003                 i = id - KVM_REG_PPC_TM_VSR0;
2004                 if (i < 32)
2005                         for (j = 0; j < TS_FPRWIDTH; j++)
2006                                 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2007                 else
2008                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
2009                                 vcpu->arch.vr_tm.vr[i-32] = val->vval;
2010                         else
2011                                 r = -ENXIO;
2012                 break;
2013         }
2014         case KVM_REG_PPC_TM_CR:
2015                 vcpu->arch.cr_tm = set_reg_val(id, *val);
2016                 break;
2017         case KVM_REG_PPC_TM_XER:
2018                 vcpu->arch.xer_tm = set_reg_val(id, *val);
2019                 break;
2020         case KVM_REG_PPC_TM_LR:
2021                 vcpu->arch.lr_tm = set_reg_val(id, *val);
2022                 break;
2023         case KVM_REG_PPC_TM_CTR:
2024                 vcpu->arch.ctr_tm = set_reg_val(id, *val);
2025                 break;
2026         case KVM_REG_PPC_TM_FPSCR:
2027                 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2028                 break;
2029         case KVM_REG_PPC_TM_AMR:
2030                 vcpu->arch.amr_tm = set_reg_val(id, *val);
2031                 break;
2032         case KVM_REG_PPC_TM_PPR:
2033                 vcpu->arch.ppr_tm = set_reg_val(id, *val);
2034                 break;
2035         case KVM_REG_PPC_TM_VRSAVE:
2036                 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2037                 break;
2038         case KVM_REG_PPC_TM_VSCR:
2039                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2040                         vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2041                 else
2042                         r = - ENXIO;
2043                 break;
2044         case KVM_REG_PPC_TM_DSCR:
2045                 vcpu->arch.dscr_tm = set_reg_val(id, *val);
2046                 break;
2047         case KVM_REG_PPC_TM_TAR:
2048                 vcpu->arch.tar_tm = set_reg_val(id, *val);
2049                 break;
2050 #endif
2051         case KVM_REG_PPC_ARCH_COMPAT:
2052                 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2053                 break;
2054         case KVM_REG_PPC_DEC_EXPIRY:
2055                 vcpu->arch.dec_expires = set_reg_val(id, *val) -
2056                         vcpu->arch.vcore->tb_offset;
2057                 break;
2058         case KVM_REG_PPC_ONLINE:
2059                 i = set_reg_val(id, *val);
2060                 if (i && !vcpu->arch.online)
2061                         atomic_inc(&vcpu->arch.vcore->online_count);
2062                 else if (!i && vcpu->arch.online)
2063                         atomic_dec(&vcpu->arch.vcore->online_count);
2064                 vcpu->arch.online = i;
2065                 break;
2066         case KVM_REG_PPC_PTCR:
2067                 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2068                 break;
2069         default:
2070                 r = -EINVAL;
2071                 break;
2072         }
2073
2074         return r;
2075 }
2076
2077 /*
2078  * On POWER9, threads are independent and can be in different partitions.
2079  * Therefore we consider each thread to be a subcore.
2080  * There is a restriction that all threads have to be in the same
2081  * MMU mode (radix or HPT), unfortunately, but since we only support
2082  * HPT guests on a HPT host so far, that isn't an impediment yet.
2083  */
2084 static int threads_per_vcore(struct kvm *kvm)
2085 {
2086         if (kvm->arch.threads_indep)
2087                 return 1;
2088         return threads_per_subcore;
2089 }
2090
2091 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2092 {
2093         struct kvmppc_vcore *vcore;
2094
2095         vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2096
2097         if (vcore == NULL)
2098                 return NULL;
2099
2100         spin_lock_init(&vcore->lock);
2101         spin_lock_init(&vcore->stoltb_lock);
2102         init_swait_queue_head(&vcore->wq);
2103         vcore->preempt_tb = TB_NIL;
2104         vcore->lpcr = kvm->arch.lpcr;
2105         vcore->first_vcpuid = id;
2106         vcore->kvm = kvm;
2107         INIT_LIST_HEAD(&vcore->preempt_list);
2108
2109         return vcore;
2110 }
2111
2112 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2113 static struct debugfs_timings_element {
2114         const char *name;
2115         size_t offset;
2116 } timings[] = {
2117         {"rm_entry",    offsetof(struct kvm_vcpu, arch.rm_entry)},
2118         {"rm_intr",     offsetof(struct kvm_vcpu, arch.rm_intr)},
2119         {"rm_exit",     offsetof(struct kvm_vcpu, arch.rm_exit)},
2120         {"guest",       offsetof(struct kvm_vcpu, arch.guest_time)},
2121         {"cede",        offsetof(struct kvm_vcpu, arch.cede_time)},
2122 };
2123
2124 #define N_TIMINGS       (ARRAY_SIZE(timings))
2125
2126 struct debugfs_timings_state {
2127         struct kvm_vcpu *vcpu;
2128         unsigned int    buflen;
2129         char            buf[N_TIMINGS * 100];
2130 };
2131
2132 static int debugfs_timings_open(struct inode *inode, struct file *file)
2133 {
2134         struct kvm_vcpu *vcpu = inode->i_private;
2135         struct debugfs_timings_state *p;
2136
2137         p = kzalloc(sizeof(*p), GFP_KERNEL);
2138         if (!p)
2139                 return -ENOMEM;
2140
2141         kvm_get_kvm(vcpu->kvm);
2142         p->vcpu = vcpu;
2143         file->private_data = p;
2144
2145         return nonseekable_open(inode, file);
2146 }
2147
2148 static int debugfs_timings_release(struct inode *inode, struct file *file)
2149 {
2150         struct debugfs_timings_state *p = file->private_data;
2151
2152         kvm_put_kvm(p->vcpu->kvm);
2153         kfree(p);
2154         return 0;
2155 }
2156
2157 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2158                                     size_t len, loff_t *ppos)
2159 {
2160         struct debugfs_timings_state *p = file->private_data;
2161         struct kvm_vcpu *vcpu = p->vcpu;
2162         char *s, *buf_end;
2163         struct kvmhv_tb_accumulator tb;
2164         u64 count;
2165         loff_t pos;
2166         ssize_t n;
2167         int i, loops;
2168         bool ok;
2169
2170         if (!p->buflen) {
2171                 s = p->buf;
2172                 buf_end = s + sizeof(p->buf);
2173                 for (i = 0; i < N_TIMINGS; ++i) {
2174                         struct kvmhv_tb_accumulator *acc;
2175
2176                         acc = (struct kvmhv_tb_accumulator *)
2177                                 ((unsigned long)vcpu + timings[i].offset);
2178                         ok = false;
2179                         for (loops = 0; loops < 1000; ++loops) {
2180                                 count = acc->seqcount;
2181                                 if (!(count & 1)) {
2182                                         smp_rmb();
2183                                         tb = *acc;
2184                                         smp_rmb();
2185                                         if (count == acc->seqcount) {
2186                                                 ok = true;
2187                                                 break;
2188                                         }
2189                                 }
2190                                 udelay(1);
2191                         }
2192                         if (!ok)
2193                                 snprintf(s, buf_end - s, "%s: stuck\n",
2194                                         timings[i].name);
2195                         else
2196                                 snprintf(s, buf_end - s,
2197                                         "%s: %llu %llu %llu %llu\n",
2198                                         timings[i].name, count / 2,
2199                                         tb_to_ns(tb.tb_total),
2200                                         tb_to_ns(tb.tb_min),
2201                                         tb_to_ns(tb.tb_max));
2202                         s += strlen(s);
2203                 }
2204                 p->buflen = s - p->buf;
2205         }
2206
2207         pos = *ppos;
2208         if (pos >= p->buflen)
2209                 return 0;
2210         if (len > p->buflen - pos)
2211                 len = p->buflen - pos;
2212         n = copy_to_user(buf, p->buf + pos, len);
2213         if (n) {
2214                 if (n == len)
2215                         return -EFAULT;
2216                 len -= n;
2217         }
2218         *ppos = pos + len;
2219         return len;
2220 }
2221
2222 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2223                                      size_t len, loff_t *ppos)
2224 {
2225         return -EACCES;
2226 }
2227
2228 static const struct file_operations debugfs_timings_ops = {
2229         .owner   = THIS_MODULE,
2230         .open    = debugfs_timings_open,
2231         .release = debugfs_timings_release,
2232         .read    = debugfs_timings_read,
2233         .write   = debugfs_timings_write,
2234         .llseek  = generic_file_llseek,
2235 };
2236
2237 /* Create a debugfs directory for the vcpu */
2238 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2239 {
2240         char buf[16];
2241         struct kvm *kvm = vcpu->kvm;
2242
2243         snprintf(buf, sizeof(buf), "vcpu%u", id);
2244         if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
2245                 return;
2246         vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
2247         if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
2248                 return;
2249         vcpu->arch.debugfs_timings =
2250                 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
2251                                     vcpu, &debugfs_timings_ops);
2252 }
2253
2254 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2255 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2256 {
2257 }
2258 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2259
2260 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
2261                                                    unsigned int id)
2262 {
2263         struct kvm_vcpu *vcpu;
2264         int err;
2265         int core;
2266         struct kvmppc_vcore *vcore;
2267
2268         err = -ENOMEM;
2269         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2270         if (!vcpu)
2271                 goto out;
2272
2273         err = kvm_vcpu_init(vcpu, kvm, id);
2274         if (err)
2275                 goto free_vcpu;
2276
2277         vcpu->arch.shared = &vcpu->arch.shregs;
2278 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2279         /*
2280          * The shared struct is never shared on HV,
2281          * so we can always use host endianness
2282          */
2283 #ifdef __BIG_ENDIAN__
2284         vcpu->arch.shared_big_endian = true;
2285 #else
2286         vcpu->arch.shared_big_endian = false;
2287 #endif
2288 #endif
2289         vcpu->arch.mmcr[0] = MMCR0_FC;
2290         vcpu->arch.ctrl = CTRL_RUNLATCH;
2291         /* default to host PVR, since we can't spoof it */
2292         kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2293         spin_lock_init(&vcpu->arch.vpa_update_lock);
2294         spin_lock_init(&vcpu->arch.tbacct_lock);
2295         vcpu->arch.busy_preempt = TB_NIL;
2296         vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2297
2298         /*
2299          * Set the default HFSCR for the guest from the host value.
2300          * This value is only used on POWER9.
2301          * On POWER9, we want to virtualize the doorbell facility, so we
2302          * don't set the HFSCR_MSGP bit, and that causes those instructions
2303          * to trap and then we emulate them.
2304          */
2305         vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2306                 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP;
2307         if (cpu_has_feature(CPU_FTR_HVMODE)) {
2308                 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2309                 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2310                         vcpu->arch.hfscr |= HFSCR_TM;
2311         }
2312         if (cpu_has_feature(CPU_FTR_TM_COMP))
2313                 vcpu->arch.hfscr |= HFSCR_TM;
2314
2315         kvmppc_mmu_book3s_hv_init(vcpu);
2316
2317         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2318
2319         init_waitqueue_head(&vcpu->arch.cpu_run);
2320
2321         mutex_lock(&kvm->lock);
2322         vcore = NULL;
2323         err = -EINVAL;
2324         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2325                 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2326                         pr_devel("KVM: VCPU ID too high\n");
2327                         core = KVM_MAX_VCORES;
2328                 } else {
2329                         BUG_ON(kvm->arch.smt_mode != 1);
2330                         core = kvmppc_pack_vcpu_id(kvm, id);
2331                 }
2332         } else {
2333                 core = id / kvm->arch.smt_mode;
2334         }
2335         if (core < KVM_MAX_VCORES) {
2336                 vcore = kvm->arch.vcores[core];
2337                 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2338                         pr_devel("KVM: collision on id %u", id);
2339                         vcore = NULL;
2340                 } else if (!vcore) {
2341                         /*
2342                          * Take mmu_setup_lock for mutual exclusion
2343                          * with kvmppc_update_lpcr().
2344                          */
2345                         err = -ENOMEM;
2346                         vcore = kvmppc_vcore_create(kvm,
2347                                         id & ~(kvm->arch.smt_mode - 1));
2348                         mutex_lock(&kvm->arch.mmu_setup_lock);
2349                         kvm->arch.vcores[core] = vcore;
2350                         kvm->arch.online_vcores++;
2351                         mutex_unlock(&kvm->arch.mmu_setup_lock);
2352                 }
2353         }
2354         mutex_unlock(&kvm->lock);
2355
2356         if (!vcore)
2357                 goto free_vcpu;
2358
2359         spin_lock(&vcore->lock);
2360         ++vcore->num_threads;
2361         spin_unlock(&vcore->lock);
2362         vcpu->arch.vcore = vcore;
2363         vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2364         vcpu->arch.thread_cpu = -1;
2365         vcpu->arch.prev_cpu = -1;
2366
2367         vcpu->arch.cpu_type = KVM_CPU_3S_64;
2368         kvmppc_sanity_check(vcpu);
2369
2370         debugfs_vcpu_init(vcpu, id);
2371
2372         return vcpu;
2373
2374 free_vcpu:
2375         kmem_cache_free(kvm_vcpu_cache, vcpu);
2376 out:
2377         return ERR_PTR(err);
2378 }
2379
2380 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2381                               unsigned long flags)
2382 {
2383         int err;
2384         int esmt = 0;
2385
2386         if (flags)
2387                 return -EINVAL;
2388         if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2389                 return -EINVAL;
2390         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2391                 /*
2392                  * On POWER8 (or POWER7), the threading mode is "strict",
2393                  * so we pack smt_mode vcpus per vcore.
2394                  */
2395                 if (smt_mode > threads_per_subcore)
2396                         return -EINVAL;
2397         } else {
2398                 /*
2399                  * On POWER9, the threading mode is "loose",
2400                  * so each vcpu gets its own vcore.
2401                  */
2402                 esmt = smt_mode;
2403                 smt_mode = 1;
2404         }
2405         mutex_lock(&kvm->lock);
2406         err = -EBUSY;
2407         if (!kvm->arch.online_vcores) {
2408                 kvm->arch.smt_mode = smt_mode;
2409                 kvm->arch.emul_smt_mode = esmt;
2410                 err = 0;
2411         }
2412         mutex_unlock(&kvm->lock);
2413
2414         return err;
2415 }
2416
2417 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2418 {
2419         if (vpa->pinned_addr)
2420                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2421                                         vpa->dirty);
2422 }
2423
2424 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2425 {
2426         spin_lock(&vcpu->arch.vpa_update_lock);
2427         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2428         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2429         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2430         spin_unlock(&vcpu->arch.vpa_update_lock);
2431         kvm_vcpu_uninit(vcpu);
2432         kmem_cache_free(kvm_vcpu_cache, vcpu);
2433 }
2434
2435 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2436 {
2437         /* Indicate we want to get back into the guest */
2438         return 1;
2439 }
2440
2441 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2442 {
2443         unsigned long dec_nsec, now;
2444
2445         now = get_tb();
2446         if (now > vcpu->arch.dec_expires) {
2447                 /* decrementer has already gone negative */
2448                 kvmppc_core_queue_dec(vcpu);
2449                 kvmppc_core_prepare_to_enter(vcpu);
2450                 return;
2451         }
2452         dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now);
2453         hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2454         vcpu->arch.timer_running = 1;
2455 }
2456
2457 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2458 {
2459         vcpu->arch.ceded = 0;
2460         if (vcpu->arch.timer_running) {
2461                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2462                 vcpu->arch.timer_running = 0;
2463         }
2464 }
2465
2466 extern int __kvmppc_vcore_entry(void);
2467
2468 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2469                                    struct kvm_vcpu *vcpu)
2470 {
2471         u64 now;
2472
2473         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2474                 return;
2475         spin_lock_irq(&vcpu->arch.tbacct_lock);
2476         now = mftb();
2477         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2478                 vcpu->arch.stolen_logged;
2479         vcpu->arch.busy_preempt = now;
2480         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2481         spin_unlock_irq(&vcpu->arch.tbacct_lock);
2482         --vc->n_runnable;
2483         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2484 }
2485
2486 static int kvmppc_grab_hwthread(int cpu)
2487 {
2488         struct paca_struct *tpaca;
2489         long timeout = 10000;
2490
2491         tpaca = paca_ptrs[cpu];
2492
2493         /* Ensure the thread won't go into the kernel if it wakes */
2494         tpaca->kvm_hstate.kvm_vcpu = NULL;
2495         tpaca->kvm_hstate.kvm_vcore = NULL;
2496         tpaca->kvm_hstate.napping = 0;
2497         smp_wmb();
2498         tpaca->kvm_hstate.hwthread_req = 1;
2499
2500         /*
2501          * If the thread is already executing in the kernel (e.g. handling
2502          * a stray interrupt), wait for it to get back to nap mode.
2503          * The smp_mb() is to ensure that our setting of hwthread_req
2504          * is visible before we look at hwthread_state, so if this
2505          * races with the code at system_reset_pSeries and the thread
2506          * misses our setting of hwthread_req, we are sure to see its
2507          * setting of hwthread_state, and vice versa.
2508          */
2509         smp_mb();
2510         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2511                 if (--timeout <= 0) {
2512                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
2513                         return -EBUSY;
2514                 }
2515                 udelay(1);
2516         }
2517         return 0;
2518 }
2519
2520 static void kvmppc_release_hwthread(int cpu)
2521 {
2522         struct paca_struct *tpaca;
2523
2524         tpaca = paca_ptrs[cpu];
2525         tpaca->kvm_hstate.hwthread_req = 0;
2526         tpaca->kvm_hstate.kvm_vcpu = NULL;
2527         tpaca->kvm_hstate.kvm_vcore = NULL;
2528         tpaca->kvm_hstate.kvm_split_mode = NULL;
2529 }
2530
2531 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2532 {
2533         struct kvm_nested_guest *nested = vcpu->arch.nested;
2534         cpumask_t *cpu_in_guest;
2535         int i;
2536
2537         cpu = cpu_first_thread_sibling(cpu);
2538         if (nested) {
2539                 cpumask_set_cpu(cpu, &nested->need_tlb_flush);
2540                 cpu_in_guest = &nested->cpu_in_guest;
2541         } else {
2542                 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2543                 cpu_in_guest = &kvm->arch.cpu_in_guest;
2544         }
2545         /*
2546          * Make sure setting of bit in need_tlb_flush precedes
2547          * testing of cpu_in_guest bits.  The matching barrier on
2548          * the other side is the first smp_mb() in kvmppc_run_core().
2549          */
2550         smp_mb();
2551         for (i = 0; i < threads_per_core; ++i)
2552                 if (cpumask_test_cpu(cpu + i, cpu_in_guest))
2553                         smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2554 }
2555
2556 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2557 {
2558         struct kvm_nested_guest *nested = vcpu->arch.nested;
2559         struct kvm *kvm = vcpu->kvm;
2560         int prev_cpu;
2561
2562         if (!cpu_has_feature(CPU_FTR_HVMODE))
2563                 return;
2564
2565         if (nested)
2566                 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
2567         else
2568                 prev_cpu = vcpu->arch.prev_cpu;
2569
2570         /*
2571          * With radix, the guest can do TLB invalidations itself,
2572          * and it could choose to use the local form (tlbiel) if
2573          * it is invalidating a translation that has only ever been
2574          * used on one vcpu.  However, that doesn't mean it has
2575          * only ever been used on one physical cpu, since vcpus
2576          * can move around between pcpus.  To cope with this, when
2577          * a vcpu moves from one pcpu to another, we need to tell
2578          * any vcpus running on the same core as this vcpu previously
2579          * ran to flush the TLB.  The TLB is shared between threads,
2580          * so we use a single bit in .need_tlb_flush for all 4 threads.
2581          */
2582         if (prev_cpu != pcpu) {
2583                 if (prev_cpu >= 0 &&
2584                     cpu_first_thread_sibling(prev_cpu) !=
2585                     cpu_first_thread_sibling(pcpu))
2586                         radix_flush_cpu(kvm, prev_cpu, vcpu);
2587                 if (nested)
2588                         nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
2589                 else
2590                         vcpu->arch.prev_cpu = pcpu;
2591         }
2592 }
2593
2594 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2595 {
2596         int cpu;
2597         struct paca_struct *tpaca;
2598         struct kvm *kvm = vc->kvm;
2599
2600         cpu = vc->pcpu;
2601         if (vcpu) {
2602                 if (vcpu->arch.timer_running) {
2603                         hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2604                         vcpu->arch.timer_running = 0;
2605                 }
2606                 cpu += vcpu->arch.ptid;
2607                 vcpu->cpu = vc->pcpu;
2608                 vcpu->arch.thread_cpu = cpu;
2609                 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2610         }
2611         tpaca = paca_ptrs[cpu];
2612         tpaca->kvm_hstate.kvm_vcpu = vcpu;
2613         tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2614         tpaca->kvm_hstate.fake_suspend = 0;
2615         /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2616         smp_wmb();
2617         tpaca->kvm_hstate.kvm_vcore = vc;
2618         if (cpu != smp_processor_id())
2619                 kvmppc_ipi_thread(cpu);
2620 }
2621
2622 static void kvmppc_wait_for_nap(int n_threads)
2623 {
2624         int cpu = smp_processor_id();
2625         int i, loops;
2626
2627         if (n_threads <= 1)
2628                 return;
2629         for (loops = 0; loops < 1000000; ++loops) {
2630                 /*
2631                  * Check if all threads are finished.
2632                  * We set the vcore pointer when starting a thread
2633                  * and the thread clears it when finished, so we look
2634                  * for any threads that still have a non-NULL vcore ptr.
2635                  */
2636                 for (i = 1; i < n_threads; ++i)
2637                         if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2638                                 break;
2639                 if (i == n_threads) {
2640                         HMT_medium();
2641                         return;
2642                 }
2643                 HMT_low();
2644         }
2645         HMT_medium();
2646         for (i = 1; i < n_threads; ++i)
2647                 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2648                         pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2649 }
2650
2651 /*
2652  * Check that we are on thread 0 and that any other threads in
2653  * this core are off-line.  Then grab the threads so they can't
2654  * enter the kernel.
2655  */
2656 static int on_primary_thread(void)
2657 {
2658         int cpu = smp_processor_id();
2659         int thr;
2660
2661         /* Are we on a primary subcore? */
2662         if (cpu_thread_in_subcore(cpu))
2663                 return 0;
2664
2665         thr = 0;
2666         while (++thr < threads_per_subcore)
2667                 if (cpu_online(cpu + thr))
2668                         return 0;
2669
2670         /* Grab all hw threads so they can't go into the kernel */
2671         for (thr = 1; thr < threads_per_subcore; ++thr) {
2672                 if (kvmppc_grab_hwthread(cpu + thr)) {
2673                         /* Couldn't grab one; let the others go */
2674                         do {
2675                                 kvmppc_release_hwthread(cpu + thr);
2676                         } while (--thr > 0);
2677                         return 0;
2678                 }
2679         }
2680         return 1;
2681 }
2682
2683 /*
2684  * A list of virtual cores for each physical CPU.
2685  * These are vcores that could run but their runner VCPU tasks are
2686  * (or may be) preempted.
2687  */
2688 struct preempted_vcore_list {
2689         struct list_head        list;
2690         spinlock_t              lock;
2691 };
2692
2693 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2694
2695 static void init_vcore_lists(void)
2696 {
2697         int cpu;
2698
2699         for_each_possible_cpu(cpu) {
2700                 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2701                 spin_lock_init(&lp->lock);
2702                 INIT_LIST_HEAD(&lp->list);
2703         }
2704 }
2705
2706 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2707 {
2708         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2709
2710         vc->vcore_state = VCORE_PREEMPT;
2711         vc->pcpu = smp_processor_id();
2712         if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2713                 spin_lock(&lp->lock);
2714                 list_add_tail(&vc->preempt_list, &lp->list);
2715                 spin_unlock(&lp->lock);
2716         }
2717
2718         /* Start accumulating stolen time */
2719         kvmppc_core_start_stolen(vc);
2720 }
2721
2722 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2723 {
2724         struct preempted_vcore_list *lp;
2725
2726         kvmppc_core_end_stolen(vc);
2727         if (!list_empty(&vc->preempt_list)) {
2728                 lp = &per_cpu(preempted_vcores, vc->pcpu);
2729                 spin_lock(&lp->lock);
2730                 list_del_init(&vc->preempt_list);
2731                 spin_unlock(&lp->lock);
2732         }
2733         vc->vcore_state = VCORE_INACTIVE;
2734 }
2735
2736 /*
2737  * This stores information about the virtual cores currently
2738  * assigned to a physical core.
2739  */
2740 struct core_info {
2741         int             n_subcores;
2742         int             max_subcore_threads;
2743         int             total_threads;
2744         int             subcore_threads[MAX_SUBCORES];
2745         struct kvmppc_vcore *vc[MAX_SUBCORES];
2746 };
2747
2748 /*
2749  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2750  * respectively in 2-way micro-threading (split-core) mode on POWER8.
2751  */
2752 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2753
2754 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2755 {
2756         memset(cip, 0, sizeof(*cip));
2757         cip->n_subcores = 1;
2758         cip->max_subcore_threads = vc->num_threads;
2759         cip->total_threads = vc->num_threads;
2760         cip->subcore_threads[0] = vc->num_threads;
2761         cip->vc[0] = vc;
2762 }
2763
2764 static bool subcore_config_ok(int n_subcores, int n_threads)
2765 {
2766         /*
2767          * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2768          * split-core mode, with one thread per subcore.
2769          */
2770         if (cpu_has_feature(CPU_FTR_ARCH_300))
2771                 return n_subcores <= 4 && n_threads == 1;
2772
2773         /* On POWER8, can only dynamically split if unsplit to begin with */
2774         if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2775                 return false;
2776         if (n_subcores > MAX_SUBCORES)
2777                 return false;
2778         if (n_subcores > 1) {
2779                 if (!(dynamic_mt_modes & 2))
2780                         n_subcores = 4;
2781                 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2782                         return false;
2783         }
2784
2785         return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2786 }
2787
2788 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2789 {
2790         vc->entry_exit_map = 0;
2791         vc->in_guest = 0;
2792         vc->napping_threads = 0;
2793         vc->conferring_threads = 0;
2794         vc->tb_offset_applied = 0;
2795 }
2796
2797 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2798 {
2799         int n_threads = vc->num_threads;
2800         int sub;
2801
2802         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2803                 return false;
2804
2805         /* In one_vm_per_core mode, require all vcores to be from the same vm */
2806         if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
2807                 return false;
2808
2809         /* Some POWER9 chips require all threads to be in the same MMU mode */
2810         if (no_mixing_hpt_and_radix &&
2811             kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2812                 return false;
2813
2814         if (n_threads < cip->max_subcore_threads)
2815                 n_threads = cip->max_subcore_threads;
2816         if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2817                 return false;
2818         cip->max_subcore_threads = n_threads;
2819
2820         sub = cip->n_subcores;
2821         ++cip->n_subcores;
2822         cip->total_threads += vc->num_threads;
2823         cip->subcore_threads[sub] = vc->num_threads;
2824         cip->vc[sub] = vc;
2825         init_vcore_to_run(vc);
2826         list_del_init(&vc->preempt_list);
2827
2828         return true;
2829 }
2830
2831 /*
2832  * Work out whether it is possible to piggyback the execution of
2833  * vcore *pvc onto the execution of the other vcores described in *cip.
2834  */
2835 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2836                           int target_threads)
2837 {
2838         if (cip->total_threads + pvc->num_threads > target_threads)
2839                 return false;
2840
2841         return can_dynamic_split(pvc, cip);
2842 }
2843
2844 static void prepare_threads(struct kvmppc_vcore *vc)
2845 {
2846         int i;
2847         struct kvm_vcpu *vcpu;
2848
2849         for_each_runnable_thread(i, vcpu, vc) {
2850                 if (signal_pending(vcpu->arch.run_task))
2851                         vcpu->arch.ret = -EINTR;
2852                 else if (vcpu->arch.vpa.update_pending ||
2853                          vcpu->arch.slb_shadow.update_pending ||
2854                          vcpu->arch.dtl.update_pending)
2855                         vcpu->arch.ret = RESUME_GUEST;
2856                 else
2857                         continue;
2858                 kvmppc_remove_runnable(vc, vcpu);
2859                 wake_up(&vcpu->arch.cpu_run);
2860         }
2861 }
2862
2863 static void collect_piggybacks(struct core_info *cip, int target_threads)
2864 {
2865         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2866         struct kvmppc_vcore *pvc, *vcnext;
2867
2868         spin_lock(&lp->lock);
2869         list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2870                 if (!spin_trylock(&pvc->lock))
2871                         continue;
2872                 prepare_threads(pvc);
2873                 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
2874                         list_del_init(&pvc->preempt_list);
2875                         if (pvc->runner == NULL) {
2876                                 pvc->vcore_state = VCORE_INACTIVE;
2877                                 kvmppc_core_end_stolen(pvc);
2878                         }
2879                         spin_unlock(&pvc->lock);
2880                         continue;
2881                 }
2882                 if (!can_piggyback(pvc, cip, target_threads)) {
2883                         spin_unlock(&pvc->lock);
2884                         continue;
2885                 }
2886                 kvmppc_core_end_stolen(pvc);
2887                 pvc->vcore_state = VCORE_PIGGYBACK;
2888                 if (cip->total_threads >= target_threads)
2889                         break;
2890         }
2891         spin_unlock(&lp->lock);
2892 }
2893
2894 static bool recheck_signals_and_mmu(struct core_info *cip)
2895 {
2896         int sub, i;
2897         struct kvm_vcpu *vcpu;
2898         struct kvmppc_vcore *vc;
2899
2900         for (sub = 0; sub < cip->n_subcores; ++sub) {
2901                 vc = cip->vc[sub];
2902                 if (!vc->kvm->arch.mmu_ready)
2903                         return true;
2904                 for_each_runnable_thread(i, vcpu, vc)
2905                         if (signal_pending(vcpu->arch.run_task))
2906                                 return true;
2907         }
2908         return false;
2909 }
2910
2911 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2912 {
2913         int still_running = 0, i;
2914         u64 now;
2915         long ret;
2916         struct kvm_vcpu *vcpu;
2917
2918         spin_lock(&vc->lock);
2919         now = get_tb();
2920         for_each_runnable_thread(i, vcpu, vc) {
2921                 /*
2922                  * It's safe to unlock the vcore in the loop here, because
2923                  * for_each_runnable_thread() is safe against removal of
2924                  * the vcpu, and the vcore state is VCORE_EXITING here,
2925                  * so any vcpus becoming runnable will have their arch.trap
2926                  * set to zero and can't actually run in the guest.
2927                  */
2928                 spin_unlock(&vc->lock);
2929                 /* cancel pending dec exception if dec is positive */
2930                 if (now < vcpu->arch.dec_expires &&
2931                     kvmppc_core_pending_dec(vcpu))
2932                         kvmppc_core_dequeue_dec(vcpu);
2933
2934                 trace_kvm_guest_exit(vcpu);
2935
2936                 ret = RESUME_GUEST;
2937                 if (vcpu->arch.trap)
2938                         ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2939                                                     vcpu->arch.run_task);
2940
2941                 vcpu->arch.ret = ret;
2942                 vcpu->arch.trap = 0;
2943
2944                 spin_lock(&vc->lock);
2945                 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2946                         if (vcpu->arch.pending_exceptions)
2947                                 kvmppc_core_prepare_to_enter(vcpu);
2948                         if (vcpu->arch.ceded)
2949                                 kvmppc_set_timer(vcpu);
2950                         else
2951                                 ++still_running;
2952                 } else {
2953                         kvmppc_remove_runnable(vc, vcpu);
2954                         wake_up(&vcpu->arch.cpu_run);
2955                 }
2956         }
2957         if (!is_master) {
2958                 if (still_running > 0) {
2959                         kvmppc_vcore_preempt(vc);
2960                 } else if (vc->runner) {
2961                         vc->vcore_state = VCORE_PREEMPT;
2962                         kvmppc_core_start_stolen(vc);
2963                 } else {
2964                         vc->vcore_state = VCORE_INACTIVE;
2965                 }
2966                 if (vc->n_runnable > 0 && vc->runner == NULL) {
2967                         /* make sure there's a candidate runner awake */
2968                         i = -1;
2969                         vcpu = next_runnable_thread(vc, &i);
2970                         wake_up(&vcpu->arch.cpu_run);
2971                 }
2972         }
2973         spin_unlock(&vc->lock);
2974 }
2975
2976 /*
2977  * Clear core from the list of active host cores as we are about to
2978  * enter the guest. Only do this if it is the primary thread of the
2979  * core (not if a subcore) that is entering the guest.
2980  */
2981 static inline int kvmppc_clear_host_core(unsigned int cpu)
2982 {
2983         int core;
2984
2985         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2986                 return 0;
2987         /*
2988          * Memory barrier can be omitted here as we will do a smp_wmb()
2989          * later in kvmppc_start_thread and we need ensure that state is
2990          * visible to other CPUs only after we enter guest.
2991          */
2992         core = cpu >> threads_shift;
2993         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2994         return 0;
2995 }
2996
2997 /*
2998  * Advertise this core as an active host core since we exited the guest
2999  * Only need to do this if it is the primary thread of the core that is
3000  * exiting.
3001  */
3002 static inline int kvmppc_set_host_core(unsigned int cpu)
3003 {
3004         int core;
3005
3006         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3007                 return 0;
3008
3009         /*
3010          * Memory barrier can be omitted here because we do a spin_unlock
3011          * immediately after this which provides the memory barrier.
3012          */
3013         core = cpu >> threads_shift;
3014         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3015         return 0;
3016 }
3017
3018 static void set_irq_happened(int trap)
3019 {
3020         switch (trap) {
3021         case BOOK3S_INTERRUPT_EXTERNAL:
3022                 local_paca->irq_happened |= PACA_IRQ_EE;
3023                 break;
3024         case BOOK3S_INTERRUPT_H_DOORBELL:
3025                 local_paca->irq_happened |= PACA_IRQ_DBELL;
3026                 break;
3027         case BOOK3S_INTERRUPT_HMI:
3028                 local_paca->irq_happened |= PACA_IRQ_HMI;
3029                 break;
3030         case BOOK3S_INTERRUPT_SYSTEM_RESET:
3031                 replay_system_reset();
3032                 break;
3033         }
3034 }
3035
3036 /*
3037  * Run a set of guest threads on a physical core.
3038  * Called with vc->lock held.
3039  */
3040 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3041 {
3042         struct kvm_vcpu *vcpu;
3043         int i;
3044         int srcu_idx;
3045         struct core_info core_info;
3046         struct kvmppc_vcore *pvc;
3047         struct kvm_split_mode split_info, *sip;
3048         int split, subcore_size, active;
3049         int sub;
3050         bool thr0_done;
3051         unsigned long cmd_bit, stat_bit;
3052         int pcpu, thr;
3053         int target_threads;
3054         int controlled_threads;
3055         int trap;
3056         bool is_power8;
3057         bool hpt_on_radix;
3058
3059         /*
3060          * Remove from the list any threads that have a signal pending
3061          * or need a VPA update done
3062          */
3063         prepare_threads(vc);
3064
3065         /* if the runner is no longer runnable, let the caller pick a new one */
3066         if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3067                 return;
3068
3069         /*
3070          * Initialize *vc.
3071          */
3072         init_vcore_to_run(vc);
3073         vc->preempt_tb = TB_NIL;
3074
3075         /*
3076          * Number of threads that we will be controlling: the same as
3077          * the number of threads per subcore, except on POWER9,
3078          * where it's 1 because the threads are (mostly) independent.
3079          */
3080         controlled_threads = threads_per_vcore(vc->kvm);
3081
3082         /*
3083          * Make sure we are running on primary threads, and that secondary
3084          * threads are offline.  Also check if the number of threads in this
3085          * guest are greater than the current system threads per guest.
3086          * On POWER9, we need to be not in independent-threads mode if
3087          * this is a HPT guest on a radix host machine where the
3088          * CPU threads may not be in different MMU modes.
3089          */
3090         hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
3091                 !kvm_is_radix(vc->kvm);
3092         if (((controlled_threads > 1) &&
3093              ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
3094             (hpt_on_radix && vc->kvm->arch.threads_indep)) {
3095                 for_each_runnable_thread(i, vcpu, vc) {
3096                         vcpu->arch.ret = -EBUSY;
3097                         kvmppc_remove_runnable(vc, vcpu);
3098                         wake_up(&vcpu->arch.cpu_run);
3099                 }
3100                 goto out;
3101         }
3102
3103         /*
3104          * See if we could run any other vcores on the physical core
3105          * along with this one.
3106          */
3107         init_core_info(&core_info, vc);
3108         pcpu = smp_processor_id();
3109         target_threads = controlled_threads;
3110         if (target_smt_mode && target_smt_mode < target_threads)
3111                 target_threads = target_smt_mode;
3112         if (vc->num_threads < target_threads)
3113                 collect_piggybacks(&core_info, target_threads);
3114
3115         /*
3116          * On radix, arrange for TLB flushing if necessary.
3117          * This has to be done before disabling interrupts since
3118          * it uses smp_call_function().
3119          */
3120         pcpu = smp_processor_id();
3121         if (kvm_is_radix(vc->kvm)) {
3122                 for (sub = 0; sub < core_info.n_subcores; ++sub)
3123                         for_each_runnable_thread(i, vcpu, core_info.vc[sub])
3124                                 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
3125         }
3126
3127         /*
3128          * Hard-disable interrupts, and check resched flag and signals.
3129          * If we need to reschedule or deliver a signal, clean up
3130          * and return without going into the guest(s).
3131          * If the mmu_ready flag has been cleared, don't go into the
3132          * guest because that means a HPT resize operation is in progress.
3133          */
3134         local_irq_disable();
3135         hard_irq_disable();
3136         if (lazy_irq_pending() || need_resched() ||
3137             recheck_signals_and_mmu(&core_info)) {
3138                 local_irq_enable();
3139                 vc->vcore_state = VCORE_INACTIVE;
3140                 /* Unlock all except the primary vcore */
3141                 for (sub = 1; sub < core_info.n_subcores; ++sub) {
3142                         pvc = core_info.vc[sub];
3143                         /* Put back on to the preempted vcores list */
3144                         kvmppc_vcore_preempt(pvc);
3145                         spin_unlock(&pvc->lock);
3146                 }
3147                 for (i = 0; i < controlled_threads; ++i)
3148                         kvmppc_release_hwthread(pcpu + i);
3149                 return;
3150         }
3151
3152         kvmppc_clear_host_core(pcpu);
3153
3154         /* Decide on micro-threading (split-core) mode */
3155         subcore_size = threads_per_subcore;
3156         cmd_bit = stat_bit = 0;
3157         split = core_info.n_subcores;
3158         sip = NULL;
3159         is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
3160                 && !cpu_has_feature(CPU_FTR_ARCH_300);
3161
3162         if (split > 1 || hpt_on_radix) {
3163                 sip = &split_info;
3164                 memset(&split_info, 0, sizeof(split_info));
3165                 for (sub = 0; sub < core_info.n_subcores; ++sub)
3166                         split_info.vc[sub] = core_info.vc[sub];
3167
3168                 if (is_power8) {
3169                         if (split == 2 && (dynamic_mt_modes & 2)) {
3170                                 cmd_bit = HID0_POWER8_1TO2LPAR;
3171                                 stat_bit = HID0_POWER8_2LPARMODE;
3172                         } else {
3173                                 split = 4;
3174                                 cmd_bit = HID0_POWER8_1TO4LPAR;
3175                                 stat_bit = HID0_POWER8_4LPARMODE;
3176                         }
3177                         subcore_size = MAX_SMT_THREADS / split;
3178                         split_info.rpr = mfspr(SPRN_RPR);
3179                         split_info.pmmar = mfspr(SPRN_PMMAR);
3180                         split_info.ldbar = mfspr(SPRN_LDBAR);
3181                         split_info.subcore_size = subcore_size;
3182                 } else {
3183                         split_info.subcore_size = 1;
3184                         if (hpt_on_radix) {
3185                                 /* Use the split_info for LPCR/LPIDR changes */
3186                                 split_info.lpcr_req = vc->lpcr;
3187                                 split_info.lpidr_req = vc->kvm->arch.lpid;
3188                                 split_info.host_lpcr = vc->kvm->arch.host_lpcr;
3189                                 split_info.do_set = 1;
3190                         }
3191                 }
3192
3193                 /* order writes to split_info before kvm_split_mode pointer */
3194                 smp_wmb();
3195         }
3196
3197         for (thr = 0; thr < controlled_threads; ++thr) {
3198                 struct paca_struct *paca = paca_ptrs[pcpu + thr];
3199
3200                 paca->kvm_hstate.tid = thr;
3201                 paca->kvm_hstate.napping = 0;
3202                 paca->kvm_hstate.kvm_split_mode = sip;
3203         }
3204
3205         /* Initiate micro-threading (split-core) on POWER8 if required */
3206         if (cmd_bit) {
3207                 unsigned long hid0 = mfspr(SPRN_HID0);
3208
3209                 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3210                 mb();
3211                 mtspr(SPRN_HID0, hid0);
3212                 isync();
3213                 for (;;) {
3214                         hid0 = mfspr(SPRN_HID0);
3215                         if (hid0 & stat_bit)
3216                                 break;
3217                         cpu_relax();
3218                 }
3219         }
3220
3221         /*
3222          * On POWER8, set RWMR register.
3223          * Since it only affects PURR and SPURR, it doesn't affect
3224          * the host, so we don't save/restore the host value.
3225          */
3226         if (is_power8) {
3227                 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3228                 int n_online = atomic_read(&vc->online_count);
3229
3230                 /*
3231                  * Use the 8-thread value if we're doing split-core
3232                  * or if the vcore's online count looks bogus.
3233                  */
3234                 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3235                     n_online >= 1 && n_online <= MAX_SMT_THREADS)
3236                         rwmr_val = p8_rwmr_values[n_online];
3237                 mtspr(SPRN_RWMR, rwmr_val);
3238         }
3239
3240         /* Start all the threads */
3241         active = 0;
3242         for (sub = 0; sub < core_info.n_subcores; ++sub) {
3243                 thr = is_power8 ? subcore_thread_map[sub] : sub;
3244                 thr0_done = false;
3245                 active |= 1 << thr;
3246                 pvc = core_info.vc[sub];
3247                 pvc->pcpu = pcpu + thr;
3248                 for_each_runnable_thread(i, vcpu, pvc) {
3249                         kvmppc_start_thread(vcpu, pvc);
3250                         kvmppc_create_dtl_entry(vcpu, pvc);
3251                         trace_kvm_guest_enter(vcpu);
3252                         if (!vcpu->arch.ptid)
3253                                 thr0_done = true;
3254                         active |= 1 << (thr + vcpu->arch.ptid);
3255                 }
3256                 /*
3257                  * We need to start the first thread of each subcore
3258                  * even if it doesn't have a vcpu.
3259                  */
3260                 if (!thr0_done)
3261                         kvmppc_start_thread(NULL, pvc);
3262         }
3263
3264         /*
3265          * Ensure that split_info.do_nap is set after setting
3266          * the vcore pointer in the PACA of the secondaries.
3267          */
3268         smp_mb();
3269
3270         /*
3271          * When doing micro-threading, poke the inactive threads as well.
3272          * This gets them to the nap instruction after kvm_do_nap,
3273          * which reduces the time taken to unsplit later.
3274          * For POWER9 HPT guest on radix host, we need all the secondary
3275          * threads woken up so they can do the LPCR/LPIDR change.
3276          */
3277         if (cmd_bit || hpt_on_radix) {
3278                 split_info.do_nap = 1;  /* ask secondaries to nap when done */
3279                 for (thr = 1; thr < threads_per_subcore; ++thr)
3280                         if (!(active & (1 << thr)))
3281                                 kvmppc_ipi_thread(pcpu + thr);
3282         }
3283
3284         vc->vcore_state = VCORE_RUNNING;
3285         preempt_disable();
3286
3287         trace_kvmppc_run_core(vc, 0);
3288
3289         for (sub = 0; sub < core_info.n_subcores; ++sub)
3290                 spin_unlock(&core_info.vc[sub]->lock);
3291
3292         guest_enter_irqoff();
3293
3294         srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3295
3296         this_cpu_disable_ftrace();
3297
3298         /*
3299          * Interrupts will be enabled once we get into the guest,
3300          * so tell lockdep that we're about to enable interrupts.
3301          */
3302         trace_hardirqs_on();
3303
3304         trap = __kvmppc_vcore_entry();
3305
3306         trace_hardirqs_off();
3307
3308         this_cpu_enable_ftrace();
3309
3310         srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3311
3312         set_irq_happened(trap);
3313
3314         spin_lock(&vc->lock);
3315         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
3316         vc->vcore_state = VCORE_EXITING;
3317
3318         /* wait for secondary threads to finish writing their state to memory */
3319         kvmppc_wait_for_nap(controlled_threads);
3320
3321         /* Return to whole-core mode if we split the core earlier */
3322         if (cmd_bit) {
3323                 unsigned long hid0 = mfspr(SPRN_HID0);
3324                 unsigned long loops = 0;
3325
3326                 hid0 &= ~HID0_POWER8_DYNLPARDIS;
3327                 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3328                 mb();
3329                 mtspr(SPRN_HID0, hid0);
3330                 isync();
3331                 for (;;) {
3332                         hid0 = mfspr(SPRN_HID0);
3333                         if (!(hid0 & stat_bit))
3334                                 break;
3335                         cpu_relax();
3336                         ++loops;
3337                 }
3338         } else if (hpt_on_radix) {
3339                 /* Wait for all threads to have seen final sync */
3340                 for (thr = 1; thr < controlled_threads; ++thr) {
3341                         struct paca_struct *paca = paca_ptrs[pcpu + thr];
3342
3343                         while (paca->kvm_hstate.kvm_split_mode) {
3344                                 HMT_low();
3345                                 barrier();
3346                         }
3347                         HMT_medium();
3348                 }
3349         }
3350         split_info.do_nap = 0;
3351
3352         kvmppc_set_host_core(pcpu);
3353
3354         local_irq_enable();
3355         guest_exit();
3356
3357         /* Let secondaries go back to the offline loop */
3358         for (i = 0; i < controlled_threads; ++i) {
3359                 kvmppc_release_hwthread(pcpu + i);
3360                 if (sip && sip->napped[i])
3361                         kvmppc_ipi_thread(pcpu + i);
3362                 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3363         }
3364
3365         spin_unlock(&vc->lock);
3366
3367         /* make sure updates to secondary vcpu structs are visible now */
3368         smp_mb();
3369
3370         preempt_enable();
3371
3372         for (sub = 0; sub < core_info.n_subcores; ++sub) {
3373                 pvc = core_info.vc[sub];
3374                 post_guest_process(pvc, pvc == vc);
3375         }
3376
3377         spin_lock(&vc->lock);
3378
3379  out:
3380         vc->vcore_state = VCORE_INACTIVE;
3381         trace_kvmppc_run_core(vc, 1);
3382 }
3383
3384 /*
3385  * Load up hypervisor-mode registers on P9.
3386  */
3387 static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit,
3388                                      unsigned long lpcr)
3389 {
3390         struct kvmppc_vcore *vc = vcpu->arch.vcore;
3391         s64 hdec;
3392         u64 tb, purr, spurr;
3393         int trap;
3394         unsigned long host_hfscr = mfspr(SPRN_HFSCR);
3395         unsigned long host_ciabr = mfspr(SPRN_CIABR);
3396         unsigned long host_dawr = mfspr(SPRN_DAWR);
3397         unsigned long host_dawrx = mfspr(SPRN_DAWRX);
3398         unsigned long host_psscr = mfspr(SPRN_PSSCR);
3399         unsigned long host_pidr = mfspr(SPRN_PID);
3400
3401         hdec = time_limit - mftb();
3402         if (hdec < 0)
3403                 return BOOK3S_INTERRUPT_HV_DECREMENTER;
3404         mtspr(SPRN_HDEC, hdec);
3405
3406         if (vc->tb_offset) {
3407                 u64 new_tb = mftb() + vc->tb_offset;
3408                 mtspr(SPRN_TBU40, new_tb);
3409                 tb = mftb();
3410                 if ((tb & 0xffffff) < (new_tb & 0xffffff))
3411                         mtspr(SPRN_TBU40, new_tb + 0x1000000);
3412                 vc->tb_offset_applied = vc->tb_offset;
3413         }
3414
3415         if (vc->pcr)
3416                 mtspr(SPRN_PCR, vc->pcr | PCR_MASK);
3417         mtspr(SPRN_DPDES, vc->dpdes);
3418         mtspr(SPRN_VTB, vc->vtb);
3419
3420         local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR);
3421         local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR);
3422         mtspr(SPRN_PURR, vcpu->arch.purr);
3423         mtspr(SPRN_SPURR, vcpu->arch.spurr);
3424
3425         if (dawr_enabled()) {
3426                 mtspr(SPRN_DAWR, vcpu->arch.dawr);
3427                 mtspr(SPRN_DAWRX, vcpu->arch.dawrx);
3428         }
3429         mtspr(SPRN_CIABR, vcpu->arch.ciabr);
3430         mtspr(SPRN_IC, vcpu->arch.ic);
3431         mtspr(SPRN_PID, vcpu->arch.pid);
3432
3433         mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC |
3434               (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3435
3436         mtspr(SPRN_HFSCR, vcpu->arch.hfscr);
3437
3438         mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0);
3439         mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1);
3440         mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2);
3441         mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3);
3442
3443         mtspr(SPRN_AMOR, ~0UL);
3444
3445         mtspr(SPRN_LPCR, lpcr);
3446         isync();
3447
3448         kvmppc_xive_push_vcpu(vcpu);
3449
3450         mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0);
3451         mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1);
3452
3453         trap = __kvmhv_vcpu_entry_p9(vcpu);
3454
3455         /* Advance host PURR/SPURR by the amount used by guest */
3456         purr = mfspr(SPRN_PURR);
3457         spurr = mfspr(SPRN_SPURR);
3458         mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr +
3459               purr - vcpu->arch.purr);
3460         mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr +
3461               spurr - vcpu->arch.spurr);
3462         vcpu->arch.purr = purr;
3463         vcpu->arch.spurr = spurr;
3464
3465         vcpu->arch.ic = mfspr(SPRN_IC);
3466         vcpu->arch.pid = mfspr(SPRN_PID);
3467         vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS;
3468
3469         vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0);
3470         vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1);
3471         vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2);
3472         vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3);
3473
3474         /* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */
3475         mtspr(SPRN_PSSCR, host_psscr |
3476               (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3477         mtspr(SPRN_HFSCR, host_hfscr);
3478         mtspr(SPRN_CIABR, host_ciabr);
3479         mtspr(SPRN_DAWR, host_dawr);
3480         mtspr(SPRN_DAWRX, host_dawrx);
3481         mtspr(SPRN_PID, host_pidr);
3482
3483         /*
3484          * Since this is radix, do a eieio; tlbsync; ptesync sequence in
3485          * case we interrupted the guest between a tlbie and a ptesync.
3486          */
3487         asm volatile("eieio; tlbsync; ptesync");
3488
3489         mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid);    /* restore host LPID */
3490         isync();
3491
3492         vc->dpdes = mfspr(SPRN_DPDES);
3493         vc->vtb = mfspr(SPRN_VTB);
3494         mtspr(SPRN_DPDES, 0);
3495         if (vc->pcr)
3496                 mtspr(SPRN_PCR, PCR_MASK);
3497
3498         if (vc->tb_offset_applied) {
3499                 u64 new_tb = mftb() - vc->tb_offset_applied;
3500                 mtspr(SPRN_TBU40, new_tb);
3501                 tb = mftb();
3502                 if ((tb & 0xffffff) < (new_tb & 0xffffff))
3503                         mtspr(SPRN_TBU40, new_tb + 0x1000000);
3504                 vc->tb_offset_applied = 0;
3505         }
3506
3507         mtspr(SPRN_HDEC, 0x7fffffff);
3508         mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);
3509
3510         return trap;
3511 }
3512
3513 /*
3514  * Virtual-mode guest entry for POWER9 and later when the host and
3515  * guest are both using the radix MMU.  The LPIDR has already been set.
3516  */
3517 int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
3518                          unsigned long lpcr)
3519 {
3520         struct kvmppc_vcore *vc = vcpu->arch.vcore;
3521         unsigned long host_dscr = mfspr(SPRN_DSCR);
3522         unsigned long host_tidr = mfspr(SPRN_TIDR);
3523         unsigned long host_iamr = mfspr(SPRN_IAMR);
3524         unsigned long host_amr = mfspr(SPRN_AMR);
3525         s64 dec;
3526         u64 tb;
3527         int trap, save_pmu;
3528
3529         dec = mfspr(SPRN_DEC);
3530         tb = mftb();
3531         if (dec < 512)
3532                 return BOOK3S_INTERRUPT_HV_DECREMENTER;
3533         local_paca->kvm_hstate.dec_expires = dec + tb;
3534         if (local_paca->kvm_hstate.dec_expires < time_limit)
3535                 time_limit = local_paca->kvm_hstate.dec_expires;
3536
3537         vcpu->arch.ceded = 0;
3538
3539         kvmhv_save_host_pmu();          /* saves it to PACA kvm_hstate */
3540
3541         kvmppc_subcore_enter_guest();
3542
3543         vc->entry_exit_map = 1;
3544         vc->in_guest = 1;
3545
3546         if (vcpu->arch.vpa.pinned_addr) {
3547                 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3548                 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3549                 lp->yield_count = cpu_to_be32(yield_count);
3550                 vcpu->arch.vpa.dirty = 1;
3551         }
3552
3553         if (cpu_has_feature(CPU_FTR_TM) ||
3554             cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3555                 kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3556
3557         kvmhv_load_guest_pmu(vcpu);
3558
3559         msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3560         load_fp_state(&vcpu->arch.fp);
3561 #ifdef CONFIG_ALTIVEC
3562         load_vr_state(&vcpu->arch.vr);
3563 #endif
3564         mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
3565
3566         mtspr(SPRN_DSCR, vcpu->arch.dscr);
3567         mtspr(SPRN_IAMR, vcpu->arch.iamr);
3568         mtspr(SPRN_PSPB, vcpu->arch.pspb);
3569         mtspr(SPRN_FSCR, vcpu->arch.fscr);
3570         mtspr(SPRN_TAR, vcpu->arch.tar);
3571         mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
3572         mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
3573         mtspr(SPRN_BESCR, vcpu->arch.bescr);
3574         mtspr(SPRN_WORT, vcpu->arch.wort);
3575         mtspr(SPRN_TIDR, vcpu->arch.tid);
3576         mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
3577         mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
3578         mtspr(SPRN_AMR, vcpu->arch.amr);
3579         mtspr(SPRN_UAMOR, vcpu->arch.uamor);
3580
3581         if (!(vcpu->arch.ctrl & 1))
3582                 mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);
3583
3584         mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());
3585
3586         if (kvmhv_on_pseries()) {
3587                 /*
3588                  * We need to save and restore the guest visible part of the
3589                  * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
3590                  * doesn't do this for us. Note only required if pseries since
3591                  * this is done in kvmhv_load_hv_regs_and_go() below otherwise.
3592                  */
3593                 unsigned long host_psscr;
3594                 /* call our hypervisor to load up HV regs and go */
3595                 struct hv_guest_state hvregs;
3596
3597                 host_psscr = mfspr(SPRN_PSSCR_PR);
3598                 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
3599                 kvmhv_save_hv_regs(vcpu, &hvregs);
3600                 hvregs.lpcr = lpcr;
3601                 vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
3602                 hvregs.version = HV_GUEST_STATE_VERSION;
3603                 if (vcpu->arch.nested) {
3604                         hvregs.lpid = vcpu->arch.nested->shadow_lpid;
3605                         hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
3606                 } else {
3607                         hvregs.lpid = vcpu->kvm->arch.lpid;
3608                         hvregs.vcpu_token = vcpu->vcpu_id;
3609                 }
3610                 hvregs.hdec_expiry = time_limit;
3611                 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
3612                                           __pa(&vcpu->arch.regs));
3613                 kvmhv_restore_hv_return_state(vcpu, &hvregs);
3614                 vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
3615                 vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
3616                 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
3617                 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
3618                 mtspr(SPRN_PSSCR_PR, host_psscr);
3619
3620                 /* H_CEDE has to be handled now, not later */
3621                 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
3622                     kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
3623                         kvmppc_nested_cede(vcpu);
3624                         trap = 0;
3625                 }
3626         } else {
3627                 trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr);
3628         }
3629
3630         vcpu->arch.slb_max = 0;
3631         dec = mfspr(SPRN_DEC);
3632         if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
3633                 dec = (s32) dec;
3634         tb = mftb();
3635         vcpu->arch.dec_expires = dec + tb;
3636         vcpu->cpu = -1;
3637         vcpu->arch.thread_cpu = -1;
3638         vcpu->arch.ctrl = mfspr(SPRN_CTRLF);
3639
3640         vcpu->arch.iamr = mfspr(SPRN_IAMR);
3641         vcpu->arch.pspb = mfspr(SPRN_PSPB);
3642         vcpu->arch.fscr = mfspr(SPRN_FSCR);
3643         vcpu->arch.tar = mfspr(SPRN_TAR);
3644         vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
3645         vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
3646         vcpu->arch.bescr = mfspr(SPRN_BESCR);
3647         vcpu->arch.wort = mfspr(SPRN_WORT);
3648         vcpu->arch.tid = mfspr(SPRN_TIDR);
3649         vcpu->arch.amr = mfspr(SPRN_AMR);
3650         vcpu->arch.uamor = mfspr(SPRN_UAMOR);
3651         vcpu->arch.dscr = mfspr(SPRN_DSCR);
3652
3653         mtspr(SPRN_PSPB, 0);
3654         mtspr(SPRN_WORT, 0);
3655         mtspr(SPRN_UAMOR, 0);
3656         mtspr(SPRN_DSCR, host_dscr);
3657         mtspr(SPRN_TIDR, host_tidr);
3658         mtspr(SPRN_IAMR, host_iamr);
3659         mtspr(SPRN_PSPB, 0);
3660
3661         if (host_amr != vcpu->arch.amr)
3662                 mtspr(SPRN_AMR, host_amr);
3663
3664         msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3665         store_fp_state(&vcpu->arch.fp);
3666 #ifdef CONFIG_ALTIVEC
3667         store_vr_state(&vcpu->arch.vr);
3668 #endif
3669         vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
3670
3671         if (cpu_has_feature(CPU_FTR_TM) ||
3672             cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3673                 kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3674
3675         save_pmu = 1;
3676         if (vcpu->arch.vpa.pinned_addr) {
3677                 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3678                 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3679                 lp->yield_count = cpu_to_be32(yield_count);
3680                 vcpu->arch.vpa.dirty = 1;
3681                 save_pmu = lp->pmcregs_in_use;
3682         }
3683         /* Must save pmu if this guest is capable of running nested guests */
3684         save_pmu |= nesting_enabled(vcpu->kvm);
3685
3686         kvmhv_save_guest_pmu(vcpu, save_pmu);
3687
3688         vc->entry_exit_map = 0x101;
3689         vc->in_guest = 0;
3690
3691         mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());
3692         mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso);
3693
3694         kvmhv_load_host_pmu();
3695
3696         kvmppc_subcore_exit_guest();
3697
3698         return trap;
3699 }
3700
3701 /*
3702  * Wait for some other vcpu thread to execute us, and
3703  * wake us up when we need to handle something in the host.
3704  */
3705 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
3706                                  struct kvm_vcpu *vcpu, int wait_state)
3707 {
3708         DEFINE_WAIT(wait);
3709
3710         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3711         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3712                 spin_unlock(&vc->lock);
3713                 schedule();
3714                 spin_lock(&vc->lock);
3715         }
3716         finish_wait(&vcpu->arch.cpu_run, &wait);
3717 }
3718
3719 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
3720 {
3721         if (!halt_poll_ns_grow)
3722                 return;
3723
3724         vc->halt_poll_ns *= halt_poll_ns_grow;
3725         if (vc->halt_poll_ns < halt_poll_ns_grow_start)
3726                 vc->halt_poll_ns = halt_poll_ns_grow_start;
3727 }
3728
3729 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
3730 {
3731         if (halt_poll_ns_shrink == 0)
3732                 vc->halt_poll_ns = 0;
3733         else
3734                 vc->halt_poll_ns /= halt_poll_ns_shrink;
3735 }
3736
3737 #ifdef CONFIG_KVM_XICS
3738 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3739 {
3740         if (!xics_on_xive())
3741                 return false;
3742         return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3743                 vcpu->arch.xive_saved_state.cppr;
3744 }
3745 #else
3746 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3747 {
3748         return false;
3749 }
3750 #endif /* CONFIG_KVM_XICS */
3751
3752 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3753 {
3754         if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3755             kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3756                 return true;
3757
3758         return false;
3759 }
3760
3761 /*
3762  * Check to see if any of the runnable vcpus on the vcore have pending
3763  * exceptions or are no longer ceded
3764  */
3765 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3766 {
3767         struct kvm_vcpu *vcpu;
3768         int i;
3769
3770         for_each_runnable_thread(i, vcpu, vc) {
3771                 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3772                         return 1;
3773         }
3774
3775         return 0;
3776 }
3777
3778 /*
3779  * All the vcpus in this vcore are idle, so wait for a decrementer
3780  * or external interrupt to one of the vcpus.  vc->lock is held.
3781  */
3782 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3783 {
3784         ktime_t cur, start_poll, start_wait;
3785         int do_sleep = 1;
3786         u64 block_ns;
3787         DECLARE_SWAITQUEUE(wait);
3788
3789         /* Poll for pending exceptions and ceded state */
3790         cur = start_poll = ktime_get();
3791         if (vc->halt_poll_ns) {
3792                 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3793                 ++vc->runner->stat.halt_attempted_poll;
3794
3795                 vc->vcore_state = VCORE_POLLING;
3796                 spin_unlock(&vc->lock);
3797
3798                 do {
3799                         if (kvmppc_vcore_check_block(vc)) {
3800                                 do_sleep = 0;
3801                                 break;
3802                         }
3803                         cur = ktime_get();
3804                 } while (single_task_running() && ktime_before(cur, stop));
3805
3806                 spin_lock(&vc->lock);
3807                 vc->vcore_state = VCORE_INACTIVE;
3808
3809                 if (!do_sleep) {
3810                         ++vc->runner->stat.halt_successful_poll;
3811                         goto out;
3812                 }
3813         }
3814
3815         prepare_to_swait_exclusive(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3816
3817         if (kvmppc_vcore_check_block(vc)) {
3818                 finish_swait(&vc->wq, &wait);
3819                 do_sleep = 0;
3820                 /* If we polled, count this as a successful poll */
3821                 if (vc->halt_poll_ns)
3822                         ++vc->runner->stat.halt_successful_poll;
3823                 goto out;
3824         }
3825
3826         start_wait = ktime_get();
3827
3828         vc->vcore_state = VCORE_SLEEPING;
3829         trace_kvmppc_vcore_blocked(vc, 0);
3830         spin_unlock(&vc->lock);
3831         schedule();
3832         finish_swait(&vc->wq, &wait);
3833         spin_lock(&vc->lock);
3834         vc->vcore_state = VCORE_INACTIVE;
3835         trace_kvmppc_vcore_blocked(vc, 1);
3836         ++vc->runner->stat.halt_successful_wait;
3837
3838         cur = ktime_get();
3839
3840 out:
3841         block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3842
3843         /* Attribute wait time */
3844         if (do_sleep) {
3845                 vc->runner->stat.halt_wait_ns +=
3846                         ktime_to_ns(cur) - ktime_to_ns(start_wait);
3847                 /* Attribute failed poll time */
3848                 if (vc->halt_poll_ns)
3849                         vc->runner->stat.halt_poll_fail_ns +=
3850                                 ktime_to_ns(start_wait) -
3851                                 ktime_to_ns(start_poll);
3852         } else {
3853                 /* Attribute successful poll time */
3854                 if (vc->halt_poll_ns)
3855                         vc->runner->stat.halt_poll_success_ns +=
3856                                 ktime_to_ns(cur) -
3857                                 ktime_to_ns(start_poll);
3858         }
3859
3860         /* Adjust poll time */
3861         if (halt_poll_ns) {
3862                 if (block_ns <= vc->halt_poll_ns)
3863                         ;
3864                 /* We slept and blocked for longer than the max halt time */
3865                 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3866                         shrink_halt_poll_ns(vc);
3867                 /* We slept and our poll time is too small */
3868                 else if (vc->halt_poll_ns < halt_poll_ns &&
3869                                 block_ns < halt_poll_ns)
3870                         grow_halt_poll_ns(vc);
3871                 if (vc->halt_poll_ns > halt_poll_ns)
3872                         vc->halt_poll_ns = halt_poll_ns;
3873         } else
3874                 vc->halt_poll_ns = 0;
3875
3876         trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3877 }
3878
3879 /*
3880  * This never fails for a radix guest, as none of the operations it does
3881  * for a radix guest can fail or have a way to report failure.
3882  * kvmhv_run_single_vcpu() relies on this fact.
3883  */
3884 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3885 {
3886         int r = 0;
3887         struct kvm *kvm = vcpu->kvm;
3888
3889         mutex_lock(&kvm->arch.mmu_setup_lock);
3890         if (!kvm->arch.mmu_ready) {
3891                 if (!kvm_is_radix(kvm))
3892                         r = kvmppc_hv_setup_htab_rma(vcpu);
3893                 if (!r) {
3894                         if (cpu_has_feature(CPU_FTR_ARCH_300))
3895                                 kvmppc_setup_partition_table(kvm);
3896                         kvm->arch.mmu_ready = 1;
3897                 }
3898         }
3899         mutex_unlock(&kvm->arch.mmu_setup_lock);
3900         return r;
3901 }
3902
3903 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3904 {
3905         int n_ceded, i, r;
3906         struct kvmppc_vcore *vc;
3907         struct kvm_vcpu *v;
3908
3909         trace_kvmppc_run_vcpu_enter(vcpu);
3910
3911         kvm_run->exit_reason = 0;
3912         vcpu->arch.ret = RESUME_GUEST;
3913         vcpu->arch.trap = 0;
3914         kvmppc_update_vpas(vcpu);
3915
3916         /*
3917          * Synchronize with other threads in this virtual core
3918          */
3919         vc = vcpu->arch.vcore;
3920         spin_lock(&vc->lock);
3921         vcpu->arch.ceded = 0;
3922         vcpu->arch.run_task = current;
3923         vcpu->arch.kvm_run = kvm_run;
3924         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3925         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3926         vcpu->arch.busy_preempt = TB_NIL;
3927         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3928         ++vc->n_runnable;
3929
3930         /*
3931          * This happens the first time this is called for a vcpu.
3932          * If the vcore is already running, we may be able to start
3933          * this thread straight away and have it join in.
3934          */
3935         if (!signal_pending(current)) {
3936                 if ((vc->vcore_state == VCORE_PIGGYBACK ||
3937                      vc->vcore_state == VCORE_RUNNING) &&
3938                            !VCORE_IS_EXITING(vc)) {
3939                         kvmppc_create_dtl_entry(vcpu, vc);
3940                         kvmppc_start_thread(vcpu, vc);
3941                         trace_kvm_guest_enter(vcpu);
3942                 } else if (vc->vcore_state == VCORE_SLEEPING) {
3943                         swake_up_one(&vc->wq);
3944                 }
3945
3946         }
3947
3948         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3949                !signal_pending(current)) {
3950                 /* See if the MMU is ready to go */
3951                 if (!vcpu->kvm->arch.mmu_ready) {
3952                         spin_unlock(&vc->lock);
3953                         r = kvmhv_setup_mmu(vcpu);
3954                         spin_lock(&vc->lock);
3955                         if (r) {
3956                                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3957                                 kvm_run->fail_entry.
3958                                         hardware_entry_failure_reason = 0;
3959                                 vcpu->arch.ret = r;
3960                                 break;
3961                         }
3962                 }
3963
3964                 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3965                         kvmppc_vcore_end_preempt(vc);
3966
3967                 if (vc->vcore_state != VCORE_INACTIVE) {
3968                         kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3969                         continue;
3970                 }
3971                 for_each_runnable_thread(i, v, vc) {
3972                         kvmppc_core_prepare_to_enter(v);
3973                         if (signal_pending(v->arch.run_task)) {
3974                                 kvmppc_remove_runnable(vc, v);
3975                                 v->stat.signal_exits++;
3976                                 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3977                                 v->arch.ret = -EINTR;
3978                                 wake_up(&v->arch.cpu_run);
3979                         }
3980                 }
3981                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3982                         break;
3983                 n_ceded = 0;
3984                 for_each_runnable_thread(i, v, vc) {
3985                         if (!kvmppc_vcpu_woken(v))
3986                                 n_ceded += v->arch.ceded;
3987                         else
3988                                 v->arch.ceded = 0;
3989                 }
3990                 vc->runner = vcpu;
3991                 if (n_ceded == vc->n_runnable) {
3992                         kvmppc_vcore_blocked(vc);
3993                 } else if (need_resched()) {
3994                         kvmppc_vcore_preempt(vc);
3995                         /* Let something else run */
3996                         cond_resched_lock(&vc->lock);
3997                         if (vc->vcore_state == VCORE_PREEMPT)
3998                                 kvmppc_vcore_end_preempt(vc);
3999                 } else {
4000                         kvmppc_run_core(vc);
4001                 }
4002                 vc->runner = NULL;
4003         }
4004
4005         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4006                (vc->vcore_state == VCORE_RUNNING ||
4007                 vc->vcore_state == VCORE_EXITING ||
4008                 vc->vcore_state == VCORE_PIGGYBACK))
4009                 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4010
4011         if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4012                 kvmppc_vcore_end_preempt(vc);
4013
4014         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4015                 kvmppc_remove_runnable(vc, vcpu);
4016                 vcpu->stat.signal_exits++;
4017                 kvm_run->exit_reason = KVM_EXIT_INTR;
4018                 vcpu->arch.ret = -EINTR;
4019         }
4020
4021         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4022                 /* Wake up some vcpu to run the core */
4023                 i = -1;
4024                 v = next_runnable_thread(vc, &i);
4025                 wake_up(&v->arch.cpu_run);
4026         }
4027
4028         trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
4029         spin_unlock(&vc->lock);
4030         return vcpu->arch.ret;
4031 }
4032
4033 int kvmhv_run_single_vcpu(struct kvm_run *kvm_run,
4034                           struct kvm_vcpu *vcpu, u64 time_limit,
4035                           unsigned long lpcr)
4036 {
4037         int trap, r, pcpu;
4038         int srcu_idx, lpid;
4039         struct kvmppc_vcore *vc;
4040         struct kvm *kvm = vcpu->kvm;
4041         struct kvm_nested_guest *nested = vcpu->arch.nested;
4042
4043         trace_kvmppc_run_vcpu_enter(vcpu);
4044
4045         kvm_run->exit_reason = 0;
4046         vcpu->arch.ret = RESUME_GUEST;
4047         vcpu->arch.trap = 0;
4048
4049         vc = vcpu->arch.vcore;
4050         vcpu->arch.ceded = 0;
4051         vcpu->arch.run_task = current;
4052         vcpu->arch.kvm_run = kvm_run;
4053         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4054         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4055         vcpu->arch.busy_preempt = TB_NIL;
4056         vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4057         vc->runnable_threads[0] = vcpu;
4058         vc->n_runnable = 1;
4059         vc->runner = vcpu;
4060
4061         /* See if the MMU is ready to go */
4062         if (!kvm->arch.mmu_ready)
4063                 kvmhv_setup_mmu(vcpu);
4064
4065         if (need_resched())
4066                 cond_resched();
4067
4068         kvmppc_update_vpas(vcpu);
4069
4070         init_vcore_to_run(vc);
4071         vc->preempt_tb = TB_NIL;
4072
4073         preempt_disable();
4074         pcpu = smp_processor_id();
4075         vc->pcpu = pcpu;
4076         kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4077
4078         local_irq_disable();
4079         hard_irq_disable();
4080         if (signal_pending(current))
4081                 goto sigpend;
4082         if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
4083                 goto out;
4084
4085         if (!nested) {
4086                 kvmppc_core_prepare_to_enter(vcpu);
4087                 if (vcpu->arch.doorbell_request) {
4088                         vc->dpdes = 1;
4089                         smp_wmb();
4090                         vcpu->arch.doorbell_request = 0;
4091                 }
4092                 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4093                              &vcpu->arch.pending_exceptions))
4094                         lpcr |= LPCR_MER;
4095         } else if (vcpu->arch.pending_exceptions ||
4096                    vcpu->arch.doorbell_request ||
4097                    xive_interrupt_pending(vcpu)) {
4098                 vcpu->arch.ret = RESUME_HOST;
4099                 goto out;
4100         }
4101
4102         kvmppc_clear_host_core(pcpu);
4103
4104         local_paca->kvm_hstate.tid = 0;
4105         local_paca->kvm_hstate.napping = 0;
4106         local_paca->kvm_hstate.kvm_split_mode = NULL;
4107         kvmppc_start_thread(vcpu, vc);
4108         kvmppc_create_dtl_entry(vcpu, vc);
4109         trace_kvm_guest_enter(vcpu);
4110
4111         vc->vcore_state = VCORE_RUNNING;
4112         trace_kvmppc_run_core(vc, 0);
4113
4114         if (cpu_has_feature(CPU_FTR_HVMODE)) {
4115                 lpid = nested ? nested->shadow_lpid : kvm->arch.lpid;
4116                 mtspr(SPRN_LPID, lpid);
4117                 isync();
4118                 kvmppc_check_need_tlb_flush(kvm, pcpu, nested);
4119         }
4120
4121         guest_enter_irqoff();
4122
4123         srcu_idx = srcu_read_lock(&kvm->srcu);
4124
4125         this_cpu_disable_ftrace();
4126
4127         /* Tell lockdep that we're about to enable interrupts */
4128         trace_hardirqs_on();
4129
4130         trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr);
4131         vcpu->arch.trap = trap;
4132
4133         trace_hardirqs_off();
4134
4135         this_cpu_enable_ftrace();
4136
4137         srcu_read_unlock(&kvm->srcu, srcu_idx);
4138
4139         if (cpu_has_feature(CPU_FTR_HVMODE)) {
4140                 mtspr(SPRN_LPID, kvm->arch.host_lpid);
4141                 isync();
4142         }
4143
4144         set_irq_happened(trap);
4145
4146         kvmppc_set_host_core(pcpu);
4147
4148         local_irq_enable();
4149         guest_exit();
4150
4151         cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);
4152
4153         preempt_enable();
4154
4155         /*
4156          * cancel pending decrementer exception if DEC is now positive, or if
4157          * entering a nested guest in which case the decrementer is now owned
4158          * by L2 and the L1 decrementer is provided in hdec_expires
4159          */
4160         if (kvmppc_core_pending_dec(vcpu) &&
4161                         ((get_tb() < vcpu->arch.dec_expires) ||
4162                          (trap == BOOK3S_INTERRUPT_SYSCALL &&
4163                           kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4164                 kvmppc_core_dequeue_dec(vcpu);
4165
4166         trace_kvm_guest_exit(vcpu);
4167         r = RESUME_GUEST;
4168         if (trap) {
4169                 if (!nested)
4170                         r = kvmppc_handle_exit_hv(kvm_run, vcpu, current);
4171                 else
4172                         r = kvmppc_handle_nested_exit(kvm_run, vcpu);
4173         }
4174         vcpu->arch.ret = r;
4175
4176         if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
4177             !kvmppc_vcpu_woken(vcpu)) {
4178                 kvmppc_set_timer(vcpu);
4179                 while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
4180                         if (signal_pending(current)) {
4181                                 vcpu->stat.signal_exits++;
4182                                 kvm_run->exit_reason = KVM_EXIT_INTR;
4183                                 vcpu->arch.ret = -EINTR;
4184                                 break;
4185                         }
4186                         spin_lock(&vc->lock);
4187                         kvmppc_vcore_blocked(vc);
4188                         spin_unlock(&vc->lock);
4189                 }
4190         }
4191         vcpu->arch.ceded = 0;
4192
4193         vc->vcore_state = VCORE_INACTIVE;
4194         trace_kvmppc_run_core(vc, 1);
4195
4196  done:
4197         kvmppc_remove_runnable(vc, vcpu);
4198         trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
4199
4200         return vcpu->arch.ret;
4201
4202  sigpend:
4203         vcpu->stat.signal_exits++;
4204         kvm_run->exit_reason = KVM_EXIT_INTR;
4205         vcpu->arch.ret = -EINTR;
4206  out:
4207         local_irq_enable();
4208         preempt_enable();
4209         goto done;
4210 }
4211
4212 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
4213 {
4214         int r;
4215         int srcu_idx;
4216         unsigned long ebb_regs[3] = {}; /* shut up GCC */
4217         unsigned long user_tar = 0;
4218         unsigned int user_vrsave;
4219         struct kvm *kvm;
4220
4221         if (!vcpu->arch.sane) {
4222                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4223                 return -EINVAL;
4224         }
4225
4226         /*
4227          * Don't allow entry with a suspended transaction, because
4228          * the guest entry/exit code will lose it.
4229          * If the guest has TM enabled, save away their TM-related SPRs
4230          * (they will get restored by the TM unavailable interrupt).
4231          */
4232 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4233         if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4234             (current->thread.regs->msr & MSR_TM)) {
4235                 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4236                         run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4237                         run->fail_entry.hardware_entry_failure_reason = 0;
4238                         return -EINVAL;
4239                 }
4240                 /* Enable TM so we can read the TM SPRs */
4241                 mtmsr(mfmsr() | MSR_TM);
4242                 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
4243                 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
4244                 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
4245                 current->thread.regs->msr &= ~MSR_TM;
4246         }
4247 #endif
4248
4249         /*
4250          * Force online to 1 for the sake of old userspace which doesn't
4251          * set it.
4252          */
4253         if (!vcpu->arch.online) {
4254                 atomic_inc(&vcpu->arch.vcore->online_count);
4255                 vcpu->arch.online = 1;
4256         }
4257
4258         kvmppc_core_prepare_to_enter(vcpu);
4259
4260         /* No need to go into the guest when all we'll do is come back out */
4261         if (signal_pending(current)) {
4262                 run->exit_reason = KVM_EXIT_INTR;
4263                 return -EINTR;
4264         }
4265
4266         kvm = vcpu->kvm;
4267         atomic_inc(&kvm->arch.vcpus_running);
4268         /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4269         smp_mb();
4270
4271         flush_all_to_thread(current);
4272
4273         /* Save userspace EBB and other register values */
4274         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4275                 ebb_regs[0] = mfspr(SPRN_EBBHR);
4276                 ebb_regs[1] = mfspr(SPRN_EBBRR);
4277                 ebb_regs[2] = mfspr(SPRN_BESCR);
4278                 user_tar = mfspr(SPRN_TAR);
4279         }
4280         user_vrsave = mfspr(SPRN_VRSAVE);
4281
4282         vcpu->arch.wqp = &vcpu->arch.vcore->wq;
4283         vcpu->arch.pgdir = current->mm->pgd;
4284         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4285
4286         do {
4287                 /*
4288                  * The early POWER9 chips that can't mix radix and HPT threads
4289                  * on the same core also need the workaround for the problem
4290                  * where the TLB would prefetch entries in the guest exit path
4291                  * for radix guests using the guest PIDR value and LPID 0.
4292                  * The workaround is in the old path (kvmppc_run_vcpu())
4293                  * but not the new path (kvmhv_run_single_vcpu()).
4294                  */
4295                 if (kvm->arch.threads_indep && kvm_is_radix(kvm) &&
4296                     !no_mixing_hpt_and_radix)
4297                         r = kvmhv_run_single_vcpu(run, vcpu, ~(u64)0,
4298                                                   vcpu->arch.vcore->lpcr);
4299                 else
4300                         r = kvmppc_run_vcpu(run, vcpu);
4301
4302                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
4303                     !(vcpu->arch.shregs.msr & MSR_PR)) {
4304                         trace_kvm_hcall_enter(vcpu);
4305                         r = kvmppc_pseries_do_hcall(vcpu);
4306                         trace_kvm_hcall_exit(vcpu, r);
4307                         kvmppc_core_prepare_to_enter(vcpu);
4308                 } else if (r == RESUME_PAGE_FAULT) {
4309                         srcu_idx = srcu_read_lock(&kvm->srcu);
4310                         r = kvmppc_book3s_hv_page_fault(run, vcpu,
4311                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4312                         srcu_read_unlock(&kvm->srcu, srcu_idx);
4313                 } else if (r == RESUME_PASSTHROUGH) {
4314                         if (WARN_ON(xics_on_xive()))
4315                                 r = H_SUCCESS;
4316                         else
4317                                 r = kvmppc_xics_rm_complete(vcpu, 0);
4318                 }
4319         } while (is_kvmppc_resume_guest(r));
4320
4321         /* Restore userspace EBB and other register values */
4322         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4323                 mtspr(SPRN_EBBHR, ebb_regs[0]);
4324                 mtspr(SPRN_EBBRR, ebb_regs[1]);
4325                 mtspr(SPRN_BESCR, ebb_regs[2]);
4326                 mtspr(SPRN_TAR, user_tar);
4327                 mtspr(SPRN_FSCR, current->thread.fscr);
4328         }
4329         mtspr(SPRN_VRSAVE, user_vrsave);
4330
4331         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4332         atomic_dec(&kvm->arch.vcpus_running);
4333         return r;
4334 }
4335
4336 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4337                                      int shift, int sllp)
4338 {
4339         (*sps)->page_shift = shift;
4340         (*sps)->slb_enc = sllp;
4341         (*sps)->enc[0].page_shift = shift;
4342         (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4343         /*
4344          * Add 16MB MPSS support (may get filtered out by userspace)
4345          */
4346         if (shift != 24) {
4347                 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4348                 if (penc != -1) {
4349                         (*sps)->enc[1].page_shift = 24;
4350                         (*sps)->enc[1].pte_enc = penc;
4351                 }
4352         }
4353         (*sps)++;
4354 }
4355
4356 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4357                                          struct kvm_ppc_smmu_info *info)
4358 {
4359         struct kvm_ppc_one_seg_page_size *sps;
4360
4361         /*
4362          * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4363          * POWER7 doesn't support keys for instruction accesses,
4364          * POWER8 and POWER9 do.
4365          */
4366         info->data_keys = 32;
4367         info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4368
4369         /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4370         info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4371         info->slb_size = 32;
4372
4373         /* We only support these sizes for now, and no muti-size segments */
4374         sps = &info->sps[0];
4375         kvmppc_add_seg_page_size(&sps, 12, 0);
4376         kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4377         kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4378
4379         /* If running as a nested hypervisor, we don't support HPT guests */
4380         if (kvmhv_on_pseries())
4381                 info->flags |= KVM_PPC_NO_HASH;
4382
4383         return 0;
4384 }
4385
4386 /*
4387  * Get (and clear) the dirty memory log for a memory slot.
4388  */
4389 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4390                                          struct kvm_dirty_log *log)
4391 {
4392         struct kvm_memslots *slots;
4393         struct kvm_memory_slot *memslot;
4394         int i, r;
4395         unsigned long n;
4396         unsigned long *buf, *p;
4397         struct kvm_vcpu *vcpu;
4398
4399         mutex_lock(&kvm->slots_lock);
4400
4401         r = -EINVAL;
4402         if (log->slot >= KVM_USER_MEM_SLOTS)
4403                 goto out;
4404
4405         slots = kvm_memslots(kvm);
4406         memslot = id_to_memslot(slots, log->slot);
4407         r = -ENOENT;
4408         if (!memslot->dirty_bitmap)
4409                 goto out;
4410
4411         /*
4412          * Use second half of bitmap area because both HPT and radix
4413          * accumulate bits in the first half.
4414          */
4415         n = kvm_dirty_bitmap_bytes(memslot);
4416         buf = memslot->dirty_bitmap + n / sizeof(long);
4417         memset(buf, 0, n);
4418
4419         if (kvm_is_radix(kvm))
4420                 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4421         else
4422                 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4423         if (r)
4424                 goto out;
4425
4426         /*
4427          * We accumulate dirty bits in the first half of the
4428          * memslot's dirty_bitmap area, for when pages are paged
4429          * out or modified by the host directly.  Pick up these
4430          * bits and add them to the map.
4431          */
4432         p = memslot->dirty_bitmap;
4433         for (i = 0; i < n / sizeof(long); ++i)
4434                 buf[i] |= xchg(&p[i], 0);
4435
4436         /* Harvest dirty bits from VPA and DTL updates */
4437         /* Note: we never modify the SLB shadow buffer areas */
4438         kvm_for_each_vcpu(i, vcpu, kvm) {
4439                 spin_lock(&vcpu->arch.vpa_update_lock);
4440                 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4441                 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4442                 spin_unlock(&vcpu->arch.vpa_update_lock);
4443         }
4444
4445         r = -EFAULT;
4446         if (copy_to_user(log->dirty_bitmap, buf, n))
4447                 goto out;
4448
4449         r = 0;
4450 out:
4451         mutex_unlock(&kvm->slots_lock);
4452         return r;
4453 }
4454
4455 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
4456                                         struct kvm_memory_slot *dont)
4457 {
4458         if (!dont || free->arch.rmap != dont->arch.rmap) {
4459                 vfree(free->arch.rmap);
4460                 free->arch.rmap = NULL;
4461         }
4462 }
4463
4464 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
4465                                          unsigned long npages)
4466 {
4467         slot->arch.rmap = vzalloc(array_size(npages, sizeof(*slot->arch.rmap)));
4468         if (!slot->arch.rmap)
4469                 return -ENOMEM;
4470
4471         return 0;
4472 }
4473
4474 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
4475                                         struct kvm_memory_slot *memslot,
4476                                         const struct kvm_userspace_memory_region *mem)
4477 {
4478         return 0;
4479 }
4480
4481 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4482                                 const struct kvm_userspace_memory_region *mem,
4483                                 const struct kvm_memory_slot *old,
4484                                 const struct kvm_memory_slot *new,
4485                                 enum kvm_mr_change change)
4486 {
4487         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4488
4489         /*
4490          * If we are making a new memslot, it might make
4491          * some address that was previously cached as emulated
4492          * MMIO be no longer emulated MMIO, so invalidate
4493          * all the caches of emulated MMIO translations.
4494          */
4495         if (npages)
4496                 atomic64_inc(&kvm->arch.mmio_update);
4497
4498         /*
4499          * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
4500          * have already called kvm_arch_flush_shadow_memslot() to
4501          * flush shadow mappings.  For KVM_MR_CREATE we have no
4502          * previous mappings.  So the only case to handle is
4503          * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
4504          * has been changed.
4505          * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
4506          * to get rid of any THP PTEs in the partition-scoped page tables
4507          * so we can track dirtiness at the page level; we flush when
4508          * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
4509          * using THP PTEs.
4510          */
4511         if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
4512             ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
4513                 kvmppc_radix_flush_memslot(kvm, old);
4514 }
4515
4516 /*
4517  * Update LPCR values in kvm->arch and in vcores.
4518  * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
4519  * of kvm->arch.lpcr update).
4520  */
4521 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
4522 {
4523         long int i;
4524         u32 cores_done = 0;
4525
4526         if ((kvm->arch.lpcr & mask) == lpcr)
4527                 return;
4528
4529         kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
4530
4531         for (i = 0; i < KVM_MAX_VCORES; ++i) {
4532                 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
4533                 if (!vc)
4534                         continue;
4535                 spin_lock(&vc->lock);
4536                 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
4537                 spin_unlock(&vc->lock);
4538                 if (++cores_done >= kvm->arch.online_vcores)
4539                         break;
4540         }
4541 }
4542
4543 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
4544 {
4545         return;
4546 }
4547
4548 void kvmppc_setup_partition_table(struct kvm *kvm)
4549 {
4550         unsigned long dw0, dw1;
4551
4552         if (!kvm_is_radix(kvm)) {
4553                 /* PS field - page size for VRMA */
4554                 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
4555                         ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
4556                 /* HTABSIZE and HTABORG fields */
4557                 dw0 |= kvm->arch.sdr1;
4558
4559                 /* Second dword as set by userspace */
4560                 dw1 = kvm->arch.process_table;
4561         } else {
4562                 dw0 = PATB_HR | radix__get_tree_size() |
4563                         __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
4564                 dw1 = PATB_GR | kvm->arch.process_table;
4565         }
4566         kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
4567 }
4568
4569 /*
4570  * Set up HPT (hashed page table) and RMA (real-mode area).
4571  * Must be called with kvm->arch.mmu_setup_lock held.
4572  */
4573 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4574 {
4575         int err = 0;
4576         struct kvm *kvm = vcpu->kvm;
4577         unsigned long hva;
4578         struct kvm_memory_slot *memslot;
4579         struct vm_area_struct *vma;
4580         unsigned long lpcr = 0, senc;
4581         unsigned long psize, porder;
4582         int srcu_idx;
4583
4584         /* Allocate hashed page table (if not done already) and reset it */
4585         if (!kvm->arch.hpt.virt) {
4586                 int order = KVM_DEFAULT_HPT_ORDER;
4587                 struct kvm_hpt_info info;
4588
4589                 err = kvmppc_allocate_hpt(&info, order);
4590                 /* If we get here, it means userspace didn't specify a
4591                  * size explicitly.  So, try successively smaller
4592                  * sizes if the default failed. */
4593                 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
4594                         err  = kvmppc_allocate_hpt(&info, order);
4595
4596                 if (err < 0) {
4597                         pr_err("KVM: Couldn't alloc HPT\n");
4598                         goto out;
4599                 }
4600
4601                 kvmppc_set_hpt(kvm, &info);
4602         }
4603
4604         /* Look up the memslot for guest physical address 0 */
4605         srcu_idx = srcu_read_lock(&kvm->srcu);
4606         memslot = gfn_to_memslot(kvm, 0);
4607
4608         /* We must have some memory at 0 by now */
4609         err = -EINVAL;
4610         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
4611                 goto out_srcu;
4612
4613         /* Look up the VMA for the start of this memory slot */
4614         hva = memslot->userspace_addr;
4615         down_read(&current->mm->mmap_sem);
4616         vma = find_vma(current->mm, hva);
4617         if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
4618                 goto up_out;
4619
4620         psize = vma_kernel_pagesize(vma);
4621
4622         up_read(&current->mm->mmap_sem);
4623
4624         /* We can handle 4k, 64k or 16M pages in the VRMA */
4625         if (psize >= 0x1000000)
4626                 psize = 0x1000000;
4627         else if (psize >= 0x10000)
4628                 psize = 0x10000;
4629         else
4630                 psize = 0x1000;
4631         porder = __ilog2(psize);
4632
4633         senc = slb_pgsize_encoding(psize);
4634         kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
4635                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
4636         /* Create HPTEs in the hash page table for the VRMA */
4637         kvmppc_map_vrma(vcpu, memslot, porder);
4638
4639         /* Update VRMASD field in the LPCR */
4640         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
4641                 /* the -4 is to account for senc values starting at 0x10 */
4642                 lpcr = senc << (LPCR_VRMASD_SH - 4);
4643                 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
4644         }
4645
4646         /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
4647         smp_wmb();
4648         err = 0;
4649  out_srcu:
4650         srcu_read_unlock(&kvm->srcu, srcu_idx);
4651  out:
4652         return err;
4653
4654  up_out:
4655         up_read(&current->mm->mmap_sem);
4656         goto out_srcu;
4657 }
4658
4659 /*
4660  * Must be called with kvm->arch.mmu_setup_lock held and
4661  * mmu_ready = 0 and no vcpus running.
4662  */
4663 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
4664 {
4665         if (nesting_enabled(kvm))
4666                 kvmhv_release_all_nested(kvm);
4667         kvmppc_rmap_reset(kvm);
4668         kvm->arch.process_table = 0;
4669         /* Mutual exclusion with kvm_unmap_hva_range etc. */
4670         spin_lock(&kvm->mmu_lock);
4671         kvm->arch.radix = 0;
4672         spin_unlock(&kvm->mmu_lock);
4673         kvmppc_free_radix(kvm);
4674         kvmppc_update_lpcr(kvm, LPCR_VPM1,
4675                            LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4676         return 0;
4677 }
4678
4679 /*
4680  * Must be called with kvm->arch.mmu_setup_lock held and
4681  * mmu_ready = 0 and no vcpus running.
4682  */
4683 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
4684 {
4685         int err;
4686
4687         err = kvmppc_init_vm_radix(kvm);
4688         if (err)
4689                 return err;
4690         kvmppc_rmap_reset(kvm);
4691         /* Mutual exclusion with kvm_unmap_hva_range etc. */
4692         spin_lock(&kvm->mmu_lock);
4693         kvm->arch.radix = 1;
4694         spin_unlock(&kvm->mmu_lock);
4695         kvmppc_free_hpt(&kvm->arch.hpt);
4696         kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
4697                            LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4698         return 0;
4699 }
4700
4701 #ifdef CONFIG_KVM_XICS
4702 /*
4703  * Allocate a per-core structure for managing state about which cores are
4704  * running in the host versus the guest and for exchanging data between
4705  * real mode KVM and CPU running in the host.
4706  * This is only done for the first VM.
4707  * The allocated structure stays even if all VMs have stopped.
4708  * It is only freed when the kvm-hv module is unloaded.
4709  * It's OK for this routine to fail, we just don't support host
4710  * core operations like redirecting H_IPI wakeups.
4711  */
4712 void kvmppc_alloc_host_rm_ops(void)
4713 {
4714         struct kvmppc_host_rm_ops *ops;
4715         unsigned long l_ops;
4716         int cpu, core;
4717         int size;
4718
4719         /* Not the first time here ? */
4720         if (kvmppc_host_rm_ops_hv != NULL)
4721                 return;
4722
4723         ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
4724         if (!ops)
4725                 return;
4726
4727         size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
4728         ops->rm_core = kzalloc(size, GFP_KERNEL);
4729
4730         if (!ops->rm_core) {
4731                 kfree(ops);
4732                 return;
4733         }
4734
4735         cpus_read_lock();
4736
4737         for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
4738                 if (!cpu_online(cpu))
4739                         continue;
4740
4741                 core = cpu >> threads_shift;
4742                 ops->rm_core[core].rm_state.in_host = 1;
4743         }
4744
4745         ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
4746
4747         /*
4748          * Make the contents of the kvmppc_host_rm_ops structure visible
4749          * to other CPUs before we assign it to the global variable.
4750          * Do an atomic assignment (no locks used here), but if someone
4751          * beats us to it, just free our copy and return.
4752          */
4753         smp_wmb();
4754         l_ops = (unsigned long) ops;
4755
4756         if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
4757                 cpus_read_unlock();
4758                 kfree(ops->rm_core);
4759                 kfree(ops);
4760                 return;
4761         }
4762
4763         cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
4764                                              "ppc/kvm_book3s:prepare",
4765                                              kvmppc_set_host_core,
4766                                              kvmppc_clear_host_core);
4767         cpus_read_unlock();
4768 }
4769
4770 void kvmppc_free_host_rm_ops(void)
4771 {
4772         if (kvmppc_host_rm_ops_hv) {
4773                 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
4774                 kfree(kvmppc_host_rm_ops_hv->rm_core);
4775                 kfree(kvmppc_host_rm_ops_hv);
4776                 kvmppc_host_rm_ops_hv = NULL;
4777         }
4778 }
4779 #endif
4780
4781 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
4782 {
4783         unsigned long lpcr, lpid;
4784         char buf[32];
4785         int ret;
4786
4787         mutex_init(&kvm->arch.mmu_setup_lock);
4788
4789         /* Allocate the guest's logical partition ID */
4790
4791         lpid = kvmppc_alloc_lpid();
4792         if ((long)lpid < 0)
4793                 return -ENOMEM;
4794         kvm->arch.lpid = lpid;
4795
4796         kvmppc_alloc_host_rm_ops();
4797
4798         kvmhv_vm_nested_init(kvm);
4799
4800         /*
4801          * Since we don't flush the TLB when tearing down a VM,
4802          * and this lpid might have previously been used,
4803          * make sure we flush on each core before running the new VM.
4804          * On POWER9, the tlbie in mmu_partition_table_set_entry()
4805          * does this flush for us.
4806          */
4807         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4808                 cpumask_setall(&kvm->arch.need_tlb_flush);
4809
4810         /* Start out with the default set of hcalls enabled */
4811         memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
4812                sizeof(kvm->arch.enabled_hcalls));
4813
4814         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4815                 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
4816
4817         /* Init LPCR for virtual RMA mode */
4818         if (cpu_has_feature(CPU_FTR_HVMODE)) {
4819                 kvm->arch.host_lpid = mfspr(SPRN_LPID);
4820                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
4821                 lpcr &= LPCR_PECE | LPCR_LPES;
4822         } else {
4823                 lpcr = 0;
4824         }
4825         lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
4826                 LPCR_VPM0 | LPCR_VPM1;
4827         kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
4828                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
4829         /* On POWER8 turn on online bit to enable PURR/SPURR */
4830         if (cpu_has_feature(CPU_FTR_ARCH_207S))
4831                 lpcr |= LPCR_ONL;
4832         /*
4833          * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
4834          * Set HVICE bit to enable hypervisor virtualization interrupts.
4835          * Set HEIC to prevent OS interrupts to go to hypervisor (should
4836          * be unnecessary but better safe than sorry in case we re-enable
4837          * EE in HV mode with this LPCR still set)
4838          */
4839         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4840                 lpcr &= ~LPCR_VPM0;
4841                 lpcr |= LPCR_HVICE | LPCR_HEIC;
4842
4843                 /*
4844                  * If xive is enabled, we route 0x500 interrupts directly
4845                  * to the guest.
4846                  */
4847                 if (xics_on_xive())
4848                         lpcr |= LPCR_LPES;
4849         }
4850
4851         /*
4852          * If the host uses radix, the guest starts out as radix.
4853          */
4854         if (radix_enabled()) {
4855                 kvm->arch.radix = 1;
4856                 kvm->arch.mmu_ready = 1;
4857                 lpcr &= ~LPCR_VPM1;
4858                 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
4859                 ret = kvmppc_init_vm_radix(kvm);
4860                 if (ret) {
4861                         kvmppc_free_lpid(kvm->arch.lpid);
4862                         return ret;
4863                 }
4864                 kvmppc_setup_partition_table(kvm);
4865         }
4866
4867         kvm->arch.lpcr = lpcr;
4868
4869         /* Initialization for future HPT resizes */
4870         kvm->arch.resize_hpt = NULL;
4871
4872         /*
4873          * Work out how many sets the TLB has, for the use of
4874          * the TLB invalidation loop in book3s_hv_rmhandlers.S.
4875          */
4876         if (radix_enabled())
4877                 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;     /* 128 */
4878         else if (cpu_has_feature(CPU_FTR_ARCH_300))
4879                 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;      /* 256 */
4880         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
4881                 kvm->arch.tlb_sets = POWER8_TLB_SETS;           /* 512 */
4882         else
4883                 kvm->arch.tlb_sets = POWER7_TLB_SETS;           /* 128 */
4884
4885         /*
4886          * Track that we now have a HV mode VM active. This blocks secondary
4887          * CPU threads from coming online.
4888          * On POWER9, we only need to do this if the "indep_threads_mode"
4889          * module parameter has been set to N.
4890          */
4891         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4892                 if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) {
4893                         pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n");
4894                         kvm->arch.threads_indep = true;
4895                 } else {
4896                         kvm->arch.threads_indep = indep_threads_mode;
4897                 }
4898         }
4899         if (!kvm->arch.threads_indep)
4900                 kvm_hv_vm_activated();
4901
4902         /*
4903          * Initialize smt_mode depending on processor.
4904          * POWER8 and earlier have to use "strict" threading, where
4905          * all vCPUs in a vcore have to run on the same (sub)core,
4906          * whereas on POWER9 the threads can each run a different
4907          * guest.
4908          */
4909         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4910                 kvm->arch.smt_mode = threads_per_subcore;
4911         else
4912                 kvm->arch.smt_mode = 1;
4913         kvm->arch.emul_smt_mode = 1;
4914
4915         /*
4916          * Create a debugfs directory for the VM
4917          */
4918         snprintf(buf, sizeof(buf), "vm%d", current->pid);
4919         kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
4920         kvmppc_mmu_debugfs_init(kvm);
4921         if (radix_enabled())
4922                 kvmhv_radix_debugfs_init(kvm);
4923
4924         return 0;
4925 }
4926
4927 static void kvmppc_free_vcores(struct kvm *kvm)
4928 {
4929         long int i;
4930
4931         for (i = 0; i < KVM_MAX_VCORES; ++i)
4932                 kfree(kvm->arch.vcores[i]);
4933         kvm->arch.online_vcores = 0;
4934 }
4935
4936 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
4937 {
4938         debugfs_remove_recursive(kvm->arch.debugfs_dir);
4939
4940         if (!kvm->arch.threads_indep)
4941                 kvm_hv_vm_deactivated();
4942
4943         kvmppc_free_vcores(kvm);
4944
4945
4946         if (kvm_is_radix(kvm))
4947                 kvmppc_free_radix(kvm);
4948         else
4949                 kvmppc_free_hpt(&kvm->arch.hpt);
4950
4951         /* Perform global invalidation and return lpid to the pool */
4952         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4953                 if (nesting_enabled(kvm))
4954                         kvmhv_release_all_nested(kvm);
4955                 kvm->arch.process_table = 0;
4956                 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
4957         }
4958         kvmppc_free_lpid(kvm->arch.lpid);
4959
4960         kvmppc_free_pimap(kvm);
4961 }
4962
4963 /* We don't need to emulate any privileged instructions or dcbz */
4964 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
4965                                      unsigned int inst, int *advance)
4966 {
4967         return EMULATE_FAIL;
4968 }
4969
4970 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
4971                                         ulong spr_val)
4972 {
4973         return EMULATE_FAIL;
4974 }
4975
4976 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
4977                                         ulong *spr_val)
4978 {
4979         return EMULATE_FAIL;
4980 }
4981
4982 static int kvmppc_core_check_processor_compat_hv(void)
4983 {
4984         if (cpu_has_feature(CPU_FTR_HVMODE) &&
4985             cpu_has_feature(CPU_FTR_ARCH_206))
4986                 return 0;
4987
4988         /* POWER9 in radix mode is capable of being a nested hypervisor. */
4989         if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
4990                 return 0;
4991
4992         return -EIO;
4993 }
4994
4995 #ifdef CONFIG_KVM_XICS
4996
4997 void kvmppc_free_pimap(struct kvm *kvm)
4998 {
4999         kfree(kvm->arch.pimap);
5000 }
5001
5002 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5003 {
5004         return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5005 }
5006
5007 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5008 {
5009         struct irq_desc *desc;
5010         struct kvmppc_irq_map *irq_map;
5011         struct kvmppc_passthru_irqmap *pimap;
5012         struct irq_chip *chip;
5013         int i, rc = 0;
5014
5015         if (!kvm_irq_bypass)
5016                 return 1;
5017
5018         desc = irq_to_desc(host_irq);
5019         if (!desc)
5020                 return -EIO;
5021
5022         mutex_lock(&kvm->lock);
5023
5024         pimap = kvm->arch.pimap;
5025         if (pimap == NULL) {
5026                 /* First call, allocate structure to hold IRQ map */
5027                 pimap = kvmppc_alloc_pimap();
5028                 if (pimap == NULL) {
5029                         mutex_unlock(&kvm->lock);
5030                         return -ENOMEM;
5031                 }
5032                 kvm->arch.pimap = pimap;
5033         }
5034
5035         /*
5036          * For now, we only support interrupts for which the EOI operation
5037          * is an OPAL call followed by a write to XIRR, since that's
5038          * what our real-mode EOI code does, or a XIVE interrupt
5039          */
5040         chip = irq_data_get_irq_chip(&desc->irq_data);
5041         if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
5042                 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5043                         host_irq, guest_gsi);
5044                 mutex_unlock(&kvm->lock);
5045                 return -ENOENT;
5046         }
5047
5048         /*
5049          * See if we already have an entry for this guest IRQ number.
5050          * If it's mapped to a hardware IRQ number, that's an error,
5051          * otherwise re-use this entry.
5052          */
5053         for (i = 0; i < pimap->n_mapped; i++) {
5054                 if (guest_gsi == pimap->mapped[i].v_hwirq) {
5055                         if (pimap->mapped[i].r_hwirq) {
5056                                 mutex_unlock(&kvm->lock);
5057                                 return -EINVAL;
5058                         }
5059                         break;
5060                 }
5061         }
5062
5063         if (i == KVMPPC_PIRQ_MAPPED) {
5064                 mutex_unlock(&kvm->lock);
5065                 return -EAGAIN;         /* table is full */
5066         }
5067
5068         irq_map = &pimap->mapped[i];
5069
5070         irq_map->v_hwirq = guest_gsi;
5071         irq_map->desc = desc;
5072
5073         /*
5074          * Order the above two stores before the next to serialize with
5075          * the KVM real mode handler.
5076          */
5077         smp_wmb();
5078         irq_map->r_hwirq = desc->irq_data.hwirq;
5079
5080         if (i == pimap->n_mapped)
5081                 pimap->n_mapped++;
5082
5083         if (xics_on_xive())
5084                 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
5085         else
5086                 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
5087         if (rc)
5088                 irq_map->r_hwirq = 0;
5089
5090         mutex_unlock(&kvm->lock);
5091
5092         return 0;
5093 }
5094
5095 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5096 {
5097         struct irq_desc *desc;
5098         struct kvmppc_passthru_irqmap *pimap;
5099         int i, rc = 0;
5100
5101         if (!kvm_irq_bypass)
5102                 return 0;
5103
5104         desc = irq_to_desc(host_irq);
5105         if (!desc)
5106                 return -EIO;
5107
5108         mutex_lock(&kvm->lock);
5109         if (!kvm->arch.pimap)
5110                 goto unlock;
5111
5112         pimap = kvm->arch.pimap;
5113
5114         for (i = 0; i < pimap->n_mapped; i++) {
5115                 if (guest_gsi == pimap->mapped[i].v_hwirq)
5116                         break;
5117         }
5118
5119         if (i == pimap->n_mapped) {
5120                 mutex_unlock(&kvm->lock);
5121                 return -ENODEV;
5122         }
5123
5124         if (xics_on_xive())
5125                 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
5126         else
5127                 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5128
5129         /* invalidate the entry (what do do on error from the above ?) */
5130         pimap->mapped[i].r_hwirq = 0;
5131
5132         /*
5133          * We don't free this structure even when the count goes to
5134          * zero. The structure is freed when we destroy the VM.
5135          */
5136  unlock:
5137         mutex_unlock(&kvm->lock);
5138         return rc;
5139 }
5140
5141 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5142                                              struct irq_bypass_producer *prod)
5143 {
5144         int ret = 0;
5145         struct kvm_kernel_irqfd *irqfd =
5146                 container_of(cons, struct kvm_kernel_irqfd, consumer);
5147
5148         irqfd->producer = prod;
5149
5150         ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5151         if (ret)
5152                 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5153                         prod->irq, irqfd->gsi, ret);
5154
5155         return ret;
5156 }
5157
5158 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5159                                               struct irq_bypass_producer *prod)
5160 {
5161         int ret;
5162         struct kvm_kernel_irqfd *irqfd =
5163                 container_of(cons, struct kvm_kernel_irqfd, consumer);
5164
5165         irqfd->producer = NULL;
5166
5167         /*
5168          * When producer of consumer is unregistered, we change back to
5169          * default external interrupt handling mode - KVM real mode
5170          * will switch back to host.
5171          */
5172         ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5173         if (ret)
5174                 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5175                         prod->irq, irqfd->gsi, ret);
5176 }
5177 #endif
5178
5179 static long kvm_arch_vm_ioctl_hv(struct file *filp,
5180                                  unsigned int ioctl, unsigned long arg)
5181 {
5182         struct kvm *kvm __maybe_unused = filp->private_data;
5183         void __user *argp = (void __user *)arg;
5184         long r;
5185
5186         switch (ioctl) {
5187
5188         case KVM_PPC_ALLOCATE_HTAB: {
5189                 u32 htab_order;
5190
5191                 r = -EFAULT;
5192                 if (get_user(htab_order, (u32 __user *)argp))
5193                         break;
5194                 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5195                 if (r)
5196                         break;
5197                 r = 0;
5198                 break;
5199         }
5200
5201         case KVM_PPC_GET_HTAB_FD: {
5202                 struct kvm_get_htab_fd ghf;
5203
5204                 r = -EFAULT;
5205                 if (copy_from_user(&ghf, argp, sizeof(ghf)))
5206                         break;
5207                 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5208                 break;
5209         }
5210
5211         case KVM_PPC_RESIZE_HPT_PREPARE: {
5212                 struct kvm_ppc_resize_hpt rhpt;
5213
5214                 r = -EFAULT;
5215                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5216                         break;
5217
5218                 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5219                 break;
5220         }
5221
5222         case KVM_PPC_RESIZE_HPT_COMMIT: {
5223                 struct kvm_ppc_resize_hpt rhpt;
5224
5225                 r = -EFAULT;
5226                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5227                         break;
5228
5229                 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5230                 break;
5231         }
5232
5233         default:
5234                 r = -ENOTTY;
5235         }
5236
5237         return r;
5238 }
5239
5240 /*
5241  * List of hcall numbers to enable by default.
5242  * For compatibility with old userspace, we enable by default
5243  * all hcalls that were implemented before the hcall-enabling
5244  * facility was added.  Note this list should not include H_RTAS.
5245  */
5246 static unsigned int default_hcall_list[] = {
5247         H_REMOVE,
5248         H_ENTER,
5249         H_READ,
5250         H_PROTECT,
5251         H_BULK_REMOVE,
5252         H_GET_TCE,
5253         H_PUT_TCE,
5254         H_SET_DABR,
5255         H_SET_XDABR,
5256         H_CEDE,
5257         H_PROD,
5258         H_CONFER,
5259         H_REGISTER_VPA,
5260 #ifdef CONFIG_KVM_XICS
5261         H_EOI,
5262         H_CPPR,
5263         H_IPI,
5264         H_IPOLL,
5265         H_XIRR,
5266         H_XIRR_X,
5267 #endif
5268         0
5269 };
5270
5271 static void init_default_hcalls(void)
5272 {
5273         int i;
5274         unsigned int hcall;
5275
5276         for (i = 0; default_hcall_list[i]; ++i) {
5277                 hcall = default_hcall_list[i];
5278                 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5279                 __set_bit(hcall / 4, default_enabled_hcalls);
5280         }
5281 }
5282
5283 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5284 {
5285         unsigned long lpcr;
5286         int radix;
5287         int err;
5288
5289         /* If not on a POWER9, reject it */
5290         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5291                 return -ENODEV;
5292
5293         /* If any unknown flags set, reject it */
5294         if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5295                 return -EINVAL;
5296
5297         /* GR (guest radix) bit in process_table field must match */
5298         radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5299         if (!!(cfg->process_table & PATB_GR) != radix)
5300                 return -EINVAL;
5301
5302         /* Process table size field must be reasonable, i.e. <= 24 */
5303         if ((cfg->process_table & PRTS_MASK) > 24)
5304                 return -EINVAL;
5305
5306         /* We can change a guest to/from radix now, if the host is radix */
5307         if (radix && !radix_enabled())
5308                 return -EINVAL;
5309
5310         /* If we're a nested hypervisor, we currently only support radix */
5311         if (kvmhv_on_pseries() && !radix)
5312                 return -EINVAL;
5313
5314         mutex_lock(&kvm->arch.mmu_setup_lock);
5315         if (radix != kvm_is_radix(kvm)) {
5316                 if (kvm->arch.mmu_ready) {
5317                         kvm->arch.mmu_ready = 0;
5318                         /* order mmu_ready vs. vcpus_running */
5319                         smp_mb();
5320                         if (atomic_read(&kvm->arch.vcpus_running)) {
5321                                 kvm->arch.mmu_ready = 1;
5322                                 err = -EBUSY;
5323                                 goto out_unlock;
5324                         }
5325                 }
5326                 if (radix)
5327                         err = kvmppc_switch_mmu_to_radix(kvm);
5328                 else
5329                         err = kvmppc_switch_mmu_to_hpt(kvm);
5330                 if (err)
5331                         goto out_unlock;
5332         }
5333
5334         kvm->arch.process_table = cfg->process_table;
5335         kvmppc_setup_partition_table(kvm);
5336
5337         lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5338         kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5339         err = 0;
5340
5341  out_unlock:
5342         mutex_unlock(&kvm->arch.mmu_setup_lock);
5343         return err;
5344 }
5345
5346 static int kvmhv_enable_nested(struct kvm *kvm)
5347 {
5348         if (!nested)
5349                 return -EPERM;
5350         if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix)
5351                 return -ENODEV;
5352
5353         /* kvm == NULL means the caller is testing if the capability exists */
5354         if (kvm)
5355                 kvm->arch.nested_enable = true;
5356         return 0;
5357 }
5358
5359 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5360                                  int size)
5361 {
5362         int rc = -EINVAL;
5363
5364         if (kvmhv_vcpu_is_radix(vcpu)) {
5365                 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5366
5367                 if (rc > 0)
5368                         rc = -EINVAL;
5369         }
5370
5371         /* For now quadrants are the only way to access nested guest memory */
5372         if (rc && vcpu->arch.nested)
5373                 rc = -EAGAIN;
5374
5375         return rc;
5376 }
5377
5378 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5379                                 int size)
5380 {
5381         int rc = -EINVAL;
5382
5383         if (kvmhv_vcpu_is_radix(vcpu)) {
5384                 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
5385
5386                 if (rc > 0)
5387                         rc = -EINVAL;
5388         }
5389
5390         /* For now quadrants are the only way to access nested guest memory */
5391         if (rc && vcpu->arch.nested)
5392                 rc = -EAGAIN;
5393
5394         return rc;
5395 }
5396
5397 static struct kvmppc_ops kvm_ops_hv = {
5398         .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
5399         .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
5400         .get_one_reg = kvmppc_get_one_reg_hv,
5401         .set_one_reg = kvmppc_set_one_reg_hv,
5402         .vcpu_load   = kvmppc_core_vcpu_load_hv,
5403         .vcpu_put    = kvmppc_core_vcpu_put_hv,
5404         .set_msr     = kvmppc_set_msr_hv,
5405         .vcpu_run    = kvmppc_vcpu_run_hv,
5406         .vcpu_create = kvmppc_core_vcpu_create_hv,
5407         .vcpu_free   = kvmppc_core_vcpu_free_hv,
5408         .check_requests = kvmppc_core_check_requests_hv,
5409         .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
5410         .flush_memslot  = kvmppc_core_flush_memslot_hv,
5411         .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
5412         .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
5413         .unmap_hva_range = kvm_unmap_hva_range_hv,
5414         .age_hva  = kvm_age_hva_hv,
5415         .test_age_hva = kvm_test_age_hva_hv,
5416         .set_spte_hva = kvm_set_spte_hva_hv,
5417         .mmu_destroy  = kvmppc_mmu_destroy_hv,
5418         .free_memslot = kvmppc_core_free_memslot_hv,
5419         .create_memslot = kvmppc_core_create_memslot_hv,
5420         .init_vm =  kvmppc_core_init_vm_hv,
5421         .destroy_vm = kvmppc_core_destroy_vm_hv,
5422         .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
5423         .emulate_op = kvmppc_core_emulate_op_hv,
5424         .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
5425         .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
5426         .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
5427         .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
5428         .hcall_implemented = kvmppc_hcall_impl_hv,
5429 #ifdef CONFIG_KVM_XICS
5430         .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
5431         .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
5432 #endif
5433         .configure_mmu = kvmhv_configure_mmu,
5434         .get_rmmu_info = kvmhv_get_rmmu_info,
5435         .set_smt_mode = kvmhv_set_smt_mode,
5436         .enable_nested = kvmhv_enable_nested,
5437         .load_from_eaddr = kvmhv_load_from_eaddr,
5438         .store_to_eaddr = kvmhv_store_to_eaddr,
5439 };
5440
5441 static int kvm_init_subcore_bitmap(void)
5442 {
5443         int i, j;
5444         int nr_cores = cpu_nr_cores();
5445         struct sibling_subcore_state *sibling_subcore_state;
5446
5447         for (i = 0; i < nr_cores; i++) {
5448                 int first_cpu = i * threads_per_core;
5449                 int node = cpu_to_node(first_cpu);
5450
5451                 /* Ignore if it is already allocated. */
5452                 if (paca_ptrs[first_cpu]->sibling_subcore_state)
5453                         continue;
5454
5455                 sibling_subcore_state =
5456                         kzalloc_node(sizeof(struct sibling_subcore_state),
5457                                                         GFP_KERNEL, node);
5458                 if (!sibling_subcore_state)
5459                         return -ENOMEM;
5460
5461
5462                 for (j = 0; j < threads_per_core; j++) {
5463                         int cpu = first_cpu + j;
5464
5465                         paca_ptrs[cpu]->sibling_subcore_state =
5466                                                 sibling_subcore_state;
5467                 }
5468         }
5469         return 0;
5470 }
5471
5472 static int kvmppc_radix_possible(void)
5473 {
5474         return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
5475 }
5476
5477 static int kvmppc_book3s_init_hv(void)
5478 {
5479         int r;
5480
5481         if (!tlbie_capable) {
5482                 pr_err("KVM-HV: Host does not support TLBIE\n");
5483                 return -ENODEV;
5484         }
5485
5486         /*
5487          * FIXME!! Do we need to check on all cpus ?
5488          */
5489         r = kvmppc_core_check_processor_compat_hv();
5490         if (r < 0)
5491                 return -ENODEV;
5492
5493         r = kvmhv_nested_init();
5494         if (r)
5495                 return r;
5496
5497         r = kvm_init_subcore_bitmap();
5498         if (r)
5499                 return r;
5500
5501         /*
5502          * We need a way of accessing the XICS interrupt controller,
5503          * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
5504          * indirectly, via OPAL.
5505          */
5506 #ifdef CONFIG_SMP
5507         if (!xics_on_xive() && !kvmhv_on_pseries() &&
5508             !local_paca->kvm_hstate.xics_phys) {
5509                 struct device_node *np;
5510
5511                 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
5512                 if (!np) {
5513                         pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
5514                         return -ENODEV;
5515                 }
5516                 /* presence of intc confirmed - node can be dropped again */
5517                 of_node_put(np);
5518         }
5519 #endif
5520
5521         kvm_ops_hv.owner = THIS_MODULE;
5522         kvmppc_hv_ops = &kvm_ops_hv;
5523
5524         init_default_hcalls();
5525
5526         init_vcore_lists();
5527
5528         r = kvmppc_mmu_hv_init();
5529         if (r)
5530                 return r;
5531
5532         if (kvmppc_radix_possible())
5533                 r = kvmppc_radix_init();
5534
5535         /*
5536          * POWER9 chips before version 2.02 can't have some threads in
5537          * HPT mode and some in radix mode on the same core.
5538          */
5539         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5540                 unsigned int pvr = mfspr(SPRN_PVR);
5541                 if ((pvr >> 16) == PVR_POWER9 &&
5542                     (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
5543                      ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
5544                         no_mixing_hpt_and_radix = true;
5545         }
5546
5547         return r;
5548 }
5549
5550 static void kvmppc_book3s_exit_hv(void)
5551 {
5552         kvmppc_free_host_rm_ops();
5553         if (kvmppc_radix_possible())
5554                 kvmppc_radix_exit();
5555         kvmppc_hv_ops = NULL;
5556         kvmhv_nested_exit();
5557 }
5558
5559 module_init(kvmppc_book3s_init_hv);
5560 module_exit(kvmppc_book3s_exit_hv);
5561 MODULE_LICENSE("GPL");
5562 MODULE_ALIAS_MISCDEV(KVM_MINOR);
5563 MODULE_ALIAS("devname:kvm");