]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/powerpc/kvm/book3s_hv.c
Merge branch 'topic/paca' into next
[linux.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20
21 #include <linux/kvm_host.h>
22 #include <linux/kernel.h>
23 #include <linux/err.h>
24 #include <linux/slab.h>
25 #include <linux/preempt.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sched/stat.h>
28 #include <linux/delay.h>
29 #include <linux/export.h>
30 #include <linux/fs.h>
31 #include <linux/anon_inodes.h>
32 #include <linux/cpu.h>
33 #include <linux/cpumask.h>
34 #include <linux/spinlock.h>
35 #include <linux/page-flags.h>
36 #include <linux/srcu.h>
37 #include <linux/miscdevice.h>
38 #include <linux/debugfs.h>
39 #include <linux/gfp.h>
40 #include <linux/vmalloc.h>
41 #include <linux/highmem.h>
42 #include <linux/hugetlb.h>
43 #include <linux/kvm_irqfd.h>
44 #include <linux/irqbypass.h>
45 #include <linux/module.h>
46 #include <linux/compiler.h>
47 #include <linux/of.h>
48
49 #include <asm/reg.h>
50 #include <asm/ppc-opcode.h>
51 #include <asm/asm-prototypes.h>
52 #include <asm/disassemble.h>
53 #include <asm/cputable.h>
54 #include <asm/cacheflush.h>
55 #include <asm/tlbflush.h>
56 #include <linux/uaccess.h>
57 #include <asm/io.h>
58 #include <asm/kvm_ppc.h>
59 #include <asm/kvm_book3s.h>
60 #include <asm/mmu_context.h>
61 #include <asm/lppaca.h>
62 #include <asm/processor.h>
63 #include <asm/cputhreads.h>
64 #include <asm/page.h>
65 #include <asm/hvcall.h>
66 #include <asm/switch_to.h>
67 #include <asm/smp.h>
68 #include <asm/dbell.h>
69 #include <asm/hmi.h>
70 #include <asm/pnv-pci.h>
71 #include <asm/mmu.h>
72 #include <asm/opal.h>
73 #include <asm/xics.h>
74 #include <asm/xive.h>
75
76 #include "book3s.h"
77
78 #define CREATE_TRACE_POINTS
79 #include "trace_hv.h"
80
81 /* #define EXIT_DEBUG */
82 /* #define EXIT_DEBUG_SIMPLE */
83 /* #define EXIT_DEBUG_INT */
84
85 /* Used to indicate that a guest page fault needs to be handled */
86 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
87 /* Used to indicate that a guest passthrough interrupt needs to be handled */
88 #define RESUME_PASSTHROUGH      (RESUME_GUEST | RESUME_FLAG_ARCH2)
89
90 /* Used as a "null" value for timebase values */
91 #define TB_NIL  (~(u64)0)
92
93 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
94
95 static int dynamic_mt_modes = 6;
96 module_param(dynamic_mt_modes, int, 0644);
97 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
98 static int target_smt_mode;
99 module_param(target_smt_mode, int, 0644);
100 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
101
102 static bool indep_threads_mode = true;
103 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
104 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
105
106 #ifdef CONFIG_KVM_XICS
107 static struct kernel_param_ops module_param_ops = {
108         .set = param_set_int,
109         .get = param_get_int,
110 };
111
112 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
113 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
114
115 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
116 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
117 #endif
118
119 /* If set, the threads on each CPU core have to be in the same MMU mode */
120 static bool no_mixing_hpt_and_radix;
121
122 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
123 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
124
125 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
126                 int *ip)
127 {
128         int i = *ip;
129         struct kvm_vcpu *vcpu;
130
131         while (++i < MAX_SMT_THREADS) {
132                 vcpu = READ_ONCE(vc->runnable_threads[i]);
133                 if (vcpu) {
134                         *ip = i;
135                         return vcpu;
136                 }
137         }
138         return NULL;
139 }
140
141 /* Used to traverse the list of runnable threads for a given vcore */
142 #define for_each_runnable_thread(i, vcpu, vc) \
143         for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
144
145 static bool kvmppc_ipi_thread(int cpu)
146 {
147         unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
148
149         /* On POWER9 we can use msgsnd to IPI any cpu */
150         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
151                 msg |= get_hard_smp_processor_id(cpu);
152                 smp_mb();
153                 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
154                 return true;
155         }
156
157         /* On POWER8 for IPIs to threads in the same core, use msgsnd */
158         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
159                 preempt_disable();
160                 if (cpu_first_thread_sibling(cpu) ==
161                     cpu_first_thread_sibling(smp_processor_id())) {
162                         msg |= cpu_thread_in_core(cpu);
163                         smp_mb();
164                         __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
165                         preempt_enable();
166                         return true;
167                 }
168                 preempt_enable();
169         }
170
171 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
172         if (cpu >= 0 && cpu < nr_cpu_ids) {
173                 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
174                         xics_wake_cpu(cpu);
175                         return true;
176                 }
177                 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
178                 return true;
179         }
180 #endif
181
182         return false;
183 }
184
185 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
186 {
187         int cpu;
188         struct swait_queue_head *wqp;
189
190         wqp = kvm_arch_vcpu_wq(vcpu);
191         if (swq_has_sleeper(wqp)) {
192                 swake_up(wqp);
193                 ++vcpu->stat.halt_wakeup;
194         }
195
196         cpu = READ_ONCE(vcpu->arch.thread_cpu);
197         if (cpu >= 0 && kvmppc_ipi_thread(cpu))
198                 return;
199
200         /* CPU points to the first thread of the core */
201         cpu = vcpu->cpu;
202         if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
203                 smp_send_reschedule(cpu);
204 }
205
206 /*
207  * We use the vcpu_load/put functions to measure stolen time.
208  * Stolen time is counted as time when either the vcpu is able to
209  * run as part of a virtual core, but the task running the vcore
210  * is preempted or sleeping, or when the vcpu needs something done
211  * in the kernel by the task running the vcpu, but that task is
212  * preempted or sleeping.  Those two things have to be counted
213  * separately, since one of the vcpu tasks will take on the job
214  * of running the core, and the other vcpu tasks in the vcore will
215  * sleep waiting for it to do that, but that sleep shouldn't count
216  * as stolen time.
217  *
218  * Hence we accumulate stolen time when the vcpu can run as part of
219  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
220  * needs its task to do other things in the kernel (for example,
221  * service a page fault) in busy_stolen.  We don't accumulate
222  * stolen time for a vcore when it is inactive, or for a vcpu
223  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
224  * a misnomer; it means that the vcpu task is not executing in
225  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
226  * the kernel.  We don't have any way of dividing up that time
227  * between time that the vcpu is genuinely stopped, time that
228  * the task is actively working on behalf of the vcpu, and time
229  * that the task is preempted, so we don't count any of it as
230  * stolen.
231  *
232  * Updates to busy_stolen are protected by arch.tbacct_lock;
233  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
234  * lock.  The stolen times are measured in units of timebase ticks.
235  * (Note that the != TB_NIL checks below are purely defensive;
236  * they should never fail.)
237  */
238
239 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
240 {
241         unsigned long flags;
242
243         spin_lock_irqsave(&vc->stoltb_lock, flags);
244         vc->preempt_tb = mftb();
245         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
246 }
247
248 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
249 {
250         unsigned long flags;
251
252         spin_lock_irqsave(&vc->stoltb_lock, flags);
253         if (vc->preempt_tb != TB_NIL) {
254                 vc->stolen_tb += mftb() - vc->preempt_tb;
255                 vc->preempt_tb = TB_NIL;
256         }
257         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
258 }
259
260 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
261 {
262         struct kvmppc_vcore *vc = vcpu->arch.vcore;
263         unsigned long flags;
264
265         /*
266          * We can test vc->runner without taking the vcore lock,
267          * because only this task ever sets vc->runner to this
268          * vcpu, and once it is set to this vcpu, only this task
269          * ever sets it to NULL.
270          */
271         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
272                 kvmppc_core_end_stolen(vc);
273
274         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
275         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
276             vcpu->arch.busy_preempt != TB_NIL) {
277                 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
278                 vcpu->arch.busy_preempt = TB_NIL;
279         }
280         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
281 }
282
283 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
284 {
285         struct kvmppc_vcore *vc = vcpu->arch.vcore;
286         unsigned long flags;
287
288         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
289                 kvmppc_core_start_stolen(vc);
290
291         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
292         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
293                 vcpu->arch.busy_preempt = mftb();
294         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
295 }
296
297 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
298 {
299         /*
300          * Check for illegal transactional state bit combination
301          * and if we find it, force the TS field to a safe state.
302          */
303         if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
304                 msr &= ~MSR_TS_MASK;
305         vcpu->arch.shregs.msr = msr;
306         kvmppc_end_cede(vcpu);
307 }
308
309 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
310 {
311         vcpu->arch.pvr = pvr;
312 }
313
314 /* Dummy value used in computing PCR value below */
315 #define PCR_ARCH_300    (PCR_ARCH_207 << 1)
316
317 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
318 {
319         unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
320         struct kvmppc_vcore *vc = vcpu->arch.vcore;
321
322         /* We can (emulate) our own architecture version and anything older */
323         if (cpu_has_feature(CPU_FTR_ARCH_300))
324                 host_pcr_bit = PCR_ARCH_300;
325         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
326                 host_pcr_bit = PCR_ARCH_207;
327         else if (cpu_has_feature(CPU_FTR_ARCH_206))
328                 host_pcr_bit = PCR_ARCH_206;
329         else
330                 host_pcr_bit = PCR_ARCH_205;
331
332         /* Determine lowest PCR bit needed to run guest in given PVR level */
333         guest_pcr_bit = host_pcr_bit;
334         if (arch_compat) {
335                 switch (arch_compat) {
336                 case PVR_ARCH_205:
337                         guest_pcr_bit = PCR_ARCH_205;
338                         break;
339                 case PVR_ARCH_206:
340                 case PVR_ARCH_206p:
341                         guest_pcr_bit = PCR_ARCH_206;
342                         break;
343                 case PVR_ARCH_207:
344                         guest_pcr_bit = PCR_ARCH_207;
345                         break;
346                 case PVR_ARCH_300:
347                         guest_pcr_bit = PCR_ARCH_300;
348                         break;
349                 default:
350                         return -EINVAL;
351                 }
352         }
353
354         /* Check requested PCR bits don't exceed our capabilities */
355         if (guest_pcr_bit > host_pcr_bit)
356                 return -EINVAL;
357
358         spin_lock(&vc->lock);
359         vc->arch_compat = arch_compat;
360         /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
361         vc->pcr = host_pcr_bit - guest_pcr_bit;
362         spin_unlock(&vc->lock);
363
364         return 0;
365 }
366
367 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
368 {
369         int r;
370
371         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
372         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
373                vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
374         for (r = 0; r < 16; ++r)
375                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
376                        r, kvmppc_get_gpr(vcpu, r),
377                        r+16, kvmppc_get_gpr(vcpu, r+16));
378         pr_err("ctr = %.16lx  lr  = %.16lx\n",
379                vcpu->arch.ctr, vcpu->arch.lr);
380         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
381                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
382         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
383                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
384         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
385                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
386         pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
387                vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
388         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
389         pr_err("fault dar = %.16lx dsisr = %.8x\n",
390                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
391         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
392         for (r = 0; r < vcpu->arch.slb_max; ++r)
393                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
394                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
395         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
396                vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
397                vcpu->arch.last_inst);
398 }
399
400 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
401 {
402         struct kvm_vcpu *ret;
403
404         mutex_lock(&kvm->lock);
405         ret = kvm_get_vcpu_by_id(kvm, id);
406         mutex_unlock(&kvm->lock);
407         return ret;
408 }
409
410 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
411 {
412         vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
413         vpa->yield_count = cpu_to_be32(1);
414 }
415
416 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
417                    unsigned long addr, unsigned long len)
418 {
419         /* check address is cacheline aligned */
420         if (addr & (L1_CACHE_BYTES - 1))
421                 return -EINVAL;
422         spin_lock(&vcpu->arch.vpa_update_lock);
423         if (v->next_gpa != addr || v->len != len) {
424                 v->next_gpa = addr;
425                 v->len = addr ? len : 0;
426                 v->update_pending = 1;
427         }
428         spin_unlock(&vcpu->arch.vpa_update_lock);
429         return 0;
430 }
431
432 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
433 struct reg_vpa {
434         u32 dummy;
435         union {
436                 __be16 hword;
437                 __be32 word;
438         } length;
439 };
440
441 static int vpa_is_registered(struct kvmppc_vpa *vpap)
442 {
443         if (vpap->update_pending)
444                 return vpap->next_gpa != 0;
445         return vpap->pinned_addr != NULL;
446 }
447
448 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
449                                        unsigned long flags,
450                                        unsigned long vcpuid, unsigned long vpa)
451 {
452         struct kvm *kvm = vcpu->kvm;
453         unsigned long len, nb;
454         void *va;
455         struct kvm_vcpu *tvcpu;
456         int err;
457         int subfunc;
458         struct kvmppc_vpa *vpap;
459
460         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
461         if (!tvcpu)
462                 return H_PARAMETER;
463
464         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
465         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
466             subfunc == H_VPA_REG_SLB) {
467                 /* Registering new area - address must be cache-line aligned */
468                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
469                         return H_PARAMETER;
470
471                 /* convert logical addr to kernel addr and read length */
472                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
473                 if (va == NULL)
474                         return H_PARAMETER;
475                 if (subfunc == H_VPA_REG_VPA)
476                         len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
477                 else
478                         len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
479                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
480
481                 /* Check length */
482                 if (len > nb || len < sizeof(struct reg_vpa))
483                         return H_PARAMETER;
484         } else {
485                 vpa = 0;
486                 len = 0;
487         }
488
489         err = H_PARAMETER;
490         vpap = NULL;
491         spin_lock(&tvcpu->arch.vpa_update_lock);
492
493         switch (subfunc) {
494         case H_VPA_REG_VPA:             /* register VPA */
495                 /*
496                  * The size of our lppaca is 1kB because of the way we align
497                  * it for the guest to avoid crossing a 4kB boundary. We only
498                  * use 640 bytes of the structure though, so we should accept
499                  * clients that set a size of 640.
500                  */
501                 BUILD_BUG_ON(sizeof(struct lppaca) != 640);
502                 if (len < sizeof(struct lppaca))
503                         break;
504                 vpap = &tvcpu->arch.vpa;
505                 err = 0;
506                 break;
507
508         case H_VPA_REG_DTL:             /* register DTL */
509                 if (len < sizeof(struct dtl_entry))
510                         break;
511                 len -= len % sizeof(struct dtl_entry);
512
513                 /* Check that they have previously registered a VPA */
514                 err = H_RESOURCE;
515                 if (!vpa_is_registered(&tvcpu->arch.vpa))
516                         break;
517
518                 vpap = &tvcpu->arch.dtl;
519                 err = 0;
520                 break;
521
522         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
523                 /* Check that they have previously registered a VPA */
524                 err = H_RESOURCE;
525                 if (!vpa_is_registered(&tvcpu->arch.vpa))
526                         break;
527
528                 vpap = &tvcpu->arch.slb_shadow;
529                 err = 0;
530                 break;
531
532         case H_VPA_DEREG_VPA:           /* deregister VPA */
533                 /* Check they don't still have a DTL or SLB buf registered */
534                 err = H_RESOURCE;
535                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
536                     vpa_is_registered(&tvcpu->arch.slb_shadow))
537                         break;
538
539                 vpap = &tvcpu->arch.vpa;
540                 err = 0;
541                 break;
542
543         case H_VPA_DEREG_DTL:           /* deregister DTL */
544                 vpap = &tvcpu->arch.dtl;
545                 err = 0;
546                 break;
547
548         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
549                 vpap = &tvcpu->arch.slb_shadow;
550                 err = 0;
551                 break;
552         }
553
554         if (vpap) {
555                 vpap->next_gpa = vpa;
556                 vpap->len = len;
557                 vpap->update_pending = 1;
558         }
559
560         spin_unlock(&tvcpu->arch.vpa_update_lock);
561
562         return err;
563 }
564
565 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
566 {
567         struct kvm *kvm = vcpu->kvm;
568         void *va;
569         unsigned long nb;
570         unsigned long gpa;
571
572         /*
573          * We need to pin the page pointed to by vpap->next_gpa,
574          * but we can't call kvmppc_pin_guest_page under the lock
575          * as it does get_user_pages() and down_read().  So we
576          * have to drop the lock, pin the page, then get the lock
577          * again and check that a new area didn't get registered
578          * in the meantime.
579          */
580         for (;;) {
581                 gpa = vpap->next_gpa;
582                 spin_unlock(&vcpu->arch.vpa_update_lock);
583                 va = NULL;
584                 nb = 0;
585                 if (gpa)
586                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
587                 spin_lock(&vcpu->arch.vpa_update_lock);
588                 if (gpa == vpap->next_gpa)
589                         break;
590                 /* sigh... unpin that one and try again */
591                 if (va)
592                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
593         }
594
595         vpap->update_pending = 0;
596         if (va && nb < vpap->len) {
597                 /*
598                  * If it's now too short, it must be that userspace
599                  * has changed the mappings underlying guest memory,
600                  * so unregister the region.
601                  */
602                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
603                 va = NULL;
604         }
605         if (vpap->pinned_addr)
606                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
607                                         vpap->dirty);
608         vpap->gpa = gpa;
609         vpap->pinned_addr = va;
610         vpap->dirty = false;
611         if (va)
612                 vpap->pinned_end = va + vpap->len;
613 }
614
615 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
616 {
617         if (!(vcpu->arch.vpa.update_pending ||
618               vcpu->arch.slb_shadow.update_pending ||
619               vcpu->arch.dtl.update_pending))
620                 return;
621
622         spin_lock(&vcpu->arch.vpa_update_lock);
623         if (vcpu->arch.vpa.update_pending) {
624                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
625                 if (vcpu->arch.vpa.pinned_addr)
626                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
627         }
628         if (vcpu->arch.dtl.update_pending) {
629                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
630                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
631                 vcpu->arch.dtl_index = 0;
632         }
633         if (vcpu->arch.slb_shadow.update_pending)
634                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
635         spin_unlock(&vcpu->arch.vpa_update_lock);
636 }
637
638 /*
639  * Return the accumulated stolen time for the vcore up until `now'.
640  * The caller should hold the vcore lock.
641  */
642 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
643 {
644         u64 p;
645         unsigned long flags;
646
647         spin_lock_irqsave(&vc->stoltb_lock, flags);
648         p = vc->stolen_tb;
649         if (vc->vcore_state != VCORE_INACTIVE &&
650             vc->preempt_tb != TB_NIL)
651                 p += now - vc->preempt_tb;
652         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
653         return p;
654 }
655
656 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
657                                     struct kvmppc_vcore *vc)
658 {
659         struct dtl_entry *dt;
660         struct lppaca *vpa;
661         unsigned long stolen;
662         unsigned long core_stolen;
663         u64 now;
664         unsigned long flags;
665
666         dt = vcpu->arch.dtl_ptr;
667         vpa = vcpu->arch.vpa.pinned_addr;
668         now = mftb();
669         core_stolen = vcore_stolen_time(vc, now);
670         stolen = core_stolen - vcpu->arch.stolen_logged;
671         vcpu->arch.stolen_logged = core_stolen;
672         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
673         stolen += vcpu->arch.busy_stolen;
674         vcpu->arch.busy_stolen = 0;
675         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
676         if (!dt || !vpa)
677                 return;
678         memset(dt, 0, sizeof(struct dtl_entry));
679         dt->dispatch_reason = 7;
680         dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
681         dt->timebase = cpu_to_be64(now + vc->tb_offset);
682         dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
683         dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
684         dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
685         ++dt;
686         if (dt == vcpu->arch.dtl.pinned_end)
687                 dt = vcpu->arch.dtl.pinned_addr;
688         vcpu->arch.dtl_ptr = dt;
689         /* order writing *dt vs. writing vpa->dtl_idx */
690         smp_wmb();
691         vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
692         vcpu->arch.dtl.dirty = true;
693 }
694
695 /* See if there is a doorbell interrupt pending for a vcpu */
696 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
697 {
698         int thr;
699         struct kvmppc_vcore *vc;
700
701         if (vcpu->arch.doorbell_request)
702                 return true;
703         /*
704          * Ensure that the read of vcore->dpdes comes after the read
705          * of vcpu->doorbell_request.  This barrier matches the
706          * lwsync in book3s_hv_rmhandlers.S just before the
707          * fast_guest_return label.
708          */
709         smp_rmb();
710         vc = vcpu->arch.vcore;
711         thr = vcpu->vcpu_id - vc->first_vcpuid;
712         return !!(vc->dpdes & (1 << thr));
713 }
714
715 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
716 {
717         if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
718                 return true;
719         if ((!vcpu->arch.vcore->arch_compat) &&
720             cpu_has_feature(CPU_FTR_ARCH_207S))
721                 return true;
722         return false;
723 }
724
725 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
726                              unsigned long resource, unsigned long value1,
727                              unsigned long value2)
728 {
729         switch (resource) {
730         case H_SET_MODE_RESOURCE_SET_CIABR:
731                 if (!kvmppc_power8_compatible(vcpu))
732                         return H_P2;
733                 if (value2)
734                         return H_P4;
735                 if (mflags)
736                         return H_UNSUPPORTED_FLAG_START;
737                 /* Guests can't breakpoint the hypervisor */
738                 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
739                         return H_P3;
740                 vcpu->arch.ciabr  = value1;
741                 return H_SUCCESS;
742         case H_SET_MODE_RESOURCE_SET_DAWR:
743                 if (!kvmppc_power8_compatible(vcpu))
744                         return H_P2;
745                 if (!ppc_breakpoint_available())
746                         return H_P2;
747                 if (mflags)
748                         return H_UNSUPPORTED_FLAG_START;
749                 if (value2 & DABRX_HYP)
750                         return H_P4;
751                 vcpu->arch.dawr  = value1;
752                 vcpu->arch.dawrx = value2;
753                 return H_SUCCESS;
754         default:
755                 return H_TOO_HARD;
756         }
757 }
758
759 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
760 {
761         struct kvmppc_vcore *vcore = target->arch.vcore;
762
763         /*
764          * We expect to have been called by the real mode handler
765          * (kvmppc_rm_h_confer()) which would have directly returned
766          * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
767          * have useful work to do and should not confer) so we don't
768          * recheck that here.
769          */
770
771         spin_lock(&vcore->lock);
772         if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
773             vcore->vcore_state != VCORE_INACTIVE &&
774             vcore->runner)
775                 target = vcore->runner;
776         spin_unlock(&vcore->lock);
777
778         return kvm_vcpu_yield_to(target);
779 }
780
781 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
782 {
783         int yield_count = 0;
784         struct lppaca *lppaca;
785
786         spin_lock(&vcpu->arch.vpa_update_lock);
787         lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
788         if (lppaca)
789                 yield_count = be32_to_cpu(lppaca->yield_count);
790         spin_unlock(&vcpu->arch.vpa_update_lock);
791         return yield_count;
792 }
793
794 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
795 {
796         unsigned long req = kvmppc_get_gpr(vcpu, 3);
797         unsigned long target, ret = H_SUCCESS;
798         int yield_count;
799         struct kvm_vcpu *tvcpu;
800         int idx, rc;
801
802         if (req <= MAX_HCALL_OPCODE &&
803             !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
804                 return RESUME_HOST;
805
806         switch (req) {
807         case H_CEDE:
808                 break;
809         case H_PROD:
810                 target = kvmppc_get_gpr(vcpu, 4);
811                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
812                 if (!tvcpu) {
813                         ret = H_PARAMETER;
814                         break;
815                 }
816                 tvcpu->arch.prodded = 1;
817                 smp_mb();
818                 if (tvcpu->arch.ceded)
819                         kvmppc_fast_vcpu_kick_hv(tvcpu);
820                 break;
821         case H_CONFER:
822                 target = kvmppc_get_gpr(vcpu, 4);
823                 if (target == -1)
824                         break;
825                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
826                 if (!tvcpu) {
827                         ret = H_PARAMETER;
828                         break;
829                 }
830                 yield_count = kvmppc_get_gpr(vcpu, 5);
831                 if (kvmppc_get_yield_count(tvcpu) != yield_count)
832                         break;
833                 kvm_arch_vcpu_yield_to(tvcpu);
834                 break;
835         case H_REGISTER_VPA:
836                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
837                                         kvmppc_get_gpr(vcpu, 5),
838                                         kvmppc_get_gpr(vcpu, 6));
839                 break;
840         case H_RTAS:
841                 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
842                         return RESUME_HOST;
843
844                 idx = srcu_read_lock(&vcpu->kvm->srcu);
845                 rc = kvmppc_rtas_hcall(vcpu);
846                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
847
848                 if (rc == -ENOENT)
849                         return RESUME_HOST;
850                 else if (rc == 0)
851                         break;
852
853                 /* Send the error out to userspace via KVM_RUN */
854                 return rc;
855         case H_LOGICAL_CI_LOAD:
856                 ret = kvmppc_h_logical_ci_load(vcpu);
857                 if (ret == H_TOO_HARD)
858                         return RESUME_HOST;
859                 break;
860         case H_LOGICAL_CI_STORE:
861                 ret = kvmppc_h_logical_ci_store(vcpu);
862                 if (ret == H_TOO_HARD)
863                         return RESUME_HOST;
864                 break;
865         case H_SET_MODE:
866                 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
867                                         kvmppc_get_gpr(vcpu, 5),
868                                         kvmppc_get_gpr(vcpu, 6),
869                                         kvmppc_get_gpr(vcpu, 7));
870                 if (ret == H_TOO_HARD)
871                         return RESUME_HOST;
872                 break;
873         case H_XIRR:
874         case H_CPPR:
875         case H_EOI:
876         case H_IPI:
877         case H_IPOLL:
878         case H_XIRR_X:
879                 if (kvmppc_xics_enabled(vcpu)) {
880                         if (xive_enabled()) {
881                                 ret = H_NOT_AVAILABLE;
882                                 return RESUME_GUEST;
883                         }
884                         ret = kvmppc_xics_hcall(vcpu, req);
885                         break;
886                 }
887                 return RESUME_HOST;
888         case H_PUT_TCE:
889                 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
890                                                 kvmppc_get_gpr(vcpu, 5),
891                                                 kvmppc_get_gpr(vcpu, 6));
892                 if (ret == H_TOO_HARD)
893                         return RESUME_HOST;
894                 break;
895         case H_PUT_TCE_INDIRECT:
896                 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
897                                                 kvmppc_get_gpr(vcpu, 5),
898                                                 kvmppc_get_gpr(vcpu, 6),
899                                                 kvmppc_get_gpr(vcpu, 7));
900                 if (ret == H_TOO_HARD)
901                         return RESUME_HOST;
902                 break;
903         case H_STUFF_TCE:
904                 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
905                                                 kvmppc_get_gpr(vcpu, 5),
906                                                 kvmppc_get_gpr(vcpu, 6),
907                                                 kvmppc_get_gpr(vcpu, 7));
908                 if (ret == H_TOO_HARD)
909                         return RESUME_HOST;
910                 break;
911         default:
912                 return RESUME_HOST;
913         }
914         kvmppc_set_gpr(vcpu, 3, ret);
915         vcpu->arch.hcall_needed = 0;
916         return RESUME_GUEST;
917 }
918
919 static int kvmppc_hcall_impl_hv(unsigned long cmd)
920 {
921         switch (cmd) {
922         case H_CEDE:
923         case H_PROD:
924         case H_CONFER:
925         case H_REGISTER_VPA:
926         case H_SET_MODE:
927         case H_LOGICAL_CI_LOAD:
928         case H_LOGICAL_CI_STORE:
929 #ifdef CONFIG_KVM_XICS
930         case H_XIRR:
931         case H_CPPR:
932         case H_EOI:
933         case H_IPI:
934         case H_IPOLL:
935         case H_XIRR_X:
936 #endif
937                 return 1;
938         }
939
940         /* See if it's in the real-mode table */
941         return kvmppc_hcall_impl_hv_realmode(cmd);
942 }
943
944 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
945                                         struct kvm_vcpu *vcpu)
946 {
947         u32 last_inst;
948
949         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
950                                         EMULATE_DONE) {
951                 /*
952                  * Fetch failed, so return to guest and
953                  * try executing it again.
954                  */
955                 return RESUME_GUEST;
956         }
957
958         if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
959                 run->exit_reason = KVM_EXIT_DEBUG;
960                 run->debug.arch.address = kvmppc_get_pc(vcpu);
961                 return RESUME_HOST;
962         } else {
963                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
964                 return RESUME_GUEST;
965         }
966 }
967
968 static void do_nothing(void *x)
969 {
970 }
971
972 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
973 {
974         int thr, cpu, pcpu, nthreads;
975         struct kvm_vcpu *v;
976         unsigned long dpdes;
977
978         nthreads = vcpu->kvm->arch.emul_smt_mode;
979         dpdes = 0;
980         cpu = vcpu->vcpu_id & ~(nthreads - 1);
981         for (thr = 0; thr < nthreads; ++thr, ++cpu) {
982                 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
983                 if (!v)
984                         continue;
985                 /*
986                  * If the vcpu is currently running on a physical cpu thread,
987                  * interrupt it in order to pull it out of the guest briefly,
988                  * which will update its vcore->dpdes value.
989                  */
990                 pcpu = READ_ONCE(v->cpu);
991                 if (pcpu >= 0)
992                         smp_call_function_single(pcpu, do_nothing, NULL, 1);
993                 if (kvmppc_doorbell_pending(v))
994                         dpdes |= 1 << thr;
995         }
996         return dpdes;
997 }
998
999 /*
1000  * On POWER9, emulate doorbell-related instructions in order to
1001  * give the guest the illusion of running on a multi-threaded core.
1002  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1003  * and mfspr DPDES.
1004  */
1005 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1006 {
1007         u32 inst, rb, thr;
1008         unsigned long arg;
1009         struct kvm *kvm = vcpu->kvm;
1010         struct kvm_vcpu *tvcpu;
1011
1012         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1013                 return RESUME_GUEST;
1014         if (get_op(inst) != 31)
1015                 return EMULATE_FAIL;
1016         rb = get_rb(inst);
1017         thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1018         switch (get_xop(inst)) {
1019         case OP_31_XOP_MSGSNDP:
1020                 arg = kvmppc_get_gpr(vcpu, rb);
1021                 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1022                         break;
1023                 arg &= 0x3f;
1024                 if (arg >= kvm->arch.emul_smt_mode)
1025                         break;
1026                 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1027                 if (!tvcpu)
1028                         break;
1029                 if (!tvcpu->arch.doorbell_request) {
1030                         tvcpu->arch.doorbell_request = 1;
1031                         kvmppc_fast_vcpu_kick_hv(tvcpu);
1032                 }
1033                 break;
1034         case OP_31_XOP_MSGCLRP:
1035                 arg = kvmppc_get_gpr(vcpu, rb);
1036                 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1037                         break;
1038                 vcpu->arch.vcore->dpdes = 0;
1039                 vcpu->arch.doorbell_request = 0;
1040                 break;
1041         case OP_31_XOP_MFSPR:
1042                 switch (get_sprn(inst)) {
1043                 case SPRN_TIR:
1044                         arg = thr;
1045                         break;
1046                 case SPRN_DPDES:
1047                         arg = kvmppc_read_dpdes(vcpu);
1048                         break;
1049                 default:
1050                         return EMULATE_FAIL;
1051                 }
1052                 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1053                 break;
1054         default:
1055                 return EMULATE_FAIL;
1056         }
1057         kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1058         return RESUME_GUEST;
1059 }
1060
1061 /* Called with vcpu->arch.vcore->lock held */
1062 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1063                                  struct task_struct *tsk)
1064 {
1065         int r = RESUME_HOST;
1066
1067         vcpu->stat.sum_exits++;
1068
1069         /*
1070          * This can happen if an interrupt occurs in the last stages
1071          * of guest entry or the first stages of guest exit (i.e. after
1072          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1073          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1074          * That can happen due to a bug, or due to a machine check
1075          * occurring at just the wrong time.
1076          */
1077         if (vcpu->arch.shregs.msr & MSR_HV) {
1078                 printk(KERN_EMERG "KVM trap in HV mode!\n");
1079                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1080                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1081                         vcpu->arch.shregs.msr);
1082                 kvmppc_dump_regs(vcpu);
1083                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1084                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1085                 return RESUME_HOST;
1086         }
1087         run->exit_reason = KVM_EXIT_UNKNOWN;
1088         run->ready_for_interrupt_injection = 1;
1089         switch (vcpu->arch.trap) {
1090         /* We're good on these - the host merely wanted to get our attention */
1091         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1092                 vcpu->stat.dec_exits++;
1093                 r = RESUME_GUEST;
1094                 break;
1095         case BOOK3S_INTERRUPT_EXTERNAL:
1096         case BOOK3S_INTERRUPT_H_DOORBELL:
1097         case BOOK3S_INTERRUPT_H_VIRT:
1098                 vcpu->stat.ext_intr_exits++;
1099                 r = RESUME_GUEST;
1100                 break;
1101         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1102         case BOOK3S_INTERRUPT_HMI:
1103         case BOOK3S_INTERRUPT_PERFMON:
1104         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1105                 r = RESUME_GUEST;
1106                 break;
1107         case BOOK3S_INTERRUPT_MACHINE_CHECK:
1108                 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1109                 run->exit_reason = KVM_EXIT_NMI;
1110                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1111                 /* Clear out the old NMI status from run->flags */
1112                 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1113                 /* Now set the NMI status */
1114                 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1115                         run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1116                 else
1117                         run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1118
1119                 r = RESUME_HOST;
1120                 /* Print the MCE event to host console. */
1121                 machine_check_print_event_info(&vcpu->arch.mce_evt, false);
1122                 break;
1123         case BOOK3S_INTERRUPT_PROGRAM:
1124         {
1125                 ulong flags;
1126                 /*
1127                  * Normally program interrupts are delivered directly
1128                  * to the guest by the hardware, but we can get here
1129                  * as a result of a hypervisor emulation interrupt
1130                  * (e40) getting turned into a 700 by BML RTAS.
1131                  */
1132                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1133                 kvmppc_core_queue_program(vcpu, flags);
1134                 r = RESUME_GUEST;
1135                 break;
1136         }
1137         case BOOK3S_INTERRUPT_SYSCALL:
1138         {
1139                 /* hcall - punt to userspace */
1140                 int i;
1141
1142                 /* hypercall with MSR_PR has already been handled in rmode,
1143                  * and never reaches here.
1144                  */
1145
1146                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1147                 for (i = 0; i < 9; ++i)
1148                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1149                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1150                 vcpu->arch.hcall_needed = 1;
1151                 r = RESUME_HOST;
1152                 break;
1153         }
1154         /*
1155          * We get these next two if the guest accesses a page which it thinks
1156          * it has mapped but which is not actually present, either because
1157          * it is for an emulated I/O device or because the corresonding
1158          * host page has been paged out.  Any other HDSI/HISI interrupts
1159          * have been handled already.
1160          */
1161         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1162                 r = RESUME_PAGE_FAULT;
1163                 break;
1164         case BOOK3S_INTERRUPT_H_INST_STORAGE:
1165                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1166                 vcpu->arch.fault_dsisr = 0;
1167                 r = RESUME_PAGE_FAULT;
1168                 break;
1169         /*
1170          * This occurs if the guest executes an illegal instruction.
1171          * If the guest debug is disabled, generate a program interrupt
1172          * to the guest. If guest debug is enabled, we need to check
1173          * whether the instruction is a software breakpoint instruction.
1174          * Accordingly return to Guest or Host.
1175          */
1176         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1177                 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1178                         vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1179                                 swab32(vcpu->arch.emul_inst) :
1180                                 vcpu->arch.emul_inst;
1181                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1182                         /* Need vcore unlocked to call kvmppc_get_last_inst */
1183                         spin_unlock(&vcpu->arch.vcore->lock);
1184                         r = kvmppc_emulate_debug_inst(run, vcpu);
1185                         spin_lock(&vcpu->arch.vcore->lock);
1186                 } else {
1187                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1188                         r = RESUME_GUEST;
1189                 }
1190                 break;
1191         /*
1192          * This occurs if the guest (kernel or userspace), does something that
1193          * is prohibited by HFSCR.
1194          * On POWER9, this could be a doorbell instruction that we need
1195          * to emulate.
1196          * Otherwise, we just generate a program interrupt to the guest.
1197          */
1198         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1199                 r = EMULATE_FAIL;
1200                 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1201                     cpu_has_feature(CPU_FTR_ARCH_300)) {
1202                         /* Need vcore unlocked to call kvmppc_get_last_inst */
1203                         spin_unlock(&vcpu->arch.vcore->lock);
1204                         r = kvmppc_emulate_doorbell_instr(vcpu);
1205                         spin_lock(&vcpu->arch.vcore->lock);
1206                 }
1207                 if (r == EMULATE_FAIL) {
1208                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1209                         r = RESUME_GUEST;
1210                 }
1211                 break;
1212
1213 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1214         case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1215                 /*
1216                  * This occurs for various TM-related instructions that
1217                  * we need to emulate on POWER9 DD2.2.  We have already
1218                  * handled the cases where the guest was in real-suspend
1219                  * mode and was transitioning to transactional state.
1220                  */
1221                 r = kvmhv_p9_tm_emulation(vcpu);
1222                 break;
1223 #endif
1224
1225         case BOOK3S_INTERRUPT_HV_RM_HARD:
1226                 r = RESUME_PASSTHROUGH;
1227                 break;
1228         default:
1229                 kvmppc_dump_regs(vcpu);
1230                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1231                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1232                         vcpu->arch.shregs.msr);
1233                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1234                 r = RESUME_HOST;
1235                 break;
1236         }
1237
1238         return r;
1239 }
1240
1241 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1242                                             struct kvm_sregs *sregs)
1243 {
1244         int i;
1245
1246         memset(sregs, 0, sizeof(struct kvm_sregs));
1247         sregs->pvr = vcpu->arch.pvr;
1248         for (i = 0; i < vcpu->arch.slb_max; i++) {
1249                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1250                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1251         }
1252
1253         return 0;
1254 }
1255
1256 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1257                                             struct kvm_sregs *sregs)
1258 {
1259         int i, j;
1260
1261         /* Only accept the same PVR as the host's, since we can't spoof it */
1262         if (sregs->pvr != vcpu->arch.pvr)
1263                 return -EINVAL;
1264
1265         j = 0;
1266         for (i = 0; i < vcpu->arch.slb_nr; i++) {
1267                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1268                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1269                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1270                         ++j;
1271                 }
1272         }
1273         vcpu->arch.slb_max = j;
1274
1275         return 0;
1276 }
1277
1278 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1279                 bool preserve_top32)
1280 {
1281         struct kvm *kvm = vcpu->kvm;
1282         struct kvmppc_vcore *vc = vcpu->arch.vcore;
1283         u64 mask;
1284
1285         mutex_lock(&kvm->lock);
1286         spin_lock(&vc->lock);
1287         /*
1288          * If ILE (interrupt little-endian) has changed, update the
1289          * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1290          */
1291         if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1292                 struct kvm_vcpu *vcpu;
1293                 int i;
1294
1295                 kvm_for_each_vcpu(i, vcpu, kvm) {
1296                         if (vcpu->arch.vcore != vc)
1297                                 continue;
1298                         if (new_lpcr & LPCR_ILE)
1299                                 vcpu->arch.intr_msr |= MSR_LE;
1300                         else
1301                                 vcpu->arch.intr_msr &= ~MSR_LE;
1302                 }
1303         }
1304
1305         /*
1306          * Userspace can only modify DPFD (default prefetch depth),
1307          * ILE (interrupt little-endian) and TC (translation control).
1308          * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1309          */
1310         mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1311         if (cpu_has_feature(CPU_FTR_ARCH_207S))
1312                 mask |= LPCR_AIL;
1313         /*
1314          * On POWER9, allow userspace to enable large decrementer for the
1315          * guest, whether or not the host has it enabled.
1316          */
1317         if (cpu_has_feature(CPU_FTR_ARCH_300))
1318                 mask |= LPCR_LD;
1319
1320         /* Broken 32-bit version of LPCR must not clear top bits */
1321         if (preserve_top32)
1322                 mask &= 0xFFFFFFFF;
1323         vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1324         spin_unlock(&vc->lock);
1325         mutex_unlock(&kvm->lock);
1326 }
1327
1328 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1329                                  union kvmppc_one_reg *val)
1330 {
1331         int r = 0;
1332         long int i;
1333
1334         switch (id) {
1335         case KVM_REG_PPC_DEBUG_INST:
1336                 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1337                 break;
1338         case KVM_REG_PPC_HIOR:
1339                 *val = get_reg_val(id, 0);
1340                 break;
1341         case KVM_REG_PPC_DABR:
1342                 *val = get_reg_val(id, vcpu->arch.dabr);
1343                 break;
1344         case KVM_REG_PPC_DABRX:
1345                 *val = get_reg_val(id, vcpu->arch.dabrx);
1346                 break;
1347         case KVM_REG_PPC_DSCR:
1348                 *val = get_reg_val(id, vcpu->arch.dscr);
1349                 break;
1350         case KVM_REG_PPC_PURR:
1351                 *val = get_reg_val(id, vcpu->arch.purr);
1352                 break;
1353         case KVM_REG_PPC_SPURR:
1354                 *val = get_reg_val(id, vcpu->arch.spurr);
1355                 break;
1356         case KVM_REG_PPC_AMR:
1357                 *val = get_reg_val(id, vcpu->arch.amr);
1358                 break;
1359         case KVM_REG_PPC_UAMOR:
1360                 *val = get_reg_val(id, vcpu->arch.uamor);
1361                 break;
1362         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1363                 i = id - KVM_REG_PPC_MMCR0;
1364                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1365                 break;
1366         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1367                 i = id - KVM_REG_PPC_PMC1;
1368                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1369                 break;
1370         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1371                 i = id - KVM_REG_PPC_SPMC1;
1372                 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1373                 break;
1374         case KVM_REG_PPC_SIAR:
1375                 *val = get_reg_val(id, vcpu->arch.siar);
1376                 break;
1377         case KVM_REG_PPC_SDAR:
1378                 *val = get_reg_val(id, vcpu->arch.sdar);
1379                 break;
1380         case KVM_REG_PPC_SIER:
1381                 *val = get_reg_val(id, vcpu->arch.sier);
1382                 break;
1383         case KVM_REG_PPC_IAMR:
1384                 *val = get_reg_val(id, vcpu->arch.iamr);
1385                 break;
1386         case KVM_REG_PPC_PSPB:
1387                 *val = get_reg_val(id, vcpu->arch.pspb);
1388                 break;
1389         case KVM_REG_PPC_DPDES:
1390                 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1391                 break;
1392         case KVM_REG_PPC_VTB:
1393                 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1394                 break;
1395         case KVM_REG_PPC_DAWR:
1396                 *val = get_reg_val(id, vcpu->arch.dawr);
1397                 break;
1398         case KVM_REG_PPC_DAWRX:
1399                 *val = get_reg_val(id, vcpu->arch.dawrx);
1400                 break;
1401         case KVM_REG_PPC_CIABR:
1402                 *val = get_reg_val(id, vcpu->arch.ciabr);
1403                 break;
1404         case KVM_REG_PPC_CSIGR:
1405                 *val = get_reg_val(id, vcpu->arch.csigr);
1406                 break;
1407         case KVM_REG_PPC_TACR:
1408                 *val = get_reg_val(id, vcpu->arch.tacr);
1409                 break;
1410         case KVM_REG_PPC_TCSCR:
1411                 *val = get_reg_val(id, vcpu->arch.tcscr);
1412                 break;
1413         case KVM_REG_PPC_PID:
1414                 *val = get_reg_val(id, vcpu->arch.pid);
1415                 break;
1416         case KVM_REG_PPC_ACOP:
1417                 *val = get_reg_val(id, vcpu->arch.acop);
1418                 break;
1419         case KVM_REG_PPC_WORT:
1420                 *val = get_reg_val(id, vcpu->arch.wort);
1421                 break;
1422         case KVM_REG_PPC_TIDR:
1423                 *val = get_reg_val(id, vcpu->arch.tid);
1424                 break;
1425         case KVM_REG_PPC_PSSCR:
1426                 *val = get_reg_val(id, vcpu->arch.psscr);
1427                 break;
1428         case KVM_REG_PPC_VPA_ADDR:
1429                 spin_lock(&vcpu->arch.vpa_update_lock);
1430                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1431                 spin_unlock(&vcpu->arch.vpa_update_lock);
1432                 break;
1433         case KVM_REG_PPC_VPA_SLB:
1434                 spin_lock(&vcpu->arch.vpa_update_lock);
1435                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1436                 val->vpaval.length = vcpu->arch.slb_shadow.len;
1437                 spin_unlock(&vcpu->arch.vpa_update_lock);
1438                 break;
1439         case KVM_REG_PPC_VPA_DTL:
1440                 spin_lock(&vcpu->arch.vpa_update_lock);
1441                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1442                 val->vpaval.length = vcpu->arch.dtl.len;
1443                 spin_unlock(&vcpu->arch.vpa_update_lock);
1444                 break;
1445         case KVM_REG_PPC_TB_OFFSET:
1446                 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1447                 break;
1448         case KVM_REG_PPC_LPCR:
1449         case KVM_REG_PPC_LPCR_64:
1450                 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1451                 break;
1452         case KVM_REG_PPC_PPR:
1453                 *val = get_reg_val(id, vcpu->arch.ppr);
1454                 break;
1455 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1456         case KVM_REG_PPC_TFHAR:
1457                 *val = get_reg_val(id, vcpu->arch.tfhar);
1458                 break;
1459         case KVM_REG_PPC_TFIAR:
1460                 *val = get_reg_val(id, vcpu->arch.tfiar);
1461                 break;
1462         case KVM_REG_PPC_TEXASR:
1463                 *val = get_reg_val(id, vcpu->arch.texasr);
1464                 break;
1465         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1466                 i = id - KVM_REG_PPC_TM_GPR0;
1467                 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1468                 break;
1469         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1470         {
1471                 int j;
1472                 i = id - KVM_REG_PPC_TM_VSR0;
1473                 if (i < 32)
1474                         for (j = 0; j < TS_FPRWIDTH; j++)
1475                                 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1476                 else {
1477                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1478                                 val->vval = vcpu->arch.vr_tm.vr[i-32];
1479                         else
1480                                 r = -ENXIO;
1481                 }
1482                 break;
1483         }
1484         case KVM_REG_PPC_TM_CR:
1485                 *val = get_reg_val(id, vcpu->arch.cr_tm);
1486                 break;
1487         case KVM_REG_PPC_TM_XER:
1488                 *val = get_reg_val(id, vcpu->arch.xer_tm);
1489                 break;
1490         case KVM_REG_PPC_TM_LR:
1491                 *val = get_reg_val(id, vcpu->arch.lr_tm);
1492                 break;
1493         case KVM_REG_PPC_TM_CTR:
1494                 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1495                 break;
1496         case KVM_REG_PPC_TM_FPSCR:
1497                 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1498                 break;
1499         case KVM_REG_PPC_TM_AMR:
1500                 *val = get_reg_val(id, vcpu->arch.amr_tm);
1501                 break;
1502         case KVM_REG_PPC_TM_PPR:
1503                 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1504                 break;
1505         case KVM_REG_PPC_TM_VRSAVE:
1506                 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1507                 break;
1508         case KVM_REG_PPC_TM_VSCR:
1509                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1510                         *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1511                 else
1512                         r = -ENXIO;
1513                 break;
1514         case KVM_REG_PPC_TM_DSCR:
1515                 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1516                 break;
1517         case KVM_REG_PPC_TM_TAR:
1518                 *val = get_reg_val(id, vcpu->arch.tar_tm);
1519                 break;
1520 #endif
1521         case KVM_REG_PPC_ARCH_COMPAT:
1522                 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1523                 break;
1524         case KVM_REG_PPC_DEC_EXPIRY:
1525                 *val = get_reg_val(id, vcpu->arch.dec_expires +
1526                                    vcpu->arch.vcore->tb_offset);
1527                 break;
1528         default:
1529                 r = -EINVAL;
1530                 break;
1531         }
1532
1533         return r;
1534 }
1535
1536 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1537                                  union kvmppc_one_reg *val)
1538 {
1539         int r = 0;
1540         long int i;
1541         unsigned long addr, len;
1542
1543         switch (id) {
1544         case KVM_REG_PPC_HIOR:
1545                 /* Only allow this to be set to zero */
1546                 if (set_reg_val(id, *val))
1547                         r = -EINVAL;
1548                 break;
1549         case KVM_REG_PPC_DABR:
1550                 vcpu->arch.dabr = set_reg_val(id, *val);
1551                 break;
1552         case KVM_REG_PPC_DABRX:
1553                 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1554                 break;
1555         case KVM_REG_PPC_DSCR:
1556                 vcpu->arch.dscr = set_reg_val(id, *val);
1557                 break;
1558         case KVM_REG_PPC_PURR:
1559                 vcpu->arch.purr = set_reg_val(id, *val);
1560                 break;
1561         case KVM_REG_PPC_SPURR:
1562                 vcpu->arch.spurr = set_reg_val(id, *val);
1563                 break;
1564         case KVM_REG_PPC_AMR:
1565                 vcpu->arch.amr = set_reg_val(id, *val);
1566                 break;
1567         case KVM_REG_PPC_UAMOR:
1568                 vcpu->arch.uamor = set_reg_val(id, *val);
1569                 break;
1570         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1571                 i = id - KVM_REG_PPC_MMCR0;
1572                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1573                 break;
1574         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1575                 i = id - KVM_REG_PPC_PMC1;
1576                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1577                 break;
1578         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1579                 i = id - KVM_REG_PPC_SPMC1;
1580                 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1581                 break;
1582         case KVM_REG_PPC_SIAR:
1583                 vcpu->arch.siar = set_reg_val(id, *val);
1584                 break;
1585         case KVM_REG_PPC_SDAR:
1586                 vcpu->arch.sdar = set_reg_val(id, *val);
1587                 break;
1588         case KVM_REG_PPC_SIER:
1589                 vcpu->arch.sier = set_reg_val(id, *val);
1590                 break;
1591         case KVM_REG_PPC_IAMR:
1592                 vcpu->arch.iamr = set_reg_val(id, *val);
1593                 break;
1594         case KVM_REG_PPC_PSPB:
1595                 vcpu->arch.pspb = set_reg_val(id, *val);
1596                 break;
1597         case KVM_REG_PPC_DPDES:
1598                 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1599                 break;
1600         case KVM_REG_PPC_VTB:
1601                 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1602                 break;
1603         case KVM_REG_PPC_DAWR:
1604                 vcpu->arch.dawr = set_reg_val(id, *val);
1605                 break;
1606         case KVM_REG_PPC_DAWRX:
1607                 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1608                 break;
1609         case KVM_REG_PPC_CIABR:
1610                 vcpu->arch.ciabr = set_reg_val(id, *val);
1611                 /* Don't allow setting breakpoints in hypervisor code */
1612                 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1613                         vcpu->arch.ciabr &= ~CIABR_PRIV;        /* disable */
1614                 break;
1615         case KVM_REG_PPC_CSIGR:
1616                 vcpu->arch.csigr = set_reg_val(id, *val);
1617                 break;
1618         case KVM_REG_PPC_TACR:
1619                 vcpu->arch.tacr = set_reg_val(id, *val);
1620                 break;
1621         case KVM_REG_PPC_TCSCR:
1622                 vcpu->arch.tcscr = set_reg_val(id, *val);
1623                 break;
1624         case KVM_REG_PPC_PID:
1625                 vcpu->arch.pid = set_reg_val(id, *val);
1626                 break;
1627         case KVM_REG_PPC_ACOP:
1628                 vcpu->arch.acop = set_reg_val(id, *val);
1629                 break;
1630         case KVM_REG_PPC_WORT:
1631                 vcpu->arch.wort = set_reg_val(id, *val);
1632                 break;
1633         case KVM_REG_PPC_TIDR:
1634                 vcpu->arch.tid = set_reg_val(id, *val);
1635                 break;
1636         case KVM_REG_PPC_PSSCR:
1637                 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1638                 break;
1639         case KVM_REG_PPC_VPA_ADDR:
1640                 addr = set_reg_val(id, *val);
1641                 r = -EINVAL;
1642                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1643                               vcpu->arch.dtl.next_gpa))
1644                         break;
1645                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1646                 break;
1647         case KVM_REG_PPC_VPA_SLB:
1648                 addr = val->vpaval.addr;
1649                 len = val->vpaval.length;
1650                 r = -EINVAL;
1651                 if (addr && !vcpu->arch.vpa.next_gpa)
1652                         break;
1653                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1654                 break;
1655         case KVM_REG_PPC_VPA_DTL:
1656                 addr = val->vpaval.addr;
1657                 len = val->vpaval.length;
1658                 r = -EINVAL;
1659                 if (addr && (len < sizeof(struct dtl_entry) ||
1660                              !vcpu->arch.vpa.next_gpa))
1661                         break;
1662                 len -= len % sizeof(struct dtl_entry);
1663                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1664                 break;
1665         case KVM_REG_PPC_TB_OFFSET:
1666                 /*
1667                  * POWER9 DD1 has an erratum where writing TBU40 causes
1668                  * the timebase to lose ticks.  So we don't let the
1669                  * timebase offset be changed on P9 DD1.  (It is
1670                  * initialized to zero.)
1671                  */
1672                 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
1673                         break;
1674                 /* round up to multiple of 2^24 */
1675                 vcpu->arch.vcore->tb_offset =
1676                         ALIGN(set_reg_val(id, *val), 1UL << 24);
1677                 break;
1678         case KVM_REG_PPC_LPCR:
1679                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1680                 break;
1681         case KVM_REG_PPC_LPCR_64:
1682                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1683                 break;
1684         case KVM_REG_PPC_PPR:
1685                 vcpu->arch.ppr = set_reg_val(id, *val);
1686                 break;
1687 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1688         case KVM_REG_PPC_TFHAR:
1689                 vcpu->arch.tfhar = set_reg_val(id, *val);
1690                 break;
1691         case KVM_REG_PPC_TFIAR:
1692                 vcpu->arch.tfiar = set_reg_val(id, *val);
1693                 break;
1694         case KVM_REG_PPC_TEXASR:
1695                 vcpu->arch.texasr = set_reg_val(id, *val);
1696                 break;
1697         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1698                 i = id - KVM_REG_PPC_TM_GPR0;
1699                 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1700                 break;
1701         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1702         {
1703                 int j;
1704                 i = id - KVM_REG_PPC_TM_VSR0;
1705                 if (i < 32)
1706                         for (j = 0; j < TS_FPRWIDTH; j++)
1707                                 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1708                 else
1709                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1710                                 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1711                         else
1712                                 r = -ENXIO;
1713                 break;
1714         }
1715         case KVM_REG_PPC_TM_CR:
1716                 vcpu->arch.cr_tm = set_reg_val(id, *val);
1717                 break;
1718         case KVM_REG_PPC_TM_XER:
1719                 vcpu->arch.xer_tm = set_reg_val(id, *val);
1720                 break;
1721         case KVM_REG_PPC_TM_LR:
1722                 vcpu->arch.lr_tm = set_reg_val(id, *val);
1723                 break;
1724         case KVM_REG_PPC_TM_CTR:
1725                 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1726                 break;
1727         case KVM_REG_PPC_TM_FPSCR:
1728                 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1729                 break;
1730         case KVM_REG_PPC_TM_AMR:
1731                 vcpu->arch.amr_tm = set_reg_val(id, *val);
1732                 break;
1733         case KVM_REG_PPC_TM_PPR:
1734                 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1735                 break;
1736         case KVM_REG_PPC_TM_VRSAVE:
1737                 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1738                 break;
1739         case KVM_REG_PPC_TM_VSCR:
1740                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1741                         vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1742                 else
1743                         r = - ENXIO;
1744                 break;
1745         case KVM_REG_PPC_TM_DSCR:
1746                 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1747                 break;
1748         case KVM_REG_PPC_TM_TAR:
1749                 vcpu->arch.tar_tm = set_reg_val(id, *val);
1750                 break;
1751 #endif
1752         case KVM_REG_PPC_ARCH_COMPAT:
1753                 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1754                 break;
1755         case KVM_REG_PPC_DEC_EXPIRY:
1756                 vcpu->arch.dec_expires = set_reg_val(id, *val) -
1757                         vcpu->arch.vcore->tb_offset;
1758                 break;
1759         default:
1760                 r = -EINVAL;
1761                 break;
1762         }
1763
1764         return r;
1765 }
1766
1767 /*
1768  * On POWER9, threads are independent and can be in different partitions.
1769  * Therefore we consider each thread to be a subcore.
1770  * There is a restriction that all threads have to be in the same
1771  * MMU mode (radix or HPT), unfortunately, but since we only support
1772  * HPT guests on a HPT host so far, that isn't an impediment yet.
1773  */
1774 static int threads_per_vcore(struct kvm *kvm)
1775 {
1776         if (kvm->arch.threads_indep)
1777                 return 1;
1778         return threads_per_subcore;
1779 }
1780
1781 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1782 {
1783         struct kvmppc_vcore *vcore;
1784
1785         vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1786
1787         if (vcore == NULL)
1788                 return NULL;
1789
1790         spin_lock_init(&vcore->lock);
1791         spin_lock_init(&vcore->stoltb_lock);
1792         init_swait_queue_head(&vcore->wq);
1793         vcore->preempt_tb = TB_NIL;
1794         vcore->lpcr = kvm->arch.lpcr;
1795         vcore->first_vcpuid = core * kvm->arch.smt_mode;
1796         vcore->kvm = kvm;
1797         INIT_LIST_HEAD(&vcore->preempt_list);
1798
1799         return vcore;
1800 }
1801
1802 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1803 static struct debugfs_timings_element {
1804         const char *name;
1805         size_t offset;
1806 } timings[] = {
1807         {"rm_entry",    offsetof(struct kvm_vcpu, arch.rm_entry)},
1808         {"rm_intr",     offsetof(struct kvm_vcpu, arch.rm_intr)},
1809         {"rm_exit",     offsetof(struct kvm_vcpu, arch.rm_exit)},
1810         {"guest",       offsetof(struct kvm_vcpu, arch.guest_time)},
1811         {"cede",        offsetof(struct kvm_vcpu, arch.cede_time)},
1812 };
1813
1814 #define N_TIMINGS       (ARRAY_SIZE(timings))
1815
1816 struct debugfs_timings_state {
1817         struct kvm_vcpu *vcpu;
1818         unsigned int    buflen;
1819         char            buf[N_TIMINGS * 100];
1820 };
1821
1822 static int debugfs_timings_open(struct inode *inode, struct file *file)
1823 {
1824         struct kvm_vcpu *vcpu = inode->i_private;
1825         struct debugfs_timings_state *p;
1826
1827         p = kzalloc(sizeof(*p), GFP_KERNEL);
1828         if (!p)
1829                 return -ENOMEM;
1830
1831         kvm_get_kvm(vcpu->kvm);
1832         p->vcpu = vcpu;
1833         file->private_data = p;
1834
1835         return nonseekable_open(inode, file);
1836 }
1837
1838 static int debugfs_timings_release(struct inode *inode, struct file *file)
1839 {
1840         struct debugfs_timings_state *p = file->private_data;
1841
1842         kvm_put_kvm(p->vcpu->kvm);
1843         kfree(p);
1844         return 0;
1845 }
1846
1847 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1848                                     size_t len, loff_t *ppos)
1849 {
1850         struct debugfs_timings_state *p = file->private_data;
1851         struct kvm_vcpu *vcpu = p->vcpu;
1852         char *s, *buf_end;
1853         struct kvmhv_tb_accumulator tb;
1854         u64 count;
1855         loff_t pos;
1856         ssize_t n;
1857         int i, loops;
1858         bool ok;
1859
1860         if (!p->buflen) {
1861                 s = p->buf;
1862                 buf_end = s + sizeof(p->buf);
1863                 for (i = 0; i < N_TIMINGS; ++i) {
1864                         struct kvmhv_tb_accumulator *acc;
1865
1866                         acc = (struct kvmhv_tb_accumulator *)
1867                                 ((unsigned long)vcpu + timings[i].offset);
1868                         ok = false;
1869                         for (loops = 0; loops < 1000; ++loops) {
1870                                 count = acc->seqcount;
1871                                 if (!(count & 1)) {
1872                                         smp_rmb();
1873                                         tb = *acc;
1874                                         smp_rmb();
1875                                         if (count == acc->seqcount) {
1876                                                 ok = true;
1877                                                 break;
1878                                         }
1879                                 }
1880                                 udelay(1);
1881                         }
1882                         if (!ok)
1883                                 snprintf(s, buf_end - s, "%s: stuck\n",
1884                                         timings[i].name);
1885                         else
1886                                 snprintf(s, buf_end - s,
1887                                         "%s: %llu %llu %llu %llu\n",
1888                                         timings[i].name, count / 2,
1889                                         tb_to_ns(tb.tb_total),
1890                                         tb_to_ns(tb.tb_min),
1891                                         tb_to_ns(tb.tb_max));
1892                         s += strlen(s);
1893                 }
1894                 p->buflen = s - p->buf;
1895         }
1896
1897         pos = *ppos;
1898         if (pos >= p->buflen)
1899                 return 0;
1900         if (len > p->buflen - pos)
1901                 len = p->buflen - pos;
1902         n = copy_to_user(buf, p->buf + pos, len);
1903         if (n) {
1904                 if (n == len)
1905                         return -EFAULT;
1906                 len -= n;
1907         }
1908         *ppos = pos + len;
1909         return len;
1910 }
1911
1912 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1913                                      size_t len, loff_t *ppos)
1914 {
1915         return -EACCES;
1916 }
1917
1918 static const struct file_operations debugfs_timings_ops = {
1919         .owner   = THIS_MODULE,
1920         .open    = debugfs_timings_open,
1921         .release = debugfs_timings_release,
1922         .read    = debugfs_timings_read,
1923         .write   = debugfs_timings_write,
1924         .llseek  = generic_file_llseek,
1925 };
1926
1927 /* Create a debugfs directory for the vcpu */
1928 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1929 {
1930         char buf[16];
1931         struct kvm *kvm = vcpu->kvm;
1932
1933         snprintf(buf, sizeof(buf), "vcpu%u", id);
1934         if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1935                 return;
1936         vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1937         if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1938                 return;
1939         vcpu->arch.debugfs_timings =
1940                 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1941                                     vcpu, &debugfs_timings_ops);
1942 }
1943
1944 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1945 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1946 {
1947 }
1948 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1949
1950 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1951                                                    unsigned int id)
1952 {
1953         struct kvm_vcpu *vcpu;
1954         int err;
1955         int core;
1956         struct kvmppc_vcore *vcore;
1957
1958         err = -ENOMEM;
1959         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1960         if (!vcpu)
1961                 goto out;
1962
1963         err = kvm_vcpu_init(vcpu, kvm, id);
1964         if (err)
1965                 goto free_vcpu;
1966
1967         vcpu->arch.shared = &vcpu->arch.shregs;
1968 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1969         /*
1970          * The shared struct is never shared on HV,
1971          * so we can always use host endianness
1972          */
1973 #ifdef __BIG_ENDIAN__
1974         vcpu->arch.shared_big_endian = true;
1975 #else
1976         vcpu->arch.shared_big_endian = false;
1977 #endif
1978 #endif
1979         vcpu->arch.mmcr[0] = MMCR0_FC;
1980         vcpu->arch.ctrl = CTRL_RUNLATCH;
1981         /* default to host PVR, since we can't spoof it */
1982         kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1983         spin_lock_init(&vcpu->arch.vpa_update_lock);
1984         spin_lock_init(&vcpu->arch.tbacct_lock);
1985         vcpu->arch.busy_preempt = TB_NIL;
1986         vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1987
1988         /*
1989          * Set the default HFSCR for the guest from the host value.
1990          * This value is only used on POWER9.
1991          * On POWER9 DD1, TM doesn't work, so we make sure to
1992          * prevent the guest from using it.
1993          * On POWER9, we want to virtualize the doorbell facility, so we
1994          * turn off the HFSCR bit, which causes those instructions to trap.
1995          */
1996         vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
1997         if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
1998                 vcpu->arch.hfscr |= HFSCR_TM;
1999         else if (!cpu_has_feature(CPU_FTR_TM_COMP))
2000                 vcpu->arch.hfscr &= ~HFSCR_TM;
2001         if (cpu_has_feature(CPU_FTR_ARCH_300))
2002                 vcpu->arch.hfscr &= ~HFSCR_MSGP;
2003
2004         kvmppc_mmu_book3s_hv_init(vcpu);
2005
2006         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2007
2008         init_waitqueue_head(&vcpu->arch.cpu_run);
2009
2010         mutex_lock(&kvm->lock);
2011         vcore = NULL;
2012         err = -EINVAL;
2013         core = id / kvm->arch.smt_mode;
2014         if (core < KVM_MAX_VCORES) {
2015                 vcore = kvm->arch.vcores[core];
2016                 if (!vcore) {
2017                         err = -ENOMEM;
2018                         vcore = kvmppc_vcore_create(kvm, core);
2019                         kvm->arch.vcores[core] = vcore;
2020                         kvm->arch.online_vcores++;
2021                 }
2022         }
2023         mutex_unlock(&kvm->lock);
2024
2025         if (!vcore)
2026                 goto free_vcpu;
2027
2028         spin_lock(&vcore->lock);
2029         ++vcore->num_threads;
2030         spin_unlock(&vcore->lock);
2031         vcpu->arch.vcore = vcore;
2032         vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2033         vcpu->arch.thread_cpu = -1;
2034         vcpu->arch.prev_cpu = -1;
2035
2036         vcpu->arch.cpu_type = KVM_CPU_3S_64;
2037         kvmppc_sanity_check(vcpu);
2038
2039         debugfs_vcpu_init(vcpu, id);
2040
2041         return vcpu;
2042
2043 free_vcpu:
2044         kmem_cache_free(kvm_vcpu_cache, vcpu);
2045 out:
2046         return ERR_PTR(err);
2047 }
2048
2049 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2050                               unsigned long flags)
2051 {
2052         int err;
2053         int esmt = 0;
2054
2055         if (flags)
2056                 return -EINVAL;
2057         if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2058                 return -EINVAL;
2059         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2060                 /*
2061                  * On POWER8 (or POWER7), the threading mode is "strict",
2062                  * so we pack smt_mode vcpus per vcore.
2063                  */
2064                 if (smt_mode > threads_per_subcore)
2065                         return -EINVAL;
2066         } else {
2067                 /*
2068                  * On POWER9, the threading mode is "loose",
2069                  * so each vcpu gets its own vcore.
2070                  */
2071                 esmt = smt_mode;
2072                 smt_mode = 1;
2073         }
2074         mutex_lock(&kvm->lock);
2075         err = -EBUSY;
2076         if (!kvm->arch.online_vcores) {
2077                 kvm->arch.smt_mode = smt_mode;
2078                 kvm->arch.emul_smt_mode = esmt;
2079                 err = 0;
2080         }
2081         mutex_unlock(&kvm->lock);
2082
2083         return err;
2084 }
2085
2086 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2087 {
2088         if (vpa->pinned_addr)
2089                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2090                                         vpa->dirty);
2091 }
2092
2093 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2094 {
2095         spin_lock(&vcpu->arch.vpa_update_lock);
2096         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2097         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2098         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2099         spin_unlock(&vcpu->arch.vpa_update_lock);
2100         kvm_vcpu_uninit(vcpu);
2101         kmem_cache_free(kvm_vcpu_cache, vcpu);
2102 }
2103
2104 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2105 {
2106         /* Indicate we want to get back into the guest */
2107         return 1;
2108 }
2109
2110 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2111 {
2112         unsigned long dec_nsec, now;
2113
2114         now = get_tb();
2115         if (now > vcpu->arch.dec_expires) {
2116                 /* decrementer has already gone negative */
2117                 kvmppc_core_queue_dec(vcpu);
2118                 kvmppc_core_prepare_to_enter(vcpu);
2119                 return;
2120         }
2121         dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
2122                    / tb_ticks_per_sec;
2123         hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2124         vcpu->arch.timer_running = 1;
2125 }
2126
2127 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2128 {
2129         vcpu->arch.ceded = 0;
2130         if (vcpu->arch.timer_running) {
2131                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2132                 vcpu->arch.timer_running = 0;
2133         }
2134 }
2135
2136 extern int __kvmppc_vcore_entry(void);
2137
2138 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2139                                    struct kvm_vcpu *vcpu)
2140 {
2141         u64 now;
2142
2143         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2144                 return;
2145         spin_lock_irq(&vcpu->arch.tbacct_lock);
2146         now = mftb();
2147         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2148                 vcpu->arch.stolen_logged;
2149         vcpu->arch.busy_preempt = now;
2150         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2151         spin_unlock_irq(&vcpu->arch.tbacct_lock);
2152         --vc->n_runnable;
2153         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2154 }
2155
2156 static int kvmppc_grab_hwthread(int cpu)
2157 {
2158         struct paca_struct *tpaca;
2159         long timeout = 10000;
2160
2161         tpaca = paca_ptrs[cpu];
2162
2163         /* Ensure the thread won't go into the kernel if it wakes */
2164         tpaca->kvm_hstate.kvm_vcpu = NULL;
2165         tpaca->kvm_hstate.kvm_vcore = NULL;
2166         tpaca->kvm_hstate.napping = 0;
2167         smp_wmb();
2168         tpaca->kvm_hstate.hwthread_req = 1;
2169
2170         /*
2171          * If the thread is already executing in the kernel (e.g. handling
2172          * a stray interrupt), wait for it to get back to nap mode.
2173          * The smp_mb() is to ensure that our setting of hwthread_req
2174          * is visible before we look at hwthread_state, so if this
2175          * races with the code at system_reset_pSeries and the thread
2176          * misses our setting of hwthread_req, we are sure to see its
2177          * setting of hwthread_state, and vice versa.
2178          */
2179         smp_mb();
2180         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2181                 if (--timeout <= 0) {
2182                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
2183                         return -EBUSY;
2184                 }
2185                 udelay(1);
2186         }
2187         return 0;
2188 }
2189
2190 static void kvmppc_release_hwthread(int cpu)
2191 {
2192         struct paca_struct *tpaca;
2193
2194         tpaca = paca_ptrs[cpu];
2195         tpaca->kvm_hstate.hwthread_req = 0;
2196         tpaca->kvm_hstate.kvm_vcpu = NULL;
2197         tpaca->kvm_hstate.kvm_vcore = NULL;
2198         tpaca->kvm_hstate.kvm_split_mode = NULL;
2199 }
2200
2201 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2202 {
2203         int i;
2204
2205         cpu = cpu_first_thread_sibling(cpu);
2206         cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2207         /*
2208          * Make sure setting of bit in need_tlb_flush precedes
2209          * testing of cpu_in_guest bits.  The matching barrier on
2210          * the other side is the first smp_mb() in kvmppc_run_core().
2211          */
2212         smp_mb();
2213         for (i = 0; i < threads_per_core; ++i)
2214                 if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
2215                         smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2216 }
2217
2218 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2219 {
2220         struct kvm *kvm = vcpu->kvm;
2221
2222         /*
2223          * With radix, the guest can do TLB invalidations itself,
2224          * and it could choose to use the local form (tlbiel) if
2225          * it is invalidating a translation that has only ever been
2226          * used on one vcpu.  However, that doesn't mean it has
2227          * only ever been used on one physical cpu, since vcpus
2228          * can move around between pcpus.  To cope with this, when
2229          * a vcpu moves from one pcpu to another, we need to tell
2230          * any vcpus running on the same core as this vcpu previously
2231          * ran to flush the TLB.  The TLB is shared between threads,
2232          * so we use a single bit in .need_tlb_flush for all 4 threads.
2233          */
2234         if (vcpu->arch.prev_cpu != pcpu) {
2235                 if (vcpu->arch.prev_cpu >= 0 &&
2236                     cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
2237                     cpu_first_thread_sibling(pcpu))
2238                         radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
2239                 vcpu->arch.prev_cpu = pcpu;
2240         }
2241 }
2242
2243 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2244 {
2245         int cpu;
2246         struct paca_struct *tpaca;
2247         struct kvm *kvm = vc->kvm;
2248
2249         cpu = vc->pcpu;
2250         if (vcpu) {
2251                 if (vcpu->arch.timer_running) {
2252                         hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2253                         vcpu->arch.timer_running = 0;
2254                 }
2255                 cpu += vcpu->arch.ptid;
2256                 vcpu->cpu = vc->pcpu;
2257                 vcpu->arch.thread_cpu = cpu;
2258                 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2259         }
2260         tpaca = paca_ptrs[cpu];
2261         tpaca->kvm_hstate.kvm_vcpu = vcpu;
2262         tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2263         tpaca->kvm_hstate.fake_suspend = 0;
2264         /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2265         smp_wmb();
2266         tpaca->kvm_hstate.kvm_vcore = vc;
2267         if (cpu != smp_processor_id())
2268                 kvmppc_ipi_thread(cpu);
2269 }
2270
2271 static void kvmppc_wait_for_nap(int n_threads)
2272 {
2273         int cpu = smp_processor_id();
2274         int i, loops;
2275
2276         if (n_threads <= 1)
2277                 return;
2278         for (loops = 0; loops < 1000000; ++loops) {
2279                 /*
2280                  * Check if all threads are finished.
2281                  * We set the vcore pointer when starting a thread
2282                  * and the thread clears it when finished, so we look
2283                  * for any threads that still have a non-NULL vcore ptr.
2284                  */
2285                 for (i = 1; i < n_threads; ++i)
2286                         if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2287                                 break;
2288                 if (i == n_threads) {
2289                         HMT_medium();
2290                         return;
2291                 }
2292                 HMT_low();
2293         }
2294         HMT_medium();
2295         for (i = 1; i < n_threads; ++i)
2296                 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2297                         pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2298 }
2299
2300 /*
2301  * Check that we are on thread 0 and that any other threads in
2302  * this core are off-line.  Then grab the threads so they can't
2303  * enter the kernel.
2304  */
2305 static int on_primary_thread(void)
2306 {
2307         int cpu = smp_processor_id();
2308         int thr;
2309
2310         /* Are we on a primary subcore? */
2311         if (cpu_thread_in_subcore(cpu))
2312                 return 0;
2313
2314         thr = 0;
2315         while (++thr < threads_per_subcore)
2316                 if (cpu_online(cpu + thr))
2317                         return 0;
2318
2319         /* Grab all hw threads so they can't go into the kernel */
2320         for (thr = 1; thr < threads_per_subcore; ++thr) {
2321                 if (kvmppc_grab_hwthread(cpu + thr)) {
2322                         /* Couldn't grab one; let the others go */
2323                         do {
2324                                 kvmppc_release_hwthread(cpu + thr);
2325                         } while (--thr > 0);
2326                         return 0;
2327                 }
2328         }
2329         return 1;
2330 }
2331
2332 /*
2333  * A list of virtual cores for each physical CPU.
2334  * These are vcores that could run but their runner VCPU tasks are
2335  * (or may be) preempted.
2336  */
2337 struct preempted_vcore_list {
2338         struct list_head        list;
2339         spinlock_t              lock;
2340 };
2341
2342 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2343
2344 static void init_vcore_lists(void)
2345 {
2346         int cpu;
2347
2348         for_each_possible_cpu(cpu) {
2349                 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2350                 spin_lock_init(&lp->lock);
2351                 INIT_LIST_HEAD(&lp->list);
2352         }
2353 }
2354
2355 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2356 {
2357         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2358
2359         vc->vcore_state = VCORE_PREEMPT;
2360         vc->pcpu = smp_processor_id();
2361         if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2362                 spin_lock(&lp->lock);
2363                 list_add_tail(&vc->preempt_list, &lp->list);
2364                 spin_unlock(&lp->lock);
2365         }
2366
2367         /* Start accumulating stolen time */
2368         kvmppc_core_start_stolen(vc);
2369 }
2370
2371 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2372 {
2373         struct preempted_vcore_list *lp;
2374
2375         kvmppc_core_end_stolen(vc);
2376         if (!list_empty(&vc->preempt_list)) {
2377                 lp = &per_cpu(preempted_vcores, vc->pcpu);
2378                 spin_lock(&lp->lock);
2379                 list_del_init(&vc->preempt_list);
2380                 spin_unlock(&lp->lock);
2381         }
2382         vc->vcore_state = VCORE_INACTIVE;
2383 }
2384
2385 /*
2386  * This stores information about the virtual cores currently
2387  * assigned to a physical core.
2388  */
2389 struct core_info {
2390         int             n_subcores;
2391         int             max_subcore_threads;
2392         int             total_threads;
2393         int             subcore_threads[MAX_SUBCORES];
2394         struct kvmppc_vcore *vc[MAX_SUBCORES];
2395 };
2396
2397 /*
2398  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2399  * respectively in 2-way micro-threading (split-core) mode on POWER8.
2400  */
2401 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2402
2403 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2404 {
2405         memset(cip, 0, sizeof(*cip));
2406         cip->n_subcores = 1;
2407         cip->max_subcore_threads = vc->num_threads;
2408         cip->total_threads = vc->num_threads;
2409         cip->subcore_threads[0] = vc->num_threads;
2410         cip->vc[0] = vc;
2411 }
2412
2413 static bool subcore_config_ok(int n_subcores, int n_threads)
2414 {
2415         /*
2416          * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2417          * split-core mode, with one thread per subcore.
2418          */
2419         if (cpu_has_feature(CPU_FTR_ARCH_300))
2420                 return n_subcores <= 4 && n_threads == 1;
2421
2422         /* On POWER8, can only dynamically split if unsplit to begin with */
2423         if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2424                 return false;
2425         if (n_subcores > MAX_SUBCORES)
2426                 return false;
2427         if (n_subcores > 1) {
2428                 if (!(dynamic_mt_modes & 2))
2429                         n_subcores = 4;
2430                 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2431                         return false;
2432         }
2433
2434         return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2435 }
2436
2437 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2438 {
2439         vc->entry_exit_map = 0;
2440         vc->in_guest = 0;
2441         vc->napping_threads = 0;
2442         vc->conferring_threads = 0;
2443 }
2444
2445 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2446 {
2447         int n_threads = vc->num_threads;
2448         int sub;
2449
2450         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2451                 return false;
2452
2453         /* Some POWER9 chips require all threads to be in the same MMU mode */
2454         if (no_mixing_hpt_and_radix &&
2455             kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2456                 return false;
2457
2458         if (n_threads < cip->max_subcore_threads)
2459                 n_threads = cip->max_subcore_threads;
2460         if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2461                 return false;
2462         cip->max_subcore_threads = n_threads;
2463
2464         sub = cip->n_subcores;
2465         ++cip->n_subcores;
2466         cip->total_threads += vc->num_threads;
2467         cip->subcore_threads[sub] = vc->num_threads;
2468         cip->vc[sub] = vc;
2469         init_vcore_to_run(vc);
2470         list_del_init(&vc->preempt_list);
2471
2472         return true;
2473 }
2474
2475 /*
2476  * Work out whether it is possible to piggyback the execution of
2477  * vcore *pvc onto the execution of the other vcores described in *cip.
2478  */
2479 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2480                           int target_threads)
2481 {
2482         if (cip->total_threads + pvc->num_threads > target_threads)
2483                 return false;
2484
2485         return can_dynamic_split(pvc, cip);
2486 }
2487
2488 static void prepare_threads(struct kvmppc_vcore *vc)
2489 {
2490         int i;
2491         struct kvm_vcpu *vcpu;
2492
2493         for_each_runnable_thread(i, vcpu, vc) {
2494                 if (signal_pending(vcpu->arch.run_task))
2495                         vcpu->arch.ret = -EINTR;
2496                 else if (vcpu->arch.vpa.update_pending ||
2497                          vcpu->arch.slb_shadow.update_pending ||
2498                          vcpu->arch.dtl.update_pending)
2499                         vcpu->arch.ret = RESUME_GUEST;
2500                 else
2501                         continue;
2502                 kvmppc_remove_runnable(vc, vcpu);
2503                 wake_up(&vcpu->arch.cpu_run);
2504         }
2505 }
2506
2507 static void collect_piggybacks(struct core_info *cip, int target_threads)
2508 {
2509         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2510         struct kvmppc_vcore *pvc, *vcnext;
2511
2512         spin_lock(&lp->lock);
2513         list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2514                 if (!spin_trylock(&pvc->lock))
2515                         continue;
2516                 prepare_threads(pvc);
2517                 if (!pvc->n_runnable) {
2518                         list_del_init(&pvc->preempt_list);
2519                         if (pvc->runner == NULL) {
2520                                 pvc->vcore_state = VCORE_INACTIVE;
2521                                 kvmppc_core_end_stolen(pvc);
2522                         }
2523                         spin_unlock(&pvc->lock);
2524                         continue;
2525                 }
2526                 if (!can_piggyback(pvc, cip, target_threads)) {
2527                         spin_unlock(&pvc->lock);
2528                         continue;
2529                 }
2530                 kvmppc_core_end_stolen(pvc);
2531                 pvc->vcore_state = VCORE_PIGGYBACK;
2532                 if (cip->total_threads >= target_threads)
2533                         break;
2534         }
2535         spin_unlock(&lp->lock);
2536 }
2537
2538 static bool recheck_signals(struct core_info *cip)
2539 {
2540         int sub, i;
2541         struct kvm_vcpu *vcpu;
2542
2543         for (sub = 0; sub < cip->n_subcores; ++sub)
2544                 for_each_runnable_thread(i, vcpu, cip->vc[sub])
2545                         if (signal_pending(vcpu->arch.run_task))
2546                                 return true;
2547         return false;
2548 }
2549
2550 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2551 {
2552         int still_running = 0, i;
2553         u64 now;
2554         long ret;
2555         struct kvm_vcpu *vcpu;
2556
2557         spin_lock(&vc->lock);
2558         now = get_tb();
2559         for_each_runnable_thread(i, vcpu, vc) {
2560                 /* cancel pending dec exception if dec is positive */
2561                 if (now < vcpu->arch.dec_expires &&
2562                     kvmppc_core_pending_dec(vcpu))
2563                         kvmppc_core_dequeue_dec(vcpu);
2564
2565                 trace_kvm_guest_exit(vcpu);
2566
2567                 ret = RESUME_GUEST;
2568                 if (vcpu->arch.trap)
2569                         ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2570                                                     vcpu->arch.run_task);
2571
2572                 vcpu->arch.ret = ret;
2573                 vcpu->arch.trap = 0;
2574
2575                 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2576                         if (vcpu->arch.pending_exceptions)
2577                                 kvmppc_core_prepare_to_enter(vcpu);
2578                         if (vcpu->arch.ceded)
2579                                 kvmppc_set_timer(vcpu);
2580                         else
2581                                 ++still_running;
2582                 } else {
2583                         kvmppc_remove_runnable(vc, vcpu);
2584                         wake_up(&vcpu->arch.cpu_run);
2585                 }
2586         }
2587         if (!is_master) {
2588                 if (still_running > 0) {
2589                         kvmppc_vcore_preempt(vc);
2590                 } else if (vc->runner) {
2591                         vc->vcore_state = VCORE_PREEMPT;
2592                         kvmppc_core_start_stolen(vc);
2593                 } else {
2594                         vc->vcore_state = VCORE_INACTIVE;
2595                 }
2596                 if (vc->n_runnable > 0 && vc->runner == NULL) {
2597                         /* make sure there's a candidate runner awake */
2598                         i = -1;
2599                         vcpu = next_runnable_thread(vc, &i);
2600                         wake_up(&vcpu->arch.cpu_run);
2601                 }
2602         }
2603         spin_unlock(&vc->lock);
2604 }
2605
2606 /*
2607  * Clear core from the list of active host cores as we are about to
2608  * enter the guest. Only do this if it is the primary thread of the
2609  * core (not if a subcore) that is entering the guest.
2610  */
2611 static inline int kvmppc_clear_host_core(unsigned int cpu)
2612 {
2613         int core;
2614
2615         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2616                 return 0;
2617         /*
2618          * Memory barrier can be omitted here as we will do a smp_wmb()
2619          * later in kvmppc_start_thread and we need ensure that state is
2620          * visible to other CPUs only after we enter guest.
2621          */
2622         core = cpu >> threads_shift;
2623         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2624         return 0;
2625 }
2626
2627 /*
2628  * Advertise this core as an active host core since we exited the guest
2629  * Only need to do this if it is the primary thread of the core that is
2630  * exiting.
2631  */
2632 static inline int kvmppc_set_host_core(unsigned int cpu)
2633 {
2634         int core;
2635
2636         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2637                 return 0;
2638
2639         /*
2640          * Memory barrier can be omitted here because we do a spin_unlock
2641          * immediately after this which provides the memory barrier.
2642          */
2643         core = cpu >> threads_shift;
2644         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2645         return 0;
2646 }
2647
2648 static void set_irq_happened(int trap)
2649 {
2650         switch (trap) {
2651         case BOOK3S_INTERRUPT_EXTERNAL:
2652                 local_paca->irq_happened |= PACA_IRQ_EE;
2653                 break;
2654         case BOOK3S_INTERRUPT_H_DOORBELL:
2655                 local_paca->irq_happened |= PACA_IRQ_DBELL;
2656                 break;
2657         case BOOK3S_INTERRUPT_HMI:
2658                 local_paca->irq_happened |= PACA_IRQ_HMI;
2659                 break;
2660         case BOOK3S_INTERRUPT_SYSTEM_RESET:
2661                 replay_system_reset();
2662                 break;
2663         }
2664 }
2665
2666 /*
2667  * Run a set of guest threads on a physical core.
2668  * Called with vc->lock held.
2669  */
2670 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2671 {
2672         struct kvm_vcpu *vcpu;
2673         int i;
2674         int srcu_idx;
2675         struct core_info core_info;
2676         struct kvmppc_vcore *pvc;
2677         struct kvm_split_mode split_info, *sip;
2678         int split, subcore_size, active;
2679         int sub;
2680         bool thr0_done;
2681         unsigned long cmd_bit, stat_bit;
2682         int pcpu, thr;
2683         int target_threads;
2684         int controlled_threads;
2685         int trap;
2686         bool is_power8;
2687         bool hpt_on_radix;
2688
2689         /*
2690          * Remove from the list any threads that have a signal pending
2691          * or need a VPA update done
2692          */
2693         prepare_threads(vc);
2694
2695         /* if the runner is no longer runnable, let the caller pick a new one */
2696         if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2697                 return;
2698
2699         /*
2700          * Initialize *vc.
2701          */
2702         init_vcore_to_run(vc);
2703         vc->preempt_tb = TB_NIL;
2704
2705         /*
2706          * Number of threads that we will be controlling: the same as
2707          * the number of threads per subcore, except on POWER9,
2708          * where it's 1 because the threads are (mostly) independent.
2709          */
2710         controlled_threads = threads_per_vcore(vc->kvm);
2711
2712         /*
2713          * Make sure we are running on primary threads, and that secondary
2714          * threads are offline.  Also check if the number of threads in this
2715          * guest are greater than the current system threads per guest.
2716          * On POWER9, we need to be not in independent-threads mode if
2717          * this is a HPT guest on a radix host machine where the
2718          * CPU threads may not be in different MMU modes.
2719          */
2720         hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
2721                 !kvm_is_radix(vc->kvm);
2722         if (((controlled_threads > 1) &&
2723              ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
2724             (hpt_on_radix && vc->kvm->arch.threads_indep)) {
2725                 for_each_runnable_thread(i, vcpu, vc) {
2726                         vcpu->arch.ret = -EBUSY;
2727                         kvmppc_remove_runnable(vc, vcpu);
2728                         wake_up(&vcpu->arch.cpu_run);
2729                 }
2730                 goto out;
2731         }
2732
2733         /*
2734          * See if we could run any other vcores on the physical core
2735          * along with this one.
2736          */
2737         init_core_info(&core_info, vc);
2738         pcpu = smp_processor_id();
2739         target_threads = controlled_threads;
2740         if (target_smt_mode && target_smt_mode < target_threads)
2741                 target_threads = target_smt_mode;
2742         if (vc->num_threads < target_threads)
2743                 collect_piggybacks(&core_info, target_threads);
2744
2745         /*
2746          * On radix, arrange for TLB flushing if necessary.
2747          * This has to be done before disabling interrupts since
2748          * it uses smp_call_function().
2749          */
2750         pcpu = smp_processor_id();
2751         if (kvm_is_radix(vc->kvm)) {
2752                 for (sub = 0; sub < core_info.n_subcores; ++sub)
2753                         for_each_runnable_thread(i, vcpu, core_info.vc[sub])
2754                                 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
2755         }
2756
2757         /*
2758          * Hard-disable interrupts, and check resched flag and signals.
2759          * If we need to reschedule or deliver a signal, clean up
2760          * and return without going into the guest(s).
2761          * If the mmu_ready flag has been cleared, don't go into the
2762          * guest because that means a HPT resize operation is in progress.
2763          */
2764         local_irq_disable();
2765         hard_irq_disable();
2766         if (lazy_irq_pending() || need_resched() ||
2767             recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) {
2768                 local_irq_enable();
2769                 vc->vcore_state = VCORE_INACTIVE;
2770                 /* Unlock all except the primary vcore */
2771                 for (sub = 1; sub < core_info.n_subcores; ++sub) {
2772                         pvc = core_info.vc[sub];
2773                         /* Put back on to the preempted vcores list */
2774                         kvmppc_vcore_preempt(pvc);
2775                         spin_unlock(&pvc->lock);
2776                 }
2777                 for (i = 0; i < controlled_threads; ++i)
2778                         kvmppc_release_hwthread(pcpu + i);
2779                 return;
2780         }
2781
2782         kvmppc_clear_host_core(pcpu);
2783
2784         /* Decide on micro-threading (split-core) mode */
2785         subcore_size = threads_per_subcore;
2786         cmd_bit = stat_bit = 0;
2787         split = core_info.n_subcores;
2788         sip = NULL;
2789         is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
2790                 && !cpu_has_feature(CPU_FTR_ARCH_300);
2791
2792         if (split > 1 || hpt_on_radix) {
2793                 sip = &split_info;
2794                 memset(&split_info, 0, sizeof(split_info));
2795                 for (sub = 0; sub < core_info.n_subcores; ++sub)
2796                         split_info.vc[sub] = core_info.vc[sub];
2797
2798                 if (is_power8) {
2799                         if (split == 2 && (dynamic_mt_modes & 2)) {
2800                                 cmd_bit = HID0_POWER8_1TO2LPAR;
2801                                 stat_bit = HID0_POWER8_2LPARMODE;
2802                         } else {
2803                                 split = 4;
2804                                 cmd_bit = HID0_POWER8_1TO4LPAR;
2805                                 stat_bit = HID0_POWER8_4LPARMODE;
2806                         }
2807                         subcore_size = MAX_SMT_THREADS / split;
2808                         split_info.rpr = mfspr(SPRN_RPR);
2809                         split_info.pmmar = mfspr(SPRN_PMMAR);
2810                         split_info.ldbar = mfspr(SPRN_LDBAR);
2811                         split_info.subcore_size = subcore_size;
2812                 } else {
2813                         split_info.subcore_size = 1;
2814                         if (hpt_on_radix) {
2815                                 /* Use the split_info for LPCR/LPIDR changes */
2816                                 split_info.lpcr_req = vc->lpcr;
2817                                 split_info.lpidr_req = vc->kvm->arch.lpid;
2818                                 split_info.host_lpcr = vc->kvm->arch.host_lpcr;
2819                                 split_info.do_set = 1;
2820                         }
2821                 }
2822
2823                 /* order writes to split_info before kvm_split_mode pointer */
2824                 smp_wmb();
2825         }
2826
2827         for (thr = 0; thr < controlled_threads; ++thr) {
2828                 struct paca_struct *paca = paca_ptrs[pcpu + thr];
2829
2830                 paca->kvm_hstate.tid = thr;
2831                 paca->kvm_hstate.napping = 0;
2832                 paca->kvm_hstate.kvm_split_mode = sip;
2833         }
2834
2835         /* Initiate micro-threading (split-core) on POWER8 if required */
2836         if (cmd_bit) {
2837                 unsigned long hid0 = mfspr(SPRN_HID0);
2838
2839                 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2840                 mb();
2841                 mtspr(SPRN_HID0, hid0);
2842                 isync();
2843                 for (;;) {
2844                         hid0 = mfspr(SPRN_HID0);
2845                         if (hid0 & stat_bit)
2846                                 break;
2847                         cpu_relax();
2848                 }
2849         }
2850
2851         /* Start all the threads */
2852         active = 0;
2853         for (sub = 0; sub < core_info.n_subcores; ++sub) {
2854                 thr = is_power8 ? subcore_thread_map[sub] : sub;
2855                 thr0_done = false;
2856                 active |= 1 << thr;
2857                 pvc = core_info.vc[sub];
2858                 pvc->pcpu = pcpu + thr;
2859                 for_each_runnable_thread(i, vcpu, pvc) {
2860                         kvmppc_start_thread(vcpu, pvc);
2861                         kvmppc_create_dtl_entry(vcpu, pvc);
2862                         trace_kvm_guest_enter(vcpu);
2863                         if (!vcpu->arch.ptid)
2864                                 thr0_done = true;
2865                         active |= 1 << (thr + vcpu->arch.ptid);
2866                 }
2867                 /*
2868                  * We need to start the first thread of each subcore
2869                  * even if it doesn't have a vcpu.
2870                  */
2871                 if (!thr0_done)
2872                         kvmppc_start_thread(NULL, pvc);
2873         }
2874
2875         /*
2876          * Ensure that split_info.do_nap is set after setting
2877          * the vcore pointer in the PACA of the secondaries.
2878          */
2879         smp_mb();
2880
2881         /*
2882          * When doing micro-threading, poke the inactive threads as well.
2883          * This gets them to the nap instruction after kvm_do_nap,
2884          * which reduces the time taken to unsplit later.
2885          * For POWER9 HPT guest on radix host, we need all the secondary
2886          * threads woken up so they can do the LPCR/LPIDR change.
2887          */
2888         if (cmd_bit || hpt_on_radix) {
2889                 split_info.do_nap = 1;  /* ask secondaries to nap when done */
2890                 for (thr = 1; thr < threads_per_subcore; ++thr)
2891                         if (!(active & (1 << thr)))
2892                                 kvmppc_ipi_thread(pcpu + thr);
2893         }
2894
2895         vc->vcore_state = VCORE_RUNNING;
2896         preempt_disable();
2897
2898         trace_kvmppc_run_core(vc, 0);
2899
2900         for (sub = 0; sub < core_info.n_subcores; ++sub)
2901                 spin_unlock(&core_info.vc[sub]->lock);
2902
2903         /*
2904          * Interrupts will be enabled once we get into the guest,
2905          * so tell lockdep that we're about to enable interrupts.
2906          */
2907         trace_hardirqs_on();
2908
2909         guest_enter();
2910
2911         srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2912
2913         trap = __kvmppc_vcore_entry();
2914
2915         srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2916
2917         guest_exit();
2918
2919         trace_hardirqs_off();
2920         set_irq_happened(trap);
2921
2922         spin_lock(&vc->lock);
2923         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
2924         vc->vcore_state = VCORE_EXITING;
2925
2926         /* wait for secondary threads to finish writing their state to memory */
2927         kvmppc_wait_for_nap(controlled_threads);
2928
2929         /* Return to whole-core mode if we split the core earlier */
2930         if (cmd_bit) {
2931                 unsigned long hid0 = mfspr(SPRN_HID0);
2932                 unsigned long loops = 0;
2933
2934                 hid0 &= ~HID0_POWER8_DYNLPARDIS;
2935                 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
2936                 mb();
2937                 mtspr(SPRN_HID0, hid0);
2938                 isync();
2939                 for (;;) {
2940                         hid0 = mfspr(SPRN_HID0);
2941                         if (!(hid0 & stat_bit))
2942                                 break;
2943                         cpu_relax();
2944                         ++loops;
2945                 }
2946         } else if (hpt_on_radix) {
2947                 /* Wait for all threads to have seen final sync */
2948                 for (thr = 1; thr < controlled_threads; ++thr) {
2949                         struct paca_struct *paca = paca_ptrs[pcpu + thr];
2950
2951                         while (paca->kvm_hstate.kvm_split_mode) {
2952                                 HMT_low();
2953                                 barrier();
2954                         }
2955                         HMT_medium();
2956                 }
2957         }
2958         split_info.do_nap = 0;
2959
2960         kvmppc_set_host_core(pcpu);
2961
2962         local_irq_enable();
2963
2964         /* Let secondaries go back to the offline loop */
2965         for (i = 0; i < controlled_threads; ++i) {
2966                 kvmppc_release_hwthread(pcpu + i);
2967                 if (sip && sip->napped[i])
2968                         kvmppc_ipi_thread(pcpu + i);
2969                 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
2970         }
2971
2972         spin_unlock(&vc->lock);
2973
2974         /* make sure updates to secondary vcpu structs are visible now */
2975         smp_mb();
2976
2977         preempt_enable();
2978
2979         for (sub = 0; sub < core_info.n_subcores; ++sub) {
2980                 pvc = core_info.vc[sub];
2981                 post_guest_process(pvc, pvc == vc);
2982         }
2983
2984         spin_lock(&vc->lock);
2985
2986  out:
2987         vc->vcore_state = VCORE_INACTIVE;
2988         trace_kvmppc_run_core(vc, 1);
2989 }
2990
2991 /*
2992  * Wait for some other vcpu thread to execute us, and
2993  * wake us up when we need to handle something in the host.
2994  */
2995 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
2996                                  struct kvm_vcpu *vcpu, int wait_state)
2997 {
2998         DEFINE_WAIT(wait);
2999
3000         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3001         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3002                 spin_unlock(&vc->lock);
3003                 schedule();
3004                 spin_lock(&vc->lock);
3005         }
3006         finish_wait(&vcpu->arch.cpu_run, &wait);
3007 }
3008
3009 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
3010 {
3011         /* 10us base */
3012         if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
3013                 vc->halt_poll_ns = 10000;
3014         else
3015                 vc->halt_poll_ns *= halt_poll_ns_grow;
3016 }
3017
3018 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
3019 {
3020         if (halt_poll_ns_shrink == 0)
3021                 vc->halt_poll_ns = 0;
3022         else
3023                 vc->halt_poll_ns /= halt_poll_ns_shrink;
3024 }
3025
3026 #ifdef CONFIG_KVM_XICS
3027 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3028 {
3029         if (!xive_enabled())
3030                 return false;
3031         return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3032                 vcpu->arch.xive_saved_state.cppr;
3033 }
3034 #else
3035 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3036 {
3037         return false;
3038 }
3039 #endif /* CONFIG_KVM_XICS */
3040
3041 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3042 {
3043         if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3044             kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3045                 return true;
3046
3047         return false;
3048 }
3049
3050 /*
3051  * Check to see if any of the runnable vcpus on the vcore have pending
3052  * exceptions or are no longer ceded
3053  */
3054 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3055 {
3056         struct kvm_vcpu *vcpu;
3057         int i;
3058
3059         for_each_runnable_thread(i, vcpu, vc) {
3060                 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3061                         return 1;
3062         }
3063
3064         return 0;
3065 }
3066
3067 /*
3068  * All the vcpus in this vcore are idle, so wait for a decrementer
3069  * or external interrupt to one of the vcpus.  vc->lock is held.
3070  */
3071 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3072 {
3073         ktime_t cur, start_poll, start_wait;
3074         int do_sleep = 1;
3075         u64 block_ns;
3076         DECLARE_SWAITQUEUE(wait);
3077
3078         /* Poll for pending exceptions and ceded state */
3079         cur = start_poll = ktime_get();
3080         if (vc->halt_poll_ns) {
3081                 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3082                 ++vc->runner->stat.halt_attempted_poll;
3083
3084                 vc->vcore_state = VCORE_POLLING;
3085                 spin_unlock(&vc->lock);
3086
3087                 do {
3088                         if (kvmppc_vcore_check_block(vc)) {
3089                                 do_sleep = 0;
3090                                 break;
3091                         }
3092                         cur = ktime_get();
3093                 } while (single_task_running() && ktime_before(cur, stop));
3094
3095                 spin_lock(&vc->lock);
3096                 vc->vcore_state = VCORE_INACTIVE;
3097
3098                 if (!do_sleep) {
3099                         ++vc->runner->stat.halt_successful_poll;
3100                         goto out;
3101                 }
3102         }
3103
3104         prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3105
3106         if (kvmppc_vcore_check_block(vc)) {
3107                 finish_swait(&vc->wq, &wait);
3108                 do_sleep = 0;
3109                 /* If we polled, count this as a successful poll */
3110                 if (vc->halt_poll_ns)
3111                         ++vc->runner->stat.halt_successful_poll;
3112                 goto out;
3113         }
3114
3115         start_wait = ktime_get();
3116
3117         vc->vcore_state = VCORE_SLEEPING;
3118         trace_kvmppc_vcore_blocked(vc, 0);
3119         spin_unlock(&vc->lock);
3120         schedule();
3121         finish_swait(&vc->wq, &wait);
3122         spin_lock(&vc->lock);
3123         vc->vcore_state = VCORE_INACTIVE;
3124         trace_kvmppc_vcore_blocked(vc, 1);
3125         ++vc->runner->stat.halt_successful_wait;
3126
3127         cur = ktime_get();
3128
3129 out:
3130         block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3131
3132         /* Attribute wait time */
3133         if (do_sleep) {
3134                 vc->runner->stat.halt_wait_ns +=
3135                         ktime_to_ns(cur) - ktime_to_ns(start_wait);
3136                 /* Attribute failed poll time */
3137                 if (vc->halt_poll_ns)
3138                         vc->runner->stat.halt_poll_fail_ns +=
3139                                 ktime_to_ns(start_wait) -
3140                                 ktime_to_ns(start_poll);
3141         } else {
3142                 /* Attribute successful poll time */
3143                 if (vc->halt_poll_ns)
3144                         vc->runner->stat.halt_poll_success_ns +=
3145                                 ktime_to_ns(cur) -
3146                                 ktime_to_ns(start_poll);
3147         }
3148
3149         /* Adjust poll time */
3150         if (halt_poll_ns) {
3151                 if (block_ns <= vc->halt_poll_ns)
3152                         ;
3153                 /* We slept and blocked for longer than the max halt time */
3154                 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3155                         shrink_halt_poll_ns(vc);
3156                 /* We slept and our poll time is too small */
3157                 else if (vc->halt_poll_ns < halt_poll_ns &&
3158                                 block_ns < halt_poll_ns)
3159                         grow_halt_poll_ns(vc);
3160                 if (vc->halt_poll_ns > halt_poll_ns)
3161                         vc->halt_poll_ns = halt_poll_ns;
3162         } else
3163                 vc->halt_poll_ns = 0;
3164
3165         trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3166 }
3167
3168 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3169 {
3170         int r = 0;
3171         struct kvm *kvm = vcpu->kvm;
3172
3173         mutex_lock(&kvm->lock);
3174         if (!kvm->arch.mmu_ready) {
3175                 if (!kvm_is_radix(kvm))
3176                         r = kvmppc_hv_setup_htab_rma(vcpu);
3177                 if (!r) {
3178                         if (cpu_has_feature(CPU_FTR_ARCH_300))
3179                                 kvmppc_setup_partition_table(kvm);
3180                         kvm->arch.mmu_ready = 1;
3181                 }
3182         }
3183         mutex_unlock(&kvm->lock);
3184         return r;
3185 }
3186
3187 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3188 {
3189         int n_ceded, i, r;
3190         struct kvmppc_vcore *vc;
3191         struct kvm_vcpu *v;
3192
3193         trace_kvmppc_run_vcpu_enter(vcpu);
3194
3195         kvm_run->exit_reason = 0;
3196         vcpu->arch.ret = RESUME_GUEST;
3197         vcpu->arch.trap = 0;
3198         kvmppc_update_vpas(vcpu);
3199
3200         /*
3201          * Synchronize with other threads in this virtual core
3202          */
3203         vc = vcpu->arch.vcore;
3204         spin_lock(&vc->lock);
3205         vcpu->arch.ceded = 0;
3206         vcpu->arch.run_task = current;
3207         vcpu->arch.kvm_run = kvm_run;
3208         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3209         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3210         vcpu->arch.busy_preempt = TB_NIL;
3211         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3212         ++vc->n_runnable;
3213
3214         /*
3215          * This happens the first time this is called for a vcpu.
3216          * If the vcore is already running, we may be able to start
3217          * this thread straight away and have it join in.
3218          */
3219         if (!signal_pending(current)) {
3220                 if ((vc->vcore_state == VCORE_PIGGYBACK ||
3221                      vc->vcore_state == VCORE_RUNNING) &&
3222                            !VCORE_IS_EXITING(vc)) {
3223                         kvmppc_create_dtl_entry(vcpu, vc);
3224                         kvmppc_start_thread(vcpu, vc);
3225                         trace_kvm_guest_enter(vcpu);
3226                 } else if (vc->vcore_state == VCORE_SLEEPING) {
3227                         swake_up(&vc->wq);
3228                 }
3229
3230         }
3231
3232         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3233                !signal_pending(current)) {
3234                 /* See if the MMU is ready to go */
3235                 if (!vcpu->kvm->arch.mmu_ready) {
3236                         spin_unlock(&vc->lock);
3237                         r = kvmhv_setup_mmu(vcpu);
3238                         spin_lock(&vc->lock);
3239                         if (r) {
3240                                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3241                                 kvm_run->fail_entry.
3242                                         hardware_entry_failure_reason = 0;
3243                                 vcpu->arch.ret = r;
3244                                 break;
3245                         }
3246                 }
3247
3248                 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3249                         kvmppc_vcore_end_preempt(vc);
3250
3251                 if (vc->vcore_state != VCORE_INACTIVE) {
3252                         kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3253                         continue;
3254                 }
3255                 for_each_runnable_thread(i, v, vc) {
3256                         kvmppc_core_prepare_to_enter(v);
3257                         if (signal_pending(v->arch.run_task)) {
3258                                 kvmppc_remove_runnable(vc, v);
3259                                 v->stat.signal_exits++;
3260                                 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3261                                 v->arch.ret = -EINTR;
3262                                 wake_up(&v->arch.cpu_run);
3263                         }
3264                 }
3265                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3266                         break;
3267                 n_ceded = 0;
3268                 for_each_runnable_thread(i, v, vc) {
3269                         if (!kvmppc_vcpu_woken(v))
3270                                 n_ceded += v->arch.ceded;
3271                         else
3272                                 v->arch.ceded = 0;
3273                 }
3274                 vc->runner = vcpu;
3275                 if (n_ceded == vc->n_runnable) {
3276                         kvmppc_vcore_blocked(vc);
3277                 } else if (need_resched()) {
3278                         kvmppc_vcore_preempt(vc);
3279                         /* Let something else run */
3280                         cond_resched_lock(&vc->lock);
3281                         if (vc->vcore_state == VCORE_PREEMPT)
3282                                 kvmppc_vcore_end_preempt(vc);
3283                 } else {
3284                         kvmppc_run_core(vc);
3285                 }
3286                 vc->runner = NULL;
3287         }
3288
3289         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3290                (vc->vcore_state == VCORE_RUNNING ||
3291                 vc->vcore_state == VCORE_EXITING ||
3292                 vc->vcore_state == VCORE_PIGGYBACK))
3293                 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3294
3295         if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3296                 kvmppc_vcore_end_preempt(vc);
3297
3298         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3299                 kvmppc_remove_runnable(vc, vcpu);
3300                 vcpu->stat.signal_exits++;
3301                 kvm_run->exit_reason = KVM_EXIT_INTR;
3302                 vcpu->arch.ret = -EINTR;
3303         }
3304
3305         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
3306                 /* Wake up some vcpu to run the core */
3307                 i = -1;
3308                 v = next_runnable_thread(vc, &i);
3309                 wake_up(&v->arch.cpu_run);
3310         }
3311
3312         trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3313         spin_unlock(&vc->lock);
3314         return vcpu->arch.ret;
3315 }
3316
3317 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
3318 {
3319         int r;
3320         int srcu_idx;
3321         unsigned long ebb_regs[3] = {}; /* shut up GCC */
3322         unsigned long user_tar = 0;
3323         unsigned int user_vrsave;
3324         struct kvm *kvm;
3325
3326         if (!vcpu->arch.sane) {
3327                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3328                 return -EINVAL;
3329         }
3330
3331         /*
3332          * Don't allow entry with a suspended transaction, because
3333          * the guest entry/exit code will lose it.
3334          * If the guest has TM enabled, save away their TM-related SPRs
3335          * (they will get restored by the TM unavailable interrupt).
3336          */
3337 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
3338         if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
3339             (current->thread.regs->msr & MSR_TM)) {
3340                 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
3341                         run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3342                         run->fail_entry.hardware_entry_failure_reason = 0;
3343                         return -EINVAL;
3344                 }
3345                 /* Enable TM so we can read the TM SPRs */
3346                 mtmsr(mfmsr() | MSR_TM);
3347                 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
3348                 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
3349                 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
3350                 current->thread.regs->msr &= ~MSR_TM;
3351         }
3352 #endif
3353
3354         kvmppc_core_prepare_to_enter(vcpu);
3355
3356         /* No need to go into the guest when all we'll do is come back out */
3357         if (signal_pending(current)) {
3358                 run->exit_reason = KVM_EXIT_INTR;
3359                 return -EINTR;
3360         }
3361
3362         kvm = vcpu->kvm;
3363         atomic_inc(&kvm->arch.vcpus_running);
3364         /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
3365         smp_mb();
3366
3367         flush_all_to_thread(current);
3368
3369         /* Save userspace EBB and other register values */
3370         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3371                 ebb_regs[0] = mfspr(SPRN_EBBHR);
3372                 ebb_regs[1] = mfspr(SPRN_EBBRR);
3373                 ebb_regs[2] = mfspr(SPRN_BESCR);
3374                 user_tar = mfspr(SPRN_TAR);
3375         }
3376         user_vrsave = mfspr(SPRN_VRSAVE);
3377
3378         vcpu->arch.wqp = &vcpu->arch.vcore->wq;
3379         vcpu->arch.pgdir = current->mm->pgd;
3380         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3381
3382         do {
3383                 r = kvmppc_run_vcpu(run, vcpu);
3384
3385                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
3386                     !(vcpu->arch.shregs.msr & MSR_PR)) {
3387                         trace_kvm_hcall_enter(vcpu);
3388                         r = kvmppc_pseries_do_hcall(vcpu);
3389                         trace_kvm_hcall_exit(vcpu, r);
3390                         kvmppc_core_prepare_to_enter(vcpu);
3391                 } else if (r == RESUME_PAGE_FAULT) {
3392                         srcu_idx = srcu_read_lock(&kvm->srcu);
3393                         r = kvmppc_book3s_hv_page_fault(run, vcpu,
3394                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
3395                         srcu_read_unlock(&kvm->srcu, srcu_idx);
3396                 } else if (r == RESUME_PASSTHROUGH) {
3397                         if (WARN_ON(xive_enabled()))
3398                                 r = H_SUCCESS;
3399                         else
3400                                 r = kvmppc_xics_rm_complete(vcpu, 0);
3401                 }
3402         } while (is_kvmppc_resume_guest(r));
3403
3404         /* Restore userspace EBB and other register values */
3405         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3406                 mtspr(SPRN_EBBHR, ebb_regs[0]);
3407                 mtspr(SPRN_EBBRR, ebb_regs[1]);
3408                 mtspr(SPRN_BESCR, ebb_regs[2]);
3409                 mtspr(SPRN_TAR, user_tar);
3410                 mtspr(SPRN_FSCR, current->thread.fscr);
3411         }
3412         mtspr(SPRN_VRSAVE, user_vrsave);
3413
3414         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3415         atomic_dec(&kvm->arch.vcpus_running);
3416         return r;
3417 }
3418
3419 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
3420                                      int shift, int sllp)
3421 {
3422         (*sps)->page_shift = shift;
3423         (*sps)->slb_enc = sllp;
3424         (*sps)->enc[0].page_shift = shift;
3425         (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
3426         /*
3427          * Add 16MB MPSS support (may get filtered out by userspace)
3428          */
3429         if (shift != 24) {
3430                 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
3431                 if (penc != -1) {
3432                         (*sps)->enc[1].page_shift = 24;
3433                         (*sps)->enc[1].pte_enc = penc;
3434                 }
3435         }
3436         (*sps)++;
3437 }
3438
3439 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
3440                                          struct kvm_ppc_smmu_info *info)
3441 {
3442         struct kvm_ppc_one_seg_page_size *sps;
3443
3444         /*
3445          * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
3446          * POWER7 doesn't support keys for instruction accesses,
3447          * POWER8 and POWER9 do.
3448          */
3449         info->data_keys = 32;
3450         info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
3451
3452         /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
3453         info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
3454         info->slb_size = 32;
3455
3456         /* We only support these sizes for now, and no muti-size segments */
3457         sps = &info->sps[0];
3458         kvmppc_add_seg_page_size(&sps, 12, 0);
3459         kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
3460         kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
3461
3462         return 0;
3463 }
3464
3465 /*
3466  * Get (and clear) the dirty memory log for a memory slot.
3467  */
3468 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
3469                                          struct kvm_dirty_log *log)
3470 {
3471         struct kvm_memslots *slots;
3472         struct kvm_memory_slot *memslot;
3473         int i, r;
3474         unsigned long n;
3475         unsigned long *buf, *p;
3476         struct kvm_vcpu *vcpu;
3477
3478         mutex_lock(&kvm->slots_lock);
3479
3480         r = -EINVAL;
3481         if (log->slot >= KVM_USER_MEM_SLOTS)
3482                 goto out;
3483
3484         slots = kvm_memslots(kvm);
3485         memslot = id_to_memslot(slots, log->slot);
3486         r = -ENOENT;
3487         if (!memslot->dirty_bitmap)
3488                 goto out;
3489
3490         /*
3491          * Use second half of bitmap area because both HPT and radix
3492          * accumulate bits in the first half.
3493          */
3494         n = kvm_dirty_bitmap_bytes(memslot);
3495         buf = memslot->dirty_bitmap + n / sizeof(long);
3496         memset(buf, 0, n);
3497
3498         if (kvm_is_radix(kvm))
3499                 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
3500         else
3501                 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
3502         if (r)
3503                 goto out;
3504
3505         /*
3506          * We accumulate dirty bits in the first half of the
3507          * memslot's dirty_bitmap area, for when pages are paged
3508          * out or modified by the host directly.  Pick up these
3509          * bits and add them to the map.
3510          */
3511         p = memslot->dirty_bitmap;
3512         for (i = 0; i < n / sizeof(long); ++i)
3513                 buf[i] |= xchg(&p[i], 0);
3514
3515         /* Harvest dirty bits from VPA and DTL updates */
3516         /* Note: we never modify the SLB shadow buffer areas */
3517         kvm_for_each_vcpu(i, vcpu, kvm) {
3518                 spin_lock(&vcpu->arch.vpa_update_lock);
3519                 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
3520                 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
3521                 spin_unlock(&vcpu->arch.vpa_update_lock);
3522         }
3523
3524         r = -EFAULT;
3525         if (copy_to_user(log->dirty_bitmap, buf, n))
3526                 goto out;
3527
3528         r = 0;
3529 out:
3530         mutex_unlock(&kvm->slots_lock);
3531         return r;
3532 }
3533
3534 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
3535                                         struct kvm_memory_slot *dont)
3536 {
3537         if (!dont || free->arch.rmap != dont->arch.rmap) {
3538                 vfree(free->arch.rmap);
3539                 free->arch.rmap = NULL;
3540         }
3541 }
3542
3543 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
3544                                          unsigned long npages)
3545 {
3546         slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
3547         if (!slot->arch.rmap)
3548                 return -ENOMEM;
3549
3550         return 0;
3551 }
3552
3553 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
3554                                         struct kvm_memory_slot *memslot,
3555                                         const struct kvm_userspace_memory_region *mem)
3556 {
3557         return 0;
3558 }
3559
3560 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
3561                                 const struct kvm_userspace_memory_region *mem,
3562                                 const struct kvm_memory_slot *old,
3563                                 const struct kvm_memory_slot *new)
3564 {
3565         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
3566
3567         /*
3568          * If we are making a new memslot, it might make
3569          * some address that was previously cached as emulated
3570          * MMIO be no longer emulated MMIO, so invalidate
3571          * all the caches of emulated MMIO translations.
3572          */
3573         if (npages)
3574                 atomic64_inc(&kvm->arch.mmio_update);
3575 }
3576
3577 /*
3578  * Update LPCR values in kvm->arch and in vcores.
3579  * Caller must hold kvm->lock.
3580  */
3581 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
3582 {
3583         long int i;
3584         u32 cores_done = 0;
3585
3586         if ((kvm->arch.lpcr & mask) == lpcr)
3587                 return;
3588
3589         kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
3590
3591         for (i = 0; i < KVM_MAX_VCORES; ++i) {
3592                 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
3593                 if (!vc)
3594                         continue;
3595                 spin_lock(&vc->lock);
3596                 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
3597                 spin_unlock(&vc->lock);
3598                 if (++cores_done >= kvm->arch.online_vcores)
3599                         break;
3600         }
3601 }
3602
3603 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
3604 {
3605         return;
3606 }
3607
3608 void kvmppc_setup_partition_table(struct kvm *kvm)
3609 {
3610         unsigned long dw0, dw1;
3611
3612         if (!kvm_is_radix(kvm)) {
3613                 /* PS field - page size for VRMA */
3614                 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
3615                         ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
3616                 /* HTABSIZE and HTABORG fields */
3617                 dw0 |= kvm->arch.sdr1;
3618
3619                 /* Second dword as set by userspace */
3620                 dw1 = kvm->arch.process_table;
3621         } else {
3622                 dw0 = PATB_HR | radix__get_tree_size() |
3623                         __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
3624                 dw1 = PATB_GR | kvm->arch.process_table;
3625         }
3626
3627         mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
3628 }
3629
3630 /*
3631  * Set up HPT (hashed page table) and RMA (real-mode area).
3632  * Must be called with kvm->lock held.
3633  */
3634 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3635 {
3636         int err = 0;
3637         struct kvm *kvm = vcpu->kvm;
3638         unsigned long hva;
3639         struct kvm_memory_slot *memslot;
3640         struct vm_area_struct *vma;
3641         unsigned long lpcr = 0, senc;
3642         unsigned long psize, porder;
3643         int srcu_idx;
3644
3645         /* Allocate hashed page table (if not done already) and reset it */
3646         if (!kvm->arch.hpt.virt) {
3647                 int order = KVM_DEFAULT_HPT_ORDER;
3648                 struct kvm_hpt_info info;
3649
3650                 err = kvmppc_allocate_hpt(&info, order);
3651                 /* If we get here, it means userspace didn't specify a
3652                  * size explicitly.  So, try successively smaller
3653                  * sizes if the default failed. */
3654                 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
3655                         err  = kvmppc_allocate_hpt(&info, order);
3656
3657                 if (err < 0) {
3658                         pr_err("KVM: Couldn't alloc HPT\n");
3659                         goto out;
3660                 }
3661
3662                 kvmppc_set_hpt(kvm, &info);
3663         }
3664
3665         /* Look up the memslot for guest physical address 0 */
3666         srcu_idx = srcu_read_lock(&kvm->srcu);
3667         memslot = gfn_to_memslot(kvm, 0);
3668
3669         /* We must have some memory at 0 by now */
3670         err = -EINVAL;
3671         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3672                 goto out_srcu;
3673
3674         /* Look up the VMA for the start of this memory slot */
3675         hva = memslot->userspace_addr;
3676         down_read(&current->mm->mmap_sem);
3677         vma = find_vma(current->mm, hva);
3678         if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
3679                 goto up_out;
3680
3681         psize = vma_kernel_pagesize(vma);
3682         porder = __ilog2(psize);
3683
3684         up_read(&current->mm->mmap_sem);
3685
3686         /* We can handle 4k, 64k or 16M pages in the VRMA */
3687         err = -EINVAL;
3688         if (!(psize == 0x1000 || psize == 0x10000 ||
3689               psize == 0x1000000))
3690                 goto out_srcu;
3691
3692         senc = slb_pgsize_encoding(psize);
3693         kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
3694                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3695         /* Create HPTEs in the hash page table for the VRMA */
3696         kvmppc_map_vrma(vcpu, memslot, porder);
3697
3698         /* Update VRMASD field in the LPCR */
3699         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3700                 /* the -4 is to account for senc values starting at 0x10 */
3701                 lpcr = senc << (LPCR_VRMASD_SH - 4);
3702                 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
3703         }
3704
3705         /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
3706         smp_wmb();
3707         err = 0;
3708  out_srcu:
3709         srcu_read_unlock(&kvm->srcu, srcu_idx);
3710  out:
3711         return err;
3712
3713  up_out:
3714         up_read(&current->mm->mmap_sem);
3715         goto out_srcu;
3716 }
3717
3718 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
3719 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
3720 {
3721         kvmppc_free_radix(kvm);
3722         kvmppc_update_lpcr(kvm, LPCR_VPM1,
3723                            LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
3724         kvmppc_rmap_reset(kvm);
3725         kvm->arch.radix = 0;
3726         kvm->arch.process_table = 0;
3727         return 0;
3728 }
3729
3730 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
3731 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
3732 {
3733         int err;
3734
3735         err = kvmppc_init_vm_radix(kvm);
3736         if (err)
3737                 return err;
3738
3739         kvmppc_free_hpt(&kvm->arch.hpt);
3740         kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
3741                            LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
3742         kvm->arch.radix = 1;
3743         return 0;
3744 }
3745
3746 #ifdef CONFIG_KVM_XICS
3747 /*
3748  * Allocate a per-core structure for managing state about which cores are
3749  * running in the host versus the guest and for exchanging data between
3750  * real mode KVM and CPU running in the host.
3751  * This is only done for the first VM.
3752  * The allocated structure stays even if all VMs have stopped.
3753  * It is only freed when the kvm-hv module is unloaded.
3754  * It's OK for this routine to fail, we just don't support host
3755  * core operations like redirecting H_IPI wakeups.
3756  */
3757 void kvmppc_alloc_host_rm_ops(void)
3758 {
3759         struct kvmppc_host_rm_ops *ops;
3760         unsigned long l_ops;
3761         int cpu, core;
3762         int size;
3763
3764         /* Not the first time here ? */
3765         if (kvmppc_host_rm_ops_hv != NULL)
3766                 return;
3767
3768         ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
3769         if (!ops)
3770                 return;
3771
3772         size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
3773         ops->rm_core = kzalloc(size, GFP_KERNEL);
3774
3775         if (!ops->rm_core) {
3776                 kfree(ops);
3777                 return;
3778         }
3779
3780         cpus_read_lock();
3781
3782         for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
3783                 if (!cpu_online(cpu))
3784                         continue;
3785
3786                 core = cpu >> threads_shift;
3787                 ops->rm_core[core].rm_state.in_host = 1;
3788         }
3789
3790         ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
3791
3792         /*
3793          * Make the contents of the kvmppc_host_rm_ops structure visible
3794          * to other CPUs before we assign it to the global variable.
3795          * Do an atomic assignment (no locks used here), but if someone
3796          * beats us to it, just free our copy and return.
3797          */
3798         smp_wmb();
3799         l_ops = (unsigned long) ops;
3800
3801         if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3802                 cpus_read_unlock();
3803                 kfree(ops->rm_core);
3804                 kfree(ops);
3805                 return;
3806         }
3807
3808         cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
3809                                              "ppc/kvm_book3s:prepare",
3810                                              kvmppc_set_host_core,
3811                                              kvmppc_clear_host_core);
3812         cpus_read_unlock();
3813 }
3814
3815 void kvmppc_free_host_rm_ops(void)
3816 {
3817         if (kvmppc_host_rm_ops_hv) {
3818                 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
3819                 kfree(kvmppc_host_rm_ops_hv->rm_core);
3820                 kfree(kvmppc_host_rm_ops_hv);
3821                 kvmppc_host_rm_ops_hv = NULL;
3822         }
3823 }
3824 #endif
3825
3826 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3827 {
3828         unsigned long lpcr, lpid;
3829         char buf[32];
3830         int ret;
3831
3832         /* Allocate the guest's logical partition ID */
3833
3834         lpid = kvmppc_alloc_lpid();
3835         if ((long)lpid < 0)
3836                 return -ENOMEM;
3837         kvm->arch.lpid = lpid;
3838
3839         kvmppc_alloc_host_rm_ops();
3840
3841         /*
3842          * Since we don't flush the TLB when tearing down a VM,
3843          * and this lpid might have previously been used,
3844          * make sure we flush on each core before running the new VM.
3845          * On POWER9, the tlbie in mmu_partition_table_set_entry()
3846          * does this flush for us.
3847          */
3848         if (!cpu_has_feature(CPU_FTR_ARCH_300))
3849                 cpumask_setall(&kvm->arch.need_tlb_flush);
3850
3851         /* Start out with the default set of hcalls enabled */
3852         memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3853                sizeof(kvm->arch.enabled_hcalls));
3854
3855         if (!cpu_has_feature(CPU_FTR_ARCH_300))
3856                 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3857
3858         /* Init LPCR for virtual RMA mode */
3859         kvm->arch.host_lpid = mfspr(SPRN_LPID);
3860         kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3861         lpcr &= LPCR_PECE | LPCR_LPES;
3862         lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3863                 LPCR_VPM0 | LPCR_VPM1;
3864         kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3865                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3866         /* On POWER8 turn on online bit to enable PURR/SPURR */
3867         if (cpu_has_feature(CPU_FTR_ARCH_207S))
3868                 lpcr |= LPCR_ONL;
3869         /*
3870          * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
3871          * Set HVICE bit to enable hypervisor virtualization interrupts.
3872          * Set HEIC to prevent OS interrupts to go to hypervisor (should
3873          * be unnecessary but better safe than sorry in case we re-enable
3874          * EE in HV mode with this LPCR still set)
3875          */
3876         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3877                 lpcr &= ~LPCR_VPM0;
3878                 lpcr |= LPCR_HVICE | LPCR_HEIC;
3879
3880                 /*
3881                  * If xive is enabled, we route 0x500 interrupts directly
3882                  * to the guest.
3883                  */
3884                 if (xive_enabled())
3885                         lpcr |= LPCR_LPES;
3886         }
3887
3888         /*
3889          * If the host uses radix, the guest starts out as radix.
3890          */
3891         if (radix_enabled()) {
3892                 kvm->arch.radix = 1;
3893                 kvm->arch.mmu_ready = 1;
3894                 lpcr &= ~LPCR_VPM1;
3895                 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
3896                 ret = kvmppc_init_vm_radix(kvm);
3897                 if (ret) {
3898                         kvmppc_free_lpid(kvm->arch.lpid);
3899                         return ret;
3900                 }
3901                 kvmppc_setup_partition_table(kvm);
3902         }
3903
3904         kvm->arch.lpcr = lpcr;
3905
3906         /* Initialization for future HPT resizes */
3907         kvm->arch.resize_hpt = NULL;
3908
3909         /*
3910          * Work out how many sets the TLB has, for the use of
3911          * the TLB invalidation loop in book3s_hv_rmhandlers.S.
3912          */
3913         if (radix_enabled())
3914                 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;     /* 128 */
3915         else if (cpu_has_feature(CPU_FTR_ARCH_300))
3916                 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;      /* 256 */
3917         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
3918                 kvm->arch.tlb_sets = POWER8_TLB_SETS;           /* 512 */
3919         else
3920                 kvm->arch.tlb_sets = POWER7_TLB_SETS;           /* 128 */
3921
3922         /*
3923          * Track that we now have a HV mode VM active. This blocks secondary
3924          * CPU threads from coming online.
3925          * On POWER9, we only need to do this if the "indep_threads_mode"
3926          * module parameter has been set to N.
3927          */
3928         if (cpu_has_feature(CPU_FTR_ARCH_300))
3929                 kvm->arch.threads_indep = indep_threads_mode;
3930         if (!kvm->arch.threads_indep)
3931                 kvm_hv_vm_activated();
3932
3933         /*
3934          * Initialize smt_mode depending on processor.
3935          * POWER8 and earlier have to use "strict" threading, where
3936          * all vCPUs in a vcore have to run on the same (sub)core,
3937          * whereas on POWER9 the threads can each run a different
3938          * guest.
3939          */
3940         if (!cpu_has_feature(CPU_FTR_ARCH_300))
3941                 kvm->arch.smt_mode = threads_per_subcore;
3942         else
3943                 kvm->arch.smt_mode = 1;
3944         kvm->arch.emul_smt_mode = 1;
3945
3946         /*
3947          * Create a debugfs directory for the VM
3948          */
3949         snprintf(buf, sizeof(buf), "vm%d", current->pid);
3950         kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
3951         if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
3952                 kvmppc_mmu_debugfs_init(kvm);
3953
3954         return 0;
3955 }
3956
3957 static void kvmppc_free_vcores(struct kvm *kvm)
3958 {
3959         long int i;
3960
3961         for (i = 0; i < KVM_MAX_VCORES; ++i)
3962                 kfree(kvm->arch.vcores[i]);
3963         kvm->arch.online_vcores = 0;
3964 }
3965
3966 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3967 {
3968         debugfs_remove_recursive(kvm->arch.debugfs_dir);
3969
3970         if (!kvm->arch.threads_indep)
3971                 kvm_hv_vm_deactivated();
3972
3973         kvmppc_free_vcores(kvm);
3974
3975         kvmppc_free_lpid(kvm->arch.lpid);
3976
3977         if (kvm_is_radix(kvm))
3978                 kvmppc_free_radix(kvm);
3979         else
3980                 kvmppc_free_hpt(&kvm->arch.hpt);
3981
3982         kvmppc_free_pimap(kvm);
3983 }
3984
3985 /* We don't need to emulate any privileged instructions or dcbz */
3986 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
3987                                      unsigned int inst, int *advance)
3988 {
3989         return EMULATE_FAIL;
3990 }
3991
3992 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
3993                                         ulong spr_val)
3994 {
3995         return EMULATE_FAIL;
3996 }
3997
3998 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
3999                                         ulong *spr_val)
4000 {
4001         return EMULATE_FAIL;
4002 }
4003
4004 static int kvmppc_core_check_processor_compat_hv(void)
4005 {
4006         if (!cpu_has_feature(CPU_FTR_HVMODE) ||
4007             !cpu_has_feature(CPU_FTR_ARCH_206))
4008                 return -EIO;
4009
4010         return 0;
4011 }
4012
4013 #ifdef CONFIG_KVM_XICS
4014
4015 void kvmppc_free_pimap(struct kvm *kvm)
4016 {
4017         kfree(kvm->arch.pimap);
4018 }
4019
4020 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
4021 {
4022         return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
4023 }
4024
4025 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4026 {
4027         struct irq_desc *desc;
4028         struct kvmppc_irq_map *irq_map;
4029         struct kvmppc_passthru_irqmap *pimap;
4030         struct irq_chip *chip;
4031         int i, rc = 0;
4032
4033         if (!kvm_irq_bypass)
4034                 return 1;
4035
4036         desc = irq_to_desc(host_irq);
4037         if (!desc)
4038                 return -EIO;
4039
4040         mutex_lock(&kvm->lock);
4041
4042         pimap = kvm->arch.pimap;
4043         if (pimap == NULL) {
4044                 /* First call, allocate structure to hold IRQ map */
4045                 pimap = kvmppc_alloc_pimap();
4046                 if (pimap == NULL) {
4047                         mutex_unlock(&kvm->lock);
4048                         return -ENOMEM;
4049                 }
4050                 kvm->arch.pimap = pimap;
4051         }
4052
4053         /*
4054          * For now, we only support interrupts for which the EOI operation
4055          * is an OPAL call followed by a write to XIRR, since that's
4056          * what our real-mode EOI code does, or a XIVE interrupt
4057          */
4058         chip = irq_data_get_irq_chip(&desc->irq_data);
4059         if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
4060                 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
4061                         host_irq, guest_gsi);
4062                 mutex_unlock(&kvm->lock);
4063                 return -ENOENT;
4064         }
4065
4066         /*
4067          * See if we already have an entry for this guest IRQ number.
4068          * If it's mapped to a hardware IRQ number, that's an error,
4069          * otherwise re-use this entry.
4070          */
4071         for (i = 0; i < pimap->n_mapped; i++) {
4072                 if (guest_gsi == pimap->mapped[i].v_hwirq) {
4073                         if (pimap->mapped[i].r_hwirq) {
4074                                 mutex_unlock(&kvm->lock);
4075                                 return -EINVAL;
4076                         }
4077                         break;
4078                 }
4079         }
4080
4081         if (i == KVMPPC_PIRQ_MAPPED) {
4082                 mutex_unlock(&kvm->lock);
4083                 return -EAGAIN;         /* table is full */
4084         }
4085
4086         irq_map = &pimap->mapped[i];
4087
4088         irq_map->v_hwirq = guest_gsi;
4089         irq_map->desc = desc;
4090
4091         /*
4092          * Order the above two stores before the next to serialize with
4093          * the KVM real mode handler.
4094          */
4095         smp_wmb();
4096         irq_map->r_hwirq = desc->irq_data.hwirq;
4097
4098         if (i == pimap->n_mapped)
4099                 pimap->n_mapped++;
4100
4101         if (xive_enabled())
4102                 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
4103         else
4104                 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
4105         if (rc)
4106                 irq_map->r_hwirq = 0;
4107
4108         mutex_unlock(&kvm->lock);
4109
4110         return 0;
4111 }
4112
4113 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4114 {
4115         struct irq_desc *desc;
4116         struct kvmppc_passthru_irqmap *pimap;
4117         int i, rc = 0;
4118
4119         if (!kvm_irq_bypass)
4120                 return 0;
4121
4122         desc = irq_to_desc(host_irq);
4123         if (!desc)
4124                 return -EIO;
4125
4126         mutex_lock(&kvm->lock);
4127         if (!kvm->arch.pimap)
4128                 goto unlock;
4129
4130         pimap = kvm->arch.pimap;
4131
4132         for (i = 0; i < pimap->n_mapped; i++) {
4133                 if (guest_gsi == pimap->mapped[i].v_hwirq)
4134                         break;
4135         }
4136
4137         if (i == pimap->n_mapped) {
4138                 mutex_unlock(&kvm->lock);
4139                 return -ENODEV;
4140         }
4141
4142         if (xive_enabled())
4143                 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
4144         else
4145                 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
4146
4147         /* invalidate the entry (what do do on error from the above ?) */
4148         pimap->mapped[i].r_hwirq = 0;
4149
4150         /*
4151          * We don't free this structure even when the count goes to
4152          * zero. The structure is freed when we destroy the VM.
4153          */
4154  unlock:
4155         mutex_unlock(&kvm->lock);
4156         return rc;
4157 }
4158
4159 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
4160                                              struct irq_bypass_producer *prod)
4161 {
4162         int ret = 0;
4163         struct kvm_kernel_irqfd *irqfd =
4164                 container_of(cons, struct kvm_kernel_irqfd, consumer);
4165
4166         irqfd->producer = prod;
4167
4168         ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4169         if (ret)
4170                 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
4171                         prod->irq, irqfd->gsi, ret);
4172
4173         return ret;
4174 }
4175
4176 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
4177                                               struct irq_bypass_producer *prod)
4178 {
4179         int ret;
4180         struct kvm_kernel_irqfd *irqfd =
4181                 container_of(cons, struct kvm_kernel_irqfd, consumer);
4182
4183         irqfd->producer = NULL;
4184
4185         /*
4186          * When producer of consumer is unregistered, we change back to
4187          * default external interrupt handling mode - KVM real mode
4188          * will switch back to host.
4189          */
4190         ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4191         if (ret)
4192                 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
4193                         prod->irq, irqfd->gsi, ret);
4194 }
4195 #endif
4196
4197 static long kvm_arch_vm_ioctl_hv(struct file *filp,
4198                                  unsigned int ioctl, unsigned long arg)
4199 {
4200         struct kvm *kvm __maybe_unused = filp->private_data;
4201         void __user *argp = (void __user *)arg;
4202         long r;
4203
4204         switch (ioctl) {
4205
4206         case KVM_PPC_ALLOCATE_HTAB: {
4207                 u32 htab_order;
4208
4209                 r = -EFAULT;
4210                 if (get_user(htab_order, (u32 __user *)argp))
4211                         break;
4212                 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
4213                 if (r)
4214                         break;
4215                 r = 0;
4216                 break;
4217         }
4218
4219         case KVM_PPC_GET_HTAB_FD: {
4220                 struct kvm_get_htab_fd ghf;
4221
4222                 r = -EFAULT;
4223                 if (copy_from_user(&ghf, argp, sizeof(ghf)))
4224                         break;
4225                 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
4226                 break;
4227         }
4228
4229         case KVM_PPC_RESIZE_HPT_PREPARE: {
4230                 struct kvm_ppc_resize_hpt rhpt;
4231
4232                 r = -EFAULT;
4233                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4234                         break;
4235
4236                 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
4237                 break;
4238         }
4239
4240         case KVM_PPC_RESIZE_HPT_COMMIT: {
4241                 struct kvm_ppc_resize_hpt rhpt;
4242
4243                 r = -EFAULT;
4244                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4245                         break;
4246
4247                 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
4248                 break;
4249         }
4250
4251         default:
4252                 r = -ENOTTY;
4253         }
4254
4255         return r;
4256 }
4257
4258 /*
4259  * List of hcall numbers to enable by default.
4260  * For compatibility with old userspace, we enable by default
4261  * all hcalls that were implemented before the hcall-enabling
4262  * facility was added.  Note this list should not include H_RTAS.
4263  */
4264 static unsigned int default_hcall_list[] = {
4265         H_REMOVE,
4266         H_ENTER,
4267         H_READ,
4268         H_PROTECT,
4269         H_BULK_REMOVE,
4270         H_GET_TCE,
4271         H_PUT_TCE,
4272         H_SET_DABR,
4273         H_SET_XDABR,
4274         H_CEDE,
4275         H_PROD,
4276         H_CONFER,
4277         H_REGISTER_VPA,
4278 #ifdef CONFIG_KVM_XICS
4279         H_EOI,
4280         H_CPPR,
4281         H_IPI,
4282         H_IPOLL,
4283         H_XIRR,
4284         H_XIRR_X,
4285 #endif
4286         0
4287 };
4288
4289 static void init_default_hcalls(void)
4290 {
4291         int i;
4292         unsigned int hcall;
4293
4294         for (i = 0; default_hcall_list[i]; ++i) {
4295                 hcall = default_hcall_list[i];
4296                 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
4297                 __set_bit(hcall / 4, default_enabled_hcalls);
4298         }
4299 }
4300
4301 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
4302 {
4303         unsigned long lpcr;
4304         int radix;
4305         int err;
4306
4307         /* If not on a POWER9, reject it */
4308         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4309                 return -ENODEV;
4310
4311         /* If any unknown flags set, reject it */
4312         if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
4313                 return -EINVAL;
4314
4315         /* GR (guest radix) bit in process_table field must match */
4316         radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
4317         if (!!(cfg->process_table & PATB_GR) != radix)
4318                 return -EINVAL;
4319
4320         /* Process table size field must be reasonable, i.e. <= 24 */
4321         if ((cfg->process_table & PRTS_MASK) > 24)
4322                 return -EINVAL;
4323
4324         /* We can change a guest to/from radix now, if the host is radix */
4325         if (radix && !radix_enabled())
4326                 return -EINVAL;
4327
4328         mutex_lock(&kvm->lock);
4329         if (radix != kvm_is_radix(kvm)) {
4330                 if (kvm->arch.mmu_ready) {
4331                         kvm->arch.mmu_ready = 0;
4332                         /* order mmu_ready vs. vcpus_running */
4333                         smp_mb();
4334                         if (atomic_read(&kvm->arch.vcpus_running)) {
4335                                 kvm->arch.mmu_ready = 1;
4336                                 err = -EBUSY;
4337                                 goto out_unlock;
4338                         }
4339                 }
4340                 if (radix)
4341                         err = kvmppc_switch_mmu_to_radix(kvm);
4342                 else
4343                         err = kvmppc_switch_mmu_to_hpt(kvm);
4344                 if (err)
4345                         goto out_unlock;
4346         }
4347
4348         kvm->arch.process_table = cfg->process_table;
4349         kvmppc_setup_partition_table(kvm);
4350
4351         lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
4352         kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
4353         err = 0;
4354
4355  out_unlock:
4356         mutex_unlock(&kvm->lock);
4357         return err;
4358 }
4359
4360 static struct kvmppc_ops kvm_ops_hv = {
4361         .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
4362         .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
4363         .get_one_reg = kvmppc_get_one_reg_hv,
4364         .set_one_reg = kvmppc_set_one_reg_hv,
4365         .vcpu_load   = kvmppc_core_vcpu_load_hv,
4366         .vcpu_put    = kvmppc_core_vcpu_put_hv,
4367         .set_msr     = kvmppc_set_msr_hv,
4368         .vcpu_run    = kvmppc_vcpu_run_hv,
4369         .vcpu_create = kvmppc_core_vcpu_create_hv,
4370         .vcpu_free   = kvmppc_core_vcpu_free_hv,
4371         .check_requests = kvmppc_core_check_requests_hv,
4372         .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
4373         .flush_memslot  = kvmppc_core_flush_memslot_hv,
4374         .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
4375         .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
4376         .unmap_hva = kvm_unmap_hva_hv,
4377         .unmap_hva_range = kvm_unmap_hva_range_hv,
4378         .age_hva  = kvm_age_hva_hv,
4379         .test_age_hva = kvm_test_age_hva_hv,
4380         .set_spte_hva = kvm_set_spte_hva_hv,
4381         .mmu_destroy  = kvmppc_mmu_destroy_hv,
4382         .free_memslot = kvmppc_core_free_memslot_hv,
4383         .create_memslot = kvmppc_core_create_memslot_hv,
4384         .init_vm =  kvmppc_core_init_vm_hv,
4385         .destroy_vm = kvmppc_core_destroy_vm_hv,
4386         .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
4387         .emulate_op = kvmppc_core_emulate_op_hv,
4388         .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
4389         .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
4390         .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
4391         .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
4392         .hcall_implemented = kvmppc_hcall_impl_hv,
4393 #ifdef CONFIG_KVM_XICS
4394         .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
4395         .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
4396 #endif
4397         .configure_mmu = kvmhv_configure_mmu,
4398         .get_rmmu_info = kvmhv_get_rmmu_info,
4399         .set_smt_mode = kvmhv_set_smt_mode,
4400 };
4401
4402 static int kvm_init_subcore_bitmap(void)
4403 {
4404         int i, j;
4405         int nr_cores = cpu_nr_cores();
4406         struct sibling_subcore_state *sibling_subcore_state;
4407
4408         for (i = 0; i < nr_cores; i++) {
4409                 int first_cpu = i * threads_per_core;
4410                 int node = cpu_to_node(first_cpu);
4411
4412                 /* Ignore if it is already allocated. */
4413                 if (paca_ptrs[first_cpu]->sibling_subcore_state)
4414                         continue;
4415
4416                 sibling_subcore_state =
4417                         kmalloc_node(sizeof(struct sibling_subcore_state),
4418                                                         GFP_KERNEL, node);
4419                 if (!sibling_subcore_state)
4420                         return -ENOMEM;
4421
4422                 memset(sibling_subcore_state, 0,
4423                                 sizeof(struct sibling_subcore_state));
4424
4425                 for (j = 0; j < threads_per_core; j++) {
4426                         int cpu = first_cpu + j;
4427
4428                         paca_ptrs[cpu]->sibling_subcore_state =
4429                                                 sibling_subcore_state;
4430                 }
4431         }
4432         return 0;
4433 }
4434
4435 static int kvmppc_radix_possible(void)
4436 {
4437         return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
4438 }
4439
4440 static int kvmppc_book3s_init_hv(void)
4441 {
4442         int r;
4443         /*
4444          * FIXME!! Do we need to check on all cpus ?
4445          */
4446         r = kvmppc_core_check_processor_compat_hv();
4447         if (r < 0)
4448                 return -ENODEV;
4449
4450         r = kvm_init_subcore_bitmap();
4451         if (r)
4452                 return r;
4453
4454         /*
4455          * We need a way of accessing the XICS interrupt controller,
4456          * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
4457          * indirectly, via OPAL.
4458          */
4459 #ifdef CONFIG_SMP
4460         if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
4461                 struct device_node *np;
4462
4463                 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
4464                 if (!np) {
4465                         pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
4466                         return -ENODEV;
4467                 }
4468         }
4469 #endif
4470
4471         kvm_ops_hv.owner = THIS_MODULE;
4472         kvmppc_hv_ops = &kvm_ops_hv;
4473
4474         init_default_hcalls();
4475
4476         init_vcore_lists();
4477
4478         r = kvmppc_mmu_hv_init();
4479         if (r)
4480                 return r;
4481
4482         if (kvmppc_radix_possible())
4483                 r = kvmppc_radix_init();
4484
4485         /*
4486          * POWER9 chips before version 2.02 can't have some threads in
4487          * HPT mode and some in radix mode on the same core.
4488          */
4489         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4490                 unsigned int pvr = mfspr(SPRN_PVR);
4491                 if ((pvr >> 16) == PVR_POWER9 &&
4492                     (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
4493                      ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
4494                         no_mixing_hpt_and_radix = true;
4495         }
4496
4497         return r;
4498 }
4499
4500 static void kvmppc_book3s_exit_hv(void)
4501 {
4502         kvmppc_free_host_rm_ops();
4503         if (kvmppc_radix_possible())
4504                 kvmppc_radix_exit();
4505         kvmppc_hv_ops = NULL;
4506 }
4507
4508 module_init(kvmppc_book3s_init_hv);
4509 module_exit(kvmppc_book3s_exit_hv);
4510 MODULE_LICENSE("GPL");
4511 MODULE_ALIAS_MISCDEV(KVM_MINOR);
4512 MODULE_ALIAS("devname:kvm");