]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/powerpc/kvm/book3s_hv.c
Merge tag 'kvm-s390-next-5.5-1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / arch / powerpc / kvm / book3s_hv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5  *
6  * Authors:
7  *    Paul Mackerras <paulus@au1.ibm.com>
8  *    Alexander Graf <agraf@suse.de>
9  *    Kevin Wolf <mail@kevin-wolf.de>
10  *
11  * Description: KVM functions specific to running on Book 3S
12  * processors in hypervisor mode (specifically POWER7 and later).
13  *
14  * This file is derived from arch/powerpc/kvm/book3s.c,
15  * by Alexander Graf <agraf@suse.de>.
16  */
17
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/preempt.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/stat.h>
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/fs.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/cpu.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 #include <linux/gfp.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/hugetlb.h>
40 #include <linux/kvm_irqfd.h>
41 #include <linux/irqbypass.h>
42 #include <linux/module.h>
43 #include <linux/compiler.h>
44 #include <linux/of.h>
45
46 #include <asm/ftrace.h>
47 #include <asm/reg.h>
48 #include <asm/ppc-opcode.h>
49 #include <asm/asm-prototypes.h>
50 #include <asm/archrandom.h>
51 #include <asm/debug.h>
52 #include <asm/disassemble.h>
53 #include <asm/cputable.h>
54 #include <asm/cacheflush.h>
55 #include <linux/uaccess.h>
56 #include <asm/io.h>
57 #include <asm/kvm_ppc.h>
58 #include <asm/kvm_book3s.h>
59 #include <asm/mmu_context.h>
60 #include <asm/lppaca.h>
61 #include <asm/processor.h>
62 #include <asm/cputhreads.h>
63 #include <asm/page.h>
64 #include <asm/hvcall.h>
65 #include <asm/switch_to.h>
66 #include <asm/smp.h>
67 #include <asm/dbell.h>
68 #include <asm/hmi.h>
69 #include <asm/pnv-pci.h>
70 #include <asm/mmu.h>
71 #include <asm/opal.h>
72 #include <asm/xics.h>
73 #include <asm/xive.h>
74 #include <asm/hw_breakpoint.h>
75
76 #include "book3s.h"
77
78 #define CREATE_TRACE_POINTS
79 #include "trace_hv.h"
80
81 /* #define EXIT_DEBUG */
82 /* #define EXIT_DEBUG_SIMPLE */
83 /* #define EXIT_DEBUG_INT */
84
85 /* Used to indicate that a guest page fault needs to be handled */
86 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
87 /* Used to indicate that a guest passthrough interrupt needs to be handled */
88 #define RESUME_PASSTHROUGH      (RESUME_GUEST | RESUME_FLAG_ARCH2)
89
90 /* Used as a "null" value for timebase values */
91 #define TB_NIL  (~(u64)0)
92
93 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
94
95 static int dynamic_mt_modes = 6;
96 module_param(dynamic_mt_modes, int, 0644);
97 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
98 static int target_smt_mode;
99 module_param(target_smt_mode, int, 0644);
100 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
101
102 static bool indep_threads_mode = true;
103 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
104 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
105
106 static bool one_vm_per_core;
107 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
108 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)");
109
110 #ifdef CONFIG_KVM_XICS
111 static struct kernel_param_ops module_param_ops = {
112         .set = param_set_int,
113         .get = param_get_int,
114 };
115
116 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
117 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
118
119 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
120 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
121 #endif
122
123 /* If set, guests are allowed to create and control nested guests */
124 static bool nested = true;
125 module_param(nested, bool, S_IRUGO | S_IWUSR);
126 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
127
128 static inline bool nesting_enabled(struct kvm *kvm)
129 {
130         return kvm->arch.nested_enable && kvm_is_radix(kvm);
131 }
132
133 /* If set, the threads on each CPU core have to be in the same MMU mode */
134 static bool no_mixing_hpt_and_radix;
135
136 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
137
138 /*
139  * RWMR values for POWER8.  These control the rate at which PURR
140  * and SPURR count and should be set according to the number of
141  * online threads in the vcore being run.
142  */
143 #define RWMR_RPA_P8_1THREAD     0x164520C62609AECAUL
144 #define RWMR_RPA_P8_2THREAD     0x7FFF2908450D8DA9UL
145 #define RWMR_RPA_P8_3THREAD     0x164520C62609AECAUL
146 #define RWMR_RPA_P8_4THREAD     0x199A421245058DA9UL
147 #define RWMR_RPA_P8_5THREAD     0x164520C62609AECAUL
148 #define RWMR_RPA_P8_6THREAD     0x164520C62609AECAUL
149 #define RWMR_RPA_P8_7THREAD     0x164520C62609AECAUL
150 #define RWMR_RPA_P8_8THREAD     0x164520C62609AECAUL
151
152 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
153         RWMR_RPA_P8_1THREAD,
154         RWMR_RPA_P8_1THREAD,
155         RWMR_RPA_P8_2THREAD,
156         RWMR_RPA_P8_3THREAD,
157         RWMR_RPA_P8_4THREAD,
158         RWMR_RPA_P8_5THREAD,
159         RWMR_RPA_P8_6THREAD,
160         RWMR_RPA_P8_7THREAD,
161         RWMR_RPA_P8_8THREAD,
162 };
163
164 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
165                 int *ip)
166 {
167         int i = *ip;
168         struct kvm_vcpu *vcpu;
169
170         while (++i < MAX_SMT_THREADS) {
171                 vcpu = READ_ONCE(vc->runnable_threads[i]);
172                 if (vcpu) {
173                         *ip = i;
174                         return vcpu;
175                 }
176         }
177         return NULL;
178 }
179
180 /* Used to traverse the list of runnable threads for a given vcore */
181 #define for_each_runnable_thread(i, vcpu, vc) \
182         for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
183
184 static bool kvmppc_ipi_thread(int cpu)
185 {
186         unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
187
188         /* If we're a nested hypervisor, fall back to ordinary IPIs for now */
189         if (kvmhv_on_pseries())
190                 return false;
191
192         /* On POWER9 we can use msgsnd to IPI any cpu */
193         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
194                 msg |= get_hard_smp_processor_id(cpu);
195                 smp_mb();
196                 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
197                 return true;
198         }
199
200         /* On POWER8 for IPIs to threads in the same core, use msgsnd */
201         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
202                 preempt_disable();
203                 if (cpu_first_thread_sibling(cpu) ==
204                     cpu_first_thread_sibling(smp_processor_id())) {
205                         msg |= cpu_thread_in_core(cpu);
206                         smp_mb();
207                         __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
208                         preempt_enable();
209                         return true;
210                 }
211                 preempt_enable();
212         }
213
214 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
215         if (cpu >= 0 && cpu < nr_cpu_ids) {
216                 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
217                         xics_wake_cpu(cpu);
218                         return true;
219                 }
220                 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
221                 return true;
222         }
223 #endif
224
225         return false;
226 }
227
228 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
229 {
230         int cpu;
231         struct swait_queue_head *wqp;
232
233         wqp = kvm_arch_vcpu_wq(vcpu);
234         if (swq_has_sleeper(wqp)) {
235                 swake_up_one(wqp);
236                 ++vcpu->stat.halt_wakeup;
237         }
238
239         cpu = READ_ONCE(vcpu->arch.thread_cpu);
240         if (cpu >= 0 && kvmppc_ipi_thread(cpu))
241                 return;
242
243         /* CPU points to the first thread of the core */
244         cpu = vcpu->cpu;
245         if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
246                 smp_send_reschedule(cpu);
247 }
248
249 /*
250  * We use the vcpu_load/put functions to measure stolen time.
251  * Stolen time is counted as time when either the vcpu is able to
252  * run as part of a virtual core, but the task running the vcore
253  * is preempted or sleeping, or when the vcpu needs something done
254  * in the kernel by the task running the vcpu, but that task is
255  * preempted or sleeping.  Those two things have to be counted
256  * separately, since one of the vcpu tasks will take on the job
257  * of running the core, and the other vcpu tasks in the vcore will
258  * sleep waiting for it to do that, but that sleep shouldn't count
259  * as stolen time.
260  *
261  * Hence we accumulate stolen time when the vcpu can run as part of
262  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
263  * needs its task to do other things in the kernel (for example,
264  * service a page fault) in busy_stolen.  We don't accumulate
265  * stolen time for a vcore when it is inactive, or for a vcpu
266  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
267  * a misnomer; it means that the vcpu task is not executing in
268  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
269  * the kernel.  We don't have any way of dividing up that time
270  * between time that the vcpu is genuinely stopped, time that
271  * the task is actively working on behalf of the vcpu, and time
272  * that the task is preempted, so we don't count any of it as
273  * stolen.
274  *
275  * Updates to busy_stolen are protected by arch.tbacct_lock;
276  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
277  * lock.  The stolen times are measured in units of timebase ticks.
278  * (Note that the != TB_NIL checks below are purely defensive;
279  * they should never fail.)
280  */
281
282 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
283 {
284         unsigned long flags;
285
286         spin_lock_irqsave(&vc->stoltb_lock, flags);
287         vc->preempt_tb = mftb();
288         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
289 }
290
291 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
292 {
293         unsigned long flags;
294
295         spin_lock_irqsave(&vc->stoltb_lock, flags);
296         if (vc->preempt_tb != TB_NIL) {
297                 vc->stolen_tb += mftb() - vc->preempt_tb;
298                 vc->preempt_tb = TB_NIL;
299         }
300         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
301 }
302
303 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
304 {
305         struct kvmppc_vcore *vc = vcpu->arch.vcore;
306         unsigned long flags;
307
308         /*
309          * We can test vc->runner without taking the vcore lock,
310          * because only this task ever sets vc->runner to this
311          * vcpu, and once it is set to this vcpu, only this task
312          * ever sets it to NULL.
313          */
314         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
315                 kvmppc_core_end_stolen(vc);
316
317         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
318         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
319             vcpu->arch.busy_preempt != TB_NIL) {
320                 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
321                 vcpu->arch.busy_preempt = TB_NIL;
322         }
323         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
324 }
325
326 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
327 {
328         struct kvmppc_vcore *vc = vcpu->arch.vcore;
329         unsigned long flags;
330
331         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
332                 kvmppc_core_start_stolen(vc);
333
334         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
335         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
336                 vcpu->arch.busy_preempt = mftb();
337         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
338 }
339
340 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
341 {
342         vcpu->arch.pvr = pvr;
343 }
344
345 /* Dummy value used in computing PCR value below */
346 #define PCR_ARCH_300    (PCR_ARCH_207 << 1)
347
348 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
349 {
350         unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
351         struct kvmppc_vcore *vc = vcpu->arch.vcore;
352
353         /* We can (emulate) our own architecture version and anything older */
354         if (cpu_has_feature(CPU_FTR_ARCH_300))
355                 host_pcr_bit = PCR_ARCH_300;
356         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
357                 host_pcr_bit = PCR_ARCH_207;
358         else if (cpu_has_feature(CPU_FTR_ARCH_206))
359                 host_pcr_bit = PCR_ARCH_206;
360         else
361                 host_pcr_bit = PCR_ARCH_205;
362
363         /* Determine lowest PCR bit needed to run guest in given PVR level */
364         guest_pcr_bit = host_pcr_bit;
365         if (arch_compat) {
366                 switch (arch_compat) {
367                 case PVR_ARCH_205:
368                         guest_pcr_bit = PCR_ARCH_205;
369                         break;
370                 case PVR_ARCH_206:
371                 case PVR_ARCH_206p:
372                         guest_pcr_bit = PCR_ARCH_206;
373                         break;
374                 case PVR_ARCH_207:
375                         guest_pcr_bit = PCR_ARCH_207;
376                         break;
377                 case PVR_ARCH_300:
378                         guest_pcr_bit = PCR_ARCH_300;
379                         break;
380                 default:
381                         return -EINVAL;
382                 }
383         }
384
385         /* Check requested PCR bits don't exceed our capabilities */
386         if (guest_pcr_bit > host_pcr_bit)
387                 return -EINVAL;
388
389         spin_lock(&vc->lock);
390         vc->arch_compat = arch_compat;
391         /*
392          * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
393          * Also set all reserved PCR bits
394          */
395         vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
396         spin_unlock(&vc->lock);
397
398         return 0;
399 }
400
401 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
402 {
403         int r;
404
405         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
406         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
407                vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
408         for (r = 0; r < 16; ++r)
409                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
410                        r, kvmppc_get_gpr(vcpu, r),
411                        r+16, kvmppc_get_gpr(vcpu, r+16));
412         pr_err("ctr = %.16lx  lr  = %.16lx\n",
413                vcpu->arch.regs.ctr, vcpu->arch.regs.link);
414         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
415                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
416         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
417                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
418         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
419                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
420         pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
421                vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
422         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
423         pr_err("fault dar = %.16lx dsisr = %.8x\n",
424                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
425         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
426         for (r = 0; r < vcpu->arch.slb_max; ++r)
427                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
428                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
429         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
430                vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
431                vcpu->arch.last_inst);
432 }
433
434 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
435 {
436         return kvm_get_vcpu_by_id(kvm, id);
437 }
438
439 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
440 {
441         vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
442         vpa->yield_count = cpu_to_be32(1);
443 }
444
445 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
446                    unsigned long addr, unsigned long len)
447 {
448         /* check address is cacheline aligned */
449         if (addr & (L1_CACHE_BYTES - 1))
450                 return -EINVAL;
451         spin_lock(&vcpu->arch.vpa_update_lock);
452         if (v->next_gpa != addr || v->len != len) {
453                 v->next_gpa = addr;
454                 v->len = addr ? len : 0;
455                 v->update_pending = 1;
456         }
457         spin_unlock(&vcpu->arch.vpa_update_lock);
458         return 0;
459 }
460
461 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
462 struct reg_vpa {
463         u32 dummy;
464         union {
465                 __be16 hword;
466                 __be32 word;
467         } length;
468 };
469
470 static int vpa_is_registered(struct kvmppc_vpa *vpap)
471 {
472         if (vpap->update_pending)
473                 return vpap->next_gpa != 0;
474         return vpap->pinned_addr != NULL;
475 }
476
477 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
478                                        unsigned long flags,
479                                        unsigned long vcpuid, unsigned long vpa)
480 {
481         struct kvm *kvm = vcpu->kvm;
482         unsigned long len, nb;
483         void *va;
484         struct kvm_vcpu *tvcpu;
485         int err;
486         int subfunc;
487         struct kvmppc_vpa *vpap;
488
489         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
490         if (!tvcpu)
491                 return H_PARAMETER;
492
493         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
494         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
495             subfunc == H_VPA_REG_SLB) {
496                 /* Registering new area - address must be cache-line aligned */
497                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
498                         return H_PARAMETER;
499
500                 /* convert logical addr to kernel addr and read length */
501                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
502                 if (va == NULL)
503                         return H_PARAMETER;
504                 if (subfunc == H_VPA_REG_VPA)
505                         len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
506                 else
507                         len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
508                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
509
510                 /* Check length */
511                 if (len > nb || len < sizeof(struct reg_vpa))
512                         return H_PARAMETER;
513         } else {
514                 vpa = 0;
515                 len = 0;
516         }
517
518         err = H_PARAMETER;
519         vpap = NULL;
520         spin_lock(&tvcpu->arch.vpa_update_lock);
521
522         switch (subfunc) {
523         case H_VPA_REG_VPA:             /* register VPA */
524                 /*
525                  * The size of our lppaca is 1kB because of the way we align
526                  * it for the guest to avoid crossing a 4kB boundary. We only
527                  * use 640 bytes of the structure though, so we should accept
528                  * clients that set a size of 640.
529                  */
530                 BUILD_BUG_ON(sizeof(struct lppaca) != 640);
531                 if (len < sizeof(struct lppaca))
532                         break;
533                 vpap = &tvcpu->arch.vpa;
534                 err = 0;
535                 break;
536
537         case H_VPA_REG_DTL:             /* register DTL */
538                 if (len < sizeof(struct dtl_entry))
539                         break;
540                 len -= len % sizeof(struct dtl_entry);
541
542                 /* Check that they have previously registered a VPA */
543                 err = H_RESOURCE;
544                 if (!vpa_is_registered(&tvcpu->arch.vpa))
545                         break;
546
547                 vpap = &tvcpu->arch.dtl;
548                 err = 0;
549                 break;
550
551         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
552                 /* Check that they have previously registered a VPA */
553                 err = H_RESOURCE;
554                 if (!vpa_is_registered(&tvcpu->arch.vpa))
555                         break;
556
557                 vpap = &tvcpu->arch.slb_shadow;
558                 err = 0;
559                 break;
560
561         case H_VPA_DEREG_VPA:           /* deregister VPA */
562                 /* Check they don't still have a DTL or SLB buf registered */
563                 err = H_RESOURCE;
564                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
565                     vpa_is_registered(&tvcpu->arch.slb_shadow))
566                         break;
567
568                 vpap = &tvcpu->arch.vpa;
569                 err = 0;
570                 break;
571
572         case H_VPA_DEREG_DTL:           /* deregister DTL */
573                 vpap = &tvcpu->arch.dtl;
574                 err = 0;
575                 break;
576
577         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
578                 vpap = &tvcpu->arch.slb_shadow;
579                 err = 0;
580                 break;
581         }
582
583         if (vpap) {
584                 vpap->next_gpa = vpa;
585                 vpap->len = len;
586                 vpap->update_pending = 1;
587         }
588
589         spin_unlock(&tvcpu->arch.vpa_update_lock);
590
591         return err;
592 }
593
594 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
595 {
596         struct kvm *kvm = vcpu->kvm;
597         void *va;
598         unsigned long nb;
599         unsigned long gpa;
600
601         /*
602          * We need to pin the page pointed to by vpap->next_gpa,
603          * but we can't call kvmppc_pin_guest_page under the lock
604          * as it does get_user_pages() and down_read().  So we
605          * have to drop the lock, pin the page, then get the lock
606          * again and check that a new area didn't get registered
607          * in the meantime.
608          */
609         for (;;) {
610                 gpa = vpap->next_gpa;
611                 spin_unlock(&vcpu->arch.vpa_update_lock);
612                 va = NULL;
613                 nb = 0;
614                 if (gpa)
615                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
616                 spin_lock(&vcpu->arch.vpa_update_lock);
617                 if (gpa == vpap->next_gpa)
618                         break;
619                 /* sigh... unpin that one and try again */
620                 if (va)
621                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
622         }
623
624         vpap->update_pending = 0;
625         if (va && nb < vpap->len) {
626                 /*
627                  * If it's now too short, it must be that userspace
628                  * has changed the mappings underlying guest memory,
629                  * so unregister the region.
630                  */
631                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
632                 va = NULL;
633         }
634         if (vpap->pinned_addr)
635                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
636                                         vpap->dirty);
637         vpap->gpa = gpa;
638         vpap->pinned_addr = va;
639         vpap->dirty = false;
640         if (va)
641                 vpap->pinned_end = va + vpap->len;
642 }
643
644 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
645 {
646         if (!(vcpu->arch.vpa.update_pending ||
647               vcpu->arch.slb_shadow.update_pending ||
648               vcpu->arch.dtl.update_pending))
649                 return;
650
651         spin_lock(&vcpu->arch.vpa_update_lock);
652         if (vcpu->arch.vpa.update_pending) {
653                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
654                 if (vcpu->arch.vpa.pinned_addr)
655                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
656         }
657         if (vcpu->arch.dtl.update_pending) {
658                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
659                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
660                 vcpu->arch.dtl_index = 0;
661         }
662         if (vcpu->arch.slb_shadow.update_pending)
663                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
664         spin_unlock(&vcpu->arch.vpa_update_lock);
665 }
666
667 /*
668  * Return the accumulated stolen time for the vcore up until `now'.
669  * The caller should hold the vcore lock.
670  */
671 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
672 {
673         u64 p;
674         unsigned long flags;
675
676         spin_lock_irqsave(&vc->stoltb_lock, flags);
677         p = vc->stolen_tb;
678         if (vc->vcore_state != VCORE_INACTIVE &&
679             vc->preempt_tb != TB_NIL)
680                 p += now - vc->preempt_tb;
681         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
682         return p;
683 }
684
685 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
686                                     struct kvmppc_vcore *vc)
687 {
688         struct dtl_entry *dt;
689         struct lppaca *vpa;
690         unsigned long stolen;
691         unsigned long core_stolen;
692         u64 now;
693         unsigned long flags;
694
695         dt = vcpu->arch.dtl_ptr;
696         vpa = vcpu->arch.vpa.pinned_addr;
697         now = mftb();
698         core_stolen = vcore_stolen_time(vc, now);
699         stolen = core_stolen - vcpu->arch.stolen_logged;
700         vcpu->arch.stolen_logged = core_stolen;
701         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
702         stolen += vcpu->arch.busy_stolen;
703         vcpu->arch.busy_stolen = 0;
704         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
705         if (!dt || !vpa)
706                 return;
707         memset(dt, 0, sizeof(struct dtl_entry));
708         dt->dispatch_reason = 7;
709         dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
710         dt->timebase = cpu_to_be64(now + vc->tb_offset);
711         dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
712         dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
713         dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
714         ++dt;
715         if (dt == vcpu->arch.dtl.pinned_end)
716                 dt = vcpu->arch.dtl.pinned_addr;
717         vcpu->arch.dtl_ptr = dt;
718         /* order writing *dt vs. writing vpa->dtl_idx */
719         smp_wmb();
720         vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
721         vcpu->arch.dtl.dirty = true;
722 }
723
724 /* See if there is a doorbell interrupt pending for a vcpu */
725 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
726 {
727         int thr;
728         struct kvmppc_vcore *vc;
729
730         if (vcpu->arch.doorbell_request)
731                 return true;
732         /*
733          * Ensure that the read of vcore->dpdes comes after the read
734          * of vcpu->doorbell_request.  This barrier matches the
735          * smp_wmb() in kvmppc_guest_entry_inject().
736          */
737         smp_rmb();
738         vc = vcpu->arch.vcore;
739         thr = vcpu->vcpu_id - vc->first_vcpuid;
740         return !!(vc->dpdes & (1 << thr));
741 }
742
743 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
744 {
745         if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
746                 return true;
747         if ((!vcpu->arch.vcore->arch_compat) &&
748             cpu_has_feature(CPU_FTR_ARCH_207S))
749                 return true;
750         return false;
751 }
752
753 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
754                              unsigned long resource, unsigned long value1,
755                              unsigned long value2)
756 {
757         switch (resource) {
758         case H_SET_MODE_RESOURCE_SET_CIABR:
759                 if (!kvmppc_power8_compatible(vcpu))
760                         return H_P2;
761                 if (value2)
762                         return H_P4;
763                 if (mflags)
764                         return H_UNSUPPORTED_FLAG_START;
765                 /* Guests can't breakpoint the hypervisor */
766                 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
767                         return H_P3;
768                 vcpu->arch.ciabr  = value1;
769                 return H_SUCCESS;
770         case H_SET_MODE_RESOURCE_SET_DAWR:
771                 if (!kvmppc_power8_compatible(vcpu))
772                         return H_P2;
773                 if (!ppc_breakpoint_available())
774                         return H_P2;
775                 if (mflags)
776                         return H_UNSUPPORTED_FLAG_START;
777                 if (value2 & DABRX_HYP)
778                         return H_P4;
779                 vcpu->arch.dawr  = value1;
780                 vcpu->arch.dawrx = value2;
781                 return H_SUCCESS;
782         case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
783                 /* KVM does not support mflags=2 (AIL=2) */
784                 if (mflags != 0 && mflags != 3)
785                         return H_UNSUPPORTED_FLAG_START;
786                 return H_TOO_HARD;
787         default:
788                 return H_TOO_HARD;
789         }
790 }
791
792 /* Copy guest memory in place - must reside within a single memslot */
793 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
794                                   unsigned long len)
795 {
796         struct kvm_memory_slot *to_memslot = NULL;
797         struct kvm_memory_slot *from_memslot = NULL;
798         unsigned long to_addr, from_addr;
799         int r;
800
801         /* Get HPA for from address */
802         from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
803         if (!from_memslot)
804                 return -EFAULT;
805         if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
806                              << PAGE_SHIFT))
807                 return -EINVAL;
808         from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
809         if (kvm_is_error_hva(from_addr))
810                 return -EFAULT;
811         from_addr |= (from & (PAGE_SIZE - 1));
812
813         /* Get HPA for to address */
814         to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
815         if (!to_memslot)
816                 return -EFAULT;
817         if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
818                            << PAGE_SHIFT))
819                 return -EINVAL;
820         to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
821         if (kvm_is_error_hva(to_addr))
822                 return -EFAULT;
823         to_addr |= (to & (PAGE_SIZE - 1));
824
825         /* Perform copy */
826         r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
827                              len);
828         if (r)
829                 return -EFAULT;
830         mark_page_dirty(kvm, to >> PAGE_SHIFT);
831         return 0;
832 }
833
834 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
835                                unsigned long dest, unsigned long src)
836 {
837         u64 pg_sz = SZ_4K;              /* 4K page size */
838         u64 pg_mask = SZ_4K - 1;
839         int ret;
840
841         /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
842         if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
843                       H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
844                 return H_PARAMETER;
845
846         /* dest (and src if copy_page flag set) must be page aligned */
847         if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
848                 return H_PARAMETER;
849
850         /* zero and/or copy the page as determined by the flags */
851         if (flags & H_COPY_PAGE) {
852                 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
853                 if (ret < 0)
854                         return H_PARAMETER;
855         } else if (flags & H_ZERO_PAGE) {
856                 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
857                 if (ret < 0)
858                         return H_PARAMETER;
859         }
860
861         /* We can ignore the remaining flags */
862
863         return H_SUCCESS;
864 }
865
866 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
867 {
868         struct kvmppc_vcore *vcore = target->arch.vcore;
869
870         /*
871          * We expect to have been called by the real mode handler
872          * (kvmppc_rm_h_confer()) which would have directly returned
873          * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
874          * have useful work to do and should not confer) so we don't
875          * recheck that here.
876          */
877
878         spin_lock(&vcore->lock);
879         if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
880             vcore->vcore_state != VCORE_INACTIVE &&
881             vcore->runner)
882                 target = vcore->runner;
883         spin_unlock(&vcore->lock);
884
885         return kvm_vcpu_yield_to(target);
886 }
887
888 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
889 {
890         int yield_count = 0;
891         struct lppaca *lppaca;
892
893         spin_lock(&vcpu->arch.vpa_update_lock);
894         lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
895         if (lppaca)
896                 yield_count = be32_to_cpu(lppaca->yield_count);
897         spin_unlock(&vcpu->arch.vpa_update_lock);
898         return yield_count;
899 }
900
901 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
902 {
903         unsigned long req = kvmppc_get_gpr(vcpu, 3);
904         unsigned long target, ret = H_SUCCESS;
905         int yield_count;
906         struct kvm_vcpu *tvcpu;
907         int idx, rc;
908
909         if (req <= MAX_HCALL_OPCODE &&
910             !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
911                 return RESUME_HOST;
912
913         switch (req) {
914         case H_CEDE:
915                 break;
916         case H_PROD:
917                 target = kvmppc_get_gpr(vcpu, 4);
918                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
919                 if (!tvcpu) {
920                         ret = H_PARAMETER;
921                         break;
922                 }
923                 tvcpu->arch.prodded = 1;
924                 smp_mb();
925                 if (tvcpu->arch.ceded)
926                         kvmppc_fast_vcpu_kick_hv(tvcpu);
927                 break;
928         case H_CONFER:
929                 target = kvmppc_get_gpr(vcpu, 4);
930                 if (target == -1)
931                         break;
932                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
933                 if (!tvcpu) {
934                         ret = H_PARAMETER;
935                         break;
936                 }
937                 yield_count = kvmppc_get_gpr(vcpu, 5);
938                 if (kvmppc_get_yield_count(tvcpu) != yield_count)
939                         break;
940                 kvm_arch_vcpu_yield_to(tvcpu);
941                 break;
942         case H_REGISTER_VPA:
943                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
944                                         kvmppc_get_gpr(vcpu, 5),
945                                         kvmppc_get_gpr(vcpu, 6));
946                 break;
947         case H_RTAS:
948                 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
949                         return RESUME_HOST;
950
951                 idx = srcu_read_lock(&vcpu->kvm->srcu);
952                 rc = kvmppc_rtas_hcall(vcpu);
953                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
954
955                 if (rc == -ENOENT)
956                         return RESUME_HOST;
957                 else if (rc == 0)
958                         break;
959
960                 /* Send the error out to userspace via KVM_RUN */
961                 return rc;
962         case H_LOGICAL_CI_LOAD:
963                 ret = kvmppc_h_logical_ci_load(vcpu);
964                 if (ret == H_TOO_HARD)
965                         return RESUME_HOST;
966                 break;
967         case H_LOGICAL_CI_STORE:
968                 ret = kvmppc_h_logical_ci_store(vcpu);
969                 if (ret == H_TOO_HARD)
970                         return RESUME_HOST;
971                 break;
972         case H_SET_MODE:
973                 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
974                                         kvmppc_get_gpr(vcpu, 5),
975                                         kvmppc_get_gpr(vcpu, 6),
976                                         kvmppc_get_gpr(vcpu, 7));
977                 if (ret == H_TOO_HARD)
978                         return RESUME_HOST;
979                 break;
980         case H_XIRR:
981         case H_CPPR:
982         case H_EOI:
983         case H_IPI:
984         case H_IPOLL:
985         case H_XIRR_X:
986                 if (kvmppc_xics_enabled(vcpu)) {
987                         if (xics_on_xive()) {
988                                 ret = H_NOT_AVAILABLE;
989                                 return RESUME_GUEST;
990                         }
991                         ret = kvmppc_xics_hcall(vcpu, req);
992                         break;
993                 }
994                 return RESUME_HOST;
995         case H_SET_DABR:
996                 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
997                 break;
998         case H_SET_XDABR:
999                 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1000                                                 kvmppc_get_gpr(vcpu, 5));
1001                 break;
1002 #ifdef CONFIG_SPAPR_TCE_IOMMU
1003         case H_GET_TCE:
1004                 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1005                                                 kvmppc_get_gpr(vcpu, 5));
1006                 if (ret == H_TOO_HARD)
1007                         return RESUME_HOST;
1008                 break;
1009         case H_PUT_TCE:
1010                 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1011                                                 kvmppc_get_gpr(vcpu, 5),
1012                                                 kvmppc_get_gpr(vcpu, 6));
1013                 if (ret == H_TOO_HARD)
1014                         return RESUME_HOST;
1015                 break;
1016         case H_PUT_TCE_INDIRECT:
1017                 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1018                                                 kvmppc_get_gpr(vcpu, 5),
1019                                                 kvmppc_get_gpr(vcpu, 6),
1020                                                 kvmppc_get_gpr(vcpu, 7));
1021                 if (ret == H_TOO_HARD)
1022                         return RESUME_HOST;
1023                 break;
1024         case H_STUFF_TCE:
1025                 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1026                                                 kvmppc_get_gpr(vcpu, 5),
1027                                                 kvmppc_get_gpr(vcpu, 6),
1028                                                 kvmppc_get_gpr(vcpu, 7));
1029                 if (ret == H_TOO_HARD)
1030                         return RESUME_HOST;
1031                 break;
1032 #endif
1033         case H_RANDOM:
1034                 if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4]))
1035                         ret = H_HARDWARE;
1036                 break;
1037
1038         case H_SET_PARTITION_TABLE:
1039                 ret = H_FUNCTION;
1040                 if (nesting_enabled(vcpu->kvm))
1041                         ret = kvmhv_set_partition_table(vcpu);
1042                 break;
1043         case H_ENTER_NESTED:
1044                 ret = H_FUNCTION;
1045                 if (!nesting_enabled(vcpu->kvm))
1046                         break;
1047                 ret = kvmhv_enter_nested_guest(vcpu);
1048                 if (ret == H_INTERRUPT) {
1049                         kvmppc_set_gpr(vcpu, 3, 0);
1050                         vcpu->arch.hcall_needed = 0;
1051                         return -EINTR;
1052                 } else if (ret == H_TOO_HARD) {
1053                         kvmppc_set_gpr(vcpu, 3, 0);
1054                         vcpu->arch.hcall_needed = 0;
1055                         return RESUME_HOST;
1056                 }
1057                 break;
1058         case H_TLB_INVALIDATE:
1059                 ret = H_FUNCTION;
1060                 if (nesting_enabled(vcpu->kvm))
1061                         ret = kvmhv_do_nested_tlbie(vcpu);
1062                 break;
1063         case H_COPY_TOFROM_GUEST:
1064                 ret = H_FUNCTION;
1065                 if (nesting_enabled(vcpu->kvm))
1066                         ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1067                 break;
1068         case H_PAGE_INIT:
1069                 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1070                                          kvmppc_get_gpr(vcpu, 5),
1071                                          kvmppc_get_gpr(vcpu, 6));
1072                 break;
1073         default:
1074                 return RESUME_HOST;
1075         }
1076         kvmppc_set_gpr(vcpu, 3, ret);
1077         vcpu->arch.hcall_needed = 0;
1078         return RESUME_GUEST;
1079 }
1080
1081 /*
1082  * Handle H_CEDE in the nested virtualization case where we haven't
1083  * called the real-mode hcall handlers in book3s_hv_rmhandlers.S.
1084  * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1085  * that the cede logic in kvmppc_run_single_vcpu() works properly.
1086  */
1087 static void kvmppc_nested_cede(struct kvm_vcpu *vcpu)
1088 {
1089         vcpu->arch.shregs.msr |= MSR_EE;
1090         vcpu->arch.ceded = 1;
1091         smp_mb();
1092         if (vcpu->arch.prodded) {
1093                 vcpu->arch.prodded = 0;
1094                 smp_mb();
1095                 vcpu->arch.ceded = 0;
1096         }
1097 }
1098
1099 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1100 {
1101         switch (cmd) {
1102         case H_CEDE:
1103         case H_PROD:
1104         case H_CONFER:
1105         case H_REGISTER_VPA:
1106         case H_SET_MODE:
1107         case H_LOGICAL_CI_LOAD:
1108         case H_LOGICAL_CI_STORE:
1109 #ifdef CONFIG_KVM_XICS
1110         case H_XIRR:
1111         case H_CPPR:
1112         case H_EOI:
1113         case H_IPI:
1114         case H_IPOLL:
1115         case H_XIRR_X:
1116 #endif
1117         case H_PAGE_INIT:
1118                 return 1;
1119         }
1120
1121         /* See if it's in the real-mode table */
1122         return kvmppc_hcall_impl_hv_realmode(cmd);
1123 }
1124
1125 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
1126                                         struct kvm_vcpu *vcpu)
1127 {
1128         u32 last_inst;
1129
1130         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1131                                         EMULATE_DONE) {
1132                 /*
1133                  * Fetch failed, so return to guest and
1134                  * try executing it again.
1135                  */
1136                 return RESUME_GUEST;
1137         }
1138
1139         if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
1140                 run->exit_reason = KVM_EXIT_DEBUG;
1141                 run->debug.arch.address = kvmppc_get_pc(vcpu);
1142                 return RESUME_HOST;
1143         } else {
1144                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1145                 return RESUME_GUEST;
1146         }
1147 }
1148
1149 static void do_nothing(void *x)
1150 {
1151 }
1152
1153 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1154 {
1155         int thr, cpu, pcpu, nthreads;
1156         struct kvm_vcpu *v;
1157         unsigned long dpdes;
1158
1159         nthreads = vcpu->kvm->arch.emul_smt_mode;
1160         dpdes = 0;
1161         cpu = vcpu->vcpu_id & ~(nthreads - 1);
1162         for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1163                 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1164                 if (!v)
1165                         continue;
1166                 /*
1167                  * If the vcpu is currently running on a physical cpu thread,
1168                  * interrupt it in order to pull it out of the guest briefly,
1169                  * which will update its vcore->dpdes value.
1170                  */
1171                 pcpu = READ_ONCE(v->cpu);
1172                 if (pcpu >= 0)
1173                         smp_call_function_single(pcpu, do_nothing, NULL, 1);
1174                 if (kvmppc_doorbell_pending(v))
1175                         dpdes |= 1 << thr;
1176         }
1177         return dpdes;
1178 }
1179
1180 /*
1181  * On POWER9, emulate doorbell-related instructions in order to
1182  * give the guest the illusion of running on a multi-threaded core.
1183  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1184  * and mfspr DPDES.
1185  */
1186 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1187 {
1188         u32 inst, rb, thr;
1189         unsigned long arg;
1190         struct kvm *kvm = vcpu->kvm;
1191         struct kvm_vcpu *tvcpu;
1192
1193         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1194                 return RESUME_GUEST;
1195         if (get_op(inst) != 31)
1196                 return EMULATE_FAIL;
1197         rb = get_rb(inst);
1198         thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1199         switch (get_xop(inst)) {
1200         case OP_31_XOP_MSGSNDP:
1201                 arg = kvmppc_get_gpr(vcpu, rb);
1202                 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1203                         break;
1204                 arg &= 0x3f;
1205                 if (arg >= kvm->arch.emul_smt_mode)
1206                         break;
1207                 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1208                 if (!tvcpu)
1209                         break;
1210                 if (!tvcpu->arch.doorbell_request) {
1211                         tvcpu->arch.doorbell_request = 1;
1212                         kvmppc_fast_vcpu_kick_hv(tvcpu);
1213                 }
1214                 break;
1215         case OP_31_XOP_MSGCLRP:
1216                 arg = kvmppc_get_gpr(vcpu, rb);
1217                 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1218                         break;
1219                 vcpu->arch.vcore->dpdes = 0;
1220                 vcpu->arch.doorbell_request = 0;
1221                 break;
1222         case OP_31_XOP_MFSPR:
1223                 switch (get_sprn(inst)) {
1224                 case SPRN_TIR:
1225                         arg = thr;
1226                         break;
1227                 case SPRN_DPDES:
1228                         arg = kvmppc_read_dpdes(vcpu);
1229                         break;
1230                 default:
1231                         return EMULATE_FAIL;
1232                 }
1233                 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1234                 break;
1235         default:
1236                 return EMULATE_FAIL;
1237         }
1238         kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1239         return RESUME_GUEST;
1240 }
1241
1242 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1243                                  struct task_struct *tsk)
1244 {
1245         int r = RESUME_HOST;
1246
1247         vcpu->stat.sum_exits++;
1248
1249         /*
1250          * This can happen if an interrupt occurs in the last stages
1251          * of guest entry or the first stages of guest exit (i.e. after
1252          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1253          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1254          * That can happen due to a bug, or due to a machine check
1255          * occurring at just the wrong time.
1256          */
1257         if (vcpu->arch.shregs.msr & MSR_HV) {
1258                 printk(KERN_EMERG "KVM trap in HV mode!\n");
1259                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1260                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1261                         vcpu->arch.shregs.msr);
1262                 kvmppc_dump_regs(vcpu);
1263                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1264                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1265                 return RESUME_HOST;
1266         }
1267         run->exit_reason = KVM_EXIT_UNKNOWN;
1268         run->ready_for_interrupt_injection = 1;
1269         switch (vcpu->arch.trap) {
1270         /* We're good on these - the host merely wanted to get our attention */
1271         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1272                 vcpu->stat.dec_exits++;
1273                 r = RESUME_GUEST;
1274                 break;
1275         case BOOK3S_INTERRUPT_EXTERNAL:
1276         case BOOK3S_INTERRUPT_H_DOORBELL:
1277         case BOOK3S_INTERRUPT_H_VIRT:
1278                 vcpu->stat.ext_intr_exits++;
1279                 r = RESUME_GUEST;
1280                 break;
1281         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1282         case BOOK3S_INTERRUPT_HMI:
1283         case BOOK3S_INTERRUPT_PERFMON:
1284         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1285                 r = RESUME_GUEST;
1286                 break;
1287         case BOOK3S_INTERRUPT_MACHINE_CHECK:
1288                 /* Print the MCE event to host console. */
1289                 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1290
1291                 /*
1292                  * If the guest can do FWNMI, exit to userspace so it can
1293                  * deliver a FWNMI to the guest.
1294                  * Otherwise we synthesize a machine check for the guest
1295                  * so that it knows that the machine check occurred.
1296                  */
1297                 if (!vcpu->kvm->arch.fwnmi_enabled) {
1298                         ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
1299                         kvmppc_core_queue_machine_check(vcpu, flags);
1300                         r = RESUME_GUEST;
1301                         break;
1302                 }
1303
1304                 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1305                 run->exit_reason = KVM_EXIT_NMI;
1306                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1307                 /* Clear out the old NMI status from run->flags */
1308                 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1309                 /* Now set the NMI status */
1310                 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1311                         run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1312                 else
1313                         run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1314
1315                 r = RESUME_HOST;
1316                 break;
1317         case BOOK3S_INTERRUPT_PROGRAM:
1318         {
1319                 ulong flags;
1320                 /*
1321                  * Normally program interrupts are delivered directly
1322                  * to the guest by the hardware, but we can get here
1323                  * as a result of a hypervisor emulation interrupt
1324                  * (e40) getting turned into a 700 by BML RTAS.
1325                  */
1326                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1327                 kvmppc_core_queue_program(vcpu, flags);
1328                 r = RESUME_GUEST;
1329                 break;
1330         }
1331         case BOOK3S_INTERRUPT_SYSCALL:
1332         {
1333                 /* hcall - punt to userspace */
1334                 int i;
1335
1336                 /* hypercall with MSR_PR has already been handled in rmode,
1337                  * and never reaches here.
1338                  */
1339
1340                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1341                 for (i = 0; i < 9; ++i)
1342                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1343                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1344                 vcpu->arch.hcall_needed = 1;
1345                 r = RESUME_HOST;
1346                 break;
1347         }
1348         /*
1349          * We get these next two if the guest accesses a page which it thinks
1350          * it has mapped but which is not actually present, either because
1351          * it is for an emulated I/O device or because the corresonding
1352          * host page has been paged out.  Any other HDSI/HISI interrupts
1353          * have been handled already.
1354          */
1355         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1356                 r = RESUME_PAGE_FAULT;
1357                 break;
1358         case BOOK3S_INTERRUPT_H_INST_STORAGE:
1359                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1360                 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1361                         DSISR_SRR1_MATCH_64S;
1362                 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1363                         vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1364                 r = RESUME_PAGE_FAULT;
1365                 break;
1366         /*
1367          * This occurs if the guest executes an illegal instruction.
1368          * If the guest debug is disabled, generate a program interrupt
1369          * to the guest. If guest debug is enabled, we need to check
1370          * whether the instruction is a software breakpoint instruction.
1371          * Accordingly return to Guest or Host.
1372          */
1373         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1374                 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1375                         vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1376                                 swab32(vcpu->arch.emul_inst) :
1377                                 vcpu->arch.emul_inst;
1378                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1379                         r = kvmppc_emulate_debug_inst(run, vcpu);
1380                 } else {
1381                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1382                         r = RESUME_GUEST;
1383                 }
1384                 break;
1385         /*
1386          * This occurs if the guest (kernel or userspace), does something that
1387          * is prohibited by HFSCR.
1388          * On POWER9, this could be a doorbell instruction that we need
1389          * to emulate.
1390          * Otherwise, we just generate a program interrupt to the guest.
1391          */
1392         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1393                 r = EMULATE_FAIL;
1394                 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1395                     cpu_has_feature(CPU_FTR_ARCH_300))
1396                         r = kvmppc_emulate_doorbell_instr(vcpu);
1397                 if (r == EMULATE_FAIL) {
1398                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1399                         r = RESUME_GUEST;
1400                 }
1401                 break;
1402
1403 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1404         case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1405                 /*
1406                  * This occurs for various TM-related instructions that
1407                  * we need to emulate on POWER9 DD2.2.  We have already
1408                  * handled the cases where the guest was in real-suspend
1409                  * mode and was transitioning to transactional state.
1410                  */
1411                 r = kvmhv_p9_tm_emulation(vcpu);
1412                 break;
1413 #endif
1414
1415         case BOOK3S_INTERRUPT_HV_RM_HARD:
1416                 r = RESUME_PASSTHROUGH;
1417                 break;
1418         default:
1419                 kvmppc_dump_regs(vcpu);
1420                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1421                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1422                         vcpu->arch.shregs.msr);
1423                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1424                 r = RESUME_HOST;
1425                 break;
1426         }
1427
1428         return r;
1429 }
1430
1431 static int kvmppc_handle_nested_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1432 {
1433         int r;
1434         int srcu_idx;
1435
1436         vcpu->stat.sum_exits++;
1437
1438         /*
1439          * This can happen if an interrupt occurs in the last stages
1440          * of guest entry or the first stages of guest exit (i.e. after
1441          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1442          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1443          * That can happen due to a bug, or due to a machine check
1444          * occurring at just the wrong time.
1445          */
1446         if (vcpu->arch.shregs.msr & MSR_HV) {
1447                 pr_emerg("KVM trap in HV mode while nested!\n");
1448                 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1449                          vcpu->arch.trap, kvmppc_get_pc(vcpu),
1450                          vcpu->arch.shregs.msr);
1451                 kvmppc_dump_regs(vcpu);
1452                 return RESUME_HOST;
1453         }
1454         switch (vcpu->arch.trap) {
1455         /* We're good on these - the host merely wanted to get our attention */
1456         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1457                 vcpu->stat.dec_exits++;
1458                 r = RESUME_GUEST;
1459                 break;
1460         case BOOK3S_INTERRUPT_EXTERNAL:
1461                 vcpu->stat.ext_intr_exits++;
1462                 r = RESUME_HOST;
1463                 break;
1464         case BOOK3S_INTERRUPT_H_DOORBELL:
1465         case BOOK3S_INTERRUPT_H_VIRT:
1466                 vcpu->stat.ext_intr_exits++;
1467                 r = RESUME_GUEST;
1468                 break;
1469         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1470         case BOOK3S_INTERRUPT_HMI:
1471         case BOOK3S_INTERRUPT_PERFMON:
1472         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1473                 r = RESUME_GUEST;
1474                 break;
1475         case BOOK3S_INTERRUPT_MACHINE_CHECK:
1476                 /* Pass the machine check to the L1 guest */
1477                 r = RESUME_HOST;
1478                 /* Print the MCE event to host console. */
1479                 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1480                 break;
1481         /*
1482          * We get these next two if the guest accesses a page which it thinks
1483          * it has mapped but which is not actually present, either because
1484          * it is for an emulated I/O device or because the corresonding
1485          * host page has been paged out.
1486          */
1487         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1488                 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1489                 r = kvmhv_nested_page_fault(run, vcpu);
1490                 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1491                 break;
1492         case BOOK3S_INTERRUPT_H_INST_STORAGE:
1493                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1494                 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1495                                          DSISR_SRR1_MATCH_64S;
1496                 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1497                         vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1498                 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1499                 r = kvmhv_nested_page_fault(run, vcpu);
1500                 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1501                 break;
1502
1503 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1504         case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1505                 /*
1506                  * This occurs for various TM-related instructions that
1507                  * we need to emulate on POWER9 DD2.2.  We have already
1508                  * handled the cases where the guest was in real-suspend
1509                  * mode and was transitioning to transactional state.
1510                  */
1511                 r = kvmhv_p9_tm_emulation(vcpu);
1512                 break;
1513 #endif
1514
1515         case BOOK3S_INTERRUPT_HV_RM_HARD:
1516                 vcpu->arch.trap = 0;
1517                 r = RESUME_GUEST;
1518                 if (!xics_on_xive())
1519                         kvmppc_xics_rm_complete(vcpu, 0);
1520                 break;
1521         default:
1522                 r = RESUME_HOST;
1523                 break;
1524         }
1525
1526         return r;
1527 }
1528
1529 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1530                                             struct kvm_sregs *sregs)
1531 {
1532         int i;
1533
1534         memset(sregs, 0, sizeof(struct kvm_sregs));
1535         sregs->pvr = vcpu->arch.pvr;
1536         for (i = 0; i < vcpu->arch.slb_max; i++) {
1537                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1538                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1539         }
1540
1541         return 0;
1542 }
1543
1544 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1545                                             struct kvm_sregs *sregs)
1546 {
1547         int i, j;
1548
1549         /* Only accept the same PVR as the host's, since we can't spoof it */
1550         if (sregs->pvr != vcpu->arch.pvr)
1551                 return -EINVAL;
1552
1553         j = 0;
1554         for (i = 0; i < vcpu->arch.slb_nr; i++) {
1555                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1556                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1557                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1558                         ++j;
1559                 }
1560         }
1561         vcpu->arch.slb_max = j;
1562
1563         return 0;
1564 }
1565
1566 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1567                 bool preserve_top32)
1568 {
1569         struct kvm *kvm = vcpu->kvm;
1570         struct kvmppc_vcore *vc = vcpu->arch.vcore;
1571         u64 mask;
1572
1573         spin_lock(&vc->lock);
1574         /*
1575          * If ILE (interrupt little-endian) has changed, update the
1576          * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1577          */
1578         if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1579                 struct kvm_vcpu *vcpu;
1580                 int i;
1581
1582                 kvm_for_each_vcpu(i, vcpu, kvm) {
1583                         if (vcpu->arch.vcore != vc)
1584                                 continue;
1585                         if (new_lpcr & LPCR_ILE)
1586                                 vcpu->arch.intr_msr |= MSR_LE;
1587                         else
1588                                 vcpu->arch.intr_msr &= ~MSR_LE;
1589                 }
1590         }
1591
1592         /*
1593          * Userspace can only modify DPFD (default prefetch depth),
1594          * ILE (interrupt little-endian) and TC (translation control).
1595          * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1596          */
1597         mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1598         if (cpu_has_feature(CPU_FTR_ARCH_207S))
1599                 mask |= LPCR_AIL;
1600         /*
1601          * On POWER9, allow userspace to enable large decrementer for the
1602          * guest, whether or not the host has it enabled.
1603          */
1604         if (cpu_has_feature(CPU_FTR_ARCH_300))
1605                 mask |= LPCR_LD;
1606
1607         /* Broken 32-bit version of LPCR must not clear top bits */
1608         if (preserve_top32)
1609                 mask &= 0xFFFFFFFF;
1610         vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1611         spin_unlock(&vc->lock);
1612 }
1613
1614 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1615                                  union kvmppc_one_reg *val)
1616 {
1617         int r = 0;
1618         long int i;
1619
1620         switch (id) {
1621         case KVM_REG_PPC_DEBUG_INST:
1622                 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1623                 break;
1624         case KVM_REG_PPC_HIOR:
1625                 *val = get_reg_val(id, 0);
1626                 break;
1627         case KVM_REG_PPC_DABR:
1628                 *val = get_reg_val(id, vcpu->arch.dabr);
1629                 break;
1630         case KVM_REG_PPC_DABRX:
1631                 *val = get_reg_val(id, vcpu->arch.dabrx);
1632                 break;
1633         case KVM_REG_PPC_DSCR:
1634                 *val = get_reg_val(id, vcpu->arch.dscr);
1635                 break;
1636         case KVM_REG_PPC_PURR:
1637                 *val = get_reg_val(id, vcpu->arch.purr);
1638                 break;
1639         case KVM_REG_PPC_SPURR:
1640                 *val = get_reg_val(id, vcpu->arch.spurr);
1641                 break;
1642         case KVM_REG_PPC_AMR:
1643                 *val = get_reg_val(id, vcpu->arch.amr);
1644                 break;
1645         case KVM_REG_PPC_UAMOR:
1646                 *val = get_reg_val(id, vcpu->arch.uamor);
1647                 break;
1648         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1649                 i = id - KVM_REG_PPC_MMCR0;
1650                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1651                 break;
1652         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1653                 i = id - KVM_REG_PPC_PMC1;
1654                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1655                 break;
1656         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1657                 i = id - KVM_REG_PPC_SPMC1;
1658                 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1659                 break;
1660         case KVM_REG_PPC_SIAR:
1661                 *val = get_reg_val(id, vcpu->arch.siar);
1662                 break;
1663         case KVM_REG_PPC_SDAR:
1664                 *val = get_reg_val(id, vcpu->arch.sdar);
1665                 break;
1666         case KVM_REG_PPC_SIER:
1667                 *val = get_reg_val(id, vcpu->arch.sier);
1668                 break;
1669         case KVM_REG_PPC_IAMR:
1670                 *val = get_reg_val(id, vcpu->arch.iamr);
1671                 break;
1672         case KVM_REG_PPC_PSPB:
1673                 *val = get_reg_val(id, vcpu->arch.pspb);
1674                 break;
1675         case KVM_REG_PPC_DPDES:
1676                 /*
1677                  * On POWER9, where we are emulating msgsndp etc.,
1678                  * we return 1 bit for each vcpu, which can come from
1679                  * either vcore->dpdes or doorbell_request.
1680                  * On POWER8, doorbell_request is 0.
1681                  */
1682                 *val = get_reg_val(id, vcpu->arch.vcore->dpdes |
1683                                    vcpu->arch.doorbell_request);
1684                 break;
1685         case KVM_REG_PPC_VTB:
1686                 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1687                 break;
1688         case KVM_REG_PPC_DAWR:
1689                 *val = get_reg_val(id, vcpu->arch.dawr);
1690                 break;
1691         case KVM_REG_PPC_DAWRX:
1692                 *val = get_reg_val(id, vcpu->arch.dawrx);
1693                 break;
1694         case KVM_REG_PPC_CIABR:
1695                 *val = get_reg_val(id, vcpu->arch.ciabr);
1696                 break;
1697         case KVM_REG_PPC_CSIGR:
1698                 *val = get_reg_val(id, vcpu->arch.csigr);
1699                 break;
1700         case KVM_REG_PPC_TACR:
1701                 *val = get_reg_val(id, vcpu->arch.tacr);
1702                 break;
1703         case KVM_REG_PPC_TCSCR:
1704                 *val = get_reg_val(id, vcpu->arch.tcscr);
1705                 break;
1706         case KVM_REG_PPC_PID:
1707                 *val = get_reg_val(id, vcpu->arch.pid);
1708                 break;
1709         case KVM_REG_PPC_ACOP:
1710                 *val = get_reg_val(id, vcpu->arch.acop);
1711                 break;
1712         case KVM_REG_PPC_WORT:
1713                 *val = get_reg_val(id, vcpu->arch.wort);
1714                 break;
1715         case KVM_REG_PPC_TIDR:
1716                 *val = get_reg_val(id, vcpu->arch.tid);
1717                 break;
1718         case KVM_REG_PPC_PSSCR:
1719                 *val = get_reg_val(id, vcpu->arch.psscr);
1720                 break;
1721         case KVM_REG_PPC_VPA_ADDR:
1722                 spin_lock(&vcpu->arch.vpa_update_lock);
1723                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1724                 spin_unlock(&vcpu->arch.vpa_update_lock);
1725                 break;
1726         case KVM_REG_PPC_VPA_SLB:
1727                 spin_lock(&vcpu->arch.vpa_update_lock);
1728                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1729                 val->vpaval.length = vcpu->arch.slb_shadow.len;
1730                 spin_unlock(&vcpu->arch.vpa_update_lock);
1731                 break;
1732         case KVM_REG_PPC_VPA_DTL:
1733                 spin_lock(&vcpu->arch.vpa_update_lock);
1734                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1735                 val->vpaval.length = vcpu->arch.dtl.len;
1736                 spin_unlock(&vcpu->arch.vpa_update_lock);
1737                 break;
1738         case KVM_REG_PPC_TB_OFFSET:
1739                 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1740                 break;
1741         case KVM_REG_PPC_LPCR:
1742         case KVM_REG_PPC_LPCR_64:
1743                 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1744                 break;
1745         case KVM_REG_PPC_PPR:
1746                 *val = get_reg_val(id, vcpu->arch.ppr);
1747                 break;
1748 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1749         case KVM_REG_PPC_TFHAR:
1750                 *val = get_reg_val(id, vcpu->arch.tfhar);
1751                 break;
1752         case KVM_REG_PPC_TFIAR:
1753                 *val = get_reg_val(id, vcpu->arch.tfiar);
1754                 break;
1755         case KVM_REG_PPC_TEXASR:
1756                 *val = get_reg_val(id, vcpu->arch.texasr);
1757                 break;
1758         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1759                 i = id - KVM_REG_PPC_TM_GPR0;
1760                 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1761                 break;
1762         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1763         {
1764                 int j;
1765                 i = id - KVM_REG_PPC_TM_VSR0;
1766                 if (i < 32)
1767                         for (j = 0; j < TS_FPRWIDTH; j++)
1768                                 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1769                 else {
1770                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1771                                 val->vval = vcpu->arch.vr_tm.vr[i-32];
1772                         else
1773                                 r = -ENXIO;
1774                 }
1775                 break;
1776         }
1777         case KVM_REG_PPC_TM_CR:
1778                 *val = get_reg_val(id, vcpu->arch.cr_tm);
1779                 break;
1780         case KVM_REG_PPC_TM_XER:
1781                 *val = get_reg_val(id, vcpu->arch.xer_tm);
1782                 break;
1783         case KVM_REG_PPC_TM_LR:
1784                 *val = get_reg_val(id, vcpu->arch.lr_tm);
1785                 break;
1786         case KVM_REG_PPC_TM_CTR:
1787                 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1788                 break;
1789         case KVM_REG_PPC_TM_FPSCR:
1790                 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1791                 break;
1792         case KVM_REG_PPC_TM_AMR:
1793                 *val = get_reg_val(id, vcpu->arch.amr_tm);
1794                 break;
1795         case KVM_REG_PPC_TM_PPR:
1796                 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1797                 break;
1798         case KVM_REG_PPC_TM_VRSAVE:
1799                 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1800                 break;
1801         case KVM_REG_PPC_TM_VSCR:
1802                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1803                         *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1804                 else
1805                         r = -ENXIO;
1806                 break;
1807         case KVM_REG_PPC_TM_DSCR:
1808                 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1809                 break;
1810         case KVM_REG_PPC_TM_TAR:
1811                 *val = get_reg_val(id, vcpu->arch.tar_tm);
1812                 break;
1813 #endif
1814         case KVM_REG_PPC_ARCH_COMPAT:
1815                 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1816                 break;
1817         case KVM_REG_PPC_DEC_EXPIRY:
1818                 *val = get_reg_val(id, vcpu->arch.dec_expires +
1819                                    vcpu->arch.vcore->tb_offset);
1820                 break;
1821         case KVM_REG_PPC_ONLINE:
1822                 *val = get_reg_val(id, vcpu->arch.online);
1823                 break;
1824         case KVM_REG_PPC_PTCR:
1825                 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
1826                 break;
1827         default:
1828                 r = -EINVAL;
1829                 break;
1830         }
1831
1832         return r;
1833 }
1834
1835 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1836                                  union kvmppc_one_reg *val)
1837 {
1838         int r = 0;
1839         long int i;
1840         unsigned long addr, len;
1841
1842         switch (id) {
1843         case KVM_REG_PPC_HIOR:
1844                 /* Only allow this to be set to zero */
1845                 if (set_reg_val(id, *val))
1846                         r = -EINVAL;
1847                 break;
1848         case KVM_REG_PPC_DABR:
1849                 vcpu->arch.dabr = set_reg_val(id, *val);
1850                 break;
1851         case KVM_REG_PPC_DABRX:
1852                 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1853                 break;
1854         case KVM_REG_PPC_DSCR:
1855                 vcpu->arch.dscr = set_reg_val(id, *val);
1856                 break;
1857         case KVM_REG_PPC_PURR:
1858                 vcpu->arch.purr = set_reg_val(id, *val);
1859                 break;
1860         case KVM_REG_PPC_SPURR:
1861                 vcpu->arch.spurr = set_reg_val(id, *val);
1862                 break;
1863         case KVM_REG_PPC_AMR:
1864                 vcpu->arch.amr = set_reg_val(id, *val);
1865                 break;
1866         case KVM_REG_PPC_UAMOR:
1867                 vcpu->arch.uamor = set_reg_val(id, *val);
1868                 break;
1869         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1870                 i = id - KVM_REG_PPC_MMCR0;
1871                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1872                 break;
1873         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1874                 i = id - KVM_REG_PPC_PMC1;
1875                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1876                 break;
1877         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1878                 i = id - KVM_REG_PPC_SPMC1;
1879                 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1880                 break;
1881         case KVM_REG_PPC_SIAR:
1882                 vcpu->arch.siar = set_reg_val(id, *val);
1883                 break;
1884         case KVM_REG_PPC_SDAR:
1885                 vcpu->arch.sdar = set_reg_val(id, *val);
1886                 break;
1887         case KVM_REG_PPC_SIER:
1888                 vcpu->arch.sier = set_reg_val(id, *val);
1889                 break;
1890         case KVM_REG_PPC_IAMR:
1891                 vcpu->arch.iamr = set_reg_val(id, *val);
1892                 break;
1893         case KVM_REG_PPC_PSPB:
1894                 vcpu->arch.pspb = set_reg_val(id, *val);
1895                 break;
1896         case KVM_REG_PPC_DPDES:
1897                 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1898                 break;
1899         case KVM_REG_PPC_VTB:
1900                 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1901                 break;
1902         case KVM_REG_PPC_DAWR:
1903                 vcpu->arch.dawr = set_reg_val(id, *val);
1904                 break;
1905         case KVM_REG_PPC_DAWRX:
1906                 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1907                 break;
1908         case KVM_REG_PPC_CIABR:
1909                 vcpu->arch.ciabr = set_reg_val(id, *val);
1910                 /* Don't allow setting breakpoints in hypervisor code */
1911                 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1912                         vcpu->arch.ciabr &= ~CIABR_PRIV;        /* disable */
1913                 break;
1914         case KVM_REG_PPC_CSIGR:
1915                 vcpu->arch.csigr = set_reg_val(id, *val);
1916                 break;
1917         case KVM_REG_PPC_TACR:
1918                 vcpu->arch.tacr = set_reg_val(id, *val);
1919                 break;
1920         case KVM_REG_PPC_TCSCR:
1921                 vcpu->arch.tcscr = set_reg_val(id, *val);
1922                 break;
1923         case KVM_REG_PPC_PID:
1924                 vcpu->arch.pid = set_reg_val(id, *val);
1925                 break;
1926         case KVM_REG_PPC_ACOP:
1927                 vcpu->arch.acop = set_reg_val(id, *val);
1928                 break;
1929         case KVM_REG_PPC_WORT:
1930                 vcpu->arch.wort = set_reg_val(id, *val);
1931                 break;
1932         case KVM_REG_PPC_TIDR:
1933                 vcpu->arch.tid = set_reg_val(id, *val);
1934                 break;
1935         case KVM_REG_PPC_PSSCR:
1936                 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1937                 break;
1938         case KVM_REG_PPC_VPA_ADDR:
1939                 addr = set_reg_val(id, *val);
1940                 r = -EINVAL;
1941                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1942                               vcpu->arch.dtl.next_gpa))
1943                         break;
1944                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1945                 break;
1946         case KVM_REG_PPC_VPA_SLB:
1947                 addr = val->vpaval.addr;
1948                 len = val->vpaval.length;
1949                 r = -EINVAL;
1950                 if (addr && !vcpu->arch.vpa.next_gpa)
1951                         break;
1952                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1953                 break;
1954         case KVM_REG_PPC_VPA_DTL:
1955                 addr = val->vpaval.addr;
1956                 len = val->vpaval.length;
1957                 r = -EINVAL;
1958                 if (addr && (len < sizeof(struct dtl_entry) ||
1959                              !vcpu->arch.vpa.next_gpa))
1960                         break;
1961                 len -= len % sizeof(struct dtl_entry);
1962                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1963                 break;
1964         case KVM_REG_PPC_TB_OFFSET:
1965                 /* round up to multiple of 2^24 */
1966                 vcpu->arch.vcore->tb_offset =
1967                         ALIGN(set_reg_val(id, *val), 1UL << 24);
1968                 break;
1969         case KVM_REG_PPC_LPCR:
1970                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1971                 break;
1972         case KVM_REG_PPC_LPCR_64:
1973                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1974                 break;
1975         case KVM_REG_PPC_PPR:
1976                 vcpu->arch.ppr = set_reg_val(id, *val);
1977                 break;
1978 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1979         case KVM_REG_PPC_TFHAR:
1980                 vcpu->arch.tfhar = set_reg_val(id, *val);
1981                 break;
1982         case KVM_REG_PPC_TFIAR:
1983                 vcpu->arch.tfiar = set_reg_val(id, *val);
1984                 break;
1985         case KVM_REG_PPC_TEXASR:
1986                 vcpu->arch.texasr = set_reg_val(id, *val);
1987                 break;
1988         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1989                 i = id - KVM_REG_PPC_TM_GPR0;
1990                 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1991                 break;
1992         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1993         {
1994                 int j;
1995                 i = id - KVM_REG_PPC_TM_VSR0;
1996                 if (i < 32)
1997                         for (j = 0; j < TS_FPRWIDTH; j++)
1998                                 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1999                 else
2000                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
2001                                 vcpu->arch.vr_tm.vr[i-32] = val->vval;
2002                         else
2003                                 r = -ENXIO;
2004                 break;
2005         }
2006         case KVM_REG_PPC_TM_CR:
2007                 vcpu->arch.cr_tm = set_reg_val(id, *val);
2008                 break;
2009         case KVM_REG_PPC_TM_XER:
2010                 vcpu->arch.xer_tm = set_reg_val(id, *val);
2011                 break;
2012         case KVM_REG_PPC_TM_LR:
2013                 vcpu->arch.lr_tm = set_reg_val(id, *val);
2014                 break;
2015         case KVM_REG_PPC_TM_CTR:
2016                 vcpu->arch.ctr_tm = set_reg_val(id, *val);
2017                 break;
2018         case KVM_REG_PPC_TM_FPSCR:
2019                 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2020                 break;
2021         case KVM_REG_PPC_TM_AMR:
2022                 vcpu->arch.amr_tm = set_reg_val(id, *val);
2023                 break;
2024         case KVM_REG_PPC_TM_PPR:
2025                 vcpu->arch.ppr_tm = set_reg_val(id, *val);
2026                 break;
2027         case KVM_REG_PPC_TM_VRSAVE:
2028                 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2029                 break;
2030         case KVM_REG_PPC_TM_VSCR:
2031                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2032                         vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2033                 else
2034                         r = - ENXIO;
2035                 break;
2036         case KVM_REG_PPC_TM_DSCR:
2037                 vcpu->arch.dscr_tm = set_reg_val(id, *val);
2038                 break;
2039         case KVM_REG_PPC_TM_TAR:
2040                 vcpu->arch.tar_tm = set_reg_val(id, *val);
2041                 break;
2042 #endif
2043         case KVM_REG_PPC_ARCH_COMPAT:
2044                 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2045                 break;
2046         case KVM_REG_PPC_DEC_EXPIRY:
2047                 vcpu->arch.dec_expires = set_reg_val(id, *val) -
2048                         vcpu->arch.vcore->tb_offset;
2049                 break;
2050         case KVM_REG_PPC_ONLINE:
2051                 i = set_reg_val(id, *val);
2052                 if (i && !vcpu->arch.online)
2053                         atomic_inc(&vcpu->arch.vcore->online_count);
2054                 else if (!i && vcpu->arch.online)
2055                         atomic_dec(&vcpu->arch.vcore->online_count);
2056                 vcpu->arch.online = i;
2057                 break;
2058         case KVM_REG_PPC_PTCR:
2059                 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2060                 break;
2061         default:
2062                 r = -EINVAL;
2063                 break;
2064         }
2065
2066         return r;
2067 }
2068
2069 /*
2070  * On POWER9, threads are independent and can be in different partitions.
2071  * Therefore we consider each thread to be a subcore.
2072  * There is a restriction that all threads have to be in the same
2073  * MMU mode (radix or HPT), unfortunately, but since we only support
2074  * HPT guests on a HPT host so far, that isn't an impediment yet.
2075  */
2076 static int threads_per_vcore(struct kvm *kvm)
2077 {
2078         if (kvm->arch.threads_indep)
2079                 return 1;
2080         return threads_per_subcore;
2081 }
2082
2083 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2084 {
2085         struct kvmppc_vcore *vcore;
2086
2087         vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2088
2089         if (vcore == NULL)
2090                 return NULL;
2091
2092         spin_lock_init(&vcore->lock);
2093         spin_lock_init(&vcore->stoltb_lock);
2094         init_swait_queue_head(&vcore->wq);
2095         vcore->preempt_tb = TB_NIL;
2096         vcore->lpcr = kvm->arch.lpcr;
2097         vcore->first_vcpuid = id;
2098         vcore->kvm = kvm;
2099         INIT_LIST_HEAD(&vcore->preempt_list);
2100
2101         return vcore;
2102 }
2103
2104 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2105 static struct debugfs_timings_element {
2106         const char *name;
2107         size_t offset;
2108 } timings[] = {
2109         {"rm_entry",    offsetof(struct kvm_vcpu, arch.rm_entry)},
2110         {"rm_intr",     offsetof(struct kvm_vcpu, arch.rm_intr)},
2111         {"rm_exit",     offsetof(struct kvm_vcpu, arch.rm_exit)},
2112         {"guest",       offsetof(struct kvm_vcpu, arch.guest_time)},
2113         {"cede",        offsetof(struct kvm_vcpu, arch.cede_time)},
2114 };
2115
2116 #define N_TIMINGS       (ARRAY_SIZE(timings))
2117
2118 struct debugfs_timings_state {
2119         struct kvm_vcpu *vcpu;
2120         unsigned int    buflen;
2121         char            buf[N_TIMINGS * 100];
2122 };
2123
2124 static int debugfs_timings_open(struct inode *inode, struct file *file)
2125 {
2126         struct kvm_vcpu *vcpu = inode->i_private;
2127         struct debugfs_timings_state *p;
2128
2129         p = kzalloc(sizeof(*p), GFP_KERNEL);
2130         if (!p)
2131                 return -ENOMEM;
2132
2133         kvm_get_kvm(vcpu->kvm);
2134         p->vcpu = vcpu;
2135         file->private_data = p;
2136
2137         return nonseekable_open(inode, file);
2138 }
2139
2140 static int debugfs_timings_release(struct inode *inode, struct file *file)
2141 {
2142         struct debugfs_timings_state *p = file->private_data;
2143
2144         kvm_put_kvm(p->vcpu->kvm);
2145         kfree(p);
2146         return 0;
2147 }
2148
2149 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2150                                     size_t len, loff_t *ppos)
2151 {
2152         struct debugfs_timings_state *p = file->private_data;
2153         struct kvm_vcpu *vcpu = p->vcpu;
2154         char *s, *buf_end;
2155         struct kvmhv_tb_accumulator tb;
2156         u64 count;
2157         loff_t pos;
2158         ssize_t n;
2159         int i, loops;
2160         bool ok;
2161
2162         if (!p->buflen) {
2163                 s = p->buf;
2164                 buf_end = s + sizeof(p->buf);
2165                 for (i = 0; i < N_TIMINGS; ++i) {
2166                         struct kvmhv_tb_accumulator *acc;
2167
2168                         acc = (struct kvmhv_tb_accumulator *)
2169                                 ((unsigned long)vcpu + timings[i].offset);
2170                         ok = false;
2171                         for (loops = 0; loops < 1000; ++loops) {
2172                                 count = acc->seqcount;
2173                                 if (!(count & 1)) {
2174                                         smp_rmb();
2175                                         tb = *acc;
2176                                         smp_rmb();
2177                                         if (count == acc->seqcount) {
2178                                                 ok = true;
2179                                                 break;
2180                                         }
2181                                 }
2182                                 udelay(1);
2183                         }
2184                         if (!ok)
2185                                 snprintf(s, buf_end - s, "%s: stuck\n",
2186                                         timings[i].name);
2187                         else
2188                                 snprintf(s, buf_end - s,
2189                                         "%s: %llu %llu %llu %llu\n",
2190                                         timings[i].name, count / 2,
2191                                         tb_to_ns(tb.tb_total),
2192                                         tb_to_ns(tb.tb_min),
2193                                         tb_to_ns(tb.tb_max));
2194                         s += strlen(s);
2195                 }
2196                 p->buflen = s - p->buf;
2197         }
2198
2199         pos = *ppos;
2200         if (pos >= p->buflen)
2201                 return 0;
2202         if (len > p->buflen - pos)
2203                 len = p->buflen - pos;
2204         n = copy_to_user(buf, p->buf + pos, len);
2205         if (n) {
2206                 if (n == len)
2207                         return -EFAULT;
2208                 len -= n;
2209         }
2210         *ppos = pos + len;
2211         return len;
2212 }
2213
2214 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2215                                      size_t len, loff_t *ppos)
2216 {
2217         return -EACCES;
2218 }
2219
2220 static const struct file_operations debugfs_timings_ops = {
2221         .owner   = THIS_MODULE,
2222         .open    = debugfs_timings_open,
2223         .release = debugfs_timings_release,
2224         .read    = debugfs_timings_read,
2225         .write   = debugfs_timings_write,
2226         .llseek  = generic_file_llseek,
2227 };
2228
2229 /* Create a debugfs directory for the vcpu */
2230 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2231 {
2232         char buf[16];
2233         struct kvm *kvm = vcpu->kvm;
2234
2235         snprintf(buf, sizeof(buf), "vcpu%u", id);
2236         if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
2237                 return;
2238         vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
2239         if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
2240                 return;
2241         vcpu->arch.debugfs_timings =
2242                 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
2243                                     vcpu, &debugfs_timings_ops);
2244 }
2245
2246 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2247 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2248 {
2249 }
2250 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2251
2252 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
2253                                                    unsigned int id)
2254 {
2255         struct kvm_vcpu *vcpu;
2256         int err;
2257         int core;
2258         struct kvmppc_vcore *vcore;
2259
2260         err = -ENOMEM;
2261         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2262         if (!vcpu)
2263                 goto out;
2264
2265         err = kvm_vcpu_init(vcpu, kvm, id);
2266         if (err)
2267                 goto free_vcpu;
2268
2269         vcpu->arch.shared = &vcpu->arch.shregs;
2270 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2271         /*
2272          * The shared struct is never shared on HV,
2273          * so we can always use host endianness
2274          */
2275 #ifdef __BIG_ENDIAN__
2276         vcpu->arch.shared_big_endian = true;
2277 #else
2278         vcpu->arch.shared_big_endian = false;
2279 #endif
2280 #endif
2281         vcpu->arch.mmcr[0] = MMCR0_FC;
2282         vcpu->arch.ctrl = CTRL_RUNLATCH;
2283         /* default to host PVR, since we can't spoof it */
2284         kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2285         spin_lock_init(&vcpu->arch.vpa_update_lock);
2286         spin_lock_init(&vcpu->arch.tbacct_lock);
2287         vcpu->arch.busy_preempt = TB_NIL;
2288         vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2289
2290         /*
2291          * Set the default HFSCR for the guest from the host value.
2292          * This value is only used on POWER9.
2293          * On POWER9, we want to virtualize the doorbell facility, so we
2294          * don't set the HFSCR_MSGP bit, and that causes those instructions
2295          * to trap and then we emulate them.
2296          */
2297         vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2298                 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP;
2299         if (cpu_has_feature(CPU_FTR_HVMODE)) {
2300                 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2301                 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2302                         vcpu->arch.hfscr |= HFSCR_TM;
2303         }
2304         if (cpu_has_feature(CPU_FTR_TM_COMP))
2305                 vcpu->arch.hfscr |= HFSCR_TM;
2306
2307         kvmppc_mmu_book3s_hv_init(vcpu);
2308
2309         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2310
2311         init_waitqueue_head(&vcpu->arch.cpu_run);
2312
2313         mutex_lock(&kvm->lock);
2314         vcore = NULL;
2315         err = -EINVAL;
2316         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2317                 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2318                         pr_devel("KVM: VCPU ID too high\n");
2319                         core = KVM_MAX_VCORES;
2320                 } else {
2321                         BUG_ON(kvm->arch.smt_mode != 1);
2322                         core = kvmppc_pack_vcpu_id(kvm, id);
2323                 }
2324         } else {
2325                 core = id / kvm->arch.smt_mode;
2326         }
2327         if (core < KVM_MAX_VCORES) {
2328                 vcore = kvm->arch.vcores[core];
2329                 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2330                         pr_devel("KVM: collision on id %u", id);
2331                         vcore = NULL;
2332                 } else if (!vcore) {
2333                         /*
2334                          * Take mmu_setup_lock for mutual exclusion
2335                          * with kvmppc_update_lpcr().
2336                          */
2337                         err = -ENOMEM;
2338                         vcore = kvmppc_vcore_create(kvm,
2339                                         id & ~(kvm->arch.smt_mode - 1));
2340                         mutex_lock(&kvm->arch.mmu_setup_lock);
2341                         kvm->arch.vcores[core] = vcore;
2342                         kvm->arch.online_vcores++;
2343                         mutex_unlock(&kvm->arch.mmu_setup_lock);
2344                 }
2345         }
2346         mutex_unlock(&kvm->lock);
2347
2348         if (!vcore)
2349                 goto free_vcpu;
2350
2351         spin_lock(&vcore->lock);
2352         ++vcore->num_threads;
2353         spin_unlock(&vcore->lock);
2354         vcpu->arch.vcore = vcore;
2355         vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2356         vcpu->arch.thread_cpu = -1;
2357         vcpu->arch.prev_cpu = -1;
2358
2359         vcpu->arch.cpu_type = KVM_CPU_3S_64;
2360         kvmppc_sanity_check(vcpu);
2361
2362         debugfs_vcpu_init(vcpu, id);
2363
2364         return vcpu;
2365
2366 free_vcpu:
2367         kmem_cache_free(kvm_vcpu_cache, vcpu);
2368 out:
2369         return ERR_PTR(err);
2370 }
2371
2372 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2373                               unsigned long flags)
2374 {
2375         int err;
2376         int esmt = 0;
2377
2378         if (flags)
2379                 return -EINVAL;
2380         if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2381                 return -EINVAL;
2382         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2383                 /*
2384                  * On POWER8 (or POWER7), the threading mode is "strict",
2385                  * so we pack smt_mode vcpus per vcore.
2386                  */
2387                 if (smt_mode > threads_per_subcore)
2388                         return -EINVAL;
2389         } else {
2390                 /*
2391                  * On POWER9, the threading mode is "loose",
2392                  * so each vcpu gets its own vcore.
2393                  */
2394                 esmt = smt_mode;
2395                 smt_mode = 1;
2396         }
2397         mutex_lock(&kvm->lock);
2398         err = -EBUSY;
2399         if (!kvm->arch.online_vcores) {
2400                 kvm->arch.smt_mode = smt_mode;
2401                 kvm->arch.emul_smt_mode = esmt;
2402                 err = 0;
2403         }
2404         mutex_unlock(&kvm->lock);
2405
2406         return err;
2407 }
2408
2409 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2410 {
2411         if (vpa->pinned_addr)
2412                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2413                                         vpa->dirty);
2414 }
2415
2416 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2417 {
2418         spin_lock(&vcpu->arch.vpa_update_lock);
2419         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2420         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2421         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2422         spin_unlock(&vcpu->arch.vpa_update_lock);
2423         kvm_vcpu_uninit(vcpu);
2424         kmem_cache_free(kvm_vcpu_cache, vcpu);
2425 }
2426
2427 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2428 {
2429         /* Indicate we want to get back into the guest */
2430         return 1;
2431 }
2432
2433 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2434 {
2435         unsigned long dec_nsec, now;
2436
2437         now = get_tb();
2438         if (now > vcpu->arch.dec_expires) {
2439                 /* decrementer has already gone negative */
2440                 kvmppc_core_queue_dec(vcpu);
2441                 kvmppc_core_prepare_to_enter(vcpu);
2442                 return;
2443         }
2444         dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now);
2445         hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2446         vcpu->arch.timer_running = 1;
2447 }
2448
2449 extern int __kvmppc_vcore_entry(void);
2450
2451 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2452                                    struct kvm_vcpu *vcpu)
2453 {
2454         u64 now;
2455
2456         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2457                 return;
2458         spin_lock_irq(&vcpu->arch.tbacct_lock);
2459         now = mftb();
2460         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2461                 vcpu->arch.stolen_logged;
2462         vcpu->arch.busy_preempt = now;
2463         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2464         spin_unlock_irq(&vcpu->arch.tbacct_lock);
2465         --vc->n_runnable;
2466         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2467 }
2468
2469 static int kvmppc_grab_hwthread(int cpu)
2470 {
2471         struct paca_struct *tpaca;
2472         long timeout = 10000;
2473
2474         tpaca = paca_ptrs[cpu];
2475
2476         /* Ensure the thread won't go into the kernel if it wakes */
2477         tpaca->kvm_hstate.kvm_vcpu = NULL;
2478         tpaca->kvm_hstate.kvm_vcore = NULL;
2479         tpaca->kvm_hstate.napping = 0;
2480         smp_wmb();
2481         tpaca->kvm_hstate.hwthread_req = 1;
2482
2483         /*
2484          * If the thread is already executing in the kernel (e.g. handling
2485          * a stray interrupt), wait for it to get back to nap mode.
2486          * The smp_mb() is to ensure that our setting of hwthread_req
2487          * is visible before we look at hwthread_state, so if this
2488          * races with the code at system_reset_pSeries and the thread
2489          * misses our setting of hwthread_req, we are sure to see its
2490          * setting of hwthread_state, and vice versa.
2491          */
2492         smp_mb();
2493         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2494                 if (--timeout <= 0) {
2495                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
2496                         return -EBUSY;
2497                 }
2498                 udelay(1);
2499         }
2500         return 0;
2501 }
2502
2503 static void kvmppc_release_hwthread(int cpu)
2504 {
2505         struct paca_struct *tpaca;
2506
2507         tpaca = paca_ptrs[cpu];
2508         tpaca->kvm_hstate.hwthread_req = 0;
2509         tpaca->kvm_hstate.kvm_vcpu = NULL;
2510         tpaca->kvm_hstate.kvm_vcore = NULL;
2511         tpaca->kvm_hstate.kvm_split_mode = NULL;
2512 }
2513
2514 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2515 {
2516         struct kvm_nested_guest *nested = vcpu->arch.nested;
2517         cpumask_t *cpu_in_guest;
2518         int i;
2519
2520         cpu = cpu_first_thread_sibling(cpu);
2521         if (nested) {
2522                 cpumask_set_cpu(cpu, &nested->need_tlb_flush);
2523                 cpu_in_guest = &nested->cpu_in_guest;
2524         } else {
2525                 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2526                 cpu_in_guest = &kvm->arch.cpu_in_guest;
2527         }
2528         /*
2529          * Make sure setting of bit in need_tlb_flush precedes
2530          * testing of cpu_in_guest bits.  The matching barrier on
2531          * the other side is the first smp_mb() in kvmppc_run_core().
2532          */
2533         smp_mb();
2534         for (i = 0; i < threads_per_core; ++i)
2535                 if (cpumask_test_cpu(cpu + i, cpu_in_guest))
2536                         smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2537 }
2538
2539 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2540 {
2541         struct kvm_nested_guest *nested = vcpu->arch.nested;
2542         struct kvm *kvm = vcpu->kvm;
2543         int prev_cpu;
2544
2545         if (!cpu_has_feature(CPU_FTR_HVMODE))
2546                 return;
2547
2548         if (nested)
2549                 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
2550         else
2551                 prev_cpu = vcpu->arch.prev_cpu;
2552
2553         /*
2554          * With radix, the guest can do TLB invalidations itself,
2555          * and it could choose to use the local form (tlbiel) if
2556          * it is invalidating a translation that has only ever been
2557          * used on one vcpu.  However, that doesn't mean it has
2558          * only ever been used on one physical cpu, since vcpus
2559          * can move around between pcpus.  To cope with this, when
2560          * a vcpu moves from one pcpu to another, we need to tell
2561          * any vcpus running on the same core as this vcpu previously
2562          * ran to flush the TLB.  The TLB is shared between threads,
2563          * so we use a single bit in .need_tlb_flush for all 4 threads.
2564          */
2565         if (prev_cpu != pcpu) {
2566                 if (prev_cpu >= 0 &&
2567                     cpu_first_thread_sibling(prev_cpu) !=
2568                     cpu_first_thread_sibling(pcpu))
2569                         radix_flush_cpu(kvm, prev_cpu, vcpu);
2570                 if (nested)
2571                         nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
2572                 else
2573                         vcpu->arch.prev_cpu = pcpu;
2574         }
2575 }
2576
2577 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2578 {
2579         int cpu;
2580         struct paca_struct *tpaca;
2581         struct kvm *kvm = vc->kvm;
2582
2583         cpu = vc->pcpu;
2584         if (vcpu) {
2585                 if (vcpu->arch.timer_running) {
2586                         hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2587                         vcpu->arch.timer_running = 0;
2588                 }
2589                 cpu += vcpu->arch.ptid;
2590                 vcpu->cpu = vc->pcpu;
2591                 vcpu->arch.thread_cpu = cpu;
2592                 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2593         }
2594         tpaca = paca_ptrs[cpu];
2595         tpaca->kvm_hstate.kvm_vcpu = vcpu;
2596         tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2597         tpaca->kvm_hstate.fake_suspend = 0;
2598         /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2599         smp_wmb();
2600         tpaca->kvm_hstate.kvm_vcore = vc;
2601         if (cpu != smp_processor_id())
2602                 kvmppc_ipi_thread(cpu);
2603 }
2604
2605 static void kvmppc_wait_for_nap(int n_threads)
2606 {
2607         int cpu = smp_processor_id();
2608         int i, loops;
2609
2610         if (n_threads <= 1)
2611                 return;
2612         for (loops = 0; loops < 1000000; ++loops) {
2613                 /*
2614                  * Check if all threads are finished.
2615                  * We set the vcore pointer when starting a thread
2616                  * and the thread clears it when finished, so we look
2617                  * for any threads that still have a non-NULL vcore ptr.
2618                  */
2619                 for (i = 1; i < n_threads; ++i)
2620                         if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2621                                 break;
2622                 if (i == n_threads) {
2623                         HMT_medium();
2624                         return;
2625                 }
2626                 HMT_low();
2627         }
2628         HMT_medium();
2629         for (i = 1; i < n_threads; ++i)
2630                 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2631                         pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2632 }
2633
2634 /*
2635  * Check that we are on thread 0 and that any other threads in
2636  * this core are off-line.  Then grab the threads so they can't
2637  * enter the kernel.
2638  */
2639 static int on_primary_thread(void)
2640 {
2641         int cpu = smp_processor_id();
2642         int thr;
2643
2644         /* Are we on a primary subcore? */
2645         if (cpu_thread_in_subcore(cpu))
2646                 return 0;
2647
2648         thr = 0;
2649         while (++thr < threads_per_subcore)
2650                 if (cpu_online(cpu + thr))
2651                         return 0;
2652
2653         /* Grab all hw threads so they can't go into the kernel */
2654         for (thr = 1; thr < threads_per_subcore; ++thr) {
2655                 if (kvmppc_grab_hwthread(cpu + thr)) {
2656                         /* Couldn't grab one; let the others go */
2657                         do {
2658                                 kvmppc_release_hwthread(cpu + thr);
2659                         } while (--thr > 0);
2660                         return 0;
2661                 }
2662         }
2663         return 1;
2664 }
2665
2666 /*
2667  * A list of virtual cores for each physical CPU.
2668  * These are vcores that could run but their runner VCPU tasks are
2669  * (or may be) preempted.
2670  */
2671 struct preempted_vcore_list {
2672         struct list_head        list;
2673         spinlock_t              lock;
2674 };
2675
2676 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2677
2678 static void init_vcore_lists(void)
2679 {
2680         int cpu;
2681
2682         for_each_possible_cpu(cpu) {
2683                 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2684                 spin_lock_init(&lp->lock);
2685                 INIT_LIST_HEAD(&lp->list);
2686         }
2687 }
2688
2689 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2690 {
2691         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2692
2693         vc->vcore_state = VCORE_PREEMPT;
2694         vc->pcpu = smp_processor_id();
2695         if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2696                 spin_lock(&lp->lock);
2697                 list_add_tail(&vc->preempt_list, &lp->list);
2698                 spin_unlock(&lp->lock);
2699         }
2700
2701         /* Start accumulating stolen time */
2702         kvmppc_core_start_stolen(vc);
2703 }
2704
2705 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2706 {
2707         struct preempted_vcore_list *lp;
2708
2709         kvmppc_core_end_stolen(vc);
2710         if (!list_empty(&vc->preempt_list)) {
2711                 lp = &per_cpu(preempted_vcores, vc->pcpu);
2712                 spin_lock(&lp->lock);
2713                 list_del_init(&vc->preempt_list);
2714                 spin_unlock(&lp->lock);
2715         }
2716         vc->vcore_state = VCORE_INACTIVE;
2717 }
2718
2719 /*
2720  * This stores information about the virtual cores currently
2721  * assigned to a physical core.
2722  */
2723 struct core_info {
2724         int             n_subcores;
2725         int             max_subcore_threads;
2726         int             total_threads;
2727         int             subcore_threads[MAX_SUBCORES];
2728         struct kvmppc_vcore *vc[MAX_SUBCORES];
2729 };
2730
2731 /*
2732  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2733  * respectively in 2-way micro-threading (split-core) mode on POWER8.
2734  */
2735 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2736
2737 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2738 {
2739         memset(cip, 0, sizeof(*cip));
2740         cip->n_subcores = 1;
2741         cip->max_subcore_threads = vc->num_threads;
2742         cip->total_threads = vc->num_threads;
2743         cip->subcore_threads[0] = vc->num_threads;
2744         cip->vc[0] = vc;
2745 }
2746
2747 static bool subcore_config_ok(int n_subcores, int n_threads)
2748 {
2749         /*
2750          * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2751          * split-core mode, with one thread per subcore.
2752          */
2753         if (cpu_has_feature(CPU_FTR_ARCH_300))
2754                 return n_subcores <= 4 && n_threads == 1;
2755
2756         /* On POWER8, can only dynamically split if unsplit to begin with */
2757         if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2758                 return false;
2759         if (n_subcores > MAX_SUBCORES)
2760                 return false;
2761         if (n_subcores > 1) {
2762                 if (!(dynamic_mt_modes & 2))
2763                         n_subcores = 4;
2764                 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2765                         return false;
2766         }
2767
2768         return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2769 }
2770
2771 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2772 {
2773         vc->entry_exit_map = 0;
2774         vc->in_guest = 0;
2775         vc->napping_threads = 0;
2776         vc->conferring_threads = 0;
2777         vc->tb_offset_applied = 0;
2778 }
2779
2780 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2781 {
2782         int n_threads = vc->num_threads;
2783         int sub;
2784
2785         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2786                 return false;
2787
2788         /* In one_vm_per_core mode, require all vcores to be from the same vm */
2789         if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
2790                 return false;
2791
2792         /* Some POWER9 chips require all threads to be in the same MMU mode */
2793         if (no_mixing_hpt_and_radix &&
2794             kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2795                 return false;
2796
2797         if (n_threads < cip->max_subcore_threads)
2798                 n_threads = cip->max_subcore_threads;
2799         if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2800                 return false;
2801         cip->max_subcore_threads = n_threads;
2802
2803         sub = cip->n_subcores;
2804         ++cip->n_subcores;
2805         cip->total_threads += vc->num_threads;
2806         cip->subcore_threads[sub] = vc->num_threads;
2807         cip->vc[sub] = vc;
2808         init_vcore_to_run(vc);
2809         list_del_init(&vc->preempt_list);
2810
2811         return true;
2812 }
2813
2814 /*
2815  * Work out whether it is possible to piggyback the execution of
2816  * vcore *pvc onto the execution of the other vcores described in *cip.
2817  */
2818 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2819                           int target_threads)
2820 {
2821         if (cip->total_threads + pvc->num_threads > target_threads)
2822                 return false;
2823
2824         return can_dynamic_split(pvc, cip);
2825 }
2826
2827 static void prepare_threads(struct kvmppc_vcore *vc)
2828 {
2829         int i;
2830         struct kvm_vcpu *vcpu;
2831
2832         for_each_runnable_thread(i, vcpu, vc) {
2833                 if (signal_pending(vcpu->arch.run_task))
2834                         vcpu->arch.ret = -EINTR;
2835                 else if (vcpu->arch.vpa.update_pending ||
2836                          vcpu->arch.slb_shadow.update_pending ||
2837                          vcpu->arch.dtl.update_pending)
2838                         vcpu->arch.ret = RESUME_GUEST;
2839                 else
2840                         continue;
2841                 kvmppc_remove_runnable(vc, vcpu);
2842                 wake_up(&vcpu->arch.cpu_run);
2843         }
2844 }
2845
2846 static void collect_piggybacks(struct core_info *cip, int target_threads)
2847 {
2848         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2849         struct kvmppc_vcore *pvc, *vcnext;
2850
2851         spin_lock(&lp->lock);
2852         list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2853                 if (!spin_trylock(&pvc->lock))
2854                         continue;
2855                 prepare_threads(pvc);
2856                 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
2857                         list_del_init(&pvc->preempt_list);
2858                         if (pvc->runner == NULL) {
2859                                 pvc->vcore_state = VCORE_INACTIVE;
2860                                 kvmppc_core_end_stolen(pvc);
2861                         }
2862                         spin_unlock(&pvc->lock);
2863                         continue;
2864                 }
2865                 if (!can_piggyback(pvc, cip, target_threads)) {
2866                         spin_unlock(&pvc->lock);
2867                         continue;
2868                 }
2869                 kvmppc_core_end_stolen(pvc);
2870                 pvc->vcore_state = VCORE_PIGGYBACK;
2871                 if (cip->total_threads >= target_threads)
2872                         break;
2873         }
2874         spin_unlock(&lp->lock);
2875 }
2876
2877 static bool recheck_signals_and_mmu(struct core_info *cip)
2878 {
2879         int sub, i;
2880         struct kvm_vcpu *vcpu;
2881         struct kvmppc_vcore *vc;
2882
2883         for (sub = 0; sub < cip->n_subcores; ++sub) {
2884                 vc = cip->vc[sub];
2885                 if (!vc->kvm->arch.mmu_ready)
2886                         return true;
2887                 for_each_runnable_thread(i, vcpu, vc)
2888                         if (signal_pending(vcpu->arch.run_task))
2889                                 return true;
2890         }
2891         return false;
2892 }
2893
2894 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2895 {
2896         int still_running = 0, i;
2897         u64 now;
2898         long ret;
2899         struct kvm_vcpu *vcpu;
2900
2901         spin_lock(&vc->lock);
2902         now = get_tb();
2903         for_each_runnable_thread(i, vcpu, vc) {
2904                 /*
2905                  * It's safe to unlock the vcore in the loop here, because
2906                  * for_each_runnable_thread() is safe against removal of
2907                  * the vcpu, and the vcore state is VCORE_EXITING here,
2908                  * so any vcpus becoming runnable will have their arch.trap
2909                  * set to zero and can't actually run in the guest.
2910                  */
2911                 spin_unlock(&vc->lock);
2912                 /* cancel pending dec exception if dec is positive */
2913                 if (now < vcpu->arch.dec_expires &&
2914                     kvmppc_core_pending_dec(vcpu))
2915                         kvmppc_core_dequeue_dec(vcpu);
2916
2917                 trace_kvm_guest_exit(vcpu);
2918
2919                 ret = RESUME_GUEST;
2920                 if (vcpu->arch.trap)
2921                         ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2922                                                     vcpu->arch.run_task);
2923
2924                 vcpu->arch.ret = ret;
2925                 vcpu->arch.trap = 0;
2926
2927                 spin_lock(&vc->lock);
2928                 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2929                         if (vcpu->arch.pending_exceptions)
2930                                 kvmppc_core_prepare_to_enter(vcpu);
2931                         if (vcpu->arch.ceded)
2932                                 kvmppc_set_timer(vcpu);
2933                         else
2934                                 ++still_running;
2935                 } else {
2936                         kvmppc_remove_runnable(vc, vcpu);
2937                         wake_up(&vcpu->arch.cpu_run);
2938                 }
2939         }
2940         if (!is_master) {
2941                 if (still_running > 0) {
2942                         kvmppc_vcore_preempt(vc);
2943                 } else if (vc->runner) {
2944                         vc->vcore_state = VCORE_PREEMPT;
2945                         kvmppc_core_start_stolen(vc);
2946                 } else {
2947                         vc->vcore_state = VCORE_INACTIVE;
2948                 }
2949                 if (vc->n_runnable > 0 && vc->runner == NULL) {
2950                         /* make sure there's a candidate runner awake */
2951                         i = -1;
2952                         vcpu = next_runnable_thread(vc, &i);
2953                         wake_up(&vcpu->arch.cpu_run);
2954                 }
2955         }
2956         spin_unlock(&vc->lock);
2957 }
2958
2959 /*
2960  * Clear core from the list of active host cores as we are about to
2961  * enter the guest. Only do this if it is the primary thread of the
2962  * core (not if a subcore) that is entering the guest.
2963  */
2964 static inline int kvmppc_clear_host_core(unsigned int cpu)
2965 {
2966         int core;
2967
2968         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2969                 return 0;
2970         /*
2971          * Memory barrier can be omitted here as we will do a smp_wmb()
2972          * later in kvmppc_start_thread and we need ensure that state is
2973          * visible to other CPUs only after we enter guest.
2974          */
2975         core = cpu >> threads_shift;
2976         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2977         return 0;
2978 }
2979
2980 /*
2981  * Advertise this core as an active host core since we exited the guest
2982  * Only need to do this if it is the primary thread of the core that is
2983  * exiting.
2984  */
2985 static inline int kvmppc_set_host_core(unsigned int cpu)
2986 {
2987         int core;
2988
2989         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2990                 return 0;
2991
2992         /*
2993          * Memory barrier can be omitted here because we do a spin_unlock
2994          * immediately after this which provides the memory barrier.
2995          */
2996         core = cpu >> threads_shift;
2997         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2998         return 0;
2999 }
3000
3001 static void set_irq_happened(int trap)
3002 {
3003         switch (trap) {
3004         case BOOK3S_INTERRUPT_EXTERNAL:
3005                 local_paca->irq_happened |= PACA_IRQ_EE;
3006                 break;
3007         case BOOK3S_INTERRUPT_H_DOORBELL:
3008                 local_paca->irq_happened |= PACA_IRQ_DBELL;
3009                 break;
3010         case BOOK3S_INTERRUPT_HMI:
3011                 local_paca->irq_happened |= PACA_IRQ_HMI;
3012                 break;
3013         case BOOK3S_INTERRUPT_SYSTEM_RESET:
3014                 replay_system_reset();
3015                 break;
3016         }
3017 }
3018
3019 /*
3020  * Run a set of guest threads on a physical core.
3021  * Called with vc->lock held.
3022  */
3023 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3024 {
3025         struct kvm_vcpu *vcpu;
3026         int i;
3027         int srcu_idx;
3028         struct core_info core_info;
3029         struct kvmppc_vcore *pvc;
3030         struct kvm_split_mode split_info, *sip;
3031         int split, subcore_size, active;
3032         int sub;
3033         bool thr0_done;
3034         unsigned long cmd_bit, stat_bit;
3035         int pcpu, thr;
3036         int target_threads;
3037         int controlled_threads;
3038         int trap;
3039         bool is_power8;
3040         bool hpt_on_radix;
3041
3042         /*
3043          * Remove from the list any threads that have a signal pending
3044          * or need a VPA update done
3045          */
3046         prepare_threads(vc);
3047
3048         /* if the runner is no longer runnable, let the caller pick a new one */
3049         if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3050                 return;
3051
3052         /*
3053          * Initialize *vc.
3054          */
3055         init_vcore_to_run(vc);
3056         vc->preempt_tb = TB_NIL;
3057
3058         /*
3059          * Number of threads that we will be controlling: the same as
3060          * the number of threads per subcore, except on POWER9,
3061          * where it's 1 because the threads are (mostly) independent.
3062          */
3063         controlled_threads = threads_per_vcore(vc->kvm);
3064
3065         /*
3066          * Make sure we are running on primary threads, and that secondary
3067          * threads are offline.  Also check if the number of threads in this
3068          * guest are greater than the current system threads per guest.
3069          * On POWER9, we need to be not in independent-threads mode if
3070          * this is a HPT guest on a radix host machine where the
3071          * CPU threads may not be in different MMU modes.
3072          */
3073         hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
3074                 !kvm_is_radix(vc->kvm);
3075         if (((controlled_threads > 1) &&
3076              ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
3077             (hpt_on_radix && vc->kvm->arch.threads_indep)) {
3078                 for_each_runnable_thread(i, vcpu, vc) {
3079                         vcpu->arch.ret = -EBUSY;
3080                         kvmppc_remove_runnable(vc, vcpu);
3081                         wake_up(&vcpu->arch.cpu_run);
3082                 }
3083                 goto out;
3084         }
3085
3086         /*
3087          * See if we could run any other vcores on the physical core
3088          * along with this one.
3089          */
3090         init_core_info(&core_info, vc);
3091         pcpu = smp_processor_id();
3092         target_threads = controlled_threads;
3093         if (target_smt_mode && target_smt_mode < target_threads)
3094                 target_threads = target_smt_mode;
3095         if (vc->num_threads < target_threads)
3096                 collect_piggybacks(&core_info, target_threads);
3097
3098         /*
3099          * On radix, arrange for TLB flushing if necessary.
3100          * This has to be done before disabling interrupts since
3101          * it uses smp_call_function().
3102          */
3103         pcpu = smp_processor_id();
3104         if (kvm_is_radix(vc->kvm)) {
3105                 for (sub = 0; sub < core_info.n_subcores; ++sub)
3106                         for_each_runnable_thread(i, vcpu, core_info.vc[sub])
3107                                 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
3108         }
3109
3110         /*
3111          * Hard-disable interrupts, and check resched flag and signals.
3112          * If we need to reschedule or deliver a signal, clean up
3113          * and return without going into the guest(s).
3114          * If the mmu_ready flag has been cleared, don't go into the
3115          * guest because that means a HPT resize operation is in progress.
3116          */
3117         local_irq_disable();
3118         hard_irq_disable();
3119         if (lazy_irq_pending() || need_resched() ||
3120             recheck_signals_and_mmu(&core_info)) {
3121                 local_irq_enable();
3122                 vc->vcore_state = VCORE_INACTIVE;
3123                 /* Unlock all except the primary vcore */
3124                 for (sub = 1; sub < core_info.n_subcores; ++sub) {
3125                         pvc = core_info.vc[sub];
3126                         /* Put back on to the preempted vcores list */
3127                         kvmppc_vcore_preempt(pvc);
3128                         spin_unlock(&pvc->lock);
3129                 }
3130                 for (i = 0; i < controlled_threads; ++i)
3131                         kvmppc_release_hwthread(pcpu + i);
3132                 return;
3133         }
3134
3135         kvmppc_clear_host_core(pcpu);
3136
3137         /* Decide on micro-threading (split-core) mode */
3138         subcore_size = threads_per_subcore;
3139         cmd_bit = stat_bit = 0;
3140         split = core_info.n_subcores;
3141         sip = NULL;
3142         is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
3143                 && !cpu_has_feature(CPU_FTR_ARCH_300);
3144
3145         if (split > 1 || hpt_on_radix) {
3146                 sip = &split_info;
3147                 memset(&split_info, 0, sizeof(split_info));
3148                 for (sub = 0; sub < core_info.n_subcores; ++sub)
3149                         split_info.vc[sub] = core_info.vc[sub];
3150
3151                 if (is_power8) {
3152                         if (split == 2 && (dynamic_mt_modes & 2)) {
3153                                 cmd_bit = HID0_POWER8_1TO2LPAR;
3154                                 stat_bit = HID0_POWER8_2LPARMODE;
3155                         } else {
3156                                 split = 4;
3157                                 cmd_bit = HID0_POWER8_1TO4LPAR;
3158                                 stat_bit = HID0_POWER8_4LPARMODE;
3159                         }
3160                         subcore_size = MAX_SMT_THREADS / split;
3161                         split_info.rpr = mfspr(SPRN_RPR);
3162                         split_info.pmmar = mfspr(SPRN_PMMAR);
3163                         split_info.ldbar = mfspr(SPRN_LDBAR);
3164                         split_info.subcore_size = subcore_size;
3165                 } else {
3166                         split_info.subcore_size = 1;
3167                         if (hpt_on_radix) {
3168                                 /* Use the split_info for LPCR/LPIDR changes */
3169                                 split_info.lpcr_req = vc->lpcr;
3170                                 split_info.lpidr_req = vc->kvm->arch.lpid;
3171                                 split_info.host_lpcr = vc->kvm->arch.host_lpcr;
3172                                 split_info.do_set = 1;
3173                         }
3174                 }
3175
3176                 /* order writes to split_info before kvm_split_mode pointer */
3177                 smp_wmb();
3178         }
3179
3180         for (thr = 0; thr < controlled_threads; ++thr) {
3181                 struct paca_struct *paca = paca_ptrs[pcpu + thr];
3182
3183                 paca->kvm_hstate.tid = thr;
3184                 paca->kvm_hstate.napping = 0;
3185                 paca->kvm_hstate.kvm_split_mode = sip;
3186         }
3187
3188         /* Initiate micro-threading (split-core) on POWER8 if required */
3189         if (cmd_bit) {
3190                 unsigned long hid0 = mfspr(SPRN_HID0);
3191
3192                 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3193                 mb();
3194                 mtspr(SPRN_HID0, hid0);
3195                 isync();
3196                 for (;;) {
3197                         hid0 = mfspr(SPRN_HID0);
3198                         if (hid0 & stat_bit)
3199                                 break;
3200                         cpu_relax();
3201                 }
3202         }
3203
3204         /*
3205          * On POWER8, set RWMR register.
3206          * Since it only affects PURR and SPURR, it doesn't affect
3207          * the host, so we don't save/restore the host value.
3208          */
3209         if (is_power8) {
3210                 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3211                 int n_online = atomic_read(&vc->online_count);
3212
3213                 /*
3214                  * Use the 8-thread value if we're doing split-core
3215                  * or if the vcore's online count looks bogus.
3216                  */
3217                 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3218                     n_online >= 1 && n_online <= MAX_SMT_THREADS)
3219                         rwmr_val = p8_rwmr_values[n_online];
3220                 mtspr(SPRN_RWMR, rwmr_val);
3221         }
3222
3223         /* Start all the threads */
3224         active = 0;
3225         for (sub = 0; sub < core_info.n_subcores; ++sub) {
3226                 thr = is_power8 ? subcore_thread_map[sub] : sub;
3227                 thr0_done = false;
3228                 active |= 1 << thr;
3229                 pvc = core_info.vc[sub];
3230                 pvc->pcpu = pcpu + thr;
3231                 for_each_runnable_thread(i, vcpu, pvc) {
3232                         kvmppc_start_thread(vcpu, pvc);
3233                         kvmppc_create_dtl_entry(vcpu, pvc);
3234                         trace_kvm_guest_enter(vcpu);
3235                         if (!vcpu->arch.ptid)
3236                                 thr0_done = true;
3237                         active |= 1 << (thr + vcpu->arch.ptid);
3238                 }
3239                 /*
3240                  * We need to start the first thread of each subcore
3241                  * even if it doesn't have a vcpu.
3242                  */
3243                 if (!thr0_done)
3244                         kvmppc_start_thread(NULL, pvc);
3245         }
3246
3247         /*
3248          * Ensure that split_info.do_nap is set after setting
3249          * the vcore pointer in the PACA of the secondaries.
3250          */
3251         smp_mb();
3252
3253         /*
3254          * When doing micro-threading, poke the inactive threads as well.
3255          * This gets them to the nap instruction after kvm_do_nap,
3256          * which reduces the time taken to unsplit later.
3257          * For POWER9 HPT guest on radix host, we need all the secondary
3258          * threads woken up so they can do the LPCR/LPIDR change.
3259          */
3260         if (cmd_bit || hpt_on_radix) {
3261                 split_info.do_nap = 1;  /* ask secondaries to nap when done */
3262                 for (thr = 1; thr < threads_per_subcore; ++thr)
3263                         if (!(active & (1 << thr)))
3264                                 kvmppc_ipi_thread(pcpu + thr);
3265         }
3266
3267         vc->vcore_state = VCORE_RUNNING;
3268         preempt_disable();
3269
3270         trace_kvmppc_run_core(vc, 0);
3271
3272         for (sub = 0; sub < core_info.n_subcores; ++sub)
3273                 spin_unlock(&core_info.vc[sub]->lock);
3274
3275         guest_enter_irqoff();
3276
3277         srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3278
3279         this_cpu_disable_ftrace();
3280
3281         /*
3282          * Interrupts will be enabled once we get into the guest,
3283          * so tell lockdep that we're about to enable interrupts.
3284          */
3285         trace_hardirqs_on();
3286
3287         trap = __kvmppc_vcore_entry();
3288
3289         trace_hardirqs_off();
3290
3291         this_cpu_enable_ftrace();
3292
3293         srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3294
3295         set_irq_happened(trap);
3296
3297         spin_lock(&vc->lock);
3298         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
3299         vc->vcore_state = VCORE_EXITING;
3300
3301         /* wait for secondary threads to finish writing their state to memory */
3302         kvmppc_wait_for_nap(controlled_threads);
3303
3304         /* Return to whole-core mode if we split the core earlier */
3305         if (cmd_bit) {
3306                 unsigned long hid0 = mfspr(SPRN_HID0);
3307                 unsigned long loops = 0;
3308
3309                 hid0 &= ~HID0_POWER8_DYNLPARDIS;
3310                 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3311                 mb();
3312                 mtspr(SPRN_HID0, hid0);
3313                 isync();
3314                 for (;;) {
3315                         hid0 = mfspr(SPRN_HID0);
3316                         if (!(hid0 & stat_bit))
3317                                 break;
3318                         cpu_relax();
3319                         ++loops;
3320                 }
3321         } else if (hpt_on_radix) {
3322                 /* Wait for all threads to have seen final sync */
3323                 for (thr = 1; thr < controlled_threads; ++thr) {
3324                         struct paca_struct *paca = paca_ptrs[pcpu + thr];
3325
3326                         while (paca->kvm_hstate.kvm_split_mode) {
3327                                 HMT_low();
3328                                 barrier();
3329                         }
3330                         HMT_medium();
3331                 }
3332         }
3333         split_info.do_nap = 0;
3334
3335         kvmppc_set_host_core(pcpu);
3336
3337         local_irq_enable();
3338         guest_exit();
3339
3340         /* Let secondaries go back to the offline loop */
3341         for (i = 0; i < controlled_threads; ++i) {
3342                 kvmppc_release_hwthread(pcpu + i);
3343                 if (sip && sip->napped[i])
3344                         kvmppc_ipi_thread(pcpu + i);
3345                 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3346         }
3347
3348         spin_unlock(&vc->lock);
3349
3350         /* make sure updates to secondary vcpu structs are visible now */
3351         smp_mb();
3352
3353         preempt_enable();
3354
3355         for (sub = 0; sub < core_info.n_subcores; ++sub) {
3356                 pvc = core_info.vc[sub];
3357                 post_guest_process(pvc, pvc == vc);
3358         }
3359
3360         spin_lock(&vc->lock);
3361
3362  out:
3363         vc->vcore_state = VCORE_INACTIVE;
3364         trace_kvmppc_run_core(vc, 1);
3365 }
3366
3367 /*
3368  * Load up hypervisor-mode registers on P9.
3369  */
3370 static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit,
3371                                      unsigned long lpcr)
3372 {
3373         struct kvmppc_vcore *vc = vcpu->arch.vcore;
3374         s64 hdec;
3375         u64 tb, purr, spurr;
3376         int trap;
3377         unsigned long host_hfscr = mfspr(SPRN_HFSCR);
3378         unsigned long host_ciabr = mfspr(SPRN_CIABR);
3379         unsigned long host_dawr = mfspr(SPRN_DAWR);
3380         unsigned long host_dawrx = mfspr(SPRN_DAWRX);
3381         unsigned long host_psscr = mfspr(SPRN_PSSCR);
3382         unsigned long host_pidr = mfspr(SPRN_PID);
3383
3384         hdec = time_limit - mftb();
3385         if (hdec < 0)
3386                 return BOOK3S_INTERRUPT_HV_DECREMENTER;
3387         mtspr(SPRN_HDEC, hdec);
3388
3389         if (vc->tb_offset) {
3390                 u64 new_tb = mftb() + vc->tb_offset;
3391                 mtspr(SPRN_TBU40, new_tb);
3392                 tb = mftb();
3393                 if ((tb & 0xffffff) < (new_tb & 0xffffff))
3394                         mtspr(SPRN_TBU40, new_tb + 0x1000000);
3395                 vc->tb_offset_applied = vc->tb_offset;
3396         }
3397
3398         if (vc->pcr)
3399                 mtspr(SPRN_PCR, vc->pcr | PCR_MASK);
3400         mtspr(SPRN_DPDES, vc->dpdes);
3401         mtspr(SPRN_VTB, vc->vtb);
3402
3403         local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR);
3404         local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR);
3405         mtspr(SPRN_PURR, vcpu->arch.purr);
3406         mtspr(SPRN_SPURR, vcpu->arch.spurr);
3407
3408         if (dawr_enabled()) {
3409                 mtspr(SPRN_DAWR, vcpu->arch.dawr);
3410                 mtspr(SPRN_DAWRX, vcpu->arch.dawrx);
3411         }
3412         mtspr(SPRN_CIABR, vcpu->arch.ciabr);
3413         mtspr(SPRN_IC, vcpu->arch.ic);
3414         mtspr(SPRN_PID, vcpu->arch.pid);
3415
3416         mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC |
3417               (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3418
3419         mtspr(SPRN_HFSCR, vcpu->arch.hfscr);
3420
3421         mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0);
3422         mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1);
3423         mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2);
3424         mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3);
3425
3426         mtspr(SPRN_AMOR, ~0UL);
3427
3428         mtspr(SPRN_LPCR, lpcr);
3429         isync();
3430
3431         kvmppc_xive_push_vcpu(vcpu);
3432
3433         mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0);
3434         mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1);
3435
3436         trap = __kvmhv_vcpu_entry_p9(vcpu);
3437
3438         /* Advance host PURR/SPURR by the amount used by guest */
3439         purr = mfspr(SPRN_PURR);
3440         spurr = mfspr(SPRN_SPURR);
3441         mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr +
3442               purr - vcpu->arch.purr);
3443         mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr +
3444               spurr - vcpu->arch.spurr);
3445         vcpu->arch.purr = purr;
3446         vcpu->arch.spurr = spurr;
3447
3448         vcpu->arch.ic = mfspr(SPRN_IC);
3449         vcpu->arch.pid = mfspr(SPRN_PID);
3450         vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS;
3451
3452         vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0);
3453         vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1);
3454         vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2);
3455         vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3);
3456
3457         /* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */
3458         mtspr(SPRN_PSSCR, host_psscr |
3459               (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3460         mtspr(SPRN_HFSCR, host_hfscr);
3461         mtspr(SPRN_CIABR, host_ciabr);
3462         mtspr(SPRN_DAWR, host_dawr);
3463         mtspr(SPRN_DAWRX, host_dawrx);
3464         mtspr(SPRN_PID, host_pidr);
3465
3466         /*
3467          * Since this is radix, do a eieio; tlbsync; ptesync sequence in
3468          * case we interrupted the guest between a tlbie and a ptesync.
3469          */
3470         asm volatile("eieio; tlbsync; ptesync");
3471
3472         mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid);    /* restore host LPID */
3473         isync();
3474
3475         vc->dpdes = mfspr(SPRN_DPDES);
3476         vc->vtb = mfspr(SPRN_VTB);
3477         mtspr(SPRN_DPDES, 0);
3478         if (vc->pcr)
3479                 mtspr(SPRN_PCR, PCR_MASK);
3480
3481         if (vc->tb_offset_applied) {
3482                 u64 new_tb = mftb() - vc->tb_offset_applied;
3483                 mtspr(SPRN_TBU40, new_tb);
3484                 tb = mftb();
3485                 if ((tb & 0xffffff) < (new_tb & 0xffffff))
3486                         mtspr(SPRN_TBU40, new_tb + 0x1000000);
3487                 vc->tb_offset_applied = 0;
3488         }
3489
3490         mtspr(SPRN_HDEC, 0x7fffffff);
3491         mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);
3492
3493         return trap;
3494 }
3495
3496 /*
3497  * Virtual-mode guest entry for POWER9 and later when the host and
3498  * guest are both using the radix MMU.  The LPIDR has already been set.
3499  */
3500 int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
3501                          unsigned long lpcr)
3502 {
3503         struct kvmppc_vcore *vc = vcpu->arch.vcore;
3504         unsigned long host_dscr = mfspr(SPRN_DSCR);
3505         unsigned long host_tidr = mfspr(SPRN_TIDR);
3506         unsigned long host_iamr = mfspr(SPRN_IAMR);
3507         unsigned long host_amr = mfspr(SPRN_AMR);
3508         s64 dec;
3509         u64 tb;
3510         int trap, save_pmu;
3511
3512         dec = mfspr(SPRN_DEC);
3513         tb = mftb();
3514         if (dec < 512)
3515                 return BOOK3S_INTERRUPT_HV_DECREMENTER;
3516         local_paca->kvm_hstate.dec_expires = dec + tb;
3517         if (local_paca->kvm_hstate.dec_expires < time_limit)
3518                 time_limit = local_paca->kvm_hstate.dec_expires;
3519
3520         vcpu->arch.ceded = 0;
3521
3522         kvmhv_save_host_pmu();          /* saves it to PACA kvm_hstate */
3523
3524         kvmppc_subcore_enter_guest();
3525
3526         vc->entry_exit_map = 1;
3527         vc->in_guest = 1;
3528
3529         if (vcpu->arch.vpa.pinned_addr) {
3530                 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3531                 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3532                 lp->yield_count = cpu_to_be32(yield_count);
3533                 vcpu->arch.vpa.dirty = 1;
3534         }
3535
3536         if (cpu_has_feature(CPU_FTR_TM) ||
3537             cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3538                 kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3539
3540         kvmhv_load_guest_pmu(vcpu);
3541
3542         msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3543         load_fp_state(&vcpu->arch.fp);
3544 #ifdef CONFIG_ALTIVEC
3545         load_vr_state(&vcpu->arch.vr);
3546 #endif
3547         mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
3548
3549         mtspr(SPRN_DSCR, vcpu->arch.dscr);
3550         mtspr(SPRN_IAMR, vcpu->arch.iamr);
3551         mtspr(SPRN_PSPB, vcpu->arch.pspb);
3552         mtspr(SPRN_FSCR, vcpu->arch.fscr);
3553         mtspr(SPRN_TAR, vcpu->arch.tar);
3554         mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
3555         mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
3556         mtspr(SPRN_BESCR, vcpu->arch.bescr);
3557         mtspr(SPRN_WORT, vcpu->arch.wort);
3558         mtspr(SPRN_TIDR, vcpu->arch.tid);
3559         mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
3560         mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
3561         mtspr(SPRN_AMR, vcpu->arch.amr);
3562         mtspr(SPRN_UAMOR, vcpu->arch.uamor);
3563
3564         if (!(vcpu->arch.ctrl & 1))
3565                 mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);
3566
3567         mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());
3568
3569         if (kvmhv_on_pseries()) {
3570                 /*
3571                  * We need to save and restore the guest visible part of the
3572                  * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
3573                  * doesn't do this for us. Note only required if pseries since
3574                  * this is done in kvmhv_load_hv_regs_and_go() below otherwise.
3575                  */
3576                 unsigned long host_psscr;
3577                 /* call our hypervisor to load up HV regs and go */
3578                 struct hv_guest_state hvregs;
3579
3580                 host_psscr = mfspr(SPRN_PSSCR_PR);
3581                 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
3582                 kvmhv_save_hv_regs(vcpu, &hvregs);
3583                 hvregs.lpcr = lpcr;
3584                 vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
3585                 hvregs.version = HV_GUEST_STATE_VERSION;
3586                 if (vcpu->arch.nested) {
3587                         hvregs.lpid = vcpu->arch.nested->shadow_lpid;
3588                         hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
3589                 } else {
3590                         hvregs.lpid = vcpu->kvm->arch.lpid;
3591                         hvregs.vcpu_token = vcpu->vcpu_id;
3592                 }
3593                 hvregs.hdec_expiry = time_limit;
3594                 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
3595                                           __pa(&vcpu->arch.regs));
3596                 kvmhv_restore_hv_return_state(vcpu, &hvregs);
3597                 vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
3598                 vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
3599                 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
3600                 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
3601                 mtspr(SPRN_PSSCR_PR, host_psscr);
3602
3603                 /* H_CEDE has to be handled now, not later */
3604                 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
3605                     kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
3606                         kvmppc_nested_cede(vcpu);
3607                         trap = 0;
3608                 }
3609         } else {
3610                 trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr);
3611         }
3612
3613         vcpu->arch.slb_max = 0;
3614         dec = mfspr(SPRN_DEC);
3615         if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
3616                 dec = (s32) dec;
3617         tb = mftb();
3618         vcpu->arch.dec_expires = dec + tb;
3619         vcpu->cpu = -1;
3620         vcpu->arch.thread_cpu = -1;
3621         vcpu->arch.ctrl = mfspr(SPRN_CTRLF);
3622
3623         vcpu->arch.iamr = mfspr(SPRN_IAMR);
3624         vcpu->arch.pspb = mfspr(SPRN_PSPB);
3625         vcpu->arch.fscr = mfspr(SPRN_FSCR);
3626         vcpu->arch.tar = mfspr(SPRN_TAR);
3627         vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
3628         vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
3629         vcpu->arch.bescr = mfspr(SPRN_BESCR);
3630         vcpu->arch.wort = mfspr(SPRN_WORT);
3631         vcpu->arch.tid = mfspr(SPRN_TIDR);
3632         vcpu->arch.amr = mfspr(SPRN_AMR);
3633         vcpu->arch.uamor = mfspr(SPRN_UAMOR);
3634         vcpu->arch.dscr = mfspr(SPRN_DSCR);
3635
3636         mtspr(SPRN_PSPB, 0);
3637         mtspr(SPRN_WORT, 0);
3638         mtspr(SPRN_UAMOR, 0);
3639         mtspr(SPRN_DSCR, host_dscr);
3640         mtspr(SPRN_TIDR, host_tidr);
3641         mtspr(SPRN_IAMR, host_iamr);
3642         mtspr(SPRN_PSPB, 0);
3643
3644         if (host_amr != vcpu->arch.amr)
3645                 mtspr(SPRN_AMR, host_amr);
3646
3647         msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3648         store_fp_state(&vcpu->arch.fp);
3649 #ifdef CONFIG_ALTIVEC
3650         store_vr_state(&vcpu->arch.vr);
3651 #endif
3652         vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
3653
3654         if (cpu_has_feature(CPU_FTR_TM) ||
3655             cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3656                 kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3657
3658         save_pmu = 1;
3659         if (vcpu->arch.vpa.pinned_addr) {
3660                 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3661                 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3662                 lp->yield_count = cpu_to_be32(yield_count);
3663                 vcpu->arch.vpa.dirty = 1;
3664                 save_pmu = lp->pmcregs_in_use;
3665         }
3666         /* Must save pmu if this guest is capable of running nested guests */
3667         save_pmu |= nesting_enabled(vcpu->kvm);
3668
3669         kvmhv_save_guest_pmu(vcpu, save_pmu);
3670
3671         vc->entry_exit_map = 0x101;
3672         vc->in_guest = 0;
3673
3674         mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());
3675         mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso);
3676
3677         kvmhv_load_host_pmu();
3678
3679         kvmppc_subcore_exit_guest();
3680
3681         return trap;
3682 }
3683
3684 /*
3685  * Wait for some other vcpu thread to execute us, and
3686  * wake us up when we need to handle something in the host.
3687  */
3688 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
3689                                  struct kvm_vcpu *vcpu, int wait_state)
3690 {
3691         DEFINE_WAIT(wait);
3692
3693         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3694         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3695                 spin_unlock(&vc->lock);
3696                 schedule();
3697                 spin_lock(&vc->lock);
3698         }
3699         finish_wait(&vcpu->arch.cpu_run, &wait);
3700 }
3701
3702 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
3703 {
3704         if (!halt_poll_ns_grow)
3705                 return;
3706
3707         vc->halt_poll_ns *= halt_poll_ns_grow;
3708         if (vc->halt_poll_ns < halt_poll_ns_grow_start)
3709                 vc->halt_poll_ns = halt_poll_ns_grow_start;
3710 }
3711
3712 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
3713 {
3714         if (halt_poll_ns_shrink == 0)
3715                 vc->halt_poll_ns = 0;
3716         else
3717                 vc->halt_poll_ns /= halt_poll_ns_shrink;
3718 }
3719
3720 #ifdef CONFIG_KVM_XICS
3721 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3722 {
3723         if (!xics_on_xive())
3724                 return false;
3725         return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3726                 vcpu->arch.xive_saved_state.cppr;
3727 }
3728 #else
3729 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3730 {
3731         return false;
3732 }
3733 #endif /* CONFIG_KVM_XICS */
3734
3735 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3736 {
3737         if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3738             kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3739                 return true;
3740
3741         return false;
3742 }
3743
3744 /*
3745  * Check to see if any of the runnable vcpus on the vcore have pending
3746  * exceptions or are no longer ceded
3747  */
3748 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3749 {
3750         struct kvm_vcpu *vcpu;
3751         int i;
3752
3753         for_each_runnable_thread(i, vcpu, vc) {
3754                 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3755                         return 1;
3756         }
3757
3758         return 0;
3759 }
3760
3761 /*
3762  * All the vcpus in this vcore are idle, so wait for a decrementer
3763  * or external interrupt to one of the vcpus.  vc->lock is held.
3764  */
3765 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3766 {
3767         ktime_t cur, start_poll, start_wait;
3768         int do_sleep = 1;
3769         u64 block_ns;
3770         DECLARE_SWAITQUEUE(wait);
3771
3772         /* Poll for pending exceptions and ceded state */
3773         cur = start_poll = ktime_get();
3774         if (vc->halt_poll_ns) {
3775                 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3776                 ++vc->runner->stat.halt_attempted_poll;
3777
3778                 vc->vcore_state = VCORE_POLLING;
3779                 spin_unlock(&vc->lock);
3780
3781                 do {
3782                         if (kvmppc_vcore_check_block(vc)) {
3783                                 do_sleep = 0;
3784                                 break;
3785                         }
3786                         cur = ktime_get();
3787                 } while (single_task_running() && ktime_before(cur, stop));
3788
3789                 spin_lock(&vc->lock);
3790                 vc->vcore_state = VCORE_INACTIVE;
3791
3792                 if (!do_sleep) {
3793                         ++vc->runner->stat.halt_successful_poll;
3794                         goto out;
3795                 }
3796         }
3797
3798         prepare_to_swait_exclusive(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3799
3800         if (kvmppc_vcore_check_block(vc)) {
3801                 finish_swait(&vc->wq, &wait);
3802                 do_sleep = 0;
3803                 /* If we polled, count this as a successful poll */
3804                 if (vc->halt_poll_ns)
3805                         ++vc->runner->stat.halt_successful_poll;
3806                 goto out;
3807         }
3808
3809         start_wait = ktime_get();
3810
3811         vc->vcore_state = VCORE_SLEEPING;
3812         trace_kvmppc_vcore_blocked(vc, 0);
3813         spin_unlock(&vc->lock);
3814         schedule();
3815         finish_swait(&vc->wq, &wait);
3816         spin_lock(&vc->lock);
3817         vc->vcore_state = VCORE_INACTIVE;
3818         trace_kvmppc_vcore_blocked(vc, 1);
3819         ++vc->runner->stat.halt_successful_wait;
3820
3821         cur = ktime_get();
3822
3823 out:
3824         block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3825
3826         /* Attribute wait time */
3827         if (do_sleep) {
3828                 vc->runner->stat.halt_wait_ns +=
3829                         ktime_to_ns(cur) - ktime_to_ns(start_wait);
3830                 /* Attribute failed poll time */
3831                 if (vc->halt_poll_ns)
3832                         vc->runner->stat.halt_poll_fail_ns +=
3833                                 ktime_to_ns(start_wait) -
3834                                 ktime_to_ns(start_poll);
3835         } else {
3836                 /* Attribute successful poll time */
3837                 if (vc->halt_poll_ns)
3838                         vc->runner->stat.halt_poll_success_ns +=
3839                                 ktime_to_ns(cur) -
3840                                 ktime_to_ns(start_poll);
3841         }
3842
3843         /* Adjust poll time */
3844         if (halt_poll_ns) {
3845                 if (block_ns <= vc->halt_poll_ns)
3846                         ;
3847                 /* We slept and blocked for longer than the max halt time */
3848                 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3849                         shrink_halt_poll_ns(vc);
3850                 /* We slept and our poll time is too small */
3851                 else if (vc->halt_poll_ns < halt_poll_ns &&
3852                                 block_ns < halt_poll_ns)
3853                         grow_halt_poll_ns(vc);
3854                 if (vc->halt_poll_ns > halt_poll_ns)
3855                         vc->halt_poll_ns = halt_poll_ns;
3856         } else
3857                 vc->halt_poll_ns = 0;
3858
3859         trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3860 }
3861
3862 /*
3863  * This never fails for a radix guest, as none of the operations it does
3864  * for a radix guest can fail or have a way to report failure.
3865  * kvmhv_run_single_vcpu() relies on this fact.
3866  */
3867 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3868 {
3869         int r = 0;
3870         struct kvm *kvm = vcpu->kvm;
3871
3872         mutex_lock(&kvm->arch.mmu_setup_lock);
3873         if (!kvm->arch.mmu_ready) {
3874                 if (!kvm_is_radix(kvm))
3875                         r = kvmppc_hv_setup_htab_rma(vcpu);
3876                 if (!r) {
3877                         if (cpu_has_feature(CPU_FTR_ARCH_300))
3878                                 kvmppc_setup_partition_table(kvm);
3879                         kvm->arch.mmu_ready = 1;
3880                 }
3881         }
3882         mutex_unlock(&kvm->arch.mmu_setup_lock);
3883         return r;
3884 }
3885
3886 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3887 {
3888         int n_ceded, i, r;
3889         struct kvmppc_vcore *vc;
3890         struct kvm_vcpu *v;
3891
3892         trace_kvmppc_run_vcpu_enter(vcpu);
3893
3894         kvm_run->exit_reason = 0;
3895         vcpu->arch.ret = RESUME_GUEST;
3896         vcpu->arch.trap = 0;
3897         kvmppc_update_vpas(vcpu);
3898
3899         /*
3900          * Synchronize with other threads in this virtual core
3901          */
3902         vc = vcpu->arch.vcore;
3903         spin_lock(&vc->lock);
3904         vcpu->arch.ceded = 0;
3905         vcpu->arch.run_task = current;
3906         vcpu->arch.kvm_run = kvm_run;
3907         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3908         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3909         vcpu->arch.busy_preempt = TB_NIL;
3910         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3911         ++vc->n_runnable;
3912
3913         /*
3914          * This happens the first time this is called for a vcpu.
3915          * If the vcore is already running, we may be able to start
3916          * this thread straight away and have it join in.
3917          */
3918         if (!signal_pending(current)) {
3919                 if ((vc->vcore_state == VCORE_PIGGYBACK ||
3920                      vc->vcore_state == VCORE_RUNNING) &&
3921                            !VCORE_IS_EXITING(vc)) {
3922                         kvmppc_create_dtl_entry(vcpu, vc);
3923                         kvmppc_start_thread(vcpu, vc);
3924                         trace_kvm_guest_enter(vcpu);
3925                 } else if (vc->vcore_state == VCORE_SLEEPING) {
3926                         swake_up_one(&vc->wq);
3927                 }
3928
3929         }
3930
3931         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3932                !signal_pending(current)) {
3933                 /* See if the MMU is ready to go */
3934                 if (!vcpu->kvm->arch.mmu_ready) {
3935                         spin_unlock(&vc->lock);
3936                         r = kvmhv_setup_mmu(vcpu);
3937                         spin_lock(&vc->lock);
3938                         if (r) {
3939                                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3940                                 kvm_run->fail_entry.
3941                                         hardware_entry_failure_reason = 0;
3942                                 vcpu->arch.ret = r;
3943                                 break;
3944                         }
3945                 }
3946
3947                 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3948                         kvmppc_vcore_end_preempt(vc);
3949
3950                 if (vc->vcore_state != VCORE_INACTIVE) {
3951                         kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3952                         continue;
3953                 }
3954                 for_each_runnable_thread(i, v, vc) {
3955                         kvmppc_core_prepare_to_enter(v);
3956                         if (signal_pending(v->arch.run_task)) {
3957                                 kvmppc_remove_runnable(vc, v);
3958                                 v->stat.signal_exits++;
3959                                 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3960                                 v->arch.ret = -EINTR;
3961                                 wake_up(&v->arch.cpu_run);
3962                         }
3963                 }
3964                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3965                         break;
3966                 n_ceded = 0;
3967                 for_each_runnable_thread(i, v, vc) {
3968                         if (!kvmppc_vcpu_woken(v))
3969                                 n_ceded += v->arch.ceded;
3970                         else
3971                                 v->arch.ceded = 0;
3972                 }
3973                 vc->runner = vcpu;
3974                 if (n_ceded == vc->n_runnable) {
3975                         kvmppc_vcore_blocked(vc);
3976                 } else if (need_resched()) {
3977                         kvmppc_vcore_preempt(vc);
3978                         /* Let something else run */
3979                         cond_resched_lock(&vc->lock);
3980                         if (vc->vcore_state == VCORE_PREEMPT)
3981                                 kvmppc_vcore_end_preempt(vc);
3982                 } else {
3983                         kvmppc_run_core(vc);
3984                 }
3985                 vc->runner = NULL;
3986         }
3987
3988         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3989                (vc->vcore_state == VCORE_RUNNING ||
3990                 vc->vcore_state == VCORE_EXITING ||
3991                 vc->vcore_state == VCORE_PIGGYBACK))
3992                 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3993
3994         if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3995                 kvmppc_vcore_end_preempt(vc);
3996
3997         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3998                 kvmppc_remove_runnable(vc, vcpu);
3999                 vcpu->stat.signal_exits++;
4000                 kvm_run->exit_reason = KVM_EXIT_INTR;
4001                 vcpu->arch.ret = -EINTR;
4002         }
4003
4004         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4005                 /* Wake up some vcpu to run the core */
4006                 i = -1;
4007                 v = next_runnable_thread(vc, &i);
4008                 wake_up(&v->arch.cpu_run);
4009         }
4010
4011         trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
4012         spin_unlock(&vc->lock);
4013         return vcpu->arch.ret;
4014 }
4015
4016 int kvmhv_run_single_vcpu(struct kvm_run *kvm_run,
4017                           struct kvm_vcpu *vcpu, u64 time_limit,
4018                           unsigned long lpcr)
4019 {
4020         int trap, r, pcpu;
4021         int srcu_idx, lpid;
4022         struct kvmppc_vcore *vc;
4023         struct kvm *kvm = vcpu->kvm;
4024         struct kvm_nested_guest *nested = vcpu->arch.nested;
4025
4026         trace_kvmppc_run_vcpu_enter(vcpu);
4027
4028         kvm_run->exit_reason = 0;
4029         vcpu->arch.ret = RESUME_GUEST;
4030         vcpu->arch.trap = 0;
4031
4032         vc = vcpu->arch.vcore;
4033         vcpu->arch.ceded = 0;
4034         vcpu->arch.run_task = current;
4035         vcpu->arch.kvm_run = kvm_run;
4036         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4037         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4038         vcpu->arch.busy_preempt = TB_NIL;
4039         vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4040         vc->runnable_threads[0] = vcpu;
4041         vc->n_runnable = 1;
4042         vc->runner = vcpu;
4043
4044         /* See if the MMU is ready to go */
4045         if (!kvm->arch.mmu_ready)
4046                 kvmhv_setup_mmu(vcpu);
4047
4048         if (need_resched())
4049                 cond_resched();
4050
4051         kvmppc_update_vpas(vcpu);
4052
4053         init_vcore_to_run(vc);
4054         vc->preempt_tb = TB_NIL;
4055
4056         preempt_disable();
4057         pcpu = smp_processor_id();
4058         vc->pcpu = pcpu;
4059         kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4060
4061         local_irq_disable();
4062         hard_irq_disable();
4063         if (signal_pending(current))
4064                 goto sigpend;
4065         if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
4066                 goto out;
4067
4068         if (!nested) {
4069                 kvmppc_core_prepare_to_enter(vcpu);
4070                 if (vcpu->arch.doorbell_request) {
4071                         vc->dpdes = 1;
4072                         smp_wmb();
4073                         vcpu->arch.doorbell_request = 0;
4074                 }
4075                 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4076                              &vcpu->arch.pending_exceptions))
4077                         lpcr |= LPCR_MER;
4078         } else if (vcpu->arch.pending_exceptions ||
4079                    vcpu->arch.doorbell_request ||
4080                    xive_interrupt_pending(vcpu)) {
4081                 vcpu->arch.ret = RESUME_HOST;
4082                 goto out;
4083         }
4084
4085         kvmppc_clear_host_core(pcpu);
4086
4087         local_paca->kvm_hstate.tid = 0;
4088         local_paca->kvm_hstate.napping = 0;
4089         local_paca->kvm_hstate.kvm_split_mode = NULL;
4090         kvmppc_start_thread(vcpu, vc);
4091         kvmppc_create_dtl_entry(vcpu, vc);
4092         trace_kvm_guest_enter(vcpu);
4093
4094         vc->vcore_state = VCORE_RUNNING;
4095         trace_kvmppc_run_core(vc, 0);
4096
4097         if (cpu_has_feature(CPU_FTR_HVMODE)) {
4098                 lpid = nested ? nested->shadow_lpid : kvm->arch.lpid;
4099                 mtspr(SPRN_LPID, lpid);
4100                 isync();
4101                 kvmppc_check_need_tlb_flush(kvm, pcpu, nested);
4102         }
4103
4104         guest_enter_irqoff();
4105
4106         srcu_idx = srcu_read_lock(&kvm->srcu);
4107
4108         this_cpu_disable_ftrace();
4109
4110         /* Tell lockdep that we're about to enable interrupts */
4111         trace_hardirqs_on();
4112
4113         trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr);
4114         vcpu->arch.trap = trap;
4115
4116         trace_hardirqs_off();
4117
4118         this_cpu_enable_ftrace();
4119
4120         srcu_read_unlock(&kvm->srcu, srcu_idx);
4121
4122         if (cpu_has_feature(CPU_FTR_HVMODE)) {
4123                 mtspr(SPRN_LPID, kvm->arch.host_lpid);
4124                 isync();
4125         }
4126
4127         set_irq_happened(trap);
4128
4129         kvmppc_set_host_core(pcpu);
4130
4131         local_irq_enable();
4132         guest_exit();
4133
4134         cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);
4135
4136         preempt_enable();
4137
4138         /*
4139          * cancel pending decrementer exception if DEC is now positive, or if
4140          * entering a nested guest in which case the decrementer is now owned
4141          * by L2 and the L1 decrementer is provided in hdec_expires
4142          */
4143         if (kvmppc_core_pending_dec(vcpu) &&
4144                         ((get_tb() < vcpu->arch.dec_expires) ||
4145                          (trap == BOOK3S_INTERRUPT_SYSCALL &&
4146                           kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4147                 kvmppc_core_dequeue_dec(vcpu);
4148
4149         trace_kvm_guest_exit(vcpu);
4150         r = RESUME_GUEST;
4151         if (trap) {
4152                 if (!nested)
4153                         r = kvmppc_handle_exit_hv(kvm_run, vcpu, current);
4154                 else
4155                         r = kvmppc_handle_nested_exit(kvm_run, vcpu);
4156         }
4157         vcpu->arch.ret = r;
4158
4159         if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
4160             !kvmppc_vcpu_woken(vcpu)) {
4161                 kvmppc_set_timer(vcpu);
4162                 while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
4163                         if (signal_pending(current)) {
4164                                 vcpu->stat.signal_exits++;
4165                                 kvm_run->exit_reason = KVM_EXIT_INTR;
4166                                 vcpu->arch.ret = -EINTR;
4167                                 break;
4168                         }
4169                         spin_lock(&vc->lock);
4170                         kvmppc_vcore_blocked(vc);
4171                         spin_unlock(&vc->lock);
4172                 }
4173         }
4174         vcpu->arch.ceded = 0;
4175
4176         vc->vcore_state = VCORE_INACTIVE;
4177         trace_kvmppc_run_core(vc, 1);
4178
4179  done:
4180         kvmppc_remove_runnable(vc, vcpu);
4181         trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
4182
4183         return vcpu->arch.ret;
4184
4185  sigpend:
4186         vcpu->stat.signal_exits++;
4187         kvm_run->exit_reason = KVM_EXIT_INTR;
4188         vcpu->arch.ret = -EINTR;
4189  out:
4190         local_irq_enable();
4191         preempt_enable();
4192         goto done;
4193 }
4194
4195 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
4196 {
4197         int r;
4198         int srcu_idx;
4199         unsigned long ebb_regs[3] = {}; /* shut up GCC */
4200         unsigned long user_tar = 0;
4201         unsigned int user_vrsave;
4202         struct kvm *kvm;
4203
4204         if (!vcpu->arch.sane) {
4205                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4206                 return -EINVAL;
4207         }
4208
4209         /*
4210          * Don't allow entry with a suspended transaction, because
4211          * the guest entry/exit code will lose it.
4212          * If the guest has TM enabled, save away their TM-related SPRs
4213          * (they will get restored by the TM unavailable interrupt).
4214          */
4215 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4216         if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4217             (current->thread.regs->msr & MSR_TM)) {
4218                 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4219                         run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4220                         run->fail_entry.hardware_entry_failure_reason = 0;
4221                         return -EINVAL;
4222                 }
4223                 /* Enable TM so we can read the TM SPRs */
4224                 mtmsr(mfmsr() | MSR_TM);
4225                 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
4226                 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
4227                 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
4228                 current->thread.regs->msr &= ~MSR_TM;
4229         }
4230 #endif
4231
4232         /*
4233          * Force online to 1 for the sake of old userspace which doesn't
4234          * set it.
4235          */
4236         if (!vcpu->arch.online) {
4237                 atomic_inc(&vcpu->arch.vcore->online_count);
4238                 vcpu->arch.online = 1;
4239         }
4240
4241         kvmppc_core_prepare_to_enter(vcpu);
4242
4243         /* No need to go into the guest when all we'll do is come back out */
4244         if (signal_pending(current)) {
4245                 run->exit_reason = KVM_EXIT_INTR;
4246                 return -EINTR;
4247         }
4248
4249         kvm = vcpu->kvm;
4250         atomic_inc(&kvm->arch.vcpus_running);
4251         /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4252         smp_mb();
4253
4254         flush_all_to_thread(current);
4255
4256         /* Save userspace EBB and other register values */
4257         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4258                 ebb_regs[0] = mfspr(SPRN_EBBHR);
4259                 ebb_regs[1] = mfspr(SPRN_EBBRR);
4260                 ebb_regs[2] = mfspr(SPRN_BESCR);
4261                 user_tar = mfspr(SPRN_TAR);
4262         }
4263         user_vrsave = mfspr(SPRN_VRSAVE);
4264
4265         vcpu->arch.wqp = &vcpu->arch.vcore->wq;
4266         vcpu->arch.pgdir = current->mm->pgd;
4267         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4268
4269         do {
4270                 /*
4271                  * The early POWER9 chips that can't mix radix and HPT threads
4272                  * on the same core also need the workaround for the problem
4273                  * where the TLB would prefetch entries in the guest exit path
4274                  * for radix guests using the guest PIDR value and LPID 0.
4275                  * The workaround is in the old path (kvmppc_run_vcpu())
4276                  * but not the new path (kvmhv_run_single_vcpu()).
4277                  */
4278                 if (kvm->arch.threads_indep && kvm_is_radix(kvm) &&
4279                     !no_mixing_hpt_and_radix)
4280                         r = kvmhv_run_single_vcpu(run, vcpu, ~(u64)0,
4281                                                   vcpu->arch.vcore->lpcr);
4282                 else
4283                         r = kvmppc_run_vcpu(run, vcpu);
4284
4285                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
4286                     !(vcpu->arch.shregs.msr & MSR_PR)) {
4287                         trace_kvm_hcall_enter(vcpu);
4288                         r = kvmppc_pseries_do_hcall(vcpu);
4289                         trace_kvm_hcall_exit(vcpu, r);
4290                         kvmppc_core_prepare_to_enter(vcpu);
4291                 } else if (r == RESUME_PAGE_FAULT) {
4292                         srcu_idx = srcu_read_lock(&kvm->srcu);
4293                         r = kvmppc_book3s_hv_page_fault(run, vcpu,
4294                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4295                         srcu_read_unlock(&kvm->srcu, srcu_idx);
4296                 } else if (r == RESUME_PASSTHROUGH) {
4297                         if (WARN_ON(xics_on_xive()))
4298                                 r = H_SUCCESS;
4299                         else
4300                                 r = kvmppc_xics_rm_complete(vcpu, 0);
4301                 }
4302         } while (is_kvmppc_resume_guest(r));
4303
4304         /* Restore userspace EBB and other register values */
4305         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4306                 mtspr(SPRN_EBBHR, ebb_regs[0]);
4307                 mtspr(SPRN_EBBRR, ebb_regs[1]);
4308                 mtspr(SPRN_BESCR, ebb_regs[2]);
4309                 mtspr(SPRN_TAR, user_tar);
4310                 mtspr(SPRN_FSCR, current->thread.fscr);
4311         }
4312         mtspr(SPRN_VRSAVE, user_vrsave);
4313
4314         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4315         atomic_dec(&kvm->arch.vcpus_running);
4316         return r;
4317 }
4318
4319 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4320                                      int shift, int sllp)
4321 {
4322         (*sps)->page_shift = shift;
4323         (*sps)->slb_enc = sllp;
4324         (*sps)->enc[0].page_shift = shift;
4325         (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4326         /*
4327          * Add 16MB MPSS support (may get filtered out by userspace)
4328          */
4329         if (shift != 24) {
4330                 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4331                 if (penc != -1) {
4332                         (*sps)->enc[1].page_shift = 24;
4333                         (*sps)->enc[1].pte_enc = penc;
4334                 }
4335         }
4336         (*sps)++;
4337 }
4338
4339 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4340                                          struct kvm_ppc_smmu_info *info)
4341 {
4342         struct kvm_ppc_one_seg_page_size *sps;
4343
4344         /*
4345          * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4346          * POWER7 doesn't support keys for instruction accesses,
4347          * POWER8 and POWER9 do.
4348          */
4349         info->data_keys = 32;
4350         info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4351
4352         /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4353         info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4354         info->slb_size = 32;
4355
4356         /* We only support these sizes for now, and no muti-size segments */
4357         sps = &info->sps[0];
4358         kvmppc_add_seg_page_size(&sps, 12, 0);
4359         kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4360         kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4361
4362         /* If running as a nested hypervisor, we don't support HPT guests */
4363         if (kvmhv_on_pseries())
4364                 info->flags |= KVM_PPC_NO_HASH;
4365
4366         return 0;
4367 }
4368
4369 /*
4370  * Get (and clear) the dirty memory log for a memory slot.
4371  */
4372 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4373                                          struct kvm_dirty_log *log)
4374 {
4375         struct kvm_memslots *slots;
4376         struct kvm_memory_slot *memslot;
4377         int i, r;
4378         unsigned long n;
4379         unsigned long *buf, *p;
4380         struct kvm_vcpu *vcpu;
4381
4382         mutex_lock(&kvm->slots_lock);
4383
4384         r = -EINVAL;
4385         if (log->slot >= KVM_USER_MEM_SLOTS)
4386                 goto out;
4387
4388         slots = kvm_memslots(kvm);
4389         memslot = id_to_memslot(slots, log->slot);
4390         r = -ENOENT;
4391         if (!memslot->dirty_bitmap)
4392                 goto out;
4393
4394         /*
4395          * Use second half of bitmap area because both HPT and radix
4396          * accumulate bits in the first half.
4397          */
4398         n = kvm_dirty_bitmap_bytes(memslot);
4399         buf = memslot->dirty_bitmap + n / sizeof(long);
4400         memset(buf, 0, n);
4401
4402         if (kvm_is_radix(kvm))
4403                 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4404         else
4405                 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4406         if (r)
4407                 goto out;
4408
4409         /*
4410          * We accumulate dirty bits in the first half of the
4411          * memslot's dirty_bitmap area, for when pages are paged
4412          * out or modified by the host directly.  Pick up these
4413          * bits and add them to the map.
4414          */
4415         p = memslot->dirty_bitmap;
4416         for (i = 0; i < n / sizeof(long); ++i)
4417                 buf[i] |= xchg(&p[i], 0);
4418
4419         /* Harvest dirty bits from VPA and DTL updates */
4420         /* Note: we never modify the SLB shadow buffer areas */
4421         kvm_for_each_vcpu(i, vcpu, kvm) {
4422                 spin_lock(&vcpu->arch.vpa_update_lock);
4423                 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4424                 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4425                 spin_unlock(&vcpu->arch.vpa_update_lock);
4426         }
4427
4428         r = -EFAULT;
4429         if (copy_to_user(log->dirty_bitmap, buf, n))
4430                 goto out;
4431
4432         r = 0;
4433 out:
4434         mutex_unlock(&kvm->slots_lock);
4435         return r;
4436 }
4437
4438 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
4439                                         struct kvm_memory_slot *dont)
4440 {
4441         if (!dont || free->arch.rmap != dont->arch.rmap) {
4442                 vfree(free->arch.rmap);
4443                 free->arch.rmap = NULL;
4444         }
4445 }
4446
4447 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
4448                                          unsigned long npages)
4449 {
4450         slot->arch.rmap = vzalloc(array_size(npages, sizeof(*slot->arch.rmap)));
4451         if (!slot->arch.rmap)
4452                 return -ENOMEM;
4453
4454         return 0;
4455 }
4456
4457 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
4458                                         struct kvm_memory_slot *memslot,
4459                                         const struct kvm_userspace_memory_region *mem)
4460 {
4461         return 0;
4462 }
4463
4464 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4465                                 const struct kvm_userspace_memory_region *mem,
4466                                 const struct kvm_memory_slot *old,
4467                                 const struct kvm_memory_slot *new,
4468                                 enum kvm_mr_change change)
4469 {
4470         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4471
4472         /*
4473          * If we are making a new memslot, it might make
4474          * some address that was previously cached as emulated
4475          * MMIO be no longer emulated MMIO, so invalidate
4476          * all the caches of emulated MMIO translations.
4477          */
4478         if (npages)
4479                 atomic64_inc(&kvm->arch.mmio_update);
4480
4481         /*
4482          * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
4483          * have already called kvm_arch_flush_shadow_memslot() to
4484          * flush shadow mappings.  For KVM_MR_CREATE we have no
4485          * previous mappings.  So the only case to handle is
4486          * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
4487          * has been changed.
4488          * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
4489          * to get rid of any THP PTEs in the partition-scoped page tables
4490          * so we can track dirtiness at the page level; we flush when
4491          * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
4492          * using THP PTEs.
4493          */
4494         if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
4495             ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
4496                 kvmppc_radix_flush_memslot(kvm, old);
4497 }
4498
4499 /*
4500  * Update LPCR values in kvm->arch and in vcores.
4501  * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
4502  * of kvm->arch.lpcr update).
4503  */
4504 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
4505 {
4506         long int i;
4507         u32 cores_done = 0;
4508
4509         if ((kvm->arch.lpcr & mask) == lpcr)
4510                 return;
4511
4512         kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
4513
4514         for (i = 0; i < KVM_MAX_VCORES; ++i) {
4515                 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
4516                 if (!vc)
4517                         continue;
4518                 spin_lock(&vc->lock);
4519                 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
4520                 spin_unlock(&vc->lock);
4521                 if (++cores_done >= kvm->arch.online_vcores)
4522                         break;
4523         }
4524 }
4525
4526 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
4527 {
4528         return;
4529 }
4530
4531 void kvmppc_setup_partition_table(struct kvm *kvm)
4532 {
4533         unsigned long dw0, dw1;
4534
4535         if (!kvm_is_radix(kvm)) {
4536                 /* PS field - page size for VRMA */
4537                 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
4538                         ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
4539                 /* HTABSIZE and HTABORG fields */
4540                 dw0 |= kvm->arch.sdr1;
4541
4542                 /* Second dword as set by userspace */
4543                 dw1 = kvm->arch.process_table;
4544         } else {
4545                 dw0 = PATB_HR | radix__get_tree_size() |
4546                         __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
4547                 dw1 = PATB_GR | kvm->arch.process_table;
4548         }
4549         kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
4550 }
4551
4552 /*
4553  * Set up HPT (hashed page table) and RMA (real-mode area).
4554  * Must be called with kvm->arch.mmu_setup_lock held.
4555  */
4556 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4557 {
4558         int err = 0;
4559         struct kvm *kvm = vcpu->kvm;
4560         unsigned long hva;
4561         struct kvm_memory_slot *memslot;
4562         struct vm_area_struct *vma;
4563         unsigned long lpcr = 0, senc;
4564         unsigned long psize, porder;
4565         int srcu_idx;
4566
4567         /* Allocate hashed page table (if not done already) and reset it */
4568         if (!kvm->arch.hpt.virt) {
4569                 int order = KVM_DEFAULT_HPT_ORDER;
4570                 struct kvm_hpt_info info;
4571
4572                 err = kvmppc_allocate_hpt(&info, order);
4573                 /* If we get here, it means userspace didn't specify a
4574                  * size explicitly.  So, try successively smaller
4575                  * sizes if the default failed. */
4576                 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
4577                         err  = kvmppc_allocate_hpt(&info, order);
4578
4579                 if (err < 0) {
4580                         pr_err("KVM: Couldn't alloc HPT\n");
4581                         goto out;
4582                 }
4583
4584                 kvmppc_set_hpt(kvm, &info);
4585         }
4586
4587         /* Look up the memslot for guest physical address 0 */
4588         srcu_idx = srcu_read_lock(&kvm->srcu);
4589         memslot = gfn_to_memslot(kvm, 0);
4590
4591         /* We must have some memory at 0 by now */
4592         err = -EINVAL;
4593         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
4594                 goto out_srcu;
4595
4596         /* Look up the VMA for the start of this memory slot */
4597         hva = memslot->userspace_addr;
4598         down_read(&current->mm->mmap_sem);
4599         vma = find_vma(current->mm, hva);
4600         if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
4601                 goto up_out;
4602
4603         psize = vma_kernel_pagesize(vma);
4604
4605         up_read(&current->mm->mmap_sem);
4606
4607         /* We can handle 4k, 64k or 16M pages in the VRMA */
4608         if (psize >= 0x1000000)
4609                 psize = 0x1000000;
4610         else if (psize >= 0x10000)
4611                 psize = 0x10000;
4612         else
4613                 psize = 0x1000;
4614         porder = __ilog2(psize);
4615
4616         senc = slb_pgsize_encoding(psize);
4617         kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
4618                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
4619         /* Create HPTEs in the hash page table for the VRMA */
4620         kvmppc_map_vrma(vcpu, memslot, porder);
4621
4622         /* Update VRMASD field in the LPCR */
4623         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
4624                 /* the -4 is to account for senc values starting at 0x10 */
4625                 lpcr = senc << (LPCR_VRMASD_SH - 4);
4626                 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
4627         }
4628
4629         /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
4630         smp_wmb();
4631         err = 0;
4632  out_srcu:
4633         srcu_read_unlock(&kvm->srcu, srcu_idx);
4634  out:
4635         return err;
4636
4637  up_out:
4638         up_read(&current->mm->mmap_sem);
4639         goto out_srcu;
4640 }
4641
4642 /*
4643  * Must be called with kvm->arch.mmu_setup_lock held and
4644  * mmu_ready = 0 and no vcpus running.
4645  */
4646 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
4647 {
4648         if (nesting_enabled(kvm))
4649                 kvmhv_release_all_nested(kvm);
4650         kvmppc_rmap_reset(kvm);
4651         kvm->arch.process_table = 0;
4652         /* Mutual exclusion with kvm_unmap_hva_range etc. */
4653         spin_lock(&kvm->mmu_lock);
4654         kvm->arch.radix = 0;
4655         spin_unlock(&kvm->mmu_lock);
4656         kvmppc_free_radix(kvm);
4657         kvmppc_update_lpcr(kvm, LPCR_VPM1,
4658                            LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4659         return 0;
4660 }
4661
4662 /*
4663  * Must be called with kvm->arch.mmu_setup_lock held and
4664  * mmu_ready = 0 and no vcpus running.
4665  */
4666 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
4667 {
4668         int err;
4669
4670         err = kvmppc_init_vm_radix(kvm);
4671         if (err)
4672                 return err;
4673         kvmppc_rmap_reset(kvm);
4674         /* Mutual exclusion with kvm_unmap_hva_range etc. */
4675         spin_lock(&kvm->mmu_lock);
4676         kvm->arch.radix = 1;
4677         spin_unlock(&kvm->mmu_lock);
4678         kvmppc_free_hpt(&kvm->arch.hpt);
4679         kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
4680                            LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4681         return 0;
4682 }
4683
4684 #ifdef CONFIG_KVM_XICS
4685 /*
4686  * Allocate a per-core structure for managing state about which cores are
4687  * running in the host versus the guest and for exchanging data between
4688  * real mode KVM and CPU running in the host.
4689  * This is only done for the first VM.
4690  * The allocated structure stays even if all VMs have stopped.
4691  * It is only freed when the kvm-hv module is unloaded.
4692  * It's OK for this routine to fail, we just don't support host
4693  * core operations like redirecting H_IPI wakeups.
4694  */
4695 void kvmppc_alloc_host_rm_ops(void)
4696 {
4697         struct kvmppc_host_rm_ops *ops;
4698         unsigned long l_ops;
4699         int cpu, core;
4700         int size;
4701
4702         /* Not the first time here ? */
4703         if (kvmppc_host_rm_ops_hv != NULL)
4704                 return;
4705
4706         ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
4707         if (!ops)
4708                 return;
4709
4710         size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
4711         ops->rm_core = kzalloc(size, GFP_KERNEL);
4712
4713         if (!ops->rm_core) {
4714                 kfree(ops);
4715                 return;
4716         }
4717
4718         cpus_read_lock();
4719
4720         for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
4721                 if (!cpu_online(cpu))
4722                         continue;
4723
4724                 core = cpu >> threads_shift;
4725                 ops->rm_core[core].rm_state.in_host = 1;
4726         }
4727
4728         ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
4729
4730         /*
4731          * Make the contents of the kvmppc_host_rm_ops structure visible
4732          * to other CPUs before we assign it to the global variable.
4733          * Do an atomic assignment (no locks used here), but if someone
4734          * beats us to it, just free our copy and return.
4735          */
4736         smp_wmb();
4737         l_ops = (unsigned long) ops;
4738
4739         if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
4740                 cpus_read_unlock();
4741                 kfree(ops->rm_core);
4742                 kfree(ops);
4743                 return;
4744         }
4745
4746         cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
4747                                              "ppc/kvm_book3s:prepare",
4748                                              kvmppc_set_host_core,
4749                                              kvmppc_clear_host_core);
4750         cpus_read_unlock();
4751 }
4752
4753 void kvmppc_free_host_rm_ops(void)
4754 {
4755         if (kvmppc_host_rm_ops_hv) {
4756                 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
4757                 kfree(kvmppc_host_rm_ops_hv->rm_core);
4758                 kfree(kvmppc_host_rm_ops_hv);
4759                 kvmppc_host_rm_ops_hv = NULL;
4760         }
4761 }
4762 #endif
4763
4764 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
4765 {
4766         unsigned long lpcr, lpid;
4767         char buf[32];
4768         int ret;
4769
4770         mutex_init(&kvm->arch.mmu_setup_lock);
4771
4772         /* Allocate the guest's logical partition ID */
4773
4774         lpid = kvmppc_alloc_lpid();
4775         if ((long)lpid < 0)
4776                 return -ENOMEM;
4777         kvm->arch.lpid = lpid;
4778
4779         kvmppc_alloc_host_rm_ops();
4780
4781         kvmhv_vm_nested_init(kvm);
4782
4783         /*
4784          * Since we don't flush the TLB when tearing down a VM,
4785          * and this lpid might have previously been used,
4786          * make sure we flush on each core before running the new VM.
4787          * On POWER9, the tlbie in mmu_partition_table_set_entry()
4788          * does this flush for us.
4789          */
4790         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4791                 cpumask_setall(&kvm->arch.need_tlb_flush);
4792
4793         /* Start out with the default set of hcalls enabled */
4794         memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
4795                sizeof(kvm->arch.enabled_hcalls));
4796
4797         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4798                 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
4799
4800         /* Init LPCR for virtual RMA mode */
4801         if (cpu_has_feature(CPU_FTR_HVMODE)) {
4802                 kvm->arch.host_lpid = mfspr(SPRN_LPID);
4803                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
4804                 lpcr &= LPCR_PECE | LPCR_LPES;
4805         } else {
4806                 lpcr = 0;
4807         }
4808         lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
4809                 LPCR_VPM0 | LPCR_VPM1;
4810         kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
4811                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
4812         /* On POWER8 turn on online bit to enable PURR/SPURR */
4813         if (cpu_has_feature(CPU_FTR_ARCH_207S))
4814                 lpcr |= LPCR_ONL;
4815         /*
4816          * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
4817          * Set HVICE bit to enable hypervisor virtualization interrupts.
4818          * Set HEIC to prevent OS interrupts to go to hypervisor (should
4819          * be unnecessary but better safe than sorry in case we re-enable
4820          * EE in HV mode with this LPCR still set)
4821          */
4822         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4823                 lpcr &= ~LPCR_VPM0;
4824                 lpcr |= LPCR_HVICE | LPCR_HEIC;
4825
4826                 /*
4827                  * If xive is enabled, we route 0x500 interrupts directly
4828                  * to the guest.
4829                  */
4830                 if (xics_on_xive())
4831                         lpcr |= LPCR_LPES;
4832         }
4833
4834         /*
4835          * If the host uses radix, the guest starts out as radix.
4836          */
4837         if (radix_enabled()) {
4838                 kvm->arch.radix = 1;
4839                 kvm->arch.mmu_ready = 1;
4840                 lpcr &= ~LPCR_VPM1;
4841                 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
4842                 ret = kvmppc_init_vm_radix(kvm);
4843                 if (ret) {
4844                         kvmppc_free_lpid(kvm->arch.lpid);
4845                         return ret;
4846                 }
4847                 kvmppc_setup_partition_table(kvm);
4848         }
4849
4850         kvm->arch.lpcr = lpcr;
4851
4852         /* Initialization for future HPT resizes */
4853         kvm->arch.resize_hpt = NULL;
4854
4855         /*
4856          * Work out how many sets the TLB has, for the use of
4857          * the TLB invalidation loop in book3s_hv_rmhandlers.S.
4858          */
4859         if (radix_enabled())
4860                 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;     /* 128 */
4861         else if (cpu_has_feature(CPU_FTR_ARCH_300))
4862                 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;      /* 256 */
4863         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
4864                 kvm->arch.tlb_sets = POWER8_TLB_SETS;           /* 512 */
4865         else
4866                 kvm->arch.tlb_sets = POWER7_TLB_SETS;           /* 128 */
4867
4868         /*
4869          * Track that we now have a HV mode VM active. This blocks secondary
4870          * CPU threads from coming online.
4871          * On POWER9, we only need to do this if the "indep_threads_mode"
4872          * module parameter has been set to N.
4873          */
4874         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4875                 if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) {
4876                         pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n");
4877                         kvm->arch.threads_indep = true;
4878                 } else {
4879                         kvm->arch.threads_indep = indep_threads_mode;
4880                 }
4881         }
4882         if (!kvm->arch.threads_indep)
4883                 kvm_hv_vm_activated();
4884
4885         /*
4886          * Initialize smt_mode depending on processor.
4887          * POWER8 and earlier have to use "strict" threading, where
4888          * all vCPUs in a vcore have to run on the same (sub)core,
4889          * whereas on POWER9 the threads can each run a different
4890          * guest.
4891          */
4892         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4893                 kvm->arch.smt_mode = threads_per_subcore;
4894         else
4895                 kvm->arch.smt_mode = 1;
4896         kvm->arch.emul_smt_mode = 1;
4897
4898         /*
4899          * Create a debugfs directory for the VM
4900          */
4901         snprintf(buf, sizeof(buf), "vm%d", current->pid);
4902         kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
4903         kvmppc_mmu_debugfs_init(kvm);
4904         if (radix_enabled())
4905                 kvmhv_radix_debugfs_init(kvm);
4906
4907         return 0;
4908 }
4909
4910 static void kvmppc_free_vcores(struct kvm *kvm)
4911 {
4912         long int i;
4913
4914         for (i = 0; i < KVM_MAX_VCORES; ++i)
4915                 kfree(kvm->arch.vcores[i]);
4916         kvm->arch.online_vcores = 0;
4917 }
4918
4919 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
4920 {
4921         debugfs_remove_recursive(kvm->arch.debugfs_dir);
4922
4923         if (!kvm->arch.threads_indep)
4924                 kvm_hv_vm_deactivated();
4925
4926         kvmppc_free_vcores(kvm);
4927
4928
4929         if (kvm_is_radix(kvm))
4930                 kvmppc_free_radix(kvm);
4931         else
4932                 kvmppc_free_hpt(&kvm->arch.hpt);
4933
4934         /* Perform global invalidation and return lpid to the pool */
4935         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4936                 if (nesting_enabled(kvm))
4937                         kvmhv_release_all_nested(kvm);
4938                 kvm->arch.process_table = 0;
4939                 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
4940         }
4941         kvmppc_free_lpid(kvm->arch.lpid);
4942
4943         kvmppc_free_pimap(kvm);
4944 }
4945
4946 /* We don't need to emulate any privileged instructions or dcbz */
4947 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
4948                                      unsigned int inst, int *advance)
4949 {
4950         return EMULATE_FAIL;
4951 }
4952
4953 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
4954                                         ulong spr_val)
4955 {
4956         return EMULATE_FAIL;
4957 }
4958
4959 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
4960                                         ulong *spr_val)
4961 {
4962         return EMULATE_FAIL;
4963 }
4964
4965 static int kvmppc_core_check_processor_compat_hv(void)
4966 {
4967         if (cpu_has_feature(CPU_FTR_HVMODE) &&
4968             cpu_has_feature(CPU_FTR_ARCH_206))
4969                 return 0;
4970
4971         /* POWER9 in radix mode is capable of being a nested hypervisor. */
4972         if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
4973                 return 0;
4974
4975         return -EIO;
4976 }
4977
4978 #ifdef CONFIG_KVM_XICS
4979
4980 void kvmppc_free_pimap(struct kvm *kvm)
4981 {
4982         kfree(kvm->arch.pimap);
4983 }
4984
4985 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
4986 {
4987         return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
4988 }
4989
4990 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4991 {
4992         struct irq_desc *desc;
4993         struct kvmppc_irq_map *irq_map;
4994         struct kvmppc_passthru_irqmap *pimap;
4995         struct irq_chip *chip;
4996         int i, rc = 0;
4997
4998         if (!kvm_irq_bypass)
4999                 return 1;
5000
5001         desc = irq_to_desc(host_irq);
5002         if (!desc)
5003                 return -EIO;
5004
5005         mutex_lock(&kvm->lock);
5006
5007         pimap = kvm->arch.pimap;
5008         if (pimap == NULL) {
5009                 /* First call, allocate structure to hold IRQ map */
5010                 pimap = kvmppc_alloc_pimap();
5011                 if (pimap == NULL) {
5012                         mutex_unlock(&kvm->lock);
5013                         return -ENOMEM;
5014                 }
5015                 kvm->arch.pimap = pimap;
5016         }
5017
5018         /*
5019          * For now, we only support interrupts for which the EOI operation
5020          * is an OPAL call followed by a write to XIRR, since that's
5021          * what our real-mode EOI code does, or a XIVE interrupt
5022          */
5023         chip = irq_data_get_irq_chip(&desc->irq_data);
5024         if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
5025                 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5026                         host_irq, guest_gsi);
5027                 mutex_unlock(&kvm->lock);
5028                 return -ENOENT;
5029         }
5030
5031         /*
5032          * See if we already have an entry for this guest IRQ number.
5033          * If it's mapped to a hardware IRQ number, that's an error,
5034          * otherwise re-use this entry.
5035          */
5036         for (i = 0; i < pimap->n_mapped; i++) {
5037                 if (guest_gsi == pimap->mapped[i].v_hwirq) {
5038                         if (pimap->mapped[i].r_hwirq) {
5039                                 mutex_unlock(&kvm->lock);
5040                                 return -EINVAL;
5041                         }
5042                         break;
5043                 }
5044         }
5045
5046         if (i == KVMPPC_PIRQ_MAPPED) {
5047                 mutex_unlock(&kvm->lock);
5048                 return -EAGAIN;         /* table is full */
5049         }
5050
5051         irq_map = &pimap->mapped[i];
5052
5053         irq_map->v_hwirq = guest_gsi;
5054         irq_map->desc = desc;
5055
5056         /*
5057          * Order the above two stores before the next to serialize with
5058          * the KVM real mode handler.
5059          */
5060         smp_wmb();
5061         irq_map->r_hwirq = desc->irq_data.hwirq;
5062
5063         if (i == pimap->n_mapped)
5064                 pimap->n_mapped++;
5065
5066         if (xics_on_xive())
5067                 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
5068         else
5069                 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
5070         if (rc)
5071                 irq_map->r_hwirq = 0;
5072
5073         mutex_unlock(&kvm->lock);
5074
5075         return 0;
5076 }
5077
5078 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5079 {
5080         struct irq_desc *desc;
5081         struct kvmppc_passthru_irqmap *pimap;
5082         int i, rc = 0;
5083
5084         if (!kvm_irq_bypass)
5085                 return 0;
5086
5087         desc = irq_to_desc(host_irq);
5088         if (!desc)
5089                 return -EIO;
5090
5091         mutex_lock(&kvm->lock);
5092         if (!kvm->arch.pimap)
5093                 goto unlock;
5094
5095         pimap = kvm->arch.pimap;
5096
5097         for (i = 0; i < pimap->n_mapped; i++) {
5098                 if (guest_gsi == pimap->mapped[i].v_hwirq)
5099                         break;
5100         }
5101
5102         if (i == pimap->n_mapped) {
5103                 mutex_unlock(&kvm->lock);
5104                 return -ENODEV;
5105         }
5106
5107         if (xics_on_xive())
5108                 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
5109         else
5110                 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5111
5112         /* invalidate the entry (what do do on error from the above ?) */
5113         pimap->mapped[i].r_hwirq = 0;
5114
5115         /*
5116          * We don't free this structure even when the count goes to
5117          * zero. The structure is freed when we destroy the VM.
5118          */
5119  unlock:
5120         mutex_unlock(&kvm->lock);
5121         return rc;
5122 }
5123
5124 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5125                                              struct irq_bypass_producer *prod)
5126 {
5127         int ret = 0;
5128         struct kvm_kernel_irqfd *irqfd =
5129                 container_of(cons, struct kvm_kernel_irqfd, consumer);
5130
5131         irqfd->producer = prod;
5132
5133         ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5134         if (ret)
5135                 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5136                         prod->irq, irqfd->gsi, ret);
5137
5138         return ret;
5139 }
5140
5141 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5142                                               struct irq_bypass_producer *prod)
5143 {
5144         int ret;
5145         struct kvm_kernel_irqfd *irqfd =
5146                 container_of(cons, struct kvm_kernel_irqfd, consumer);
5147
5148         irqfd->producer = NULL;
5149
5150         /*
5151          * When producer of consumer is unregistered, we change back to
5152          * default external interrupt handling mode - KVM real mode
5153          * will switch back to host.
5154          */
5155         ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5156         if (ret)
5157                 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5158                         prod->irq, irqfd->gsi, ret);
5159 }
5160 #endif
5161
5162 static long kvm_arch_vm_ioctl_hv(struct file *filp,
5163                                  unsigned int ioctl, unsigned long arg)
5164 {
5165         struct kvm *kvm __maybe_unused = filp->private_data;
5166         void __user *argp = (void __user *)arg;
5167         long r;
5168
5169         switch (ioctl) {
5170
5171         case KVM_PPC_ALLOCATE_HTAB: {
5172                 u32 htab_order;
5173
5174                 r = -EFAULT;
5175                 if (get_user(htab_order, (u32 __user *)argp))
5176                         break;
5177                 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5178                 if (r)
5179                         break;
5180                 r = 0;
5181                 break;
5182         }
5183
5184         case KVM_PPC_GET_HTAB_FD: {
5185                 struct kvm_get_htab_fd ghf;
5186
5187                 r = -EFAULT;
5188                 if (copy_from_user(&ghf, argp, sizeof(ghf)))
5189                         break;
5190                 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5191                 break;
5192         }
5193
5194         case KVM_PPC_RESIZE_HPT_PREPARE: {
5195                 struct kvm_ppc_resize_hpt rhpt;
5196
5197                 r = -EFAULT;
5198                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5199                         break;
5200
5201                 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5202                 break;
5203         }
5204
5205         case KVM_PPC_RESIZE_HPT_COMMIT: {
5206                 struct kvm_ppc_resize_hpt rhpt;
5207
5208                 r = -EFAULT;
5209                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5210                         break;
5211
5212                 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5213                 break;
5214         }
5215
5216         default:
5217                 r = -ENOTTY;
5218         }
5219
5220         return r;
5221 }
5222
5223 /*
5224  * List of hcall numbers to enable by default.
5225  * For compatibility with old userspace, we enable by default
5226  * all hcalls that were implemented before the hcall-enabling
5227  * facility was added.  Note this list should not include H_RTAS.
5228  */
5229 static unsigned int default_hcall_list[] = {
5230         H_REMOVE,
5231         H_ENTER,
5232         H_READ,
5233         H_PROTECT,
5234         H_BULK_REMOVE,
5235         H_GET_TCE,
5236         H_PUT_TCE,
5237         H_SET_DABR,
5238         H_SET_XDABR,
5239         H_CEDE,
5240         H_PROD,
5241         H_CONFER,
5242         H_REGISTER_VPA,
5243 #ifdef CONFIG_KVM_XICS
5244         H_EOI,
5245         H_CPPR,
5246         H_IPI,
5247         H_IPOLL,
5248         H_XIRR,
5249         H_XIRR_X,
5250 #endif
5251         0
5252 };
5253
5254 static void init_default_hcalls(void)
5255 {
5256         int i;
5257         unsigned int hcall;
5258
5259         for (i = 0; default_hcall_list[i]; ++i) {
5260                 hcall = default_hcall_list[i];
5261                 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5262                 __set_bit(hcall / 4, default_enabled_hcalls);
5263         }
5264 }
5265
5266 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5267 {
5268         unsigned long lpcr;
5269         int radix;
5270         int err;
5271
5272         /* If not on a POWER9, reject it */
5273         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5274                 return -ENODEV;
5275
5276         /* If any unknown flags set, reject it */
5277         if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5278                 return -EINVAL;
5279
5280         /* GR (guest radix) bit in process_table field must match */
5281         radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5282         if (!!(cfg->process_table & PATB_GR) != radix)
5283                 return -EINVAL;
5284
5285         /* Process table size field must be reasonable, i.e. <= 24 */
5286         if ((cfg->process_table & PRTS_MASK) > 24)
5287                 return -EINVAL;
5288
5289         /* We can change a guest to/from radix now, if the host is radix */
5290         if (radix && !radix_enabled())
5291                 return -EINVAL;
5292
5293         /* If we're a nested hypervisor, we currently only support radix */
5294         if (kvmhv_on_pseries() && !radix)
5295                 return -EINVAL;
5296
5297         mutex_lock(&kvm->arch.mmu_setup_lock);
5298         if (radix != kvm_is_radix(kvm)) {
5299                 if (kvm->arch.mmu_ready) {
5300                         kvm->arch.mmu_ready = 0;
5301                         /* order mmu_ready vs. vcpus_running */
5302                         smp_mb();
5303                         if (atomic_read(&kvm->arch.vcpus_running)) {
5304                                 kvm->arch.mmu_ready = 1;
5305                                 err = -EBUSY;
5306                                 goto out_unlock;
5307                         }
5308                 }
5309                 if (radix)
5310                         err = kvmppc_switch_mmu_to_radix(kvm);
5311                 else
5312                         err = kvmppc_switch_mmu_to_hpt(kvm);
5313                 if (err)
5314                         goto out_unlock;
5315         }
5316
5317         kvm->arch.process_table = cfg->process_table;
5318         kvmppc_setup_partition_table(kvm);
5319
5320         lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5321         kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5322         err = 0;
5323
5324  out_unlock:
5325         mutex_unlock(&kvm->arch.mmu_setup_lock);
5326         return err;
5327 }
5328
5329 static int kvmhv_enable_nested(struct kvm *kvm)
5330 {
5331         if (!nested)
5332                 return -EPERM;
5333         if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix)
5334                 return -ENODEV;
5335
5336         /* kvm == NULL means the caller is testing if the capability exists */
5337         if (kvm)
5338                 kvm->arch.nested_enable = true;
5339         return 0;
5340 }
5341
5342 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5343                                  int size)
5344 {
5345         int rc = -EINVAL;
5346
5347         if (kvmhv_vcpu_is_radix(vcpu)) {
5348                 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5349
5350                 if (rc > 0)
5351                         rc = -EINVAL;
5352         }
5353
5354         /* For now quadrants are the only way to access nested guest memory */
5355         if (rc && vcpu->arch.nested)
5356                 rc = -EAGAIN;
5357
5358         return rc;
5359 }
5360
5361 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5362                                 int size)
5363 {
5364         int rc = -EINVAL;
5365
5366         if (kvmhv_vcpu_is_radix(vcpu)) {
5367                 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
5368
5369                 if (rc > 0)
5370                         rc = -EINVAL;
5371         }
5372
5373         /* For now quadrants are the only way to access nested guest memory */
5374         if (rc && vcpu->arch.nested)
5375                 rc = -EAGAIN;
5376
5377         return rc;
5378 }
5379
5380 static struct kvmppc_ops kvm_ops_hv = {
5381         .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
5382         .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
5383         .get_one_reg = kvmppc_get_one_reg_hv,
5384         .set_one_reg = kvmppc_set_one_reg_hv,
5385         .vcpu_load   = kvmppc_core_vcpu_load_hv,
5386         .vcpu_put    = kvmppc_core_vcpu_put_hv,
5387         .inject_interrupt = kvmppc_inject_interrupt_hv,
5388         .set_msr     = kvmppc_set_msr_hv,
5389         .vcpu_run    = kvmppc_vcpu_run_hv,
5390         .vcpu_create = kvmppc_core_vcpu_create_hv,
5391         .vcpu_free   = kvmppc_core_vcpu_free_hv,
5392         .check_requests = kvmppc_core_check_requests_hv,
5393         .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
5394         .flush_memslot  = kvmppc_core_flush_memslot_hv,
5395         .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
5396         .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
5397         .unmap_hva_range = kvm_unmap_hva_range_hv,
5398         .age_hva  = kvm_age_hva_hv,
5399         .test_age_hva = kvm_test_age_hva_hv,
5400         .set_spte_hva = kvm_set_spte_hva_hv,
5401         .mmu_destroy  = kvmppc_mmu_destroy_hv,
5402         .free_memslot = kvmppc_core_free_memslot_hv,
5403         .create_memslot = kvmppc_core_create_memslot_hv,
5404         .init_vm =  kvmppc_core_init_vm_hv,
5405         .destroy_vm = kvmppc_core_destroy_vm_hv,
5406         .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
5407         .emulate_op = kvmppc_core_emulate_op_hv,
5408         .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
5409         .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
5410         .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
5411         .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
5412         .hcall_implemented = kvmppc_hcall_impl_hv,
5413 #ifdef CONFIG_KVM_XICS
5414         .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
5415         .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
5416 #endif
5417         .configure_mmu = kvmhv_configure_mmu,
5418         .get_rmmu_info = kvmhv_get_rmmu_info,
5419         .set_smt_mode = kvmhv_set_smt_mode,
5420         .enable_nested = kvmhv_enable_nested,
5421         .load_from_eaddr = kvmhv_load_from_eaddr,
5422         .store_to_eaddr = kvmhv_store_to_eaddr,
5423 };
5424
5425 static int kvm_init_subcore_bitmap(void)
5426 {
5427         int i, j;
5428         int nr_cores = cpu_nr_cores();
5429         struct sibling_subcore_state *sibling_subcore_state;
5430
5431         for (i = 0; i < nr_cores; i++) {
5432                 int first_cpu = i * threads_per_core;
5433                 int node = cpu_to_node(first_cpu);
5434
5435                 /* Ignore if it is already allocated. */
5436                 if (paca_ptrs[first_cpu]->sibling_subcore_state)
5437                         continue;
5438
5439                 sibling_subcore_state =
5440                         kzalloc_node(sizeof(struct sibling_subcore_state),
5441                                                         GFP_KERNEL, node);
5442                 if (!sibling_subcore_state)
5443                         return -ENOMEM;
5444
5445
5446                 for (j = 0; j < threads_per_core; j++) {
5447                         int cpu = first_cpu + j;
5448
5449                         paca_ptrs[cpu]->sibling_subcore_state =
5450                                                 sibling_subcore_state;
5451                 }
5452         }
5453         return 0;
5454 }
5455
5456 static int kvmppc_radix_possible(void)
5457 {
5458         return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
5459 }
5460
5461 static int kvmppc_book3s_init_hv(void)
5462 {
5463         int r;
5464
5465         if (!tlbie_capable) {
5466                 pr_err("KVM-HV: Host does not support TLBIE\n");
5467                 return -ENODEV;
5468         }
5469
5470         /*
5471          * FIXME!! Do we need to check on all cpus ?
5472          */
5473         r = kvmppc_core_check_processor_compat_hv();
5474         if (r < 0)
5475                 return -ENODEV;
5476
5477         r = kvmhv_nested_init();
5478         if (r)
5479                 return r;
5480
5481         r = kvm_init_subcore_bitmap();
5482         if (r)
5483                 return r;
5484
5485         /*
5486          * We need a way of accessing the XICS interrupt controller,
5487          * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
5488          * indirectly, via OPAL.
5489          */
5490 #ifdef CONFIG_SMP
5491         if (!xics_on_xive() && !kvmhv_on_pseries() &&
5492             !local_paca->kvm_hstate.xics_phys) {
5493                 struct device_node *np;
5494
5495                 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
5496                 if (!np) {
5497                         pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
5498                         return -ENODEV;
5499                 }
5500                 /* presence of intc confirmed - node can be dropped again */
5501                 of_node_put(np);
5502         }
5503 #endif
5504
5505         kvm_ops_hv.owner = THIS_MODULE;
5506         kvmppc_hv_ops = &kvm_ops_hv;
5507
5508         init_default_hcalls();
5509
5510         init_vcore_lists();
5511
5512         r = kvmppc_mmu_hv_init();
5513         if (r)
5514                 return r;
5515
5516         if (kvmppc_radix_possible())
5517                 r = kvmppc_radix_init();
5518
5519         /*
5520          * POWER9 chips before version 2.02 can't have some threads in
5521          * HPT mode and some in radix mode on the same core.
5522          */
5523         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5524                 unsigned int pvr = mfspr(SPRN_PVR);
5525                 if ((pvr >> 16) == PVR_POWER9 &&
5526                     (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
5527                      ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
5528                         no_mixing_hpt_and_radix = true;
5529         }
5530
5531         return r;
5532 }
5533
5534 static void kvmppc_book3s_exit_hv(void)
5535 {
5536         kvmppc_free_host_rm_ops();
5537         if (kvmppc_radix_possible())
5538                 kvmppc_radix_exit();
5539         kvmppc_hv_ops = NULL;
5540         kvmhv_nested_exit();
5541 }
5542
5543 module_init(kvmppc_book3s_init_hv);
5544 module_exit(kvmppc_book3s_exit_hv);
5545 MODULE_LICENSE("GPL");
5546 MODULE_ALIAS_MISCDEV(KVM_MINOR);
5547 MODULE_ALIAS("devname:kvm");