]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/powerpc/kvm/powerpc.c
Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux.git] / arch / powerpc / kvm / powerpc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright IBM Corp. 2007
5  *
6  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
7  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
8  */
9
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/vmalloc.h>
14 #include <linux/hrtimer.h>
15 #include <linux/sched/signal.h>
16 #include <linux/fs.h>
17 #include <linux/slab.h>
18 #include <linux/file.h>
19 #include <linux/module.h>
20 #include <linux/irqbypass.h>
21 #include <linux/kvm_irqfd.h>
22 #include <asm/cputable.h>
23 #include <linux/uaccess.h>
24 #include <asm/kvm_ppc.h>
25 #include <asm/cputhreads.h>
26 #include <asm/irqflags.h>
27 #include <asm/iommu.h>
28 #include <asm/switch_to.h>
29 #include <asm/xive.h>
30 #ifdef CONFIG_PPC_PSERIES
31 #include <asm/hvcall.h>
32 #include <asm/plpar_wrappers.h>
33 #endif
34
35 #include "timing.h"
36 #include "irq.h"
37 #include "../mm/mmu_decl.h"
38
39 #define CREATE_TRACE_POINTS
40 #include "trace.h"
41
42 struct kvmppc_ops *kvmppc_hv_ops;
43 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
44 struct kvmppc_ops *kvmppc_pr_ops;
45 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
46
47
48 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
49 {
50         return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
51 }
52
53 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
54 {
55         return kvm_arch_vcpu_runnable(vcpu);
56 }
57
58 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
59 {
60         return false;
61 }
62
63 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
64 {
65         return 1;
66 }
67
68 /*
69  * Common checks before entering the guest world.  Call with interrupts
70  * disabled.
71  *
72  * returns:
73  *
74  * == 1 if we're ready to go into guest state
75  * <= 0 if we need to go back to the host with return value
76  */
77 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
78 {
79         int r;
80
81         WARN_ON(irqs_disabled());
82         hard_irq_disable();
83
84         while (true) {
85                 if (need_resched()) {
86                         local_irq_enable();
87                         cond_resched();
88                         hard_irq_disable();
89                         continue;
90                 }
91
92                 if (signal_pending(current)) {
93                         kvmppc_account_exit(vcpu, SIGNAL_EXITS);
94                         vcpu->run->exit_reason = KVM_EXIT_INTR;
95                         r = -EINTR;
96                         break;
97                 }
98
99                 vcpu->mode = IN_GUEST_MODE;
100
101                 /*
102                  * Reading vcpu->requests must happen after setting vcpu->mode,
103                  * so we don't miss a request because the requester sees
104                  * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
105                  * before next entering the guest (and thus doesn't IPI).
106                  * This also orders the write to mode from any reads
107                  * to the page tables done while the VCPU is running.
108                  * Please see the comment in kvm_flush_remote_tlbs.
109                  */
110                 smp_mb();
111
112                 if (kvm_request_pending(vcpu)) {
113                         /* Make sure we process requests preemptable */
114                         local_irq_enable();
115                         trace_kvm_check_requests(vcpu);
116                         r = kvmppc_core_check_requests(vcpu);
117                         hard_irq_disable();
118                         if (r > 0)
119                                 continue;
120                         break;
121                 }
122
123                 if (kvmppc_core_prepare_to_enter(vcpu)) {
124                         /* interrupts got enabled in between, so we
125                            are back at square 1 */
126                         continue;
127                 }
128
129                 guest_enter_irqoff();
130                 return 1;
131         }
132
133         /* return to host */
134         local_irq_enable();
135         return r;
136 }
137 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
138
139 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
140 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
141 {
142         struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
143         int i;
144
145         shared->sprg0 = swab64(shared->sprg0);
146         shared->sprg1 = swab64(shared->sprg1);
147         shared->sprg2 = swab64(shared->sprg2);
148         shared->sprg3 = swab64(shared->sprg3);
149         shared->srr0 = swab64(shared->srr0);
150         shared->srr1 = swab64(shared->srr1);
151         shared->dar = swab64(shared->dar);
152         shared->msr = swab64(shared->msr);
153         shared->dsisr = swab32(shared->dsisr);
154         shared->int_pending = swab32(shared->int_pending);
155         for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
156                 shared->sr[i] = swab32(shared->sr[i]);
157 }
158 #endif
159
160 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
161 {
162         int nr = kvmppc_get_gpr(vcpu, 11);
163         int r;
164         unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
165         unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
166         unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
167         unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
168         unsigned long r2 = 0;
169
170         if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
171                 /* 32 bit mode */
172                 param1 &= 0xffffffff;
173                 param2 &= 0xffffffff;
174                 param3 &= 0xffffffff;
175                 param4 &= 0xffffffff;
176         }
177
178         switch (nr) {
179         case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
180         {
181 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
182                 /* Book3S can be little endian, find it out here */
183                 int shared_big_endian = true;
184                 if (vcpu->arch.intr_msr & MSR_LE)
185                         shared_big_endian = false;
186                 if (shared_big_endian != vcpu->arch.shared_big_endian)
187                         kvmppc_swab_shared(vcpu);
188                 vcpu->arch.shared_big_endian = shared_big_endian;
189 #endif
190
191                 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
192                         /*
193                          * Older versions of the Linux magic page code had
194                          * a bug where they would map their trampoline code
195                          * NX. If that's the case, remove !PR NX capability.
196                          */
197                         vcpu->arch.disable_kernel_nx = true;
198                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
199                 }
200
201                 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
202                 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
203
204 #ifdef CONFIG_PPC_64K_PAGES
205                 /*
206                  * Make sure our 4k magic page is in the same window of a 64k
207                  * page within the guest and within the host's page.
208                  */
209                 if ((vcpu->arch.magic_page_pa & 0xf000) !=
210                     ((ulong)vcpu->arch.shared & 0xf000)) {
211                         void *old_shared = vcpu->arch.shared;
212                         ulong shared = (ulong)vcpu->arch.shared;
213                         void *new_shared;
214
215                         shared &= PAGE_MASK;
216                         shared |= vcpu->arch.magic_page_pa & 0xf000;
217                         new_shared = (void*)shared;
218                         memcpy(new_shared, old_shared, 0x1000);
219                         vcpu->arch.shared = new_shared;
220                 }
221 #endif
222
223                 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
224
225                 r = EV_SUCCESS;
226                 break;
227         }
228         case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
229                 r = EV_SUCCESS;
230 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
231                 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
232 #endif
233
234                 /* Second return value is in r4 */
235                 break;
236         case EV_HCALL_TOKEN(EV_IDLE):
237                 r = EV_SUCCESS;
238                 kvm_vcpu_block(vcpu);
239                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
240                 break;
241         default:
242                 r = EV_UNIMPLEMENTED;
243                 break;
244         }
245
246         kvmppc_set_gpr(vcpu, 4, r2);
247
248         return r;
249 }
250 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
251
252 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
253 {
254         int r = false;
255
256         /* We have to know what CPU to virtualize */
257         if (!vcpu->arch.pvr)
258                 goto out;
259
260         /* PAPR only works with book3s_64 */
261         if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
262                 goto out;
263
264         /* HV KVM can only do PAPR mode for now */
265         if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
266                 goto out;
267
268 #ifdef CONFIG_KVM_BOOKE_HV
269         if (!cpu_has_feature(CPU_FTR_EMB_HV))
270                 goto out;
271 #endif
272
273         r = true;
274
275 out:
276         vcpu->arch.sane = r;
277         return r ? 0 : -EINVAL;
278 }
279 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
280
281 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
282 {
283         enum emulation_result er;
284         int r;
285
286         er = kvmppc_emulate_loadstore(vcpu);
287         switch (er) {
288         case EMULATE_DONE:
289                 /* Future optimization: only reload non-volatiles if they were
290                  * actually modified. */
291                 r = RESUME_GUEST_NV;
292                 break;
293         case EMULATE_AGAIN:
294                 r = RESUME_GUEST;
295                 break;
296         case EMULATE_DO_MMIO:
297                 run->exit_reason = KVM_EXIT_MMIO;
298                 /* We must reload nonvolatiles because "update" load/store
299                  * instructions modify register state. */
300                 /* Future optimization: only reload non-volatiles if they were
301                  * actually modified. */
302                 r = RESUME_HOST_NV;
303                 break;
304         case EMULATE_FAIL:
305         {
306                 u32 last_inst;
307
308                 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
309                 /* XXX Deliver Program interrupt to guest. */
310                 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
311                 r = RESUME_HOST;
312                 break;
313         }
314         default:
315                 WARN_ON(1);
316                 r = RESUME_GUEST;
317         }
318
319         return r;
320 }
321 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
322
323 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
324               bool data)
325 {
326         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
327         struct kvmppc_pte pte;
328         int r = -EINVAL;
329
330         vcpu->stat.st++;
331
332         if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr)
333                 r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr,
334                                                             size);
335
336         if ((!r) || (r == -EAGAIN))
337                 return r;
338
339         r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
340                          XLATE_WRITE, &pte);
341         if (r < 0)
342                 return r;
343
344         *eaddr = pte.raddr;
345
346         if (!pte.may_write)
347                 return -EPERM;
348
349         /* Magic page override */
350         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
351             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
352             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
353                 void *magic = vcpu->arch.shared;
354                 magic += pte.eaddr & 0xfff;
355                 memcpy(magic, ptr, size);
356                 return EMULATE_DONE;
357         }
358
359         if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
360                 return EMULATE_DO_MMIO;
361
362         return EMULATE_DONE;
363 }
364 EXPORT_SYMBOL_GPL(kvmppc_st);
365
366 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
367                       bool data)
368 {
369         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
370         struct kvmppc_pte pte;
371         int rc = -EINVAL;
372
373         vcpu->stat.ld++;
374
375         if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr)
376                 rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr,
377                                                               size);
378
379         if ((!rc) || (rc == -EAGAIN))
380                 return rc;
381
382         rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
383                           XLATE_READ, &pte);
384         if (rc)
385                 return rc;
386
387         *eaddr = pte.raddr;
388
389         if (!pte.may_read)
390                 return -EPERM;
391
392         if (!data && !pte.may_execute)
393                 return -ENOEXEC;
394
395         /* Magic page override */
396         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
397             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
398             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
399                 void *magic = vcpu->arch.shared;
400                 magic += pte.eaddr & 0xfff;
401                 memcpy(ptr, magic, size);
402                 return EMULATE_DONE;
403         }
404
405         if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
406                 return EMULATE_DO_MMIO;
407
408         return EMULATE_DONE;
409 }
410 EXPORT_SYMBOL_GPL(kvmppc_ld);
411
412 int kvm_arch_hardware_enable(void)
413 {
414         return 0;
415 }
416
417 int kvm_arch_hardware_setup(void)
418 {
419         return 0;
420 }
421
422 int kvm_arch_check_processor_compat(void)
423 {
424         return kvmppc_core_check_processor_compat();
425 }
426
427 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
428 {
429         struct kvmppc_ops *kvm_ops = NULL;
430         /*
431          * if we have both HV and PR enabled, default is HV
432          */
433         if (type == 0) {
434                 if (kvmppc_hv_ops)
435                         kvm_ops = kvmppc_hv_ops;
436                 else
437                         kvm_ops = kvmppc_pr_ops;
438                 if (!kvm_ops)
439                         goto err_out;
440         } else  if (type == KVM_VM_PPC_HV) {
441                 if (!kvmppc_hv_ops)
442                         goto err_out;
443                 kvm_ops = kvmppc_hv_ops;
444         } else if (type == KVM_VM_PPC_PR) {
445                 if (!kvmppc_pr_ops)
446                         goto err_out;
447                 kvm_ops = kvmppc_pr_ops;
448         } else
449                 goto err_out;
450
451         if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
452                 return -ENOENT;
453
454         kvm->arch.kvm_ops = kvm_ops;
455         return kvmppc_core_init_vm(kvm);
456 err_out:
457         return -EINVAL;
458 }
459
460 void kvm_arch_destroy_vm(struct kvm *kvm)
461 {
462         unsigned int i;
463         struct kvm_vcpu *vcpu;
464
465 #ifdef CONFIG_KVM_XICS
466         /*
467          * We call kick_all_cpus_sync() to ensure that all
468          * CPUs have executed any pending IPIs before we
469          * continue and free VCPUs structures below.
470          */
471         if (is_kvmppc_hv_enabled(kvm))
472                 kick_all_cpus_sync();
473 #endif
474
475         kvm_for_each_vcpu(i, vcpu, kvm)
476                 kvm_arch_vcpu_free(vcpu);
477
478         mutex_lock(&kvm->lock);
479         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
480                 kvm->vcpus[i] = NULL;
481
482         atomic_set(&kvm->online_vcpus, 0);
483
484         kvmppc_core_destroy_vm(kvm);
485
486         mutex_unlock(&kvm->lock);
487
488         /* drop the module reference */
489         module_put(kvm->arch.kvm_ops->owner);
490 }
491
492 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
493 {
494         int r;
495         /* Assume we're using HV mode when the HV module is loaded */
496         int hv_enabled = kvmppc_hv_ops ? 1 : 0;
497
498         if (kvm) {
499                 /*
500                  * Hooray - we know which VM type we're running on. Depend on
501                  * that rather than the guess above.
502                  */
503                 hv_enabled = is_kvmppc_hv_enabled(kvm);
504         }
505
506         switch (ext) {
507 #ifdef CONFIG_BOOKE
508         case KVM_CAP_PPC_BOOKE_SREGS:
509         case KVM_CAP_PPC_BOOKE_WATCHDOG:
510         case KVM_CAP_PPC_EPR:
511 #else
512         case KVM_CAP_PPC_SEGSTATE:
513         case KVM_CAP_PPC_HIOR:
514         case KVM_CAP_PPC_PAPR:
515 #endif
516         case KVM_CAP_PPC_UNSET_IRQ:
517         case KVM_CAP_PPC_IRQ_LEVEL:
518         case KVM_CAP_ENABLE_CAP:
519         case KVM_CAP_ONE_REG:
520         case KVM_CAP_IOEVENTFD:
521         case KVM_CAP_DEVICE_CTRL:
522         case KVM_CAP_IMMEDIATE_EXIT:
523                 r = 1;
524                 break;
525         case KVM_CAP_PPC_PAIRED_SINGLES:
526         case KVM_CAP_PPC_OSI:
527         case KVM_CAP_PPC_GET_PVINFO:
528 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
529         case KVM_CAP_SW_TLB:
530 #endif
531                 /* We support this only for PR */
532                 r = !hv_enabled;
533                 break;
534 #ifdef CONFIG_KVM_MPIC
535         case KVM_CAP_IRQ_MPIC:
536                 r = 1;
537                 break;
538 #endif
539
540 #ifdef CONFIG_PPC_BOOK3S_64
541         case KVM_CAP_SPAPR_TCE:
542         case KVM_CAP_SPAPR_TCE_64:
543                 r = 1;
544                 break;
545         case KVM_CAP_SPAPR_TCE_VFIO:
546                 r = !!cpu_has_feature(CPU_FTR_HVMODE);
547                 break;
548         case KVM_CAP_PPC_RTAS:
549         case KVM_CAP_PPC_FIXUP_HCALL:
550         case KVM_CAP_PPC_ENABLE_HCALL:
551 #ifdef CONFIG_KVM_XICS
552         case KVM_CAP_IRQ_XICS:
553 #endif
554         case KVM_CAP_PPC_GET_CPU_CHAR:
555                 r = 1;
556                 break;
557 #ifdef CONFIG_KVM_XIVE
558         case KVM_CAP_PPC_IRQ_XIVE:
559                 /*
560                  * We need XIVE to be enabled on the platform (implies
561                  * a POWER9 processor) and the PowerNV platform, as
562                  * nested is not yet supported.
563                  */
564                 r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE);
565                 break;
566 #endif
567
568         case KVM_CAP_PPC_ALLOC_HTAB:
569                 r = hv_enabled;
570                 break;
571 #endif /* CONFIG_PPC_BOOK3S_64 */
572 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
573         case KVM_CAP_PPC_SMT:
574                 r = 0;
575                 if (kvm) {
576                         if (kvm->arch.emul_smt_mode > 1)
577                                 r = kvm->arch.emul_smt_mode;
578                         else
579                                 r = kvm->arch.smt_mode;
580                 } else if (hv_enabled) {
581                         if (cpu_has_feature(CPU_FTR_ARCH_300))
582                                 r = 1;
583                         else
584                                 r = threads_per_subcore;
585                 }
586                 break;
587         case KVM_CAP_PPC_SMT_POSSIBLE:
588                 r = 1;
589                 if (hv_enabled) {
590                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
591                                 r = ((threads_per_subcore << 1) - 1);
592                         else
593                                 /* P9 can emulate dbells, so allow any mode */
594                                 r = 8 | 4 | 2 | 1;
595                 }
596                 break;
597         case KVM_CAP_PPC_RMA:
598                 r = 0;
599                 break;
600         case KVM_CAP_PPC_HWRNG:
601                 r = kvmppc_hwrng_present();
602                 break;
603         case KVM_CAP_PPC_MMU_RADIX:
604                 r = !!(hv_enabled && radix_enabled());
605                 break;
606         case KVM_CAP_PPC_MMU_HASH_V3:
607                 r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300) &&
608                        cpu_has_feature(CPU_FTR_HVMODE));
609                 break;
610         case KVM_CAP_PPC_NESTED_HV:
611                 r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
612                        !kvmppc_hv_ops->enable_nested(NULL));
613                 break;
614 #endif
615         case KVM_CAP_SYNC_MMU:
616 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
617                 r = hv_enabled;
618 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
619                 r = 1;
620 #else
621                 r = 0;
622 #endif
623                 break;
624 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
625         case KVM_CAP_PPC_HTAB_FD:
626                 r = hv_enabled;
627                 break;
628 #endif
629         case KVM_CAP_NR_VCPUS:
630                 /*
631                  * Recommending a number of CPUs is somewhat arbitrary; we
632                  * return the number of present CPUs for -HV (since a host
633                  * will have secondary threads "offline"), and for other KVM
634                  * implementations just count online CPUs.
635                  */
636                 if (hv_enabled)
637                         r = num_present_cpus();
638                 else
639                         r = num_online_cpus();
640                 break;
641         case KVM_CAP_MAX_VCPUS:
642                 r = KVM_MAX_VCPUS;
643                 break;
644         case KVM_CAP_MAX_VCPU_ID:
645                 r = KVM_MAX_VCPU_ID;
646                 break;
647 #ifdef CONFIG_PPC_BOOK3S_64
648         case KVM_CAP_PPC_GET_SMMU_INFO:
649                 r = 1;
650                 break;
651         case KVM_CAP_SPAPR_MULTITCE:
652                 r = 1;
653                 break;
654         case KVM_CAP_SPAPR_RESIZE_HPT:
655                 r = !!hv_enabled;
656                 break;
657 #endif
658 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
659         case KVM_CAP_PPC_FWNMI:
660                 r = hv_enabled;
661                 break;
662 #endif
663 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
664         case KVM_CAP_PPC_HTM:
665                 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
666                      (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
667                 break;
668 #endif
669         default:
670                 r = 0;
671                 break;
672         }
673         return r;
674
675 }
676
677 long kvm_arch_dev_ioctl(struct file *filp,
678                         unsigned int ioctl, unsigned long arg)
679 {
680         return -EINVAL;
681 }
682
683 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
684                            struct kvm_memory_slot *dont)
685 {
686         kvmppc_core_free_memslot(kvm, free, dont);
687 }
688
689 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
690                             unsigned long npages)
691 {
692         return kvmppc_core_create_memslot(kvm, slot, npages);
693 }
694
695 int kvm_arch_prepare_memory_region(struct kvm *kvm,
696                                    struct kvm_memory_slot *memslot,
697                                    const struct kvm_userspace_memory_region *mem,
698                                    enum kvm_mr_change change)
699 {
700         return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
701 }
702
703 void kvm_arch_commit_memory_region(struct kvm *kvm,
704                                    const struct kvm_userspace_memory_region *mem,
705                                    const struct kvm_memory_slot *old,
706                                    const struct kvm_memory_slot *new,
707                                    enum kvm_mr_change change)
708 {
709         kvmppc_core_commit_memory_region(kvm, mem, old, new, change);
710 }
711
712 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
713                                    struct kvm_memory_slot *slot)
714 {
715         kvmppc_core_flush_memslot(kvm, slot);
716 }
717
718 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
719 {
720         struct kvm_vcpu *vcpu;
721         vcpu = kvmppc_core_vcpu_create(kvm, id);
722         if (!IS_ERR(vcpu)) {
723                 vcpu->arch.wqp = &vcpu->wq;
724                 kvmppc_create_vcpu_debugfs(vcpu, id);
725         }
726         return vcpu;
727 }
728
729 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
730 {
731 }
732
733 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
734 {
735         /* Make sure we're not using the vcpu anymore */
736         hrtimer_cancel(&vcpu->arch.dec_timer);
737
738         kvmppc_remove_vcpu_debugfs(vcpu);
739
740         switch (vcpu->arch.irq_type) {
741         case KVMPPC_IRQ_MPIC:
742                 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
743                 break;
744         case KVMPPC_IRQ_XICS:
745                 if (xics_on_xive())
746                         kvmppc_xive_cleanup_vcpu(vcpu);
747                 else
748                         kvmppc_xics_free_icp(vcpu);
749                 break;
750         case KVMPPC_IRQ_XIVE:
751                 kvmppc_xive_native_cleanup_vcpu(vcpu);
752                 break;
753         }
754
755         kvmppc_core_vcpu_free(vcpu);
756 }
757
758 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
759 {
760         kvm_arch_vcpu_free(vcpu);
761 }
762
763 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
764 {
765         return kvmppc_core_pending_dec(vcpu);
766 }
767
768 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
769 {
770         struct kvm_vcpu *vcpu;
771
772         vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
773         kvmppc_decrementer_func(vcpu);
774
775         return HRTIMER_NORESTART;
776 }
777
778 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
779 {
780         int ret;
781
782         hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
783         vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
784         vcpu->arch.dec_expires = get_tb();
785
786 #ifdef CONFIG_KVM_EXIT_TIMING
787         mutex_init(&vcpu->arch.exit_timing_lock);
788 #endif
789         ret = kvmppc_subarch_vcpu_init(vcpu);
790         return ret;
791 }
792
793 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
794 {
795         kvmppc_mmu_destroy(vcpu);
796         kvmppc_subarch_vcpu_uninit(vcpu);
797 }
798
799 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
800 {
801 #ifdef CONFIG_BOOKE
802         /*
803          * vrsave (formerly usprg0) isn't used by Linux, but may
804          * be used by the guest.
805          *
806          * On non-booke this is associated with Altivec and
807          * is handled by code in book3s.c.
808          */
809         mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
810 #endif
811         kvmppc_core_vcpu_load(vcpu, cpu);
812 }
813
814 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
815 {
816         kvmppc_core_vcpu_put(vcpu);
817 #ifdef CONFIG_BOOKE
818         vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
819 #endif
820 }
821
822 /*
823  * irq_bypass_add_producer and irq_bypass_del_producer are only
824  * useful if the architecture supports PCI passthrough.
825  * irq_bypass_stop and irq_bypass_start are not needed and so
826  * kvm_ops are not defined for them.
827  */
828 bool kvm_arch_has_irq_bypass(void)
829 {
830         return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
831                 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
832 }
833
834 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
835                                      struct irq_bypass_producer *prod)
836 {
837         struct kvm_kernel_irqfd *irqfd =
838                 container_of(cons, struct kvm_kernel_irqfd, consumer);
839         struct kvm *kvm = irqfd->kvm;
840
841         if (kvm->arch.kvm_ops->irq_bypass_add_producer)
842                 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
843
844         return 0;
845 }
846
847 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
848                                       struct irq_bypass_producer *prod)
849 {
850         struct kvm_kernel_irqfd *irqfd =
851                 container_of(cons, struct kvm_kernel_irqfd, consumer);
852         struct kvm *kvm = irqfd->kvm;
853
854         if (kvm->arch.kvm_ops->irq_bypass_del_producer)
855                 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
856 }
857
858 #ifdef CONFIG_VSX
859 static inline int kvmppc_get_vsr_dword_offset(int index)
860 {
861         int offset;
862
863         if ((index != 0) && (index != 1))
864                 return -1;
865
866 #ifdef __BIG_ENDIAN
867         offset =  index;
868 #else
869         offset = 1 - index;
870 #endif
871
872         return offset;
873 }
874
875 static inline int kvmppc_get_vsr_word_offset(int index)
876 {
877         int offset;
878
879         if ((index > 3) || (index < 0))
880                 return -1;
881
882 #ifdef __BIG_ENDIAN
883         offset = index;
884 #else
885         offset = 3 - index;
886 #endif
887         return offset;
888 }
889
890 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
891         u64 gpr)
892 {
893         union kvmppc_one_reg val;
894         int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
895         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
896
897         if (offset == -1)
898                 return;
899
900         if (index >= 32) {
901                 val.vval = VCPU_VSX_VR(vcpu, index - 32);
902                 val.vsxval[offset] = gpr;
903                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
904         } else {
905                 VCPU_VSX_FPR(vcpu, index, offset) = gpr;
906         }
907 }
908
909 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
910         u64 gpr)
911 {
912         union kvmppc_one_reg val;
913         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
914
915         if (index >= 32) {
916                 val.vval = VCPU_VSX_VR(vcpu, index - 32);
917                 val.vsxval[0] = gpr;
918                 val.vsxval[1] = gpr;
919                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
920         } else {
921                 VCPU_VSX_FPR(vcpu, index, 0) = gpr;
922                 VCPU_VSX_FPR(vcpu, index, 1) = gpr;
923         }
924 }
925
926 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
927         u32 gpr)
928 {
929         union kvmppc_one_reg val;
930         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
931
932         if (index >= 32) {
933                 val.vsx32val[0] = gpr;
934                 val.vsx32val[1] = gpr;
935                 val.vsx32val[2] = gpr;
936                 val.vsx32val[3] = gpr;
937                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
938         } else {
939                 val.vsx32val[0] = gpr;
940                 val.vsx32val[1] = gpr;
941                 VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
942                 VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
943         }
944 }
945
946 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
947         u32 gpr32)
948 {
949         union kvmppc_one_reg val;
950         int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
951         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
952         int dword_offset, word_offset;
953
954         if (offset == -1)
955                 return;
956
957         if (index >= 32) {
958                 val.vval = VCPU_VSX_VR(vcpu, index - 32);
959                 val.vsx32val[offset] = gpr32;
960                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
961         } else {
962                 dword_offset = offset / 2;
963                 word_offset = offset % 2;
964                 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
965                 val.vsx32val[word_offset] = gpr32;
966                 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
967         }
968 }
969 #endif /* CONFIG_VSX */
970
971 #ifdef CONFIG_ALTIVEC
972 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
973                 int index, int element_size)
974 {
975         int offset;
976         int elts = sizeof(vector128)/element_size;
977
978         if ((index < 0) || (index >= elts))
979                 return -1;
980
981         if (kvmppc_need_byteswap(vcpu))
982                 offset = elts - index - 1;
983         else
984                 offset = index;
985
986         return offset;
987 }
988
989 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
990                 int index)
991 {
992         return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
993 }
994
995 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
996                 int index)
997 {
998         return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
999 }
1000
1001 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
1002                 int index)
1003 {
1004         return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
1005 }
1006
1007 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
1008                 int index)
1009 {
1010         return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
1011 }
1012
1013
1014 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
1015         u64 gpr)
1016 {
1017         union kvmppc_one_reg val;
1018         int offset = kvmppc_get_vmx_dword_offset(vcpu,
1019                         vcpu->arch.mmio_vmx_offset);
1020         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1021
1022         if (offset == -1)
1023                 return;
1024
1025         val.vval = VCPU_VSX_VR(vcpu, index);
1026         val.vsxval[offset] = gpr;
1027         VCPU_VSX_VR(vcpu, index) = val.vval;
1028 }
1029
1030 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
1031         u32 gpr32)
1032 {
1033         union kvmppc_one_reg val;
1034         int offset = kvmppc_get_vmx_word_offset(vcpu,
1035                         vcpu->arch.mmio_vmx_offset);
1036         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1037
1038         if (offset == -1)
1039                 return;
1040
1041         val.vval = VCPU_VSX_VR(vcpu, index);
1042         val.vsx32val[offset] = gpr32;
1043         VCPU_VSX_VR(vcpu, index) = val.vval;
1044 }
1045
1046 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
1047         u16 gpr16)
1048 {
1049         union kvmppc_one_reg val;
1050         int offset = kvmppc_get_vmx_hword_offset(vcpu,
1051                         vcpu->arch.mmio_vmx_offset);
1052         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1053
1054         if (offset == -1)
1055                 return;
1056
1057         val.vval = VCPU_VSX_VR(vcpu, index);
1058         val.vsx16val[offset] = gpr16;
1059         VCPU_VSX_VR(vcpu, index) = val.vval;
1060 }
1061
1062 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
1063         u8 gpr8)
1064 {
1065         union kvmppc_one_reg val;
1066         int offset = kvmppc_get_vmx_byte_offset(vcpu,
1067                         vcpu->arch.mmio_vmx_offset);
1068         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1069
1070         if (offset == -1)
1071                 return;
1072
1073         val.vval = VCPU_VSX_VR(vcpu, index);
1074         val.vsx8val[offset] = gpr8;
1075         VCPU_VSX_VR(vcpu, index) = val.vval;
1076 }
1077 #endif /* CONFIG_ALTIVEC */
1078
1079 #ifdef CONFIG_PPC_FPU
1080 static inline u64 sp_to_dp(u32 fprs)
1081 {
1082         u64 fprd;
1083
1084         preempt_disable();
1085         enable_kernel_fp();
1086         asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
1087              : "fr0");
1088         preempt_enable();
1089         return fprd;
1090 }
1091
1092 static inline u32 dp_to_sp(u64 fprd)
1093 {
1094         u32 fprs;
1095
1096         preempt_disable();
1097         enable_kernel_fp();
1098         asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
1099              : "fr0");
1100         preempt_enable();
1101         return fprs;
1102 }
1103
1104 #else
1105 #define sp_to_dp(x)     (x)
1106 #define dp_to_sp(x)     (x)
1107 #endif /* CONFIG_PPC_FPU */
1108
1109 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
1110                                       struct kvm_run *run)
1111 {
1112         u64 uninitialized_var(gpr);
1113
1114         if (run->mmio.len > sizeof(gpr)) {
1115                 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
1116                 return;
1117         }
1118
1119         if (!vcpu->arch.mmio_host_swabbed) {
1120                 switch (run->mmio.len) {
1121                 case 8: gpr = *(u64 *)run->mmio.data; break;
1122                 case 4: gpr = *(u32 *)run->mmio.data; break;
1123                 case 2: gpr = *(u16 *)run->mmio.data; break;
1124                 case 1: gpr = *(u8 *)run->mmio.data; break;
1125                 }
1126         } else {
1127                 switch (run->mmio.len) {
1128                 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1129                 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1130                 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1131                 case 1: gpr = *(u8 *)run->mmio.data; break;
1132                 }
1133         }
1134
1135         /* conversion between single and double precision */
1136         if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1137                 gpr = sp_to_dp(gpr);
1138
1139         if (vcpu->arch.mmio_sign_extend) {
1140                 switch (run->mmio.len) {
1141 #ifdef CONFIG_PPC64
1142                 case 4:
1143                         gpr = (s64)(s32)gpr;
1144                         break;
1145 #endif
1146                 case 2:
1147                         gpr = (s64)(s16)gpr;
1148                         break;
1149                 case 1:
1150                         gpr = (s64)(s8)gpr;
1151                         break;
1152                 }
1153         }
1154
1155         switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1156         case KVM_MMIO_REG_GPR:
1157                 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1158                 break;
1159         case KVM_MMIO_REG_FPR:
1160                 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1161                         vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);
1162
1163                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1164                 break;
1165 #ifdef CONFIG_PPC_BOOK3S
1166         case KVM_MMIO_REG_QPR:
1167                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1168                 break;
1169         case KVM_MMIO_REG_FQPR:
1170                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1171                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1172                 break;
1173 #endif
1174 #ifdef CONFIG_VSX
1175         case KVM_MMIO_REG_VSX:
1176                 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1177                         vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);
1178
1179                 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1180                         kvmppc_set_vsr_dword(vcpu, gpr);
1181                 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1182                         kvmppc_set_vsr_word(vcpu, gpr);
1183                 else if (vcpu->arch.mmio_copy_type ==
1184                                 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1185                         kvmppc_set_vsr_dword_dump(vcpu, gpr);
1186                 else if (vcpu->arch.mmio_copy_type ==
1187                                 KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
1188                         kvmppc_set_vsr_word_dump(vcpu, gpr);
1189                 break;
1190 #endif
1191 #ifdef CONFIG_ALTIVEC
1192         case KVM_MMIO_REG_VMX:
1193                 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1194                         vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);
1195
1196                 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
1197                         kvmppc_set_vmx_dword(vcpu, gpr);
1198                 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
1199                         kvmppc_set_vmx_word(vcpu, gpr);
1200                 else if (vcpu->arch.mmio_copy_type ==
1201                                 KVMPPC_VMX_COPY_HWORD)
1202                         kvmppc_set_vmx_hword(vcpu, gpr);
1203                 else if (vcpu->arch.mmio_copy_type ==
1204                                 KVMPPC_VMX_COPY_BYTE)
1205                         kvmppc_set_vmx_byte(vcpu, gpr);
1206                 break;
1207 #endif
1208 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1209         case KVM_MMIO_REG_NESTED_GPR:
1210                 if (kvmppc_need_byteswap(vcpu))
1211                         gpr = swab64(gpr);
1212                 kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr,
1213                                      sizeof(gpr));
1214                 break;
1215 #endif
1216         default:
1217                 BUG();
1218         }
1219 }
1220
1221 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1222                                 unsigned int rt, unsigned int bytes,
1223                                 int is_default_endian, int sign_extend)
1224 {
1225         int idx, ret;
1226         bool host_swabbed;
1227
1228         /* Pity C doesn't have a logical XOR operator */
1229         if (kvmppc_need_byteswap(vcpu)) {
1230                 host_swabbed = is_default_endian;
1231         } else {
1232                 host_swabbed = !is_default_endian;
1233         }
1234
1235         if (bytes > sizeof(run->mmio.data)) {
1236                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1237                        run->mmio.len);
1238         }
1239
1240         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1241         run->mmio.len = bytes;
1242         run->mmio.is_write = 0;
1243
1244         vcpu->arch.io_gpr = rt;
1245         vcpu->arch.mmio_host_swabbed = host_swabbed;
1246         vcpu->mmio_needed = 1;
1247         vcpu->mmio_is_write = 0;
1248         vcpu->arch.mmio_sign_extend = sign_extend;
1249
1250         idx = srcu_read_lock(&vcpu->kvm->srcu);
1251
1252         ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1253                               bytes, &run->mmio.data);
1254
1255         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1256
1257         if (!ret) {
1258                 kvmppc_complete_mmio_load(vcpu, run);
1259                 vcpu->mmio_needed = 0;
1260                 return EMULATE_DONE;
1261         }
1262
1263         return EMULATE_DO_MMIO;
1264 }
1265
1266 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1267                        unsigned int rt, unsigned int bytes,
1268                        int is_default_endian)
1269 {
1270         return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
1271 }
1272 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1273
1274 /* Same as above, but sign extends */
1275 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1276                         unsigned int rt, unsigned int bytes,
1277                         int is_default_endian)
1278 {
1279         return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
1280 }
1281
1282 #ifdef CONFIG_VSX
1283 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1284                         unsigned int rt, unsigned int bytes,
1285                         int is_default_endian, int mmio_sign_extend)
1286 {
1287         enum emulation_result emulated = EMULATE_DONE;
1288
1289         /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1290         if (vcpu->arch.mmio_vsx_copy_nums > 4)
1291                 return EMULATE_FAIL;
1292
1293         while (vcpu->arch.mmio_vsx_copy_nums) {
1294                 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1295                         is_default_endian, mmio_sign_extend);
1296
1297                 if (emulated != EMULATE_DONE)
1298                         break;
1299
1300                 vcpu->arch.paddr_accessed += run->mmio.len;
1301
1302                 vcpu->arch.mmio_vsx_copy_nums--;
1303                 vcpu->arch.mmio_vsx_offset++;
1304         }
1305         return emulated;
1306 }
1307 #endif /* CONFIG_VSX */
1308
1309 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1310                         u64 val, unsigned int bytes, int is_default_endian)
1311 {
1312         void *data = run->mmio.data;
1313         int idx, ret;
1314         bool host_swabbed;
1315
1316         /* Pity C doesn't have a logical XOR operator */
1317         if (kvmppc_need_byteswap(vcpu)) {
1318                 host_swabbed = is_default_endian;
1319         } else {
1320                 host_swabbed = !is_default_endian;
1321         }
1322
1323         if (bytes > sizeof(run->mmio.data)) {
1324                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1325                        run->mmio.len);
1326         }
1327
1328         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1329         run->mmio.len = bytes;
1330         run->mmio.is_write = 1;
1331         vcpu->mmio_needed = 1;
1332         vcpu->mmio_is_write = 1;
1333
1334         if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1335                 val = dp_to_sp(val);
1336
1337         /* Store the value at the lowest bytes in 'data'. */
1338         if (!host_swabbed) {
1339                 switch (bytes) {
1340                 case 8: *(u64 *)data = val; break;
1341                 case 4: *(u32 *)data = val; break;
1342                 case 2: *(u16 *)data = val; break;
1343                 case 1: *(u8  *)data = val; break;
1344                 }
1345         } else {
1346                 switch (bytes) {
1347                 case 8: *(u64 *)data = swab64(val); break;
1348                 case 4: *(u32 *)data = swab32(val); break;
1349                 case 2: *(u16 *)data = swab16(val); break;
1350                 case 1: *(u8  *)data = val; break;
1351                 }
1352         }
1353
1354         idx = srcu_read_lock(&vcpu->kvm->srcu);
1355
1356         ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1357                                bytes, &run->mmio.data);
1358
1359         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1360
1361         if (!ret) {
1362                 vcpu->mmio_needed = 0;
1363                 return EMULATE_DONE;
1364         }
1365
1366         return EMULATE_DO_MMIO;
1367 }
1368 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1369
1370 #ifdef CONFIG_VSX
1371 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1372 {
1373         u32 dword_offset, word_offset;
1374         union kvmppc_one_reg reg;
1375         int vsx_offset = 0;
1376         int copy_type = vcpu->arch.mmio_copy_type;
1377         int result = 0;
1378
1379         switch (copy_type) {
1380         case KVMPPC_VSX_COPY_DWORD:
1381                 vsx_offset =
1382                         kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1383
1384                 if (vsx_offset == -1) {
1385                         result = -1;
1386                         break;
1387                 }
1388
1389                 if (rs < 32) {
1390                         *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1391                 } else {
1392                         reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1393                         *val = reg.vsxval[vsx_offset];
1394                 }
1395                 break;
1396
1397         case KVMPPC_VSX_COPY_WORD:
1398                 vsx_offset =
1399                         kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1400
1401                 if (vsx_offset == -1) {
1402                         result = -1;
1403                         break;
1404                 }
1405
1406                 if (rs < 32) {
1407                         dword_offset = vsx_offset / 2;
1408                         word_offset = vsx_offset % 2;
1409                         reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1410                         *val = reg.vsx32val[word_offset];
1411                 } else {
1412                         reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1413                         *val = reg.vsx32val[vsx_offset];
1414                 }
1415                 break;
1416
1417         default:
1418                 result = -1;
1419                 break;
1420         }
1421
1422         return result;
1423 }
1424
1425 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1426                         int rs, unsigned int bytes, int is_default_endian)
1427 {
1428         u64 val;
1429         enum emulation_result emulated = EMULATE_DONE;
1430
1431         vcpu->arch.io_gpr = rs;
1432
1433         /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1434         if (vcpu->arch.mmio_vsx_copy_nums > 4)
1435                 return EMULATE_FAIL;
1436
1437         while (vcpu->arch.mmio_vsx_copy_nums) {
1438                 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1439                         return EMULATE_FAIL;
1440
1441                 emulated = kvmppc_handle_store(run, vcpu,
1442                          val, bytes, is_default_endian);
1443
1444                 if (emulated != EMULATE_DONE)
1445                         break;
1446
1447                 vcpu->arch.paddr_accessed += run->mmio.len;
1448
1449                 vcpu->arch.mmio_vsx_copy_nums--;
1450                 vcpu->arch.mmio_vsx_offset++;
1451         }
1452
1453         return emulated;
1454 }
1455
1456 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
1457                         struct kvm_run *run)
1458 {
1459         enum emulation_result emulated = EMULATE_FAIL;
1460         int r;
1461
1462         vcpu->arch.paddr_accessed += run->mmio.len;
1463
1464         if (!vcpu->mmio_is_write) {
1465                 emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
1466                          run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1467         } else {
1468                 emulated = kvmppc_handle_vsx_store(run, vcpu,
1469                          vcpu->arch.io_gpr, run->mmio.len, 1);
1470         }
1471
1472         switch (emulated) {
1473         case EMULATE_DO_MMIO:
1474                 run->exit_reason = KVM_EXIT_MMIO;
1475                 r = RESUME_HOST;
1476                 break;
1477         case EMULATE_FAIL:
1478                 pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1479                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1480                 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1481                 r = RESUME_HOST;
1482                 break;
1483         default:
1484                 r = RESUME_GUEST;
1485                 break;
1486         }
1487         return r;
1488 }
1489 #endif /* CONFIG_VSX */
1490
1491 #ifdef CONFIG_ALTIVEC
1492 int kvmppc_handle_vmx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1493                 unsigned int rt, unsigned int bytes, int is_default_endian)
1494 {
1495         enum emulation_result emulated = EMULATE_DONE;
1496
1497         if (vcpu->arch.mmio_vsx_copy_nums > 2)
1498                 return EMULATE_FAIL;
1499
1500         while (vcpu->arch.mmio_vmx_copy_nums) {
1501                 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1502                                 is_default_endian, 0);
1503
1504                 if (emulated != EMULATE_DONE)
1505                         break;
1506
1507                 vcpu->arch.paddr_accessed += run->mmio.len;
1508                 vcpu->arch.mmio_vmx_copy_nums--;
1509                 vcpu->arch.mmio_vmx_offset++;
1510         }
1511
1512         return emulated;
1513 }
1514
1515 int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1516 {
1517         union kvmppc_one_reg reg;
1518         int vmx_offset = 0;
1519         int result = 0;
1520
1521         vmx_offset =
1522                 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1523
1524         if (vmx_offset == -1)
1525                 return -1;
1526
1527         reg.vval = VCPU_VSX_VR(vcpu, index);
1528         *val = reg.vsxval[vmx_offset];
1529
1530         return result;
1531 }
1532
1533 int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
1534 {
1535         union kvmppc_one_reg reg;
1536         int vmx_offset = 0;
1537         int result = 0;
1538
1539         vmx_offset =
1540                 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1541
1542         if (vmx_offset == -1)
1543                 return -1;
1544
1545         reg.vval = VCPU_VSX_VR(vcpu, index);
1546         *val = reg.vsx32val[vmx_offset];
1547
1548         return result;
1549 }
1550
1551 int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
1552 {
1553         union kvmppc_one_reg reg;
1554         int vmx_offset = 0;
1555         int result = 0;
1556
1557         vmx_offset =
1558                 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1559
1560         if (vmx_offset == -1)
1561                 return -1;
1562
1563         reg.vval = VCPU_VSX_VR(vcpu, index);
1564         *val = reg.vsx16val[vmx_offset];
1565
1566         return result;
1567 }
1568
1569 int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
1570 {
1571         union kvmppc_one_reg reg;
1572         int vmx_offset = 0;
1573         int result = 0;
1574
1575         vmx_offset =
1576                 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1577
1578         if (vmx_offset == -1)
1579                 return -1;
1580
1581         reg.vval = VCPU_VSX_VR(vcpu, index);
1582         *val = reg.vsx8val[vmx_offset];
1583
1584         return result;
1585 }
1586
1587 int kvmppc_handle_vmx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1588                 unsigned int rs, unsigned int bytes, int is_default_endian)
1589 {
1590         u64 val = 0;
1591         unsigned int index = rs & KVM_MMIO_REG_MASK;
1592         enum emulation_result emulated = EMULATE_DONE;
1593
1594         if (vcpu->arch.mmio_vsx_copy_nums > 2)
1595                 return EMULATE_FAIL;
1596
1597         vcpu->arch.io_gpr = rs;
1598
1599         while (vcpu->arch.mmio_vmx_copy_nums) {
1600                 switch (vcpu->arch.mmio_copy_type) {
1601                 case KVMPPC_VMX_COPY_DWORD:
1602                         if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
1603                                 return EMULATE_FAIL;
1604
1605                         break;
1606                 case KVMPPC_VMX_COPY_WORD:
1607                         if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
1608                                 return EMULATE_FAIL;
1609                         break;
1610                 case KVMPPC_VMX_COPY_HWORD:
1611                         if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
1612                                 return EMULATE_FAIL;
1613                         break;
1614                 case KVMPPC_VMX_COPY_BYTE:
1615                         if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
1616                                 return EMULATE_FAIL;
1617                         break;
1618                 default:
1619                         return EMULATE_FAIL;
1620                 }
1621
1622                 emulated = kvmppc_handle_store(run, vcpu, val, bytes,
1623                                 is_default_endian);
1624                 if (emulated != EMULATE_DONE)
1625                         break;
1626
1627                 vcpu->arch.paddr_accessed += run->mmio.len;
1628                 vcpu->arch.mmio_vmx_copy_nums--;
1629                 vcpu->arch.mmio_vmx_offset++;
1630         }
1631
1632         return emulated;
1633 }
1634
1635 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu,
1636                 struct kvm_run *run)
1637 {
1638         enum emulation_result emulated = EMULATE_FAIL;
1639         int r;
1640
1641         vcpu->arch.paddr_accessed += run->mmio.len;
1642
1643         if (!vcpu->mmio_is_write) {
1644                 emulated = kvmppc_handle_vmx_load(run, vcpu,
1645                                 vcpu->arch.io_gpr, run->mmio.len, 1);
1646         } else {
1647                 emulated = kvmppc_handle_vmx_store(run, vcpu,
1648                                 vcpu->arch.io_gpr, run->mmio.len, 1);
1649         }
1650
1651         switch (emulated) {
1652         case EMULATE_DO_MMIO:
1653                 run->exit_reason = KVM_EXIT_MMIO;
1654                 r = RESUME_HOST;
1655                 break;
1656         case EMULATE_FAIL:
1657                 pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1658                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1659                 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1660                 r = RESUME_HOST;
1661                 break;
1662         default:
1663                 r = RESUME_GUEST;
1664                 break;
1665         }
1666         return r;
1667 }
1668 #endif /* CONFIG_ALTIVEC */
1669
1670 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1671 {
1672         int r = 0;
1673         union kvmppc_one_reg val;
1674         int size;
1675
1676         size = one_reg_size(reg->id);
1677         if (size > sizeof(val))
1678                 return -EINVAL;
1679
1680         r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1681         if (r == -EINVAL) {
1682                 r = 0;
1683                 switch (reg->id) {
1684 #ifdef CONFIG_ALTIVEC
1685                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1686                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1687                                 r = -ENXIO;
1688                                 break;
1689                         }
1690                         val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1691                         break;
1692                 case KVM_REG_PPC_VSCR:
1693                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1694                                 r = -ENXIO;
1695                                 break;
1696                         }
1697                         val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1698                         break;
1699                 case KVM_REG_PPC_VRSAVE:
1700                         val = get_reg_val(reg->id, vcpu->arch.vrsave);
1701                         break;
1702 #endif /* CONFIG_ALTIVEC */
1703                 default:
1704                         r = -EINVAL;
1705                         break;
1706                 }
1707         }
1708
1709         if (r)
1710                 return r;
1711
1712         if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1713                 r = -EFAULT;
1714
1715         return r;
1716 }
1717
1718 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1719 {
1720         int r;
1721         union kvmppc_one_reg val;
1722         int size;
1723
1724         size = one_reg_size(reg->id);
1725         if (size > sizeof(val))
1726                 return -EINVAL;
1727
1728         if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1729                 return -EFAULT;
1730
1731         r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1732         if (r == -EINVAL) {
1733                 r = 0;
1734                 switch (reg->id) {
1735 #ifdef CONFIG_ALTIVEC
1736                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1737                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1738                                 r = -ENXIO;
1739                                 break;
1740                         }
1741                         vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1742                         break;
1743                 case KVM_REG_PPC_VSCR:
1744                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1745                                 r = -ENXIO;
1746                                 break;
1747                         }
1748                         vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1749                         break;
1750                 case KVM_REG_PPC_VRSAVE:
1751                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1752                                 r = -ENXIO;
1753                                 break;
1754                         }
1755                         vcpu->arch.vrsave = set_reg_val(reg->id, val);
1756                         break;
1757 #endif /* CONFIG_ALTIVEC */
1758                 default:
1759                         r = -EINVAL;
1760                         break;
1761                 }
1762         }
1763
1764         return r;
1765 }
1766
1767 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1768 {
1769         int r;
1770
1771         vcpu_load(vcpu);
1772
1773         if (vcpu->mmio_needed) {
1774                 vcpu->mmio_needed = 0;
1775                 if (!vcpu->mmio_is_write)
1776                         kvmppc_complete_mmio_load(vcpu, run);
1777 #ifdef CONFIG_VSX
1778                 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1779                         vcpu->arch.mmio_vsx_copy_nums--;
1780                         vcpu->arch.mmio_vsx_offset++;
1781                 }
1782
1783                 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1784                         r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
1785                         if (r == RESUME_HOST) {
1786                                 vcpu->mmio_needed = 1;
1787                                 goto out;
1788                         }
1789                 }
1790 #endif
1791 #ifdef CONFIG_ALTIVEC
1792                 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1793                         vcpu->arch.mmio_vmx_copy_nums--;
1794                         vcpu->arch.mmio_vmx_offset++;
1795                 }
1796
1797                 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1798                         r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run);
1799                         if (r == RESUME_HOST) {
1800                                 vcpu->mmio_needed = 1;
1801                                 goto out;
1802                         }
1803                 }
1804 #endif
1805         } else if (vcpu->arch.osi_needed) {
1806                 u64 *gprs = run->osi.gprs;
1807                 int i;
1808
1809                 for (i = 0; i < 32; i++)
1810                         kvmppc_set_gpr(vcpu, i, gprs[i]);
1811                 vcpu->arch.osi_needed = 0;
1812         } else if (vcpu->arch.hcall_needed) {
1813                 int i;
1814
1815                 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1816                 for (i = 0; i < 9; ++i)
1817                         kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1818                 vcpu->arch.hcall_needed = 0;
1819 #ifdef CONFIG_BOOKE
1820         } else if (vcpu->arch.epr_needed) {
1821                 kvmppc_set_epr(vcpu, run->epr.epr);
1822                 vcpu->arch.epr_needed = 0;
1823 #endif
1824         }
1825
1826         kvm_sigset_activate(vcpu);
1827
1828         if (run->immediate_exit)
1829                 r = -EINTR;
1830         else
1831                 r = kvmppc_vcpu_run(run, vcpu);
1832
1833         kvm_sigset_deactivate(vcpu);
1834
1835 #ifdef CONFIG_ALTIVEC
1836 out:
1837 #endif
1838         vcpu_put(vcpu);
1839         return r;
1840 }
1841
1842 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1843 {
1844         if (irq->irq == KVM_INTERRUPT_UNSET) {
1845                 kvmppc_core_dequeue_external(vcpu);
1846                 return 0;
1847         }
1848
1849         kvmppc_core_queue_external(vcpu, irq);
1850
1851         kvm_vcpu_kick(vcpu);
1852
1853         return 0;
1854 }
1855
1856 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1857                                      struct kvm_enable_cap *cap)
1858 {
1859         int r;
1860
1861         if (cap->flags)
1862                 return -EINVAL;
1863
1864         switch (cap->cap) {
1865         case KVM_CAP_PPC_OSI:
1866                 r = 0;
1867                 vcpu->arch.osi_enabled = true;
1868                 break;
1869         case KVM_CAP_PPC_PAPR:
1870                 r = 0;
1871                 vcpu->arch.papr_enabled = true;
1872                 break;
1873         case KVM_CAP_PPC_EPR:
1874                 r = 0;
1875                 if (cap->args[0])
1876                         vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1877                 else
1878                         vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1879                 break;
1880 #ifdef CONFIG_BOOKE
1881         case KVM_CAP_PPC_BOOKE_WATCHDOG:
1882                 r = 0;
1883                 vcpu->arch.watchdog_enabled = true;
1884                 break;
1885 #endif
1886 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1887         case KVM_CAP_SW_TLB: {
1888                 struct kvm_config_tlb cfg;
1889                 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1890
1891                 r = -EFAULT;
1892                 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1893                         break;
1894
1895                 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1896                 break;
1897         }
1898 #endif
1899 #ifdef CONFIG_KVM_MPIC
1900         case KVM_CAP_IRQ_MPIC: {
1901                 struct fd f;
1902                 struct kvm_device *dev;
1903
1904                 r = -EBADF;
1905                 f = fdget(cap->args[0]);
1906                 if (!f.file)
1907                         break;
1908
1909                 r = -EPERM;
1910                 dev = kvm_device_from_filp(f.file);
1911                 if (dev)
1912                         r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1913
1914                 fdput(f);
1915                 break;
1916         }
1917 #endif
1918 #ifdef CONFIG_KVM_XICS
1919         case KVM_CAP_IRQ_XICS: {
1920                 struct fd f;
1921                 struct kvm_device *dev;
1922
1923                 r = -EBADF;
1924                 f = fdget(cap->args[0]);
1925                 if (!f.file)
1926                         break;
1927
1928                 r = -EPERM;
1929                 dev = kvm_device_from_filp(f.file);
1930                 if (dev) {
1931                         if (xics_on_xive())
1932                                 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1933                         else
1934                                 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1935                 }
1936
1937                 fdput(f);
1938                 break;
1939         }
1940 #endif /* CONFIG_KVM_XICS */
1941 #ifdef CONFIG_KVM_XIVE
1942         case KVM_CAP_PPC_IRQ_XIVE: {
1943                 struct fd f;
1944                 struct kvm_device *dev;
1945
1946                 r = -EBADF;
1947                 f = fdget(cap->args[0]);
1948                 if (!f.file)
1949                         break;
1950
1951                 r = -ENXIO;
1952                 if (!xive_enabled())
1953                         break;
1954
1955                 r = -EPERM;
1956                 dev = kvm_device_from_filp(f.file);
1957                 if (dev)
1958                         r = kvmppc_xive_native_connect_vcpu(dev, vcpu,
1959                                                             cap->args[1]);
1960
1961                 fdput(f);
1962                 break;
1963         }
1964 #endif /* CONFIG_KVM_XIVE */
1965 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1966         case KVM_CAP_PPC_FWNMI:
1967                 r = -EINVAL;
1968                 if (!is_kvmppc_hv_enabled(vcpu->kvm))
1969                         break;
1970                 r = 0;
1971                 vcpu->kvm->arch.fwnmi_enabled = true;
1972                 break;
1973 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1974         default:
1975                 r = -EINVAL;
1976                 break;
1977         }
1978
1979         if (!r)
1980                 r = kvmppc_sanity_check(vcpu);
1981
1982         return r;
1983 }
1984
1985 bool kvm_arch_intc_initialized(struct kvm *kvm)
1986 {
1987 #ifdef CONFIG_KVM_MPIC
1988         if (kvm->arch.mpic)
1989                 return true;
1990 #endif
1991 #ifdef CONFIG_KVM_XICS
1992         if (kvm->arch.xics || kvm->arch.xive)
1993                 return true;
1994 #endif
1995         return false;
1996 }
1997
1998 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1999                                     struct kvm_mp_state *mp_state)
2000 {
2001         return -EINVAL;
2002 }
2003
2004 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
2005                                     struct kvm_mp_state *mp_state)
2006 {
2007         return -EINVAL;
2008 }
2009
2010 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2011                                unsigned int ioctl, unsigned long arg)
2012 {
2013         struct kvm_vcpu *vcpu = filp->private_data;
2014         void __user *argp = (void __user *)arg;
2015
2016         if (ioctl == KVM_INTERRUPT) {
2017                 struct kvm_interrupt irq;
2018                 if (copy_from_user(&irq, argp, sizeof(irq)))
2019                         return -EFAULT;
2020                 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2021         }
2022         return -ENOIOCTLCMD;
2023 }
2024
2025 long kvm_arch_vcpu_ioctl(struct file *filp,
2026                          unsigned int ioctl, unsigned long arg)
2027 {
2028         struct kvm_vcpu *vcpu = filp->private_data;
2029         void __user *argp = (void __user *)arg;
2030         long r;
2031
2032         switch (ioctl) {
2033         case KVM_ENABLE_CAP:
2034         {
2035                 struct kvm_enable_cap cap;
2036                 r = -EFAULT;
2037                 vcpu_load(vcpu);
2038                 if (copy_from_user(&cap, argp, sizeof(cap)))
2039                         goto out;
2040                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2041                 vcpu_put(vcpu);
2042                 break;
2043         }
2044
2045         case KVM_SET_ONE_REG:
2046         case KVM_GET_ONE_REG:
2047         {
2048                 struct kvm_one_reg reg;
2049                 r = -EFAULT;
2050                 if (copy_from_user(&reg, argp, sizeof(reg)))
2051                         goto out;
2052                 if (ioctl == KVM_SET_ONE_REG)
2053                         r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
2054                 else
2055                         r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
2056                 break;
2057         }
2058
2059 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
2060         case KVM_DIRTY_TLB: {
2061                 struct kvm_dirty_tlb dirty;
2062                 r = -EFAULT;
2063                 vcpu_load(vcpu);
2064                 if (copy_from_user(&dirty, argp, sizeof(dirty)))
2065                         goto out;
2066                 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2067                 vcpu_put(vcpu);
2068                 break;
2069         }
2070 #endif
2071         default:
2072                 r = -EINVAL;
2073         }
2074
2075 out:
2076         return r;
2077 }
2078
2079 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2080 {
2081         return VM_FAULT_SIGBUS;
2082 }
2083
2084 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
2085 {
2086         u32 inst_nop = 0x60000000;
2087 #ifdef CONFIG_KVM_BOOKE_HV
2088         u32 inst_sc1 = 0x44000022;
2089         pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
2090         pvinfo->hcall[1] = cpu_to_be32(inst_nop);
2091         pvinfo->hcall[2] = cpu_to_be32(inst_nop);
2092         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2093 #else
2094         u32 inst_lis = 0x3c000000;
2095         u32 inst_ori = 0x60000000;
2096         u32 inst_sc = 0x44000002;
2097         u32 inst_imm_mask = 0xffff;
2098
2099         /*
2100          * The hypercall to get into KVM from within guest context is as
2101          * follows:
2102          *
2103          *    lis r0, r0, KVM_SC_MAGIC_R0@h
2104          *    ori r0, KVM_SC_MAGIC_R0@l
2105          *    sc
2106          *    nop
2107          */
2108         pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
2109         pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
2110         pvinfo->hcall[2] = cpu_to_be32(inst_sc);
2111         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2112 #endif
2113
2114         pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
2115
2116         return 0;
2117 }
2118
2119 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
2120                           bool line_status)
2121 {
2122         if (!irqchip_in_kernel(kvm))
2123                 return -ENXIO;
2124
2125         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2126                                         irq_event->irq, irq_event->level,
2127                                         line_status);
2128         return 0;
2129 }
2130
2131
2132 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
2133                             struct kvm_enable_cap *cap)
2134 {
2135         int r;
2136
2137         if (cap->flags)
2138                 return -EINVAL;
2139
2140         switch (cap->cap) {
2141 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2142         case KVM_CAP_PPC_ENABLE_HCALL: {
2143                 unsigned long hcall = cap->args[0];
2144
2145                 r = -EINVAL;
2146                 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
2147                     cap->args[1] > 1)
2148                         break;
2149                 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
2150                         break;
2151                 if (cap->args[1])
2152                         set_bit(hcall / 4, kvm->arch.enabled_hcalls);
2153                 else
2154                         clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
2155                 r = 0;
2156                 break;
2157         }
2158         case KVM_CAP_PPC_SMT: {
2159                 unsigned long mode = cap->args[0];
2160                 unsigned long flags = cap->args[1];
2161
2162                 r = -EINVAL;
2163                 if (kvm->arch.kvm_ops->set_smt_mode)
2164                         r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
2165                 break;
2166         }
2167
2168         case KVM_CAP_PPC_NESTED_HV:
2169                 r = -EINVAL;
2170                 if (!is_kvmppc_hv_enabled(kvm) ||
2171                     !kvm->arch.kvm_ops->enable_nested)
2172                         break;
2173                 r = kvm->arch.kvm_ops->enable_nested(kvm);
2174                 break;
2175 #endif
2176         default:
2177                 r = -EINVAL;
2178                 break;
2179         }
2180
2181         return r;
2182 }
2183
2184 #ifdef CONFIG_PPC_BOOK3S_64
2185 /*
2186  * These functions check whether the underlying hardware is safe
2187  * against attacks based on observing the effects of speculatively
2188  * executed instructions, and whether it supplies instructions for
2189  * use in workarounds.  The information comes from firmware, either
2190  * via the device tree on powernv platforms or from an hcall on
2191  * pseries platforms.
2192  */
2193 #ifdef CONFIG_PPC_PSERIES
2194 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2195 {
2196         struct h_cpu_char_result c;
2197         unsigned long rc;
2198
2199         if (!machine_is(pseries))
2200                 return -ENOTTY;
2201
2202         rc = plpar_get_cpu_characteristics(&c);
2203         if (rc == H_SUCCESS) {
2204                 cp->character = c.character;
2205                 cp->behaviour = c.behaviour;
2206                 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2207                         KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2208                         KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2209                         KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2210                         KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2211                         KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
2212                         KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2213                         KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2214                         KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2215                 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2216                         KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2217                         KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2218                         KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2219         }
2220         return 0;
2221 }
2222 #else
2223 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2224 {
2225         return -ENOTTY;
2226 }
2227 #endif
2228
2229 static inline bool have_fw_feat(struct device_node *fw_features,
2230                                 const char *state, const char *name)
2231 {
2232         struct device_node *np;
2233         bool r = false;
2234
2235         np = of_get_child_by_name(fw_features, name);
2236         if (np) {
2237                 r = of_property_read_bool(np, state);
2238                 of_node_put(np);
2239         }
2240         return r;
2241 }
2242
2243 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2244 {
2245         struct device_node *np, *fw_features;
2246         int r;
2247
2248         memset(cp, 0, sizeof(*cp));
2249         r = pseries_get_cpu_char(cp);
2250         if (r != -ENOTTY)
2251                 return r;
2252
2253         np = of_find_node_by_name(NULL, "ibm,opal");
2254         if (np) {
2255                 fw_features = of_get_child_by_name(np, "fw-features");
2256                 of_node_put(np);
2257                 if (!fw_features)
2258                         return 0;
2259                 if (have_fw_feat(fw_features, "enabled",
2260                                  "inst-spec-barrier-ori31,31,0"))
2261                         cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2262                 if (have_fw_feat(fw_features, "enabled",
2263                                  "fw-bcctrl-serialized"))
2264                         cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2265                 if (have_fw_feat(fw_features, "enabled",
2266                                  "inst-l1d-flush-ori30,30,0"))
2267                         cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2268                 if (have_fw_feat(fw_features, "enabled",
2269                                  "inst-l1d-flush-trig2"))
2270                         cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2271                 if (have_fw_feat(fw_features, "enabled",
2272                                  "fw-l1d-thread-split"))
2273                         cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2274                 if (have_fw_feat(fw_features, "enabled",
2275                                  "fw-count-cache-disabled"))
2276                         cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2277                 if (have_fw_feat(fw_features, "enabled",
2278                                  "fw-count-cache-flush-bcctr2,0,0"))
2279                         cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2280                 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2281                         KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2282                         KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2283                         KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2284                         KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2285                         KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2286                         KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2287
2288                 if (have_fw_feat(fw_features, "enabled",
2289                                  "speculation-policy-favor-security"))
2290                         cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2291                 if (!have_fw_feat(fw_features, "disabled",
2292                                   "needs-l1d-flush-msr-pr-0-to-1"))
2293                         cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2294                 if (!have_fw_feat(fw_features, "disabled",
2295                                   "needs-spec-barrier-for-bound-checks"))
2296                         cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2297                 if (have_fw_feat(fw_features, "enabled",
2298                                  "needs-count-cache-flush-on-context-switch"))
2299                         cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2300                 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2301                         KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2302                         KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2303                         KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2304
2305                 of_node_put(fw_features);
2306         }
2307
2308         return 0;
2309 }
2310 #endif
2311
2312 long kvm_arch_vm_ioctl(struct file *filp,
2313                        unsigned int ioctl, unsigned long arg)
2314 {
2315         struct kvm *kvm __maybe_unused = filp->private_data;
2316         void __user *argp = (void __user *)arg;
2317         long r;
2318
2319         switch (ioctl) {
2320         case KVM_PPC_GET_PVINFO: {
2321                 struct kvm_ppc_pvinfo pvinfo;
2322                 memset(&pvinfo, 0, sizeof(pvinfo));
2323                 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2324                 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2325                         r = -EFAULT;
2326                         goto out;
2327                 }
2328
2329                 break;
2330         }
2331 #ifdef CONFIG_SPAPR_TCE_IOMMU
2332         case KVM_CREATE_SPAPR_TCE_64: {
2333                 struct kvm_create_spapr_tce_64 create_tce_64;
2334
2335                 r = -EFAULT;
2336                 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2337                         goto out;
2338                 if (create_tce_64.flags) {
2339                         r = -EINVAL;
2340                         goto out;
2341                 }
2342                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2343                 goto out;
2344         }
2345         case KVM_CREATE_SPAPR_TCE: {
2346                 struct kvm_create_spapr_tce create_tce;
2347                 struct kvm_create_spapr_tce_64 create_tce_64;
2348
2349                 r = -EFAULT;
2350                 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2351                         goto out;
2352
2353                 create_tce_64.liobn = create_tce.liobn;
2354                 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2355                 create_tce_64.offset = 0;
2356                 create_tce_64.size = create_tce.window_size >>
2357                                 IOMMU_PAGE_SHIFT_4K;
2358                 create_tce_64.flags = 0;
2359                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2360                 goto out;
2361         }
2362 #endif
2363 #ifdef CONFIG_PPC_BOOK3S_64
2364         case KVM_PPC_GET_SMMU_INFO: {
2365                 struct kvm_ppc_smmu_info info;
2366                 struct kvm *kvm = filp->private_data;
2367
2368                 memset(&info, 0, sizeof(info));
2369                 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2370                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2371                         r = -EFAULT;
2372                 break;
2373         }
2374         case KVM_PPC_RTAS_DEFINE_TOKEN: {
2375                 struct kvm *kvm = filp->private_data;
2376
2377                 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2378                 break;
2379         }
2380         case KVM_PPC_CONFIGURE_V3_MMU: {
2381                 struct kvm *kvm = filp->private_data;
2382                 struct kvm_ppc_mmuv3_cfg cfg;
2383
2384                 r = -EINVAL;
2385                 if (!kvm->arch.kvm_ops->configure_mmu)
2386                         goto out;
2387                 r = -EFAULT;
2388                 if (copy_from_user(&cfg, argp, sizeof(cfg)))
2389                         goto out;
2390                 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2391                 break;
2392         }
2393         case KVM_PPC_GET_RMMU_INFO: {
2394                 struct kvm *kvm = filp->private_data;
2395                 struct kvm_ppc_rmmu_info info;
2396
2397                 r = -EINVAL;
2398                 if (!kvm->arch.kvm_ops->get_rmmu_info)
2399                         goto out;
2400                 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2401                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2402                         r = -EFAULT;
2403                 break;
2404         }
2405         case KVM_PPC_GET_CPU_CHAR: {
2406                 struct kvm_ppc_cpu_char cpuchar;
2407
2408                 r = kvmppc_get_cpu_char(&cpuchar);
2409                 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2410                         r = -EFAULT;
2411                 break;
2412         }
2413         default: {
2414                 struct kvm *kvm = filp->private_data;
2415                 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2416         }
2417 #else /* CONFIG_PPC_BOOK3S_64 */
2418         default:
2419                 r = -ENOTTY;
2420 #endif
2421         }
2422 out:
2423         return r;
2424 }
2425
2426 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
2427 static unsigned long nr_lpids;
2428
2429 long kvmppc_alloc_lpid(void)
2430 {
2431         long lpid;
2432
2433         do {
2434                 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
2435                 if (lpid >= nr_lpids) {
2436                         pr_err("%s: No LPIDs free\n", __func__);
2437                         return -ENOMEM;
2438                 }
2439         } while (test_and_set_bit(lpid, lpid_inuse));
2440
2441         return lpid;
2442 }
2443 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2444
2445 void kvmppc_claim_lpid(long lpid)
2446 {
2447         set_bit(lpid, lpid_inuse);
2448 }
2449 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2450
2451 void kvmppc_free_lpid(long lpid)
2452 {
2453         clear_bit(lpid, lpid_inuse);
2454 }
2455 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2456
2457 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2458 {
2459         nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
2460         memset(lpid_inuse, 0, sizeof(lpid_inuse));
2461 }
2462 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2463
2464 int kvm_arch_init(void *opaque)
2465 {
2466         return 0;
2467 }
2468
2469 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);