]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/powerpc/kvm/powerpc.c
Merge tag 'leaks-4.17-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tobin/leaks
[linux.git] / arch / powerpc / kvm / powerpc.c
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright IBM Corp. 2007
16  *
17  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19  */
20
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/sched/signal.h>
27 #include <linux/fs.h>
28 #include <linux/slab.h>
29 #include <linux/file.h>
30 #include <linux/module.h>
31 #include <linux/irqbypass.h>
32 #include <linux/kvm_irqfd.h>
33 #include <asm/cputable.h>
34 #include <linux/uaccess.h>
35 #include <asm/kvm_ppc.h>
36 #include <asm/tlbflush.h>
37 #include <asm/cputhreads.h>
38 #include <asm/irqflags.h>
39 #include <asm/iommu.h>
40 #include <asm/switch_to.h>
41 #include <asm/xive.h>
42 #ifdef CONFIG_PPC_PSERIES
43 #include <asm/hvcall.h>
44 #include <asm/plpar_wrappers.h>
45 #endif
46
47 #include "timing.h"
48 #include "irq.h"
49 #include "../mm/mmu_decl.h"
50
51 #define CREATE_TRACE_POINTS
52 #include "trace.h"
53
54 struct kvmppc_ops *kvmppc_hv_ops;
55 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
56 struct kvmppc_ops *kvmppc_pr_ops;
57 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
58
59
60 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
61 {
62         return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
63 }
64
65 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
66 {
67         return false;
68 }
69
70 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
71 {
72         return 1;
73 }
74
75 /*
76  * Common checks before entering the guest world.  Call with interrupts
77  * disabled.
78  *
79  * returns:
80  *
81  * == 1 if we're ready to go into guest state
82  * <= 0 if we need to go back to the host with return value
83  */
84 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
85 {
86         int r;
87
88         WARN_ON(irqs_disabled());
89         hard_irq_disable();
90
91         while (true) {
92                 if (need_resched()) {
93                         local_irq_enable();
94                         cond_resched();
95                         hard_irq_disable();
96                         continue;
97                 }
98
99                 if (signal_pending(current)) {
100                         kvmppc_account_exit(vcpu, SIGNAL_EXITS);
101                         vcpu->run->exit_reason = KVM_EXIT_INTR;
102                         r = -EINTR;
103                         break;
104                 }
105
106                 vcpu->mode = IN_GUEST_MODE;
107
108                 /*
109                  * Reading vcpu->requests must happen after setting vcpu->mode,
110                  * so we don't miss a request because the requester sees
111                  * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
112                  * before next entering the guest (and thus doesn't IPI).
113                  * This also orders the write to mode from any reads
114                  * to the page tables done while the VCPU is running.
115                  * Please see the comment in kvm_flush_remote_tlbs.
116                  */
117                 smp_mb();
118
119                 if (kvm_request_pending(vcpu)) {
120                         /* Make sure we process requests preemptable */
121                         local_irq_enable();
122                         trace_kvm_check_requests(vcpu);
123                         r = kvmppc_core_check_requests(vcpu);
124                         hard_irq_disable();
125                         if (r > 0)
126                                 continue;
127                         break;
128                 }
129
130                 if (kvmppc_core_prepare_to_enter(vcpu)) {
131                         /* interrupts got enabled in between, so we
132                            are back at square 1 */
133                         continue;
134                 }
135
136                 guest_enter_irqoff();
137                 return 1;
138         }
139
140         /* return to host */
141         local_irq_enable();
142         return r;
143 }
144 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
145
146 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
147 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
148 {
149         struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
150         int i;
151
152         shared->sprg0 = swab64(shared->sprg0);
153         shared->sprg1 = swab64(shared->sprg1);
154         shared->sprg2 = swab64(shared->sprg2);
155         shared->sprg3 = swab64(shared->sprg3);
156         shared->srr0 = swab64(shared->srr0);
157         shared->srr1 = swab64(shared->srr1);
158         shared->dar = swab64(shared->dar);
159         shared->msr = swab64(shared->msr);
160         shared->dsisr = swab32(shared->dsisr);
161         shared->int_pending = swab32(shared->int_pending);
162         for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
163                 shared->sr[i] = swab32(shared->sr[i]);
164 }
165 #endif
166
167 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
168 {
169         int nr = kvmppc_get_gpr(vcpu, 11);
170         int r;
171         unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
172         unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
173         unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
174         unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
175         unsigned long r2 = 0;
176
177         if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
178                 /* 32 bit mode */
179                 param1 &= 0xffffffff;
180                 param2 &= 0xffffffff;
181                 param3 &= 0xffffffff;
182                 param4 &= 0xffffffff;
183         }
184
185         switch (nr) {
186         case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
187         {
188 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
189                 /* Book3S can be little endian, find it out here */
190                 int shared_big_endian = true;
191                 if (vcpu->arch.intr_msr & MSR_LE)
192                         shared_big_endian = false;
193                 if (shared_big_endian != vcpu->arch.shared_big_endian)
194                         kvmppc_swab_shared(vcpu);
195                 vcpu->arch.shared_big_endian = shared_big_endian;
196 #endif
197
198                 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
199                         /*
200                          * Older versions of the Linux magic page code had
201                          * a bug where they would map their trampoline code
202                          * NX. If that's the case, remove !PR NX capability.
203                          */
204                         vcpu->arch.disable_kernel_nx = true;
205                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
206                 }
207
208                 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
209                 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
210
211 #ifdef CONFIG_PPC_64K_PAGES
212                 /*
213                  * Make sure our 4k magic page is in the same window of a 64k
214                  * page within the guest and within the host's page.
215                  */
216                 if ((vcpu->arch.magic_page_pa & 0xf000) !=
217                     ((ulong)vcpu->arch.shared & 0xf000)) {
218                         void *old_shared = vcpu->arch.shared;
219                         ulong shared = (ulong)vcpu->arch.shared;
220                         void *new_shared;
221
222                         shared &= PAGE_MASK;
223                         shared |= vcpu->arch.magic_page_pa & 0xf000;
224                         new_shared = (void*)shared;
225                         memcpy(new_shared, old_shared, 0x1000);
226                         vcpu->arch.shared = new_shared;
227                 }
228 #endif
229
230                 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
231
232                 r = EV_SUCCESS;
233                 break;
234         }
235         case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
236                 r = EV_SUCCESS;
237 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
238                 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
239 #endif
240
241                 /* Second return value is in r4 */
242                 break;
243         case EV_HCALL_TOKEN(EV_IDLE):
244                 r = EV_SUCCESS;
245                 kvm_vcpu_block(vcpu);
246                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
247                 break;
248         default:
249                 r = EV_UNIMPLEMENTED;
250                 break;
251         }
252
253         kvmppc_set_gpr(vcpu, 4, r2);
254
255         return r;
256 }
257 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
258
259 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
260 {
261         int r = false;
262
263         /* We have to know what CPU to virtualize */
264         if (!vcpu->arch.pvr)
265                 goto out;
266
267         /* PAPR only works with book3s_64 */
268         if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
269                 goto out;
270
271         /* HV KVM can only do PAPR mode for now */
272         if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
273                 goto out;
274
275 #ifdef CONFIG_KVM_BOOKE_HV
276         if (!cpu_has_feature(CPU_FTR_EMB_HV))
277                 goto out;
278 #endif
279
280         r = true;
281
282 out:
283         vcpu->arch.sane = r;
284         return r ? 0 : -EINVAL;
285 }
286 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
287
288 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
289 {
290         enum emulation_result er;
291         int r;
292
293         er = kvmppc_emulate_loadstore(vcpu);
294         switch (er) {
295         case EMULATE_DONE:
296                 /* Future optimization: only reload non-volatiles if they were
297                  * actually modified. */
298                 r = RESUME_GUEST_NV;
299                 break;
300         case EMULATE_AGAIN:
301                 r = RESUME_GUEST;
302                 break;
303         case EMULATE_DO_MMIO:
304                 run->exit_reason = KVM_EXIT_MMIO;
305                 /* We must reload nonvolatiles because "update" load/store
306                  * instructions modify register state. */
307                 /* Future optimization: only reload non-volatiles if they were
308                  * actually modified. */
309                 r = RESUME_HOST_NV;
310                 break;
311         case EMULATE_FAIL:
312         {
313                 u32 last_inst;
314
315                 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
316                 /* XXX Deliver Program interrupt to guest. */
317                 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
318                 r = RESUME_HOST;
319                 break;
320         }
321         default:
322                 WARN_ON(1);
323                 r = RESUME_GUEST;
324         }
325
326         return r;
327 }
328 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
329
330 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
331               bool data)
332 {
333         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
334         struct kvmppc_pte pte;
335         int r;
336
337         vcpu->stat.st++;
338
339         r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
340                          XLATE_WRITE, &pte);
341         if (r < 0)
342                 return r;
343
344         *eaddr = pte.raddr;
345
346         if (!pte.may_write)
347                 return -EPERM;
348
349         /* Magic page override */
350         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
351             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
352             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
353                 void *magic = vcpu->arch.shared;
354                 magic += pte.eaddr & 0xfff;
355                 memcpy(magic, ptr, size);
356                 return EMULATE_DONE;
357         }
358
359         if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
360                 return EMULATE_DO_MMIO;
361
362         return EMULATE_DONE;
363 }
364 EXPORT_SYMBOL_GPL(kvmppc_st);
365
366 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
367                       bool data)
368 {
369         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
370         struct kvmppc_pte pte;
371         int rc;
372
373         vcpu->stat.ld++;
374
375         rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
376                           XLATE_READ, &pte);
377         if (rc)
378                 return rc;
379
380         *eaddr = pte.raddr;
381
382         if (!pte.may_read)
383                 return -EPERM;
384
385         if (!data && !pte.may_execute)
386                 return -ENOEXEC;
387
388         /* Magic page override */
389         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
390             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
391             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
392                 void *magic = vcpu->arch.shared;
393                 magic += pte.eaddr & 0xfff;
394                 memcpy(ptr, magic, size);
395                 return EMULATE_DONE;
396         }
397
398         if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
399                 return EMULATE_DO_MMIO;
400
401         return EMULATE_DONE;
402 }
403 EXPORT_SYMBOL_GPL(kvmppc_ld);
404
405 int kvm_arch_hardware_enable(void)
406 {
407         return 0;
408 }
409
410 int kvm_arch_hardware_setup(void)
411 {
412         return 0;
413 }
414
415 void kvm_arch_check_processor_compat(void *rtn)
416 {
417         *(int *)rtn = kvmppc_core_check_processor_compat();
418 }
419
420 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
421 {
422         struct kvmppc_ops *kvm_ops = NULL;
423         /*
424          * if we have both HV and PR enabled, default is HV
425          */
426         if (type == 0) {
427                 if (kvmppc_hv_ops)
428                         kvm_ops = kvmppc_hv_ops;
429                 else
430                         kvm_ops = kvmppc_pr_ops;
431                 if (!kvm_ops)
432                         goto err_out;
433         } else  if (type == KVM_VM_PPC_HV) {
434                 if (!kvmppc_hv_ops)
435                         goto err_out;
436                 kvm_ops = kvmppc_hv_ops;
437         } else if (type == KVM_VM_PPC_PR) {
438                 if (!kvmppc_pr_ops)
439                         goto err_out;
440                 kvm_ops = kvmppc_pr_ops;
441         } else
442                 goto err_out;
443
444         if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
445                 return -ENOENT;
446
447         kvm->arch.kvm_ops = kvm_ops;
448         return kvmppc_core_init_vm(kvm);
449 err_out:
450         return -EINVAL;
451 }
452
453 bool kvm_arch_has_vcpu_debugfs(void)
454 {
455         return false;
456 }
457
458 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
459 {
460         return 0;
461 }
462
463 void kvm_arch_destroy_vm(struct kvm *kvm)
464 {
465         unsigned int i;
466         struct kvm_vcpu *vcpu;
467
468 #ifdef CONFIG_KVM_XICS
469         /*
470          * We call kick_all_cpus_sync() to ensure that all
471          * CPUs have executed any pending IPIs before we
472          * continue and free VCPUs structures below.
473          */
474         if (is_kvmppc_hv_enabled(kvm))
475                 kick_all_cpus_sync();
476 #endif
477
478         kvm_for_each_vcpu(i, vcpu, kvm)
479                 kvm_arch_vcpu_free(vcpu);
480
481         mutex_lock(&kvm->lock);
482         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
483                 kvm->vcpus[i] = NULL;
484
485         atomic_set(&kvm->online_vcpus, 0);
486
487         kvmppc_core_destroy_vm(kvm);
488
489         mutex_unlock(&kvm->lock);
490
491         /* drop the module reference */
492         module_put(kvm->arch.kvm_ops->owner);
493 }
494
495 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
496 {
497         int r;
498         /* Assume we're using HV mode when the HV module is loaded */
499         int hv_enabled = kvmppc_hv_ops ? 1 : 0;
500
501         if (kvm) {
502                 /*
503                  * Hooray - we know which VM type we're running on. Depend on
504                  * that rather than the guess above.
505                  */
506                 hv_enabled = is_kvmppc_hv_enabled(kvm);
507         }
508
509         switch (ext) {
510 #ifdef CONFIG_BOOKE
511         case KVM_CAP_PPC_BOOKE_SREGS:
512         case KVM_CAP_PPC_BOOKE_WATCHDOG:
513         case KVM_CAP_PPC_EPR:
514 #else
515         case KVM_CAP_PPC_SEGSTATE:
516         case KVM_CAP_PPC_HIOR:
517         case KVM_CAP_PPC_PAPR:
518 #endif
519         case KVM_CAP_PPC_UNSET_IRQ:
520         case KVM_CAP_PPC_IRQ_LEVEL:
521         case KVM_CAP_ENABLE_CAP:
522         case KVM_CAP_ENABLE_CAP_VM:
523         case KVM_CAP_ONE_REG:
524         case KVM_CAP_IOEVENTFD:
525         case KVM_CAP_DEVICE_CTRL:
526         case KVM_CAP_IMMEDIATE_EXIT:
527                 r = 1;
528                 break;
529         case KVM_CAP_PPC_PAIRED_SINGLES:
530         case KVM_CAP_PPC_OSI:
531         case KVM_CAP_PPC_GET_PVINFO:
532 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
533         case KVM_CAP_SW_TLB:
534 #endif
535                 /* We support this only for PR */
536                 r = !hv_enabled;
537                 break;
538 #ifdef CONFIG_KVM_MPIC
539         case KVM_CAP_IRQ_MPIC:
540                 r = 1;
541                 break;
542 #endif
543
544 #ifdef CONFIG_PPC_BOOK3S_64
545         case KVM_CAP_SPAPR_TCE:
546         case KVM_CAP_SPAPR_TCE_64:
547                 /* fallthrough */
548         case KVM_CAP_SPAPR_TCE_VFIO:
549         case KVM_CAP_PPC_RTAS:
550         case KVM_CAP_PPC_FIXUP_HCALL:
551         case KVM_CAP_PPC_ENABLE_HCALL:
552 #ifdef CONFIG_KVM_XICS
553         case KVM_CAP_IRQ_XICS:
554 #endif
555         case KVM_CAP_PPC_GET_CPU_CHAR:
556                 r = 1;
557                 break;
558
559         case KVM_CAP_PPC_ALLOC_HTAB:
560                 r = hv_enabled;
561                 break;
562 #endif /* CONFIG_PPC_BOOK3S_64 */
563 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
564         case KVM_CAP_PPC_SMT:
565                 r = 0;
566                 if (kvm) {
567                         if (kvm->arch.emul_smt_mode > 1)
568                                 r = kvm->arch.emul_smt_mode;
569                         else
570                                 r = kvm->arch.smt_mode;
571                 } else if (hv_enabled) {
572                         if (cpu_has_feature(CPU_FTR_ARCH_300))
573                                 r = 1;
574                         else
575                                 r = threads_per_subcore;
576                 }
577                 break;
578         case KVM_CAP_PPC_SMT_POSSIBLE:
579                 r = 1;
580                 if (hv_enabled) {
581                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
582                                 r = ((threads_per_subcore << 1) - 1);
583                         else
584                                 /* P9 can emulate dbells, so allow any mode */
585                                 r = 8 | 4 | 2 | 1;
586                 }
587                 break;
588         case KVM_CAP_PPC_RMA:
589                 r = 0;
590                 break;
591         case KVM_CAP_PPC_HWRNG:
592                 r = kvmppc_hwrng_present();
593                 break;
594         case KVM_CAP_PPC_MMU_RADIX:
595                 r = !!(hv_enabled && radix_enabled());
596                 break;
597         case KVM_CAP_PPC_MMU_HASH_V3:
598                 r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300));
599                 break;
600 #endif
601         case KVM_CAP_SYNC_MMU:
602 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
603                 r = hv_enabled;
604 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
605                 r = 1;
606 #else
607                 r = 0;
608 #endif
609                 break;
610 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
611         case KVM_CAP_PPC_HTAB_FD:
612                 r = hv_enabled;
613                 break;
614 #endif
615         case KVM_CAP_NR_VCPUS:
616                 /*
617                  * Recommending a number of CPUs is somewhat arbitrary; we
618                  * return the number of present CPUs for -HV (since a host
619                  * will have secondary threads "offline"), and for other KVM
620                  * implementations just count online CPUs.
621                  */
622                 if (hv_enabled)
623                         r = num_present_cpus();
624                 else
625                         r = num_online_cpus();
626                 break;
627         case KVM_CAP_NR_MEMSLOTS:
628                 r = KVM_USER_MEM_SLOTS;
629                 break;
630         case KVM_CAP_MAX_VCPUS:
631                 r = KVM_MAX_VCPUS;
632                 break;
633 #ifdef CONFIG_PPC_BOOK3S_64
634         case KVM_CAP_PPC_GET_SMMU_INFO:
635                 r = 1;
636                 break;
637         case KVM_CAP_SPAPR_MULTITCE:
638                 r = 1;
639                 break;
640         case KVM_CAP_SPAPR_RESIZE_HPT:
641                 r = !!hv_enabled;
642                 break;
643 #endif
644 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
645         case KVM_CAP_PPC_FWNMI:
646                 r = hv_enabled;
647                 break;
648 #endif
649         case KVM_CAP_PPC_HTM:
650                 r = hv_enabled &&
651                     (cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM_COMP);
652                 break;
653         default:
654                 r = 0;
655                 break;
656         }
657         return r;
658
659 }
660
661 long kvm_arch_dev_ioctl(struct file *filp,
662                         unsigned int ioctl, unsigned long arg)
663 {
664         return -EINVAL;
665 }
666
667 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
668                            struct kvm_memory_slot *dont)
669 {
670         kvmppc_core_free_memslot(kvm, free, dont);
671 }
672
673 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
674                             unsigned long npages)
675 {
676         return kvmppc_core_create_memslot(kvm, slot, npages);
677 }
678
679 int kvm_arch_prepare_memory_region(struct kvm *kvm,
680                                    struct kvm_memory_slot *memslot,
681                                    const struct kvm_userspace_memory_region *mem,
682                                    enum kvm_mr_change change)
683 {
684         return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
685 }
686
687 void kvm_arch_commit_memory_region(struct kvm *kvm,
688                                    const struct kvm_userspace_memory_region *mem,
689                                    const struct kvm_memory_slot *old,
690                                    const struct kvm_memory_slot *new,
691                                    enum kvm_mr_change change)
692 {
693         kvmppc_core_commit_memory_region(kvm, mem, old, new);
694 }
695
696 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
697                                    struct kvm_memory_slot *slot)
698 {
699         kvmppc_core_flush_memslot(kvm, slot);
700 }
701
702 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
703 {
704         struct kvm_vcpu *vcpu;
705         vcpu = kvmppc_core_vcpu_create(kvm, id);
706         if (!IS_ERR(vcpu)) {
707                 vcpu->arch.wqp = &vcpu->wq;
708                 kvmppc_create_vcpu_debugfs(vcpu, id);
709         }
710         return vcpu;
711 }
712
713 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
714 {
715 }
716
717 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
718 {
719         /* Make sure we're not using the vcpu anymore */
720         hrtimer_cancel(&vcpu->arch.dec_timer);
721
722         kvmppc_remove_vcpu_debugfs(vcpu);
723
724         switch (vcpu->arch.irq_type) {
725         case KVMPPC_IRQ_MPIC:
726                 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
727                 break;
728         case KVMPPC_IRQ_XICS:
729                 if (xive_enabled())
730                         kvmppc_xive_cleanup_vcpu(vcpu);
731                 else
732                         kvmppc_xics_free_icp(vcpu);
733                 break;
734         }
735
736         kvmppc_core_vcpu_free(vcpu);
737 }
738
739 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
740 {
741         kvm_arch_vcpu_free(vcpu);
742 }
743
744 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
745 {
746         return kvmppc_core_pending_dec(vcpu);
747 }
748
749 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
750 {
751         struct kvm_vcpu *vcpu;
752
753         vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
754         kvmppc_decrementer_func(vcpu);
755
756         return HRTIMER_NORESTART;
757 }
758
759 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
760 {
761         int ret;
762
763         hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
764         vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
765         vcpu->arch.dec_expires = get_tb();
766
767 #ifdef CONFIG_KVM_EXIT_TIMING
768         mutex_init(&vcpu->arch.exit_timing_lock);
769 #endif
770         ret = kvmppc_subarch_vcpu_init(vcpu);
771         return ret;
772 }
773
774 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
775 {
776         kvmppc_mmu_destroy(vcpu);
777         kvmppc_subarch_vcpu_uninit(vcpu);
778 }
779
780 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
781 {
782 #ifdef CONFIG_BOOKE
783         /*
784          * vrsave (formerly usprg0) isn't used by Linux, but may
785          * be used by the guest.
786          *
787          * On non-booke this is associated with Altivec and
788          * is handled by code in book3s.c.
789          */
790         mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
791 #endif
792         kvmppc_core_vcpu_load(vcpu, cpu);
793 }
794
795 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
796 {
797         kvmppc_core_vcpu_put(vcpu);
798 #ifdef CONFIG_BOOKE
799         vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
800 #endif
801 }
802
803 /*
804  * irq_bypass_add_producer and irq_bypass_del_producer are only
805  * useful if the architecture supports PCI passthrough.
806  * irq_bypass_stop and irq_bypass_start are not needed and so
807  * kvm_ops are not defined for them.
808  */
809 bool kvm_arch_has_irq_bypass(void)
810 {
811         return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
812                 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
813 }
814
815 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
816                                      struct irq_bypass_producer *prod)
817 {
818         struct kvm_kernel_irqfd *irqfd =
819                 container_of(cons, struct kvm_kernel_irqfd, consumer);
820         struct kvm *kvm = irqfd->kvm;
821
822         if (kvm->arch.kvm_ops->irq_bypass_add_producer)
823                 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
824
825         return 0;
826 }
827
828 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
829                                       struct irq_bypass_producer *prod)
830 {
831         struct kvm_kernel_irqfd *irqfd =
832                 container_of(cons, struct kvm_kernel_irqfd, consumer);
833         struct kvm *kvm = irqfd->kvm;
834
835         if (kvm->arch.kvm_ops->irq_bypass_del_producer)
836                 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
837 }
838
839 #ifdef CONFIG_VSX
840 static inline int kvmppc_get_vsr_dword_offset(int index)
841 {
842         int offset;
843
844         if ((index != 0) && (index != 1))
845                 return -1;
846
847 #ifdef __BIG_ENDIAN
848         offset =  index;
849 #else
850         offset = 1 - index;
851 #endif
852
853         return offset;
854 }
855
856 static inline int kvmppc_get_vsr_word_offset(int index)
857 {
858         int offset;
859
860         if ((index > 3) || (index < 0))
861                 return -1;
862
863 #ifdef __BIG_ENDIAN
864         offset = index;
865 #else
866         offset = 3 - index;
867 #endif
868         return offset;
869 }
870
871 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
872         u64 gpr)
873 {
874         union kvmppc_one_reg val;
875         int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
876         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
877
878         if (offset == -1)
879                 return;
880
881         if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
882                 val.vval = VCPU_VSX_VR(vcpu, index);
883                 val.vsxval[offset] = gpr;
884                 VCPU_VSX_VR(vcpu, index) = val.vval;
885         } else {
886                 VCPU_VSX_FPR(vcpu, index, offset) = gpr;
887         }
888 }
889
890 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
891         u64 gpr)
892 {
893         union kvmppc_one_reg val;
894         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
895
896         if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
897                 val.vval = VCPU_VSX_VR(vcpu, index);
898                 val.vsxval[0] = gpr;
899                 val.vsxval[1] = gpr;
900                 VCPU_VSX_VR(vcpu, index) = val.vval;
901         } else {
902                 VCPU_VSX_FPR(vcpu, index, 0) = gpr;
903                 VCPU_VSX_FPR(vcpu, index, 1) = gpr;
904         }
905 }
906
907 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
908         u32 gpr32)
909 {
910         union kvmppc_one_reg val;
911         int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
912         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
913         int dword_offset, word_offset;
914
915         if (offset == -1)
916                 return;
917
918         if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
919                 val.vval = VCPU_VSX_VR(vcpu, index);
920                 val.vsx32val[offset] = gpr32;
921                 VCPU_VSX_VR(vcpu, index) = val.vval;
922         } else {
923                 dword_offset = offset / 2;
924                 word_offset = offset % 2;
925                 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
926                 val.vsx32val[word_offset] = gpr32;
927                 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
928         }
929 }
930 #endif /* CONFIG_VSX */
931
932 #ifdef CONFIG_ALTIVEC
933 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
934                 u64 gpr)
935 {
936         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
937         u32 hi, lo;
938         u32 di;
939
940 #ifdef __BIG_ENDIAN
941         hi = gpr >> 32;
942         lo = gpr & 0xffffffff;
943 #else
944         lo = gpr >> 32;
945         hi = gpr & 0xffffffff;
946 #endif
947
948         di = 2 - vcpu->arch.mmio_vmx_copy_nums;         /* doubleword index */
949         if (di > 1)
950                 return;
951
952         if (vcpu->arch.mmio_host_swabbed)
953                 di = 1 - di;
954
955         VCPU_VSX_VR(vcpu, index).u[di * 2] = hi;
956         VCPU_VSX_VR(vcpu, index).u[di * 2 + 1] = lo;
957 }
958 #endif /* CONFIG_ALTIVEC */
959
960 #ifdef CONFIG_PPC_FPU
961 static inline u64 sp_to_dp(u32 fprs)
962 {
963         u64 fprd;
964
965         preempt_disable();
966         enable_kernel_fp();
967         asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
968              : "fr0");
969         preempt_enable();
970         return fprd;
971 }
972
973 static inline u32 dp_to_sp(u64 fprd)
974 {
975         u32 fprs;
976
977         preempt_disable();
978         enable_kernel_fp();
979         asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
980              : "fr0");
981         preempt_enable();
982         return fprs;
983 }
984
985 #else
986 #define sp_to_dp(x)     (x)
987 #define dp_to_sp(x)     (x)
988 #endif /* CONFIG_PPC_FPU */
989
990 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
991                                       struct kvm_run *run)
992 {
993         u64 uninitialized_var(gpr);
994
995         if (run->mmio.len > sizeof(gpr)) {
996                 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
997                 return;
998         }
999
1000         if (!vcpu->arch.mmio_host_swabbed) {
1001                 switch (run->mmio.len) {
1002                 case 8: gpr = *(u64 *)run->mmio.data; break;
1003                 case 4: gpr = *(u32 *)run->mmio.data; break;
1004                 case 2: gpr = *(u16 *)run->mmio.data; break;
1005                 case 1: gpr = *(u8 *)run->mmio.data; break;
1006                 }
1007         } else {
1008                 switch (run->mmio.len) {
1009                 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1010                 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1011                 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1012                 case 1: gpr = *(u8 *)run->mmio.data; break;
1013                 }
1014         }
1015
1016         /* conversion between single and double precision */
1017         if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1018                 gpr = sp_to_dp(gpr);
1019
1020         if (vcpu->arch.mmio_sign_extend) {
1021                 switch (run->mmio.len) {
1022 #ifdef CONFIG_PPC64
1023                 case 4:
1024                         gpr = (s64)(s32)gpr;
1025                         break;
1026 #endif
1027                 case 2:
1028                         gpr = (s64)(s16)gpr;
1029                         break;
1030                 case 1:
1031                         gpr = (s64)(s8)gpr;
1032                         break;
1033                 }
1034         }
1035
1036         switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1037         case KVM_MMIO_REG_GPR:
1038                 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1039                 break;
1040         case KVM_MMIO_REG_FPR:
1041                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1042                 break;
1043 #ifdef CONFIG_PPC_BOOK3S
1044         case KVM_MMIO_REG_QPR:
1045                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1046                 break;
1047         case KVM_MMIO_REG_FQPR:
1048                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1049                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1050                 break;
1051 #endif
1052 #ifdef CONFIG_VSX
1053         case KVM_MMIO_REG_VSX:
1054                 if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_DWORD)
1055                         kvmppc_set_vsr_dword(vcpu, gpr);
1056                 else if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_WORD)
1057                         kvmppc_set_vsr_word(vcpu, gpr);
1058                 else if (vcpu->arch.mmio_vsx_copy_type ==
1059                                 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1060                         kvmppc_set_vsr_dword_dump(vcpu, gpr);
1061                 break;
1062 #endif
1063 #ifdef CONFIG_ALTIVEC
1064         case KVM_MMIO_REG_VMX:
1065                 kvmppc_set_vmx_dword(vcpu, gpr);
1066                 break;
1067 #endif
1068         default:
1069                 BUG();
1070         }
1071 }
1072
1073 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1074                                 unsigned int rt, unsigned int bytes,
1075                                 int is_default_endian, int sign_extend)
1076 {
1077         int idx, ret;
1078         bool host_swabbed;
1079
1080         /* Pity C doesn't have a logical XOR operator */
1081         if (kvmppc_need_byteswap(vcpu)) {
1082                 host_swabbed = is_default_endian;
1083         } else {
1084                 host_swabbed = !is_default_endian;
1085         }
1086
1087         if (bytes > sizeof(run->mmio.data)) {
1088                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1089                        run->mmio.len);
1090         }
1091
1092         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1093         run->mmio.len = bytes;
1094         run->mmio.is_write = 0;
1095
1096         vcpu->arch.io_gpr = rt;
1097         vcpu->arch.mmio_host_swabbed = host_swabbed;
1098         vcpu->mmio_needed = 1;
1099         vcpu->mmio_is_write = 0;
1100         vcpu->arch.mmio_sign_extend = sign_extend;
1101
1102         idx = srcu_read_lock(&vcpu->kvm->srcu);
1103
1104         ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1105                               bytes, &run->mmio.data);
1106
1107         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1108
1109         if (!ret) {
1110                 kvmppc_complete_mmio_load(vcpu, run);
1111                 vcpu->mmio_needed = 0;
1112                 return EMULATE_DONE;
1113         }
1114
1115         return EMULATE_DO_MMIO;
1116 }
1117
1118 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1119                        unsigned int rt, unsigned int bytes,
1120                        int is_default_endian)
1121 {
1122         return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
1123 }
1124 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1125
1126 /* Same as above, but sign extends */
1127 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1128                         unsigned int rt, unsigned int bytes,
1129                         int is_default_endian)
1130 {
1131         return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
1132 }
1133
1134 #ifdef CONFIG_VSX
1135 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1136                         unsigned int rt, unsigned int bytes,
1137                         int is_default_endian, int mmio_sign_extend)
1138 {
1139         enum emulation_result emulated = EMULATE_DONE;
1140
1141         /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1142         if (vcpu->arch.mmio_vsx_copy_nums > 4)
1143                 return EMULATE_FAIL;
1144
1145         while (vcpu->arch.mmio_vsx_copy_nums) {
1146                 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1147                         is_default_endian, mmio_sign_extend);
1148
1149                 if (emulated != EMULATE_DONE)
1150                         break;
1151
1152                 vcpu->arch.paddr_accessed += run->mmio.len;
1153
1154                 vcpu->arch.mmio_vsx_copy_nums--;
1155                 vcpu->arch.mmio_vsx_offset++;
1156         }
1157         return emulated;
1158 }
1159 #endif /* CONFIG_VSX */
1160
1161 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1162                         u64 val, unsigned int bytes, int is_default_endian)
1163 {
1164         void *data = run->mmio.data;
1165         int idx, ret;
1166         bool host_swabbed;
1167
1168         /* Pity C doesn't have a logical XOR operator */
1169         if (kvmppc_need_byteswap(vcpu)) {
1170                 host_swabbed = is_default_endian;
1171         } else {
1172                 host_swabbed = !is_default_endian;
1173         }
1174
1175         if (bytes > sizeof(run->mmio.data)) {
1176                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1177                        run->mmio.len);
1178         }
1179
1180         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1181         run->mmio.len = bytes;
1182         run->mmio.is_write = 1;
1183         vcpu->mmio_needed = 1;
1184         vcpu->mmio_is_write = 1;
1185
1186         if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1187                 val = dp_to_sp(val);
1188
1189         /* Store the value at the lowest bytes in 'data'. */
1190         if (!host_swabbed) {
1191                 switch (bytes) {
1192                 case 8: *(u64 *)data = val; break;
1193                 case 4: *(u32 *)data = val; break;
1194                 case 2: *(u16 *)data = val; break;
1195                 case 1: *(u8  *)data = val; break;
1196                 }
1197         } else {
1198                 switch (bytes) {
1199                 case 8: *(u64 *)data = swab64(val); break;
1200                 case 4: *(u32 *)data = swab32(val); break;
1201                 case 2: *(u16 *)data = swab16(val); break;
1202                 case 1: *(u8  *)data = val; break;
1203                 }
1204         }
1205
1206         idx = srcu_read_lock(&vcpu->kvm->srcu);
1207
1208         ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1209                                bytes, &run->mmio.data);
1210
1211         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1212
1213         if (!ret) {
1214                 vcpu->mmio_needed = 0;
1215                 return EMULATE_DONE;
1216         }
1217
1218         return EMULATE_DO_MMIO;
1219 }
1220 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1221
1222 #ifdef CONFIG_VSX
1223 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1224 {
1225         u32 dword_offset, word_offset;
1226         union kvmppc_one_reg reg;
1227         int vsx_offset = 0;
1228         int copy_type = vcpu->arch.mmio_vsx_copy_type;
1229         int result = 0;
1230
1231         switch (copy_type) {
1232         case KVMPPC_VSX_COPY_DWORD:
1233                 vsx_offset =
1234                         kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1235
1236                 if (vsx_offset == -1) {
1237                         result = -1;
1238                         break;
1239                 }
1240
1241                 if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1242                         *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1243                 } else {
1244                         reg.vval = VCPU_VSX_VR(vcpu, rs);
1245                         *val = reg.vsxval[vsx_offset];
1246                 }
1247                 break;
1248
1249         case KVMPPC_VSX_COPY_WORD:
1250                 vsx_offset =
1251                         kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1252
1253                 if (vsx_offset == -1) {
1254                         result = -1;
1255                         break;
1256                 }
1257
1258                 if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1259                         dword_offset = vsx_offset / 2;
1260                         word_offset = vsx_offset % 2;
1261                         reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1262                         *val = reg.vsx32val[word_offset];
1263                 } else {
1264                         reg.vval = VCPU_VSX_VR(vcpu, rs);
1265                         *val = reg.vsx32val[vsx_offset];
1266                 }
1267                 break;
1268
1269         default:
1270                 result = -1;
1271                 break;
1272         }
1273
1274         return result;
1275 }
1276
1277 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1278                         int rs, unsigned int bytes, int is_default_endian)
1279 {
1280         u64 val;
1281         enum emulation_result emulated = EMULATE_DONE;
1282
1283         vcpu->arch.io_gpr = rs;
1284
1285         /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1286         if (vcpu->arch.mmio_vsx_copy_nums > 4)
1287                 return EMULATE_FAIL;
1288
1289         while (vcpu->arch.mmio_vsx_copy_nums) {
1290                 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1291                         return EMULATE_FAIL;
1292
1293                 emulated = kvmppc_handle_store(run, vcpu,
1294                          val, bytes, is_default_endian);
1295
1296                 if (emulated != EMULATE_DONE)
1297                         break;
1298
1299                 vcpu->arch.paddr_accessed += run->mmio.len;
1300
1301                 vcpu->arch.mmio_vsx_copy_nums--;
1302                 vcpu->arch.mmio_vsx_offset++;
1303         }
1304
1305         return emulated;
1306 }
1307
1308 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
1309                         struct kvm_run *run)
1310 {
1311         enum emulation_result emulated = EMULATE_FAIL;
1312         int r;
1313
1314         vcpu->arch.paddr_accessed += run->mmio.len;
1315
1316         if (!vcpu->mmio_is_write) {
1317                 emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
1318                          run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1319         } else {
1320                 emulated = kvmppc_handle_vsx_store(run, vcpu,
1321                          vcpu->arch.io_gpr, run->mmio.len, 1);
1322         }
1323
1324         switch (emulated) {
1325         case EMULATE_DO_MMIO:
1326                 run->exit_reason = KVM_EXIT_MMIO;
1327                 r = RESUME_HOST;
1328                 break;
1329         case EMULATE_FAIL:
1330                 pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1331                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1332                 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1333                 r = RESUME_HOST;
1334                 break;
1335         default:
1336                 r = RESUME_GUEST;
1337                 break;
1338         }
1339         return r;
1340 }
1341 #endif /* CONFIG_VSX */
1342
1343 #ifdef CONFIG_ALTIVEC
1344 /* handle quadword load access in two halves */
1345 int kvmppc_handle_load128_by2x64(struct kvm_run *run, struct kvm_vcpu *vcpu,
1346                 unsigned int rt, int is_default_endian)
1347 {
1348         enum emulation_result emulated = EMULATE_DONE;
1349
1350         while (vcpu->arch.mmio_vmx_copy_nums) {
1351                 emulated = __kvmppc_handle_load(run, vcpu, rt, 8,
1352                                 is_default_endian, 0);
1353
1354                 if (emulated != EMULATE_DONE)
1355                         break;
1356
1357                 vcpu->arch.paddr_accessed += run->mmio.len;
1358                 vcpu->arch.mmio_vmx_copy_nums--;
1359         }
1360
1361         return emulated;
1362 }
1363
1364 static inline int kvmppc_get_vmx_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1365 {
1366         vector128 vrs = VCPU_VSX_VR(vcpu, rs);
1367         u32 di;
1368         u64 w0, w1;
1369
1370         di = 2 - vcpu->arch.mmio_vmx_copy_nums;         /* doubleword index */
1371         if (di > 1)
1372                 return -1;
1373
1374         if (vcpu->arch.mmio_host_swabbed)
1375                 di = 1 - di;
1376
1377         w0 = vrs.u[di * 2];
1378         w1 = vrs.u[di * 2 + 1];
1379
1380 #ifdef __BIG_ENDIAN
1381         *val = (w0 << 32) | w1;
1382 #else
1383         *val = (w1 << 32) | w0;
1384 #endif
1385         return 0;
1386 }
1387
1388 /* handle quadword store in two halves */
1389 int kvmppc_handle_store128_by2x64(struct kvm_run *run, struct kvm_vcpu *vcpu,
1390                 unsigned int rs, int is_default_endian)
1391 {
1392         u64 val = 0;
1393         enum emulation_result emulated = EMULATE_DONE;
1394
1395         vcpu->arch.io_gpr = rs;
1396
1397         while (vcpu->arch.mmio_vmx_copy_nums) {
1398                 if (kvmppc_get_vmx_data(vcpu, rs, &val) == -1)
1399                         return EMULATE_FAIL;
1400
1401                 emulated = kvmppc_handle_store(run, vcpu, val, 8,
1402                                 is_default_endian);
1403                 if (emulated != EMULATE_DONE)
1404                         break;
1405
1406                 vcpu->arch.paddr_accessed += run->mmio.len;
1407                 vcpu->arch.mmio_vmx_copy_nums--;
1408         }
1409
1410         return emulated;
1411 }
1412
1413 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu,
1414                 struct kvm_run *run)
1415 {
1416         enum emulation_result emulated = EMULATE_FAIL;
1417         int r;
1418
1419         vcpu->arch.paddr_accessed += run->mmio.len;
1420
1421         if (!vcpu->mmio_is_write) {
1422                 emulated = kvmppc_handle_load128_by2x64(run, vcpu,
1423                                 vcpu->arch.io_gpr, 1);
1424         } else {
1425                 emulated = kvmppc_handle_store128_by2x64(run, vcpu,
1426                                 vcpu->arch.io_gpr, 1);
1427         }
1428
1429         switch (emulated) {
1430         case EMULATE_DO_MMIO:
1431                 run->exit_reason = KVM_EXIT_MMIO;
1432                 r = RESUME_HOST;
1433                 break;
1434         case EMULATE_FAIL:
1435                 pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1436                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1437                 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1438                 r = RESUME_HOST;
1439                 break;
1440         default:
1441                 r = RESUME_GUEST;
1442                 break;
1443         }
1444         return r;
1445 }
1446 #endif /* CONFIG_ALTIVEC */
1447
1448 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1449 {
1450         int r = 0;
1451         union kvmppc_one_reg val;
1452         int size;
1453
1454         size = one_reg_size(reg->id);
1455         if (size > sizeof(val))
1456                 return -EINVAL;
1457
1458         r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1459         if (r == -EINVAL) {
1460                 r = 0;
1461                 switch (reg->id) {
1462 #ifdef CONFIG_ALTIVEC
1463                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1464                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1465                                 r = -ENXIO;
1466                                 break;
1467                         }
1468                         val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1469                         break;
1470                 case KVM_REG_PPC_VSCR:
1471                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1472                                 r = -ENXIO;
1473                                 break;
1474                         }
1475                         val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1476                         break;
1477                 case KVM_REG_PPC_VRSAVE:
1478                         val = get_reg_val(reg->id, vcpu->arch.vrsave);
1479                         break;
1480 #endif /* CONFIG_ALTIVEC */
1481                 default:
1482                         r = -EINVAL;
1483                         break;
1484                 }
1485         }
1486
1487         if (r)
1488                 return r;
1489
1490         if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1491                 r = -EFAULT;
1492
1493         return r;
1494 }
1495
1496 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1497 {
1498         int r;
1499         union kvmppc_one_reg val;
1500         int size;
1501
1502         size = one_reg_size(reg->id);
1503         if (size > sizeof(val))
1504                 return -EINVAL;
1505
1506         if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1507                 return -EFAULT;
1508
1509         r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1510         if (r == -EINVAL) {
1511                 r = 0;
1512                 switch (reg->id) {
1513 #ifdef CONFIG_ALTIVEC
1514                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1515                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1516                                 r = -ENXIO;
1517                                 break;
1518                         }
1519                         vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1520                         break;
1521                 case KVM_REG_PPC_VSCR:
1522                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1523                                 r = -ENXIO;
1524                                 break;
1525                         }
1526                         vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1527                         break;
1528                 case KVM_REG_PPC_VRSAVE:
1529                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1530                                 r = -ENXIO;
1531                                 break;
1532                         }
1533                         vcpu->arch.vrsave = set_reg_val(reg->id, val);
1534                         break;
1535 #endif /* CONFIG_ALTIVEC */
1536                 default:
1537                         r = -EINVAL;
1538                         break;
1539                 }
1540         }
1541
1542         return r;
1543 }
1544
1545 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1546 {
1547         int r;
1548
1549         vcpu_load(vcpu);
1550
1551         if (vcpu->mmio_needed) {
1552                 vcpu->mmio_needed = 0;
1553                 if (!vcpu->mmio_is_write)
1554                         kvmppc_complete_mmio_load(vcpu, run);
1555 #ifdef CONFIG_VSX
1556                 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1557                         vcpu->arch.mmio_vsx_copy_nums--;
1558                         vcpu->arch.mmio_vsx_offset++;
1559                 }
1560
1561                 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1562                         r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
1563                         if (r == RESUME_HOST) {
1564                                 vcpu->mmio_needed = 1;
1565                                 goto out;
1566                         }
1567                 }
1568 #endif
1569 #ifdef CONFIG_ALTIVEC
1570                 if (vcpu->arch.mmio_vmx_copy_nums > 0)
1571                         vcpu->arch.mmio_vmx_copy_nums--;
1572
1573                 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1574                         r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run);
1575                         if (r == RESUME_HOST) {
1576                                 vcpu->mmio_needed = 1;
1577                                 goto out;
1578                         }
1579                 }
1580 #endif
1581         } else if (vcpu->arch.osi_needed) {
1582                 u64 *gprs = run->osi.gprs;
1583                 int i;
1584
1585                 for (i = 0; i < 32; i++)
1586                         kvmppc_set_gpr(vcpu, i, gprs[i]);
1587                 vcpu->arch.osi_needed = 0;
1588         } else if (vcpu->arch.hcall_needed) {
1589                 int i;
1590
1591                 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1592                 for (i = 0; i < 9; ++i)
1593                         kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1594                 vcpu->arch.hcall_needed = 0;
1595 #ifdef CONFIG_BOOKE
1596         } else if (vcpu->arch.epr_needed) {
1597                 kvmppc_set_epr(vcpu, run->epr.epr);
1598                 vcpu->arch.epr_needed = 0;
1599 #endif
1600         }
1601
1602         kvm_sigset_activate(vcpu);
1603
1604         if (run->immediate_exit)
1605                 r = -EINTR;
1606         else
1607                 r = kvmppc_vcpu_run(run, vcpu);
1608
1609         kvm_sigset_deactivate(vcpu);
1610
1611 #ifdef CONFIG_ALTIVEC
1612 out:
1613 #endif
1614         vcpu_put(vcpu);
1615         return r;
1616 }
1617
1618 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1619 {
1620         if (irq->irq == KVM_INTERRUPT_UNSET) {
1621                 kvmppc_core_dequeue_external(vcpu);
1622                 return 0;
1623         }
1624
1625         kvmppc_core_queue_external(vcpu, irq);
1626
1627         kvm_vcpu_kick(vcpu);
1628
1629         return 0;
1630 }
1631
1632 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1633                                      struct kvm_enable_cap *cap)
1634 {
1635         int r;
1636
1637         if (cap->flags)
1638                 return -EINVAL;
1639
1640         switch (cap->cap) {
1641         case KVM_CAP_PPC_OSI:
1642                 r = 0;
1643                 vcpu->arch.osi_enabled = true;
1644                 break;
1645         case KVM_CAP_PPC_PAPR:
1646                 r = 0;
1647                 vcpu->arch.papr_enabled = true;
1648                 break;
1649         case KVM_CAP_PPC_EPR:
1650                 r = 0;
1651                 if (cap->args[0])
1652                         vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1653                 else
1654                         vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1655                 break;
1656 #ifdef CONFIG_BOOKE
1657         case KVM_CAP_PPC_BOOKE_WATCHDOG:
1658                 r = 0;
1659                 vcpu->arch.watchdog_enabled = true;
1660                 break;
1661 #endif
1662 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1663         case KVM_CAP_SW_TLB: {
1664                 struct kvm_config_tlb cfg;
1665                 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1666
1667                 r = -EFAULT;
1668                 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1669                         break;
1670
1671                 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1672                 break;
1673         }
1674 #endif
1675 #ifdef CONFIG_KVM_MPIC
1676         case KVM_CAP_IRQ_MPIC: {
1677                 struct fd f;
1678                 struct kvm_device *dev;
1679
1680                 r = -EBADF;
1681                 f = fdget(cap->args[0]);
1682                 if (!f.file)
1683                         break;
1684
1685                 r = -EPERM;
1686                 dev = kvm_device_from_filp(f.file);
1687                 if (dev)
1688                         r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1689
1690                 fdput(f);
1691                 break;
1692         }
1693 #endif
1694 #ifdef CONFIG_KVM_XICS
1695         case KVM_CAP_IRQ_XICS: {
1696                 struct fd f;
1697                 struct kvm_device *dev;
1698
1699                 r = -EBADF;
1700                 f = fdget(cap->args[0]);
1701                 if (!f.file)
1702                         break;
1703
1704                 r = -EPERM;
1705                 dev = kvm_device_from_filp(f.file);
1706                 if (dev) {
1707                         if (xive_enabled())
1708                                 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1709                         else
1710                                 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1711                 }
1712
1713                 fdput(f);
1714                 break;
1715         }
1716 #endif /* CONFIG_KVM_XICS */
1717 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1718         case KVM_CAP_PPC_FWNMI:
1719                 r = -EINVAL;
1720                 if (!is_kvmppc_hv_enabled(vcpu->kvm))
1721                         break;
1722                 r = 0;
1723                 vcpu->kvm->arch.fwnmi_enabled = true;
1724                 break;
1725 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1726         default:
1727                 r = -EINVAL;
1728                 break;
1729         }
1730
1731         if (!r)
1732                 r = kvmppc_sanity_check(vcpu);
1733
1734         return r;
1735 }
1736
1737 bool kvm_arch_intc_initialized(struct kvm *kvm)
1738 {
1739 #ifdef CONFIG_KVM_MPIC
1740         if (kvm->arch.mpic)
1741                 return true;
1742 #endif
1743 #ifdef CONFIG_KVM_XICS
1744         if (kvm->arch.xics || kvm->arch.xive)
1745                 return true;
1746 #endif
1747         return false;
1748 }
1749
1750 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1751                                     struct kvm_mp_state *mp_state)
1752 {
1753         return -EINVAL;
1754 }
1755
1756 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1757                                     struct kvm_mp_state *mp_state)
1758 {
1759         return -EINVAL;
1760 }
1761
1762 long kvm_arch_vcpu_async_ioctl(struct file *filp,
1763                                unsigned int ioctl, unsigned long arg)
1764 {
1765         struct kvm_vcpu *vcpu = filp->private_data;
1766         void __user *argp = (void __user *)arg;
1767
1768         if (ioctl == KVM_INTERRUPT) {
1769                 struct kvm_interrupt irq;
1770                 if (copy_from_user(&irq, argp, sizeof(irq)))
1771                         return -EFAULT;
1772                 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1773         }
1774         return -ENOIOCTLCMD;
1775 }
1776
1777 long kvm_arch_vcpu_ioctl(struct file *filp,
1778                          unsigned int ioctl, unsigned long arg)
1779 {
1780         struct kvm_vcpu *vcpu = filp->private_data;
1781         void __user *argp = (void __user *)arg;
1782         long r;
1783
1784         vcpu_load(vcpu);
1785
1786         switch (ioctl) {
1787         case KVM_ENABLE_CAP:
1788         {
1789                 struct kvm_enable_cap cap;
1790                 r = -EFAULT;
1791                 if (copy_from_user(&cap, argp, sizeof(cap)))
1792                         goto out;
1793                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1794                 break;
1795         }
1796
1797         case KVM_SET_ONE_REG:
1798         case KVM_GET_ONE_REG:
1799         {
1800                 struct kvm_one_reg reg;
1801                 r = -EFAULT;
1802                 if (copy_from_user(&reg, argp, sizeof(reg)))
1803                         goto out;
1804                 if (ioctl == KVM_SET_ONE_REG)
1805                         r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
1806                 else
1807                         r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
1808                 break;
1809         }
1810
1811 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1812         case KVM_DIRTY_TLB: {
1813                 struct kvm_dirty_tlb dirty;
1814                 r = -EFAULT;
1815                 if (copy_from_user(&dirty, argp, sizeof(dirty)))
1816                         goto out;
1817                 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
1818                 break;
1819         }
1820 #endif
1821         default:
1822                 r = -EINVAL;
1823         }
1824
1825 out:
1826         vcpu_put(vcpu);
1827         return r;
1828 }
1829
1830 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1831 {
1832         return VM_FAULT_SIGBUS;
1833 }
1834
1835 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
1836 {
1837         u32 inst_nop = 0x60000000;
1838 #ifdef CONFIG_KVM_BOOKE_HV
1839         u32 inst_sc1 = 0x44000022;
1840         pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
1841         pvinfo->hcall[1] = cpu_to_be32(inst_nop);
1842         pvinfo->hcall[2] = cpu_to_be32(inst_nop);
1843         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1844 #else
1845         u32 inst_lis = 0x3c000000;
1846         u32 inst_ori = 0x60000000;
1847         u32 inst_sc = 0x44000002;
1848         u32 inst_imm_mask = 0xffff;
1849
1850         /*
1851          * The hypercall to get into KVM from within guest context is as
1852          * follows:
1853          *
1854          *    lis r0, r0, KVM_SC_MAGIC_R0@h
1855          *    ori r0, KVM_SC_MAGIC_R0@l
1856          *    sc
1857          *    nop
1858          */
1859         pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
1860         pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
1861         pvinfo->hcall[2] = cpu_to_be32(inst_sc);
1862         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1863 #endif
1864
1865         pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
1866
1867         return 0;
1868 }
1869
1870 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
1871                           bool line_status)
1872 {
1873         if (!irqchip_in_kernel(kvm))
1874                 return -ENXIO;
1875
1876         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1877                                         irq_event->irq, irq_event->level,
1878                                         line_status);
1879         return 0;
1880 }
1881
1882
1883 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1884                                    struct kvm_enable_cap *cap)
1885 {
1886         int r;
1887
1888         if (cap->flags)
1889                 return -EINVAL;
1890
1891         switch (cap->cap) {
1892 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1893         case KVM_CAP_PPC_ENABLE_HCALL: {
1894                 unsigned long hcall = cap->args[0];
1895
1896                 r = -EINVAL;
1897                 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
1898                     cap->args[1] > 1)
1899                         break;
1900                 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
1901                         break;
1902                 if (cap->args[1])
1903                         set_bit(hcall / 4, kvm->arch.enabled_hcalls);
1904                 else
1905                         clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
1906                 r = 0;
1907                 break;
1908         }
1909         case KVM_CAP_PPC_SMT: {
1910                 unsigned long mode = cap->args[0];
1911                 unsigned long flags = cap->args[1];
1912
1913                 r = -EINVAL;
1914                 if (kvm->arch.kvm_ops->set_smt_mode)
1915                         r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
1916                 break;
1917         }
1918 #endif
1919         default:
1920                 r = -EINVAL;
1921                 break;
1922         }
1923
1924         return r;
1925 }
1926
1927 #ifdef CONFIG_PPC_BOOK3S_64
1928 /*
1929  * These functions check whether the underlying hardware is safe
1930  * against attacks based on observing the effects of speculatively
1931  * executed instructions, and whether it supplies instructions for
1932  * use in workarounds.  The information comes from firmware, either
1933  * via the device tree on powernv platforms or from an hcall on
1934  * pseries platforms.
1935  */
1936 #ifdef CONFIG_PPC_PSERIES
1937 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
1938 {
1939         struct h_cpu_char_result c;
1940         unsigned long rc;
1941
1942         if (!machine_is(pseries))
1943                 return -ENOTTY;
1944
1945         rc = plpar_get_cpu_characteristics(&c);
1946         if (rc == H_SUCCESS) {
1947                 cp->character = c.character;
1948                 cp->behaviour = c.behaviour;
1949                 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
1950                         KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
1951                         KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
1952                         KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
1953                         KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
1954                         KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
1955                         KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
1956                         KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
1957                 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
1958                         KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
1959                         KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1960         }
1961         return 0;
1962 }
1963 #else
1964 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
1965 {
1966         return -ENOTTY;
1967 }
1968 #endif
1969
1970 static inline bool have_fw_feat(struct device_node *fw_features,
1971                                 const char *state, const char *name)
1972 {
1973         struct device_node *np;
1974         bool r = false;
1975
1976         np = of_get_child_by_name(fw_features, name);
1977         if (np) {
1978                 r = of_property_read_bool(np, state);
1979                 of_node_put(np);
1980         }
1981         return r;
1982 }
1983
1984 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
1985 {
1986         struct device_node *np, *fw_features;
1987         int r;
1988
1989         memset(cp, 0, sizeof(*cp));
1990         r = pseries_get_cpu_char(cp);
1991         if (r != -ENOTTY)
1992                 return r;
1993
1994         np = of_find_node_by_name(NULL, "ibm,opal");
1995         if (np) {
1996                 fw_features = of_get_child_by_name(np, "fw-features");
1997                 of_node_put(np);
1998                 if (!fw_features)
1999                         return 0;
2000                 if (have_fw_feat(fw_features, "enabled",
2001                                  "inst-spec-barrier-ori31,31,0"))
2002                         cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2003                 if (have_fw_feat(fw_features, "enabled",
2004                                  "fw-bcctrl-serialized"))
2005                         cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2006                 if (have_fw_feat(fw_features, "enabled",
2007                                  "inst-l1d-flush-ori30,30,0"))
2008                         cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2009                 if (have_fw_feat(fw_features, "enabled",
2010                                  "inst-l1d-flush-trig2"))
2011                         cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2012                 if (have_fw_feat(fw_features, "enabled",
2013                                  "fw-l1d-thread-split"))
2014                         cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2015                 if (have_fw_feat(fw_features, "enabled",
2016                                  "fw-count-cache-disabled"))
2017                         cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2018                 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2019                         KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2020                         KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2021                         KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2022                         KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2023                         KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2024
2025                 if (have_fw_feat(fw_features, "enabled",
2026                                  "speculation-policy-favor-security"))
2027                         cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2028                 if (!have_fw_feat(fw_features, "disabled",
2029                                   "needs-l1d-flush-msr-pr-0-to-1"))
2030                         cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2031                 if (!have_fw_feat(fw_features, "disabled",
2032                                   "needs-spec-barrier-for-bound-checks"))
2033                         cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2034                 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2035                         KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2036                         KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2037
2038                 of_node_put(fw_features);
2039         }
2040
2041         return 0;
2042 }
2043 #endif
2044
2045 long kvm_arch_vm_ioctl(struct file *filp,
2046                        unsigned int ioctl, unsigned long arg)
2047 {
2048         struct kvm *kvm __maybe_unused = filp->private_data;
2049         void __user *argp = (void __user *)arg;
2050         long r;
2051
2052         switch (ioctl) {
2053         case KVM_PPC_GET_PVINFO: {
2054                 struct kvm_ppc_pvinfo pvinfo;
2055                 memset(&pvinfo, 0, sizeof(pvinfo));
2056                 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2057                 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2058                         r = -EFAULT;
2059                         goto out;
2060                 }
2061
2062                 break;
2063         }
2064         case KVM_ENABLE_CAP:
2065         {
2066                 struct kvm_enable_cap cap;
2067                 r = -EFAULT;
2068                 if (copy_from_user(&cap, argp, sizeof(cap)))
2069                         goto out;
2070                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
2071                 break;
2072         }
2073 #ifdef CONFIG_SPAPR_TCE_IOMMU
2074         case KVM_CREATE_SPAPR_TCE_64: {
2075                 struct kvm_create_spapr_tce_64 create_tce_64;
2076
2077                 r = -EFAULT;
2078                 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2079                         goto out;
2080                 if (create_tce_64.flags) {
2081                         r = -EINVAL;
2082                         goto out;
2083                 }
2084                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2085                 goto out;
2086         }
2087         case KVM_CREATE_SPAPR_TCE: {
2088                 struct kvm_create_spapr_tce create_tce;
2089                 struct kvm_create_spapr_tce_64 create_tce_64;
2090
2091                 r = -EFAULT;
2092                 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2093                         goto out;
2094
2095                 create_tce_64.liobn = create_tce.liobn;
2096                 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2097                 create_tce_64.offset = 0;
2098                 create_tce_64.size = create_tce.window_size >>
2099                                 IOMMU_PAGE_SHIFT_4K;
2100                 create_tce_64.flags = 0;
2101                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2102                 goto out;
2103         }
2104 #endif
2105 #ifdef CONFIG_PPC_BOOK3S_64
2106         case KVM_PPC_GET_SMMU_INFO: {
2107                 struct kvm_ppc_smmu_info info;
2108                 struct kvm *kvm = filp->private_data;
2109
2110                 memset(&info, 0, sizeof(info));
2111                 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2112                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2113                         r = -EFAULT;
2114                 break;
2115         }
2116         case KVM_PPC_RTAS_DEFINE_TOKEN: {
2117                 struct kvm *kvm = filp->private_data;
2118
2119                 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2120                 break;
2121         }
2122         case KVM_PPC_CONFIGURE_V3_MMU: {
2123                 struct kvm *kvm = filp->private_data;
2124                 struct kvm_ppc_mmuv3_cfg cfg;
2125
2126                 r = -EINVAL;
2127                 if (!kvm->arch.kvm_ops->configure_mmu)
2128                         goto out;
2129                 r = -EFAULT;
2130                 if (copy_from_user(&cfg, argp, sizeof(cfg)))
2131                         goto out;
2132                 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2133                 break;
2134         }
2135         case KVM_PPC_GET_RMMU_INFO: {
2136                 struct kvm *kvm = filp->private_data;
2137                 struct kvm_ppc_rmmu_info info;
2138
2139                 r = -EINVAL;
2140                 if (!kvm->arch.kvm_ops->get_rmmu_info)
2141                         goto out;
2142                 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2143                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2144                         r = -EFAULT;
2145                 break;
2146         }
2147         case KVM_PPC_GET_CPU_CHAR: {
2148                 struct kvm_ppc_cpu_char cpuchar;
2149
2150                 r = kvmppc_get_cpu_char(&cpuchar);
2151                 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2152                         r = -EFAULT;
2153                 break;
2154         }
2155         default: {
2156                 struct kvm *kvm = filp->private_data;
2157                 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2158         }
2159 #else /* CONFIG_PPC_BOOK3S_64 */
2160         default:
2161                 r = -ENOTTY;
2162 #endif
2163         }
2164 out:
2165         return r;
2166 }
2167
2168 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
2169 static unsigned long nr_lpids;
2170
2171 long kvmppc_alloc_lpid(void)
2172 {
2173         long lpid;
2174
2175         do {
2176                 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
2177                 if (lpid >= nr_lpids) {
2178                         pr_err("%s: No LPIDs free\n", __func__);
2179                         return -ENOMEM;
2180                 }
2181         } while (test_and_set_bit(lpid, lpid_inuse));
2182
2183         return lpid;
2184 }
2185 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2186
2187 void kvmppc_claim_lpid(long lpid)
2188 {
2189         set_bit(lpid, lpid_inuse);
2190 }
2191 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2192
2193 void kvmppc_free_lpid(long lpid)
2194 {
2195         clear_bit(lpid, lpid_inuse);
2196 }
2197 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2198
2199 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2200 {
2201         nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
2202         memset(lpid_inuse, 0, sizeof(lpid_inuse));
2203 }
2204 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2205
2206 int kvm_arch_init(void *opaque)
2207 {
2208         return 0;
2209 }
2210
2211 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);