]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/powerpc/kvm/powerpc.c
KVM: Directly return result from kvm_arch_check_processor_compat()
[linux.git] / arch / powerpc / kvm / powerpc.c
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright IBM Corp. 2007
16  *
17  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19  */
20
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/sched/signal.h>
27 #include <linux/fs.h>
28 #include <linux/slab.h>
29 #include <linux/file.h>
30 #include <linux/module.h>
31 #include <linux/irqbypass.h>
32 #include <linux/kvm_irqfd.h>
33 #include <asm/cputable.h>
34 #include <linux/uaccess.h>
35 #include <asm/kvm_ppc.h>
36 #include <asm/cputhreads.h>
37 #include <asm/irqflags.h>
38 #include <asm/iommu.h>
39 #include <asm/switch_to.h>
40 #include <asm/xive.h>
41 #ifdef CONFIG_PPC_PSERIES
42 #include <asm/hvcall.h>
43 #include <asm/plpar_wrappers.h>
44 #endif
45
46 #include "timing.h"
47 #include "irq.h"
48 #include "../mm/mmu_decl.h"
49
50 #define CREATE_TRACE_POINTS
51 #include "trace.h"
52
53 struct kvmppc_ops *kvmppc_hv_ops;
54 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
55 struct kvmppc_ops *kvmppc_pr_ops;
56 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
57
58
59 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
60 {
61         return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
62 }
63
64 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
65 {
66         return false;
67 }
68
69 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
70 {
71         return 1;
72 }
73
74 /*
75  * Common checks before entering the guest world.  Call with interrupts
76  * disabled.
77  *
78  * returns:
79  *
80  * == 1 if we're ready to go into guest state
81  * <= 0 if we need to go back to the host with return value
82  */
83 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
84 {
85         int r;
86
87         WARN_ON(irqs_disabled());
88         hard_irq_disable();
89
90         while (true) {
91                 if (need_resched()) {
92                         local_irq_enable();
93                         cond_resched();
94                         hard_irq_disable();
95                         continue;
96                 }
97
98                 if (signal_pending(current)) {
99                         kvmppc_account_exit(vcpu, SIGNAL_EXITS);
100                         vcpu->run->exit_reason = KVM_EXIT_INTR;
101                         r = -EINTR;
102                         break;
103                 }
104
105                 vcpu->mode = IN_GUEST_MODE;
106
107                 /*
108                  * Reading vcpu->requests must happen after setting vcpu->mode,
109                  * so we don't miss a request because the requester sees
110                  * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
111                  * before next entering the guest (and thus doesn't IPI).
112                  * This also orders the write to mode from any reads
113                  * to the page tables done while the VCPU is running.
114                  * Please see the comment in kvm_flush_remote_tlbs.
115                  */
116                 smp_mb();
117
118                 if (kvm_request_pending(vcpu)) {
119                         /* Make sure we process requests preemptable */
120                         local_irq_enable();
121                         trace_kvm_check_requests(vcpu);
122                         r = kvmppc_core_check_requests(vcpu);
123                         hard_irq_disable();
124                         if (r > 0)
125                                 continue;
126                         break;
127                 }
128
129                 if (kvmppc_core_prepare_to_enter(vcpu)) {
130                         /* interrupts got enabled in between, so we
131                            are back at square 1 */
132                         continue;
133                 }
134
135                 guest_enter_irqoff();
136                 return 1;
137         }
138
139         /* return to host */
140         local_irq_enable();
141         return r;
142 }
143 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
144
145 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
146 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
147 {
148         struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
149         int i;
150
151         shared->sprg0 = swab64(shared->sprg0);
152         shared->sprg1 = swab64(shared->sprg1);
153         shared->sprg2 = swab64(shared->sprg2);
154         shared->sprg3 = swab64(shared->sprg3);
155         shared->srr0 = swab64(shared->srr0);
156         shared->srr1 = swab64(shared->srr1);
157         shared->dar = swab64(shared->dar);
158         shared->msr = swab64(shared->msr);
159         shared->dsisr = swab32(shared->dsisr);
160         shared->int_pending = swab32(shared->int_pending);
161         for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
162                 shared->sr[i] = swab32(shared->sr[i]);
163 }
164 #endif
165
166 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
167 {
168         int nr = kvmppc_get_gpr(vcpu, 11);
169         int r;
170         unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
171         unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
172         unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
173         unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
174         unsigned long r2 = 0;
175
176         if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
177                 /* 32 bit mode */
178                 param1 &= 0xffffffff;
179                 param2 &= 0xffffffff;
180                 param3 &= 0xffffffff;
181                 param4 &= 0xffffffff;
182         }
183
184         switch (nr) {
185         case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
186         {
187 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
188                 /* Book3S can be little endian, find it out here */
189                 int shared_big_endian = true;
190                 if (vcpu->arch.intr_msr & MSR_LE)
191                         shared_big_endian = false;
192                 if (shared_big_endian != vcpu->arch.shared_big_endian)
193                         kvmppc_swab_shared(vcpu);
194                 vcpu->arch.shared_big_endian = shared_big_endian;
195 #endif
196
197                 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
198                         /*
199                          * Older versions of the Linux magic page code had
200                          * a bug where they would map their trampoline code
201                          * NX. If that's the case, remove !PR NX capability.
202                          */
203                         vcpu->arch.disable_kernel_nx = true;
204                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
205                 }
206
207                 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
208                 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
209
210 #ifdef CONFIG_PPC_64K_PAGES
211                 /*
212                  * Make sure our 4k magic page is in the same window of a 64k
213                  * page within the guest and within the host's page.
214                  */
215                 if ((vcpu->arch.magic_page_pa & 0xf000) !=
216                     ((ulong)vcpu->arch.shared & 0xf000)) {
217                         void *old_shared = vcpu->arch.shared;
218                         ulong shared = (ulong)vcpu->arch.shared;
219                         void *new_shared;
220
221                         shared &= PAGE_MASK;
222                         shared |= vcpu->arch.magic_page_pa & 0xf000;
223                         new_shared = (void*)shared;
224                         memcpy(new_shared, old_shared, 0x1000);
225                         vcpu->arch.shared = new_shared;
226                 }
227 #endif
228
229                 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
230
231                 r = EV_SUCCESS;
232                 break;
233         }
234         case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
235                 r = EV_SUCCESS;
236 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
237                 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
238 #endif
239
240                 /* Second return value is in r4 */
241                 break;
242         case EV_HCALL_TOKEN(EV_IDLE):
243                 r = EV_SUCCESS;
244                 kvm_vcpu_block(vcpu);
245                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
246                 break;
247         default:
248                 r = EV_UNIMPLEMENTED;
249                 break;
250         }
251
252         kvmppc_set_gpr(vcpu, 4, r2);
253
254         return r;
255 }
256 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
257
258 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
259 {
260         int r = false;
261
262         /* We have to know what CPU to virtualize */
263         if (!vcpu->arch.pvr)
264                 goto out;
265
266         /* PAPR only works with book3s_64 */
267         if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
268                 goto out;
269
270         /* HV KVM can only do PAPR mode for now */
271         if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
272                 goto out;
273
274 #ifdef CONFIG_KVM_BOOKE_HV
275         if (!cpu_has_feature(CPU_FTR_EMB_HV))
276                 goto out;
277 #endif
278
279         r = true;
280
281 out:
282         vcpu->arch.sane = r;
283         return r ? 0 : -EINVAL;
284 }
285 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
286
287 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
288 {
289         enum emulation_result er;
290         int r;
291
292         er = kvmppc_emulate_loadstore(vcpu);
293         switch (er) {
294         case EMULATE_DONE:
295                 /* Future optimization: only reload non-volatiles if they were
296                  * actually modified. */
297                 r = RESUME_GUEST_NV;
298                 break;
299         case EMULATE_AGAIN:
300                 r = RESUME_GUEST;
301                 break;
302         case EMULATE_DO_MMIO:
303                 run->exit_reason = KVM_EXIT_MMIO;
304                 /* We must reload nonvolatiles because "update" load/store
305                  * instructions modify register state. */
306                 /* Future optimization: only reload non-volatiles if they were
307                  * actually modified. */
308                 r = RESUME_HOST_NV;
309                 break;
310         case EMULATE_FAIL:
311         {
312                 u32 last_inst;
313
314                 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
315                 /* XXX Deliver Program interrupt to guest. */
316                 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
317                 r = RESUME_HOST;
318                 break;
319         }
320         default:
321                 WARN_ON(1);
322                 r = RESUME_GUEST;
323         }
324
325         return r;
326 }
327 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
328
329 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
330               bool data)
331 {
332         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
333         struct kvmppc_pte pte;
334         int r = -EINVAL;
335
336         vcpu->stat.st++;
337
338         if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr)
339                 r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr,
340                                                             size);
341
342         if ((!r) || (r == -EAGAIN))
343                 return r;
344
345         r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
346                          XLATE_WRITE, &pte);
347         if (r < 0)
348                 return r;
349
350         *eaddr = pte.raddr;
351
352         if (!pte.may_write)
353                 return -EPERM;
354
355         /* Magic page override */
356         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
357             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
358             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
359                 void *magic = vcpu->arch.shared;
360                 magic += pte.eaddr & 0xfff;
361                 memcpy(magic, ptr, size);
362                 return EMULATE_DONE;
363         }
364
365         if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
366                 return EMULATE_DO_MMIO;
367
368         return EMULATE_DONE;
369 }
370 EXPORT_SYMBOL_GPL(kvmppc_st);
371
372 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
373                       bool data)
374 {
375         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
376         struct kvmppc_pte pte;
377         int rc = -EINVAL;
378
379         vcpu->stat.ld++;
380
381         if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr)
382                 rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr,
383                                                               size);
384
385         if ((!rc) || (rc == -EAGAIN))
386                 return rc;
387
388         rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
389                           XLATE_READ, &pte);
390         if (rc)
391                 return rc;
392
393         *eaddr = pte.raddr;
394
395         if (!pte.may_read)
396                 return -EPERM;
397
398         if (!data && !pte.may_execute)
399                 return -ENOEXEC;
400
401         /* Magic page override */
402         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
403             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
404             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
405                 void *magic = vcpu->arch.shared;
406                 magic += pte.eaddr & 0xfff;
407                 memcpy(ptr, magic, size);
408                 return EMULATE_DONE;
409         }
410
411         if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
412                 return EMULATE_DO_MMIO;
413
414         return EMULATE_DONE;
415 }
416 EXPORT_SYMBOL_GPL(kvmppc_ld);
417
418 int kvm_arch_hardware_enable(void)
419 {
420         return 0;
421 }
422
423 int kvm_arch_hardware_setup(void)
424 {
425         return 0;
426 }
427
428 int kvm_arch_check_processor_compat(void)
429 {
430         return kvmppc_core_check_processor_compat();
431 }
432
433 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
434 {
435         struct kvmppc_ops *kvm_ops = NULL;
436         /*
437          * if we have both HV and PR enabled, default is HV
438          */
439         if (type == 0) {
440                 if (kvmppc_hv_ops)
441                         kvm_ops = kvmppc_hv_ops;
442                 else
443                         kvm_ops = kvmppc_pr_ops;
444                 if (!kvm_ops)
445                         goto err_out;
446         } else  if (type == KVM_VM_PPC_HV) {
447                 if (!kvmppc_hv_ops)
448                         goto err_out;
449                 kvm_ops = kvmppc_hv_ops;
450         } else if (type == KVM_VM_PPC_PR) {
451                 if (!kvmppc_pr_ops)
452                         goto err_out;
453                 kvm_ops = kvmppc_pr_ops;
454         } else
455                 goto err_out;
456
457         if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
458                 return -ENOENT;
459
460         kvm->arch.kvm_ops = kvm_ops;
461         return kvmppc_core_init_vm(kvm);
462 err_out:
463         return -EINVAL;
464 }
465
466 bool kvm_arch_has_vcpu_debugfs(void)
467 {
468         return false;
469 }
470
471 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
472 {
473         return 0;
474 }
475
476 void kvm_arch_destroy_vm(struct kvm *kvm)
477 {
478         unsigned int i;
479         struct kvm_vcpu *vcpu;
480
481 #ifdef CONFIG_KVM_XICS
482         /*
483          * We call kick_all_cpus_sync() to ensure that all
484          * CPUs have executed any pending IPIs before we
485          * continue and free VCPUs structures below.
486          */
487         if (is_kvmppc_hv_enabled(kvm))
488                 kick_all_cpus_sync();
489 #endif
490
491         kvm_for_each_vcpu(i, vcpu, kvm)
492                 kvm_arch_vcpu_free(vcpu);
493
494         mutex_lock(&kvm->lock);
495         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
496                 kvm->vcpus[i] = NULL;
497
498         atomic_set(&kvm->online_vcpus, 0);
499
500         kvmppc_core_destroy_vm(kvm);
501
502         mutex_unlock(&kvm->lock);
503
504         /* drop the module reference */
505         module_put(kvm->arch.kvm_ops->owner);
506 }
507
508 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
509 {
510         int r;
511         /* Assume we're using HV mode when the HV module is loaded */
512         int hv_enabled = kvmppc_hv_ops ? 1 : 0;
513
514         if (kvm) {
515                 /*
516                  * Hooray - we know which VM type we're running on. Depend on
517                  * that rather than the guess above.
518                  */
519                 hv_enabled = is_kvmppc_hv_enabled(kvm);
520         }
521
522         switch (ext) {
523 #ifdef CONFIG_BOOKE
524         case KVM_CAP_PPC_BOOKE_SREGS:
525         case KVM_CAP_PPC_BOOKE_WATCHDOG:
526         case KVM_CAP_PPC_EPR:
527 #else
528         case KVM_CAP_PPC_SEGSTATE:
529         case KVM_CAP_PPC_HIOR:
530         case KVM_CAP_PPC_PAPR:
531 #endif
532         case KVM_CAP_PPC_UNSET_IRQ:
533         case KVM_CAP_PPC_IRQ_LEVEL:
534         case KVM_CAP_ENABLE_CAP:
535         case KVM_CAP_ONE_REG:
536         case KVM_CAP_IOEVENTFD:
537         case KVM_CAP_DEVICE_CTRL:
538         case KVM_CAP_IMMEDIATE_EXIT:
539                 r = 1;
540                 break;
541         case KVM_CAP_PPC_PAIRED_SINGLES:
542         case KVM_CAP_PPC_OSI:
543         case KVM_CAP_PPC_GET_PVINFO:
544 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
545         case KVM_CAP_SW_TLB:
546 #endif
547                 /* We support this only for PR */
548                 r = !hv_enabled;
549                 break;
550 #ifdef CONFIG_KVM_MPIC
551         case KVM_CAP_IRQ_MPIC:
552                 r = 1;
553                 break;
554 #endif
555
556 #ifdef CONFIG_PPC_BOOK3S_64
557         case KVM_CAP_SPAPR_TCE:
558         case KVM_CAP_SPAPR_TCE_64:
559                 r = 1;
560                 break;
561         case KVM_CAP_SPAPR_TCE_VFIO:
562                 r = !!cpu_has_feature(CPU_FTR_HVMODE);
563                 break;
564         case KVM_CAP_PPC_RTAS:
565         case KVM_CAP_PPC_FIXUP_HCALL:
566         case KVM_CAP_PPC_ENABLE_HCALL:
567 #ifdef CONFIG_KVM_XICS
568         case KVM_CAP_IRQ_XICS:
569 #endif
570         case KVM_CAP_PPC_GET_CPU_CHAR:
571                 r = 1;
572                 break;
573 #ifdef CONFIG_KVM_XIVE
574         case KVM_CAP_PPC_IRQ_XIVE:
575                 /*
576                  * We need XIVE to be enabled on the platform (implies
577                  * a POWER9 processor) and the PowerNV platform, as
578                  * nested is not yet supported.
579                  */
580                 r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE);
581                 break;
582 #endif
583
584         case KVM_CAP_PPC_ALLOC_HTAB:
585                 r = hv_enabled;
586                 break;
587 #endif /* CONFIG_PPC_BOOK3S_64 */
588 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
589         case KVM_CAP_PPC_SMT:
590                 r = 0;
591                 if (kvm) {
592                         if (kvm->arch.emul_smt_mode > 1)
593                                 r = kvm->arch.emul_smt_mode;
594                         else
595                                 r = kvm->arch.smt_mode;
596                 } else if (hv_enabled) {
597                         if (cpu_has_feature(CPU_FTR_ARCH_300))
598                                 r = 1;
599                         else
600                                 r = threads_per_subcore;
601                 }
602                 break;
603         case KVM_CAP_PPC_SMT_POSSIBLE:
604                 r = 1;
605                 if (hv_enabled) {
606                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
607                                 r = ((threads_per_subcore << 1) - 1);
608                         else
609                                 /* P9 can emulate dbells, so allow any mode */
610                                 r = 8 | 4 | 2 | 1;
611                 }
612                 break;
613         case KVM_CAP_PPC_RMA:
614                 r = 0;
615                 break;
616         case KVM_CAP_PPC_HWRNG:
617                 r = kvmppc_hwrng_present();
618                 break;
619         case KVM_CAP_PPC_MMU_RADIX:
620                 r = !!(hv_enabled && radix_enabled());
621                 break;
622         case KVM_CAP_PPC_MMU_HASH_V3:
623                 r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300) &&
624                        cpu_has_feature(CPU_FTR_HVMODE));
625                 break;
626         case KVM_CAP_PPC_NESTED_HV:
627                 r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
628                        !kvmppc_hv_ops->enable_nested(NULL));
629                 break;
630 #endif
631         case KVM_CAP_SYNC_MMU:
632 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
633                 r = hv_enabled;
634 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
635                 r = 1;
636 #else
637                 r = 0;
638 #endif
639                 break;
640 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
641         case KVM_CAP_PPC_HTAB_FD:
642                 r = hv_enabled;
643                 break;
644 #endif
645         case KVM_CAP_NR_VCPUS:
646                 /*
647                  * Recommending a number of CPUs is somewhat arbitrary; we
648                  * return the number of present CPUs for -HV (since a host
649                  * will have secondary threads "offline"), and for other KVM
650                  * implementations just count online CPUs.
651                  */
652                 if (hv_enabled)
653                         r = num_present_cpus();
654                 else
655                         r = num_online_cpus();
656                 break;
657         case KVM_CAP_MAX_VCPUS:
658                 r = KVM_MAX_VCPUS;
659                 break;
660         case KVM_CAP_MAX_VCPU_ID:
661                 r = KVM_MAX_VCPU_ID;
662                 break;
663 #ifdef CONFIG_PPC_BOOK3S_64
664         case KVM_CAP_PPC_GET_SMMU_INFO:
665                 r = 1;
666                 break;
667         case KVM_CAP_SPAPR_MULTITCE:
668                 r = 1;
669                 break;
670         case KVM_CAP_SPAPR_RESIZE_HPT:
671                 r = !!hv_enabled;
672                 break;
673 #endif
674 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
675         case KVM_CAP_PPC_FWNMI:
676                 r = hv_enabled;
677                 break;
678 #endif
679 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
680         case KVM_CAP_PPC_HTM:
681                 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
682                      (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
683                 break;
684 #endif
685         default:
686                 r = 0;
687                 break;
688         }
689         return r;
690
691 }
692
693 long kvm_arch_dev_ioctl(struct file *filp,
694                         unsigned int ioctl, unsigned long arg)
695 {
696         return -EINVAL;
697 }
698
699 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
700                            struct kvm_memory_slot *dont)
701 {
702         kvmppc_core_free_memslot(kvm, free, dont);
703 }
704
705 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
706                             unsigned long npages)
707 {
708         return kvmppc_core_create_memslot(kvm, slot, npages);
709 }
710
711 int kvm_arch_prepare_memory_region(struct kvm *kvm,
712                                    struct kvm_memory_slot *memslot,
713                                    const struct kvm_userspace_memory_region *mem,
714                                    enum kvm_mr_change change)
715 {
716         return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
717 }
718
719 void kvm_arch_commit_memory_region(struct kvm *kvm,
720                                    const struct kvm_userspace_memory_region *mem,
721                                    const struct kvm_memory_slot *old,
722                                    const struct kvm_memory_slot *new,
723                                    enum kvm_mr_change change)
724 {
725         kvmppc_core_commit_memory_region(kvm, mem, old, new, change);
726 }
727
728 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
729                                    struct kvm_memory_slot *slot)
730 {
731         kvmppc_core_flush_memslot(kvm, slot);
732 }
733
734 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
735 {
736         struct kvm_vcpu *vcpu;
737         vcpu = kvmppc_core_vcpu_create(kvm, id);
738         if (!IS_ERR(vcpu)) {
739                 vcpu->arch.wqp = &vcpu->wq;
740                 kvmppc_create_vcpu_debugfs(vcpu, id);
741         }
742         return vcpu;
743 }
744
745 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
746 {
747 }
748
749 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
750 {
751         /* Make sure we're not using the vcpu anymore */
752         hrtimer_cancel(&vcpu->arch.dec_timer);
753
754         kvmppc_remove_vcpu_debugfs(vcpu);
755
756         switch (vcpu->arch.irq_type) {
757         case KVMPPC_IRQ_MPIC:
758                 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
759                 break;
760         case KVMPPC_IRQ_XICS:
761                 if (xics_on_xive())
762                         kvmppc_xive_cleanup_vcpu(vcpu);
763                 else
764                         kvmppc_xics_free_icp(vcpu);
765                 break;
766         case KVMPPC_IRQ_XIVE:
767                 kvmppc_xive_native_cleanup_vcpu(vcpu);
768                 break;
769         }
770
771         kvmppc_core_vcpu_free(vcpu);
772 }
773
774 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
775 {
776         kvm_arch_vcpu_free(vcpu);
777 }
778
779 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
780 {
781         return kvmppc_core_pending_dec(vcpu);
782 }
783
784 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
785 {
786         struct kvm_vcpu *vcpu;
787
788         vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
789         kvmppc_decrementer_func(vcpu);
790
791         return HRTIMER_NORESTART;
792 }
793
794 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
795 {
796         int ret;
797
798         hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
799         vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
800         vcpu->arch.dec_expires = get_tb();
801
802 #ifdef CONFIG_KVM_EXIT_TIMING
803         mutex_init(&vcpu->arch.exit_timing_lock);
804 #endif
805         ret = kvmppc_subarch_vcpu_init(vcpu);
806         return ret;
807 }
808
809 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
810 {
811         kvmppc_mmu_destroy(vcpu);
812         kvmppc_subarch_vcpu_uninit(vcpu);
813 }
814
815 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
816 {
817 #ifdef CONFIG_BOOKE
818         /*
819          * vrsave (formerly usprg0) isn't used by Linux, but may
820          * be used by the guest.
821          *
822          * On non-booke this is associated with Altivec and
823          * is handled by code in book3s.c.
824          */
825         mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
826 #endif
827         kvmppc_core_vcpu_load(vcpu, cpu);
828 }
829
830 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
831 {
832         kvmppc_core_vcpu_put(vcpu);
833 #ifdef CONFIG_BOOKE
834         vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
835 #endif
836 }
837
838 /*
839  * irq_bypass_add_producer and irq_bypass_del_producer are only
840  * useful if the architecture supports PCI passthrough.
841  * irq_bypass_stop and irq_bypass_start are not needed and so
842  * kvm_ops are not defined for them.
843  */
844 bool kvm_arch_has_irq_bypass(void)
845 {
846         return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
847                 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
848 }
849
850 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
851                                      struct irq_bypass_producer *prod)
852 {
853         struct kvm_kernel_irqfd *irqfd =
854                 container_of(cons, struct kvm_kernel_irqfd, consumer);
855         struct kvm *kvm = irqfd->kvm;
856
857         if (kvm->arch.kvm_ops->irq_bypass_add_producer)
858                 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
859
860         return 0;
861 }
862
863 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
864                                       struct irq_bypass_producer *prod)
865 {
866         struct kvm_kernel_irqfd *irqfd =
867                 container_of(cons, struct kvm_kernel_irqfd, consumer);
868         struct kvm *kvm = irqfd->kvm;
869
870         if (kvm->arch.kvm_ops->irq_bypass_del_producer)
871                 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
872 }
873
874 #ifdef CONFIG_VSX
875 static inline int kvmppc_get_vsr_dword_offset(int index)
876 {
877         int offset;
878
879         if ((index != 0) && (index != 1))
880                 return -1;
881
882 #ifdef __BIG_ENDIAN
883         offset =  index;
884 #else
885         offset = 1 - index;
886 #endif
887
888         return offset;
889 }
890
891 static inline int kvmppc_get_vsr_word_offset(int index)
892 {
893         int offset;
894
895         if ((index > 3) || (index < 0))
896                 return -1;
897
898 #ifdef __BIG_ENDIAN
899         offset = index;
900 #else
901         offset = 3 - index;
902 #endif
903         return offset;
904 }
905
906 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
907         u64 gpr)
908 {
909         union kvmppc_one_reg val;
910         int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
911         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
912
913         if (offset == -1)
914                 return;
915
916         if (index >= 32) {
917                 val.vval = VCPU_VSX_VR(vcpu, index - 32);
918                 val.vsxval[offset] = gpr;
919                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
920         } else {
921                 VCPU_VSX_FPR(vcpu, index, offset) = gpr;
922         }
923 }
924
925 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
926         u64 gpr)
927 {
928         union kvmppc_one_reg val;
929         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
930
931         if (index >= 32) {
932                 val.vval = VCPU_VSX_VR(vcpu, index - 32);
933                 val.vsxval[0] = gpr;
934                 val.vsxval[1] = gpr;
935                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
936         } else {
937                 VCPU_VSX_FPR(vcpu, index, 0) = gpr;
938                 VCPU_VSX_FPR(vcpu, index, 1) = gpr;
939         }
940 }
941
942 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
943         u32 gpr)
944 {
945         union kvmppc_one_reg val;
946         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
947
948         if (index >= 32) {
949                 val.vsx32val[0] = gpr;
950                 val.vsx32val[1] = gpr;
951                 val.vsx32val[2] = gpr;
952                 val.vsx32val[3] = gpr;
953                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
954         } else {
955                 val.vsx32val[0] = gpr;
956                 val.vsx32val[1] = gpr;
957                 VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
958                 VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
959         }
960 }
961
962 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
963         u32 gpr32)
964 {
965         union kvmppc_one_reg val;
966         int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
967         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
968         int dword_offset, word_offset;
969
970         if (offset == -1)
971                 return;
972
973         if (index >= 32) {
974                 val.vval = VCPU_VSX_VR(vcpu, index - 32);
975                 val.vsx32val[offset] = gpr32;
976                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
977         } else {
978                 dword_offset = offset / 2;
979                 word_offset = offset % 2;
980                 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
981                 val.vsx32val[word_offset] = gpr32;
982                 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
983         }
984 }
985 #endif /* CONFIG_VSX */
986
987 #ifdef CONFIG_ALTIVEC
988 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
989                 int index, int element_size)
990 {
991         int offset;
992         int elts = sizeof(vector128)/element_size;
993
994         if ((index < 0) || (index >= elts))
995                 return -1;
996
997         if (kvmppc_need_byteswap(vcpu))
998                 offset = elts - index - 1;
999         else
1000                 offset = index;
1001
1002         return offset;
1003 }
1004
1005 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
1006                 int index)
1007 {
1008         return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
1009 }
1010
1011 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
1012                 int index)
1013 {
1014         return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
1015 }
1016
1017 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
1018                 int index)
1019 {
1020         return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
1021 }
1022
1023 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
1024                 int index)
1025 {
1026         return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
1027 }
1028
1029
1030 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
1031         u64 gpr)
1032 {
1033         union kvmppc_one_reg val;
1034         int offset = kvmppc_get_vmx_dword_offset(vcpu,
1035                         vcpu->arch.mmio_vmx_offset);
1036         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1037
1038         if (offset == -1)
1039                 return;
1040
1041         val.vval = VCPU_VSX_VR(vcpu, index);
1042         val.vsxval[offset] = gpr;
1043         VCPU_VSX_VR(vcpu, index) = val.vval;
1044 }
1045
1046 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
1047         u32 gpr32)
1048 {
1049         union kvmppc_one_reg val;
1050         int offset = kvmppc_get_vmx_word_offset(vcpu,
1051                         vcpu->arch.mmio_vmx_offset);
1052         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1053
1054         if (offset == -1)
1055                 return;
1056
1057         val.vval = VCPU_VSX_VR(vcpu, index);
1058         val.vsx32val[offset] = gpr32;
1059         VCPU_VSX_VR(vcpu, index) = val.vval;
1060 }
1061
1062 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
1063         u16 gpr16)
1064 {
1065         union kvmppc_one_reg val;
1066         int offset = kvmppc_get_vmx_hword_offset(vcpu,
1067                         vcpu->arch.mmio_vmx_offset);
1068         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1069
1070         if (offset == -1)
1071                 return;
1072
1073         val.vval = VCPU_VSX_VR(vcpu, index);
1074         val.vsx16val[offset] = gpr16;
1075         VCPU_VSX_VR(vcpu, index) = val.vval;
1076 }
1077
1078 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
1079         u8 gpr8)
1080 {
1081         union kvmppc_one_reg val;
1082         int offset = kvmppc_get_vmx_byte_offset(vcpu,
1083                         vcpu->arch.mmio_vmx_offset);
1084         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1085
1086         if (offset == -1)
1087                 return;
1088
1089         val.vval = VCPU_VSX_VR(vcpu, index);
1090         val.vsx8val[offset] = gpr8;
1091         VCPU_VSX_VR(vcpu, index) = val.vval;
1092 }
1093 #endif /* CONFIG_ALTIVEC */
1094
1095 #ifdef CONFIG_PPC_FPU
1096 static inline u64 sp_to_dp(u32 fprs)
1097 {
1098         u64 fprd;
1099
1100         preempt_disable();
1101         enable_kernel_fp();
1102         asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
1103              : "fr0");
1104         preempt_enable();
1105         return fprd;
1106 }
1107
1108 static inline u32 dp_to_sp(u64 fprd)
1109 {
1110         u32 fprs;
1111
1112         preempt_disable();
1113         enable_kernel_fp();
1114         asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
1115              : "fr0");
1116         preempt_enable();
1117         return fprs;
1118 }
1119
1120 #else
1121 #define sp_to_dp(x)     (x)
1122 #define dp_to_sp(x)     (x)
1123 #endif /* CONFIG_PPC_FPU */
1124
1125 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
1126                                       struct kvm_run *run)
1127 {
1128         u64 uninitialized_var(gpr);
1129
1130         if (run->mmio.len > sizeof(gpr)) {
1131                 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
1132                 return;
1133         }
1134
1135         if (!vcpu->arch.mmio_host_swabbed) {
1136                 switch (run->mmio.len) {
1137                 case 8: gpr = *(u64 *)run->mmio.data; break;
1138                 case 4: gpr = *(u32 *)run->mmio.data; break;
1139                 case 2: gpr = *(u16 *)run->mmio.data; break;
1140                 case 1: gpr = *(u8 *)run->mmio.data; break;
1141                 }
1142         } else {
1143                 switch (run->mmio.len) {
1144                 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1145                 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1146                 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1147                 case 1: gpr = *(u8 *)run->mmio.data; break;
1148                 }
1149         }
1150
1151         /* conversion between single and double precision */
1152         if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1153                 gpr = sp_to_dp(gpr);
1154
1155         if (vcpu->arch.mmio_sign_extend) {
1156                 switch (run->mmio.len) {
1157 #ifdef CONFIG_PPC64
1158                 case 4:
1159                         gpr = (s64)(s32)gpr;
1160                         break;
1161 #endif
1162                 case 2:
1163                         gpr = (s64)(s16)gpr;
1164                         break;
1165                 case 1:
1166                         gpr = (s64)(s8)gpr;
1167                         break;
1168                 }
1169         }
1170
1171         switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1172         case KVM_MMIO_REG_GPR:
1173                 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1174                 break;
1175         case KVM_MMIO_REG_FPR:
1176                 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1177                         vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);
1178
1179                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1180                 break;
1181 #ifdef CONFIG_PPC_BOOK3S
1182         case KVM_MMIO_REG_QPR:
1183                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1184                 break;
1185         case KVM_MMIO_REG_FQPR:
1186                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1187                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1188                 break;
1189 #endif
1190 #ifdef CONFIG_VSX
1191         case KVM_MMIO_REG_VSX:
1192                 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1193                         vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);
1194
1195                 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1196                         kvmppc_set_vsr_dword(vcpu, gpr);
1197                 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1198                         kvmppc_set_vsr_word(vcpu, gpr);
1199                 else if (vcpu->arch.mmio_copy_type ==
1200                                 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1201                         kvmppc_set_vsr_dword_dump(vcpu, gpr);
1202                 else if (vcpu->arch.mmio_copy_type ==
1203                                 KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
1204                         kvmppc_set_vsr_word_dump(vcpu, gpr);
1205                 break;
1206 #endif
1207 #ifdef CONFIG_ALTIVEC
1208         case KVM_MMIO_REG_VMX:
1209                 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1210                         vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);
1211
1212                 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
1213                         kvmppc_set_vmx_dword(vcpu, gpr);
1214                 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
1215                         kvmppc_set_vmx_word(vcpu, gpr);
1216                 else if (vcpu->arch.mmio_copy_type ==
1217                                 KVMPPC_VMX_COPY_HWORD)
1218                         kvmppc_set_vmx_hword(vcpu, gpr);
1219                 else if (vcpu->arch.mmio_copy_type ==
1220                                 KVMPPC_VMX_COPY_BYTE)
1221                         kvmppc_set_vmx_byte(vcpu, gpr);
1222                 break;
1223 #endif
1224 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1225         case KVM_MMIO_REG_NESTED_GPR:
1226                 if (kvmppc_need_byteswap(vcpu))
1227                         gpr = swab64(gpr);
1228                 kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr,
1229                                      sizeof(gpr));
1230                 break;
1231 #endif
1232         default:
1233                 BUG();
1234         }
1235 }
1236
1237 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1238                                 unsigned int rt, unsigned int bytes,
1239                                 int is_default_endian, int sign_extend)
1240 {
1241         int idx, ret;
1242         bool host_swabbed;
1243
1244         /* Pity C doesn't have a logical XOR operator */
1245         if (kvmppc_need_byteswap(vcpu)) {
1246                 host_swabbed = is_default_endian;
1247         } else {
1248                 host_swabbed = !is_default_endian;
1249         }
1250
1251         if (bytes > sizeof(run->mmio.data)) {
1252                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1253                        run->mmio.len);
1254         }
1255
1256         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1257         run->mmio.len = bytes;
1258         run->mmio.is_write = 0;
1259
1260         vcpu->arch.io_gpr = rt;
1261         vcpu->arch.mmio_host_swabbed = host_swabbed;
1262         vcpu->mmio_needed = 1;
1263         vcpu->mmio_is_write = 0;
1264         vcpu->arch.mmio_sign_extend = sign_extend;
1265
1266         idx = srcu_read_lock(&vcpu->kvm->srcu);
1267
1268         ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1269                               bytes, &run->mmio.data);
1270
1271         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1272
1273         if (!ret) {
1274                 kvmppc_complete_mmio_load(vcpu, run);
1275                 vcpu->mmio_needed = 0;
1276                 return EMULATE_DONE;
1277         }
1278
1279         return EMULATE_DO_MMIO;
1280 }
1281
1282 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1283                        unsigned int rt, unsigned int bytes,
1284                        int is_default_endian)
1285 {
1286         return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
1287 }
1288 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1289
1290 /* Same as above, but sign extends */
1291 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1292                         unsigned int rt, unsigned int bytes,
1293                         int is_default_endian)
1294 {
1295         return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
1296 }
1297
1298 #ifdef CONFIG_VSX
1299 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1300                         unsigned int rt, unsigned int bytes,
1301                         int is_default_endian, int mmio_sign_extend)
1302 {
1303         enum emulation_result emulated = EMULATE_DONE;
1304
1305         /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1306         if (vcpu->arch.mmio_vsx_copy_nums > 4)
1307                 return EMULATE_FAIL;
1308
1309         while (vcpu->arch.mmio_vsx_copy_nums) {
1310                 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1311                         is_default_endian, mmio_sign_extend);
1312
1313                 if (emulated != EMULATE_DONE)
1314                         break;
1315
1316                 vcpu->arch.paddr_accessed += run->mmio.len;
1317
1318                 vcpu->arch.mmio_vsx_copy_nums--;
1319                 vcpu->arch.mmio_vsx_offset++;
1320         }
1321         return emulated;
1322 }
1323 #endif /* CONFIG_VSX */
1324
1325 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1326                         u64 val, unsigned int bytes, int is_default_endian)
1327 {
1328         void *data = run->mmio.data;
1329         int idx, ret;
1330         bool host_swabbed;
1331
1332         /* Pity C doesn't have a logical XOR operator */
1333         if (kvmppc_need_byteswap(vcpu)) {
1334                 host_swabbed = is_default_endian;
1335         } else {
1336                 host_swabbed = !is_default_endian;
1337         }
1338
1339         if (bytes > sizeof(run->mmio.data)) {
1340                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1341                        run->mmio.len);
1342         }
1343
1344         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1345         run->mmio.len = bytes;
1346         run->mmio.is_write = 1;
1347         vcpu->mmio_needed = 1;
1348         vcpu->mmio_is_write = 1;
1349
1350         if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1351                 val = dp_to_sp(val);
1352
1353         /* Store the value at the lowest bytes in 'data'. */
1354         if (!host_swabbed) {
1355                 switch (bytes) {
1356                 case 8: *(u64 *)data = val; break;
1357                 case 4: *(u32 *)data = val; break;
1358                 case 2: *(u16 *)data = val; break;
1359                 case 1: *(u8  *)data = val; break;
1360                 }
1361         } else {
1362                 switch (bytes) {
1363                 case 8: *(u64 *)data = swab64(val); break;
1364                 case 4: *(u32 *)data = swab32(val); break;
1365                 case 2: *(u16 *)data = swab16(val); break;
1366                 case 1: *(u8  *)data = val; break;
1367                 }
1368         }
1369
1370         idx = srcu_read_lock(&vcpu->kvm->srcu);
1371
1372         ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1373                                bytes, &run->mmio.data);
1374
1375         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1376
1377         if (!ret) {
1378                 vcpu->mmio_needed = 0;
1379                 return EMULATE_DONE;
1380         }
1381
1382         return EMULATE_DO_MMIO;
1383 }
1384 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1385
1386 #ifdef CONFIG_VSX
1387 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1388 {
1389         u32 dword_offset, word_offset;
1390         union kvmppc_one_reg reg;
1391         int vsx_offset = 0;
1392         int copy_type = vcpu->arch.mmio_copy_type;
1393         int result = 0;
1394
1395         switch (copy_type) {
1396         case KVMPPC_VSX_COPY_DWORD:
1397                 vsx_offset =
1398                         kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1399
1400                 if (vsx_offset == -1) {
1401                         result = -1;
1402                         break;
1403                 }
1404
1405                 if (rs < 32) {
1406                         *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1407                 } else {
1408                         reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1409                         *val = reg.vsxval[vsx_offset];
1410                 }
1411                 break;
1412
1413         case KVMPPC_VSX_COPY_WORD:
1414                 vsx_offset =
1415                         kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1416
1417                 if (vsx_offset == -1) {
1418                         result = -1;
1419                         break;
1420                 }
1421
1422                 if (rs < 32) {
1423                         dword_offset = vsx_offset / 2;
1424                         word_offset = vsx_offset % 2;
1425                         reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1426                         *val = reg.vsx32val[word_offset];
1427                 } else {
1428                         reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1429                         *val = reg.vsx32val[vsx_offset];
1430                 }
1431                 break;
1432
1433         default:
1434                 result = -1;
1435                 break;
1436         }
1437
1438         return result;
1439 }
1440
1441 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1442                         int rs, unsigned int bytes, int is_default_endian)
1443 {
1444         u64 val;
1445         enum emulation_result emulated = EMULATE_DONE;
1446
1447         vcpu->arch.io_gpr = rs;
1448
1449         /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1450         if (vcpu->arch.mmio_vsx_copy_nums > 4)
1451                 return EMULATE_FAIL;
1452
1453         while (vcpu->arch.mmio_vsx_copy_nums) {
1454                 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1455                         return EMULATE_FAIL;
1456
1457                 emulated = kvmppc_handle_store(run, vcpu,
1458                          val, bytes, is_default_endian);
1459
1460                 if (emulated != EMULATE_DONE)
1461                         break;
1462
1463                 vcpu->arch.paddr_accessed += run->mmio.len;
1464
1465                 vcpu->arch.mmio_vsx_copy_nums--;
1466                 vcpu->arch.mmio_vsx_offset++;
1467         }
1468
1469         return emulated;
1470 }
1471
1472 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
1473                         struct kvm_run *run)
1474 {
1475         enum emulation_result emulated = EMULATE_FAIL;
1476         int r;
1477
1478         vcpu->arch.paddr_accessed += run->mmio.len;
1479
1480         if (!vcpu->mmio_is_write) {
1481                 emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
1482                          run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1483         } else {
1484                 emulated = kvmppc_handle_vsx_store(run, vcpu,
1485                          vcpu->arch.io_gpr, run->mmio.len, 1);
1486         }
1487
1488         switch (emulated) {
1489         case EMULATE_DO_MMIO:
1490                 run->exit_reason = KVM_EXIT_MMIO;
1491                 r = RESUME_HOST;
1492                 break;
1493         case EMULATE_FAIL:
1494                 pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1495                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1496                 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1497                 r = RESUME_HOST;
1498                 break;
1499         default:
1500                 r = RESUME_GUEST;
1501                 break;
1502         }
1503         return r;
1504 }
1505 #endif /* CONFIG_VSX */
1506
1507 #ifdef CONFIG_ALTIVEC
1508 int kvmppc_handle_vmx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1509                 unsigned int rt, unsigned int bytes, int is_default_endian)
1510 {
1511         enum emulation_result emulated = EMULATE_DONE;
1512
1513         if (vcpu->arch.mmio_vsx_copy_nums > 2)
1514                 return EMULATE_FAIL;
1515
1516         while (vcpu->arch.mmio_vmx_copy_nums) {
1517                 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1518                                 is_default_endian, 0);
1519
1520                 if (emulated != EMULATE_DONE)
1521                         break;
1522
1523                 vcpu->arch.paddr_accessed += run->mmio.len;
1524                 vcpu->arch.mmio_vmx_copy_nums--;
1525                 vcpu->arch.mmio_vmx_offset++;
1526         }
1527
1528         return emulated;
1529 }
1530
1531 int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1532 {
1533         union kvmppc_one_reg reg;
1534         int vmx_offset = 0;
1535         int result = 0;
1536
1537         vmx_offset =
1538                 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1539
1540         if (vmx_offset == -1)
1541                 return -1;
1542
1543         reg.vval = VCPU_VSX_VR(vcpu, index);
1544         *val = reg.vsxval[vmx_offset];
1545
1546         return result;
1547 }
1548
1549 int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
1550 {
1551         union kvmppc_one_reg reg;
1552         int vmx_offset = 0;
1553         int result = 0;
1554
1555         vmx_offset =
1556                 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1557
1558         if (vmx_offset == -1)
1559                 return -1;
1560
1561         reg.vval = VCPU_VSX_VR(vcpu, index);
1562         *val = reg.vsx32val[vmx_offset];
1563
1564         return result;
1565 }
1566
1567 int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
1568 {
1569         union kvmppc_one_reg reg;
1570         int vmx_offset = 0;
1571         int result = 0;
1572
1573         vmx_offset =
1574                 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1575
1576         if (vmx_offset == -1)
1577                 return -1;
1578
1579         reg.vval = VCPU_VSX_VR(vcpu, index);
1580         *val = reg.vsx16val[vmx_offset];
1581
1582         return result;
1583 }
1584
1585 int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
1586 {
1587         union kvmppc_one_reg reg;
1588         int vmx_offset = 0;
1589         int result = 0;
1590
1591         vmx_offset =
1592                 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1593
1594         if (vmx_offset == -1)
1595                 return -1;
1596
1597         reg.vval = VCPU_VSX_VR(vcpu, index);
1598         *val = reg.vsx8val[vmx_offset];
1599
1600         return result;
1601 }
1602
1603 int kvmppc_handle_vmx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1604                 unsigned int rs, unsigned int bytes, int is_default_endian)
1605 {
1606         u64 val = 0;
1607         unsigned int index = rs & KVM_MMIO_REG_MASK;
1608         enum emulation_result emulated = EMULATE_DONE;
1609
1610         if (vcpu->arch.mmio_vsx_copy_nums > 2)
1611                 return EMULATE_FAIL;
1612
1613         vcpu->arch.io_gpr = rs;
1614
1615         while (vcpu->arch.mmio_vmx_copy_nums) {
1616                 switch (vcpu->arch.mmio_copy_type) {
1617                 case KVMPPC_VMX_COPY_DWORD:
1618                         if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
1619                                 return EMULATE_FAIL;
1620
1621                         break;
1622                 case KVMPPC_VMX_COPY_WORD:
1623                         if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
1624                                 return EMULATE_FAIL;
1625                         break;
1626                 case KVMPPC_VMX_COPY_HWORD:
1627                         if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
1628                                 return EMULATE_FAIL;
1629                         break;
1630                 case KVMPPC_VMX_COPY_BYTE:
1631                         if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
1632                                 return EMULATE_FAIL;
1633                         break;
1634                 default:
1635                         return EMULATE_FAIL;
1636                 }
1637
1638                 emulated = kvmppc_handle_store(run, vcpu, val, bytes,
1639                                 is_default_endian);
1640                 if (emulated != EMULATE_DONE)
1641                         break;
1642
1643                 vcpu->arch.paddr_accessed += run->mmio.len;
1644                 vcpu->arch.mmio_vmx_copy_nums--;
1645                 vcpu->arch.mmio_vmx_offset++;
1646         }
1647
1648         return emulated;
1649 }
1650
1651 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu,
1652                 struct kvm_run *run)
1653 {
1654         enum emulation_result emulated = EMULATE_FAIL;
1655         int r;
1656
1657         vcpu->arch.paddr_accessed += run->mmio.len;
1658
1659         if (!vcpu->mmio_is_write) {
1660                 emulated = kvmppc_handle_vmx_load(run, vcpu,
1661                                 vcpu->arch.io_gpr, run->mmio.len, 1);
1662         } else {
1663                 emulated = kvmppc_handle_vmx_store(run, vcpu,
1664                                 vcpu->arch.io_gpr, run->mmio.len, 1);
1665         }
1666
1667         switch (emulated) {
1668         case EMULATE_DO_MMIO:
1669                 run->exit_reason = KVM_EXIT_MMIO;
1670                 r = RESUME_HOST;
1671                 break;
1672         case EMULATE_FAIL:
1673                 pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1674                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1675                 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1676                 r = RESUME_HOST;
1677                 break;
1678         default:
1679                 r = RESUME_GUEST;
1680                 break;
1681         }
1682         return r;
1683 }
1684 #endif /* CONFIG_ALTIVEC */
1685
1686 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1687 {
1688         int r = 0;
1689         union kvmppc_one_reg val;
1690         int size;
1691
1692         size = one_reg_size(reg->id);
1693         if (size > sizeof(val))
1694                 return -EINVAL;
1695
1696         r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1697         if (r == -EINVAL) {
1698                 r = 0;
1699                 switch (reg->id) {
1700 #ifdef CONFIG_ALTIVEC
1701                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1702                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1703                                 r = -ENXIO;
1704                                 break;
1705                         }
1706                         val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1707                         break;
1708                 case KVM_REG_PPC_VSCR:
1709                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1710                                 r = -ENXIO;
1711                                 break;
1712                         }
1713                         val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1714                         break;
1715                 case KVM_REG_PPC_VRSAVE:
1716                         val = get_reg_val(reg->id, vcpu->arch.vrsave);
1717                         break;
1718 #endif /* CONFIG_ALTIVEC */
1719                 default:
1720                         r = -EINVAL;
1721                         break;
1722                 }
1723         }
1724
1725         if (r)
1726                 return r;
1727
1728         if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1729                 r = -EFAULT;
1730
1731         return r;
1732 }
1733
1734 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1735 {
1736         int r;
1737         union kvmppc_one_reg val;
1738         int size;
1739
1740         size = one_reg_size(reg->id);
1741         if (size > sizeof(val))
1742                 return -EINVAL;
1743
1744         if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1745                 return -EFAULT;
1746
1747         r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1748         if (r == -EINVAL) {
1749                 r = 0;
1750                 switch (reg->id) {
1751 #ifdef CONFIG_ALTIVEC
1752                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1753                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1754                                 r = -ENXIO;
1755                                 break;
1756                         }
1757                         vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1758                         break;
1759                 case KVM_REG_PPC_VSCR:
1760                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1761                                 r = -ENXIO;
1762                                 break;
1763                         }
1764                         vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1765                         break;
1766                 case KVM_REG_PPC_VRSAVE:
1767                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1768                                 r = -ENXIO;
1769                                 break;
1770                         }
1771                         vcpu->arch.vrsave = set_reg_val(reg->id, val);
1772                         break;
1773 #endif /* CONFIG_ALTIVEC */
1774                 default:
1775                         r = -EINVAL;
1776                         break;
1777                 }
1778         }
1779
1780         return r;
1781 }
1782
1783 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1784 {
1785         int r;
1786
1787         vcpu_load(vcpu);
1788
1789         if (vcpu->mmio_needed) {
1790                 vcpu->mmio_needed = 0;
1791                 if (!vcpu->mmio_is_write)
1792                         kvmppc_complete_mmio_load(vcpu, run);
1793 #ifdef CONFIG_VSX
1794                 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1795                         vcpu->arch.mmio_vsx_copy_nums--;
1796                         vcpu->arch.mmio_vsx_offset++;
1797                 }
1798
1799                 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1800                         r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
1801                         if (r == RESUME_HOST) {
1802                                 vcpu->mmio_needed = 1;
1803                                 goto out;
1804                         }
1805                 }
1806 #endif
1807 #ifdef CONFIG_ALTIVEC
1808                 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1809                         vcpu->arch.mmio_vmx_copy_nums--;
1810                         vcpu->arch.mmio_vmx_offset++;
1811                 }
1812
1813                 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1814                         r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run);
1815                         if (r == RESUME_HOST) {
1816                                 vcpu->mmio_needed = 1;
1817                                 goto out;
1818                         }
1819                 }
1820 #endif
1821         } else if (vcpu->arch.osi_needed) {
1822                 u64 *gprs = run->osi.gprs;
1823                 int i;
1824
1825                 for (i = 0; i < 32; i++)
1826                         kvmppc_set_gpr(vcpu, i, gprs[i]);
1827                 vcpu->arch.osi_needed = 0;
1828         } else if (vcpu->arch.hcall_needed) {
1829                 int i;
1830
1831                 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1832                 for (i = 0; i < 9; ++i)
1833                         kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1834                 vcpu->arch.hcall_needed = 0;
1835 #ifdef CONFIG_BOOKE
1836         } else if (vcpu->arch.epr_needed) {
1837                 kvmppc_set_epr(vcpu, run->epr.epr);
1838                 vcpu->arch.epr_needed = 0;
1839 #endif
1840         }
1841
1842         kvm_sigset_activate(vcpu);
1843
1844         if (run->immediate_exit)
1845                 r = -EINTR;
1846         else
1847                 r = kvmppc_vcpu_run(run, vcpu);
1848
1849         kvm_sigset_deactivate(vcpu);
1850
1851 #ifdef CONFIG_ALTIVEC
1852 out:
1853 #endif
1854         vcpu_put(vcpu);
1855         return r;
1856 }
1857
1858 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1859 {
1860         if (irq->irq == KVM_INTERRUPT_UNSET) {
1861                 kvmppc_core_dequeue_external(vcpu);
1862                 return 0;
1863         }
1864
1865         kvmppc_core_queue_external(vcpu, irq);
1866
1867         kvm_vcpu_kick(vcpu);
1868
1869         return 0;
1870 }
1871
1872 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1873                                      struct kvm_enable_cap *cap)
1874 {
1875         int r;
1876
1877         if (cap->flags)
1878                 return -EINVAL;
1879
1880         switch (cap->cap) {
1881         case KVM_CAP_PPC_OSI:
1882                 r = 0;
1883                 vcpu->arch.osi_enabled = true;
1884                 break;
1885         case KVM_CAP_PPC_PAPR:
1886                 r = 0;
1887                 vcpu->arch.papr_enabled = true;
1888                 break;
1889         case KVM_CAP_PPC_EPR:
1890                 r = 0;
1891                 if (cap->args[0])
1892                         vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1893                 else
1894                         vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1895                 break;
1896 #ifdef CONFIG_BOOKE
1897         case KVM_CAP_PPC_BOOKE_WATCHDOG:
1898                 r = 0;
1899                 vcpu->arch.watchdog_enabled = true;
1900                 break;
1901 #endif
1902 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1903         case KVM_CAP_SW_TLB: {
1904                 struct kvm_config_tlb cfg;
1905                 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1906
1907                 r = -EFAULT;
1908                 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1909                         break;
1910
1911                 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1912                 break;
1913         }
1914 #endif
1915 #ifdef CONFIG_KVM_MPIC
1916         case KVM_CAP_IRQ_MPIC: {
1917                 struct fd f;
1918                 struct kvm_device *dev;
1919
1920                 r = -EBADF;
1921                 f = fdget(cap->args[0]);
1922                 if (!f.file)
1923                         break;
1924
1925                 r = -EPERM;
1926                 dev = kvm_device_from_filp(f.file);
1927                 if (dev)
1928                         r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1929
1930                 fdput(f);
1931                 break;
1932         }
1933 #endif
1934 #ifdef CONFIG_KVM_XICS
1935         case KVM_CAP_IRQ_XICS: {
1936                 struct fd f;
1937                 struct kvm_device *dev;
1938
1939                 r = -EBADF;
1940                 f = fdget(cap->args[0]);
1941                 if (!f.file)
1942                         break;
1943
1944                 r = -EPERM;
1945                 dev = kvm_device_from_filp(f.file);
1946                 if (dev) {
1947                         if (xics_on_xive())
1948                                 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1949                         else
1950                                 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1951                 }
1952
1953                 fdput(f);
1954                 break;
1955         }
1956 #endif /* CONFIG_KVM_XICS */
1957 #ifdef CONFIG_KVM_XIVE
1958         case KVM_CAP_PPC_IRQ_XIVE: {
1959                 struct fd f;
1960                 struct kvm_device *dev;
1961
1962                 r = -EBADF;
1963                 f = fdget(cap->args[0]);
1964                 if (!f.file)
1965                         break;
1966
1967                 r = -ENXIO;
1968                 if (!xive_enabled())
1969                         break;
1970
1971                 r = -EPERM;
1972                 dev = kvm_device_from_filp(f.file);
1973                 if (dev)
1974                         r = kvmppc_xive_native_connect_vcpu(dev, vcpu,
1975                                                             cap->args[1]);
1976
1977                 fdput(f);
1978                 break;
1979         }
1980 #endif /* CONFIG_KVM_XIVE */
1981 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1982         case KVM_CAP_PPC_FWNMI:
1983                 r = -EINVAL;
1984                 if (!is_kvmppc_hv_enabled(vcpu->kvm))
1985                         break;
1986                 r = 0;
1987                 vcpu->kvm->arch.fwnmi_enabled = true;
1988                 break;
1989 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1990         default:
1991                 r = -EINVAL;
1992                 break;
1993         }
1994
1995         if (!r)
1996                 r = kvmppc_sanity_check(vcpu);
1997
1998         return r;
1999 }
2000
2001 bool kvm_arch_intc_initialized(struct kvm *kvm)
2002 {
2003 #ifdef CONFIG_KVM_MPIC
2004         if (kvm->arch.mpic)
2005                 return true;
2006 #endif
2007 #ifdef CONFIG_KVM_XICS
2008         if (kvm->arch.xics || kvm->arch.xive)
2009                 return true;
2010 #endif
2011         return false;
2012 }
2013
2014 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
2015                                     struct kvm_mp_state *mp_state)
2016 {
2017         return -EINVAL;
2018 }
2019
2020 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
2021                                     struct kvm_mp_state *mp_state)
2022 {
2023         return -EINVAL;
2024 }
2025
2026 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2027                                unsigned int ioctl, unsigned long arg)
2028 {
2029         struct kvm_vcpu *vcpu = filp->private_data;
2030         void __user *argp = (void __user *)arg;
2031
2032         if (ioctl == KVM_INTERRUPT) {
2033                 struct kvm_interrupt irq;
2034                 if (copy_from_user(&irq, argp, sizeof(irq)))
2035                         return -EFAULT;
2036                 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2037         }
2038         return -ENOIOCTLCMD;
2039 }
2040
2041 long kvm_arch_vcpu_ioctl(struct file *filp,
2042                          unsigned int ioctl, unsigned long arg)
2043 {
2044         struct kvm_vcpu *vcpu = filp->private_data;
2045         void __user *argp = (void __user *)arg;
2046         long r;
2047
2048         switch (ioctl) {
2049         case KVM_ENABLE_CAP:
2050         {
2051                 struct kvm_enable_cap cap;
2052                 r = -EFAULT;
2053                 vcpu_load(vcpu);
2054                 if (copy_from_user(&cap, argp, sizeof(cap)))
2055                         goto out;
2056                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2057                 vcpu_put(vcpu);
2058                 break;
2059         }
2060
2061         case KVM_SET_ONE_REG:
2062         case KVM_GET_ONE_REG:
2063         {
2064                 struct kvm_one_reg reg;
2065                 r = -EFAULT;
2066                 if (copy_from_user(&reg, argp, sizeof(reg)))
2067                         goto out;
2068                 if (ioctl == KVM_SET_ONE_REG)
2069                         r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
2070                 else
2071                         r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
2072                 break;
2073         }
2074
2075 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
2076         case KVM_DIRTY_TLB: {
2077                 struct kvm_dirty_tlb dirty;
2078                 r = -EFAULT;
2079                 vcpu_load(vcpu);
2080                 if (copy_from_user(&dirty, argp, sizeof(dirty)))
2081                         goto out;
2082                 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2083                 vcpu_put(vcpu);
2084                 break;
2085         }
2086 #endif
2087         default:
2088                 r = -EINVAL;
2089         }
2090
2091 out:
2092         return r;
2093 }
2094
2095 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2096 {
2097         return VM_FAULT_SIGBUS;
2098 }
2099
2100 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
2101 {
2102         u32 inst_nop = 0x60000000;
2103 #ifdef CONFIG_KVM_BOOKE_HV
2104         u32 inst_sc1 = 0x44000022;
2105         pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
2106         pvinfo->hcall[1] = cpu_to_be32(inst_nop);
2107         pvinfo->hcall[2] = cpu_to_be32(inst_nop);
2108         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2109 #else
2110         u32 inst_lis = 0x3c000000;
2111         u32 inst_ori = 0x60000000;
2112         u32 inst_sc = 0x44000002;
2113         u32 inst_imm_mask = 0xffff;
2114
2115         /*
2116          * The hypercall to get into KVM from within guest context is as
2117          * follows:
2118          *
2119          *    lis r0, r0, KVM_SC_MAGIC_R0@h
2120          *    ori r0, KVM_SC_MAGIC_R0@l
2121          *    sc
2122          *    nop
2123          */
2124         pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
2125         pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
2126         pvinfo->hcall[2] = cpu_to_be32(inst_sc);
2127         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2128 #endif
2129
2130         pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
2131
2132         return 0;
2133 }
2134
2135 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
2136                           bool line_status)
2137 {
2138         if (!irqchip_in_kernel(kvm))
2139                 return -ENXIO;
2140
2141         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2142                                         irq_event->irq, irq_event->level,
2143                                         line_status);
2144         return 0;
2145 }
2146
2147
2148 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
2149                             struct kvm_enable_cap *cap)
2150 {
2151         int r;
2152
2153         if (cap->flags)
2154                 return -EINVAL;
2155
2156         switch (cap->cap) {
2157 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2158         case KVM_CAP_PPC_ENABLE_HCALL: {
2159                 unsigned long hcall = cap->args[0];
2160
2161                 r = -EINVAL;
2162                 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
2163                     cap->args[1] > 1)
2164                         break;
2165                 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
2166                         break;
2167                 if (cap->args[1])
2168                         set_bit(hcall / 4, kvm->arch.enabled_hcalls);
2169                 else
2170                         clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
2171                 r = 0;
2172                 break;
2173         }
2174         case KVM_CAP_PPC_SMT: {
2175                 unsigned long mode = cap->args[0];
2176                 unsigned long flags = cap->args[1];
2177
2178                 r = -EINVAL;
2179                 if (kvm->arch.kvm_ops->set_smt_mode)
2180                         r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
2181                 break;
2182         }
2183
2184         case KVM_CAP_PPC_NESTED_HV:
2185                 r = -EINVAL;
2186                 if (!is_kvmppc_hv_enabled(kvm) ||
2187                     !kvm->arch.kvm_ops->enable_nested)
2188                         break;
2189                 r = kvm->arch.kvm_ops->enable_nested(kvm);
2190                 break;
2191 #endif
2192         default:
2193                 r = -EINVAL;
2194                 break;
2195         }
2196
2197         return r;
2198 }
2199
2200 #ifdef CONFIG_PPC_BOOK3S_64
2201 /*
2202  * These functions check whether the underlying hardware is safe
2203  * against attacks based on observing the effects of speculatively
2204  * executed instructions, and whether it supplies instructions for
2205  * use in workarounds.  The information comes from firmware, either
2206  * via the device tree on powernv platforms or from an hcall on
2207  * pseries platforms.
2208  */
2209 #ifdef CONFIG_PPC_PSERIES
2210 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2211 {
2212         struct h_cpu_char_result c;
2213         unsigned long rc;
2214
2215         if (!machine_is(pseries))
2216                 return -ENOTTY;
2217
2218         rc = plpar_get_cpu_characteristics(&c);
2219         if (rc == H_SUCCESS) {
2220                 cp->character = c.character;
2221                 cp->behaviour = c.behaviour;
2222                 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2223                         KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2224                         KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2225                         KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2226                         KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2227                         KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
2228                         KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2229                         KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2230                         KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2231                 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2232                         KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2233                         KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2234                         KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2235         }
2236         return 0;
2237 }
2238 #else
2239 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2240 {
2241         return -ENOTTY;
2242 }
2243 #endif
2244
2245 static inline bool have_fw_feat(struct device_node *fw_features,
2246                                 const char *state, const char *name)
2247 {
2248         struct device_node *np;
2249         bool r = false;
2250
2251         np = of_get_child_by_name(fw_features, name);
2252         if (np) {
2253                 r = of_property_read_bool(np, state);
2254                 of_node_put(np);
2255         }
2256         return r;
2257 }
2258
2259 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2260 {
2261         struct device_node *np, *fw_features;
2262         int r;
2263
2264         memset(cp, 0, sizeof(*cp));
2265         r = pseries_get_cpu_char(cp);
2266         if (r != -ENOTTY)
2267                 return r;
2268
2269         np = of_find_node_by_name(NULL, "ibm,opal");
2270         if (np) {
2271                 fw_features = of_get_child_by_name(np, "fw-features");
2272                 of_node_put(np);
2273                 if (!fw_features)
2274                         return 0;
2275                 if (have_fw_feat(fw_features, "enabled",
2276                                  "inst-spec-barrier-ori31,31,0"))
2277                         cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2278                 if (have_fw_feat(fw_features, "enabled",
2279                                  "fw-bcctrl-serialized"))
2280                         cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2281                 if (have_fw_feat(fw_features, "enabled",
2282                                  "inst-l1d-flush-ori30,30,0"))
2283                         cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2284                 if (have_fw_feat(fw_features, "enabled",
2285                                  "inst-l1d-flush-trig2"))
2286                         cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2287                 if (have_fw_feat(fw_features, "enabled",
2288                                  "fw-l1d-thread-split"))
2289                         cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2290                 if (have_fw_feat(fw_features, "enabled",
2291                                  "fw-count-cache-disabled"))
2292                         cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2293                 if (have_fw_feat(fw_features, "enabled",
2294                                  "fw-count-cache-flush-bcctr2,0,0"))
2295                         cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2296                 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2297                         KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2298                         KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2299                         KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2300                         KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2301                         KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2302                         KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2303
2304                 if (have_fw_feat(fw_features, "enabled",
2305                                  "speculation-policy-favor-security"))
2306                         cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2307                 if (!have_fw_feat(fw_features, "disabled",
2308                                   "needs-l1d-flush-msr-pr-0-to-1"))
2309                         cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2310                 if (!have_fw_feat(fw_features, "disabled",
2311                                   "needs-spec-barrier-for-bound-checks"))
2312                         cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2313                 if (have_fw_feat(fw_features, "enabled",
2314                                  "needs-count-cache-flush-on-context-switch"))
2315                         cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2316                 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2317                         KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2318                         KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2319                         KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2320
2321                 of_node_put(fw_features);
2322         }
2323
2324         return 0;
2325 }
2326 #endif
2327
2328 long kvm_arch_vm_ioctl(struct file *filp,
2329                        unsigned int ioctl, unsigned long arg)
2330 {
2331         struct kvm *kvm __maybe_unused = filp->private_data;
2332         void __user *argp = (void __user *)arg;
2333         long r;
2334
2335         switch (ioctl) {
2336         case KVM_PPC_GET_PVINFO: {
2337                 struct kvm_ppc_pvinfo pvinfo;
2338                 memset(&pvinfo, 0, sizeof(pvinfo));
2339                 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2340                 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2341                         r = -EFAULT;
2342                         goto out;
2343                 }
2344
2345                 break;
2346         }
2347 #ifdef CONFIG_SPAPR_TCE_IOMMU
2348         case KVM_CREATE_SPAPR_TCE_64: {
2349                 struct kvm_create_spapr_tce_64 create_tce_64;
2350
2351                 r = -EFAULT;
2352                 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2353                         goto out;
2354                 if (create_tce_64.flags) {
2355                         r = -EINVAL;
2356                         goto out;
2357                 }
2358                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2359                 goto out;
2360         }
2361         case KVM_CREATE_SPAPR_TCE: {
2362                 struct kvm_create_spapr_tce create_tce;
2363                 struct kvm_create_spapr_tce_64 create_tce_64;
2364
2365                 r = -EFAULT;
2366                 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2367                         goto out;
2368
2369                 create_tce_64.liobn = create_tce.liobn;
2370                 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2371                 create_tce_64.offset = 0;
2372                 create_tce_64.size = create_tce.window_size >>
2373                                 IOMMU_PAGE_SHIFT_4K;
2374                 create_tce_64.flags = 0;
2375                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2376                 goto out;
2377         }
2378 #endif
2379 #ifdef CONFIG_PPC_BOOK3S_64
2380         case KVM_PPC_GET_SMMU_INFO: {
2381                 struct kvm_ppc_smmu_info info;
2382                 struct kvm *kvm = filp->private_data;
2383
2384                 memset(&info, 0, sizeof(info));
2385                 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2386                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2387                         r = -EFAULT;
2388                 break;
2389         }
2390         case KVM_PPC_RTAS_DEFINE_TOKEN: {
2391                 struct kvm *kvm = filp->private_data;
2392
2393                 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2394                 break;
2395         }
2396         case KVM_PPC_CONFIGURE_V3_MMU: {
2397                 struct kvm *kvm = filp->private_data;
2398                 struct kvm_ppc_mmuv3_cfg cfg;
2399
2400                 r = -EINVAL;
2401                 if (!kvm->arch.kvm_ops->configure_mmu)
2402                         goto out;
2403                 r = -EFAULT;
2404                 if (copy_from_user(&cfg, argp, sizeof(cfg)))
2405                         goto out;
2406                 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2407                 break;
2408         }
2409         case KVM_PPC_GET_RMMU_INFO: {
2410                 struct kvm *kvm = filp->private_data;
2411                 struct kvm_ppc_rmmu_info info;
2412
2413                 r = -EINVAL;
2414                 if (!kvm->arch.kvm_ops->get_rmmu_info)
2415                         goto out;
2416                 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2417                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2418                         r = -EFAULT;
2419                 break;
2420         }
2421         case KVM_PPC_GET_CPU_CHAR: {
2422                 struct kvm_ppc_cpu_char cpuchar;
2423
2424                 r = kvmppc_get_cpu_char(&cpuchar);
2425                 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2426                         r = -EFAULT;
2427                 break;
2428         }
2429         default: {
2430                 struct kvm *kvm = filp->private_data;
2431                 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2432         }
2433 #else /* CONFIG_PPC_BOOK3S_64 */
2434         default:
2435                 r = -ENOTTY;
2436 #endif
2437         }
2438 out:
2439         return r;
2440 }
2441
2442 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
2443 static unsigned long nr_lpids;
2444
2445 long kvmppc_alloc_lpid(void)
2446 {
2447         long lpid;
2448
2449         do {
2450                 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
2451                 if (lpid >= nr_lpids) {
2452                         pr_err("%s: No LPIDs free\n", __func__);
2453                         return -ENOMEM;
2454                 }
2455         } while (test_and_set_bit(lpid, lpid_inuse));
2456
2457         return lpid;
2458 }
2459 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2460
2461 void kvmppc_claim_lpid(long lpid)
2462 {
2463         set_bit(lpid, lpid_inuse);
2464 }
2465 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2466
2467 void kvmppc_free_lpid(long lpid)
2468 {
2469         clear_bit(lpid, lpid_inuse);
2470 }
2471 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2472
2473 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2474 {
2475         nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
2476         memset(lpid_inuse, 0, sizeof(lpid_inuse));
2477 }
2478 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2479
2480 int kvm_arch_init(void *opaque)
2481 {
2482         return 0;
2483 }
2484
2485 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);