]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/powerpc/kvm/powerpc.c
Merge tag 'for-linus-20180623' of git://git.kernel.dk/linux-block
[linux.git] / arch / powerpc / kvm / powerpc.c
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright IBM Corp. 2007
16  *
17  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19  */
20
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/sched/signal.h>
27 #include <linux/fs.h>
28 #include <linux/slab.h>
29 #include <linux/file.h>
30 #include <linux/module.h>
31 #include <linux/irqbypass.h>
32 #include <linux/kvm_irqfd.h>
33 #include <asm/cputable.h>
34 #include <linux/uaccess.h>
35 #include <asm/kvm_ppc.h>
36 #include <asm/tlbflush.h>
37 #include <asm/cputhreads.h>
38 #include <asm/irqflags.h>
39 #include <asm/iommu.h>
40 #include <asm/switch_to.h>
41 #include <asm/xive.h>
42 #ifdef CONFIG_PPC_PSERIES
43 #include <asm/hvcall.h>
44 #include <asm/plpar_wrappers.h>
45 #endif
46
47 #include "timing.h"
48 #include "irq.h"
49 #include "../mm/mmu_decl.h"
50
51 #define CREATE_TRACE_POINTS
52 #include "trace.h"
53
54 struct kvmppc_ops *kvmppc_hv_ops;
55 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
56 struct kvmppc_ops *kvmppc_pr_ops;
57 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
58
59
60 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
61 {
62         return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
63 }
64
65 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
66 {
67         return false;
68 }
69
70 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
71 {
72         return 1;
73 }
74
75 /*
76  * Common checks before entering the guest world.  Call with interrupts
77  * disabled.
78  *
79  * returns:
80  *
81  * == 1 if we're ready to go into guest state
82  * <= 0 if we need to go back to the host with return value
83  */
84 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
85 {
86         int r;
87
88         WARN_ON(irqs_disabled());
89         hard_irq_disable();
90
91         while (true) {
92                 if (need_resched()) {
93                         local_irq_enable();
94                         cond_resched();
95                         hard_irq_disable();
96                         continue;
97                 }
98
99                 if (signal_pending(current)) {
100                         kvmppc_account_exit(vcpu, SIGNAL_EXITS);
101                         vcpu->run->exit_reason = KVM_EXIT_INTR;
102                         r = -EINTR;
103                         break;
104                 }
105
106                 vcpu->mode = IN_GUEST_MODE;
107
108                 /*
109                  * Reading vcpu->requests must happen after setting vcpu->mode,
110                  * so we don't miss a request because the requester sees
111                  * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
112                  * before next entering the guest (and thus doesn't IPI).
113                  * This also orders the write to mode from any reads
114                  * to the page tables done while the VCPU is running.
115                  * Please see the comment in kvm_flush_remote_tlbs.
116                  */
117                 smp_mb();
118
119                 if (kvm_request_pending(vcpu)) {
120                         /* Make sure we process requests preemptable */
121                         local_irq_enable();
122                         trace_kvm_check_requests(vcpu);
123                         r = kvmppc_core_check_requests(vcpu);
124                         hard_irq_disable();
125                         if (r > 0)
126                                 continue;
127                         break;
128                 }
129
130                 if (kvmppc_core_prepare_to_enter(vcpu)) {
131                         /* interrupts got enabled in between, so we
132                            are back at square 1 */
133                         continue;
134                 }
135
136                 guest_enter_irqoff();
137                 return 1;
138         }
139
140         /* return to host */
141         local_irq_enable();
142         return r;
143 }
144 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
145
146 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
147 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
148 {
149         struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
150         int i;
151
152         shared->sprg0 = swab64(shared->sprg0);
153         shared->sprg1 = swab64(shared->sprg1);
154         shared->sprg2 = swab64(shared->sprg2);
155         shared->sprg3 = swab64(shared->sprg3);
156         shared->srr0 = swab64(shared->srr0);
157         shared->srr1 = swab64(shared->srr1);
158         shared->dar = swab64(shared->dar);
159         shared->msr = swab64(shared->msr);
160         shared->dsisr = swab32(shared->dsisr);
161         shared->int_pending = swab32(shared->int_pending);
162         for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
163                 shared->sr[i] = swab32(shared->sr[i]);
164 }
165 #endif
166
167 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
168 {
169         int nr = kvmppc_get_gpr(vcpu, 11);
170         int r;
171         unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
172         unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
173         unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
174         unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
175         unsigned long r2 = 0;
176
177         if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
178                 /* 32 bit mode */
179                 param1 &= 0xffffffff;
180                 param2 &= 0xffffffff;
181                 param3 &= 0xffffffff;
182                 param4 &= 0xffffffff;
183         }
184
185         switch (nr) {
186         case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
187         {
188 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
189                 /* Book3S can be little endian, find it out here */
190                 int shared_big_endian = true;
191                 if (vcpu->arch.intr_msr & MSR_LE)
192                         shared_big_endian = false;
193                 if (shared_big_endian != vcpu->arch.shared_big_endian)
194                         kvmppc_swab_shared(vcpu);
195                 vcpu->arch.shared_big_endian = shared_big_endian;
196 #endif
197
198                 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
199                         /*
200                          * Older versions of the Linux magic page code had
201                          * a bug where they would map their trampoline code
202                          * NX. If that's the case, remove !PR NX capability.
203                          */
204                         vcpu->arch.disable_kernel_nx = true;
205                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
206                 }
207
208                 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
209                 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
210
211 #ifdef CONFIG_PPC_64K_PAGES
212                 /*
213                  * Make sure our 4k magic page is in the same window of a 64k
214                  * page within the guest and within the host's page.
215                  */
216                 if ((vcpu->arch.magic_page_pa & 0xf000) !=
217                     ((ulong)vcpu->arch.shared & 0xf000)) {
218                         void *old_shared = vcpu->arch.shared;
219                         ulong shared = (ulong)vcpu->arch.shared;
220                         void *new_shared;
221
222                         shared &= PAGE_MASK;
223                         shared |= vcpu->arch.magic_page_pa & 0xf000;
224                         new_shared = (void*)shared;
225                         memcpy(new_shared, old_shared, 0x1000);
226                         vcpu->arch.shared = new_shared;
227                 }
228 #endif
229
230                 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
231
232                 r = EV_SUCCESS;
233                 break;
234         }
235         case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
236                 r = EV_SUCCESS;
237 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
238                 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
239 #endif
240
241                 /* Second return value is in r4 */
242                 break;
243         case EV_HCALL_TOKEN(EV_IDLE):
244                 r = EV_SUCCESS;
245                 kvm_vcpu_block(vcpu);
246                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
247                 break;
248         default:
249                 r = EV_UNIMPLEMENTED;
250                 break;
251         }
252
253         kvmppc_set_gpr(vcpu, 4, r2);
254
255         return r;
256 }
257 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
258
259 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
260 {
261         int r = false;
262
263         /* We have to know what CPU to virtualize */
264         if (!vcpu->arch.pvr)
265                 goto out;
266
267         /* PAPR only works with book3s_64 */
268         if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
269                 goto out;
270
271         /* HV KVM can only do PAPR mode for now */
272         if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
273                 goto out;
274
275 #ifdef CONFIG_KVM_BOOKE_HV
276         if (!cpu_has_feature(CPU_FTR_EMB_HV))
277                 goto out;
278 #endif
279
280         r = true;
281
282 out:
283         vcpu->arch.sane = r;
284         return r ? 0 : -EINVAL;
285 }
286 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
287
288 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
289 {
290         enum emulation_result er;
291         int r;
292
293         er = kvmppc_emulate_loadstore(vcpu);
294         switch (er) {
295         case EMULATE_DONE:
296                 /* Future optimization: only reload non-volatiles if they were
297                  * actually modified. */
298                 r = RESUME_GUEST_NV;
299                 break;
300         case EMULATE_AGAIN:
301                 r = RESUME_GUEST;
302                 break;
303         case EMULATE_DO_MMIO:
304                 run->exit_reason = KVM_EXIT_MMIO;
305                 /* We must reload nonvolatiles because "update" load/store
306                  * instructions modify register state. */
307                 /* Future optimization: only reload non-volatiles if they were
308                  * actually modified. */
309                 r = RESUME_HOST_NV;
310                 break;
311         case EMULATE_FAIL:
312         {
313                 u32 last_inst;
314
315                 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
316                 /* XXX Deliver Program interrupt to guest. */
317                 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
318                 r = RESUME_HOST;
319                 break;
320         }
321         default:
322                 WARN_ON(1);
323                 r = RESUME_GUEST;
324         }
325
326         return r;
327 }
328 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
329
330 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
331               bool data)
332 {
333         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
334         struct kvmppc_pte pte;
335         int r;
336
337         vcpu->stat.st++;
338
339         r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
340                          XLATE_WRITE, &pte);
341         if (r < 0)
342                 return r;
343
344         *eaddr = pte.raddr;
345
346         if (!pte.may_write)
347                 return -EPERM;
348
349         /* Magic page override */
350         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
351             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
352             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
353                 void *magic = vcpu->arch.shared;
354                 magic += pte.eaddr & 0xfff;
355                 memcpy(magic, ptr, size);
356                 return EMULATE_DONE;
357         }
358
359         if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
360                 return EMULATE_DO_MMIO;
361
362         return EMULATE_DONE;
363 }
364 EXPORT_SYMBOL_GPL(kvmppc_st);
365
366 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
367                       bool data)
368 {
369         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
370         struct kvmppc_pte pte;
371         int rc;
372
373         vcpu->stat.ld++;
374
375         rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
376                           XLATE_READ, &pte);
377         if (rc)
378                 return rc;
379
380         *eaddr = pte.raddr;
381
382         if (!pte.may_read)
383                 return -EPERM;
384
385         if (!data && !pte.may_execute)
386                 return -ENOEXEC;
387
388         /* Magic page override */
389         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
390             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
391             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
392                 void *magic = vcpu->arch.shared;
393                 magic += pte.eaddr & 0xfff;
394                 memcpy(ptr, magic, size);
395                 return EMULATE_DONE;
396         }
397
398         if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
399                 return EMULATE_DO_MMIO;
400
401         return EMULATE_DONE;
402 }
403 EXPORT_SYMBOL_GPL(kvmppc_ld);
404
405 int kvm_arch_hardware_enable(void)
406 {
407         return 0;
408 }
409
410 int kvm_arch_hardware_setup(void)
411 {
412         return 0;
413 }
414
415 void kvm_arch_check_processor_compat(void *rtn)
416 {
417         *(int *)rtn = kvmppc_core_check_processor_compat();
418 }
419
420 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
421 {
422         struct kvmppc_ops *kvm_ops = NULL;
423         /*
424          * if we have both HV and PR enabled, default is HV
425          */
426         if (type == 0) {
427                 if (kvmppc_hv_ops)
428                         kvm_ops = kvmppc_hv_ops;
429                 else
430                         kvm_ops = kvmppc_pr_ops;
431                 if (!kvm_ops)
432                         goto err_out;
433         } else  if (type == KVM_VM_PPC_HV) {
434                 if (!kvmppc_hv_ops)
435                         goto err_out;
436                 kvm_ops = kvmppc_hv_ops;
437         } else if (type == KVM_VM_PPC_PR) {
438                 if (!kvmppc_pr_ops)
439                         goto err_out;
440                 kvm_ops = kvmppc_pr_ops;
441         } else
442                 goto err_out;
443
444         if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
445                 return -ENOENT;
446
447         kvm->arch.kvm_ops = kvm_ops;
448         return kvmppc_core_init_vm(kvm);
449 err_out:
450         return -EINVAL;
451 }
452
453 bool kvm_arch_has_vcpu_debugfs(void)
454 {
455         return false;
456 }
457
458 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
459 {
460         return 0;
461 }
462
463 void kvm_arch_destroy_vm(struct kvm *kvm)
464 {
465         unsigned int i;
466         struct kvm_vcpu *vcpu;
467
468 #ifdef CONFIG_KVM_XICS
469         /*
470          * We call kick_all_cpus_sync() to ensure that all
471          * CPUs have executed any pending IPIs before we
472          * continue and free VCPUs structures below.
473          */
474         if (is_kvmppc_hv_enabled(kvm))
475                 kick_all_cpus_sync();
476 #endif
477
478         kvm_for_each_vcpu(i, vcpu, kvm)
479                 kvm_arch_vcpu_free(vcpu);
480
481         mutex_lock(&kvm->lock);
482         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
483                 kvm->vcpus[i] = NULL;
484
485         atomic_set(&kvm->online_vcpus, 0);
486
487         kvmppc_core_destroy_vm(kvm);
488
489         mutex_unlock(&kvm->lock);
490
491         /* drop the module reference */
492         module_put(kvm->arch.kvm_ops->owner);
493 }
494
495 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
496 {
497         int r;
498         /* Assume we're using HV mode when the HV module is loaded */
499         int hv_enabled = kvmppc_hv_ops ? 1 : 0;
500
501         if (kvm) {
502                 /*
503                  * Hooray - we know which VM type we're running on. Depend on
504                  * that rather than the guess above.
505                  */
506                 hv_enabled = is_kvmppc_hv_enabled(kvm);
507         }
508
509         switch (ext) {
510 #ifdef CONFIG_BOOKE
511         case KVM_CAP_PPC_BOOKE_SREGS:
512         case KVM_CAP_PPC_BOOKE_WATCHDOG:
513         case KVM_CAP_PPC_EPR:
514 #else
515         case KVM_CAP_PPC_SEGSTATE:
516         case KVM_CAP_PPC_HIOR:
517         case KVM_CAP_PPC_PAPR:
518 #endif
519         case KVM_CAP_PPC_UNSET_IRQ:
520         case KVM_CAP_PPC_IRQ_LEVEL:
521         case KVM_CAP_ENABLE_CAP:
522         case KVM_CAP_ENABLE_CAP_VM:
523         case KVM_CAP_ONE_REG:
524         case KVM_CAP_IOEVENTFD:
525         case KVM_CAP_DEVICE_CTRL:
526         case KVM_CAP_IMMEDIATE_EXIT:
527                 r = 1;
528                 break;
529         case KVM_CAP_PPC_PAIRED_SINGLES:
530         case KVM_CAP_PPC_OSI:
531         case KVM_CAP_PPC_GET_PVINFO:
532 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
533         case KVM_CAP_SW_TLB:
534 #endif
535                 /* We support this only for PR */
536                 r = !hv_enabled;
537                 break;
538 #ifdef CONFIG_KVM_MPIC
539         case KVM_CAP_IRQ_MPIC:
540                 r = 1;
541                 break;
542 #endif
543
544 #ifdef CONFIG_PPC_BOOK3S_64
545         case KVM_CAP_SPAPR_TCE:
546         case KVM_CAP_SPAPR_TCE_64:
547                 /* fallthrough */
548         case KVM_CAP_SPAPR_TCE_VFIO:
549         case KVM_CAP_PPC_RTAS:
550         case KVM_CAP_PPC_FIXUP_HCALL:
551         case KVM_CAP_PPC_ENABLE_HCALL:
552 #ifdef CONFIG_KVM_XICS
553         case KVM_CAP_IRQ_XICS:
554 #endif
555         case KVM_CAP_PPC_GET_CPU_CHAR:
556                 r = 1;
557                 break;
558
559         case KVM_CAP_PPC_ALLOC_HTAB:
560                 r = hv_enabled;
561                 break;
562 #endif /* CONFIG_PPC_BOOK3S_64 */
563 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
564         case KVM_CAP_PPC_SMT:
565                 r = 0;
566                 if (kvm) {
567                         if (kvm->arch.emul_smt_mode > 1)
568                                 r = kvm->arch.emul_smt_mode;
569                         else
570                                 r = kvm->arch.smt_mode;
571                 } else if (hv_enabled) {
572                         if (cpu_has_feature(CPU_FTR_ARCH_300))
573                                 r = 1;
574                         else
575                                 r = threads_per_subcore;
576                 }
577                 break;
578         case KVM_CAP_PPC_SMT_POSSIBLE:
579                 r = 1;
580                 if (hv_enabled) {
581                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
582                                 r = ((threads_per_subcore << 1) - 1);
583                         else
584                                 /* P9 can emulate dbells, so allow any mode */
585                                 r = 8 | 4 | 2 | 1;
586                 }
587                 break;
588         case KVM_CAP_PPC_RMA:
589                 r = 0;
590                 break;
591         case KVM_CAP_PPC_HWRNG:
592                 r = kvmppc_hwrng_present();
593                 break;
594         case KVM_CAP_PPC_MMU_RADIX:
595                 r = !!(hv_enabled && radix_enabled());
596                 break;
597         case KVM_CAP_PPC_MMU_HASH_V3:
598                 r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300));
599                 break;
600 #endif
601         case KVM_CAP_SYNC_MMU:
602 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
603                 r = hv_enabled;
604 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
605                 r = 1;
606 #else
607                 r = 0;
608 #endif
609                 break;
610 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
611         case KVM_CAP_PPC_HTAB_FD:
612                 r = hv_enabled;
613                 break;
614 #endif
615         case KVM_CAP_NR_VCPUS:
616                 /*
617                  * Recommending a number of CPUs is somewhat arbitrary; we
618                  * return the number of present CPUs for -HV (since a host
619                  * will have secondary threads "offline"), and for other KVM
620                  * implementations just count online CPUs.
621                  */
622                 if (hv_enabled)
623                         r = num_present_cpus();
624                 else
625                         r = num_online_cpus();
626                 break;
627         case KVM_CAP_NR_MEMSLOTS:
628                 r = KVM_USER_MEM_SLOTS;
629                 break;
630         case KVM_CAP_MAX_VCPUS:
631                 r = KVM_MAX_VCPUS;
632                 break;
633 #ifdef CONFIG_PPC_BOOK3S_64
634         case KVM_CAP_PPC_GET_SMMU_INFO:
635                 r = 1;
636                 break;
637         case KVM_CAP_SPAPR_MULTITCE:
638                 r = 1;
639                 break;
640         case KVM_CAP_SPAPR_RESIZE_HPT:
641                 r = !!hv_enabled;
642                 break;
643 #endif
644 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
645         case KVM_CAP_PPC_FWNMI:
646                 r = hv_enabled;
647                 break;
648 #endif
649 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
650         case KVM_CAP_PPC_HTM:
651                 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
652                      (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
653                 break;
654 #endif
655         default:
656                 r = 0;
657                 break;
658         }
659         return r;
660
661 }
662
663 long kvm_arch_dev_ioctl(struct file *filp,
664                         unsigned int ioctl, unsigned long arg)
665 {
666         return -EINVAL;
667 }
668
669 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
670                            struct kvm_memory_slot *dont)
671 {
672         kvmppc_core_free_memslot(kvm, free, dont);
673 }
674
675 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
676                             unsigned long npages)
677 {
678         return kvmppc_core_create_memslot(kvm, slot, npages);
679 }
680
681 int kvm_arch_prepare_memory_region(struct kvm *kvm,
682                                    struct kvm_memory_slot *memslot,
683                                    const struct kvm_userspace_memory_region *mem,
684                                    enum kvm_mr_change change)
685 {
686         return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
687 }
688
689 void kvm_arch_commit_memory_region(struct kvm *kvm,
690                                    const struct kvm_userspace_memory_region *mem,
691                                    const struct kvm_memory_slot *old,
692                                    const struct kvm_memory_slot *new,
693                                    enum kvm_mr_change change)
694 {
695         kvmppc_core_commit_memory_region(kvm, mem, old, new);
696 }
697
698 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
699                                    struct kvm_memory_slot *slot)
700 {
701         kvmppc_core_flush_memslot(kvm, slot);
702 }
703
704 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
705 {
706         struct kvm_vcpu *vcpu;
707         vcpu = kvmppc_core_vcpu_create(kvm, id);
708         if (!IS_ERR(vcpu)) {
709                 vcpu->arch.wqp = &vcpu->wq;
710                 kvmppc_create_vcpu_debugfs(vcpu, id);
711         }
712         return vcpu;
713 }
714
715 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
716 {
717 }
718
719 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
720 {
721         /* Make sure we're not using the vcpu anymore */
722         hrtimer_cancel(&vcpu->arch.dec_timer);
723
724         kvmppc_remove_vcpu_debugfs(vcpu);
725
726         switch (vcpu->arch.irq_type) {
727         case KVMPPC_IRQ_MPIC:
728                 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
729                 break;
730         case KVMPPC_IRQ_XICS:
731                 if (xive_enabled())
732                         kvmppc_xive_cleanup_vcpu(vcpu);
733                 else
734                         kvmppc_xics_free_icp(vcpu);
735                 break;
736         }
737
738         kvmppc_core_vcpu_free(vcpu);
739 }
740
741 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
742 {
743         kvm_arch_vcpu_free(vcpu);
744 }
745
746 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
747 {
748         return kvmppc_core_pending_dec(vcpu);
749 }
750
751 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
752 {
753         struct kvm_vcpu *vcpu;
754
755         vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
756         kvmppc_decrementer_func(vcpu);
757
758         return HRTIMER_NORESTART;
759 }
760
761 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
762 {
763         int ret;
764
765         hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
766         vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
767         vcpu->arch.dec_expires = get_tb();
768
769 #ifdef CONFIG_KVM_EXIT_TIMING
770         mutex_init(&vcpu->arch.exit_timing_lock);
771 #endif
772         ret = kvmppc_subarch_vcpu_init(vcpu);
773         return ret;
774 }
775
776 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
777 {
778         kvmppc_mmu_destroy(vcpu);
779         kvmppc_subarch_vcpu_uninit(vcpu);
780 }
781
782 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
783 {
784 #ifdef CONFIG_BOOKE
785         /*
786          * vrsave (formerly usprg0) isn't used by Linux, but may
787          * be used by the guest.
788          *
789          * On non-booke this is associated with Altivec and
790          * is handled by code in book3s.c.
791          */
792         mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
793 #endif
794         kvmppc_core_vcpu_load(vcpu, cpu);
795 }
796
797 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
798 {
799         kvmppc_core_vcpu_put(vcpu);
800 #ifdef CONFIG_BOOKE
801         vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
802 #endif
803 }
804
805 /*
806  * irq_bypass_add_producer and irq_bypass_del_producer are only
807  * useful if the architecture supports PCI passthrough.
808  * irq_bypass_stop and irq_bypass_start are not needed and so
809  * kvm_ops are not defined for them.
810  */
811 bool kvm_arch_has_irq_bypass(void)
812 {
813         return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
814                 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
815 }
816
817 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
818                                      struct irq_bypass_producer *prod)
819 {
820         struct kvm_kernel_irqfd *irqfd =
821                 container_of(cons, struct kvm_kernel_irqfd, consumer);
822         struct kvm *kvm = irqfd->kvm;
823
824         if (kvm->arch.kvm_ops->irq_bypass_add_producer)
825                 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
826
827         return 0;
828 }
829
830 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
831                                       struct irq_bypass_producer *prod)
832 {
833         struct kvm_kernel_irqfd *irqfd =
834                 container_of(cons, struct kvm_kernel_irqfd, consumer);
835         struct kvm *kvm = irqfd->kvm;
836
837         if (kvm->arch.kvm_ops->irq_bypass_del_producer)
838                 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
839 }
840
841 #ifdef CONFIG_VSX
842 static inline int kvmppc_get_vsr_dword_offset(int index)
843 {
844         int offset;
845
846         if ((index != 0) && (index != 1))
847                 return -1;
848
849 #ifdef __BIG_ENDIAN
850         offset =  index;
851 #else
852         offset = 1 - index;
853 #endif
854
855         return offset;
856 }
857
858 static inline int kvmppc_get_vsr_word_offset(int index)
859 {
860         int offset;
861
862         if ((index > 3) || (index < 0))
863                 return -1;
864
865 #ifdef __BIG_ENDIAN
866         offset = index;
867 #else
868         offset = 3 - index;
869 #endif
870         return offset;
871 }
872
873 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
874         u64 gpr)
875 {
876         union kvmppc_one_reg val;
877         int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
878         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
879
880         if (offset == -1)
881                 return;
882
883         if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
884                 val.vval = VCPU_VSX_VR(vcpu, index);
885                 val.vsxval[offset] = gpr;
886                 VCPU_VSX_VR(vcpu, index) = val.vval;
887         } else {
888                 VCPU_VSX_FPR(vcpu, index, offset) = gpr;
889         }
890 }
891
892 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
893         u64 gpr)
894 {
895         union kvmppc_one_reg val;
896         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
897
898         if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
899                 val.vval = VCPU_VSX_VR(vcpu, index);
900                 val.vsxval[0] = gpr;
901                 val.vsxval[1] = gpr;
902                 VCPU_VSX_VR(vcpu, index) = val.vval;
903         } else {
904                 VCPU_VSX_FPR(vcpu, index, 0) = gpr;
905                 VCPU_VSX_FPR(vcpu, index, 1) = gpr;
906         }
907 }
908
909 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
910         u32 gpr)
911 {
912         union kvmppc_one_reg val;
913         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
914
915         if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
916                 val.vsx32val[0] = gpr;
917                 val.vsx32val[1] = gpr;
918                 val.vsx32val[2] = gpr;
919                 val.vsx32val[3] = gpr;
920                 VCPU_VSX_VR(vcpu, index) = val.vval;
921         } else {
922                 val.vsx32val[0] = gpr;
923                 val.vsx32val[1] = gpr;
924                 VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
925                 VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
926         }
927 }
928
929 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
930         u32 gpr32)
931 {
932         union kvmppc_one_reg val;
933         int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
934         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
935         int dword_offset, word_offset;
936
937         if (offset == -1)
938                 return;
939
940         if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
941                 val.vval = VCPU_VSX_VR(vcpu, index);
942                 val.vsx32val[offset] = gpr32;
943                 VCPU_VSX_VR(vcpu, index) = val.vval;
944         } else {
945                 dword_offset = offset / 2;
946                 word_offset = offset % 2;
947                 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
948                 val.vsx32val[word_offset] = gpr32;
949                 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
950         }
951 }
952 #endif /* CONFIG_VSX */
953
954 #ifdef CONFIG_ALTIVEC
955 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
956                 int index, int element_size)
957 {
958         int offset;
959         int elts = sizeof(vector128)/element_size;
960
961         if ((index < 0) || (index >= elts))
962                 return -1;
963
964         if (kvmppc_need_byteswap(vcpu))
965                 offset = elts - index - 1;
966         else
967                 offset = index;
968
969         return offset;
970 }
971
972 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
973                 int index)
974 {
975         return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
976 }
977
978 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
979                 int index)
980 {
981         return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
982 }
983
984 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
985                 int index)
986 {
987         return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
988 }
989
990 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
991                 int index)
992 {
993         return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
994 }
995
996
997 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
998         u64 gpr)
999 {
1000         union kvmppc_one_reg val;
1001         int offset = kvmppc_get_vmx_dword_offset(vcpu,
1002                         vcpu->arch.mmio_vmx_offset);
1003         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1004
1005         if (offset == -1)
1006                 return;
1007
1008         val.vval = VCPU_VSX_VR(vcpu, index);
1009         val.vsxval[offset] = gpr;
1010         VCPU_VSX_VR(vcpu, index) = val.vval;
1011 }
1012
1013 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
1014         u32 gpr32)
1015 {
1016         union kvmppc_one_reg val;
1017         int offset = kvmppc_get_vmx_word_offset(vcpu,
1018                         vcpu->arch.mmio_vmx_offset);
1019         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1020
1021         if (offset == -1)
1022                 return;
1023
1024         val.vval = VCPU_VSX_VR(vcpu, index);
1025         val.vsx32val[offset] = gpr32;
1026         VCPU_VSX_VR(vcpu, index) = val.vval;
1027 }
1028
1029 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
1030         u16 gpr16)
1031 {
1032         union kvmppc_one_reg val;
1033         int offset = kvmppc_get_vmx_hword_offset(vcpu,
1034                         vcpu->arch.mmio_vmx_offset);
1035         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1036
1037         if (offset == -1)
1038                 return;
1039
1040         val.vval = VCPU_VSX_VR(vcpu, index);
1041         val.vsx16val[offset] = gpr16;
1042         VCPU_VSX_VR(vcpu, index) = val.vval;
1043 }
1044
1045 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
1046         u8 gpr8)
1047 {
1048         union kvmppc_one_reg val;
1049         int offset = kvmppc_get_vmx_byte_offset(vcpu,
1050                         vcpu->arch.mmio_vmx_offset);
1051         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1052
1053         if (offset == -1)
1054                 return;
1055
1056         val.vval = VCPU_VSX_VR(vcpu, index);
1057         val.vsx8val[offset] = gpr8;
1058         VCPU_VSX_VR(vcpu, index) = val.vval;
1059 }
1060 #endif /* CONFIG_ALTIVEC */
1061
1062 #ifdef CONFIG_PPC_FPU
1063 static inline u64 sp_to_dp(u32 fprs)
1064 {
1065         u64 fprd;
1066
1067         preempt_disable();
1068         enable_kernel_fp();
1069         asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
1070              : "fr0");
1071         preempt_enable();
1072         return fprd;
1073 }
1074
1075 static inline u32 dp_to_sp(u64 fprd)
1076 {
1077         u32 fprs;
1078
1079         preempt_disable();
1080         enable_kernel_fp();
1081         asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
1082              : "fr0");
1083         preempt_enable();
1084         return fprs;
1085 }
1086
1087 #else
1088 #define sp_to_dp(x)     (x)
1089 #define dp_to_sp(x)     (x)
1090 #endif /* CONFIG_PPC_FPU */
1091
1092 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
1093                                       struct kvm_run *run)
1094 {
1095         u64 uninitialized_var(gpr);
1096
1097         if (run->mmio.len > sizeof(gpr)) {
1098                 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
1099                 return;
1100         }
1101
1102         if (!vcpu->arch.mmio_host_swabbed) {
1103                 switch (run->mmio.len) {
1104                 case 8: gpr = *(u64 *)run->mmio.data; break;
1105                 case 4: gpr = *(u32 *)run->mmio.data; break;
1106                 case 2: gpr = *(u16 *)run->mmio.data; break;
1107                 case 1: gpr = *(u8 *)run->mmio.data; break;
1108                 }
1109         } else {
1110                 switch (run->mmio.len) {
1111                 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1112                 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1113                 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1114                 case 1: gpr = *(u8 *)run->mmio.data; break;
1115                 }
1116         }
1117
1118         /* conversion between single and double precision */
1119         if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1120                 gpr = sp_to_dp(gpr);
1121
1122         if (vcpu->arch.mmio_sign_extend) {
1123                 switch (run->mmio.len) {
1124 #ifdef CONFIG_PPC64
1125                 case 4:
1126                         gpr = (s64)(s32)gpr;
1127                         break;
1128 #endif
1129                 case 2:
1130                         gpr = (s64)(s16)gpr;
1131                         break;
1132                 case 1:
1133                         gpr = (s64)(s8)gpr;
1134                         break;
1135                 }
1136         }
1137
1138         switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1139         case KVM_MMIO_REG_GPR:
1140                 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1141                 break;
1142         case KVM_MMIO_REG_FPR:
1143                 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1144                         vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);
1145
1146                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1147                 break;
1148 #ifdef CONFIG_PPC_BOOK3S
1149         case KVM_MMIO_REG_QPR:
1150                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1151                 break;
1152         case KVM_MMIO_REG_FQPR:
1153                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1154                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1155                 break;
1156 #endif
1157 #ifdef CONFIG_VSX
1158         case KVM_MMIO_REG_VSX:
1159                 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1160                         vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);
1161
1162                 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1163                         kvmppc_set_vsr_dword(vcpu, gpr);
1164                 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1165                         kvmppc_set_vsr_word(vcpu, gpr);
1166                 else if (vcpu->arch.mmio_copy_type ==
1167                                 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1168                         kvmppc_set_vsr_dword_dump(vcpu, gpr);
1169                 else if (vcpu->arch.mmio_copy_type ==
1170                                 KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
1171                         kvmppc_set_vsr_word_dump(vcpu, gpr);
1172                 break;
1173 #endif
1174 #ifdef CONFIG_ALTIVEC
1175         case KVM_MMIO_REG_VMX:
1176                 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1177                         vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);
1178
1179                 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
1180                         kvmppc_set_vmx_dword(vcpu, gpr);
1181                 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
1182                         kvmppc_set_vmx_word(vcpu, gpr);
1183                 else if (vcpu->arch.mmio_copy_type ==
1184                                 KVMPPC_VMX_COPY_HWORD)
1185                         kvmppc_set_vmx_hword(vcpu, gpr);
1186                 else if (vcpu->arch.mmio_copy_type ==
1187                                 KVMPPC_VMX_COPY_BYTE)
1188                         kvmppc_set_vmx_byte(vcpu, gpr);
1189                 break;
1190 #endif
1191         default:
1192                 BUG();
1193         }
1194 }
1195
1196 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1197                                 unsigned int rt, unsigned int bytes,
1198                                 int is_default_endian, int sign_extend)
1199 {
1200         int idx, ret;
1201         bool host_swabbed;
1202
1203         /* Pity C doesn't have a logical XOR operator */
1204         if (kvmppc_need_byteswap(vcpu)) {
1205                 host_swabbed = is_default_endian;
1206         } else {
1207                 host_swabbed = !is_default_endian;
1208         }
1209
1210         if (bytes > sizeof(run->mmio.data)) {
1211                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1212                        run->mmio.len);
1213         }
1214
1215         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1216         run->mmio.len = bytes;
1217         run->mmio.is_write = 0;
1218
1219         vcpu->arch.io_gpr = rt;
1220         vcpu->arch.mmio_host_swabbed = host_swabbed;
1221         vcpu->mmio_needed = 1;
1222         vcpu->mmio_is_write = 0;
1223         vcpu->arch.mmio_sign_extend = sign_extend;
1224
1225         idx = srcu_read_lock(&vcpu->kvm->srcu);
1226
1227         ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1228                               bytes, &run->mmio.data);
1229
1230         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1231
1232         if (!ret) {
1233                 kvmppc_complete_mmio_load(vcpu, run);
1234                 vcpu->mmio_needed = 0;
1235                 return EMULATE_DONE;
1236         }
1237
1238         return EMULATE_DO_MMIO;
1239 }
1240
1241 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1242                        unsigned int rt, unsigned int bytes,
1243                        int is_default_endian)
1244 {
1245         return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
1246 }
1247 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1248
1249 /* Same as above, but sign extends */
1250 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1251                         unsigned int rt, unsigned int bytes,
1252                         int is_default_endian)
1253 {
1254         return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
1255 }
1256
1257 #ifdef CONFIG_VSX
1258 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1259                         unsigned int rt, unsigned int bytes,
1260                         int is_default_endian, int mmio_sign_extend)
1261 {
1262         enum emulation_result emulated = EMULATE_DONE;
1263
1264         /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1265         if (vcpu->arch.mmio_vsx_copy_nums > 4)
1266                 return EMULATE_FAIL;
1267
1268         while (vcpu->arch.mmio_vsx_copy_nums) {
1269                 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1270                         is_default_endian, mmio_sign_extend);
1271
1272                 if (emulated != EMULATE_DONE)
1273                         break;
1274
1275                 vcpu->arch.paddr_accessed += run->mmio.len;
1276
1277                 vcpu->arch.mmio_vsx_copy_nums--;
1278                 vcpu->arch.mmio_vsx_offset++;
1279         }
1280         return emulated;
1281 }
1282 #endif /* CONFIG_VSX */
1283
1284 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1285                         u64 val, unsigned int bytes, int is_default_endian)
1286 {
1287         void *data = run->mmio.data;
1288         int idx, ret;
1289         bool host_swabbed;
1290
1291         /* Pity C doesn't have a logical XOR operator */
1292         if (kvmppc_need_byteswap(vcpu)) {
1293                 host_swabbed = is_default_endian;
1294         } else {
1295                 host_swabbed = !is_default_endian;
1296         }
1297
1298         if (bytes > sizeof(run->mmio.data)) {
1299                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1300                        run->mmio.len);
1301         }
1302
1303         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1304         run->mmio.len = bytes;
1305         run->mmio.is_write = 1;
1306         vcpu->mmio_needed = 1;
1307         vcpu->mmio_is_write = 1;
1308
1309         if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1310                 val = dp_to_sp(val);
1311
1312         /* Store the value at the lowest bytes in 'data'. */
1313         if (!host_swabbed) {
1314                 switch (bytes) {
1315                 case 8: *(u64 *)data = val; break;
1316                 case 4: *(u32 *)data = val; break;
1317                 case 2: *(u16 *)data = val; break;
1318                 case 1: *(u8  *)data = val; break;
1319                 }
1320         } else {
1321                 switch (bytes) {
1322                 case 8: *(u64 *)data = swab64(val); break;
1323                 case 4: *(u32 *)data = swab32(val); break;
1324                 case 2: *(u16 *)data = swab16(val); break;
1325                 case 1: *(u8  *)data = val; break;
1326                 }
1327         }
1328
1329         idx = srcu_read_lock(&vcpu->kvm->srcu);
1330
1331         ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1332                                bytes, &run->mmio.data);
1333
1334         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1335
1336         if (!ret) {
1337                 vcpu->mmio_needed = 0;
1338                 return EMULATE_DONE;
1339         }
1340
1341         return EMULATE_DO_MMIO;
1342 }
1343 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1344
1345 #ifdef CONFIG_VSX
1346 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1347 {
1348         u32 dword_offset, word_offset;
1349         union kvmppc_one_reg reg;
1350         int vsx_offset = 0;
1351         int copy_type = vcpu->arch.mmio_copy_type;
1352         int result = 0;
1353
1354         switch (copy_type) {
1355         case KVMPPC_VSX_COPY_DWORD:
1356                 vsx_offset =
1357                         kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1358
1359                 if (vsx_offset == -1) {
1360                         result = -1;
1361                         break;
1362                 }
1363
1364                 if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1365                         *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1366                 } else {
1367                         reg.vval = VCPU_VSX_VR(vcpu, rs);
1368                         *val = reg.vsxval[vsx_offset];
1369                 }
1370                 break;
1371
1372         case KVMPPC_VSX_COPY_WORD:
1373                 vsx_offset =
1374                         kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1375
1376                 if (vsx_offset == -1) {
1377                         result = -1;
1378                         break;
1379                 }
1380
1381                 if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1382                         dword_offset = vsx_offset / 2;
1383                         word_offset = vsx_offset % 2;
1384                         reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1385                         *val = reg.vsx32val[word_offset];
1386                 } else {
1387                         reg.vval = VCPU_VSX_VR(vcpu, rs);
1388                         *val = reg.vsx32val[vsx_offset];
1389                 }
1390                 break;
1391
1392         default:
1393                 result = -1;
1394                 break;
1395         }
1396
1397         return result;
1398 }
1399
1400 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1401                         int rs, unsigned int bytes, int is_default_endian)
1402 {
1403         u64 val;
1404         enum emulation_result emulated = EMULATE_DONE;
1405
1406         vcpu->arch.io_gpr = rs;
1407
1408         /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1409         if (vcpu->arch.mmio_vsx_copy_nums > 4)
1410                 return EMULATE_FAIL;
1411
1412         while (vcpu->arch.mmio_vsx_copy_nums) {
1413                 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1414                         return EMULATE_FAIL;
1415
1416                 emulated = kvmppc_handle_store(run, vcpu,
1417                          val, bytes, is_default_endian);
1418
1419                 if (emulated != EMULATE_DONE)
1420                         break;
1421
1422                 vcpu->arch.paddr_accessed += run->mmio.len;
1423
1424                 vcpu->arch.mmio_vsx_copy_nums--;
1425                 vcpu->arch.mmio_vsx_offset++;
1426         }
1427
1428         return emulated;
1429 }
1430
1431 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
1432                         struct kvm_run *run)
1433 {
1434         enum emulation_result emulated = EMULATE_FAIL;
1435         int r;
1436
1437         vcpu->arch.paddr_accessed += run->mmio.len;
1438
1439         if (!vcpu->mmio_is_write) {
1440                 emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
1441                          run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1442         } else {
1443                 emulated = kvmppc_handle_vsx_store(run, vcpu,
1444                          vcpu->arch.io_gpr, run->mmio.len, 1);
1445         }
1446
1447         switch (emulated) {
1448         case EMULATE_DO_MMIO:
1449                 run->exit_reason = KVM_EXIT_MMIO;
1450                 r = RESUME_HOST;
1451                 break;
1452         case EMULATE_FAIL:
1453                 pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1454                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1455                 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1456                 r = RESUME_HOST;
1457                 break;
1458         default:
1459                 r = RESUME_GUEST;
1460                 break;
1461         }
1462         return r;
1463 }
1464 #endif /* CONFIG_VSX */
1465
1466 #ifdef CONFIG_ALTIVEC
1467 int kvmppc_handle_vmx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1468                 unsigned int rt, unsigned int bytes, int is_default_endian)
1469 {
1470         enum emulation_result emulated = EMULATE_DONE;
1471
1472         if (vcpu->arch.mmio_vsx_copy_nums > 2)
1473                 return EMULATE_FAIL;
1474
1475         while (vcpu->arch.mmio_vmx_copy_nums) {
1476                 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1477                                 is_default_endian, 0);
1478
1479                 if (emulated != EMULATE_DONE)
1480                         break;
1481
1482                 vcpu->arch.paddr_accessed += run->mmio.len;
1483                 vcpu->arch.mmio_vmx_copy_nums--;
1484                 vcpu->arch.mmio_vmx_offset++;
1485         }
1486
1487         return emulated;
1488 }
1489
1490 int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1491 {
1492         union kvmppc_one_reg reg;
1493         int vmx_offset = 0;
1494         int result = 0;
1495
1496         vmx_offset =
1497                 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1498
1499         if (vmx_offset == -1)
1500                 return -1;
1501
1502         reg.vval = VCPU_VSX_VR(vcpu, index);
1503         *val = reg.vsxval[vmx_offset];
1504
1505         return result;
1506 }
1507
1508 int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
1509 {
1510         union kvmppc_one_reg reg;
1511         int vmx_offset = 0;
1512         int result = 0;
1513
1514         vmx_offset =
1515                 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1516
1517         if (vmx_offset == -1)
1518                 return -1;
1519
1520         reg.vval = VCPU_VSX_VR(vcpu, index);
1521         *val = reg.vsx32val[vmx_offset];
1522
1523         return result;
1524 }
1525
1526 int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
1527 {
1528         union kvmppc_one_reg reg;
1529         int vmx_offset = 0;
1530         int result = 0;
1531
1532         vmx_offset =
1533                 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1534
1535         if (vmx_offset == -1)
1536                 return -1;
1537
1538         reg.vval = VCPU_VSX_VR(vcpu, index);
1539         *val = reg.vsx16val[vmx_offset];
1540
1541         return result;
1542 }
1543
1544 int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
1545 {
1546         union kvmppc_one_reg reg;
1547         int vmx_offset = 0;
1548         int result = 0;
1549
1550         vmx_offset =
1551                 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1552
1553         if (vmx_offset == -1)
1554                 return -1;
1555
1556         reg.vval = VCPU_VSX_VR(vcpu, index);
1557         *val = reg.vsx8val[vmx_offset];
1558
1559         return result;
1560 }
1561
1562 int kvmppc_handle_vmx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1563                 unsigned int rs, unsigned int bytes, int is_default_endian)
1564 {
1565         u64 val = 0;
1566         unsigned int index = rs & KVM_MMIO_REG_MASK;
1567         enum emulation_result emulated = EMULATE_DONE;
1568
1569         if (vcpu->arch.mmio_vsx_copy_nums > 2)
1570                 return EMULATE_FAIL;
1571
1572         vcpu->arch.io_gpr = rs;
1573
1574         while (vcpu->arch.mmio_vmx_copy_nums) {
1575                 switch (vcpu->arch.mmio_copy_type) {
1576                 case KVMPPC_VMX_COPY_DWORD:
1577                         if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
1578                                 return EMULATE_FAIL;
1579
1580                         break;
1581                 case KVMPPC_VMX_COPY_WORD:
1582                         if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
1583                                 return EMULATE_FAIL;
1584                         break;
1585                 case KVMPPC_VMX_COPY_HWORD:
1586                         if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
1587                                 return EMULATE_FAIL;
1588                         break;
1589                 case KVMPPC_VMX_COPY_BYTE:
1590                         if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
1591                                 return EMULATE_FAIL;
1592                         break;
1593                 default:
1594                         return EMULATE_FAIL;
1595                 }
1596
1597                 emulated = kvmppc_handle_store(run, vcpu, val, bytes,
1598                                 is_default_endian);
1599                 if (emulated != EMULATE_DONE)
1600                         break;
1601
1602                 vcpu->arch.paddr_accessed += run->mmio.len;
1603                 vcpu->arch.mmio_vmx_copy_nums--;
1604                 vcpu->arch.mmio_vmx_offset++;
1605         }
1606
1607         return emulated;
1608 }
1609
1610 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu,
1611                 struct kvm_run *run)
1612 {
1613         enum emulation_result emulated = EMULATE_FAIL;
1614         int r;
1615
1616         vcpu->arch.paddr_accessed += run->mmio.len;
1617
1618         if (!vcpu->mmio_is_write) {
1619                 emulated = kvmppc_handle_vmx_load(run, vcpu,
1620                                 vcpu->arch.io_gpr, run->mmio.len, 1);
1621         } else {
1622                 emulated = kvmppc_handle_vmx_store(run, vcpu,
1623                                 vcpu->arch.io_gpr, run->mmio.len, 1);
1624         }
1625
1626         switch (emulated) {
1627         case EMULATE_DO_MMIO:
1628                 run->exit_reason = KVM_EXIT_MMIO;
1629                 r = RESUME_HOST;
1630                 break;
1631         case EMULATE_FAIL:
1632                 pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1633                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1634                 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1635                 r = RESUME_HOST;
1636                 break;
1637         default:
1638                 r = RESUME_GUEST;
1639                 break;
1640         }
1641         return r;
1642 }
1643 #endif /* CONFIG_ALTIVEC */
1644
1645 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1646 {
1647         int r = 0;
1648         union kvmppc_one_reg val;
1649         int size;
1650
1651         size = one_reg_size(reg->id);
1652         if (size > sizeof(val))
1653                 return -EINVAL;
1654
1655         r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1656         if (r == -EINVAL) {
1657                 r = 0;
1658                 switch (reg->id) {
1659 #ifdef CONFIG_ALTIVEC
1660                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1661                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1662                                 r = -ENXIO;
1663                                 break;
1664                         }
1665                         val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1666                         break;
1667                 case KVM_REG_PPC_VSCR:
1668                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1669                                 r = -ENXIO;
1670                                 break;
1671                         }
1672                         val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1673                         break;
1674                 case KVM_REG_PPC_VRSAVE:
1675                         val = get_reg_val(reg->id, vcpu->arch.vrsave);
1676                         break;
1677 #endif /* CONFIG_ALTIVEC */
1678                 default:
1679                         r = -EINVAL;
1680                         break;
1681                 }
1682         }
1683
1684         if (r)
1685                 return r;
1686
1687         if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1688                 r = -EFAULT;
1689
1690         return r;
1691 }
1692
1693 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1694 {
1695         int r;
1696         union kvmppc_one_reg val;
1697         int size;
1698
1699         size = one_reg_size(reg->id);
1700         if (size > sizeof(val))
1701                 return -EINVAL;
1702
1703         if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1704                 return -EFAULT;
1705
1706         r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1707         if (r == -EINVAL) {
1708                 r = 0;
1709                 switch (reg->id) {
1710 #ifdef CONFIG_ALTIVEC
1711                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1712                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1713                                 r = -ENXIO;
1714                                 break;
1715                         }
1716                         vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1717                         break;
1718                 case KVM_REG_PPC_VSCR:
1719                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1720                                 r = -ENXIO;
1721                                 break;
1722                         }
1723                         vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1724                         break;
1725                 case KVM_REG_PPC_VRSAVE:
1726                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1727                                 r = -ENXIO;
1728                                 break;
1729                         }
1730                         vcpu->arch.vrsave = set_reg_val(reg->id, val);
1731                         break;
1732 #endif /* CONFIG_ALTIVEC */
1733                 default:
1734                         r = -EINVAL;
1735                         break;
1736                 }
1737         }
1738
1739         return r;
1740 }
1741
1742 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1743 {
1744         int r;
1745
1746         vcpu_load(vcpu);
1747
1748         if (vcpu->mmio_needed) {
1749                 vcpu->mmio_needed = 0;
1750                 if (!vcpu->mmio_is_write)
1751                         kvmppc_complete_mmio_load(vcpu, run);
1752 #ifdef CONFIG_VSX
1753                 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1754                         vcpu->arch.mmio_vsx_copy_nums--;
1755                         vcpu->arch.mmio_vsx_offset++;
1756                 }
1757
1758                 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1759                         r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
1760                         if (r == RESUME_HOST) {
1761                                 vcpu->mmio_needed = 1;
1762                                 goto out;
1763                         }
1764                 }
1765 #endif
1766 #ifdef CONFIG_ALTIVEC
1767                 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1768                         vcpu->arch.mmio_vmx_copy_nums--;
1769                         vcpu->arch.mmio_vmx_offset++;
1770                 }
1771
1772                 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1773                         r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run);
1774                         if (r == RESUME_HOST) {
1775                                 vcpu->mmio_needed = 1;
1776                                 goto out;
1777                         }
1778                 }
1779 #endif
1780         } else if (vcpu->arch.osi_needed) {
1781                 u64 *gprs = run->osi.gprs;
1782                 int i;
1783
1784                 for (i = 0; i < 32; i++)
1785                         kvmppc_set_gpr(vcpu, i, gprs[i]);
1786                 vcpu->arch.osi_needed = 0;
1787         } else if (vcpu->arch.hcall_needed) {
1788                 int i;
1789
1790                 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1791                 for (i = 0; i < 9; ++i)
1792                         kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1793                 vcpu->arch.hcall_needed = 0;
1794 #ifdef CONFIG_BOOKE
1795         } else if (vcpu->arch.epr_needed) {
1796                 kvmppc_set_epr(vcpu, run->epr.epr);
1797                 vcpu->arch.epr_needed = 0;
1798 #endif
1799         }
1800
1801         kvm_sigset_activate(vcpu);
1802
1803         if (run->immediate_exit)
1804                 r = -EINTR;
1805         else
1806                 r = kvmppc_vcpu_run(run, vcpu);
1807
1808         kvm_sigset_deactivate(vcpu);
1809
1810 #ifdef CONFIG_ALTIVEC
1811 out:
1812 #endif
1813         vcpu_put(vcpu);
1814         return r;
1815 }
1816
1817 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1818 {
1819         if (irq->irq == KVM_INTERRUPT_UNSET) {
1820                 kvmppc_core_dequeue_external(vcpu);
1821                 return 0;
1822         }
1823
1824         kvmppc_core_queue_external(vcpu, irq);
1825
1826         kvm_vcpu_kick(vcpu);
1827
1828         return 0;
1829 }
1830
1831 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1832                                      struct kvm_enable_cap *cap)
1833 {
1834         int r;
1835
1836         if (cap->flags)
1837                 return -EINVAL;
1838
1839         switch (cap->cap) {
1840         case KVM_CAP_PPC_OSI:
1841                 r = 0;
1842                 vcpu->arch.osi_enabled = true;
1843                 break;
1844         case KVM_CAP_PPC_PAPR:
1845                 r = 0;
1846                 vcpu->arch.papr_enabled = true;
1847                 break;
1848         case KVM_CAP_PPC_EPR:
1849                 r = 0;
1850                 if (cap->args[0])
1851                         vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1852                 else
1853                         vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1854                 break;
1855 #ifdef CONFIG_BOOKE
1856         case KVM_CAP_PPC_BOOKE_WATCHDOG:
1857                 r = 0;
1858                 vcpu->arch.watchdog_enabled = true;
1859                 break;
1860 #endif
1861 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1862         case KVM_CAP_SW_TLB: {
1863                 struct kvm_config_tlb cfg;
1864                 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1865
1866                 r = -EFAULT;
1867                 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1868                         break;
1869
1870                 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1871                 break;
1872         }
1873 #endif
1874 #ifdef CONFIG_KVM_MPIC
1875         case KVM_CAP_IRQ_MPIC: {
1876                 struct fd f;
1877                 struct kvm_device *dev;
1878
1879                 r = -EBADF;
1880                 f = fdget(cap->args[0]);
1881                 if (!f.file)
1882                         break;
1883
1884                 r = -EPERM;
1885                 dev = kvm_device_from_filp(f.file);
1886                 if (dev)
1887                         r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1888
1889                 fdput(f);
1890                 break;
1891         }
1892 #endif
1893 #ifdef CONFIG_KVM_XICS
1894         case KVM_CAP_IRQ_XICS: {
1895                 struct fd f;
1896                 struct kvm_device *dev;
1897
1898                 r = -EBADF;
1899                 f = fdget(cap->args[0]);
1900                 if (!f.file)
1901                         break;
1902
1903                 r = -EPERM;
1904                 dev = kvm_device_from_filp(f.file);
1905                 if (dev) {
1906                         if (xive_enabled())
1907                                 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1908                         else
1909                                 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1910                 }
1911
1912                 fdput(f);
1913                 break;
1914         }
1915 #endif /* CONFIG_KVM_XICS */
1916 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1917         case KVM_CAP_PPC_FWNMI:
1918                 r = -EINVAL;
1919                 if (!is_kvmppc_hv_enabled(vcpu->kvm))
1920                         break;
1921                 r = 0;
1922                 vcpu->kvm->arch.fwnmi_enabled = true;
1923                 break;
1924 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1925         default:
1926                 r = -EINVAL;
1927                 break;
1928         }
1929
1930         if (!r)
1931                 r = kvmppc_sanity_check(vcpu);
1932
1933         return r;
1934 }
1935
1936 bool kvm_arch_intc_initialized(struct kvm *kvm)
1937 {
1938 #ifdef CONFIG_KVM_MPIC
1939         if (kvm->arch.mpic)
1940                 return true;
1941 #endif
1942 #ifdef CONFIG_KVM_XICS
1943         if (kvm->arch.xics || kvm->arch.xive)
1944                 return true;
1945 #endif
1946         return false;
1947 }
1948
1949 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1950                                     struct kvm_mp_state *mp_state)
1951 {
1952         return -EINVAL;
1953 }
1954
1955 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1956                                     struct kvm_mp_state *mp_state)
1957 {
1958         return -EINVAL;
1959 }
1960
1961 long kvm_arch_vcpu_async_ioctl(struct file *filp,
1962                                unsigned int ioctl, unsigned long arg)
1963 {
1964         struct kvm_vcpu *vcpu = filp->private_data;
1965         void __user *argp = (void __user *)arg;
1966
1967         if (ioctl == KVM_INTERRUPT) {
1968                 struct kvm_interrupt irq;
1969                 if (copy_from_user(&irq, argp, sizeof(irq)))
1970                         return -EFAULT;
1971                 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1972         }
1973         return -ENOIOCTLCMD;
1974 }
1975
1976 long kvm_arch_vcpu_ioctl(struct file *filp,
1977                          unsigned int ioctl, unsigned long arg)
1978 {
1979         struct kvm_vcpu *vcpu = filp->private_data;
1980         void __user *argp = (void __user *)arg;
1981         long r;
1982
1983         switch (ioctl) {
1984         case KVM_ENABLE_CAP:
1985         {
1986                 struct kvm_enable_cap cap;
1987                 r = -EFAULT;
1988                 vcpu_load(vcpu);
1989                 if (copy_from_user(&cap, argp, sizeof(cap)))
1990                         goto out;
1991                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1992                 vcpu_put(vcpu);
1993                 break;
1994         }
1995
1996         case KVM_SET_ONE_REG:
1997         case KVM_GET_ONE_REG:
1998         {
1999                 struct kvm_one_reg reg;
2000                 r = -EFAULT;
2001                 if (copy_from_user(&reg, argp, sizeof(reg)))
2002                         goto out;
2003                 if (ioctl == KVM_SET_ONE_REG)
2004                         r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
2005                 else
2006                         r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
2007                 break;
2008         }
2009
2010 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
2011         case KVM_DIRTY_TLB: {
2012                 struct kvm_dirty_tlb dirty;
2013                 r = -EFAULT;
2014                 vcpu_load(vcpu);
2015                 if (copy_from_user(&dirty, argp, sizeof(dirty)))
2016                         goto out;
2017                 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2018                 vcpu_put(vcpu);
2019                 break;
2020         }
2021 #endif
2022         default:
2023                 r = -EINVAL;
2024         }
2025
2026 out:
2027         return r;
2028 }
2029
2030 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2031 {
2032         return VM_FAULT_SIGBUS;
2033 }
2034
2035 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
2036 {
2037         u32 inst_nop = 0x60000000;
2038 #ifdef CONFIG_KVM_BOOKE_HV
2039         u32 inst_sc1 = 0x44000022;
2040         pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
2041         pvinfo->hcall[1] = cpu_to_be32(inst_nop);
2042         pvinfo->hcall[2] = cpu_to_be32(inst_nop);
2043         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2044 #else
2045         u32 inst_lis = 0x3c000000;
2046         u32 inst_ori = 0x60000000;
2047         u32 inst_sc = 0x44000002;
2048         u32 inst_imm_mask = 0xffff;
2049
2050         /*
2051          * The hypercall to get into KVM from within guest context is as
2052          * follows:
2053          *
2054          *    lis r0, r0, KVM_SC_MAGIC_R0@h
2055          *    ori r0, KVM_SC_MAGIC_R0@l
2056          *    sc
2057          *    nop
2058          */
2059         pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
2060         pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
2061         pvinfo->hcall[2] = cpu_to_be32(inst_sc);
2062         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2063 #endif
2064
2065         pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
2066
2067         return 0;
2068 }
2069
2070 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
2071                           bool line_status)
2072 {
2073         if (!irqchip_in_kernel(kvm))
2074                 return -ENXIO;
2075
2076         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2077                                         irq_event->irq, irq_event->level,
2078                                         line_status);
2079         return 0;
2080 }
2081
2082
2083 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
2084                                    struct kvm_enable_cap *cap)
2085 {
2086         int r;
2087
2088         if (cap->flags)
2089                 return -EINVAL;
2090
2091         switch (cap->cap) {
2092 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2093         case KVM_CAP_PPC_ENABLE_HCALL: {
2094                 unsigned long hcall = cap->args[0];
2095
2096                 r = -EINVAL;
2097                 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
2098                     cap->args[1] > 1)
2099                         break;
2100                 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
2101                         break;
2102                 if (cap->args[1])
2103                         set_bit(hcall / 4, kvm->arch.enabled_hcalls);
2104                 else
2105                         clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
2106                 r = 0;
2107                 break;
2108         }
2109         case KVM_CAP_PPC_SMT: {
2110                 unsigned long mode = cap->args[0];
2111                 unsigned long flags = cap->args[1];
2112
2113                 r = -EINVAL;
2114                 if (kvm->arch.kvm_ops->set_smt_mode)
2115                         r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
2116                 break;
2117         }
2118 #endif
2119         default:
2120                 r = -EINVAL;
2121                 break;
2122         }
2123
2124         return r;
2125 }
2126
2127 #ifdef CONFIG_PPC_BOOK3S_64
2128 /*
2129  * These functions check whether the underlying hardware is safe
2130  * against attacks based on observing the effects of speculatively
2131  * executed instructions, and whether it supplies instructions for
2132  * use in workarounds.  The information comes from firmware, either
2133  * via the device tree on powernv platforms or from an hcall on
2134  * pseries platforms.
2135  */
2136 #ifdef CONFIG_PPC_PSERIES
2137 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2138 {
2139         struct h_cpu_char_result c;
2140         unsigned long rc;
2141
2142         if (!machine_is(pseries))
2143                 return -ENOTTY;
2144
2145         rc = plpar_get_cpu_characteristics(&c);
2146         if (rc == H_SUCCESS) {
2147                 cp->character = c.character;
2148                 cp->behaviour = c.behaviour;
2149                 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2150                         KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2151                         KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2152                         KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2153                         KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2154                         KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
2155                         KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2156                         KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2157                 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2158                         KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2159                         KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2160         }
2161         return 0;
2162 }
2163 #else
2164 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2165 {
2166         return -ENOTTY;
2167 }
2168 #endif
2169
2170 static inline bool have_fw_feat(struct device_node *fw_features,
2171                                 const char *state, const char *name)
2172 {
2173         struct device_node *np;
2174         bool r = false;
2175
2176         np = of_get_child_by_name(fw_features, name);
2177         if (np) {
2178                 r = of_property_read_bool(np, state);
2179                 of_node_put(np);
2180         }
2181         return r;
2182 }
2183
2184 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2185 {
2186         struct device_node *np, *fw_features;
2187         int r;
2188
2189         memset(cp, 0, sizeof(*cp));
2190         r = pseries_get_cpu_char(cp);
2191         if (r != -ENOTTY)
2192                 return r;
2193
2194         np = of_find_node_by_name(NULL, "ibm,opal");
2195         if (np) {
2196                 fw_features = of_get_child_by_name(np, "fw-features");
2197                 of_node_put(np);
2198                 if (!fw_features)
2199                         return 0;
2200                 if (have_fw_feat(fw_features, "enabled",
2201                                  "inst-spec-barrier-ori31,31,0"))
2202                         cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2203                 if (have_fw_feat(fw_features, "enabled",
2204                                  "fw-bcctrl-serialized"))
2205                         cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2206                 if (have_fw_feat(fw_features, "enabled",
2207                                  "inst-l1d-flush-ori30,30,0"))
2208                         cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2209                 if (have_fw_feat(fw_features, "enabled",
2210                                  "inst-l1d-flush-trig2"))
2211                         cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2212                 if (have_fw_feat(fw_features, "enabled",
2213                                  "fw-l1d-thread-split"))
2214                         cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2215                 if (have_fw_feat(fw_features, "enabled",
2216                                  "fw-count-cache-disabled"))
2217                         cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2218                 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2219                         KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2220                         KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2221                         KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2222                         KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2223                         KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2224
2225                 if (have_fw_feat(fw_features, "enabled",
2226                                  "speculation-policy-favor-security"))
2227                         cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2228                 if (!have_fw_feat(fw_features, "disabled",
2229                                   "needs-l1d-flush-msr-pr-0-to-1"))
2230                         cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2231                 if (!have_fw_feat(fw_features, "disabled",
2232                                   "needs-spec-barrier-for-bound-checks"))
2233                         cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2234                 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2235                         KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2236                         KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2237
2238                 of_node_put(fw_features);
2239         }
2240
2241         return 0;
2242 }
2243 #endif
2244
2245 long kvm_arch_vm_ioctl(struct file *filp,
2246                        unsigned int ioctl, unsigned long arg)
2247 {
2248         struct kvm *kvm __maybe_unused = filp->private_data;
2249         void __user *argp = (void __user *)arg;
2250         long r;
2251
2252         switch (ioctl) {
2253         case KVM_PPC_GET_PVINFO: {
2254                 struct kvm_ppc_pvinfo pvinfo;
2255                 memset(&pvinfo, 0, sizeof(pvinfo));
2256                 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2257                 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2258                         r = -EFAULT;
2259                         goto out;
2260                 }
2261
2262                 break;
2263         }
2264         case KVM_ENABLE_CAP:
2265         {
2266                 struct kvm_enable_cap cap;
2267                 r = -EFAULT;
2268                 if (copy_from_user(&cap, argp, sizeof(cap)))
2269                         goto out;
2270                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
2271                 break;
2272         }
2273 #ifdef CONFIG_SPAPR_TCE_IOMMU
2274         case KVM_CREATE_SPAPR_TCE_64: {
2275                 struct kvm_create_spapr_tce_64 create_tce_64;
2276
2277                 r = -EFAULT;
2278                 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2279                         goto out;
2280                 if (create_tce_64.flags) {
2281                         r = -EINVAL;
2282                         goto out;
2283                 }
2284                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2285                 goto out;
2286         }
2287         case KVM_CREATE_SPAPR_TCE: {
2288                 struct kvm_create_spapr_tce create_tce;
2289                 struct kvm_create_spapr_tce_64 create_tce_64;
2290
2291                 r = -EFAULT;
2292                 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2293                         goto out;
2294
2295                 create_tce_64.liobn = create_tce.liobn;
2296                 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2297                 create_tce_64.offset = 0;
2298                 create_tce_64.size = create_tce.window_size >>
2299                                 IOMMU_PAGE_SHIFT_4K;
2300                 create_tce_64.flags = 0;
2301                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2302                 goto out;
2303         }
2304 #endif
2305 #ifdef CONFIG_PPC_BOOK3S_64
2306         case KVM_PPC_GET_SMMU_INFO: {
2307                 struct kvm_ppc_smmu_info info;
2308                 struct kvm *kvm = filp->private_data;
2309
2310                 memset(&info, 0, sizeof(info));
2311                 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2312                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2313                         r = -EFAULT;
2314                 break;
2315         }
2316         case KVM_PPC_RTAS_DEFINE_TOKEN: {
2317                 struct kvm *kvm = filp->private_data;
2318
2319                 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2320                 break;
2321         }
2322         case KVM_PPC_CONFIGURE_V3_MMU: {
2323                 struct kvm *kvm = filp->private_data;
2324                 struct kvm_ppc_mmuv3_cfg cfg;
2325
2326                 r = -EINVAL;
2327                 if (!kvm->arch.kvm_ops->configure_mmu)
2328                         goto out;
2329                 r = -EFAULT;
2330                 if (copy_from_user(&cfg, argp, sizeof(cfg)))
2331                         goto out;
2332                 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2333                 break;
2334         }
2335         case KVM_PPC_GET_RMMU_INFO: {
2336                 struct kvm *kvm = filp->private_data;
2337                 struct kvm_ppc_rmmu_info info;
2338
2339                 r = -EINVAL;
2340                 if (!kvm->arch.kvm_ops->get_rmmu_info)
2341                         goto out;
2342                 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2343                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2344                         r = -EFAULT;
2345                 break;
2346         }
2347         case KVM_PPC_GET_CPU_CHAR: {
2348                 struct kvm_ppc_cpu_char cpuchar;
2349
2350                 r = kvmppc_get_cpu_char(&cpuchar);
2351                 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2352                         r = -EFAULT;
2353                 break;
2354         }
2355         default: {
2356                 struct kvm *kvm = filp->private_data;
2357                 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2358         }
2359 #else /* CONFIG_PPC_BOOK3S_64 */
2360         default:
2361                 r = -ENOTTY;
2362 #endif
2363         }
2364 out:
2365         return r;
2366 }
2367
2368 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
2369 static unsigned long nr_lpids;
2370
2371 long kvmppc_alloc_lpid(void)
2372 {
2373         long lpid;
2374
2375         do {
2376                 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
2377                 if (lpid >= nr_lpids) {
2378                         pr_err("%s: No LPIDs free\n", __func__);
2379                         return -ENOMEM;
2380                 }
2381         } while (test_and_set_bit(lpid, lpid_inuse));
2382
2383         return lpid;
2384 }
2385 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2386
2387 void kvmppc_claim_lpid(long lpid)
2388 {
2389         set_bit(lpid, lpid_inuse);
2390 }
2391 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2392
2393 void kvmppc_free_lpid(long lpid)
2394 {
2395         clear_bit(lpid, lpid_inuse);
2396 }
2397 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2398
2399 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2400 {
2401         nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
2402         memset(lpid_inuse, 0, sizeof(lpid_inuse));
2403 }
2404 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2405
2406 int kvm_arch_init(void *opaque)
2407 {
2408         return 0;
2409 }
2410
2411 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);