]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/powerpc/kvm/powerpc.c
KVM: PPC: Move kvm_vcpu_init() invocation to common code
[linux.git] / arch / powerpc / kvm / powerpc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright IBM Corp. 2007
5  *
6  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
7  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
8  */
9
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/vmalloc.h>
14 #include <linux/hrtimer.h>
15 #include <linux/sched/signal.h>
16 #include <linux/fs.h>
17 #include <linux/slab.h>
18 #include <linux/file.h>
19 #include <linux/module.h>
20 #include <linux/irqbypass.h>
21 #include <linux/kvm_irqfd.h>
22 #include <asm/cputable.h>
23 #include <linux/uaccess.h>
24 #include <asm/kvm_ppc.h>
25 #include <asm/cputhreads.h>
26 #include <asm/irqflags.h>
27 #include <asm/iommu.h>
28 #include <asm/switch_to.h>
29 #include <asm/xive.h>
30 #ifdef CONFIG_PPC_PSERIES
31 #include <asm/hvcall.h>
32 #include <asm/plpar_wrappers.h>
33 #endif
34 #include <asm/ultravisor.h>
35 #include <asm/kvm_host.h>
36
37 #include "timing.h"
38 #include "irq.h"
39 #include "../mm/mmu_decl.h"
40
41 #define CREATE_TRACE_POINTS
42 #include "trace.h"
43
44 struct kvmppc_ops *kvmppc_hv_ops;
45 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
46 struct kvmppc_ops *kvmppc_pr_ops;
47 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
48
49
50 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
51 {
52         return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
53 }
54
55 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
56 {
57         return kvm_arch_vcpu_runnable(vcpu);
58 }
59
60 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
61 {
62         return false;
63 }
64
65 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
66 {
67         return 1;
68 }
69
70 /*
71  * Common checks before entering the guest world.  Call with interrupts
72  * disabled.
73  *
74  * returns:
75  *
76  * == 1 if we're ready to go into guest state
77  * <= 0 if we need to go back to the host with return value
78  */
79 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
80 {
81         int r;
82
83         WARN_ON(irqs_disabled());
84         hard_irq_disable();
85
86         while (true) {
87                 if (need_resched()) {
88                         local_irq_enable();
89                         cond_resched();
90                         hard_irq_disable();
91                         continue;
92                 }
93
94                 if (signal_pending(current)) {
95                         kvmppc_account_exit(vcpu, SIGNAL_EXITS);
96                         vcpu->run->exit_reason = KVM_EXIT_INTR;
97                         r = -EINTR;
98                         break;
99                 }
100
101                 vcpu->mode = IN_GUEST_MODE;
102
103                 /*
104                  * Reading vcpu->requests must happen after setting vcpu->mode,
105                  * so we don't miss a request because the requester sees
106                  * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
107                  * before next entering the guest (and thus doesn't IPI).
108                  * This also orders the write to mode from any reads
109                  * to the page tables done while the VCPU is running.
110                  * Please see the comment in kvm_flush_remote_tlbs.
111                  */
112                 smp_mb();
113
114                 if (kvm_request_pending(vcpu)) {
115                         /* Make sure we process requests preemptable */
116                         local_irq_enable();
117                         trace_kvm_check_requests(vcpu);
118                         r = kvmppc_core_check_requests(vcpu);
119                         hard_irq_disable();
120                         if (r > 0)
121                                 continue;
122                         break;
123                 }
124
125                 if (kvmppc_core_prepare_to_enter(vcpu)) {
126                         /* interrupts got enabled in between, so we
127                            are back at square 1 */
128                         continue;
129                 }
130
131                 guest_enter_irqoff();
132                 return 1;
133         }
134
135         /* return to host */
136         local_irq_enable();
137         return r;
138 }
139 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
140
141 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
142 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
143 {
144         struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
145         int i;
146
147         shared->sprg0 = swab64(shared->sprg0);
148         shared->sprg1 = swab64(shared->sprg1);
149         shared->sprg2 = swab64(shared->sprg2);
150         shared->sprg3 = swab64(shared->sprg3);
151         shared->srr0 = swab64(shared->srr0);
152         shared->srr1 = swab64(shared->srr1);
153         shared->dar = swab64(shared->dar);
154         shared->msr = swab64(shared->msr);
155         shared->dsisr = swab32(shared->dsisr);
156         shared->int_pending = swab32(shared->int_pending);
157         for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
158                 shared->sr[i] = swab32(shared->sr[i]);
159 }
160 #endif
161
162 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
163 {
164         int nr = kvmppc_get_gpr(vcpu, 11);
165         int r;
166         unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
167         unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
168         unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
169         unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
170         unsigned long r2 = 0;
171
172         if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
173                 /* 32 bit mode */
174                 param1 &= 0xffffffff;
175                 param2 &= 0xffffffff;
176                 param3 &= 0xffffffff;
177                 param4 &= 0xffffffff;
178         }
179
180         switch (nr) {
181         case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
182         {
183 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
184                 /* Book3S can be little endian, find it out here */
185                 int shared_big_endian = true;
186                 if (vcpu->arch.intr_msr & MSR_LE)
187                         shared_big_endian = false;
188                 if (shared_big_endian != vcpu->arch.shared_big_endian)
189                         kvmppc_swab_shared(vcpu);
190                 vcpu->arch.shared_big_endian = shared_big_endian;
191 #endif
192
193                 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
194                         /*
195                          * Older versions of the Linux magic page code had
196                          * a bug where they would map their trampoline code
197                          * NX. If that's the case, remove !PR NX capability.
198                          */
199                         vcpu->arch.disable_kernel_nx = true;
200                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
201                 }
202
203                 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
204                 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
205
206 #ifdef CONFIG_PPC_64K_PAGES
207                 /*
208                  * Make sure our 4k magic page is in the same window of a 64k
209                  * page within the guest and within the host's page.
210                  */
211                 if ((vcpu->arch.magic_page_pa & 0xf000) !=
212                     ((ulong)vcpu->arch.shared & 0xf000)) {
213                         void *old_shared = vcpu->arch.shared;
214                         ulong shared = (ulong)vcpu->arch.shared;
215                         void *new_shared;
216
217                         shared &= PAGE_MASK;
218                         shared |= vcpu->arch.magic_page_pa & 0xf000;
219                         new_shared = (void*)shared;
220                         memcpy(new_shared, old_shared, 0x1000);
221                         vcpu->arch.shared = new_shared;
222                 }
223 #endif
224
225                 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
226
227                 r = EV_SUCCESS;
228                 break;
229         }
230         case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
231                 r = EV_SUCCESS;
232 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
233                 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
234 #endif
235
236                 /* Second return value is in r4 */
237                 break;
238         case EV_HCALL_TOKEN(EV_IDLE):
239                 r = EV_SUCCESS;
240                 kvm_vcpu_block(vcpu);
241                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
242                 break;
243         default:
244                 r = EV_UNIMPLEMENTED;
245                 break;
246         }
247
248         kvmppc_set_gpr(vcpu, 4, r2);
249
250         return r;
251 }
252 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
253
254 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
255 {
256         int r = false;
257
258         /* We have to know what CPU to virtualize */
259         if (!vcpu->arch.pvr)
260                 goto out;
261
262         /* PAPR only works with book3s_64 */
263         if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
264                 goto out;
265
266         /* HV KVM can only do PAPR mode for now */
267         if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
268                 goto out;
269
270 #ifdef CONFIG_KVM_BOOKE_HV
271         if (!cpu_has_feature(CPU_FTR_EMB_HV))
272                 goto out;
273 #endif
274
275         r = true;
276
277 out:
278         vcpu->arch.sane = r;
279         return r ? 0 : -EINVAL;
280 }
281 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
282
283 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
284 {
285         enum emulation_result er;
286         int r;
287
288         er = kvmppc_emulate_loadstore(vcpu);
289         switch (er) {
290         case EMULATE_DONE:
291                 /* Future optimization: only reload non-volatiles if they were
292                  * actually modified. */
293                 r = RESUME_GUEST_NV;
294                 break;
295         case EMULATE_AGAIN:
296                 r = RESUME_GUEST;
297                 break;
298         case EMULATE_DO_MMIO:
299                 run->exit_reason = KVM_EXIT_MMIO;
300                 /* We must reload nonvolatiles because "update" load/store
301                  * instructions modify register state. */
302                 /* Future optimization: only reload non-volatiles if they were
303                  * actually modified. */
304                 r = RESUME_HOST_NV;
305                 break;
306         case EMULATE_FAIL:
307         {
308                 u32 last_inst;
309
310                 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
311                 /* XXX Deliver Program interrupt to guest. */
312                 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
313                 r = RESUME_HOST;
314                 break;
315         }
316         default:
317                 WARN_ON(1);
318                 r = RESUME_GUEST;
319         }
320
321         return r;
322 }
323 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
324
325 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
326               bool data)
327 {
328         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
329         struct kvmppc_pte pte;
330         int r = -EINVAL;
331
332         vcpu->stat.st++;
333
334         if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr)
335                 r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr,
336                                                             size);
337
338         if ((!r) || (r == -EAGAIN))
339                 return r;
340
341         r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
342                          XLATE_WRITE, &pte);
343         if (r < 0)
344                 return r;
345
346         *eaddr = pte.raddr;
347
348         if (!pte.may_write)
349                 return -EPERM;
350
351         /* Magic page override */
352         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
353             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
354             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
355                 void *magic = vcpu->arch.shared;
356                 magic += pte.eaddr & 0xfff;
357                 memcpy(magic, ptr, size);
358                 return EMULATE_DONE;
359         }
360
361         if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
362                 return EMULATE_DO_MMIO;
363
364         return EMULATE_DONE;
365 }
366 EXPORT_SYMBOL_GPL(kvmppc_st);
367
368 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
369                       bool data)
370 {
371         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
372         struct kvmppc_pte pte;
373         int rc = -EINVAL;
374
375         vcpu->stat.ld++;
376
377         if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr)
378                 rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr,
379                                                               size);
380
381         if ((!rc) || (rc == -EAGAIN))
382                 return rc;
383
384         rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
385                           XLATE_READ, &pte);
386         if (rc)
387                 return rc;
388
389         *eaddr = pte.raddr;
390
391         if (!pte.may_read)
392                 return -EPERM;
393
394         if (!data && !pte.may_execute)
395                 return -ENOEXEC;
396
397         /* Magic page override */
398         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
399             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
400             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
401                 void *magic = vcpu->arch.shared;
402                 magic += pte.eaddr & 0xfff;
403                 memcpy(ptr, magic, size);
404                 return EMULATE_DONE;
405         }
406
407         if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
408                 return EMULATE_DO_MMIO;
409
410         return EMULATE_DONE;
411 }
412 EXPORT_SYMBOL_GPL(kvmppc_ld);
413
414 int kvm_arch_hardware_enable(void)
415 {
416         return 0;
417 }
418
419 int kvm_arch_hardware_setup(void)
420 {
421         return 0;
422 }
423
424 int kvm_arch_check_processor_compat(void)
425 {
426         return kvmppc_core_check_processor_compat();
427 }
428
429 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
430 {
431         struct kvmppc_ops *kvm_ops = NULL;
432         /*
433          * if we have both HV and PR enabled, default is HV
434          */
435         if (type == 0) {
436                 if (kvmppc_hv_ops)
437                         kvm_ops = kvmppc_hv_ops;
438                 else
439                         kvm_ops = kvmppc_pr_ops;
440                 if (!kvm_ops)
441                         goto err_out;
442         } else  if (type == KVM_VM_PPC_HV) {
443                 if (!kvmppc_hv_ops)
444                         goto err_out;
445                 kvm_ops = kvmppc_hv_ops;
446         } else if (type == KVM_VM_PPC_PR) {
447                 if (!kvmppc_pr_ops)
448                         goto err_out;
449                 kvm_ops = kvmppc_pr_ops;
450         } else
451                 goto err_out;
452
453         if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
454                 return -ENOENT;
455
456         kvm->arch.kvm_ops = kvm_ops;
457         return kvmppc_core_init_vm(kvm);
458 err_out:
459         return -EINVAL;
460 }
461
462 void kvm_arch_destroy_vm(struct kvm *kvm)
463 {
464         unsigned int i;
465         struct kvm_vcpu *vcpu;
466
467 #ifdef CONFIG_KVM_XICS
468         /*
469          * We call kick_all_cpus_sync() to ensure that all
470          * CPUs have executed any pending IPIs before we
471          * continue and free VCPUs structures below.
472          */
473         if (is_kvmppc_hv_enabled(kvm))
474                 kick_all_cpus_sync();
475 #endif
476
477         kvm_for_each_vcpu(i, vcpu, kvm)
478                 kvm_arch_vcpu_free(vcpu);
479
480         mutex_lock(&kvm->lock);
481         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
482                 kvm->vcpus[i] = NULL;
483
484         atomic_set(&kvm->online_vcpus, 0);
485
486         kvmppc_core_destroy_vm(kvm);
487
488         mutex_unlock(&kvm->lock);
489
490         /* drop the module reference */
491         module_put(kvm->arch.kvm_ops->owner);
492 }
493
494 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
495 {
496         int r;
497         /* Assume we're using HV mode when the HV module is loaded */
498         int hv_enabled = kvmppc_hv_ops ? 1 : 0;
499
500         if (kvm) {
501                 /*
502                  * Hooray - we know which VM type we're running on. Depend on
503                  * that rather than the guess above.
504                  */
505                 hv_enabled = is_kvmppc_hv_enabled(kvm);
506         }
507
508         switch (ext) {
509 #ifdef CONFIG_BOOKE
510         case KVM_CAP_PPC_BOOKE_SREGS:
511         case KVM_CAP_PPC_BOOKE_WATCHDOG:
512         case KVM_CAP_PPC_EPR:
513 #else
514         case KVM_CAP_PPC_SEGSTATE:
515         case KVM_CAP_PPC_HIOR:
516         case KVM_CAP_PPC_PAPR:
517 #endif
518         case KVM_CAP_PPC_UNSET_IRQ:
519         case KVM_CAP_PPC_IRQ_LEVEL:
520         case KVM_CAP_ENABLE_CAP:
521         case KVM_CAP_ONE_REG:
522         case KVM_CAP_IOEVENTFD:
523         case KVM_CAP_DEVICE_CTRL:
524         case KVM_CAP_IMMEDIATE_EXIT:
525                 r = 1;
526                 break;
527         case KVM_CAP_PPC_GUEST_DEBUG_SSTEP:
528                 /* fall through */
529         case KVM_CAP_PPC_PAIRED_SINGLES:
530         case KVM_CAP_PPC_OSI:
531         case KVM_CAP_PPC_GET_PVINFO:
532 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
533         case KVM_CAP_SW_TLB:
534 #endif
535                 /* We support this only for PR */
536                 r = !hv_enabled;
537                 break;
538 #ifdef CONFIG_KVM_MPIC
539         case KVM_CAP_IRQ_MPIC:
540                 r = 1;
541                 break;
542 #endif
543
544 #ifdef CONFIG_PPC_BOOK3S_64
545         case KVM_CAP_SPAPR_TCE:
546         case KVM_CAP_SPAPR_TCE_64:
547                 r = 1;
548                 break;
549         case KVM_CAP_SPAPR_TCE_VFIO:
550                 r = !!cpu_has_feature(CPU_FTR_HVMODE);
551                 break;
552         case KVM_CAP_PPC_RTAS:
553         case KVM_CAP_PPC_FIXUP_HCALL:
554         case KVM_CAP_PPC_ENABLE_HCALL:
555 #ifdef CONFIG_KVM_XICS
556         case KVM_CAP_IRQ_XICS:
557 #endif
558         case KVM_CAP_PPC_GET_CPU_CHAR:
559                 r = 1;
560                 break;
561 #ifdef CONFIG_KVM_XIVE
562         case KVM_CAP_PPC_IRQ_XIVE:
563                 /*
564                  * We need XIVE to be enabled on the platform (implies
565                  * a POWER9 processor) and the PowerNV platform, as
566                  * nested is not yet supported.
567                  */
568                 r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) &&
569                         kvmppc_xive_native_supported();
570                 break;
571 #endif
572
573         case KVM_CAP_PPC_ALLOC_HTAB:
574                 r = hv_enabled;
575                 break;
576 #endif /* CONFIG_PPC_BOOK3S_64 */
577 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
578         case KVM_CAP_PPC_SMT:
579                 r = 0;
580                 if (kvm) {
581                         if (kvm->arch.emul_smt_mode > 1)
582                                 r = kvm->arch.emul_smt_mode;
583                         else
584                                 r = kvm->arch.smt_mode;
585                 } else if (hv_enabled) {
586                         if (cpu_has_feature(CPU_FTR_ARCH_300))
587                                 r = 1;
588                         else
589                                 r = threads_per_subcore;
590                 }
591                 break;
592         case KVM_CAP_PPC_SMT_POSSIBLE:
593                 r = 1;
594                 if (hv_enabled) {
595                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
596                                 r = ((threads_per_subcore << 1) - 1);
597                         else
598                                 /* P9 can emulate dbells, so allow any mode */
599                                 r = 8 | 4 | 2 | 1;
600                 }
601                 break;
602         case KVM_CAP_PPC_RMA:
603                 r = 0;
604                 break;
605         case KVM_CAP_PPC_HWRNG:
606                 r = kvmppc_hwrng_present();
607                 break;
608         case KVM_CAP_PPC_MMU_RADIX:
609                 r = !!(hv_enabled && radix_enabled());
610                 break;
611         case KVM_CAP_PPC_MMU_HASH_V3:
612                 r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300) &&
613                        cpu_has_feature(CPU_FTR_HVMODE));
614                 break;
615         case KVM_CAP_PPC_NESTED_HV:
616                 r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
617                        !kvmppc_hv_ops->enable_nested(NULL));
618                 break;
619 #endif
620         case KVM_CAP_SYNC_MMU:
621 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
622                 r = hv_enabled;
623 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
624                 r = 1;
625 #else
626                 r = 0;
627 #endif
628                 break;
629 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
630         case KVM_CAP_PPC_HTAB_FD:
631                 r = hv_enabled;
632                 break;
633 #endif
634         case KVM_CAP_NR_VCPUS:
635                 /*
636                  * Recommending a number of CPUs is somewhat arbitrary; we
637                  * return the number of present CPUs for -HV (since a host
638                  * will have secondary threads "offline"), and for other KVM
639                  * implementations just count online CPUs.
640                  */
641                 if (hv_enabled)
642                         r = num_present_cpus();
643                 else
644                         r = num_online_cpus();
645                 break;
646         case KVM_CAP_MAX_VCPUS:
647                 r = KVM_MAX_VCPUS;
648                 break;
649         case KVM_CAP_MAX_VCPU_ID:
650                 r = KVM_MAX_VCPU_ID;
651                 break;
652 #ifdef CONFIG_PPC_BOOK3S_64
653         case KVM_CAP_PPC_GET_SMMU_INFO:
654                 r = 1;
655                 break;
656         case KVM_CAP_SPAPR_MULTITCE:
657                 r = 1;
658                 break;
659         case KVM_CAP_SPAPR_RESIZE_HPT:
660                 r = !!hv_enabled;
661                 break;
662 #endif
663 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
664         case KVM_CAP_PPC_FWNMI:
665                 r = hv_enabled;
666                 break;
667 #endif
668 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
669         case KVM_CAP_PPC_HTM:
670                 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
671                      (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
672                 break;
673 #endif
674         default:
675                 r = 0;
676                 break;
677         }
678         return r;
679
680 }
681
682 long kvm_arch_dev_ioctl(struct file *filp,
683                         unsigned int ioctl, unsigned long arg)
684 {
685         return -EINVAL;
686 }
687
688 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
689                            struct kvm_memory_slot *dont)
690 {
691         kvmppc_core_free_memslot(kvm, free, dont);
692 }
693
694 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
695                             unsigned long npages)
696 {
697         return kvmppc_core_create_memslot(kvm, slot, npages);
698 }
699
700 int kvm_arch_prepare_memory_region(struct kvm *kvm,
701                                    struct kvm_memory_slot *memslot,
702                                    const struct kvm_userspace_memory_region *mem,
703                                    enum kvm_mr_change change)
704 {
705         return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
706 }
707
708 void kvm_arch_commit_memory_region(struct kvm *kvm,
709                                    const struct kvm_userspace_memory_region *mem,
710                                    const struct kvm_memory_slot *old,
711                                    const struct kvm_memory_slot *new,
712                                    enum kvm_mr_change change)
713 {
714         kvmppc_core_commit_memory_region(kvm, mem, old, new, change);
715 }
716
717 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
718                                    struct kvm_memory_slot *slot)
719 {
720         kvmppc_core_flush_memslot(kvm, slot);
721 }
722
723 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
724 {
725         struct kvm_vcpu *vcpu;
726         int err;
727
728         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
729         if (!vcpu)
730                 return ERR_PTR(-ENOMEM);
731
732         err = kvm_vcpu_init(vcpu, kvm, id);
733         if (err)
734                 goto free_vcpu;
735
736         err = kvmppc_core_vcpu_create(vcpu);
737         if (err)
738                 goto uninit_vcpu;
739
740         vcpu->arch.wqp = &vcpu->wq;
741         kvmppc_create_vcpu_debugfs(vcpu, id);
742         return vcpu;
743
744 uninit_vcpu:
745         kvm_vcpu_uninit(vcpu);
746 free_vcpu:
747         kmem_cache_free(kvm_vcpu_cache, vcpu);
748         return ERR_PTR(err);
749 }
750
751 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
752 {
753 }
754
755 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
756 {
757         /* Make sure we're not using the vcpu anymore */
758         hrtimer_cancel(&vcpu->arch.dec_timer);
759
760         kvmppc_remove_vcpu_debugfs(vcpu);
761
762         switch (vcpu->arch.irq_type) {
763         case KVMPPC_IRQ_MPIC:
764                 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
765                 break;
766         case KVMPPC_IRQ_XICS:
767                 if (xics_on_xive())
768                         kvmppc_xive_cleanup_vcpu(vcpu);
769                 else
770                         kvmppc_xics_free_icp(vcpu);
771                 break;
772         case KVMPPC_IRQ_XIVE:
773                 kvmppc_xive_native_cleanup_vcpu(vcpu);
774                 break;
775         }
776
777         kvmppc_core_vcpu_free(vcpu);
778
779         kvm_vcpu_uninit(vcpu);
780
781         kmem_cache_free(kvm_vcpu_cache, vcpu);
782 }
783
784 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
785 {
786         kvm_arch_vcpu_free(vcpu);
787 }
788
789 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
790 {
791         return kvmppc_core_pending_dec(vcpu);
792 }
793
794 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
795 {
796         struct kvm_vcpu *vcpu;
797
798         vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
799         kvmppc_decrementer_func(vcpu);
800
801         return HRTIMER_NORESTART;
802 }
803
804 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
805 {
806         int ret;
807
808         hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
809         vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
810         vcpu->arch.dec_expires = get_tb();
811
812 #ifdef CONFIG_KVM_EXIT_TIMING
813         mutex_init(&vcpu->arch.exit_timing_lock);
814 #endif
815         ret = kvmppc_subarch_vcpu_init(vcpu);
816         return ret;
817 }
818
819 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
820 {
821         kvmppc_mmu_destroy(vcpu);
822         kvmppc_subarch_vcpu_uninit(vcpu);
823 }
824
825 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
826 {
827 #ifdef CONFIG_BOOKE
828         /*
829          * vrsave (formerly usprg0) isn't used by Linux, but may
830          * be used by the guest.
831          *
832          * On non-booke this is associated with Altivec and
833          * is handled by code in book3s.c.
834          */
835         mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
836 #endif
837         kvmppc_core_vcpu_load(vcpu, cpu);
838 }
839
840 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
841 {
842         kvmppc_core_vcpu_put(vcpu);
843 #ifdef CONFIG_BOOKE
844         vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
845 #endif
846 }
847
848 /*
849  * irq_bypass_add_producer and irq_bypass_del_producer are only
850  * useful if the architecture supports PCI passthrough.
851  * irq_bypass_stop and irq_bypass_start are not needed and so
852  * kvm_ops are not defined for them.
853  */
854 bool kvm_arch_has_irq_bypass(void)
855 {
856         return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
857                 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
858 }
859
860 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
861                                      struct irq_bypass_producer *prod)
862 {
863         struct kvm_kernel_irqfd *irqfd =
864                 container_of(cons, struct kvm_kernel_irqfd, consumer);
865         struct kvm *kvm = irqfd->kvm;
866
867         if (kvm->arch.kvm_ops->irq_bypass_add_producer)
868                 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
869
870         return 0;
871 }
872
873 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
874                                       struct irq_bypass_producer *prod)
875 {
876         struct kvm_kernel_irqfd *irqfd =
877                 container_of(cons, struct kvm_kernel_irqfd, consumer);
878         struct kvm *kvm = irqfd->kvm;
879
880         if (kvm->arch.kvm_ops->irq_bypass_del_producer)
881                 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
882 }
883
884 #ifdef CONFIG_VSX
885 static inline int kvmppc_get_vsr_dword_offset(int index)
886 {
887         int offset;
888
889         if ((index != 0) && (index != 1))
890                 return -1;
891
892 #ifdef __BIG_ENDIAN
893         offset =  index;
894 #else
895         offset = 1 - index;
896 #endif
897
898         return offset;
899 }
900
901 static inline int kvmppc_get_vsr_word_offset(int index)
902 {
903         int offset;
904
905         if ((index > 3) || (index < 0))
906                 return -1;
907
908 #ifdef __BIG_ENDIAN
909         offset = index;
910 #else
911         offset = 3 - index;
912 #endif
913         return offset;
914 }
915
916 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
917         u64 gpr)
918 {
919         union kvmppc_one_reg val;
920         int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
921         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
922
923         if (offset == -1)
924                 return;
925
926         if (index >= 32) {
927                 val.vval = VCPU_VSX_VR(vcpu, index - 32);
928                 val.vsxval[offset] = gpr;
929                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
930         } else {
931                 VCPU_VSX_FPR(vcpu, index, offset) = gpr;
932         }
933 }
934
935 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
936         u64 gpr)
937 {
938         union kvmppc_one_reg val;
939         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
940
941         if (index >= 32) {
942                 val.vval = VCPU_VSX_VR(vcpu, index - 32);
943                 val.vsxval[0] = gpr;
944                 val.vsxval[1] = gpr;
945                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
946         } else {
947                 VCPU_VSX_FPR(vcpu, index, 0) = gpr;
948                 VCPU_VSX_FPR(vcpu, index, 1) = gpr;
949         }
950 }
951
952 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
953         u32 gpr)
954 {
955         union kvmppc_one_reg val;
956         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
957
958         if (index >= 32) {
959                 val.vsx32val[0] = gpr;
960                 val.vsx32val[1] = gpr;
961                 val.vsx32val[2] = gpr;
962                 val.vsx32val[3] = gpr;
963                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
964         } else {
965                 val.vsx32val[0] = gpr;
966                 val.vsx32val[1] = gpr;
967                 VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
968                 VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
969         }
970 }
971
972 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
973         u32 gpr32)
974 {
975         union kvmppc_one_reg val;
976         int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
977         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
978         int dword_offset, word_offset;
979
980         if (offset == -1)
981                 return;
982
983         if (index >= 32) {
984                 val.vval = VCPU_VSX_VR(vcpu, index - 32);
985                 val.vsx32val[offset] = gpr32;
986                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
987         } else {
988                 dword_offset = offset / 2;
989                 word_offset = offset % 2;
990                 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
991                 val.vsx32val[word_offset] = gpr32;
992                 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
993         }
994 }
995 #endif /* CONFIG_VSX */
996
997 #ifdef CONFIG_ALTIVEC
998 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
999                 int index, int element_size)
1000 {
1001         int offset;
1002         int elts = sizeof(vector128)/element_size;
1003
1004         if ((index < 0) || (index >= elts))
1005                 return -1;
1006
1007         if (kvmppc_need_byteswap(vcpu))
1008                 offset = elts - index - 1;
1009         else
1010                 offset = index;
1011
1012         return offset;
1013 }
1014
1015 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
1016                 int index)
1017 {
1018         return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
1019 }
1020
1021 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
1022                 int index)
1023 {
1024         return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
1025 }
1026
1027 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
1028                 int index)
1029 {
1030         return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
1031 }
1032
1033 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
1034                 int index)
1035 {
1036         return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
1037 }
1038
1039
1040 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
1041         u64 gpr)
1042 {
1043         union kvmppc_one_reg val;
1044         int offset = kvmppc_get_vmx_dword_offset(vcpu,
1045                         vcpu->arch.mmio_vmx_offset);
1046         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1047
1048         if (offset == -1)
1049                 return;
1050
1051         val.vval = VCPU_VSX_VR(vcpu, index);
1052         val.vsxval[offset] = gpr;
1053         VCPU_VSX_VR(vcpu, index) = val.vval;
1054 }
1055
1056 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
1057         u32 gpr32)
1058 {
1059         union kvmppc_one_reg val;
1060         int offset = kvmppc_get_vmx_word_offset(vcpu,
1061                         vcpu->arch.mmio_vmx_offset);
1062         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1063
1064         if (offset == -1)
1065                 return;
1066
1067         val.vval = VCPU_VSX_VR(vcpu, index);
1068         val.vsx32val[offset] = gpr32;
1069         VCPU_VSX_VR(vcpu, index) = val.vval;
1070 }
1071
1072 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
1073         u16 gpr16)
1074 {
1075         union kvmppc_one_reg val;
1076         int offset = kvmppc_get_vmx_hword_offset(vcpu,
1077                         vcpu->arch.mmio_vmx_offset);
1078         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1079
1080         if (offset == -1)
1081                 return;
1082
1083         val.vval = VCPU_VSX_VR(vcpu, index);
1084         val.vsx16val[offset] = gpr16;
1085         VCPU_VSX_VR(vcpu, index) = val.vval;
1086 }
1087
1088 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
1089         u8 gpr8)
1090 {
1091         union kvmppc_one_reg val;
1092         int offset = kvmppc_get_vmx_byte_offset(vcpu,
1093                         vcpu->arch.mmio_vmx_offset);
1094         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1095
1096         if (offset == -1)
1097                 return;
1098
1099         val.vval = VCPU_VSX_VR(vcpu, index);
1100         val.vsx8val[offset] = gpr8;
1101         VCPU_VSX_VR(vcpu, index) = val.vval;
1102 }
1103 #endif /* CONFIG_ALTIVEC */
1104
1105 #ifdef CONFIG_PPC_FPU
1106 static inline u64 sp_to_dp(u32 fprs)
1107 {
1108         u64 fprd;
1109
1110         preempt_disable();
1111         enable_kernel_fp();
1112         asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
1113              : "fr0");
1114         preempt_enable();
1115         return fprd;
1116 }
1117
1118 static inline u32 dp_to_sp(u64 fprd)
1119 {
1120         u32 fprs;
1121
1122         preempt_disable();
1123         enable_kernel_fp();
1124         asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
1125              : "fr0");
1126         preempt_enable();
1127         return fprs;
1128 }
1129
1130 #else
1131 #define sp_to_dp(x)     (x)
1132 #define dp_to_sp(x)     (x)
1133 #endif /* CONFIG_PPC_FPU */
1134
1135 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
1136                                       struct kvm_run *run)
1137 {
1138         u64 uninitialized_var(gpr);
1139
1140         if (run->mmio.len > sizeof(gpr)) {
1141                 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
1142                 return;
1143         }
1144
1145         if (!vcpu->arch.mmio_host_swabbed) {
1146                 switch (run->mmio.len) {
1147                 case 8: gpr = *(u64 *)run->mmio.data; break;
1148                 case 4: gpr = *(u32 *)run->mmio.data; break;
1149                 case 2: gpr = *(u16 *)run->mmio.data; break;
1150                 case 1: gpr = *(u8 *)run->mmio.data; break;
1151                 }
1152         } else {
1153                 switch (run->mmio.len) {
1154                 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1155                 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1156                 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1157                 case 1: gpr = *(u8 *)run->mmio.data; break;
1158                 }
1159         }
1160
1161         /* conversion between single and double precision */
1162         if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1163                 gpr = sp_to_dp(gpr);
1164
1165         if (vcpu->arch.mmio_sign_extend) {
1166                 switch (run->mmio.len) {
1167 #ifdef CONFIG_PPC64
1168                 case 4:
1169                         gpr = (s64)(s32)gpr;
1170                         break;
1171 #endif
1172                 case 2:
1173                         gpr = (s64)(s16)gpr;
1174                         break;
1175                 case 1:
1176                         gpr = (s64)(s8)gpr;
1177                         break;
1178                 }
1179         }
1180
1181         switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1182         case KVM_MMIO_REG_GPR:
1183                 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1184                 break;
1185         case KVM_MMIO_REG_FPR:
1186                 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1187                         vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);
1188
1189                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1190                 break;
1191 #ifdef CONFIG_PPC_BOOK3S
1192         case KVM_MMIO_REG_QPR:
1193                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1194                 break;
1195         case KVM_MMIO_REG_FQPR:
1196                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1197                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1198                 break;
1199 #endif
1200 #ifdef CONFIG_VSX
1201         case KVM_MMIO_REG_VSX:
1202                 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1203                         vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);
1204
1205                 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1206                         kvmppc_set_vsr_dword(vcpu, gpr);
1207                 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1208                         kvmppc_set_vsr_word(vcpu, gpr);
1209                 else if (vcpu->arch.mmio_copy_type ==
1210                                 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1211                         kvmppc_set_vsr_dword_dump(vcpu, gpr);
1212                 else if (vcpu->arch.mmio_copy_type ==
1213                                 KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
1214                         kvmppc_set_vsr_word_dump(vcpu, gpr);
1215                 break;
1216 #endif
1217 #ifdef CONFIG_ALTIVEC
1218         case KVM_MMIO_REG_VMX:
1219                 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1220                         vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);
1221
1222                 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
1223                         kvmppc_set_vmx_dword(vcpu, gpr);
1224                 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
1225                         kvmppc_set_vmx_word(vcpu, gpr);
1226                 else if (vcpu->arch.mmio_copy_type ==
1227                                 KVMPPC_VMX_COPY_HWORD)
1228                         kvmppc_set_vmx_hword(vcpu, gpr);
1229                 else if (vcpu->arch.mmio_copy_type ==
1230                                 KVMPPC_VMX_COPY_BYTE)
1231                         kvmppc_set_vmx_byte(vcpu, gpr);
1232                 break;
1233 #endif
1234 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1235         case KVM_MMIO_REG_NESTED_GPR:
1236                 if (kvmppc_need_byteswap(vcpu))
1237                         gpr = swab64(gpr);
1238                 kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr,
1239                                      sizeof(gpr));
1240                 break;
1241 #endif
1242         default:
1243                 BUG();
1244         }
1245 }
1246
1247 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1248                                 unsigned int rt, unsigned int bytes,
1249                                 int is_default_endian, int sign_extend)
1250 {
1251         int idx, ret;
1252         bool host_swabbed;
1253
1254         /* Pity C doesn't have a logical XOR operator */
1255         if (kvmppc_need_byteswap(vcpu)) {
1256                 host_swabbed = is_default_endian;
1257         } else {
1258                 host_swabbed = !is_default_endian;
1259         }
1260
1261         if (bytes > sizeof(run->mmio.data)) {
1262                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1263                        run->mmio.len);
1264         }
1265
1266         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1267         run->mmio.len = bytes;
1268         run->mmio.is_write = 0;
1269
1270         vcpu->arch.io_gpr = rt;
1271         vcpu->arch.mmio_host_swabbed = host_swabbed;
1272         vcpu->mmio_needed = 1;
1273         vcpu->mmio_is_write = 0;
1274         vcpu->arch.mmio_sign_extend = sign_extend;
1275
1276         idx = srcu_read_lock(&vcpu->kvm->srcu);
1277
1278         ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1279                               bytes, &run->mmio.data);
1280
1281         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1282
1283         if (!ret) {
1284                 kvmppc_complete_mmio_load(vcpu, run);
1285                 vcpu->mmio_needed = 0;
1286                 return EMULATE_DONE;
1287         }
1288
1289         return EMULATE_DO_MMIO;
1290 }
1291
1292 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1293                        unsigned int rt, unsigned int bytes,
1294                        int is_default_endian)
1295 {
1296         return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
1297 }
1298 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1299
1300 /* Same as above, but sign extends */
1301 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1302                         unsigned int rt, unsigned int bytes,
1303                         int is_default_endian)
1304 {
1305         return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
1306 }
1307
1308 #ifdef CONFIG_VSX
1309 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1310                         unsigned int rt, unsigned int bytes,
1311                         int is_default_endian, int mmio_sign_extend)
1312 {
1313         enum emulation_result emulated = EMULATE_DONE;
1314
1315         /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1316         if (vcpu->arch.mmio_vsx_copy_nums > 4)
1317                 return EMULATE_FAIL;
1318
1319         while (vcpu->arch.mmio_vsx_copy_nums) {
1320                 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1321                         is_default_endian, mmio_sign_extend);
1322
1323                 if (emulated != EMULATE_DONE)
1324                         break;
1325
1326                 vcpu->arch.paddr_accessed += run->mmio.len;
1327
1328                 vcpu->arch.mmio_vsx_copy_nums--;
1329                 vcpu->arch.mmio_vsx_offset++;
1330         }
1331         return emulated;
1332 }
1333 #endif /* CONFIG_VSX */
1334
1335 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1336                         u64 val, unsigned int bytes, int is_default_endian)
1337 {
1338         void *data = run->mmio.data;
1339         int idx, ret;
1340         bool host_swabbed;
1341
1342         /* Pity C doesn't have a logical XOR operator */
1343         if (kvmppc_need_byteswap(vcpu)) {
1344                 host_swabbed = is_default_endian;
1345         } else {
1346                 host_swabbed = !is_default_endian;
1347         }
1348
1349         if (bytes > sizeof(run->mmio.data)) {
1350                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1351                        run->mmio.len);
1352         }
1353
1354         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1355         run->mmio.len = bytes;
1356         run->mmio.is_write = 1;
1357         vcpu->mmio_needed = 1;
1358         vcpu->mmio_is_write = 1;
1359
1360         if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1361                 val = dp_to_sp(val);
1362
1363         /* Store the value at the lowest bytes in 'data'. */
1364         if (!host_swabbed) {
1365                 switch (bytes) {
1366                 case 8: *(u64 *)data = val; break;
1367                 case 4: *(u32 *)data = val; break;
1368                 case 2: *(u16 *)data = val; break;
1369                 case 1: *(u8  *)data = val; break;
1370                 }
1371         } else {
1372                 switch (bytes) {
1373                 case 8: *(u64 *)data = swab64(val); break;
1374                 case 4: *(u32 *)data = swab32(val); break;
1375                 case 2: *(u16 *)data = swab16(val); break;
1376                 case 1: *(u8  *)data = val; break;
1377                 }
1378         }
1379
1380         idx = srcu_read_lock(&vcpu->kvm->srcu);
1381
1382         ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1383                                bytes, &run->mmio.data);
1384
1385         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1386
1387         if (!ret) {
1388                 vcpu->mmio_needed = 0;
1389                 return EMULATE_DONE;
1390         }
1391
1392         return EMULATE_DO_MMIO;
1393 }
1394 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1395
1396 #ifdef CONFIG_VSX
1397 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1398 {
1399         u32 dword_offset, word_offset;
1400         union kvmppc_one_reg reg;
1401         int vsx_offset = 0;
1402         int copy_type = vcpu->arch.mmio_copy_type;
1403         int result = 0;
1404
1405         switch (copy_type) {
1406         case KVMPPC_VSX_COPY_DWORD:
1407                 vsx_offset =
1408                         kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1409
1410                 if (vsx_offset == -1) {
1411                         result = -1;
1412                         break;
1413                 }
1414
1415                 if (rs < 32) {
1416                         *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1417                 } else {
1418                         reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1419                         *val = reg.vsxval[vsx_offset];
1420                 }
1421                 break;
1422
1423         case KVMPPC_VSX_COPY_WORD:
1424                 vsx_offset =
1425                         kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1426
1427                 if (vsx_offset == -1) {
1428                         result = -1;
1429                         break;
1430                 }
1431
1432                 if (rs < 32) {
1433                         dword_offset = vsx_offset / 2;
1434                         word_offset = vsx_offset % 2;
1435                         reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1436                         *val = reg.vsx32val[word_offset];
1437                 } else {
1438                         reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1439                         *val = reg.vsx32val[vsx_offset];
1440                 }
1441                 break;
1442
1443         default:
1444                 result = -1;
1445                 break;
1446         }
1447
1448         return result;
1449 }
1450
1451 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1452                         int rs, unsigned int bytes, int is_default_endian)
1453 {
1454         u64 val;
1455         enum emulation_result emulated = EMULATE_DONE;
1456
1457         vcpu->arch.io_gpr = rs;
1458
1459         /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1460         if (vcpu->arch.mmio_vsx_copy_nums > 4)
1461                 return EMULATE_FAIL;
1462
1463         while (vcpu->arch.mmio_vsx_copy_nums) {
1464                 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1465                         return EMULATE_FAIL;
1466
1467                 emulated = kvmppc_handle_store(run, vcpu,
1468                          val, bytes, is_default_endian);
1469
1470                 if (emulated != EMULATE_DONE)
1471                         break;
1472
1473                 vcpu->arch.paddr_accessed += run->mmio.len;
1474
1475                 vcpu->arch.mmio_vsx_copy_nums--;
1476                 vcpu->arch.mmio_vsx_offset++;
1477         }
1478
1479         return emulated;
1480 }
1481
1482 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
1483                         struct kvm_run *run)
1484 {
1485         enum emulation_result emulated = EMULATE_FAIL;
1486         int r;
1487
1488         vcpu->arch.paddr_accessed += run->mmio.len;
1489
1490         if (!vcpu->mmio_is_write) {
1491                 emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
1492                          run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1493         } else {
1494                 emulated = kvmppc_handle_vsx_store(run, vcpu,
1495                          vcpu->arch.io_gpr, run->mmio.len, 1);
1496         }
1497
1498         switch (emulated) {
1499         case EMULATE_DO_MMIO:
1500                 run->exit_reason = KVM_EXIT_MMIO;
1501                 r = RESUME_HOST;
1502                 break;
1503         case EMULATE_FAIL:
1504                 pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1505                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1506                 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1507                 r = RESUME_HOST;
1508                 break;
1509         default:
1510                 r = RESUME_GUEST;
1511                 break;
1512         }
1513         return r;
1514 }
1515 #endif /* CONFIG_VSX */
1516
1517 #ifdef CONFIG_ALTIVEC
1518 int kvmppc_handle_vmx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1519                 unsigned int rt, unsigned int bytes, int is_default_endian)
1520 {
1521         enum emulation_result emulated = EMULATE_DONE;
1522
1523         if (vcpu->arch.mmio_vsx_copy_nums > 2)
1524                 return EMULATE_FAIL;
1525
1526         while (vcpu->arch.mmio_vmx_copy_nums) {
1527                 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1528                                 is_default_endian, 0);
1529
1530                 if (emulated != EMULATE_DONE)
1531                         break;
1532
1533                 vcpu->arch.paddr_accessed += run->mmio.len;
1534                 vcpu->arch.mmio_vmx_copy_nums--;
1535                 vcpu->arch.mmio_vmx_offset++;
1536         }
1537
1538         return emulated;
1539 }
1540
1541 int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1542 {
1543         union kvmppc_one_reg reg;
1544         int vmx_offset = 0;
1545         int result = 0;
1546
1547         vmx_offset =
1548                 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1549
1550         if (vmx_offset == -1)
1551                 return -1;
1552
1553         reg.vval = VCPU_VSX_VR(vcpu, index);
1554         *val = reg.vsxval[vmx_offset];
1555
1556         return result;
1557 }
1558
1559 int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
1560 {
1561         union kvmppc_one_reg reg;
1562         int vmx_offset = 0;
1563         int result = 0;
1564
1565         vmx_offset =
1566                 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1567
1568         if (vmx_offset == -1)
1569                 return -1;
1570
1571         reg.vval = VCPU_VSX_VR(vcpu, index);
1572         *val = reg.vsx32val[vmx_offset];
1573
1574         return result;
1575 }
1576
1577 int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
1578 {
1579         union kvmppc_one_reg reg;
1580         int vmx_offset = 0;
1581         int result = 0;
1582
1583         vmx_offset =
1584                 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1585
1586         if (vmx_offset == -1)
1587                 return -1;
1588
1589         reg.vval = VCPU_VSX_VR(vcpu, index);
1590         *val = reg.vsx16val[vmx_offset];
1591
1592         return result;
1593 }
1594
1595 int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
1596 {
1597         union kvmppc_one_reg reg;
1598         int vmx_offset = 0;
1599         int result = 0;
1600
1601         vmx_offset =
1602                 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1603
1604         if (vmx_offset == -1)
1605                 return -1;
1606
1607         reg.vval = VCPU_VSX_VR(vcpu, index);
1608         *val = reg.vsx8val[vmx_offset];
1609
1610         return result;
1611 }
1612
1613 int kvmppc_handle_vmx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1614                 unsigned int rs, unsigned int bytes, int is_default_endian)
1615 {
1616         u64 val = 0;
1617         unsigned int index = rs & KVM_MMIO_REG_MASK;
1618         enum emulation_result emulated = EMULATE_DONE;
1619
1620         if (vcpu->arch.mmio_vsx_copy_nums > 2)
1621                 return EMULATE_FAIL;
1622
1623         vcpu->arch.io_gpr = rs;
1624
1625         while (vcpu->arch.mmio_vmx_copy_nums) {
1626                 switch (vcpu->arch.mmio_copy_type) {
1627                 case KVMPPC_VMX_COPY_DWORD:
1628                         if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
1629                                 return EMULATE_FAIL;
1630
1631                         break;
1632                 case KVMPPC_VMX_COPY_WORD:
1633                         if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
1634                                 return EMULATE_FAIL;
1635                         break;
1636                 case KVMPPC_VMX_COPY_HWORD:
1637                         if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
1638                                 return EMULATE_FAIL;
1639                         break;
1640                 case KVMPPC_VMX_COPY_BYTE:
1641                         if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
1642                                 return EMULATE_FAIL;
1643                         break;
1644                 default:
1645                         return EMULATE_FAIL;
1646                 }
1647
1648                 emulated = kvmppc_handle_store(run, vcpu, val, bytes,
1649                                 is_default_endian);
1650                 if (emulated != EMULATE_DONE)
1651                         break;
1652
1653                 vcpu->arch.paddr_accessed += run->mmio.len;
1654                 vcpu->arch.mmio_vmx_copy_nums--;
1655                 vcpu->arch.mmio_vmx_offset++;
1656         }
1657
1658         return emulated;
1659 }
1660
1661 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu,
1662                 struct kvm_run *run)
1663 {
1664         enum emulation_result emulated = EMULATE_FAIL;
1665         int r;
1666
1667         vcpu->arch.paddr_accessed += run->mmio.len;
1668
1669         if (!vcpu->mmio_is_write) {
1670                 emulated = kvmppc_handle_vmx_load(run, vcpu,
1671                                 vcpu->arch.io_gpr, run->mmio.len, 1);
1672         } else {
1673                 emulated = kvmppc_handle_vmx_store(run, vcpu,
1674                                 vcpu->arch.io_gpr, run->mmio.len, 1);
1675         }
1676
1677         switch (emulated) {
1678         case EMULATE_DO_MMIO:
1679                 run->exit_reason = KVM_EXIT_MMIO;
1680                 r = RESUME_HOST;
1681                 break;
1682         case EMULATE_FAIL:
1683                 pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1684                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1685                 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1686                 r = RESUME_HOST;
1687                 break;
1688         default:
1689                 r = RESUME_GUEST;
1690                 break;
1691         }
1692         return r;
1693 }
1694 #endif /* CONFIG_ALTIVEC */
1695
1696 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1697 {
1698         int r = 0;
1699         union kvmppc_one_reg val;
1700         int size;
1701
1702         size = one_reg_size(reg->id);
1703         if (size > sizeof(val))
1704                 return -EINVAL;
1705
1706         r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1707         if (r == -EINVAL) {
1708                 r = 0;
1709                 switch (reg->id) {
1710 #ifdef CONFIG_ALTIVEC
1711                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1712                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1713                                 r = -ENXIO;
1714                                 break;
1715                         }
1716                         val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1717                         break;
1718                 case KVM_REG_PPC_VSCR:
1719                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1720                                 r = -ENXIO;
1721                                 break;
1722                         }
1723                         val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1724                         break;
1725                 case KVM_REG_PPC_VRSAVE:
1726                         val = get_reg_val(reg->id, vcpu->arch.vrsave);
1727                         break;
1728 #endif /* CONFIG_ALTIVEC */
1729                 default:
1730                         r = -EINVAL;
1731                         break;
1732                 }
1733         }
1734
1735         if (r)
1736                 return r;
1737
1738         if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1739                 r = -EFAULT;
1740
1741         return r;
1742 }
1743
1744 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1745 {
1746         int r;
1747         union kvmppc_one_reg val;
1748         int size;
1749
1750         size = one_reg_size(reg->id);
1751         if (size > sizeof(val))
1752                 return -EINVAL;
1753
1754         if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1755                 return -EFAULT;
1756
1757         r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1758         if (r == -EINVAL) {
1759                 r = 0;
1760                 switch (reg->id) {
1761 #ifdef CONFIG_ALTIVEC
1762                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1763                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1764                                 r = -ENXIO;
1765                                 break;
1766                         }
1767                         vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1768                         break;
1769                 case KVM_REG_PPC_VSCR:
1770                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1771                                 r = -ENXIO;
1772                                 break;
1773                         }
1774                         vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1775                         break;
1776                 case KVM_REG_PPC_VRSAVE:
1777                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1778                                 r = -ENXIO;
1779                                 break;
1780                         }
1781                         vcpu->arch.vrsave = set_reg_val(reg->id, val);
1782                         break;
1783 #endif /* CONFIG_ALTIVEC */
1784                 default:
1785                         r = -EINVAL;
1786                         break;
1787                 }
1788         }
1789
1790         return r;
1791 }
1792
1793 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1794 {
1795         int r;
1796
1797         vcpu_load(vcpu);
1798
1799         if (vcpu->mmio_needed) {
1800                 vcpu->mmio_needed = 0;
1801                 if (!vcpu->mmio_is_write)
1802                         kvmppc_complete_mmio_load(vcpu, run);
1803 #ifdef CONFIG_VSX
1804                 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1805                         vcpu->arch.mmio_vsx_copy_nums--;
1806                         vcpu->arch.mmio_vsx_offset++;
1807                 }
1808
1809                 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1810                         r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
1811                         if (r == RESUME_HOST) {
1812                                 vcpu->mmio_needed = 1;
1813                                 goto out;
1814                         }
1815                 }
1816 #endif
1817 #ifdef CONFIG_ALTIVEC
1818                 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1819                         vcpu->arch.mmio_vmx_copy_nums--;
1820                         vcpu->arch.mmio_vmx_offset++;
1821                 }
1822
1823                 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1824                         r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run);
1825                         if (r == RESUME_HOST) {
1826                                 vcpu->mmio_needed = 1;
1827                                 goto out;
1828                         }
1829                 }
1830 #endif
1831         } else if (vcpu->arch.osi_needed) {
1832                 u64 *gprs = run->osi.gprs;
1833                 int i;
1834
1835                 for (i = 0; i < 32; i++)
1836                         kvmppc_set_gpr(vcpu, i, gprs[i]);
1837                 vcpu->arch.osi_needed = 0;
1838         } else if (vcpu->arch.hcall_needed) {
1839                 int i;
1840
1841                 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1842                 for (i = 0; i < 9; ++i)
1843                         kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1844                 vcpu->arch.hcall_needed = 0;
1845 #ifdef CONFIG_BOOKE
1846         } else if (vcpu->arch.epr_needed) {
1847                 kvmppc_set_epr(vcpu, run->epr.epr);
1848                 vcpu->arch.epr_needed = 0;
1849 #endif
1850         }
1851
1852         kvm_sigset_activate(vcpu);
1853
1854         if (run->immediate_exit)
1855                 r = -EINTR;
1856         else
1857                 r = kvmppc_vcpu_run(run, vcpu);
1858
1859         kvm_sigset_deactivate(vcpu);
1860
1861 #ifdef CONFIG_ALTIVEC
1862 out:
1863 #endif
1864         vcpu_put(vcpu);
1865         return r;
1866 }
1867
1868 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1869 {
1870         if (irq->irq == KVM_INTERRUPT_UNSET) {
1871                 kvmppc_core_dequeue_external(vcpu);
1872                 return 0;
1873         }
1874
1875         kvmppc_core_queue_external(vcpu, irq);
1876
1877         kvm_vcpu_kick(vcpu);
1878
1879         return 0;
1880 }
1881
1882 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1883                                      struct kvm_enable_cap *cap)
1884 {
1885         int r;
1886
1887         if (cap->flags)
1888                 return -EINVAL;
1889
1890         switch (cap->cap) {
1891         case KVM_CAP_PPC_OSI:
1892                 r = 0;
1893                 vcpu->arch.osi_enabled = true;
1894                 break;
1895         case KVM_CAP_PPC_PAPR:
1896                 r = 0;
1897                 vcpu->arch.papr_enabled = true;
1898                 break;
1899         case KVM_CAP_PPC_EPR:
1900                 r = 0;
1901                 if (cap->args[0])
1902                         vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1903                 else
1904                         vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1905                 break;
1906 #ifdef CONFIG_BOOKE
1907         case KVM_CAP_PPC_BOOKE_WATCHDOG:
1908                 r = 0;
1909                 vcpu->arch.watchdog_enabled = true;
1910                 break;
1911 #endif
1912 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1913         case KVM_CAP_SW_TLB: {
1914                 struct kvm_config_tlb cfg;
1915                 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1916
1917                 r = -EFAULT;
1918                 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1919                         break;
1920
1921                 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1922                 break;
1923         }
1924 #endif
1925 #ifdef CONFIG_KVM_MPIC
1926         case KVM_CAP_IRQ_MPIC: {
1927                 struct fd f;
1928                 struct kvm_device *dev;
1929
1930                 r = -EBADF;
1931                 f = fdget(cap->args[0]);
1932                 if (!f.file)
1933                         break;
1934
1935                 r = -EPERM;
1936                 dev = kvm_device_from_filp(f.file);
1937                 if (dev)
1938                         r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1939
1940                 fdput(f);
1941                 break;
1942         }
1943 #endif
1944 #ifdef CONFIG_KVM_XICS
1945         case KVM_CAP_IRQ_XICS: {
1946                 struct fd f;
1947                 struct kvm_device *dev;
1948
1949                 r = -EBADF;
1950                 f = fdget(cap->args[0]);
1951                 if (!f.file)
1952                         break;
1953
1954                 r = -EPERM;
1955                 dev = kvm_device_from_filp(f.file);
1956                 if (dev) {
1957                         if (xics_on_xive())
1958                                 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1959                         else
1960                                 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1961                 }
1962
1963                 fdput(f);
1964                 break;
1965         }
1966 #endif /* CONFIG_KVM_XICS */
1967 #ifdef CONFIG_KVM_XIVE
1968         case KVM_CAP_PPC_IRQ_XIVE: {
1969                 struct fd f;
1970                 struct kvm_device *dev;
1971
1972                 r = -EBADF;
1973                 f = fdget(cap->args[0]);
1974                 if (!f.file)
1975                         break;
1976
1977                 r = -ENXIO;
1978                 if (!xive_enabled())
1979                         break;
1980
1981                 r = -EPERM;
1982                 dev = kvm_device_from_filp(f.file);
1983                 if (dev)
1984                         r = kvmppc_xive_native_connect_vcpu(dev, vcpu,
1985                                                             cap->args[1]);
1986
1987                 fdput(f);
1988                 break;
1989         }
1990 #endif /* CONFIG_KVM_XIVE */
1991 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1992         case KVM_CAP_PPC_FWNMI:
1993                 r = -EINVAL;
1994                 if (!is_kvmppc_hv_enabled(vcpu->kvm))
1995                         break;
1996                 r = 0;
1997                 vcpu->kvm->arch.fwnmi_enabled = true;
1998                 break;
1999 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
2000         default:
2001                 r = -EINVAL;
2002                 break;
2003         }
2004
2005         if (!r)
2006                 r = kvmppc_sanity_check(vcpu);
2007
2008         return r;
2009 }
2010
2011 bool kvm_arch_intc_initialized(struct kvm *kvm)
2012 {
2013 #ifdef CONFIG_KVM_MPIC
2014         if (kvm->arch.mpic)
2015                 return true;
2016 #endif
2017 #ifdef CONFIG_KVM_XICS
2018         if (kvm->arch.xics || kvm->arch.xive)
2019                 return true;
2020 #endif
2021         return false;
2022 }
2023
2024 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
2025                                     struct kvm_mp_state *mp_state)
2026 {
2027         return -EINVAL;
2028 }
2029
2030 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
2031                                     struct kvm_mp_state *mp_state)
2032 {
2033         return -EINVAL;
2034 }
2035
2036 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2037                                unsigned int ioctl, unsigned long arg)
2038 {
2039         struct kvm_vcpu *vcpu = filp->private_data;
2040         void __user *argp = (void __user *)arg;
2041
2042         if (ioctl == KVM_INTERRUPT) {
2043                 struct kvm_interrupt irq;
2044                 if (copy_from_user(&irq, argp, sizeof(irq)))
2045                         return -EFAULT;
2046                 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2047         }
2048         return -ENOIOCTLCMD;
2049 }
2050
2051 long kvm_arch_vcpu_ioctl(struct file *filp,
2052                          unsigned int ioctl, unsigned long arg)
2053 {
2054         struct kvm_vcpu *vcpu = filp->private_data;
2055         void __user *argp = (void __user *)arg;
2056         long r;
2057
2058         switch (ioctl) {
2059         case KVM_ENABLE_CAP:
2060         {
2061                 struct kvm_enable_cap cap;
2062                 r = -EFAULT;
2063                 vcpu_load(vcpu);
2064                 if (copy_from_user(&cap, argp, sizeof(cap)))
2065                         goto out;
2066                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2067                 vcpu_put(vcpu);
2068                 break;
2069         }
2070
2071         case KVM_SET_ONE_REG:
2072         case KVM_GET_ONE_REG:
2073         {
2074                 struct kvm_one_reg reg;
2075                 r = -EFAULT;
2076                 if (copy_from_user(&reg, argp, sizeof(reg)))
2077                         goto out;
2078                 if (ioctl == KVM_SET_ONE_REG)
2079                         r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
2080                 else
2081                         r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
2082                 break;
2083         }
2084
2085 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
2086         case KVM_DIRTY_TLB: {
2087                 struct kvm_dirty_tlb dirty;
2088                 r = -EFAULT;
2089                 vcpu_load(vcpu);
2090                 if (copy_from_user(&dirty, argp, sizeof(dirty)))
2091                         goto out;
2092                 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2093                 vcpu_put(vcpu);
2094                 break;
2095         }
2096 #endif
2097         default:
2098                 r = -EINVAL;
2099         }
2100
2101 out:
2102         return r;
2103 }
2104
2105 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2106 {
2107         return VM_FAULT_SIGBUS;
2108 }
2109
2110 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
2111 {
2112         u32 inst_nop = 0x60000000;
2113 #ifdef CONFIG_KVM_BOOKE_HV
2114         u32 inst_sc1 = 0x44000022;
2115         pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
2116         pvinfo->hcall[1] = cpu_to_be32(inst_nop);
2117         pvinfo->hcall[2] = cpu_to_be32(inst_nop);
2118         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2119 #else
2120         u32 inst_lis = 0x3c000000;
2121         u32 inst_ori = 0x60000000;
2122         u32 inst_sc = 0x44000002;
2123         u32 inst_imm_mask = 0xffff;
2124
2125         /*
2126          * The hypercall to get into KVM from within guest context is as
2127          * follows:
2128          *
2129          *    lis r0, r0, KVM_SC_MAGIC_R0@h
2130          *    ori r0, KVM_SC_MAGIC_R0@l
2131          *    sc
2132          *    nop
2133          */
2134         pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
2135         pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
2136         pvinfo->hcall[2] = cpu_to_be32(inst_sc);
2137         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2138 #endif
2139
2140         pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
2141
2142         return 0;
2143 }
2144
2145 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
2146                           bool line_status)
2147 {
2148         if (!irqchip_in_kernel(kvm))
2149                 return -ENXIO;
2150
2151         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2152                                         irq_event->irq, irq_event->level,
2153                                         line_status);
2154         return 0;
2155 }
2156
2157
2158 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
2159                             struct kvm_enable_cap *cap)
2160 {
2161         int r;
2162
2163         if (cap->flags)
2164                 return -EINVAL;
2165
2166         switch (cap->cap) {
2167 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2168         case KVM_CAP_PPC_ENABLE_HCALL: {
2169                 unsigned long hcall = cap->args[0];
2170
2171                 r = -EINVAL;
2172                 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
2173                     cap->args[1] > 1)
2174                         break;
2175                 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
2176                         break;
2177                 if (cap->args[1])
2178                         set_bit(hcall / 4, kvm->arch.enabled_hcalls);
2179                 else
2180                         clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
2181                 r = 0;
2182                 break;
2183         }
2184         case KVM_CAP_PPC_SMT: {
2185                 unsigned long mode = cap->args[0];
2186                 unsigned long flags = cap->args[1];
2187
2188                 r = -EINVAL;
2189                 if (kvm->arch.kvm_ops->set_smt_mode)
2190                         r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
2191                 break;
2192         }
2193
2194         case KVM_CAP_PPC_NESTED_HV:
2195                 r = -EINVAL;
2196                 if (!is_kvmppc_hv_enabled(kvm) ||
2197                     !kvm->arch.kvm_ops->enable_nested)
2198                         break;
2199                 r = kvm->arch.kvm_ops->enable_nested(kvm);
2200                 break;
2201 #endif
2202         default:
2203                 r = -EINVAL;
2204                 break;
2205         }
2206
2207         return r;
2208 }
2209
2210 #ifdef CONFIG_PPC_BOOK3S_64
2211 /*
2212  * These functions check whether the underlying hardware is safe
2213  * against attacks based on observing the effects of speculatively
2214  * executed instructions, and whether it supplies instructions for
2215  * use in workarounds.  The information comes from firmware, either
2216  * via the device tree on powernv platforms or from an hcall on
2217  * pseries platforms.
2218  */
2219 #ifdef CONFIG_PPC_PSERIES
2220 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2221 {
2222         struct h_cpu_char_result c;
2223         unsigned long rc;
2224
2225         if (!machine_is(pseries))
2226                 return -ENOTTY;
2227
2228         rc = plpar_get_cpu_characteristics(&c);
2229         if (rc == H_SUCCESS) {
2230                 cp->character = c.character;
2231                 cp->behaviour = c.behaviour;
2232                 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2233                         KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2234                         KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2235                         KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2236                         KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2237                         KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
2238                         KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2239                         KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2240                         KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2241                 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2242                         KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2243                         KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2244                         KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2245         }
2246         return 0;
2247 }
2248 #else
2249 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2250 {
2251         return -ENOTTY;
2252 }
2253 #endif
2254
2255 static inline bool have_fw_feat(struct device_node *fw_features,
2256                                 const char *state, const char *name)
2257 {
2258         struct device_node *np;
2259         bool r = false;
2260
2261         np = of_get_child_by_name(fw_features, name);
2262         if (np) {
2263                 r = of_property_read_bool(np, state);
2264                 of_node_put(np);
2265         }
2266         return r;
2267 }
2268
2269 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2270 {
2271         struct device_node *np, *fw_features;
2272         int r;
2273
2274         memset(cp, 0, sizeof(*cp));
2275         r = pseries_get_cpu_char(cp);
2276         if (r != -ENOTTY)
2277                 return r;
2278
2279         np = of_find_node_by_name(NULL, "ibm,opal");
2280         if (np) {
2281                 fw_features = of_get_child_by_name(np, "fw-features");
2282                 of_node_put(np);
2283                 if (!fw_features)
2284                         return 0;
2285                 if (have_fw_feat(fw_features, "enabled",
2286                                  "inst-spec-barrier-ori31,31,0"))
2287                         cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2288                 if (have_fw_feat(fw_features, "enabled",
2289                                  "fw-bcctrl-serialized"))
2290                         cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2291                 if (have_fw_feat(fw_features, "enabled",
2292                                  "inst-l1d-flush-ori30,30,0"))
2293                         cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2294                 if (have_fw_feat(fw_features, "enabled",
2295                                  "inst-l1d-flush-trig2"))
2296                         cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2297                 if (have_fw_feat(fw_features, "enabled",
2298                                  "fw-l1d-thread-split"))
2299                         cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2300                 if (have_fw_feat(fw_features, "enabled",
2301                                  "fw-count-cache-disabled"))
2302                         cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2303                 if (have_fw_feat(fw_features, "enabled",
2304                                  "fw-count-cache-flush-bcctr2,0,0"))
2305                         cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2306                 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2307                         KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2308                         KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2309                         KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2310                         KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2311                         KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2312                         KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2313
2314                 if (have_fw_feat(fw_features, "enabled",
2315                                  "speculation-policy-favor-security"))
2316                         cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2317                 if (!have_fw_feat(fw_features, "disabled",
2318                                   "needs-l1d-flush-msr-pr-0-to-1"))
2319                         cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2320                 if (!have_fw_feat(fw_features, "disabled",
2321                                   "needs-spec-barrier-for-bound-checks"))
2322                         cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2323                 if (have_fw_feat(fw_features, "enabled",
2324                                  "needs-count-cache-flush-on-context-switch"))
2325                         cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2326                 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2327                         KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2328                         KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2329                         KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2330
2331                 of_node_put(fw_features);
2332         }
2333
2334         return 0;
2335 }
2336 #endif
2337
2338 long kvm_arch_vm_ioctl(struct file *filp,
2339                        unsigned int ioctl, unsigned long arg)
2340 {
2341         struct kvm *kvm __maybe_unused = filp->private_data;
2342         void __user *argp = (void __user *)arg;
2343         long r;
2344
2345         switch (ioctl) {
2346         case KVM_PPC_GET_PVINFO: {
2347                 struct kvm_ppc_pvinfo pvinfo;
2348                 memset(&pvinfo, 0, sizeof(pvinfo));
2349                 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2350                 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2351                         r = -EFAULT;
2352                         goto out;
2353                 }
2354
2355                 break;
2356         }
2357 #ifdef CONFIG_SPAPR_TCE_IOMMU
2358         case KVM_CREATE_SPAPR_TCE_64: {
2359                 struct kvm_create_spapr_tce_64 create_tce_64;
2360
2361                 r = -EFAULT;
2362                 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2363                         goto out;
2364                 if (create_tce_64.flags) {
2365                         r = -EINVAL;
2366                         goto out;
2367                 }
2368                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2369                 goto out;
2370         }
2371         case KVM_CREATE_SPAPR_TCE: {
2372                 struct kvm_create_spapr_tce create_tce;
2373                 struct kvm_create_spapr_tce_64 create_tce_64;
2374
2375                 r = -EFAULT;
2376                 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2377                         goto out;
2378
2379                 create_tce_64.liobn = create_tce.liobn;
2380                 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2381                 create_tce_64.offset = 0;
2382                 create_tce_64.size = create_tce.window_size >>
2383                                 IOMMU_PAGE_SHIFT_4K;
2384                 create_tce_64.flags = 0;
2385                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2386                 goto out;
2387         }
2388 #endif
2389 #ifdef CONFIG_PPC_BOOK3S_64
2390         case KVM_PPC_GET_SMMU_INFO: {
2391                 struct kvm_ppc_smmu_info info;
2392                 struct kvm *kvm = filp->private_data;
2393
2394                 memset(&info, 0, sizeof(info));
2395                 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2396                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2397                         r = -EFAULT;
2398                 break;
2399         }
2400         case KVM_PPC_RTAS_DEFINE_TOKEN: {
2401                 struct kvm *kvm = filp->private_data;
2402
2403                 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2404                 break;
2405         }
2406         case KVM_PPC_CONFIGURE_V3_MMU: {
2407                 struct kvm *kvm = filp->private_data;
2408                 struct kvm_ppc_mmuv3_cfg cfg;
2409
2410                 r = -EINVAL;
2411                 if (!kvm->arch.kvm_ops->configure_mmu)
2412                         goto out;
2413                 r = -EFAULT;
2414                 if (copy_from_user(&cfg, argp, sizeof(cfg)))
2415                         goto out;
2416                 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2417                 break;
2418         }
2419         case KVM_PPC_GET_RMMU_INFO: {
2420                 struct kvm *kvm = filp->private_data;
2421                 struct kvm_ppc_rmmu_info info;
2422
2423                 r = -EINVAL;
2424                 if (!kvm->arch.kvm_ops->get_rmmu_info)
2425                         goto out;
2426                 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2427                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2428                         r = -EFAULT;
2429                 break;
2430         }
2431         case KVM_PPC_GET_CPU_CHAR: {
2432                 struct kvm_ppc_cpu_char cpuchar;
2433
2434                 r = kvmppc_get_cpu_char(&cpuchar);
2435                 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2436                         r = -EFAULT;
2437                 break;
2438         }
2439         case KVM_PPC_SVM_OFF: {
2440                 struct kvm *kvm = filp->private_data;
2441
2442                 r = 0;
2443                 if (!kvm->arch.kvm_ops->svm_off)
2444                         goto out;
2445
2446                 r = kvm->arch.kvm_ops->svm_off(kvm);
2447                 break;
2448         }
2449         default: {
2450                 struct kvm *kvm = filp->private_data;
2451                 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2452         }
2453 #else /* CONFIG_PPC_BOOK3S_64 */
2454         default:
2455                 r = -ENOTTY;
2456 #endif
2457         }
2458 out:
2459         return r;
2460 }
2461
2462 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
2463 static unsigned long nr_lpids;
2464
2465 long kvmppc_alloc_lpid(void)
2466 {
2467         long lpid;
2468
2469         do {
2470                 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
2471                 if (lpid >= nr_lpids) {
2472                         pr_err("%s: No LPIDs free\n", __func__);
2473                         return -ENOMEM;
2474                 }
2475         } while (test_and_set_bit(lpid, lpid_inuse));
2476
2477         return lpid;
2478 }
2479 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2480
2481 void kvmppc_claim_lpid(long lpid)
2482 {
2483         set_bit(lpid, lpid_inuse);
2484 }
2485 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2486
2487 void kvmppc_free_lpid(long lpid)
2488 {
2489         clear_bit(lpid, lpid_inuse);
2490 }
2491 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2492
2493 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2494 {
2495         nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
2496         memset(lpid_inuse, 0, sizeof(lpid_inuse));
2497 }
2498 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2499
2500 int kvm_arch_init(void *opaque)
2501 {
2502         return 0;
2503 }
2504
2505 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);