]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/powerpc/mm/book3s64/hash_utils.c
Merge tag 'aspeed-5.4-devicetree' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / arch / powerpc / mm / book3s64 / hash_utils.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PowerPC64 port by Mike Corrigan and Dave Engebretsen
4  *   {mikejc|engebret}@us.ibm.com
5  *
6  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
7  *
8  * SMP scalability work:
9  *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
10  * 
11  *    Module name: htab.c
12  *
13  *    Description:
14  *      PowerPC Hashed Page Table functions
15  */
16
17 #undef DEBUG
18 #undef DEBUG_LOW
19
20 #define pr_fmt(fmt) "hash-mmu: " fmt
21 #include <linux/spinlock.h>
22 #include <linux/errno.h>
23 #include <linux/sched/mm.h>
24 #include <linux/proc_fs.h>
25 #include <linux/stat.h>
26 #include <linux/sysctl.h>
27 #include <linux/export.h>
28 #include <linux/ctype.h>
29 #include <linux/cache.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/memblock.h>
33 #include <linux/context_tracking.h>
34 #include <linux/libfdt.h>
35 #include <linux/pkeys.h>
36 #include <linux/hugetlb.h>
37
38 #include <asm/debugfs.h>
39 #include <asm/processor.h>
40 #include <asm/pgtable.h>
41 #include <asm/mmu.h>
42 #include <asm/mmu_context.h>
43 #include <asm/page.h>
44 #include <asm/types.h>
45 #include <linux/uaccess.h>
46 #include <asm/machdep.h>
47 #include <asm/prom.h>
48 #include <asm/io.h>
49 #include <asm/eeh.h>
50 #include <asm/tlb.h>
51 #include <asm/cacheflush.h>
52 #include <asm/cputable.h>
53 #include <asm/sections.h>
54 #include <asm/copro.h>
55 #include <asm/udbg.h>
56 #include <asm/code-patching.h>
57 #include <asm/fadump.h>
58 #include <asm/firmware.h>
59 #include <asm/tm.h>
60 #include <asm/trace.h>
61 #include <asm/ps3.h>
62 #include <asm/pte-walk.h>
63 #include <asm/asm-prototypes.h>
64
65 #include <mm/mmu_decl.h>
66
67 #ifdef DEBUG
68 #define DBG(fmt...) udbg_printf(fmt)
69 #else
70 #define DBG(fmt...)
71 #endif
72
73 #ifdef DEBUG_LOW
74 #define DBG_LOW(fmt...) udbg_printf(fmt)
75 #else
76 #define DBG_LOW(fmt...)
77 #endif
78
79 #define KB (1024)
80 #define MB (1024*KB)
81 #define GB (1024L*MB)
82
83 /*
84  * Note:  pte   --> Linux PTE
85  *        HPTE  --> PowerPC Hashed Page Table Entry
86  *
87  * Execution context:
88  *   htab_initialize is called with the MMU off (of course), but
89  *   the kernel has been copied down to zero so it can directly
90  *   reference global data.  At this point it is very difficult
91  *   to print debug info.
92  *
93  */
94
95 static unsigned long _SDR1;
96 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
97 EXPORT_SYMBOL_GPL(mmu_psize_defs);
98
99 u8 hpte_page_sizes[1 << LP_BITS];
100 EXPORT_SYMBOL_GPL(hpte_page_sizes);
101
102 struct hash_pte *htab_address;
103 unsigned long htab_size_bytes;
104 unsigned long htab_hash_mask;
105 EXPORT_SYMBOL_GPL(htab_hash_mask);
106 int mmu_linear_psize = MMU_PAGE_4K;
107 EXPORT_SYMBOL_GPL(mmu_linear_psize);
108 int mmu_virtual_psize = MMU_PAGE_4K;
109 int mmu_vmalloc_psize = MMU_PAGE_4K;
110 #ifdef CONFIG_SPARSEMEM_VMEMMAP
111 int mmu_vmemmap_psize = MMU_PAGE_4K;
112 #endif
113 int mmu_io_psize = MMU_PAGE_4K;
114 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
115 EXPORT_SYMBOL_GPL(mmu_kernel_ssize);
116 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
117 u16 mmu_slb_size = 64;
118 EXPORT_SYMBOL_GPL(mmu_slb_size);
119 #ifdef CONFIG_PPC_64K_PAGES
120 int mmu_ci_restrictions;
121 #endif
122 #ifdef CONFIG_DEBUG_PAGEALLOC
123 static u8 *linear_map_hash_slots;
124 static unsigned long linear_map_hash_count;
125 static DEFINE_SPINLOCK(linear_map_hash_lock);
126 #endif /* CONFIG_DEBUG_PAGEALLOC */
127 struct mmu_hash_ops mmu_hash_ops;
128 EXPORT_SYMBOL(mmu_hash_ops);
129
130 /*
131  * These are definitions of page sizes arrays to be used when none
132  * is provided by the firmware.
133  */
134
135 /*
136  * Fallback (4k pages only)
137  */
138 static struct mmu_psize_def mmu_psize_defaults[] = {
139         [MMU_PAGE_4K] = {
140                 .shift  = 12,
141                 .sllp   = 0,
142                 .penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
143                 .avpnm  = 0,
144                 .tlbiel = 0,
145         },
146 };
147
148 /*
149  * POWER4, GPUL, POWER5
150  *
151  * Support for 16Mb large pages
152  */
153 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
154         [MMU_PAGE_4K] = {
155                 .shift  = 12,
156                 .sllp   = 0,
157                 .penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
158                 .avpnm  = 0,
159                 .tlbiel = 1,
160         },
161         [MMU_PAGE_16M] = {
162                 .shift  = 24,
163                 .sllp   = SLB_VSID_L,
164                 .penc   = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
165                             [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
166                 .avpnm  = 0x1UL,
167                 .tlbiel = 0,
168         },
169 };
170
171 /*
172  * 'R' and 'C' update notes:
173  *  - Under pHyp or KVM, the updatepp path will not set C, thus it *will*
174  *     create writeable HPTEs without C set, because the hcall H_PROTECT
175  *     that we use in that case will not update C
176  *  - The above is however not a problem, because we also don't do that
177  *     fancy "no flush" variant of eviction and we use H_REMOVE which will
178  *     do the right thing and thus we don't have the race I described earlier
179  *
180  *    - Under bare metal,  we do have the race, so we need R and C set
181  *    - We make sure R is always set and never lost
182  *    - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping
183  */
184 unsigned long htab_convert_pte_flags(unsigned long pteflags)
185 {
186         unsigned long rflags = 0;
187
188         /* _PAGE_EXEC -> NOEXEC */
189         if ((pteflags & _PAGE_EXEC) == 0)
190                 rflags |= HPTE_R_N;
191         /*
192          * PPP bits:
193          * Linux uses slb key 0 for kernel and 1 for user.
194          * kernel RW areas are mapped with PPP=0b000
195          * User area is mapped with PPP=0b010 for read/write
196          * or PPP=0b011 for read-only (including writeable but clean pages).
197          */
198         if (pteflags & _PAGE_PRIVILEGED) {
199                 /*
200                  * Kernel read only mapped with ppp bits 0b110
201                  */
202                 if (!(pteflags & _PAGE_WRITE)) {
203                         if (mmu_has_feature(MMU_FTR_KERNEL_RO))
204                                 rflags |= (HPTE_R_PP0 | 0x2);
205                         else
206                                 rflags |= 0x3;
207                 }
208         } else {
209                 if (pteflags & _PAGE_RWX)
210                         rflags |= 0x2;
211                 if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY)))
212                         rflags |= 0x1;
213         }
214         /*
215          * We can't allow hardware to update hpte bits. Hence always
216          * set 'R' bit and set 'C' if it is a write fault
217          */
218         rflags |=  HPTE_R_R;
219
220         if (pteflags & _PAGE_DIRTY)
221                 rflags |= HPTE_R_C;
222         /*
223          * Add in WIG bits
224          */
225
226         if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT)
227                 rflags |= HPTE_R_I;
228         else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT)
229                 rflags |= (HPTE_R_I | HPTE_R_G);
230         else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO)
231                 rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M);
232         else
233                 /*
234                  * Add memory coherence if cache inhibited is not set
235                  */
236                 rflags |= HPTE_R_M;
237
238         rflags |= pte_to_hpte_pkey_bits(pteflags);
239         return rflags;
240 }
241
242 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
243                       unsigned long pstart, unsigned long prot,
244                       int psize, int ssize)
245 {
246         unsigned long vaddr, paddr;
247         unsigned int step, shift;
248         int ret = 0;
249
250         shift = mmu_psize_defs[psize].shift;
251         step = 1 << shift;
252
253         prot = htab_convert_pte_flags(prot);
254
255         DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
256             vstart, vend, pstart, prot, psize, ssize);
257
258         for (vaddr = vstart, paddr = pstart; vaddr < vend;
259              vaddr += step, paddr += step) {
260                 unsigned long hash, hpteg;
261                 unsigned long vsid = get_kernel_vsid(vaddr, ssize);
262                 unsigned long vpn  = hpt_vpn(vaddr, vsid, ssize);
263                 unsigned long tprot = prot;
264
265                 /*
266                  * If we hit a bad address return error.
267                  */
268                 if (!vsid)
269                         return -1;
270                 /* Make kernel text executable */
271                 if (overlaps_kernel_text(vaddr, vaddr + step))
272                         tprot &= ~HPTE_R_N;
273
274                 /* Make kvm guest trampolines executable */
275                 if (overlaps_kvm_tmp(vaddr, vaddr + step))
276                         tprot &= ~HPTE_R_N;
277
278                 /*
279                  * If relocatable, check if it overlaps interrupt vectors that
280                  * are copied down to real 0. For relocatable kernel
281                  * (e.g. kdump case) we copy interrupt vectors down to real
282                  * address 0. Mark that region as executable. This is
283                  * because on p8 system with relocation on exception feature
284                  * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
285                  * in order to execute the interrupt handlers in virtual
286                  * mode the vector region need to be marked as executable.
287                  */
288                 if ((PHYSICAL_START > MEMORY_START) &&
289                         overlaps_interrupt_vector_text(vaddr, vaddr + step))
290                                 tprot &= ~HPTE_R_N;
291
292                 hash = hpt_hash(vpn, shift, ssize);
293                 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
294
295                 BUG_ON(!mmu_hash_ops.hpte_insert);
296                 ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
297                                                HPTE_V_BOLTED, psize, psize,
298                                                ssize);
299
300                 if (ret < 0)
301                         break;
302
303 #ifdef CONFIG_DEBUG_PAGEALLOC
304                 if (debug_pagealloc_enabled() &&
305                         (paddr >> PAGE_SHIFT) < linear_map_hash_count)
306                         linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
307 #endif /* CONFIG_DEBUG_PAGEALLOC */
308         }
309         return ret < 0 ? ret : 0;
310 }
311
312 int htab_remove_mapping(unsigned long vstart, unsigned long vend,
313                       int psize, int ssize)
314 {
315         unsigned long vaddr;
316         unsigned int step, shift;
317         int rc;
318         int ret = 0;
319
320         shift = mmu_psize_defs[psize].shift;
321         step = 1 << shift;
322
323         if (!mmu_hash_ops.hpte_removebolted)
324                 return -ENODEV;
325
326         for (vaddr = vstart; vaddr < vend; vaddr += step) {
327                 rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize);
328                 if (rc == -ENOENT) {
329                         ret = -ENOENT;
330                         continue;
331                 }
332                 if (rc < 0)
333                         return rc;
334         }
335
336         return ret;
337 }
338
339 static bool disable_1tb_segments = false;
340
341 static int __init parse_disable_1tb_segments(char *p)
342 {
343         disable_1tb_segments = true;
344         return 0;
345 }
346 early_param("disable_1tb_segments", parse_disable_1tb_segments);
347
348 static int __init htab_dt_scan_seg_sizes(unsigned long node,
349                                          const char *uname, int depth,
350                                          void *data)
351 {
352         const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
353         const __be32 *prop;
354         int size = 0;
355
356         /* We are scanning "cpu" nodes only */
357         if (type == NULL || strcmp(type, "cpu") != 0)
358                 return 0;
359
360         prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
361         if (prop == NULL)
362                 return 0;
363         for (; size >= 4; size -= 4, ++prop) {
364                 if (be32_to_cpu(prop[0]) == 40) {
365                         DBG("1T segment support detected\n");
366
367                         if (disable_1tb_segments) {
368                                 DBG("1T segments disabled by command line\n");
369                                 break;
370                         }
371
372                         cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
373                         return 1;
374                 }
375         }
376         cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
377         return 0;
378 }
379
380 static int __init get_idx_from_shift(unsigned int shift)
381 {
382         int idx = -1;
383
384         switch (shift) {
385         case 0xc:
386                 idx = MMU_PAGE_4K;
387                 break;
388         case 0x10:
389                 idx = MMU_PAGE_64K;
390                 break;
391         case 0x14:
392                 idx = MMU_PAGE_1M;
393                 break;
394         case 0x18:
395                 idx = MMU_PAGE_16M;
396                 break;
397         case 0x22:
398                 idx = MMU_PAGE_16G;
399                 break;
400         }
401         return idx;
402 }
403
404 static int __init htab_dt_scan_page_sizes(unsigned long node,
405                                           const char *uname, int depth,
406                                           void *data)
407 {
408         const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
409         const __be32 *prop;
410         int size = 0;
411
412         /* We are scanning "cpu" nodes only */
413         if (type == NULL || strcmp(type, "cpu") != 0)
414                 return 0;
415
416         prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
417         if (!prop)
418                 return 0;
419
420         pr_info("Page sizes from device-tree:\n");
421         size /= 4;
422         cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
423         while(size > 0) {
424                 unsigned int base_shift = be32_to_cpu(prop[0]);
425                 unsigned int slbenc = be32_to_cpu(prop[1]);
426                 unsigned int lpnum = be32_to_cpu(prop[2]);
427                 struct mmu_psize_def *def;
428                 int idx, base_idx;
429
430                 size -= 3; prop += 3;
431                 base_idx = get_idx_from_shift(base_shift);
432                 if (base_idx < 0) {
433                         /* skip the pte encoding also */
434                         prop += lpnum * 2; size -= lpnum * 2;
435                         continue;
436                 }
437                 def = &mmu_psize_defs[base_idx];
438                 if (base_idx == MMU_PAGE_16M)
439                         cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
440
441                 def->shift = base_shift;
442                 if (base_shift <= 23)
443                         def->avpnm = 0;
444                 else
445                         def->avpnm = (1 << (base_shift - 23)) - 1;
446                 def->sllp = slbenc;
447                 /*
448                  * We don't know for sure what's up with tlbiel, so
449                  * for now we only set it for 4K and 64K pages
450                  */
451                 if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
452                         def->tlbiel = 1;
453                 else
454                         def->tlbiel = 0;
455
456                 while (size > 0 && lpnum) {
457                         unsigned int shift = be32_to_cpu(prop[0]);
458                         int penc  = be32_to_cpu(prop[1]);
459
460                         prop += 2; size -= 2;
461                         lpnum--;
462
463                         idx = get_idx_from_shift(shift);
464                         if (idx < 0)
465                                 continue;
466
467                         if (penc == -1)
468                                 pr_err("Invalid penc for base_shift=%d "
469                                        "shift=%d\n", base_shift, shift);
470
471                         def->penc[idx] = penc;
472                         pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
473                                 " avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
474                                 base_shift, shift, def->sllp,
475                                 def->avpnm, def->tlbiel, def->penc[idx]);
476                 }
477         }
478
479         return 1;
480 }
481
482 #ifdef CONFIG_HUGETLB_PAGE
483 /*
484  * Scan for 16G memory blocks that have been set aside for huge pages
485  * and reserve those blocks for 16G huge pages.
486  */
487 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
488                                         const char *uname, int depth,
489                                         void *data) {
490         const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
491         const __be64 *addr_prop;
492         const __be32 *page_count_prop;
493         unsigned int expected_pages;
494         long unsigned int phys_addr;
495         long unsigned int block_size;
496
497         /* We are scanning "memory" nodes only */
498         if (type == NULL || strcmp(type, "memory") != 0)
499                 return 0;
500
501         /*
502          * This property is the log base 2 of the number of virtual pages that
503          * will represent this memory block.
504          */
505         page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
506         if (page_count_prop == NULL)
507                 return 0;
508         expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
509         addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
510         if (addr_prop == NULL)
511                 return 0;
512         phys_addr = be64_to_cpu(addr_prop[0]);
513         block_size = be64_to_cpu(addr_prop[1]);
514         if (block_size != (16 * GB))
515                 return 0;
516         printk(KERN_INFO "Huge page(16GB) memory: "
517                         "addr = 0x%lX size = 0x%lX pages = %d\n",
518                         phys_addr, block_size, expected_pages);
519         if (phys_addr + block_size * expected_pages <= memblock_end_of_DRAM()) {
520                 memblock_reserve(phys_addr, block_size * expected_pages);
521                 pseries_add_gpage(phys_addr, block_size, expected_pages);
522         }
523         return 0;
524 }
525 #endif /* CONFIG_HUGETLB_PAGE */
526
527 static void mmu_psize_set_default_penc(void)
528 {
529         int bpsize, apsize;
530         for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
531                 for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
532                         mmu_psize_defs[bpsize].penc[apsize] = -1;
533 }
534
535 #ifdef CONFIG_PPC_64K_PAGES
536
537 static bool might_have_hea(void)
538 {
539         /*
540          * The HEA ethernet adapter requires awareness of the
541          * GX bus. Without that awareness we can easily assume
542          * we will never see an HEA ethernet device.
543          */
544 #ifdef CONFIG_IBMEBUS
545         return !cpu_has_feature(CPU_FTR_ARCH_207S) &&
546                 firmware_has_feature(FW_FEATURE_SPLPAR);
547 #else
548         return false;
549 #endif
550 }
551
552 #endif /* #ifdef CONFIG_PPC_64K_PAGES */
553
554 static void __init htab_scan_page_sizes(void)
555 {
556         int rc;
557
558         /* se the invalid penc to -1 */
559         mmu_psize_set_default_penc();
560
561         /* Default to 4K pages only */
562         memcpy(mmu_psize_defs, mmu_psize_defaults,
563                sizeof(mmu_psize_defaults));
564
565         /*
566          * Try to find the available page sizes in the device-tree
567          */
568         rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
569         if (rc == 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE)) {
570                 /*
571                  * Nothing in the device-tree, but the CPU supports 16M pages,
572                  * so let's fallback on a known size list for 16M capable CPUs.
573                  */
574                 memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
575                        sizeof(mmu_psize_defaults_gp));
576         }
577
578 #ifdef CONFIG_HUGETLB_PAGE
579         if (!hugetlb_disabled) {
580                 /* Reserve 16G huge page memory sections for huge pages */
581                 of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
582         }
583 #endif /* CONFIG_HUGETLB_PAGE */
584 }
585
586 /*
587  * Fill in the hpte_page_sizes[] array.
588  * We go through the mmu_psize_defs[] array looking for all the
589  * supported base/actual page size combinations.  Each combination
590  * has a unique pagesize encoding (penc) value in the low bits of
591  * the LP field of the HPTE.  For actual page sizes less than 1MB,
592  * some of the upper LP bits are used for RPN bits, meaning that
593  * we need to fill in several entries in hpte_page_sizes[].
594  *
595  * In diagrammatic form, with r = RPN bits and z = page size bits:
596  *        PTE LP     actual page size
597  *    rrrr rrrz         >=8KB
598  *    rrrr rrzz         >=16KB
599  *    rrrr rzzz         >=32KB
600  *    rrrr zzzz         >=64KB
601  *    ...
602  *
603  * The zzzz bits are implementation-specific but are chosen so that
604  * no encoding for a larger page size uses the same value in its
605  * low-order N bits as the encoding for the 2^(12+N) byte page size
606  * (if it exists).
607  */
608 static void init_hpte_page_sizes(void)
609 {
610         long int ap, bp;
611         long int shift, penc;
612
613         for (bp = 0; bp < MMU_PAGE_COUNT; ++bp) {
614                 if (!mmu_psize_defs[bp].shift)
615                         continue;       /* not a supported page size */
616                 for (ap = bp; ap < MMU_PAGE_COUNT; ++ap) {
617                         penc = mmu_psize_defs[bp].penc[ap];
618                         if (penc == -1 || !mmu_psize_defs[ap].shift)
619                                 continue;
620                         shift = mmu_psize_defs[ap].shift - LP_SHIFT;
621                         if (shift <= 0)
622                                 continue;       /* should never happen */
623                         /*
624                          * For page sizes less than 1MB, this loop
625                          * replicates the entry for all possible values
626                          * of the rrrr bits.
627                          */
628                         while (penc < (1 << LP_BITS)) {
629                                 hpte_page_sizes[penc] = (ap << 4) | bp;
630                                 penc += 1 << shift;
631                         }
632                 }
633         }
634 }
635
636 static void __init htab_init_page_sizes(void)
637 {
638         init_hpte_page_sizes();
639
640         if (!debug_pagealloc_enabled()) {
641                 /*
642                  * Pick a size for the linear mapping. Currently, we only
643                  * support 16M, 1M and 4K which is the default
644                  */
645                 if (mmu_psize_defs[MMU_PAGE_16M].shift)
646                         mmu_linear_psize = MMU_PAGE_16M;
647                 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
648                         mmu_linear_psize = MMU_PAGE_1M;
649         }
650
651 #ifdef CONFIG_PPC_64K_PAGES
652         /*
653          * Pick a size for the ordinary pages. Default is 4K, we support
654          * 64K for user mappings and vmalloc if supported by the processor.
655          * We only use 64k for ioremap if the processor
656          * (and firmware) support cache-inhibited large pages.
657          * If not, we use 4k and set mmu_ci_restrictions so that
658          * hash_page knows to switch processes that use cache-inhibited
659          * mappings to 4k pages.
660          */
661         if (mmu_psize_defs[MMU_PAGE_64K].shift) {
662                 mmu_virtual_psize = MMU_PAGE_64K;
663                 mmu_vmalloc_psize = MMU_PAGE_64K;
664                 if (mmu_linear_psize == MMU_PAGE_4K)
665                         mmu_linear_psize = MMU_PAGE_64K;
666                 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
667                         /*
668                          * When running on pSeries using 64k pages for ioremap
669                          * would stop us accessing the HEA ethernet. So if we
670                          * have the chance of ever seeing one, stay at 4k.
671                          */
672                         if (!might_have_hea())
673                                 mmu_io_psize = MMU_PAGE_64K;
674                 } else
675                         mmu_ci_restrictions = 1;
676         }
677 #endif /* CONFIG_PPC_64K_PAGES */
678
679 #ifdef CONFIG_SPARSEMEM_VMEMMAP
680         /*
681          * We try to use 16M pages for vmemmap if that is supported
682          * and we have at least 1G of RAM at boot
683          */
684         if (mmu_psize_defs[MMU_PAGE_16M].shift &&
685             memblock_phys_mem_size() >= 0x40000000)
686                 mmu_vmemmap_psize = MMU_PAGE_16M;
687         else
688                 mmu_vmemmap_psize = mmu_virtual_psize;
689 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
690
691         printk(KERN_DEBUG "Page orders: linear mapping = %d, "
692                "virtual = %d, io = %d"
693 #ifdef CONFIG_SPARSEMEM_VMEMMAP
694                ", vmemmap = %d"
695 #endif
696                "\n",
697                mmu_psize_defs[mmu_linear_psize].shift,
698                mmu_psize_defs[mmu_virtual_psize].shift,
699                mmu_psize_defs[mmu_io_psize].shift
700 #ifdef CONFIG_SPARSEMEM_VMEMMAP
701                ,mmu_psize_defs[mmu_vmemmap_psize].shift
702 #endif
703                );
704 }
705
706 static int __init htab_dt_scan_pftsize(unsigned long node,
707                                        const char *uname, int depth,
708                                        void *data)
709 {
710         const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
711         const __be32 *prop;
712
713         /* We are scanning "cpu" nodes only */
714         if (type == NULL || strcmp(type, "cpu") != 0)
715                 return 0;
716
717         prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
718         if (prop != NULL) {
719                 /* pft_size[0] is the NUMA CEC cookie */
720                 ppc64_pft_size = be32_to_cpu(prop[1]);
721                 return 1;
722         }
723         return 0;
724 }
725
726 unsigned htab_shift_for_mem_size(unsigned long mem_size)
727 {
728         unsigned memshift = __ilog2(mem_size);
729         unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift;
730         unsigned pteg_shift;
731
732         /* round mem_size up to next power of 2 */
733         if ((1UL << memshift) < mem_size)
734                 memshift += 1;
735
736         /* aim for 2 pages / pteg */
737         pteg_shift = memshift - (pshift + 1);
738
739         /*
740          * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
741          * size permitted by the architecture.
742          */
743         return max(pteg_shift + 7, 18U);
744 }
745
746 static unsigned long __init htab_get_table_size(void)
747 {
748         /*
749          * If hash size isn't already provided by the platform, we try to
750          * retrieve it from the device-tree. If it's not there neither, we
751          * calculate it now based on the total RAM size
752          */
753         if (ppc64_pft_size == 0)
754                 of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
755         if (ppc64_pft_size)
756                 return 1UL << ppc64_pft_size;
757
758         return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size());
759 }
760
761 #ifdef CONFIG_MEMORY_HOTPLUG
762 int resize_hpt_for_hotplug(unsigned long new_mem_size)
763 {
764         unsigned target_hpt_shift;
765
766         if (!mmu_hash_ops.resize_hpt)
767                 return 0;
768
769         target_hpt_shift = htab_shift_for_mem_size(new_mem_size);
770
771         /*
772          * To avoid lots of HPT resizes if memory size is fluctuating
773          * across a boundary, we deliberately have some hysterisis
774          * here: we immediately increase the HPT size if the target
775          * shift exceeds the current shift, but we won't attempt to
776          * reduce unless the target shift is at least 2 below the
777          * current shift
778          */
779         if (target_hpt_shift > ppc64_pft_size ||
780             target_hpt_shift < ppc64_pft_size - 1)
781                 return mmu_hash_ops.resize_hpt(target_hpt_shift);
782
783         return 0;
784 }
785
786 int hash__create_section_mapping(unsigned long start, unsigned long end, int nid)
787 {
788         int rc;
789
790         if (end >= H_VMALLOC_START) {
791                 pr_warn("Outside the supported range\n");
792                 return -1;
793         }
794
795         rc = htab_bolt_mapping(start, end, __pa(start),
796                                pgprot_val(PAGE_KERNEL), mmu_linear_psize,
797                                mmu_kernel_ssize);
798
799         if (rc < 0) {
800                 int rc2 = htab_remove_mapping(start, end, mmu_linear_psize,
801                                               mmu_kernel_ssize);
802                 BUG_ON(rc2 && (rc2 != -ENOENT));
803         }
804         return rc;
805 }
806
807 int hash__remove_section_mapping(unsigned long start, unsigned long end)
808 {
809         int rc = htab_remove_mapping(start, end, mmu_linear_psize,
810                                      mmu_kernel_ssize);
811         WARN_ON(rc < 0);
812         return rc;
813 }
814 #endif /* CONFIG_MEMORY_HOTPLUG */
815
816 static void __init hash_init_partition_table(phys_addr_t hash_table,
817                                              unsigned long htab_size)
818 {
819         mmu_partition_table_init();
820
821         /*
822          * PS field (VRMA page size) is not used for LPID 0, hence set to 0.
823          * For now, UPRT is 0 and we have no segment table.
824          */
825         htab_size =  __ilog2(htab_size) - 18;
826         mmu_partition_table_set_entry(0, hash_table | htab_size, 0);
827         pr_info("Partition table %p\n", partition_tb);
828 }
829
830 static void __init htab_initialize(void)
831 {
832         unsigned long table;
833         unsigned long pteg_count;
834         unsigned long prot;
835         unsigned long base = 0, size = 0;
836         struct memblock_region *reg;
837
838         DBG(" -> htab_initialize()\n");
839
840         if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
841                 mmu_kernel_ssize = MMU_SEGSIZE_1T;
842                 mmu_highuser_ssize = MMU_SEGSIZE_1T;
843                 printk(KERN_INFO "Using 1TB segments\n");
844         }
845
846         /*
847          * Calculate the required size of the htab.  We want the number of
848          * PTEGs to equal one half the number of real pages.
849          */ 
850         htab_size_bytes = htab_get_table_size();
851         pteg_count = htab_size_bytes >> 7;
852
853         htab_hash_mask = pteg_count - 1;
854
855         if (firmware_has_feature(FW_FEATURE_LPAR) ||
856             firmware_has_feature(FW_FEATURE_PS3_LV1)) {
857                 /* Using a hypervisor which owns the htab */
858                 htab_address = NULL;
859                 _SDR1 = 0; 
860                 /*
861                  * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall
862                  * to inform the hypervisor that we wish to use the HPT.
863                  */
864                 if (cpu_has_feature(CPU_FTR_ARCH_300))
865                         register_process_table(0, 0, 0);
866 #ifdef CONFIG_FA_DUMP
867                 /*
868                  * If firmware assisted dump is active firmware preserves
869                  * the contents of htab along with entire partition memory.
870                  * Clear the htab if firmware assisted dump is active so
871                  * that we dont end up using old mappings.
872                  */
873                 if (is_fadump_active() && mmu_hash_ops.hpte_clear_all)
874                         mmu_hash_ops.hpte_clear_all();
875 #endif
876         } else {
877                 unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE;
878
879 #ifdef CONFIG_PPC_CELL
880                 /*
881                  * Cell may require the hash table down low when using the
882                  * Axon IOMMU in order to fit the dynamic region over it, see
883                  * comments in cell/iommu.c
884                  */
885                 if (fdt_subnode_offset(initial_boot_params, 0, "axon") > 0) {
886                         limit = 0x80000000;
887                         pr_info("Hash table forced below 2G for Axon IOMMU\n");
888                 }
889 #endif /* CONFIG_PPC_CELL */
890
891                 table = memblock_phys_alloc_range(htab_size_bytes,
892                                                   htab_size_bytes,
893                                                   0, limit);
894                 if (!table)
895                         panic("ERROR: Failed to allocate %pa bytes below %pa\n",
896                               &htab_size_bytes, &limit);
897
898                 DBG("Hash table allocated at %lx, size: %lx\n", table,
899                     htab_size_bytes);
900
901                 htab_address = __va(table);
902
903                 /* htab absolute addr + encoded htabsize */
904                 _SDR1 = table + __ilog2(htab_size_bytes) - 18;
905
906                 /* Initialize the HPT with no entries */
907                 memset((void *)table, 0, htab_size_bytes);
908
909                 if (!cpu_has_feature(CPU_FTR_ARCH_300))
910                         /* Set SDR1 */
911                         mtspr(SPRN_SDR1, _SDR1);
912                 else
913                         hash_init_partition_table(table, htab_size_bytes);
914         }
915
916         prot = pgprot_val(PAGE_KERNEL);
917
918 #ifdef CONFIG_DEBUG_PAGEALLOC
919         if (debug_pagealloc_enabled()) {
920                 linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
921                 linear_map_hash_slots = memblock_alloc_try_nid(
922                                 linear_map_hash_count, 1, MEMBLOCK_LOW_LIMIT,
923                                 ppc64_rma_size, NUMA_NO_NODE);
924                 if (!linear_map_hash_slots)
925                         panic("%s: Failed to allocate %lu bytes max_addr=%pa\n",
926                               __func__, linear_map_hash_count, &ppc64_rma_size);
927         }
928 #endif /* CONFIG_DEBUG_PAGEALLOC */
929
930         /* create bolted the linear mapping in the hash table */
931         for_each_memblock(memory, reg) {
932                 base = (unsigned long)__va(reg->base);
933                 size = reg->size;
934
935                 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
936                     base, size, prot);
937
938                 if ((base + size) >= H_VMALLOC_START) {
939                         pr_warn("Outside the supported range\n");
940                         continue;
941                 }
942
943                 BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
944                                 prot, mmu_linear_psize, mmu_kernel_ssize));
945         }
946         memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
947
948         /*
949          * If we have a memory_limit and we've allocated TCEs then we need to
950          * explicitly map the TCE area at the top of RAM. We also cope with the
951          * case that the TCEs start below memory_limit.
952          * tce_alloc_start/end are 16MB aligned so the mapping should work
953          * for either 4K or 16MB pages.
954          */
955         if (tce_alloc_start) {
956                 tce_alloc_start = (unsigned long)__va(tce_alloc_start);
957                 tce_alloc_end = (unsigned long)__va(tce_alloc_end);
958
959                 if (base + size >= tce_alloc_start)
960                         tce_alloc_start = base + size + 1;
961
962                 BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
963                                          __pa(tce_alloc_start), prot,
964                                          mmu_linear_psize, mmu_kernel_ssize));
965         }
966
967
968         DBG(" <- htab_initialize()\n");
969 }
970 #undef KB
971 #undef MB
972
973 void __init hash__early_init_devtree(void)
974 {
975         /* Initialize segment sizes */
976         of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
977
978         /* Initialize page sizes */
979         htab_scan_page_sizes();
980 }
981
982 static struct hash_mm_context init_hash_mm_context;
983 void __init hash__early_init_mmu(void)
984 {
985 #ifndef CONFIG_PPC_64K_PAGES
986         /*
987          * We have code in __hash_page_4K() and elsewhere, which assumes it can
988          * do the following:
989          *   new_pte |= (slot << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX);
990          *
991          * Where the slot number is between 0-15, and values of 8-15 indicate
992          * the secondary bucket. For that code to work H_PAGE_F_SECOND and
993          * H_PAGE_F_GIX must occupy four contiguous bits in the PTE, and
994          * H_PAGE_F_SECOND must be placed above H_PAGE_F_GIX. Assert that here
995          * with a BUILD_BUG_ON().
996          */
997         BUILD_BUG_ON(H_PAGE_F_SECOND != (1ul  << (H_PAGE_F_GIX_SHIFT + 3)));
998 #endif /* CONFIG_PPC_64K_PAGES */
999
1000         htab_init_page_sizes();
1001
1002         /*
1003          * initialize page table size
1004          */
1005         __pte_frag_nr = H_PTE_FRAG_NR;
1006         __pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
1007         __pmd_frag_nr = H_PMD_FRAG_NR;
1008         __pmd_frag_size_shift = H_PMD_FRAG_SIZE_SHIFT;
1009
1010         __pte_index_size = H_PTE_INDEX_SIZE;
1011         __pmd_index_size = H_PMD_INDEX_SIZE;
1012         __pud_index_size = H_PUD_INDEX_SIZE;
1013         __pgd_index_size = H_PGD_INDEX_SIZE;
1014         __pud_cache_index = H_PUD_CACHE_INDEX;
1015         __pte_table_size = H_PTE_TABLE_SIZE;
1016         __pmd_table_size = H_PMD_TABLE_SIZE;
1017         __pud_table_size = H_PUD_TABLE_SIZE;
1018         __pgd_table_size = H_PGD_TABLE_SIZE;
1019         /*
1020          * 4k use hugepd format, so for hash set then to
1021          * zero
1022          */
1023         __pmd_val_bits = HASH_PMD_VAL_BITS;
1024         __pud_val_bits = HASH_PUD_VAL_BITS;
1025         __pgd_val_bits = HASH_PGD_VAL_BITS;
1026
1027         __kernel_virt_start = H_KERN_VIRT_START;
1028         __vmalloc_start = H_VMALLOC_START;
1029         __vmalloc_end = H_VMALLOC_END;
1030         __kernel_io_start = H_KERN_IO_START;
1031         __kernel_io_end = H_KERN_IO_END;
1032         vmemmap = (struct page *)H_VMEMMAP_START;
1033         ioremap_bot = IOREMAP_BASE;
1034
1035 #ifdef CONFIG_PCI
1036         pci_io_base = ISA_IO_BASE;
1037 #endif
1038
1039         /* Select appropriate backend */
1040         if (firmware_has_feature(FW_FEATURE_PS3_LV1))
1041                 ps3_early_mm_init();
1042         else if (firmware_has_feature(FW_FEATURE_LPAR))
1043                 hpte_init_pseries();
1044         else if (IS_ENABLED(CONFIG_PPC_NATIVE))
1045                 hpte_init_native();
1046
1047         if (!mmu_hash_ops.hpte_insert)
1048                 panic("hash__early_init_mmu: No MMU hash ops defined!\n");
1049
1050         /*
1051          * Initialize the MMU Hash table and create the linear mapping
1052          * of memory. Has to be done before SLB initialization as this is
1053          * currently where the page size encoding is obtained.
1054          */
1055         htab_initialize();
1056
1057         init_mm.context.hash_context = &init_hash_mm_context;
1058         mm_ctx_set_slb_addr_limit(&init_mm.context, SLB_ADDR_LIMIT_DEFAULT);
1059
1060         pr_info("Initializing hash mmu with SLB\n");
1061         /* Initialize SLB management */
1062         slb_initialize();
1063
1064         if (cpu_has_feature(CPU_FTR_ARCH_206)
1065                         && cpu_has_feature(CPU_FTR_HVMODE))
1066                 tlbiel_all();
1067 }
1068
1069 #ifdef CONFIG_SMP
1070 void hash__early_init_mmu_secondary(void)
1071 {
1072         /* Initialize hash table for that CPU */
1073         if (!firmware_has_feature(FW_FEATURE_LPAR)) {
1074
1075                 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1076                         mtspr(SPRN_SDR1, _SDR1);
1077                 else
1078                         mtspr(SPRN_PTCR,
1079                               __pa(partition_tb) | (PATB_SIZE_SHIFT - 12));
1080         }
1081         /* Initialize SLB */
1082         slb_initialize();
1083
1084         if (cpu_has_feature(CPU_FTR_ARCH_206)
1085                         && cpu_has_feature(CPU_FTR_HVMODE))
1086                 tlbiel_all();
1087 }
1088 #endif /* CONFIG_SMP */
1089
1090 /*
1091  * Called by asm hashtable.S for doing lazy icache flush
1092  */
1093 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
1094 {
1095         struct page *page;
1096
1097         if (!pfn_valid(pte_pfn(pte)))
1098                 return pp;
1099
1100         page = pte_page(pte);
1101
1102         /* page is dirty */
1103         if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
1104                 if (trap == 0x400) {
1105                         flush_dcache_icache_page(page);
1106                         set_bit(PG_arch_1, &page->flags);
1107                 } else
1108                         pp |= HPTE_R_N;
1109         }
1110         return pp;
1111 }
1112
1113 #ifdef CONFIG_PPC_MM_SLICES
1114 static unsigned int get_paca_psize(unsigned long addr)
1115 {
1116         unsigned char *psizes;
1117         unsigned long index, mask_index;
1118
1119         if (addr < SLICE_LOW_TOP) {
1120                 psizes = get_paca()->mm_ctx_low_slices_psize;
1121                 index = GET_LOW_SLICE_INDEX(addr);
1122         } else {
1123                 psizes = get_paca()->mm_ctx_high_slices_psize;
1124                 index = GET_HIGH_SLICE_INDEX(addr);
1125         }
1126         mask_index = index & 0x1;
1127         return (psizes[index >> 1] >> (mask_index * 4)) & 0xF;
1128 }
1129
1130 #else
1131 unsigned int get_paca_psize(unsigned long addr)
1132 {
1133         return get_paca()->mm_ctx_user_psize;
1134 }
1135 #endif
1136
1137 /*
1138  * Demote a segment to using 4k pages.
1139  * For now this makes the whole process use 4k pages.
1140  */
1141 #ifdef CONFIG_PPC_64K_PAGES
1142 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
1143 {
1144         if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
1145                 return;
1146         slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
1147         copro_flush_all_slbs(mm);
1148         if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
1149
1150                 copy_mm_to_paca(mm);
1151                 slb_flush_and_restore_bolted();
1152         }
1153 }
1154 #endif /* CONFIG_PPC_64K_PAGES */
1155
1156 #ifdef CONFIG_PPC_SUBPAGE_PROT
1157 /*
1158  * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
1159  * Userspace sets the subpage permissions using the subpage_prot system call.
1160  *
1161  * Result is 0: full permissions, _PAGE_RW: read-only,
1162  * _PAGE_RWX: no access.
1163  */
1164 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
1165 {
1166         struct subpage_prot_table *spt = mm_ctx_subpage_prot(&mm->context);
1167         u32 spp = 0;
1168         u32 **sbpm, *sbpp;
1169
1170         if (!spt)
1171                 return 0;
1172
1173         if (ea >= spt->maxaddr)
1174                 return 0;
1175         if (ea < 0x100000000UL) {
1176                 /* addresses below 4GB use spt->low_prot */
1177                 sbpm = spt->low_prot;
1178         } else {
1179                 sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
1180                 if (!sbpm)
1181                         return 0;
1182         }
1183         sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
1184         if (!sbpp)
1185                 return 0;
1186         spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
1187
1188         /* extract 2-bit bitfield for this 4k subpage */
1189         spp >>= 30 - 2 * ((ea >> 12) & 0xf);
1190
1191         /*
1192          * 0 -> full premission
1193          * 1 -> Read only
1194          * 2 -> no access.
1195          * We return the flag that need to be cleared.
1196          */
1197         spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0);
1198         return spp;
1199 }
1200
1201 #else /* CONFIG_PPC_SUBPAGE_PROT */
1202 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
1203 {
1204         return 0;
1205 }
1206 #endif
1207
1208 void hash_failure_debug(unsigned long ea, unsigned long access,
1209                         unsigned long vsid, unsigned long trap,
1210                         int ssize, int psize, int lpsize, unsigned long pte)
1211 {
1212         if (!printk_ratelimit())
1213                 return;
1214         pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
1215                 ea, access, current->comm);
1216         pr_info("    trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
1217                 trap, vsid, ssize, psize, lpsize, pte);
1218 }
1219
1220 static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
1221                              int psize, bool user_region)
1222 {
1223         if (user_region) {
1224                 if (psize != get_paca_psize(ea)) {
1225                         copy_mm_to_paca(mm);
1226                         slb_flush_and_restore_bolted();
1227                 }
1228         } else if (get_paca()->vmalloc_sllp !=
1229                    mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1230                 get_paca()->vmalloc_sllp =
1231                         mmu_psize_defs[mmu_vmalloc_psize].sllp;
1232                 slb_vmalloc_update();
1233         }
1234 }
1235
1236 /*
1237  * Result code is:
1238  *  0 - handled
1239  *  1 - normal page fault
1240  * -1 - critical hash insertion error
1241  * -2 - access not permitted by subpage protection mechanism
1242  */
1243 int hash_page_mm(struct mm_struct *mm, unsigned long ea,
1244                  unsigned long access, unsigned long trap,
1245                  unsigned long flags)
1246 {
1247         bool is_thp;
1248         enum ctx_state prev_state = exception_enter();
1249         pgd_t *pgdir;
1250         unsigned long vsid;
1251         pte_t *ptep;
1252         unsigned hugeshift;
1253         int rc, user_region = 0;
1254         int psize, ssize;
1255
1256         DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1257                 ea, access, trap);
1258         trace_hash_fault(ea, access, trap);
1259
1260         /* Get region & vsid */
1261         switch (get_region_id(ea)) {
1262         case USER_REGION_ID:
1263                 user_region = 1;
1264                 if (! mm) {
1265                         DBG_LOW(" user region with no mm !\n");
1266                         rc = 1;
1267                         goto bail;
1268                 }
1269                 psize = get_slice_psize(mm, ea);
1270                 ssize = user_segment_size(ea);
1271                 vsid = get_user_vsid(&mm->context, ea, ssize);
1272                 break;
1273         case VMALLOC_REGION_ID:
1274                 vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1275                 psize = mmu_vmalloc_psize;
1276                 ssize = mmu_kernel_ssize;
1277                 break;
1278
1279         case IO_REGION_ID:
1280                 vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1281                 psize = mmu_io_psize;
1282                 ssize = mmu_kernel_ssize;
1283                 break;
1284         default:
1285                 /*
1286                  * Not a valid range
1287                  * Send the problem up to do_page_fault()
1288                  */
1289                 rc = 1;
1290                 goto bail;
1291         }
1292         DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1293
1294         /* Bad address. */
1295         if (!vsid) {
1296                 DBG_LOW("Bad address!\n");
1297                 rc = 1;
1298                 goto bail;
1299         }
1300         /* Get pgdir */
1301         pgdir = mm->pgd;
1302         if (pgdir == NULL) {
1303                 rc = 1;
1304                 goto bail;
1305         }
1306
1307         /* Check CPU locality */
1308         if (user_region && mm_is_thread_local(mm))
1309                 flags |= HPTE_LOCAL_UPDATE;
1310
1311 #ifndef CONFIG_PPC_64K_PAGES
1312         /*
1313          * If we use 4K pages and our psize is not 4K, then we might
1314          * be hitting a special driver mapping, and need to align the
1315          * address before we fetch the PTE.
1316          *
1317          * It could also be a hugepage mapping, in which case this is
1318          * not necessary, but it's not harmful, either.
1319          */
1320         if (psize != MMU_PAGE_4K)
1321                 ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1322 #endif /* CONFIG_PPC_64K_PAGES */
1323
1324         /* Get PTE and page size from page tables */
1325         ptep = find_linux_pte(pgdir, ea, &is_thp, &hugeshift);
1326         if (ptep == NULL || !pte_present(*ptep)) {
1327                 DBG_LOW(" no PTE !\n");
1328                 rc = 1;
1329                 goto bail;
1330         }
1331
1332         /* Add _PAGE_PRESENT to the required access perm */
1333         access |= _PAGE_PRESENT;
1334
1335         /*
1336          * Pre-check access permissions (will be re-checked atomically
1337          * in __hash_page_XX but this pre-check is a fast path
1338          */
1339         if (!check_pte_access(access, pte_val(*ptep))) {
1340                 DBG_LOW(" no access !\n");
1341                 rc = 1;
1342                 goto bail;
1343         }
1344
1345         if (hugeshift) {
1346                 if (is_thp)
1347                         rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1348                                              trap, flags, ssize, psize);
1349 #ifdef CONFIG_HUGETLB_PAGE
1350                 else
1351                         rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1352                                               flags, ssize, hugeshift, psize);
1353 #else
1354                 else {
1355                         /*
1356                          * if we have hugeshift, and is not transhuge with
1357                          * hugetlb disabled, something is really wrong.
1358                          */
1359                         rc = 1;
1360                         WARN_ON(1);
1361                 }
1362 #endif
1363                 if (current->mm == mm)
1364                         check_paca_psize(ea, mm, psize, user_region);
1365
1366                 goto bail;
1367         }
1368
1369 #ifndef CONFIG_PPC_64K_PAGES
1370         DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1371 #else
1372         DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1373                 pte_val(*(ptep + PTRS_PER_PTE)));
1374 #endif
1375         /* Do actual hashing */
1376 #ifdef CONFIG_PPC_64K_PAGES
1377         /* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */
1378         if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1379                 demote_segment_4k(mm, ea);
1380                 psize = MMU_PAGE_4K;
1381         }
1382
1383         /*
1384          * If this PTE is non-cacheable and we have restrictions on
1385          * using non cacheable large pages, then we switch to 4k
1386          */
1387         if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) {
1388                 if (user_region) {
1389                         demote_segment_4k(mm, ea);
1390                         psize = MMU_PAGE_4K;
1391                 } else if (ea < VMALLOC_END) {
1392                         /*
1393                          * some driver did a non-cacheable mapping
1394                          * in vmalloc space, so switch vmalloc
1395                          * to 4k pages
1396                          */
1397                         printk(KERN_ALERT "Reducing vmalloc segment "
1398                                "to 4kB pages because of "
1399                                "non-cacheable mapping\n");
1400                         psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1401                         copro_flush_all_slbs(mm);
1402                 }
1403         }
1404
1405 #endif /* CONFIG_PPC_64K_PAGES */
1406
1407         if (current->mm == mm)
1408                 check_paca_psize(ea, mm, psize, user_region);
1409
1410 #ifdef CONFIG_PPC_64K_PAGES
1411         if (psize == MMU_PAGE_64K)
1412                 rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1413                                      flags, ssize);
1414         else
1415 #endif /* CONFIG_PPC_64K_PAGES */
1416         {
1417                 int spp = subpage_protection(mm, ea);
1418                 if (access & spp)
1419                         rc = -2;
1420                 else
1421                         rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1422                                             flags, ssize, spp);
1423         }
1424
1425         /*
1426          * Dump some info in case of hash insertion failure, they should
1427          * never happen so it is really useful to know if/when they do
1428          */
1429         if (rc == -1)
1430                 hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1431                                    psize, pte_val(*ptep));
1432 #ifndef CONFIG_PPC_64K_PAGES
1433         DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1434 #else
1435         DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1436                 pte_val(*(ptep + PTRS_PER_PTE)));
1437 #endif
1438         DBG_LOW(" -> rc=%d\n", rc);
1439
1440 bail:
1441         exception_exit(prev_state);
1442         return rc;
1443 }
1444 EXPORT_SYMBOL_GPL(hash_page_mm);
1445
1446 int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
1447               unsigned long dsisr)
1448 {
1449         unsigned long flags = 0;
1450         struct mm_struct *mm = current->mm;
1451
1452         if ((get_region_id(ea) == VMALLOC_REGION_ID) ||
1453             (get_region_id(ea) == IO_REGION_ID))
1454                 mm = &init_mm;
1455
1456         if (dsisr & DSISR_NOHPTE)
1457                 flags |= HPTE_NOHPTE_UPDATE;
1458
1459         return hash_page_mm(mm, ea, access, trap, flags);
1460 }
1461 EXPORT_SYMBOL_GPL(hash_page);
1462
1463 int __hash_page(unsigned long ea, unsigned long msr, unsigned long trap,
1464                 unsigned long dsisr)
1465 {
1466         unsigned long access = _PAGE_PRESENT | _PAGE_READ;
1467         unsigned long flags = 0;
1468         struct mm_struct *mm = current->mm;
1469         unsigned int region_id = get_region_id(ea);
1470
1471         if ((region_id == VMALLOC_REGION_ID) || (region_id == IO_REGION_ID))
1472                 mm = &init_mm;
1473
1474         if (dsisr & DSISR_NOHPTE)
1475                 flags |= HPTE_NOHPTE_UPDATE;
1476
1477         if (dsisr & DSISR_ISSTORE)
1478                 access |= _PAGE_WRITE;
1479         /*
1480          * We set _PAGE_PRIVILEGED only when
1481          * kernel mode access kernel space.
1482          *
1483          * _PAGE_PRIVILEGED is NOT set
1484          * 1) when kernel mode access user space
1485          * 2) user space access kernel space.
1486          */
1487         access |= _PAGE_PRIVILEGED;
1488         if ((msr & MSR_PR) || (region_id == USER_REGION_ID))
1489                 access &= ~_PAGE_PRIVILEGED;
1490
1491         if (trap == 0x400)
1492                 access |= _PAGE_EXEC;
1493
1494         return hash_page_mm(mm, ea, access, trap, flags);
1495 }
1496
1497 #ifdef CONFIG_PPC_MM_SLICES
1498 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1499 {
1500         int psize = get_slice_psize(mm, ea);
1501
1502         /* We only prefault standard pages for now */
1503         if (unlikely(psize != mm_ctx_user_psize(&mm->context)))
1504                 return false;
1505
1506         /*
1507          * Don't prefault if subpage protection is enabled for the EA.
1508          */
1509         if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea)))
1510                 return false;
1511
1512         return true;
1513 }
1514 #else
1515 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1516 {
1517         return true;
1518 }
1519 #endif
1520
1521 void hash_preload(struct mm_struct *mm, unsigned long ea,
1522                   bool is_exec, unsigned long trap)
1523 {
1524         int hugepage_shift;
1525         unsigned long vsid;
1526         pgd_t *pgdir;
1527         pte_t *ptep;
1528         unsigned long flags;
1529         int rc, ssize, update_flags = 0;
1530         unsigned long access = _PAGE_PRESENT | _PAGE_READ | (is_exec ? _PAGE_EXEC : 0);
1531
1532         BUG_ON(get_region_id(ea) != USER_REGION_ID);
1533
1534         if (!should_hash_preload(mm, ea))
1535                 return;
1536
1537         DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1538                 " trap=%lx\n", mm, mm->pgd, ea, access, trap);
1539
1540         /* Get Linux PTE if available */
1541         pgdir = mm->pgd;
1542         if (pgdir == NULL)
1543                 return;
1544
1545         /* Get VSID */
1546         ssize = user_segment_size(ea);
1547         vsid = get_user_vsid(&mm->context, ea, ssize);
1548         if (!vsid)
1549                 return;
1550         /*
1551          * Hash doesn't like irqs. Walking linux page table with irq disabled
1552          * saves us from holding multiple locks.
1553          */
1554         local_irq_save(flags);
1555
1556         /*
1557          * THP pages use update_mmu_cache_pmd. We don't do
1558          * hash preload there. Hence can ignore THP here
1559          */
1560         ptep = find_current_mm_pte(pgdir, ea, NULL, &hugepage_shift);
1561         if (!ptep)
1562                 goto out_exit;
1563
1564         WARN_ON(hugepage_shift);
1565 #ifdef CONFIG_PPC_64K_PAGES
1566         /* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on
1567          * a 64K kernel), then we don't preload, hash_page() will take
1568          * care of it once we actually try to access the page.
1569          * That way we don't have to duplicate all of the logic for segment
1570          * page size demotion here
1571          */
1572         if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep))
1573                 goto out_exit;
1574 #endif /* CONFIG_PPC_64K_PAGES */
1575
1576         /* Is that local to this CPU ? */
1577         if (mm_is_thread_local(mm))
1578                 update_flags |= HPTE_LOCAL_UPDATE;
1579
1580         /* Hash it in */
1581 #ifdef CONFIG_PPC_64K_PAGES
1582         if (mm_ctx_user_psize(&mm->context) == MMU_PAGE_64K)
1583                 rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1584                                      update_flags, ssize);
1585         else
1586 #endif /* CONFIG_PPC_64K_PAGES */
1587                 rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags,
1588                                     ssize, subpage_protection(mm, ea));
1589
1590         /* Dump some info in case of hash insertion failure, they should
1591          * never happen so it is really useful to know if/when they do
1592          */
1593         if (rc == -1)
1594                 hash_failure_debug(ea, access, vsid, trap, ssize,
1595                                    mm_ctx_user_psize(&mm->context),
1596                                    mm_ctx_user_psize(&mm->context),
1597                                    pte_val(*ptep));
1598 out_exit:
1599         local_irq_restore(flags);
1600 }
1601
1602 #ifdef CONFIG_PPC_MEM_KEYS
1603 /*
1604  * Return the protection key associated with the given address and the
1605  * mm_struct.
1606  */
1607 u16 get_mm_addr_key(struct mm_struct *mm, unsigned long address)
1608 {
1609         pte_t *ptep;
1610         u16 pkey = 0;
1611         unsigned long flags;
1612
1613         if (!mm || !mm->pgd)
1614                 return 0;
1615
1616         local_irq_save(flags);
1617         ptep = find_linux_pte(mm->pgd, address, NULL, NULL);
1618         if (ptep)
1619                 pkey = pte_to_pkey_bits(pte_val(READ_ONCE(*ptep)));
1620         local_irq_restore(flags);
1621
1622         return pkey;
1623 }
1624 #endif /* CONFIG_PPC_MEM_KEYS */
1625
1626 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1627 static inline void tm_flush_hash_page(int local)
1628 {
1629         /*
1630          * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a
1631          * page back to a block device w/PIO could pick up transactional data
1632          * (bad!) so we force an abort here. Before the sync the page will be
1633          * made read-only, which will flush_hash_page. BIG ISSUE here: if the
1634          * kernel uses a page from userspace without unmapping it first, it may
1635          * see the speculated version.
1636          */
1637         if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
1638             MSR_TM_ACTIVE(current->thread.regs->msr)) {
1639                 tm_enable();
1640                 tm_abort(TM_CAUSE_TLBI);
1641         }
1642 }
1643 #else
1644 static inline void tm_flush_hash_page(int local)
1645 {
1646 }
1647 #endif
1648
1649 /*
1650  * Return the global hash slot, corresponding to the given PTE, which contains
1651  * the HPTE.
1652  */
1653 unsigned long pte_get_hash_gslot(unsigned long vpn, unsigned long shift,
1654                 int ssize, real_pte_t rpte, unsigned int subpg_index)
1655 {
1656         unsigned long hash, gslot, hidx;
1657
1658         hash = hpt_hash(vpn, shift, ssize);
1659         hidx = __rpte_to_hidx(rpte, subpg_index);
1660         if (hidx & _PTEIDX_SECONDARY)
1661                 hash = ~hash;
1662         gslot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1663         gslot += hidx & _PTEIDX_GROUP_IX;
1664         return gslot;
1665 }
1666
1667 /*
1668  * WARNING: This is called from hash_low_64.S, if you change this prototype,
1669  *          do not forget to update the assembly call site !
1670  */
1671 void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1672                      unsigned long flags)
1673 {
1674         unsigned long index, shift, gslot;
1675         int local = flags & HPTE_LOCAL_UPDATE;
1676
1677         DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1678         pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1679                 gslot = pte_get_hash_gslot(vpn, shift, ssize, pte, index);
1680                 DBG_LOW(" sub %ld: gslot=%lx\n", index, gslot);
1681                 /*
1682                  * We use same base page size and actual psize, because we don't
1683                  * use these functions for hugepage
1684                  */
1685                 mmu_hash_ops.hpte_invalidate(gslot, vpn, psize, psize,
1686                                              ssize, local);
1687         } pte_iterate_hashed_end();
1688
1689         tm_flush_hash_page(local);
1690 }
1691
1692 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1693 void flush_hash_hugepage(unsigned long vsid, unsigned long addr,
1694                          pmd_t *pmdp, unsigned int psize, int ssize,
1695                          unsigned long flags)
1696 {
1697         int i, max_hpte_count, valid;
1698         unsigned long s_addr;
1699         unsigned char *hpte_slot_array;
1700         unsigned long hidx, shift, vpn, hash, slot;
1701         int local = flags & HPTE_LOCAL_UPDATE;
1702
1703         s_addr = addr & HPAGE_PMD_MASK;
1704         hpte_slot_array = get_hpte_slot_array(pmdp);
1705         /*
1706          * IF we try to do a HUGE PTE update after a withdraw is done.
1707          * we will find the below NULL. This happens when we do
1708          * split_huge_page_pmd
1709          */
1710         if (!hpte_slot_array)
1711                 return;
1712
1713         if (mmu_hash_ops.hugepage_invalidate) {
1714                 mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array,
1715                                                  psize, ssize, local);
1716                 goto tm_abort;
1717         }
1718         /*
1719          * No bluk hpte removal support, invalidate each entry
1720          */
1721         shift = mmu_psize_defs[psize].shift;
1722         max_hpte_count = HPAGE_PMD_SIZE >> shift;
1723         for (i = 0; i < max_hpte_count; i++) {
1724                 /*
1725                  * 8 bits per each hpte entries
1726                  * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
1727                  */
1728                 valid = hpte_valid(hpte_slot_array, i);
1729                 if (!valid)
1730                         continue;
1731                 hidx =  hpte_hash_index(hpte_slot_array, i);
1732
1733                 /* get the vpn */
1734                 addr = s_addr + (i * (1ul << shift));
1735                 vpn = hpt_vpn(addr, vsid, ssize);
1736                 hash = hpt_hash(vpn, shift, ssize);
1737                 if (hidx & _PTEIDX_SECONDARY)
1738                         hash = ~hash;
1739
1740                 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1741                 slot += hidx & _PTEIDX_GROUP_IX;
1742                 mmu_hash_ops.hpte_invalidate(slot, vpn, psize,
1743                                              MMU_PAGE_16M, ssize, local);
1744         }
1745 tm_abort:
1746         tm_flush_hash_page(local);
1747 }
1748 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1749
1750 void flush_hash_range(unsigned long number, int local)
1751 {
1752         if (mmu_hash_ops.flush_hash_range)
1753                 mmu_hash_ops.flush_hash_range(number, local);
1754         else {
1755                 int i;
1756                 struct ppc64_tlb_batch *batch =
1757                         this_cpu_ptr(&ppc64_tlb_batch);
1758
1759                 for (i = 0; i < number; i++)
1760                         flush_hash_page(batch->vpn[i], batch->pte[i],
1761                                         batch->psize, batch->ssize, local);
1762         }
1763 }
1764
1765 /*
1766  * low_hash_fault is called when we the low level hash code failed
1767  * to instert a PTE due to an hypervisor error
1768  */
1769 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1770 {
1771         enum ctx_state prev_state = exception_enter();
1772
1773         if (user_mode(regs)) {
1774 #ifdef CONFIG_PPC_SUBPAGE_PROT
1775                 if (rc == -2)
1776                         _exception(SIGSEGV, regs, SEGV_ACCERR, address);
1777                 else
1778 #endif
1779                         _exception(SIGBUS, regs, BUS_ADRERR, address);
1780         } else
1781                 bad_page_fault(regs, address, SIGBUS);
1782
1783         exception_exit(prev_state);
1784 }
1785
1786 long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
1787                            unsigned long pa, unsigned long rflags,
1788                            unsigned long vflags, int psize, int ssize)
1789 {
1790         unsigned long hpte_group;
1791         long slot;
1792
1793 repeat:
1794         hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1795
1796         /* Insert into the hash table, primary slot */
1797         slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
1798                                         psize, psize, ssize);
1799
1800         /* Primary is full, try the secondary */
1801         if (unlikely(slot == -1)) {
1802                 hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
1803                 slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags,
1804                                                 vflags | HPTE_V_SECONDARY,
1805                                                 psize, psize, ssize);
1806                 if (slot == -1) {
1807                         if (mftb() & 0x1)
1808                                 hpte_group = (hash & htab_hash_mask) *
1809                                                 HPTES_PER_GROUP;
1810
1811                         mmu_hash_ops.hpte_remove(hpte_group);
1812                         goto repeat;
1813                 }
1814         }
1815
1816         return slot;
1817 }
1818
1819 #ifdef CONFIG_DEBUG_PAGEALLOC
1820 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1821 {
1822         unsigned long hash;
1823         unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1824         unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1825         unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
1826         long ret;
1827
1828         hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1829
1830         /* Don't create HPTE entries for bad address */
1831         if (!vsid)
1832                 return;
1833
1834         ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
1835                                     HPTE_V_BOLTED,
1836                                     mmu_linear_psize, mmu_kernel_ssize);
1837
1838         BUG_ON (ret < 0);
1839         spin_lock(&linear_map_hash_lock);
1840         BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1841         linear_map_hash_slots[lmi] = ret | 0x80;
1842         spin_unlock(&linear_map_hash_lock);
1843 }
1844
1845 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1846 {
1847         unsigned long hash, hidx, slot;
1848         unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1849         unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1850
1851         hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1852         spin_lock(&linear_map_hash_lock);
1853         BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1854         hidx = linear_map_hash_slots[lmi] & 0x7f;
1855         linear_map_hash_slots[lmi] = 0;
1856         spin_unlock(&linear_map_hash_lock);
1857         if (hidx & _PTEIDX_SECONDARY)
1858                 hash = ~hash;
1859         slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1860         slot += hidx & _PTEIDX_GROUP_IX;
1861         mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize,
1862                                      mmu_linear_psize,
1863                                      mmu_kernel_ssize, 0);
1864 }
1865
1866 void __kernel_map_pages(struct page *page, int numpages, int enable)
1867 {
1868         unsigned long flags, vaddr, lmi;
1869         int i;
1870
1871         local_irq_save(flags);
1872         for (i = 0; i < numpages; i++, page++) {
1873                 vaddr = (unsigned long)page_address(page);
1874                 lmi = __pa(vaddr) >> PAGE_SHIFT;
1875                 if (lmi >= linear_map_hash_count)
1876                         continue;
1877                 if (enable)
1878                         kernel_map_linear_page(vaddr, lmi);
1879                 else
1880                         kernel_unmap_linear_page(vaddr, lmi);
1881         }
1882         local_irq_restore(flags);
1883 }
1884 #endif /* CONFIG_DEBUG_PAGEALLOC */
1885
1886 void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,
1887                                 phys_addr_t first_memblock_size)
1888 {
1889         /*
1890          * We don't currently support the first MEMBLOCK not mapping 0
1891          * physical on those processors
1892          */
1893         BUG_ON(first_memblock_base != 0);
1894
1895         /*
1896          * On virtualized systems the first entry is our RMA region aka VRMA,
1897          * non-virtualized 64-bit hash MMU systems don't have a limitation
1898          * on real mode access.
1899          *
1900          * For guests on platforms before POWER9, we clamp the it limit to 1G
1901          * to avoid some funky things such as RTAS bugs etc...
1902          *
1903          * On POWER9 we limit to 1TB in case the host erroneously told us that
1904          * the RMA was >1TB. Effective address bits 0:23 are treated as zero
1905          * (meaning the access is aliased to zero i.e. addr = addr % 1TB)
1906          * for virtual real mode addressing and so it doesn't make sense to
1907          * have an area larger than 1TB as it can't be addressed.
1908          */
1909         if (!early_cpu_has_feature(CPU_FTR_HVMODE)) {
1910                 ppc64_rma_size = first_memblock_size;
1911                 if (!early_cpu_has_feature(CPU_FTR_ARCH_300))
1912                         ppc64_rma_size = min_t(u64, ppc64_rma_size, 0x40000000);
1913                 else
1914                         ppc64_rma_size = min_t(u64, ppc64_rma_size,
1915                                                1UL << SID_SHIFT_1T);
1916
1917                 /* Finally limit subsequent allocations */
1918                 memblock_set_current_limit(ppc64_rma_size);
1919         } else {
1920                 ppc64_rma_size = ULONG_MAX;
1921         }
1922 }
1923
1924 #ifdef CONFIG_DEBUG_FS
1925
1926 static int hpt_order_get(void *data, u64 *val)
1927 {
1928         *val = ppc64_pft_size;
1929         return 0;
1930 }
1931
1932 static int hpt_order_set(void *data, u64 val)
1933 {
1934         if (!mmu_hash_ops.resize_hpt)
1935                 return -ENODEV;
1936
1937         return mmu_hash_ops.resize_hpt(val);
1938 }
1939
1940 DEFINE_DEBUGFS_ATTRIBUTE(fops_hpt_order, hpt_order_get, hpt_order_set, "%llu\n");
1941
1942 static int __init hash64_debugfs(void)
1943 {
1944         if (!debugfs_create_file_unsafe("hpt_order", 0600, powerpc_debugfs_root,
1945                                         NULL, &fops_hpt_order)) {
1946                 pr_err("lpar: unable to create hpt_order debugsfs file\n");
1947         }
1948
1949         return 0;
1950 }
1951 machine_device_initcall(pseries, hash64_debugfs);
1952 #endif /* CONFIG_DEBUG_FS */
1953
1954 void __init print_system_hash_info(void)
1955 {
1956         pr_info("ppc64_pft_size    = 0x%llx\n", ppc64_pft_size);
1957
1958         if (htab_hash_mask)
1959                 pr_info("htab_hash_mask    = 0x%lx\n", htab_hash_mask);
1960         pr_info("kernel vmalloc start   = 0x%lx\n", KERN_VIRT_START);
1961         pr_info("kernel IO start        = 0x%lx\n", KERN_IO_START);
1962         pr_info("kernel vmemmap start   = 0x%lx\n", (unsigned long)vmemmap);
1963 }