]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/powerpc/mm/pgtable-hash64.c
powerpc/mm: Add comments to the vmemmap layout
[linux.git] / arch / powerpc / mm / pgtable-hash64.c
1 /*
2  * Copyright 2005, Paul Mackerras, IBM Corporation.
3  * Copyright 2009, Benjamin Herrenschmidt, IBM Corporation.
4  * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11
12 #include <linux/sched.h>
13 #include <linux/mm_types.h>
14
15 #include <asm/pgalloc.h>
16 #include <asm/tlb.h>
17
18 #include "mmu_decl.h"
19
20 #define CREATE_TRACE_POINTS
21 #include <trace/events/thp.h>
22
23 #ifdef CONFIG_SPARSEMEM_VMEMMAP
24 /*
25  * vmemmap is the starting address of the virtual address space where
26  * struct pages are allocated for all possible PFNs present on the system
27  * including holes and bad memory (hence sparse). These virtual struct
28  * pages are stored in sequence in this virtual address space irrespective
29  * of the fact whether the corresponding PFN is valid or not. This achieves
30  * constant relationship between address of struct page and its PFN.
31  *
32  * During boot or memory hotplug operation when a new memory section is
33  * added, physical memory allocation (including hash table bolting) will
34  * be performed for the set of struct pages which are part of the memory
35  * section. This saves memory by not allocating struct pages for PFNs
36  * which are not valid.
37  *
38  *              ----------------------------------------------
39  *              | PHYSICAL ALLOCATION OF VIRTUAL STRUCT PAGES|
40  *              ----------------------------------------------
41  *
42  *         f000000000000000                  c000000000000000
43  * vmemmap +--------------+                  +--------------+
44  *  +      |  page struct | +--------------> |  page struct |
45  *  |      +--------------+                  +--------------+
46  *  |      |  page struct | +--------------> |  page struct |
47  *  |      +--------------+ |                +--------------+
48  *  |      |  page struct | +       +------> |  page struct |
49  *  |      +--------------+         |        +--------------+
50  *  |      |  page struct |         |   +--> |  page struct |
51  *  |      +--------------+         |   |    +--------------+
52  *  |      |  page struct |         |   |
53  *  |      +--------------+         |   |
54  *  |      |  page struct |         |   |
55  *  |      +--------------+         |   |
56  *  |      |  page struct |         |   |
57  *  |      +--------------+         |   |
58  *  |      |  page struct |         |   |
59  *  |      +--------------+         |   |
60  *  |      |  page struct | +-------+   |
61  *  |      +--------------+             |
62  *  |      |  page struct | +-----------+
63  *  |      +--------------+
64  *  |      |  page struct | No mapping
65  *  |      +--------------+
66  *  |      |  page struct | No mapping
67  *  v      +--------------+
68  *
69  *              -----------------------------------------
70  *              | RELATION BETWEEN STRUCT PAGES AND PFNS|
71  *              -----------------------------------------
72  *
73  * vmemmap +--------------+                 +---------------+
74  *  +      |  page struct | +-------------> |      PFN      |
75  *  |      +--------------+                 +---------------+
76  *  |      |  page struct | +-------------> |      PFN      |
77  *  |      +--------------+                 +---------------+
78  *  |      |  page struct | +-------------> |      PFN      |
79  *  |      +--------------+                 +---------------+
80  *  |      |  page struct | +-------------> |      PFN      |
81  *  |      +--------------+                 +---------------+
82  *  |      |              |
83  *  |      +--------------+
84  *  |      |              |
85  *  |      +--------------+
86  *  |      |              |
87  *  |      +--------------+                 +---------------+
88  *  |      |  page struct | +-------------> |      PFN      |
89  *  |      +--------------+                 +---------------+
90  *  |      |              |
91  *  |      +--------------+
92  *  |      |              |
93  *  |      +--------------+                 +---------------+
94  *  |      |  page struct | +-------------> |      PFN      |
95  *  |      +--------------+                 +---------------+
96  *  |      |  page struct | +-------------> |      PFN      |
97  *  v      +--------------+                 +---------------+
98  */
99 /*
100  * On hash-based CPUs, the vmemmap is bolted in the hash table.
101  *
102  */
103 int __meminit hash__vmemmap_create_mapping(unsigned long start,
104                                        unsigned long page_size,
105                                        unsigned long phys)
106 {
107         int rc = htab_bolt_mapping(start, start + page_size, phys,
108                                    pgprot_val(PAGE_KERNEL),
109                                    mmu_vmemmap_psize, mmu_kernel_ssize);
110         if (rc < 0) {
111                 int rc2 = htab_remove_mapping(start, start + page_size,
112                                               mmu_vmemmap_psize,
113                                               mmu_kernel_ssize);
114                 BUG_ON(rc2 && (rc2 != -ENOENT));
115         }
116         return rc;
117 }
118
119 #ifdef CONFIG_MEMORY_HOTPLUG
120 void hash__vmemmap_remove_mapping(unsigned long start,
121                               unsigned long page_size)
122 {
123         int rc = htab_remove_mapping(start, start + page_size,
124                                      mmu_vmemmap_psize,
125                                      mmu_kernel_ssize);
126         BUG_ON((rc < 0) && (rc != -ENOENT));
127         WARN_ON(rc == -ENOENT);
128 }
129 #endif
130 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
131
132 /*
133  * map_kernel_page currently only called by __ioremap
134  * map_kernel_page adds an entry to the ioremap page table
135  * and adds an entry to the HPT, possibly bolting it
136  */
137 int hash__map_kernel_page(unsigned long ea, unsigned long pa, unsigned long flags)
138 {
139         pgd_t *pgdp;
140         pud_t *pudp;
141         pmd_t *pmdp;
142         pte_t *ptep;
143
144         BUILD_BUG_ON(TASK_SIZE_USER64 > H_PGTABLE_RANGE);
145         if (slab_is_available()) {
146                 pgdp = pgd_offset_k(ea);
147                 pudp = pud_alloc(&init_mm, pgdp, ea);
148                 if (!pudp)
149                         return -ENOMEM;
150                 pmdp = pmd_alloc(&init_mm, pudp, ea);
151                 if (!pmdp)
152                         return -ENOMEM;
153                 ptep = pte_alloc_kernel(pmdp, ea);
154                 if (!ptep)
155                         return -ENOMEM;
156                 set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
157                                                           __pgprot(flags)));
158         } else {
159                 /*
160                  * If the mm subsystem is not fully up, we cannot create a
161                  * linux page table entry for this mapping.  Simply bolt an
162                  * entry in the hardware page table.
163                  *
164                  */
165                 if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, flags,
166                                       mmu_io_psize, mmu_kernel_ssize)) {
167                         printk(KERN_ERR "Failed to do bolted mapping IO "
168                                "memory at %016lx !\n", pa);
169                         return -ENOMEM;
170                 }
171         }
172
173         smp_wmb();
174         return 0;
175 }
176
177 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
178
179 unsigned long hash__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
180                                     pmd_t *pmdp, unsigned long clr,
181                                     unsigned long set)
182 {
183         __be64 old_be, tmp;
184         unsigned long old;
185
186 #ifdef CONFIG_DEBUG_VM
187         WARN_ON(!pmd_trans_huge(*pmdp));
188         assert_spin_locked(&mm->page_table_lock);
189 #endif
190
191         __asm__ __volatile__(
192         "1:     ldarx   %0,0,%3\n\
193                 and.    %1,%0,%6\n\
194                 bne-    1b \n\
195                 andc    %1,%0,%4 \n\
196                 or      %1,%1,%7\n\
197                 stdcx.  %1,0,%3 \n\
198                 bne-    1b"
199         : "=&r" (old_be), "=&r" (tmp), "=m" (*pmdp)
200         : "r" (pmdp), "r" (cpu_to_be64(clr)), "m" (*pmdp),
201           "r" (cpu_to_be64(H_PAGE_BUSY)), "r" (cpu_to_be64(set))
202         : "cc" );
203
204         old = be64_to_cpu(old_be);
205
206         trace_hugepage_update(addr, old, clr, set);
207         if (old & H_PAGE_HASHPTE)
208                 hpte_do_hugepage_flush(mm, addr, pmdp, old);
209         return old;
210 }
211
212 pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
213                             pmd_t *pmdp)
214 {
215         pmd_t pmd;
216
217         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
218         VM_BUG_ON(pmd_trans_huge(*pmdp));
219
220         pmd = *pmdp;
221         pmd_clear(pmdp);
222         /*
223          * Wait for all pending hash_page to finish. This is needed
224          * in case of subpage collapse. When we collapse normal pages
225          * to hugepage, we first clear the pmd, then invalidate all
226          * the PTE entries. The assumption here is that any low level
227          * page fault will see a none pmd and take the slow path that
228          * will wait on mmap_sem. But we could very well be in a
229          * hash_page with local ptep pointer value. Such a hash page
230          * can result in adding new HPTE entries for normal subpages.
231          * That means we could be modifying the page content as we
232          * copy them to a huge page. So wait for parallel hash_page
233          * to finish before invalidating HPTE entries. We can do this
234          * by sending an IPI to all the cpus and executing a dummy
235          * function there.
236          */
237         kick_all_cpus_sync();
238         /*
239          * Now invalidate the hpte entries in the range
240          * covered by pmd. This make sure we take a
241          * fault and will find the pmd as none, which will
242          * result in a major fault which takes mmap_sem and
243          * hence wait for collapse to complete. Without this
244          * the __collapse_huge_page_copy can result in copying
245          * the old content.
246          */
247         flush_tlb_pmd_range(vma->vm_mm, &pmd, address);
248         return pmd;
249 }
250
251 /*
252  * We want to put the pgtable in pmd and use pgtable for tracking
253  * the base page size hptes
254  */
255 void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
256                                   pgtable_t pgtable)
257 {
258         pgtable_t *pgtable_slot;
259         assert_spin_locked(&mm->page_table_lock);
260         /*
261          * we store the pgtable in the second half of PMD
262          */
263         pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
264         *pgtable_slot = pgtable;
265         /*
266          * expose the deposited pgtable to other cpus.
267          * before we set the hugepage PTE at pmd level
268          * hash fault code looks at the deposted pgtable
269          * to store hash index values.
270          */
271         smp_wmb();
272 }
273
274 pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
275 {
276         pgtable_t pgtable;
277         pgtable_t *pgtable_slot;
278
279         assert_spin_locked(&mm->page_table_lock);
280         pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
281         pgtable = *pgtable_slot;
282         /*
283          * Once we withdraw, mark the entry NULL.
284          */
285         *pgtable_slot = NULL;
286         /*
287          * We store HPTE information in the deposited PTE fragment.
288          * zero out the content on withdraw.
289          */
290         memset(pgtable, 0, PTE_FRAG_SIZE);
291         return pgtable;
292 }
293
294 void hash__pmdp_huge_split_prepare(struct vm_area_struct *vma,
295                                unsigned long address, pmd_t *pmdp)
296 {
297         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
298         VM_BUG_ON(REGION_ID(address) != USER_REGION_ID);
299
300         /*
301          * We can't mark the pmd none here, because that will cause a race
302          * against exit_mmap. We need to continue mark pmd TRANS HUGE, while
303          * we spilt, but at the same time we wan't rest of the ppc64 code
304          * not to insert hash pte on this, because we will be modifying
305          * the deposited pgtable in the caller of this function. Hence
306          * clear the _PAGE_USER so that we move the fault handling to
307          * higher level function and that will serialize against ptl.
308          * We need to flush existing hash pte entries here even though,
309          * the translation is still valid, because we will withdraw
310          * pgtable_t after this.
311          */
312         pmd_hugepage_update(vma->vm_mm, address, pmdp, 0, _PAGE_PRIVILEGED);
313 }
314
315 /*
316  * A linux hugepage PMD was changed and the corresponding hash table entries
317  * neesd to be flushed.
318  */
319 void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
320                             pmd_t *pmdp, unsigned long old_pmd)
321 {
322         int ssize;
323         unsigned int psize;
324         unsigned long vsid;
325         unsigned long flags = 0;
326         const struct cpumask *tmp;
327
328         /* get the base page size,vsid and segment size */
329 #ifdef CONFIG_DEBUG_VM
330         psize = get_slice_psize(mm, addr);
331         BUG_ON(psize == MMU_PAGE_16M);
332 #endif
333         if (old_pmd & H_PAGE_COMBO)
334                 psize = MMU_PAGE_4K;
335         else
336                 psize = MMU_PAGE_64K;
337
338         if (!is_kernel_addr(addr)) {
339                 ssize = user_segment_size(addr);
340                 vsid = get_vsid(mm->context.id, addr, ssize);
341                 WARN_ON(vsid == 0);
342         } else {
343                 vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
344                 ssize = mmu_kernel_ssize;
345         }
346
347         tmp = cpumask_of(smp_processor_id());
348         if (cpumask_equal(mm_cpumask(mm), tmp))
349                 flags |= HPTE_LOCAL_UPDATE;
350
351         return flush_hash_hugepage(vsid, addr, pmdp, psize, ssize, flags);
352 }
353
354 pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
355                                 unsigned long addr, pmd_t *pmdp)
356 {
357         pmd_t old_pmd;
358         pgtable_t pgtable;
359         unsigned long old;
360         pgtable_t *pgtable_slot;
361
362         old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
363         old_pmd = __pmd(old);
364         /*
365          * We have pmd == none and we are holding page_table_lock.
366          * So we can safely go and clear the pgtable hash
367          * index info.
368          */
369         pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
370         pgtable = *pgtable_slot;
371         /*
372          * Let's zero out old valid and hash index details
373          * hash fault look at them.
374          */
375         memset(pgtable, 0, PTE_FRAG_SIZE);
376         /*
377          * Serialize against find_linux_pte_or_hugepte which does lock-less
378          * lookup in page tables with local interrupts disabled. For huge pages
379          * it casts pmd_t to pte_t. Since format of pte_t is different from
380          * pmd_t we want to prevent transit from pmd pointing to page table
381          * to pmd pointing to huge page (and back) while interrupts are disabled.
382          * We clear pmd to possibly replace it with page table pointer in
383          * different code paths. So make sure we wait for the parallel
384          * find_linux_pte_or_hugepage to finish.
385          */
386         kick_all_cpus_sync();
387         return old_pmd;
388 }
389
390 int hash__has_transparent_hugepage(void)
391 {
392
393         if (!mmu_has_feature(MMU_FTR_16M_PAGE))
394                 return 0;
395         /*
396          * We support THP only if PMD_SIZE is 16MB.
397          */
398         if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT)
399                 return 0;
400         /*
401          * We need to make sure that we support 16MB hugepage in a segement
402          * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
403          * of 64K.
404          */
405         /*
406          * If we have 64K HPTE, we will be using that by default
407          */
408         if (mmu_psize_defs[MMU_PAGE_64K].shift &&
409             (mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
410                 return 0;
411         /*
412          * Ok we only have 4K HPTE
413          */
414         if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
415                 return 0;
416
417         return 1;
418 }
419 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */