]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/powerpc/perf/imc-pmu.c
ASoC: wm0010: Delete an error message for a failed memory allocation in wm0010_boot()
[linux.git] / arch / powerpc / perf / imc-pmu.c
1 /*
2  * In-Memory Collection (IMC) Performance Monitor counter support.
3  *
4  * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation.
5  *           (C) 2017 Anju T Sudhakar, IBM Corporation.
6  *           (C) 2017 Hemant K Shaw, IBM Corporation.
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version
11  * 2 of the License, or later version.
12  */
13 #include <linux/perf_event.h>
14 #include <linux/slab.h>
15 #include <asm/opal.h>
16 #include <asm/imc-pmu.h>
17 #include <asm/cputhreads.h>
18 #include <asm/smp.h>
19 #include <linux/string.h>
20
21 /* Nest IMC data structures and variables */
22
23 /*
24  * Used to avoid races in counting the nest-pmu units during hotplug
25  * register and unregister
26  */
27 static DEFINE_MUTEX(nest_init_lock);
28 static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc);
29 static struct imc_pmu **per_nest_pmu_arr;
30 static cpumask_t nest_imc_cpumask;
31 struct imc_pmu_ref *nest_imc_refc;
32 static int nest_pmus;
33
34 /* Core IMC data structures and variables */
35
36 static cpumask_t core_imc_cpumask;
37 struct imc_pmu_ref *core_imc_refc;
38 static struct imc_pmu *core_imc_pmu;
39
40 /* Thread IMC data structures and variables */
41
42 static DEFINE_PER_CPU(u64 *, thread_imc_mem);
43 static struct imc_pmu *thread_imc_pmu;
44 static int thread_imc_mem_size;
45
46 struct imc_pmu *imc_event_to_pmu(struct perf_event *event)
47 {
48         return container_of(event->pmu, struct imc_pmu, pmu);
49 }
50
51 PMU_FORMAT_ATTR(event, "config:0-40");
52 PMU_FORMAT_ATTR(offset, "config:0-31");
53 PMU_FORMAT_ATTR(rvalue, "config:32");
54 PMU_FORMAT_ATTR(mode, "config:33-40");
55 static struct attribute *imc_format_attrs[] = {
56         &format_attr_event.attr,
57         &format_attr_offset.attr,
58         &format_attr_rvalue.attr,
59         &format_attr_mode.attr,
60         NULL,
61 };
62
63 static struct attribute_group imc_format_group = {
64         .name = "format",
65         .attrs = imc_format_attrs,
66 };
67
68 /* Get the cpumask printed to a buffer "buf" */
69 static ssize_t imc_pmu_cpumask_get_attr(struct device *dev,
70                                         struct device_attribute *attr,
71                                         char *buf)
72 {
73         struct pmu *pmu = dev_get_drvdata(dev);
74         struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu);
75         cpumask_t *active_mask;
76
77         switch(imc_pmu->domain){
78         case IMC_DOMAIN_NEST:
79                 active_mask = &nest_imc_cpumask;
80                 break;
81         case IMC_DOMAIN_CORE:
82                 active_mask = &core_imc_cpumask;
83                 break;
84         default:
85                 return 0;
86         }
87
88         return cpumap_print_to_pagebuf(true, buf, active_mask);
89 }
90
91 static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL);
92
93 static struct attribute *imc_pmu_cpumask_attrs[] = {
94         &dev_attr_cpumask.attr,
95         NULL,
96 };
97
98 static struct attribute_group imc_pmu_cpumask_attr_group = {
99         .attrs = imc_pmu_cpumask_attrs,
100 };
101
102 /* device_str_attr_create : Populate event "name" and string "str" in attribute */
103 static struct attribute *device_str_attr_create(const char *name, const char *str)
104 {
105         struct perf_pmu_events_attr *attr;
106
107         attr = kzalloc(sizeof(*attr), GFP_KERNEL);
108         if (!attr)
109                 return NULL;
110         sysfs_attr_init(&attr->attr.attr);
111
112         attr->event_str = str;
113         attr->attr.attr.name = name;
114         attr->attr.attr.mode = 0444;
115         attr->attr.show = perf_event_sysfs_show;
116
117         return &attr->attr.attr;
118 }
119
120 struct imc_events *imc_parse_event(struct device_node *np, const char *scale,
121                                   const char *unit, const char *prefix, u32 base)
122 {
123         struct imc_events *event;
124         const char *s;
125         u32 reg;
126
127         event = kzalloc(sizeof(struct imc_events), GFP_KERNEL);
128         if (!event)
129                 return NULL;
130
131         if (of_property_read_u32(np, "reg", &reg))
132                 goto error;
133         /* Add the base_reg value to the "reg" */
134         event->value = base + reg;
135
136         if (of_property_read_string(np, "event-name", &s))
137                 goto error;
138
139         event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s);
140         if (!event->name)
141                 goto error;
142
143         if (of_property_read_string(np, "scale", &s))
144                 s = scale;
145
146         if (s) {
147                 event->scale = kstrdup(s, GFP_KERNEL);
148                 if (!event->scale)
149                         goto error;
150         }
151
152         if (of_property_read_string(np, "unit", &s))
153                 s = unit;
154
155         if (s) {
156                 event->unit = kstrdup(s, GFP_KERNEL);
157                 if (!event->unit)
158                         goto error;
159         }
160
161         return event;
162 error:
163         kfree(event->unit);
164         kfree(event->scale);
165         kfree(event->name);
166         kfree(event);
167
168         return NULL;
169 }
170
171 /*
172  * update_events_in_group: Update the "events" information in an attr_group
173  *                         and assign the attr_group to the pmu "pmu".
174  */
175 static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu)
176 {
177         struct attribute_group *attr_group;
178         struct attribute **attrs, *dev_str;
179         struct device_node *np, *pmu_events;
180         struct imc_events *ev;
181         u32 handle, base_reg;
182         int i=0, j=0, ct;
183         const char *prefix, *g_scale, *g_unit;
184         const char *ev_val_str, *ev_scale_str, *ev_unit_str;
185
186         if (!of_property_read_u32(node, "events", &handle))
187                 pmu_events = of_find_node_by_phandle(handle);
188         else
189                 return 0;
190
191         /* Did not find any node with a given phandle */
192         if (!pmu_events)
193                 return 0;
194
195         /* Get a count of number of child nodes */
196         ct = of_get_child_count(pmu_events);
197
198         /* Get the event prefix */
199         if (of_property_read_string(node, "events-prefix", &prefix))
200                 return 0;
201
202         /* Get a global unit and scale data if available */
203         if (of_property_read_string(node, "scale", &g_scale))
204                 g_scale = NULL;
205
206         if (of_property_read_string(node, "unit", &g_unit))
207                 g_unit = NULL;
208
209         /* "reg" property gives out the base offset of the counters data */
210         of_property_read_u32(node, "reg", &base_reg);
211
212         /* Allocate memory for the events */
213         pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL);
214         if (!pmu->events)
215                 return -ENOMEM;
216
217         ct = 0;
218         /* Parse the events and update the struct */
219         for_each_child_of_node(pmu_events, np) {
220                 ev = imc_parse_event(np, g_scale, g_unit, prefix, base_reg);
221                 if (ev)
222                         pmu->events[ct++] = ev;
223         }
224
225         /* Allocate memory for attribute group */
226         attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL);
227         if (!attr_group)
228                 return -ENOMEM;
229
230         /*
231          * Allocate memory for attributes.
232          * Since we have count of events for this pmu, we also allocate
233          * memory for the scale and unit attribute for now.
234          * "ct" has the total event structs added from the events-parent node.
235          * So allocate three times the "ct" (this includes event, event_scale and
236          * event_unit).
237          */
238         attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL);
239         if (!attrs) {
240                 kfree(attr_group);
241                 kfree(pmu->events);
242                 return -ENOMEM;
243         }
244
245         attr_group->name = "events";
246         attr_group->attrs = attrs;
247         do {
248                 ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i]->value);
249                 dev_str = device_str_attr_create(pmu->events[i]->name, ev_val_str);
250                 if (!dev_str)
251                         continue;
252
253                 attrs[j++] = dev_str;
254                 if (pmu->events[i]->scale) {
255                         ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale",pmu->events[i]->name);
256                         dev_str = device_str_attr_create(ev_scale_str, pmu->events[i]->scale);
257                         if (!dev_str)
258                                 continue;
259
260                         attrs[j++] = dev_str;
261                 }
262
263                 if (pmu->events[i]->unit) {
264                         ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit",pmu->events[i]->name);
265                         dev_str = device_str_attr_create(ev_unit_str, pmu->events[i]->unit);
266                         if (!dev_str)
267                                 continue;
268
269                         attrs[j++] = dev_str;
270                 }
271         } while (++i < ct);
272
273         /* Save the event attribute */
274         pmu->attr_groups[IMC_EVENT_ATTR] = attr_group;
275
276         kfree(pmu->events);
277         return 0;
278 }
279
280 /* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */
281 static struct imc_pmu_ref *get_nest_pmu_ref(int cpu)
282 {
283         return per_cpu(local_nest_imc_refc, cpu);
284 }
285
286 static void nest_change_cpu_context(int old_cpu, int new_cpu)
287 {
288         struct imc_pmu **pn = per_nest_pmu_arr;
289
290         if (old_cpu < 0 || new_cpu < 0)
291                 return;
292
293         while (*pn) {
294                 perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu);
295                 pn++;
296         }
297 }
298
299 static int ppc_nest_imc_cpu_offline(unsigned int cpu)
300 {
301         int nid, target = -1;
302         const struct cpumask *l_cpumask;
303         struct imc_pmu_ref *ref;
304
305         /*
306          * Check in the designated list for this cpu. Dont bother
307          * if not one of them.
308          */
309         if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask))
310                 return 0;
311
312         /*
313          * Now that this cpu is one of the designated,
314          * find a next cpu a) which is online and b) in same chip.
315          */
316         nid = cpu_to_node(cpu);
317         l_cpumask = cpumask_of_node(nid);
318         target = cpumask_any_but(l_cpumask, cpu);
319
320         /*
321          * Update the cpumask with the target cpu and
322          * migrate the context if needed
323          */
324         if (target >= 0 && target < nr_cpu_ids) {
325                 cpumask_set_cpu(target, &nest_imc_cpumask);
326                 nest_change_cpu_context(cpu, target);
327         } else {
328                 opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
329                                        get_hard_smp_processor_id(cpu));
330                 /*
331                  * If this is the last cpu in this chip then, skip the reference
332                  * count mutex lock and make the reference count on this chip zero.
333                  */
334                 ref = get_nest_pmu_ref(cpu);
335                 if (!ref)
336                         return -EINVAL;
337
338                 ref->refc = 0;
339         }
340         return 0;
341 }
342
343 static int ppc_nest_imc_cpu_online(unsigned int cpu)
344 {
345         const struct cpumask *l_cpumask;
346         static struct cpumask tmp_mask;
347         int res;
348
349         /* Get the cpumask of this node */
350         l_cpumask = cpumask_of_node(cpu_to_node(cpu));
351
352         /*
353          * If this is not the first online CPU on this node, then
354          * just return.
355          */
356         if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask))
357                 return 0;
358
359         /*
360          * If this is the first online cpu on this node
361          * disable the nest counters by making an OPAL call.
362          */
363         res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
364                                      get_hard_smp_processor_id(cpu));
365         if (res)
366                 return res;
367
368         /* Make this CPU the designated target for counter collection */
369         cpumask_set_cpu(cpu, &nest_imc_cpumask);
370         return 0;
371 }
372
373 static int nest_pmu_cpumask_init(void)
374 {
375         return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE,
376                                  "perf/powerpc/imc:online",
377                                  ppc_nest_imc_cpu_online,
378                                  ppc_nest_imc_cpu_offline);
379 }
380
381 static void nest_imc_counters_release(struct perf_event *event)
382 {
383         int rc, node_id;
384         struct imc_pmu_ref *ref;
385
386         if (event->cpu < 0)
387                 return;
388
389         node_id = cpu_to_node(event->cpu);
390
391         /*
392          * See if we need to disable the nest PMU.
393          * If no events are currently in use, then we have to take a
394          * mutex to ensure that we don't race with another task doing
395          * enable or disable the nest counters.
396          */
397         ref = get_nest_pmu_ref(event->cpu);
398         if (!ref)
399                 return;
400
401         /* Take the mutex lock for this node and then decrement the reference count */
402         mutex_lock(&ref->lock);
403         if (ref->refc == 0) {
404                 /*
405                  * The scenario where this is true is, when perf session is
406                  * started, followed by offlining of all cpus in a given node.
407                  *
408                  * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline()
409                  * function set the ref->count to zero, if the cpu which is
410                  * about to offline is the last cpu in a given node and make
411                  * an OPAL call to disable the engine in that node.
412                  *
413                  */
414                 mutex_unlock(&ref->lock);
415                 return;
416         }
417         ref->refc--;
418         if (ref->refc == 0) {
419                 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
420                                             get_hard_smp_processor_id(event->cpu));
421                 if (rc) {
422                         mutex_unlock(&ref->lock);
423                         pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id);
424                         return;
425                 }
426         } else if (ref->refc < 0) {
427                 WARN(1, "nest-imc: Invalid event reference count\n");
428                 ref->refc = 0;
429         }
430         mutex_unlock(&ref->lock);
431 }
432
433 static int nest_imc_event_init(struct perf_event *event)
434 {
435         int chip_id, rc, node_id;
436         u32 l_config, config = event->attr.config;
437         struct imc_mem_info *pcni;
438         struct imc_pmu *pmu;
439         struct imc_pmu_ref *ref;
440         bool flag = false;
441
442         if (event->attr.type != event->pmu->type)
443                 return -ENOENT;
444
445         /* Sampling not supported */
446         if (event->hw.sample_period)
447                 return -EINVAL;
448
449         /* unsupported modes and filters */
450         if (event->attr.exclude_user   ||
451             event->attr.exclude_kernel ||
452             event->attr.exclude_hv     ||
453             event->attr.exclude_idle   ||
454             event->attr.exclude_host   ||
455             event->attr.exclude_guest)
456                 return -EINVAL;
457
458         if (event->cpu < 0)
459                 return -EINVAL;
460
461         pmu = imc_event_to_pmu(event);
462
463         /* Sanity check for config (event offset) */
464         if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)
465                 return -EINVAL;
466
467         /*
468          * Nest HW counter memory resides in a per-chip reserve-memory (HOMER).
469          * Get the base memory addresss for this cpu.
470          */
471         chip_id = cpu_to_chip_id(event->cpu);
472         pcni = pmu->mem_info;
473         do {
474                 if (pcni->id == chip_id) {
475                         flag = true;
476                         break;
477                 }
478                 pcni++;
479         } while (pcni);
480
481         if (!flag)
482                 return -ENODEV;
483
484         /*
485          * Add the event offset to the base address.
486          */
487         l_config = config & IMC_EVENT_OFFSET_MASK;
488         event->hw.event_base = (u64)pcni->vbase + l_config;
489         node_id = cpu_to_node(event->cpu);
490
491         /*
492          * Get the imc_pmu_ref struct for this node.
493          * Take the mutex lock and then increment the count of nest pmu events
494          * inited.
495          */
496         ref = get_nest_pmu_ref(event->cpu);
497         if (!ref)
498                 return -EINVAL;
499
500         mutex_lock(&ref->lock);
501         if (ref->refc == 0) {
502                 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST,
503                                              get_hard_smp_processor_id(event->cpu));
504                 if (rc) {
505                         mutex_unlock(&ref->lock);
506                         pr_err("nest-imc: Unable to start the counters for node %d\n",
507                                                                         node_id);
508                         return rc;
509                 }
510         }
511         ++ref->refc;
512         mutex_unlock(&ref->lock);
513
514         event->destroy = nest_imc_counters_release;
515         return 0;
516 }
517
518 /*
519  * core_imc_mem_init : Initializes memory for the current core.
520  *
521  * Uses alloc_pages_node() and uses the returned address as an argument to
522  * an opal call to configure the pdbar. The address sent as an argument is
523  * converted to physical address before the opal call is made. This is the
524  * base address at which the core imc counters are populated.
525  */
526 static int core_imc_mem_init(int cpu, int size)
527 {
528         int nid, rc = 0, core_id = (cpu / threads_per_core);
529         struct imc_mem_info *mem_info;
530
531         /*
532          * alloc_pages_node() will allocate memory for core in the
533          * local node only.
534          */
535         nid = cpu_to_node(cpu);
536         mem_info = &core_imc_pmu->mem_info[core_id];
537         mem_info->id = core_id;
538
539         /* We need only vbase for core counters */
540         mem_info->vbase = page_address(alloc_pages_node(nid,
541                                           GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
542                                           __GFP_NOWARN, get_order(size)));
543         if (!mem_info->vbase)
544                 return -ENOMEM;
545
546         /* Init the mutex */
547         core_imc_refc[core_id].id = core_id;
548         mutex_init(&core_imc_refc[core_id].lock);
549
550         rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE,
551                                 __pa((void *)mem_info->vbase),
552                                 get_hard_smp_processor_id(cpu));
553         if (rc) {
554                 free_pages((u64)mem_info->vbase, get_order(size));
555                 mem_info->vbase = NULL;
556         }
557
558         return rc;
559 }
560
561 static bool is_core_imc_mem_inited(int cpu)
562 {
563         struct imc_mem_info *mem_info;
564         int core_id = (cpu / threads_per_core);
565
566         mem_info = &core_imc_pmu->mem_info[core_id];
567         if (!mem_info->vbase)
568                 return false;
569
570         return true;
571 }
572
573 static int ppc_core_imc_cpu_online(unsigned int cpu)
574 {
575         const struct cpumask *l_cpumask;
576         static struct cpumask tmp_mask;
577         int ret = 0;
578
579         /* Get the cpumask for this core */
580         l_cpumask = cpu_sibling_mask(cpu);
581
582         /* If a cpu for this core is already set, then, don't do anything */
583         if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask))
584                 return 0;
585
586         if (!is_core_imc_mem_inited(cpu)) {
587                 ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size);
588                 if (ret) {
589                         pr_info("core_imc memory allocation for cpu %d failed\n", cpu);
590                         return ret;
591                 }
592         }
593
594         /* set the cpu in the mask */
595         cpumask_set_cpu(cpu, &core_imc_cpumask);
596         return 0;
597 }
598
599 static int ppc_core_imc_cpu_offline(unsigned int cpu)
600 {
601         unsigned int ncpu, core_id;
602         struct imc_pmu_ref *ref;
603
604         /*
605          * clear this cpu out of the mask, if not present in the mask,
606          * don't bother doing anything.
607          */
608         if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask))
609                 return 0;
610
611         /*
612          * Check whether core_imc is registered. We could end up here
613          * if the cpuhotplug callback registration fails. i.e, callback
614          * invokes the offline path for all sucessfully registered cpus.
615          * At this stage, core_imc pmu will not be registered and we
616          * should return here.
617          *
618          * We return with a zero since this is not an offline failure.
619          * And cpuhp_setup_state() returns the actual failure reason
620          * to the caller, which inturn will call the cleanup routine.
621          */
622         if (!core_imc_pmu->pmu.event_init)
623                 return 0;
624
625         /* Find any online cpu in that core except the current "cpu" */
626         ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu);
627
628         if (ncpu >= 0 && ncpu < nr_cpu_ids) {
629                 cpumask_set_cpu(ncpu, &core_imc_cpumask);
630                 perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu);
631         } else {
632                 /*
633                  * If this is the last cpu in this core then, skip taking refernce
634                  * count mutex lock for this core and directly zero "refc" for
635                  * this core.
636                  */
637                 opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
638                                        get_hard_smp_processor_id(cpu));
639                 core_id = cpu / threads_per_core;
640                 ref = &core_imc_refc[core_id];
641                 if (!ref)
642                         return -EINVAL;
643
644                 ref->refc = 0;
645         }
646         return 0;
647 }
648
649 static int core_imc_pmu_cpumask_init(void)
650 {
651         return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE,
652                                  "perf/powerpc/imc_core:online",
653                                  ppc_core_imc_cpu_online,
654                                  ppc_core_imc_cpu_offline);
655 }
656
657 static void core_imc_counters_release(struct perf_event *event)
658 {
659         int rc, core_id;
660         struct imc_pmu_ref *ref;
661
662         if (event->cpu < 0)
663                 return;
664         /*
665          * See if we need to disable the IMC PMU.
666          * If no events are currently in use, then we have to take a
667          * mutex to ensure that we don't race with another task doing
668          * enable or disable the core counters.
669          */
670         core_id = event->cpu / threads_per_core;
671
672         /* Take the mutex lock and decrement the refernce count for this core */
673         ref = &core_imc_refc[core_id];
674         if (!ref)
675                 return;
676
677         mutex_lock(&ref->lock);
678         if (ref->refc == 0) {
679                 /*
680                  * The scenario where this is true is, when perf session is
681                  * started, followed by offlining of all cpus in a given core.
682                  *
683                  * In the cpuhotplug offline path, ppc_core_imc_cpu_offline()
684                  * function set the ref->count to zero, if the cpu which is
685                  * about to offline is the last cpu in a given core and make
686                  * an OPAL call to disable the engine in that core.
687                  *
688                  */
689                 mutex_unlock(&ref->lock);
690                 return;
691         }
692         ref->refc--;
693         if (ref->refc == 0) {
694                 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
695                                             get_hard_smp_processor_id(event->cpu));
696                 if (rc) {
697                         mutex_unlock(&ref->lock);
698                         pr_err("IMC: Unable to stop the counters for core %d\n", core_id);
699                         return;
700                 }
701         } else if (ref->refc < 0) {
702                 WARN(1, "core-imc: Invalid event reference count\n");
703                 ref->refc = 0;
704         }
705         mutex_unlock(&ref->lock);
706 }
707
708 static int core_imc_event_init(struct perf_event *event)
709 {
710         int core_id, rc;
711         u64 config = event->attr.config;
712         struct imc_mem_info *pcmi;
713         struct imc_pmu *pmu;
714         struct imc_pmu_ref *ref;
715
716         if (event->attr.type != event->pmu->type)
717                 return -ENOENT;
718
719         /* Sampling not supported */
720         if (event->hw.sample_period)
721                 return -EINVAL;
722
723         /* unsupported modes and filters */
724         if (event->attr.exclude_user   ||
725             event->attr.exclude_kernel ||
726             event->attr.exclude_hv     ||
727             event->attr.exclude_idle   ||
728             event->attr.exclude_host   ||
729             event->attr.exclude_guest)
730                 return -EINVAL;
731
732         if (event->cpu < 0)
733                 return -EINVAL;
734
735         event->hw.idx = -1;
736         pmu = imc_event_to_pmu(event);
737
738         /* Sanity check for config (event offset) */
739         if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
740                 return -EINVAL;
741
742         if (!is_core_imc_mem_inited(event->cpu))
743                 return -ENODEV;
744
745         core_id = event->cpu / threads_per_core;
746         pcmi = &core_imc_pmu->mem_info[core_id];
747         if ((!pcmi->vbase))
748                 return -ENODEV;
749
750         /* Get the core_imc mutex for this core */
751         ref = &core_imc_refc[core_id];
752         if (!ref)
753                 return -EINVAL;
754
755         /*
756          * Core pmu units are enabled only when it is used.
757          * See if this is triggered for the first time.
758          * If yes, take the mutex lock and enable the core counters.
759          * If not, just increment the count in core_imc_refc struct.
760          */
761         mutex_lock(&ref->lock);
762         if (ref->refc == 0) {
763                 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
764                                              get_hard_smp_processor_id(event->cpu));
765                 if (rc) {
766                         mutex_unlock(&ref->lock);
767                         pr_err("core-imc: Unable to start the counters for core %d\n",
768                                                                         core_id);
769                         return rc;
770                 }
771         }
772         ++ref->refc;
773         mutex_unlock(&ref->lock);
774
775         event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK);
776         event->destroy = core_imc_counters_release;
777         return 0;
778 }
779
780 /*
781  * Allocates a page of memory for each of the online cpus, and write the
782  * physical base address of that page to the LDBAR for that cpu.
783  *
784  * LDBAR Register Layout:
785  *
786  *  0          4         8         12        16        20        24        28
787  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
788  *   | |       [   ]    [                   Counter Address [8:50]
789  *   | * Mode    |
790  *   |           * PB Scope
791  *   * Enable/Disable
792  *
793  *  32        36        40        44        48        52        56        60
794  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
795  *           Counter Address [8:50]              ]
796  *
797  */
798 static int thread_imc_mem_alloc(int cpu_id, int size)
799 {
800         u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, cpu_id);
801         int nid = cpu_to_node(cpu_id);
802
803         if (!local_mem) {
804                 /*
805                  * This case could happen only once at start, since we dont
806                  * free the memory in cpu offline path.
807                  */
808                 local_mem = page_address(alloc_pages_node(nid,
809                                   GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
810                                   __GFP_NOWARN, get_order(size)));
811                 if (!local_mem)
812                         return -ENOMEM;
813
814                 per_cpu(thread_imc_mem, cpu_id) = local_mem;
815         }
816
817         ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE;
818
819         mtspr(SPRN_LDBAR, ldbar_value);
820         return 0;
821 }
822
823 static int ppc_thread_imc_cpu_online(unsigned int cpu)
824 {
825         return thread_imc_mem_alloc(cpu, thread_imc_mem_size);
826 }
827
828 static int ppc_thread_imc_cpu_offline(unsigned int cpu)
829 {
830         mtspr(SPRN_LDBAR, 0);
831         return 0;
832 }
833
834 static int thread_imc_cpu_init(void)
835 {
836         return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE,
837                           "perf/powerpc/imc_thread:online",
838                           ppc_thread_imc_cpu_online,
839                           ppc_thread_imc_cpu_offline);
840 }
841
842 void thread_imc_pmu_sched_task(struct perf_event_context *ctx,
843                                       bool sched_in)
844 {
845         int core_id;
846         struct imc_pmu_ref *ref;
847
848         if (!is_core_imc_mem_inited(smp_processor_id()))
849                 return;
850
851         core_id = smp_processor_id() / threads_per_core;
852         /*
853          * imc pmus are enabled only when it is used.
854          * See if this is triggered for the first time.
855          * If yes, take the mutex lock and enable the counters.
856          * If not, just increment the count in ref count struct.
857          */
858         ref = &core_imc_refc[core_id];
859         if (!ref)
860                 return;
861
862         if (sched_in) {
863                 mutex_lock(&ref->lock);
864                 if (ref->refc == 0) {
865                         if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
866                              get_hard_smp_processor_id(smp_processor_id()))) {
867                                 mutex_unlock(&ref->lock);
868                                 pr_err("thread-imc: Unable to start the counter\
869                                                         for core %d\n", core_id);
870                                 return;
871                         }
872                 }
873                 ++ref->refc;
874                 mutex_unlock(&ref->lock);
875         } else {
876                 mutex_lock(&ref->lock);
877                 ref->refc--;
878                 if (ref->refc == 0) {
879                         if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
880                             get_hard_smp_processor_id(smp_processor_id()))) {
881                                 mutex_unlock(&ref->lock);
882                                 pr_err("thread-imc: Unable to stop the counters\
883                                                         for core %d\n", core_id);
884                                 return;
885                         }
886                 } else if (ref->refc < 0) {
887                         ref->refc = 0;
888                 }
889                 mutex_unlock(&ref->lock);
890         }
891
892         return;
893 }
894
895 static int thread_imc_event_init(struct perf_event *event)
896 {
897         u32 config = event->attr.config;
898         struct task_struct *target;
899         struct imc_pmu *pmu;
900
901         if (event->attr.type != event->pmu->type)
902                 return -ENOENT;
903
904         /* Sampling not supported */
905         if (event->hw.sample_period)
906                 return -EINVAL;
907
908         event->hw.idx = -1;
909         pmu = imc_event_to_pmu(event);
910
911         /* Sanity check for config offset */
912         if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
913                 return -EINVAL;
914
915         target = event->hw.target;
916         if (!target)
917                 return -EINVAL;
918
919         event->pmu->task_ctx_nr = perf_sw_context;
920         return 0;
921 }
922
923 static bool is_thread_imc_pmu(struct perf_event *event)
924 {
925         if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc")))
926                 return true;
927
928         return false;
929 }
930
931 static u64 * get_event_base_addr(struct perf_event *event)
932 {
933         u64 addr;
934
935         if (is_thread_imc_pmu(event)) {
936                 addr = (u64)per_cpu(thread_imc_mem, smp_processor_id());
937                 return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK));
938         }
939
940         return (u64 *)event->hw.event_base;
941 }
942
943 static void thread_imc_pmu_start_txn(struct pmu *pmu,
944                                      unsigned int txn_flags)
945 {
946         if (txn_flags & ~PERF_PMU_TXN_ADD)
947                 return;
948         perf_pmu_disable(pmu);
949 }
950
951 static void thread_imc_pmu_cancel_txn(struct pmu *pmu)
952 {
953         perf_pmu_enable(pmu);
954 }
955
956 static int thread_imc_pmu_commit_txn(struct pmu *pmu)
957 {
958         perf_pmu_enable(pmu);
959         return 0;
960 }
961
962 static u64 imc_read_counter(struct perf_event *event)
963 {
964         u64 *addr, data;
965
966         /*
967          * In-Memory Collection (IMC) counters are free flowing counters.
968          * So we take a snapshot of the counter value on enable and save it
969          * to calculate the delta at later stage to present the event counter
970          * value.
971          */
972         addr = get_event_base_addr(event);
973         data = be64_to_cpu(READ_ONCE(*addr));
974         local64_set(&event->hw.prev_count, data);
975
976         return data;
977 }
978
979 static void imc_event_update(struct perf_event *event)
980 {
981         u64 counter_prev, counter_new, final_count;
982
983         counter_prev = local64_read(&event->hw.prev_count);
984         counter_new = imc_read_counter(event);
985         final_count = counter_new - counter_prev;
986
987         /* Update the delta to the event count */
988         local64_add(final_count, &event->count);
989 }
990
991 static void imc_event_start(struct perf_event *event, int flags)
992 {
993         /*
994          * In Memory Counters are free flowing counters. HW or the microcode
995          * keeps adding to the counter offset in memory. To get event
996          * counter value, we snapshot the value here and we calculate
997          * delta at later point.
998          */
999         imc_read_counter(event);
1000 }
1001
1002 static void imc_event_stop(struct perf_event *event, int flags)
1003 {
1004         /*
1005          * Take a snapshot and calculate the delta and update
1006          * the event counter values.
1007          */
1008         imc_event_update(event);
1009 }
1010
1011 static int imc_event_add(struct perf_event *event, int flags)
1012 {
1013         if (flags & PERF_EF_START)
1014                 imc_event_start(event, flags);
1015
1016         return 0;
1017 }
1018
1019 static int thread_imc_event_add(struct perf_event *event, int flags)
1020 {
1021         if (flags & PERF_EF_START)
1022                 imc_event_start(event, flags);
1023
1024         /* Enable the sched_task to start the engine */
1025         perf_sched_cb_inc(event->ctx->pmu);
1026         return 0;
1027 }
1028
1029 static void thread_imc_event_del(struct perf_event *event, int flags)
1030 {
1031         /*
1032          * Take a snapshot and calculate the delta and update
1033          * the event counter values.
1034          */
1035         imc_event_update(event);
1036         perf_sched_cb_dec(event->ctx->pmu);
1037 }
1038
1039 /* update_pmu_ops : Populate the appropriate operations for "pmu" */
1040 static int update_pmu_ops(struct imc_pmu *pmu)
1041 {
1042         pmu->pmu.task_ctx_nr = perf_invalid_context;
1043         pmu->pmu.add = imc_event_add;
1044         pmu->pmu.del = imc_event_stop;
1045         pmu->pmu.start = imc_event_start;
1046         pmu->pmu.stop = imc_event_stop;
1047         pmu->pmu.read = imc_event_update;
1048         pmu->pmu.attr_groups = pmu->attr_groups;
1049         pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group;
1050
1051         switch (pmu->domain) {
1052         case IMC_DOMAIN_NEST:
1053                 pmu->pmu.event_init = nest_imc_event_init;
1054                 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1055                 break;
1056         case IMC_DOMAIN_CORE:
1057                 pmu->pmu.event_init = core_imc_event_init;
1058                 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1059                 break;
1060         case IMC_DOMAIN_THREAD:
1061                 pmu->pmu.event_init = thread_imc_event_init;
1062                 pmu->pmu.sched_task = thread_imc_pmu_sched_task;
1063                 pmu->pmu.add = thread_imc_event_add;
1064                 pmu->pmu.del = thread_imc_event_del;
1065                 pmu->pmu.start_txn = thread_imc_pmu_start_txn;
1066                 pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn;
1067                 pmu->pmu.commit_txn = thread_imc_pmu_commit_txn;
1068                 break;
1069         default:
1070                 break;
1071         }
1072
1073         return 0;
1074 }
1075
1076 /* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */
1077 static int init_nest_pmu_ref(void)
1078 {
1079         int nid, i, cpu;
1080
1081         nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc),
1082                                                                 GFP_KERNEL);
1083
1084         if (!nest_imc_refc)
1085                 return -ENOMEM;
1086
1087         i = 0;
1088         for_each_node(nid) {
1089                 /*
1090                  * Mutex lock to avoid races while tracking the number of
1091                  * sessions using the chip's nest pmu units.
1092                  */
1093                 mutex_init(&nest_imc_refc[i].lock);
1094
1095                 /*
1096                  * Loop to init the "id" with the node_id. Variable "i" initialized to
1097                  * 0 and will be used as index to the array. "i" will not go off the
1098                  * end of the array since the "for_each_node" loops for "N_POSSIBLE"
1099                  * nodes only.
1100                  */
1101                 nest_imc_refc[i++].id = nid;
1102         }
1103
1104         /*
1105          * Loop to init the per_cpu "local_nest_imc_refc" with the proper
1106          * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple.
1107          */
1108         for_each_possible_cpu(cpu) {
1109                 nid = cpu_to_node(cpu);
1110                 for (i = 0; i < num_possible_nodes(); i++) {
1111                         if (nest_imc_refc[i].id == nid) {
1112                                 per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i];
1113                                 break;
1114                         }
1115                 }
1116         }
1117         return 0;
1118 }
1119
1120 static void cleanup_all_core_imc_memory(void)
1121 {
1122         int i, nr_cores = DIV_ROUND_UP(num_present_cpus(), threads_per_core);
1123         struct imc_mem_info *ptr = core_imc_pmu->mem_info;
1124         int size = core_imc_pmu->counter_mem_size;
1125
1126         /* mem_info will never be NULL */
1127         for (i = 0; i < nr_cores; i++) {
1128                 if (ptr[i].vbase)
1129                         free_pages((u64)ptr->vbase, get_order(size));
1130         }
1131
1132         kfree(ptr);
1133         kfree(core_imc_refc);
1134 }
1135
1136 static void thread_imc_ldbar_disable(void *dummy)
1137 {
1138         /*
1139          * By Zeroing LDBAR, we disable thread-imc
1140          * updates.
1141          */
1142         mtspr(SPRN_LDBAR, 0);
1143 }
1144
1145 void thread_imc_disable(void)
1146 {
1147         on_each_cpu(thread_imc_ldbar_disable, NULL, 1);
1148 }
1149
1150 static void cleanup_all_thread_imc_memory(void)
1151 {
1152         int i, order = get_order(thread_imc_mem_size);
1153
1154         for_each_online_cpu(i) {
1155                 if (per_cpu(thread_imc_mem, i))
1156                         free_pages((u64)per_cpu(thread_imc_mem, i), order);
1157
1158         }
1159 }
1160
1161 /*
1162  * Common function to unregister cpu hotplug callback and
1163  * free the memory.
1164  * TODO: Need to handle pmu unregistering, which will be
1165  * done in followup series.
1166  */
1167 static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr)
1168 {
1169         if (pmu_ptr->domain == IMC_DOMAIN_NEST) {
1170                 mutex_lock(&nest_init_lock);
1171                 if (nest_pmus == 1) {
1172                         cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE);
1173                         kfree(nest_imc_refc);
1174                 }
1175
1176                 if (nest_pmus > 0)
1177                         nest_pmus--;
1178                 mutex_unlock(&nest_init_lock);
1179         }
1180
1181         /* Free core_imc memory */
1182         if (pmu_ptr->domain == IMC_DOMAIN_CORE) {
1183                 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE);
1184                 cleanup_all_core_imc_memory();
1185         }
1186
1187         /* Free thread_imc memory */
1188         if (pmu_ptr->domain == IMC_DOMAIN_THREAD) {
1189                 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE);
1190                 cleanup_all_thread_imc_memory();
1191         }
1192
1193         /* Only free the attr_groups which are dynamically allocated  */
1194         if (pmu_ptr->attr_groups[IMC_EVENT_ATTR])
1195                 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs);
1196         kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]);
1197         kfree(pmu_ptr);
1198         kfree(per_nest_pmu_arr);
1199         return;
1200 }
1201
1202
1203 /*
1204  * imc_mem_init : Function to support memory allocation for core imc.
1205  */
1206 static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent,
1207                                                                 int pmu_index)
1208 {
1209         const char *s;
1210         int nr_cores, cpu, res;
1211
1212         if (of_property_read_string(parent, "name", &s))
1213                 return -ENODEV;
1214
1215         switch (pmu_ptr->domain) {
1216         case IMC_DOMAIN_NEST:
1217                 /* Update the pmu name */
1218                 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s);
1219                 if (!pmu_ptr->pmu.name)
1220                         return -ENOMEM;
1221
1222                 /* Needed for hotplug/migration */
1223                 if (!per_nest_pmu_arr) {
1224                         per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1,
1225                                                 sizeof(struct imc_pmu *),
1226                                                 GFP_KERNEL);
1227                         if (!per_nest_pmu_arr)
1228                                 return -ENOMEM;
1229                 }
1230                 per_nest_pmu_arr[pmu_index] = pmu_ptr;
1231                 break;
1232         case IMC_DOMAIN_CORE:
1233                 /* Update the pmu name */
1234                 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1235                 if (!pmu_ptr->pmu.name)
1236                         return -ENOMEM;
1237
1238                 nr_cores = DIV_ROUND_UP(num_present_cpus(), threads_per_core);
1239                 pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info),
1240                                                                 GFP_KERNEL);
1241
1242                 if (!pmu_ptr->mem_info)
1243                         return -ENOMEM;
1244
1245                 core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1246                                                                 GFP_KERNEL);
1247
1248                 if (!core_imc_refc)
1249                         return -ENOMEM;
1250
1251                 core_imc_pmu = pmu_ptr;
1252                 break;
1253         case IMC_DOMAIN_THREAD:
1254                 /* Update the pmu name */
1255                 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1256                 if (!pmu_ptr->pmu.name)
1257                         return -ENOMEM;
1258
1259                 thread_imc_mem_size = pmu_ptr->counter_mem_size;
1260                 for_each_online_cpu(cpu) {
1261                         res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size);
1262                         if (res)
1263                                 return res;
1264                 }
1265
1266                 thread_imc_pmu = pmu_ptr;
1267                 break;
1268         default:
1269                 return -EINVAL;
1270         }
1271
1272         return 0;
1273 }
1274
1275 /*
1276  * init_imc_pmu : Setup and register the IMC pmu device.
1277  *
1278  * @parent:     Device tree unit node
1279  * @pmu_ptr:    memory allocated for this pmu
1280  * @pmu_idx:    Count of nest pmc registered
1281  *
1282  * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback.
1283  * Handles failure cases and accordingly frees memory.
1284  */
1285 int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx)
1286 {
1287         int ret;
1288
1289         ret = imc_mem_init(pmu_ptr, parent, pmu_idx);
1290         if (ret)
1291                 goto err_free;
1292
1293         switch (pmu_ptr->domain) {
1294         case IMC_DOMAIN_NEST:
1295                 /*
1296                 * Nest imc pmu need only one cpu per chip, we initialize the
1297                 * cpumask for the first nest imc pmu and use the same for the
1298                 * rest. To handle the cpuhotplug callback unregister, we track
1299                 * the number of nest pmus in "nest_pmus".
1300                 */
1301                 mutex_lock(&nest_init_lock);
1302                 if (nest_pmus == 0) {
1303                         ret = init_nest_pmu_ref();
1304                         if (ret) {
1305                                 mutex_unlock(&nest_init_lock);
1306                                 goto err_free;
1307                         }
1308                         /* Register for cpu hotplug notification. */
1309                         ret = nest_pmu_cpumask_init();
1310                         if (ret) {
1311                                 mutex_unlock(&nest_init_lock);
1312                                 goto err_free;
1313                         }
1314                 }
1315                 nest_pmus++;
1316                 mutex_unlock(&nest_init_lock);
1317                 break;
1318         case IMC_DOMAIN_CORE:
1319                 ret = core_imc_pmu_cpumask_init();
1320                 if (ret) {
1321                         cleanup_all_core_imc_memory();
1322                         return ret;
1323                 }
1324
1325                 break;
1326         case IMC_DOMAIN_THREAD:
1327                 ret = thread_imc_cpu_init();
1328                 if (ret) {
1329                         cleanup_all_thread_imc_memory();
1330                         return ret;
1331                 }
1332
1333                 break;
1334         default:
1335                 return  -1;     /* Unknown domain */
1336         }
1337
1338         ret = update_events_in_group(parent, pmu_ptr);
1339         if (ret)
1340                 goto err_free;
1341
1342         ret = update_pmu_ops(pmu_ptr);
1343         if (ret)
1344                 goto err_free;
1345
1346         ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1);
1347         if (ret)
1348                 goto err_free;
1349
1350         pr_info("%s performance monitor hardware support registered\n",
1351                                                         pmu_ptr->pmu.name);
1352
1353         return 0;
1354
1355 err_free:
1356         imc_common_cpuhp_mem_free(pmu_ptr);
1357         return ret;
1358 }