]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/powerpc/perf/imc-pmu.c
csky: Minimize defconfig to support buildroot config.fragment
[linux.git] / arch / powerpc / perf / imc-pmu.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * In-Memory Collection (IMC) Performance Monitor counter support.
4  *
5  * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation.
6  *           (C) 2017 Anju T Sudhakar, IBM Corporation.
7  *           (C) 2017 Hemant K Shaw, IBM Corporation.
8  */
9 #include <linux/perf_event.h>
10 #include <linux/slab.h>
11 #include <asm/opal.h>
12 #include <asm/imc-pmu.h>
13 #include <asm/cputhreads.h>
14 #include <asm/smp.h>
15 #include <linux/string.h>
16
17 /* Nest IMC data structures and variables */
18
19 /*
20  * Used to avoid races in counting the nest-pmu units during hotplug
21  * register and unregister
22  */
23 static DEFINE_MUTEX(nest_init_lock);
24 static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc);
25 static struct imc_pmu **per_nest_pmu_arr;
26 static cpumask_t nest_imc_cpumask;
27 static struct imc_pmu_ref *nest_imc_refc;
28 static int nest_pmus;
29
30 /* Core IMC data structures and variables */
31
32 static cpumask_t core_imc_cpumask;
33 static struct imc_pmu_ref *core_imc_refc;
34 static struct imc_pmu *core_imc_pmu;
35
36 /* Thread IMC data structures and variables */
37
38 static DEFINE_PER_CPU(u64 *, thread_imc_mem);
39 static struct imc_pmu *thread_imc_pmu;
40 static int thread_imc_mem_size;
41
42 /* Trace IMC data structures */
43 static DEFINE_PER_CPU(u64 *, trace_imc_mem);
44 static struct imc_pmu_ref *trace_imc_refc;
45 static int trace_imc_mem_size;
46
47 static struct imc_pmu *imc_event_to_pmu(struct perf_event *event)
48 {
49         return container_of(event->pmu, struct imc_pmu, pmu);
50 }
51
52 PMU_FORMAT_ATTR(event, "config:0-61");
53 PMU_FORMAT_ATTR(offset, "config:0-31");
54 PMU_FORMAT_ATTR(rvalue, "config:32");
55 PMU_FORMAT_ATTR(mode, "config:33-40");
56 static struct attribute *imc_format_attrs[] = {
57         &format_attr_event.attr,
58         &format_attr_offset.attr,
59         &format_attr_rvalue.attr,
60         &format_attr_mode.attr,
61         NULL,
62 };
63
64 static struct attribute_group imc_format_group = {
65         .name = "format",
66         .attrs = imc_format_attrs,
67 };
68
69 /* Format attribute for imc trace-mode */
70 PMU_FORMAT_ATTR(cpmc_reserved, "config:0-19");
71 PMU_FORMAT_ATTR(cpmc_event, "config:20-27");
72 PMU_FORMAT_ATTR(cpmc_samplesel, "config:28-29");
73 PMU_FORMAT_ATTR(cpmc_load, "config:30-61");
74 static struct attribute *trace_imc_format_attrs[] = {
75         &format_attr_event.attr,
76         &format_attr_cpmc_reserved.attr,
77         &format_attr_cpmc_event.attr,
78         &format_attr_cpmc_samplesel.attr,
79         &format_attr_cpmc_load.attr,
80         NULL,
81 };
82
83 static struct attribute_group trace_imc_format_group = {
84 .name = "format",
85 .attrs = trace_imc_format_attrs,
86 };
87
88 /* Get the cpumask printed to a buffer "buf" */
89 static ssize_t imc_pmu_cpumask_get_attr(struct device *dev,
90                                         struct device_attribute *attr,
91                                         char *buf)
92 {
93         struct pmu *pmu = dev_get_drvdata(dev);
94         struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu);
95         cpumask_t *active_mask;
96
97         switch(imc_pmu->domain){
98         case IMC_DOMAIN_NEST:
99                 active_mask = &nest_imc_cpumask;
100                 break;
101         case IMC_DOMAIN_CORE:
102                 active_mask = &core_imc_cpumask;
103                 break;
104         default:
105                 return 0;
106         }
107
108         return cpumap_print_to_pagebuf(true, buf, active_mask);
109 }
110
111 static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL);
112
113 static struct attribute *imc_pmu_cpumask_attrs[] = {
114         &dev_attr_cpumask.attr,
115         NULL,
116 };
117
118 static struct attribute_group imc_pmu_cpumask_attr_group = {
119         .attrs = imc_pmu_cpumask_attrs,
120 };
121
122 /* device_str_attr_create : Populate event "name" and string "str" in attribute */
123 static struct attribute *device_str_attr_create(const char *name, const char *str)
124 {
125         struct perf_pmu_events_attr *attr;
126
127         attr = kzalloc(sizeof(*attr), GFP_KERNEL);
128         if (!attr)
129                 return NULL;
130         sysfs_attr_init(&attr->attr.attr);
131
132         attr->event_str = str;
133         attr->attr.attr.name = name;
134         attr->attr.attr.mode = 0444;
135         attr->attr.show = perf_event_sysfs_show;
136
137         return &attr->attr.attr;
138 }
139
140 static int imc_parse_event(struct device_node *np, const char *scale,
141                                   const char *unit, const char *prefix,
142                                   u32 base, struct imc_events *event)
143 {
144         const char *s;
145         u32 reg;
146
147         if (of_property_read_u32(np, "reg", &reg))
148                 goto error;
149         /* Add the base_reg value to the "reg" */
150         event->value = base + reg;
151
152         if (of_property_read_string(np, "event-name", &s))
153                 goto error;
154
155         event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s);
156         if (!event->name)
157                 goto error;
158
159         if (of_property_read_string(np, "scale", &s))
160                 s = scale;
161
162         if (s) {
163                 event->scale = kstrdup(s, GFP_KERNEL);
164                 if (!event->scale)
165                         goto error;
166         }
167
168         if (of_property_read_string(np, "unit", &s))
169                 s = unit;
170
171         if (s) {
172                 event->unit = kstrdup(s, GFP_KERNEL);
173                 if (!event->unit)
174                         goto error;
175         }
176
177         return 0;
178 error:
179         kfree(event->unit);
180         kfree(event->scale);
181         kfree(event->name);
182         return -EINVAL;
183 }
184
185 /*
186  * imc_free_events: Function to cleanup the events list, having
187  *                  "nr_entries".
188  */
189 static void imc_free_events(struct imc_events *events, int nr_entries)
190 {
191         int i;
192
193         /* Nothing to clean, return */
194         if (!events)
195                 return;
196         for (i = 0; i < nr_entries; i++) {
197                 kfree(events[i].unit);
198                 kfree(events[i].scale);
199                 kfree(events[i].name);
200         }
201
202         kfree(events);
203 }
204
205 /*
206  * update_events_in_group: Update the "events" information in an attr_group
207  *                         and assign the attr_group to the pmu "pmu".
208  */
209 static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu)
210 {
211         struct attribute_group *attr_group;
212         struct attribute **attrs, *dev_str;
213         struct device_node *np, *pmu_events;
214         u32 handle, base_reg;
215         int i = 0, j = 0, ct, ret;
216         const char *prefix, *g_scale, *g_unit;
217         const char *ev_val_str, *ev_scale_str, *ev_unit_str;
218
219         if (!of_property_read_u32(node, "events", &handle))
220                 pmu_events = of_find_node_by_phandle(handle);
221         else
222                 return 0;
223
224         /* Did not find any node with a given phandle */
225         if (!pmu_events)
226                 return 0;
227
228         /* Get a count of number of child nodes */
229         ct = of_get_child_count(pmu_events);
230
231         /* Get the event prefix */
232         if (of_property_read_string(node, "events-prefix", &prefix))
233                 return 0;
234
235         /* Get a global unit and scale data if available */
236         if (of_property_read_string(node, "scale", &g_scale))
237                 g_scale = NULL;
238
239         if (of_property_read_string(node, "unit", &g_unit))
240                 g_unit = NULL;
241
242         /* "reg" property gives out the base offset of the counters data */
243         of_property_read_u32(node, "reg", &base_reg);
244
245         /* Allocate memory for the events */
246         pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL);
247         if (!pmu->events)
248                 return -ENOMEM;
249
250         ct = 0;
251         /* Parse the events and update the struct */
252         for_each_child_of_node(pmu_events, np) {
253                 ret = imc_parse_event(np, g_scale, g_unit, prefix, base_reg, &pmu->events[ct]);
254                 if (!ret)
255                         ct++;
256         }
257
258         /* Allocate memory for attribute group */
259         attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL);
260         if (!attr_group) {
261                 imc_free_events(pmu->events, ct);
262                 return -ENOMEM;
263         }
264
265         /*
266          * Allocate memory for attributes.
267          * Since we have count of events for this pmu, we also allocate
268          * memory for the scale and unit attribute for now.
269          * "ct" has the total event structs added from the events-parent node.
270          * So allocate three times the "ct" (this includes event, event_scale and
271          * event_unit).
272          */
273         attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL);
274         if (!attrs) {
275                 kfree(attr_group);
276                 imc_free_events(pmu->events, ct);
277                 return -ENOMEM;
278         }
279
280         attr_group->name = "events";
281         attr_group->attrs = attrs;
282         do {
283                 ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i].value);
284                 dev_str = device_str_attr_create(pmu->events[i].name, ev_val_str);
285                 if (!dev_str)
286                         continue;
287
288                 attrs[j++] = dev_str;
289                 if (pmu->events[i].scale) {
290                         ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale", pmu->events[i].name);
291                         dev_str = device_str_attr_create(ev_scale_str, pmu->events[i].scale);
292                         if (!dev_str)
293                                 continue;
294
295                         attrs[j++] = dev_str;
296                 }
297
298                 if (pmu->events[i].unit) {
299                         ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit", pmu->events[i].name);
300                         dev_str = device_str_attr_create(ev_unit_str, pmu->events[i].unit);
301                         if (!dev_str)
302                                 continue;
303
304                         attrs[j++] = dev_str;
305                 }
306         } while (++i < ct);
307
308         /* Save the event attribute */
309         pmu->attr_groups[IMC_EVENT_ATTR] = attr_group;
310
311         return 0;
312 }
313
314 /* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */
315 static struct imc_pmu_ref *get_nest_pmu_ref(int cpu)
316 {
317         return per_cpu(local_nest_imc_refc, cpu);
318 }
319
320 static void nest_change_cpu_context(int old_cpu, int new_cpu)
321 {
322         struct imc_pmu **pn = per_nest_pmu_arr;
323
324         if (old_cpu < 0 || new_cpu < 0)
325                 return;
326
327         while (*pn) {
328                 perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu);
329                 pn++;
330         }
331 }
332
333 static int ppc_nest_imc_cpu_offline(unsigned int cpu)
334 {
335         int nid, target = -1;
336         const struct cpumask *l_cpumask;
337         struct imc_pmu_ref *ref;
338
339         /*
340          * Check in the designated list for this cpu. Dont bother
341          * if not one of them.
342          */
343         if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask))
344                 return 0;
345
346         /*
347          * Check whether nest_imc is registered. We could end up here if the
348          * cpuhotplug callback registration fails. i.e, callback invokes the
349          * offline path for all successfully registered nodes. At this stage,
350          * nest_imc pmu will not be registered and we should return here.
351          *
352          * We return with a zero since this is not an offline failure. And
353          * cpuhp_setup_state() returns the actual failure reason to the caller,
354          * which in turn will call the cleanup routine.
355          */
356         if (!nest_pmus)
357                 return 0;
358
359         /*
360          * Now that this cpu is one of the designated,
361          * find a next cpu a) which is online and b) in same chip.
362          */
363         nid = cpu_to_node(cpu);
364         l_cpumask = cpumask_of_node(nid);
365         target = cpumask_last(l_cpumask);
366
367         /*
368          * If this(target) is the last cpu in the cpumask for this chip,
369          * check for any possible online cpu in the chip.
370          */
371         if (unlikely(target == cpu))
372                 target = cpumask_any_but(l_cpumask, cpu);
373
374         /*
375          * Update the cpumask with the target cpu and
376          * migrate the context if needed
377          */
378         if (target >= 0 && target < nr_cpu_ids) {
379                 cpumask_set_cpu(target, &nest_imc_cpumask);
380                 nest_change_cpu_context(cpu, target);
381         } else {
382                 opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
383                                        get_hard_smp_processor_id(cpu));
384                 /*
385                  * If this is the last cpu in this chip then, skip the reference
386                  * count mutex lock and make the reference count on this chip zero.
387                  */
388                 ref = get_nest_pmu_ref(cpu);
389                 if (!ref)
390                         return -EINVAL;
391
392                 ref->refc = 0;
393         }
394         return 0;
395 }
396
397 static int ppc_nest_imc_cpu_online(unsigned int cpu)
398 {
399         const struct cpumask *l_cpumask;
400         static struct cpumask tmp_mask;
401         int res;
402
403         /* Get the cpumask of this node */
404         l_cpumask = cpumask_of_node(cpu_to_node(cpu));
405
406         /*
407          * If this is not the first online CPU on this node, then
408          * just return.
409          */
410         if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask))
411                 return 0;
412
413         /*
414          * If this is the first online cpu on this node
415          * disable the nest counters by making an OPAL call.
416          */
417         res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
418                                      get_hard_smp_processor_id(cpu));
419         if (res)
420                 return res;
421
422         /* Make this CPU the designated target for counter collection */
423         cpumask_set_cpu(cpu, &nest_imc_cpumask);
424         return 0;
425 }
426
427 static int nest_pmu_cpumask_init(void)
428 {
429         return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE,
430                                  "perf/powerpc/imc:online",
431                                  ppc_nest_imc_cpu_online,
432                                  ppc_nest_imc_cpu_offline);
433 }
434
435 static void nest_imc_counters_release(struct perf_event *event)
436 {
437         int rc, node_id;
438         struct imc_pmu_ref *ref;
439
440         if (event->cpu < 0)
441                 return;
442
443         node_id = cpu_to_node(event->cpu);
444
445         /*
446          * See if we need to disable the nest PMU.
447          * If no events are currently in use, then we have to take a
448          * mutex to ensure that we don't race with another task doing
449          * enable or disable the nest counters.
450          */
451         ref = get_nest_pmu_ref(event->cpu);
452         if (!ref)
453                 return;
454
455         /* Take the mutex lock for this node and then decrement the reference count */
456         mutex_lock(&ref->lock);
457         if (ref->refc == 0) {
458                 /*
459                  * The scenario where this is true is, when perf session is
460                  * started, followed by offlining of all cpus in a given node.
461                  *
462                  * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline()
463                  * function set the ref->count to zero, if the cpu which is
464                  * about to offline is the last cpu in a given node and make
465                  * an OPAL call to disable the engine in that node.
466                  *
467                  */
468                 mutex_unlock(&ref->lock);
469                 return;
470         }
471         ref->refc--;
472         if (ref->refc == 0) {
473                 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
474                                             get_hard_smp_processor_id(event->cpu));
475                 if (rc) {
476                         mutex_unlock(&ref->lock);
477                         pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id);
478                         return;
479                 }
480         } else if (ref->refc < 0) {
481                 WARN(1, "nest-imc: Invalid event reference count\n");
482                 ref->refc = 0;
483         }
484         mutex_unlock(&ref->lock);
485 }
486
487 static int nest_imc_event_init(struct perf_event *event)
488 {
489         int chip_id, rc, node_id;
490         u32 l_config, config = event->attr.config;
491         struct imc_mem_info *pcni;
492         struct imc_pmu *pmu;
493         struct imc_pmu_ref *ref;
494         bool flag = false;
495
496         if (event->attr.type != event->pmu->type)
497                 return -ENOENT;
498
499         /* Sampling not supported */
500         if (event->hw.sample_period)
501                 return -EINVAL;
502
503         if (event->cpu < 0)
504                 return -EINVAL;
505
506         pmu = imc_event_to_pmu(event);
507
508         /* Sanity check for config (event offset) */
509         if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)
510                 return -EINVAL;
511
512         /*
513          * Nest HW counter memory resides in a per-chip reserve-memory (HOMER).
514          * Get the base memory addresss for this cpu.
515          */
516         chip_id = cpu_to_chip_id(event->cpu);
517
518         /* Return, if chip_id is not valid */
519         if (chip_id < 0)
520                 return -ENODEV;
521
522         pcni = pmu->mem_info;
523         do {
524                 if (pcni->id == chip_id) {
525                         flag = true;
526                         break;
527                 }
528                 pcni++;
529         } while (pcni->vbase != 0);
530
531         if (!flag)
532                 return -ENODEV;
533
534         /*
535          * Add the event offset to the base address.
536          */
537         l_config = config & IMC_EVENT_OFFSET_MASK;
538         event->hw.event_base = (u64)pcni->vbase + l_config;
539         node_id = cpu_to_node(event->cpu);
540
541         /*
542          * Get the imc_pmu_ref struct for this node.
543          * Take the mutex lock and then increment the count of nest pmu events
544          * inited.
545          */
546         ref = get_nest_pmu_ref(event->cpu);
547         if (!ref)
548                 return -EINVAL;
549
550         mutex_lock(&ref->lock);
551         if (ref->refc == 0) {
552                 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST,
553                                              get_hard_smp_processor_id(event->cpu));
554                 if (rc) {
555                         mutex_unlock(&ref->lock);
556                         pr_err("nest-imc: Unable to start the counters for node %d\n",
557                                                                         node_id);
558                         return rc;
559                 }
560         }
561         ++ref->refc;
562         mutex_unlock(&ref->lock);
563
564         event->destroy = nest_imc_counters_release;
565         return 0;
566 }
567
568 /*
569  * core_imc_mem_init : Initializes memory for the current core.
570  *
571  * Uses alloc_pages_node() and uses the returned address as an argument to
572  * an opal call to configure the pdbar. The address sent as an argument is
573  * converted to physical address before the opal call is made. This is the
574  * base address at which the core imc counters are populated.
575  */
576 static int core_imc_mem_init(int cpu, int size)
577 {
578         int nid, rc = 0, core_id = (cpu / threads_per_core);
579         struct imc_mem_info *mem_info;
580         struct page *page;
581
582         /*
583          * alloc_pages_node() will allocate memory for core in the
584          * local node only.
585          */
586         nid = cpu_to_node(cpu);
587         mem_info = &core_imc_pmu->mem_info[core_id];
588         mem_info->id = core_id;
589
590         /* We need only vbase for core counters */
591         page = alloc_pages_node(nid,
592                                 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
593                                 __GFP_NOWARN, get_order(size));
594         if (!page)
595                 return -ENOMEM;
596         mem_info->vbase = page_address(page);
597
598         /* Init the mutex */
599         core_imc_refc[core_id].id = core_id;
600         mutex_init(&core_imc_refc[core_id].lock);
601
602         rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE,
603                                 __pa((void *)mem_info->vbase),
604                                 get_hard_smp_processor_id(cpu));
605         if (rc) {
606                 free_pages((u64)mem_info->vbase, get_order(size));
607                 mem_info->vbase = NULL;
608         }
609
610         return rc;
611 }
612
613 static bool is_core_imc_mem_inited(int cpu)
614 {
615         struct imc_mem_info *mem_info;
616         int core_id = (cpu / threads_per_core);
617
618         mem_info = &core_imc_pmu->mem_info[core_id];
619         if (!mem_info->vbase)
620                 return false;
621
622         return true;
623 }
624
625 static int ppc_core_imc_cpu_online(unsigned int cpu)
626 {
627         const struct cpumask *l_cpumask;
628         static struct cpumask tmp_mask;
629         int ret = 0;
630
631         /* Get the cpumask for this core */
632         l_cpumask = cpu_sibling_mask(cpu);
633
634         /* If a cpu for this core is already set, then, don't do anything */
635         if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask))
636                 return 0;
637
638         if (!is_core_imc_mem_inited(cpu)) {
639                 ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size);
640                 if (ret) {
641                         pr_info("core_imc memory allocation for cpu %d failed\n", cpu);
642                         return ret;
643                 }
644         }
645
646         /* set the cpu in the mask */
647         cpumask_set_cpu(cpu, &core_imc_cpumask);
648         return 0;
649 }
650
651 static int ppc_core_imc_cpu_offline(unsigned int cpu)
652 {
653         unsigned int core_id;
654         int ncpu;
655         struct imc_pmu_ref *ref;
656
657         /*
658          * clear this cpu out of the mask, if not present in the mask,
659          * don't bother doing anything.
660          */
661         if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask))
662                 return 0;
663
664         /*
665          * Check whether core_imc is registered. We could end up here
666          * if the cpuhotplug callback registration fails. i.e, callback
667          * invokes the offline path for all sucessfully registered cpus.
668          * At this stage, core_imc pmu will not be registered and we
669          * should return here.
670          *
671          * We return with a zero since this is not an offline failure.
672          * And cpuhp_setup_state() returns the actual failure reason
673          * to the caller, which inturn will call the cleanup routine.
674          */
675         if (!core_imc_pmu->pmu.event_init)
676                 return 0;
677
678         /* Find any online cpu in that core except the current "cpu" */
679         ncpu = cpumask_last(cpu_sibling_mask(cpu));
680
681         if (unlikely(ncpu == cpu))
682                 ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu);
683
684         if (ncpu >= 0 && ncpu < nr_cpu_ids) {
685                 cpumask_set_cpu(ncpu, &core_imc_cpumask);
686                 perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu);
687         } else {
688                 /*
689                  * If this is the last cpu in this core then, skip taking refernce
690                  * count mutex lock for this core and directly zero "refc" for
691                  * this core.
692                  */
693                 opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
694                                        get_hard_smp_processor_id(cpu));
695                 core_id = cpu / threads_per_core;
696                 ref = &core_imc_refc[core_id];
697                 if (!ref)
698                         return -EINVAL;
699
700                 ref->refc = 0;
701         }
702         return 0;
703 }
704
705 static int core_imc_pmu_cpumask_init(void)
706 {
707         return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE,
708                                  "perf/powerpc/imc_core:online",
709                                  ppc_core_imc_cpu_online,
710                                  ppc_core_imc_cpu_offline);
711 }
712
713 static void core_imc_counters_release(struct perf_event *event)
714 {
715         int rc, core_id;
716         struct imc_pmu_ref *ref;
717
718         if (event->cpu < 0)
719                 return;
720         /*
721          * See if we need to disable the IMC PMU.
722          * If no events are currently in use, then we have to take a
723          * mutex to ensure that we don't race with another task doing
724          * enable or disable the core counters.
725          */
726         core_id = event->cpu / threads_per_core;
727
728         /* Take the mutex lock and decrement the refernce count for this core */
729         ref = &core_imc_refc[core_id];
730         if (!ref)
731                 return;
732
733         mutex_lock(&ref->lock);
734         if (ref->refc == 0) {
735                 /*
736                  * The scenario where this is true is, when perf session is
737                  * started, followed by offlining of all cpus in a given core.
738                  *
739                  * In the cpuhotplug offline path, ppc_core_imc_cpu_offline()
740                  * function set the ref->count to zero, if the cpu which is
741                  * about to offline is the last cpu in a given core and make
742                  * an OPAL call to disable the engine in that core.
743                  *
744                  */
745                 mutex_unlock(&ref->lock);
746                 return;
747         }
748         ref->refc--;
749         if (ref->refc == 0) {
750                 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
751                                             get_hard_smp_processor_id(event->cpu));
752                 if (rc) {
753                         mutex_unlock(&ref->lock);
754                         pr_err("IMC: Unable to stop the counters for core %d\n", core_id);
755                         return;
756                 }
757         } else if (ref->refc < 0) {
758                 WARN(1, "core-imc: Invalid event reference count\n");
759                 ref->refc = 0;
760         }
761         mutex_unlock(&ref->lock);
762 }
763
764 static int core_imc_event_init(struct perf_event *event)
765 {
766         int core_id, rc;
767         u64 config = event->attr.config;
768         struct imc_mem_info *pcmi;
769         struct imc_pmu *pmu;
770         struct imc_pmu_ref *ref;
771
772         if (event->attr.type != event->pmu->type)
773                 return -ENOENT;
774
775         /* Sampling not supported */
776         if (event->hw.sample_period)
777                 return -EINVAL;
778
779         if (event->cpu < 0)
780                 return -EINVAL;
781
782         event->hw.idx = -1;
783         pmu = imc_event_to_pmu(event);
784
785         /* Sanity check for config (event offset) */
786         if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
787                 return -EINVAL;
788
789         if (!is_core_imc_mem_inited(event->cpu))
790                 return -ENODEV;
791
792         core_id = event->cpu / threads_per_core;
793         pcmi = &core_imc_pmu->mem_info[core_id];
794         if ((!pcmi->vbase))
795                 return -ENODEV;
796
797         /* Get the core_imc mutex for this core */
798         ref = &core_imc_refc[core_id];
799         if (!ref)
800                 return -EINVAL;
801
802         /*
803          * Core pmu units are enabled only when it is used.
804          * See if this is triggered for the first time.
805          * If yes, take the mutex lock and enable the core counters.
806          * If not, just increment the count in core_imc_refc struct.
807          */
808         mutex_lock(&ref->lock);
809         if (ref->refc == 0) {
810                 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
811                                              get_hard_smp_processor_id(event->cpu));
812                 if (rc) {
813                         mutex_unlock(&ref->lock);
814                         pr_err("core-imc: Unable to start the counters for core %d\n",
815                                                                         core_id);
816                         return rc;
817                 }
818         }
819         ++ref->refc;
820         mutex_unlock(&ref->lock);
821
822         event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK);
823         event->destroy = core_imc_counters_release;
824         return 0;
825 }
826
827 /*
828  * Allocates a page of memory for each of the online cpus, and load
829  * LDBAR with 0.
830  * The physical base address of the page allocated for a cpu will be
831  * written to the LDBAR for that cpu, when the thread-imc event
832  * is added.
833  *
834  * LDBAR Register Layout:
835  *
836  *  0          4         8         12        16        20        24        28
837  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
838  *   | |       [   ]    [                   Counter Address [8:50]
839  *   | * Mode    |
840  *   |           * PB Scope
841  *   * Enable/Disable
842  *
843  *  32        36        40        44        48        52        56        60
844  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
845  *           Counter Address [8:50]              ]
846  *
847  */
848 static int thread_imc_mem_alloc(int cpu_id, int size)
849 {
850         u64 *local_mem = per_cpu(thread_imc_mem, cpu_id);
851         int nid = cpu_to_node(cpu_id);
852
853         if (!local_mem) {
854                 struct page *page;
855                 /*
856                  * This case could happen only once at start, since we dont
857                  * free the memory in cpu offline path.
858                  */
859                 page = alloc_pages_node(nid,
860                                   GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
861                                   __GFP_NOWARN, get_order(size));
862                 if (!page)
863                         return -ENOMEM;
864                 local_mem = page_address(page);
865
866                 per_cpu(thread_imc_mem, cpu_id) = local_mem;
867         }
868
869         mtspr(SPRN_LDBAR, 0);
870         return 0;
871 }
872
873 static int ppc_thread_imc_cpu_online(unsigned int cpu)
874 {
875         return thread_imc_mem_alloc(cpu, thread_imc_mem_size);
876 }
877
878 static int ppc_thread_imc_cpu_offline(unsigned int cpu)
879 {
880         mtspr(SPRN_LDBAR, 0);
881         return 0;
882 }
883
884 static int thread_imc_cpu_init(void)
885 {
886         return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE,
887                           "perf/powerpc/imc_thread:online",
888                           ppc_thread_imc_cpu_online,
889                           ppc_thread_imc_cpu_offline);
890 }
891
892 static int thread_imc_event_init(struct perf_event *event)
893 {
894         u32 config = event->attr.config;
895         struct task_struct *target;
896         struct imc_pmu *pmu;
897
898         if (event->attr.type != event->pmu->type)
899                 return -ENOENT;
900
901         if (!capable(CAP_SYS_ADMIN))
902                 return -EACCES;
903
904         /* Sampling not supported */
905         if (event->hw.sample_period)
906                 return -EINVAL;
907
908         event->hw.idx = -1;
909         pmu = imc_event_to_pmu(event);
910
911         /* Sanity check for config offset */
912         if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
913                 return -EINVAL;
914
915         target = event->hw.target;
916         if (!target)
917                 return -EINVAL;
918
919         event->pmu->task_ctx_nr = perf_sw_context;
920         return 0;
921 }
922
923 static bool is_thread_imc_pmu(struct perf_event *event)
924 {
925         if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc")))
926                 return true;
927
928         return false;
929 }
930
931 static u64 * get_event_base_addr(struct perf_event *event)
932 {
933         u64 addr;
934
935         if (is_thread_imc_pmu(event)) {
936                 addr = (u64)per_cpu(thread_imc_mem, smp_processor_id());
937                 return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK));
938         }
939
940         return (u64 *)event->hw.event_base;
941 }
942
943 static void thread_imc_pmu_start_txn(struct pmu *pmu,
944                                      unsigned int txn_flags)
945 {
946         if (txn_flags & ~PERF_PMU_TXN_ADD)
947                 return;
948         perf_pmu_disable(pmu);
949 }
950
951 static void thread_imc_pmu_cancel_txn(struct pmu *pmu)
952 {
953         perf_pmu_enable(pmu);
954 }
955
956 static int thread_imc_pmu_commit_txn(struct pmu *pmu)
957 {
958         perf_pmu_enable(pmu);
959         return 0;
960 }
961
962 static u64 imc_read_counter(struct perf_event *event)
963 {
964         u64 *addr, data;
965
966         /*
967          * In-Memory Collection (IMC) counters are free flowing counters.
968          * So we take a snapshot of the counter value on enable and save it
969          * to calculate the delta at later stage to present the event counter
970          * value.
971          */
972         addr = get_event_base_addr(event);
973         data = be64_to_cpu(READ_ONCE(*addr));
974         local64_set(&event->hw.prev_count, data);
975
976         return data;
977 }
978
979 static void imc_event_update(struct perf_event *event)
980 {
981         u64 counter_prev, counter_new, final_count;
982
983         counter_prev = local64_read(&event->hw.prev_count);
984         counter_new = imc_read_counter(event);
985         final_count = counter_new - counter_prev;
986
987         /* Update the delta to the event count */
988         local64_add(final_count, &event->count);
989 }
990
991 static void imc_event_start(struct perf_event *event, int flags)
992 {
993         /*
994          * In Memory Counters are free flowing counters. HW or the microcode
995          * keeps adding to the counter offset in memory. To get event
996          * counter value, we snapshot the value here and we calculate
997          * delta at later point.
998          */
999         imc_read_counter(event);
1000 }
1001
1002 static void imc_event_stop(struct perf_event *event, int flags)
1003 {
1004         /*
1005          * Take a snapshot and calculate the delta and update
1006          * the event counter values.
1007          */
1008         imc_event_update(event);
1009 }
1010
1011 static int imc_event_add(struct perf_event *event, int flags)
1012 {
1013         if (flags & PERF_EF_START)
1014                 imc_event_start(event, flags);
1015
1016         return 0;
1017 }
1018
1019 static int thread_imc_event_add(struct perf_event *event, int flags)
1020 {
1021         int core_id;
1022         struct imc_pmu_ref *ref;
1023         u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, smp_processor_id());
1024
1025         if (flags & PERF_EF_START)
1026                 imc_event_start(event, flags);
1027
1028         if (!is_core_imc_mem_inited(smp_processor_id()))
1029                 return -EINVAL;
1030
1031         core_id = smp_processor_id() / threads_per_core;
1032         ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE;
1033         mtspr(SPRN_LDBAR, ldbar_value);
1034
1035         /*
1036          * imc pmus are enabled only when it is used.
1037          * See if this is triggered for the first time.
1038          * If yes, take the mutex lock and enable the counters.
1039          * If not, just increment the count in ref count struct.
1040          */
1041         ref = &core_imc_refc[core_id];
1042         if (!ref)
1043                 return -EINVAL;
1044
1045         mutex_lock(&ref->lock);
1046         if (ref->refc == 0) {
1047                 if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
1048                     get_hard_smp_processor_id(smp_processor_id()))) {
1049                         mutex_unlock(&ref->lock);
1050                         pr_err("thread-imc: Unable to start the counter\
1051                                 for core %d\n", core_id);
1052                         return -EINVAL;
1053                 }
1054         }
1055         ++ref->refc;
1056         mutex_unlock(&ref->lock);
1057         return 0;
1058 }
1059
1060 static void thread_imc_event_del(struct perf_event *event, int flags)
1061 {
1062
1063         int core_id;
1064         struct imc_pmu_ref *ref;
1065
1066         mtspr(SPRN_LDBAR, 0);
1067
1068         core_id = smp_processor_id() / threads_per_core;
1069         ref = &core_imc_refc[core_id];
1070
1071         mutex_lock(&ref->lock);
1072         ref->refc--;
1073         if (ref->refc == 0) {
1074                 if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
1075                     get_hard_smp_processor_id(smp_processor_id()))) {
1076                         mutex_unlock(&ref->lock);
1077                         pr_err("thread-imc: Unable to stop the counters\
1078                                 for core %d\n", core_id);
1079                         return;
1080                 }
1081         } else if (ref->refc < 0) {
1082                 ref->refc = 0;
1083         }
1084         mutex_unlock(&ref->lock);
1085         /*
1086          * Take a snapshot and calculate the delta and update
1087          * the event counter values.
1088          */
1089         imc_event_update(event);
1090 }
1091
1092 /*
1093  * Allocate a page of memory for each cpu, and load LDBAR with 0.
1094  */
1095 static int trace_imc_mem_alloc(int cpu_id, int size)
1096 {
1097         u64 *local_mem = per_cpu(trace_imc_mem, cpu_id);
1098         int phys_id = cpu_to_node(cpu_id), rc = 0;
1099         int core_id = (cpu_id / threads_per_core);
1100
1101         if (!local_mem) {
1102                 struct page *page;
1103
1104                 page = alloc_pages_node(phys_id,
1105                                 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
1106                                 __GFP_NOWARN, get_order(size));
1107                 if (!page)
1108                         return -ENOMEM;
1109                 local_mem = page_address(page);
1110                 per_cpu(trace_imc_mem, cpu_id) = local_mem;
1111
1112                 /* Initialise the counters for trace mode */
1113                 rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_TRACE, __pa((void *)local_mem),
1114                                             get_hard_smp_processor_id(cpu_id));
1115                 if (rc) {
1116                         pr_info("IMC:opal init failed for trace imc\n");
1117                         return rc;
1118                 }
1119         }
1120
1121         /* Init the mutex, if not already */
1122         trace_imc_refc[core_id].id = core_id;
1123         mutex_init(&trace_imc_refc[core_id].lock);
1124
1125         mtspr(SPRN_LDBAR, 0);
1126         return 0;
1127 }
1128
1129 static int ppc_trace_imc_cpu_online(unsigned int cpu)
1130 {
1131         return trace_imc_mem_alloc(cpu, trace_imc_mem_size);
1132 }
1133
1134 static int ppc_trace_imc_cpu_offline(unsigned int cpu)
1135 {
1136         mtspr(SPRN_LDBAR, 0);
1137         return 0;
1138 }
1139
1140 static int trace_imc_cpu_init(void)
1141 {
1142         return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE,
1143                           "perf/powerpc/imc_trace:online",
1144                           ppc_trace_imc_cpu_online,
1145                           ppc_trace_imc_cpu_offline);
1146 }
1147
1148 static u64 get_trace_imc_event_base_addr(void)
1149 {
1150         return (u64)per_cpu(trace_imc_mem, smp_processor_id());
1151 }
1152
1153 /*
1154  * Function to parse trace-imc data obtained
1155  * and to prepare the perf sample.
1156  */
1157 static int trace_imc_prepare_sample(struct trace_imc_data *mem,
1158                                     struct perf_sample_data *data,
1159                                     u64 *prev_tb,
1160                                     struct perf_event_header *header,
1161                                     struct perf_event *event)
1162 {
1163         /* Sanity checks for a valid record */
1164         if (be64_to_cpu(READ_ONCE(mem->tb1)) > *prev_tb)
1165                 *prev_tb = be64_to_cpu(READ_ONCE(mem->tb1));
1166         else
1167                 return -EINVAL;
1168
1169         if ((be64_to_cpu(READ_ONCE(mem->tb1)) & IMC_TRACE_RECORD_TB1_MASK) !=
1170                          be64_to_cpu(READ_ONCE(mem->tb2)))
1171                 return -EINVAL;
1172
1173         /* Prepare perf sample */
1174         data->ip =  be64_to_cpu(READ_ONCE(mem->ip));
1175         data->period = event->hw.last_period;
1176
1177         header->type = PERF_RECORD_SAMPLE;
1178         header->size = sizeof(*header) + event->header_size;
1179         header->misc = 0;
1180
1181         if (is_kernel_addr(data->ip))
1182                 header->misc |= PERF_RECORD_MISC_KERNEL;
1183         else
1184                 header->misc |= PERF_RECORD_MISC_USER;
1185
1186         perf_event_header__init_id(header, data, event);
1187
1188         return 0;
1189 }
1190
1191 static void dump_trace_imc_data(struct perf_event *event)
1192 {
1193         struct trace_imc_data *mem;
1194         int i, ret;
1195         u64 prev_tb = 0;
1196
1197         mem = (struct trace_imc_data *)get_trace_imc_event_base_addr();
1198         for (i = 0; i < (trace_imc_mem_size / sizeof(struct trace_imc_data));
1199                 i++, mem++) {
1200                 struct perf_sample_data data;
1201                 struct perf_event_header header;
1202
1203                 ret = trace_imc_prepare_sample(mem, &data, &prev_tb, &header, event);
1204                 if (ret) /* Exit, if not a valid record */
1205                         break;
1206                 else {
1207                         /* If this is a valid record, create the sample */
1208                         struct perf_output_handle handle;
1209
1210                         if (perf_output_begin(&handle, event, header.size))
1211                                 return;
1212
1213                         perf_output_sample(&handle, &header, &data, event);
1214                         perf_output_end(&handle);
1215                 }
1216         }
1217 }
1218
1219 static int trace_imc_event_add(struct perf_event *event, int flags)
1220 {
1221         int core_id = smp_processor_id() / threads_per_core;
1222         struct imc_pmu_ref *ref = NULL;
1223         u64 local_mem, ldbar_value;
1224
1225         /* Set trace-imc bit in ldbar and load ldbar with per-thread memory address */
1226         local_mem = get_trace_imc_event_base_addr();
1227         ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | TRACE_IMC_ENABLE;
1228
1229         if (core_imc_refc)
1230                 ref = &core_imc_refc[core_id];
1231         if (!ref) {
1232                 /* If core-imc is not enabled, use trace-imc reference count */
1233                 if (trace_imc_refc)
1234                         ref = &trace_imc_refc[core_id];
1235                 if (!ref)
1236                         return -EINVAL;
1237         }
1238         mtspr(SPRN_LDBAR, ldbar_value);
1239         mutex_lock(&ref->lock);
1240         if (ref->refc == 0) {
1241                 if (opal_imc_counters_start(OPAL_IMC_COUNTERS_TRACE,
1242                                 get_hard_smp_processor_id(smp_processor_id()))) {
1243                         mutex_unlock(&ref->lock);
1244                         pr_err("trace-imc: Unable to start the counters for core %d\n", core_id);
1245                         mtspr(SPRN_LDBAR, 0);
1246                         return -EINVAL;
1247                 }
1248         }
1249         ++ref->refc;
1250         mutex_unlock(&ref->lock);
1251
1252         return 0;
1253 }
1254
1255 static void trace_imc_event_read(struct perf_event *event)
1256 {
1257         return;
1258 }
1259
1260 static void trace_imc_event_stop(struct perf_event *event, int flags)
1261 {
1262         u64 local_mem = get_trace_imc_event_base_addr();
1263         dump_trace_imc_data(event);
1264         memset((void *)local_mem, 0, sizeof(u64));
1265 }
1266
1267 static void trace_imc_event_start(struct perf_event *event, int flags)
1268 {
1269         return;
1270 }
1271
1272 static void trace_imc_event_del(struct perf_event *event, int flags)
1273 {
1274         int core_id = smp_processor_id() / threads_per_core;
1275         struct imc_pmu_ref *ref = NULL;
1276
1277         if (core_imc_refc)
1278                 ref = &core_imc_refc[core_id];
1279         if (!ref) {
1280                 /* If core-imc is not enabled, use trace-imc reference count */
1281                 if (trace_imc_refc)
1282                         ref = &trace_imc_refc[core_id];
1283                 if (!ref)
1284                         return;
1285         }
1286         mtspr(SPRN_LDBAR, 0);
1287         mutex_lock(&ref->lock);
1288         ref->refc--;
1289         if (ref->refc == 0) {
1290                 if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_TRACE,
1291                                 get_hard_smp_processor_id(smp_processor_id()))) {
1292                         mutex_unlock(&ref->lock);
1293                         pr_err("trace-imc: Unable to stop the counters for core %d\n", core_id);
1294                         return;
1295                 }
1296         } else if (ref->refc < 0) {
1297                 ref->refc = 0;
1298         }
1299         mutex_unlock(&ref->lock);
1300         trace_imc_event_stop(event, flags);
1301 }
1302
1303 static int trace_imc_event_init(struct perf_event *event)
1304 {
1305         struct task_struct *target;
1306
1307         if (event->attr.type != event->pmu->type)
1308                 return -ENOENT;
1309
1310         if (!capable(CAP_SYS_ADMIN))
1311                 return -EACCES;
1312
1313         /* Return if this is a couting event */
1314         if (event->attr.sample_period == 0)
1315                 return -ENOENT;
1316
1317         event->hw.idx = -1;
1318         target = event->hw.target;
1319
1320         event->pmu->task_ctx_nr = perf_hw_context;
1321         return 0;
1322 }
1323
1324 /* update_pmu_ops : Populate the appropriate operations for "pmu" */
1325 static int update_pmu_ops(struct imc_pmu *pmu)
1326 {
1327         pmu->pmu.task_ctx_nr = perf_invalid_context;
1328         pmu->pmu.add = imc_event_add;
1329         pmu->pmu.del = imc_event_stop;
1330         pmu->pmu.start = imc_event_start;
1331         pmu->pmu.stop = imc_event_stop;
1332         pmu->pmu.read = imc_event_update;
1333         pmu->pmu.attr_groups = pmu->attr_groups;
1334         pmu->pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE;
1335         pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group;
1336
1337         switch (pmu->domain) {
1338         case IMC_DOMAIN_NEST:
1339                 pmu->pmu.event_init = nest_imc_event_init;
1340                 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1341                 break;
1342         case IMC_DOMAIN_CORE:
1343                 pmu->pmu.event_init = core_imc_event_init;
1344                 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1345                 break;
1346         case IMC_DOMAIN_THREAD:
1347                 pmu->pmu.event_init = thread_imc_event_init;
1348                 pmu->pmu.add = thread_imc_event_add;
1349                 pmu->pmu.del = thread_imc_event_del;
1350                 pmu->pmu.start_txn = thread_imc_pmu_start_txn;
1351                 pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn;
1352                 pmu->pmu.commit_txn = thread_imc_pmu_commit_txn;
1353                 break;
1354         case IMC_DOMAIN_TRACE:
1355                 pmu->pmu.event_init = trace_imc_event_init;
1356                 pmu->pmu.add = trace_imc_event_add;
1357                 pmu->pmu.del = trace_imc_event_del;
1358                 pmu->pmu.start = trace_imc_event_start;
1359                 pmu->pmu.stop = trace_imc_event_stop;
1360                 pmu->pmu.read = trace_imc_event_read;
1361                 pmu->attr_groups[IMC_FORMAT_ATTR] = &trace_imc_format_group;
1362         default:
1363                 break;
1364         }
1365
1366         return 0;
1367 }
1368
1369 /* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */
1370 static int init_nest_pmu_ref(void)
1371 {
1372         int nid, i, cpu;
1373
1374         nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc),
1375                                                                 GFP_KERNEL);
1376
1377         if (!nest_imc_refc)
1378                 return -ENOMEM;
1379
1380         i = 0;
1381         for_each_node(nid) {
1382                 /*
1383                  * Mutex lock to avoid races while tracking the number of
1384                  * sessions using the chip's nest pmu units.
1385                  */
1386                 mutex_init(&nest_imc_refc[i].lock);
1387
1388                 /*
1389                  * Loop to init the "id" with the node_id. Variable "i" initialized to
1390                  * 0 and will be used as index to the array. "i" will not go off the
1391                  * end of the array since the "for_each_node" loops for "N_POSSIBLE"
1392                  * nodes only.
1393                  */
1394                 nest_imc_refc[i++].id = nid;
1395         }
1396
1397         /*
1398          * Loop to init the per_cpu "local_nest_imc_refc" with the proper
1399          * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple.
1400          */
1401         for_each_possible_cpu(cpu) {
1402                 nid = cpu_to_node(cpu);
1403                 for (i = 0; i < num_possible_nodes(); i++) {
1404                         if (nest_imc_refc[i].id == nid) {
1405                                 per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i];
1406                                 break;
1407                         }
1408                 }
1409         }
1410         return 0;
1411 }
1412
1413 static void cleanup_all_core_imc_memory(void)
1414 {
1415         int i, nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1416         struct imc_mem_info *ptr = core_imc_pmu->mem_info;
1417         int size = core_imc_pmu->counter_mem_size;
1418
1419         /* mem_info will never be NULL */
1420         for (i = 0; i < nr_cores; i++) {
1421                 if (ptr[i].vbase)
1422                         free_pages((u64)ptr[i].vbase, get_order(size));
1423         }
1424
1425         kfree(ptr);
1426         kfree(core_imc_refc);
1427 }
1428
1429 static void thread_imc_ldbar_disable(void *dummy)
1430 {
1431         /*
1432          * By Zeroing LDBAR, we disable thread-imc
1433          * updates.
1434          */
1435         mtspr(SPRN_LDBAR, 0);
1436 }
1437
1438 void thread_imc_disable(void)
1439 {
1440         on_each_cpu(thread_imc_ldbar_disable, NULL, 1);
1441 }
1442
1443 static void cleanup_all_thread_imc_memory(void)
1444 {
1445         int i, order = get_order(thread_imc_mem_size);
1446
1447         for_each_online_cpu(i) {
1448                 if (per_cpu(thread_imc_mem, i))
1449                         free_pages((u64)per_cpu(thread_imc_mem, i), order);
1450
1451         }
1452 }
1453
1454 static void cleanup_all_trace_imc_memory(void)
1455 {
1456         int i, order = get_order(trace_imc_mem_size);
1457
1458         for_each_online_cpu(i) {
1459                 if (per_cpu(trace_imc_mem, i))
1460                         free_pages((u64)per_cpu(trace_imc_mem, i), order);
1461
1462         }
1463         kfree(trace_imc_refc);
1464 }
1465
1466 /* Function to free the attr_groups which are dynamically allocated */
1467 static void imc_common_mem_free(struct imc_pmu *pmu_ptr)
1468 {
1469         if (pmu_ptr->attr_groups[IMC_EVENT_ATTR])
1470                 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs);
1471         kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]);
1472 }
1473
1474 /*
1475  * Common function to unregister cpu hotplug callback and
1476  * free the memory.
1477  * TODO: Need to handle pmu unregistering, which will be
1478  * done in followup series.
1479  */
1480 static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr)
1481 {
1482         if (pmu_ptr->domain == IMC_DOMAIN_NEST) {
1483                 mutex_lock(&nest_init_lock);
1484                 if (nest_pmus == 1) {
1485                         cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE);
1486                         kfree(nest_imc_refc);
1487                         kfree(per_nest_pmu_arr);
1488                         per_nest_pmu_arr = NULL;
1489                 }
1490
1491                 if (nest_pmus > 0)
1492                         nest_pmus--;
1493                 mutex_unlock(&nest_init_lock);
1494         }
1495
1496         /* Free core_imc memory */
1497         if (pmu_ptr->domain == IMC_DOMAIN_CORE) {
1498                 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE);
1499                 cleanup_all_core_imc_memory();
1500         }
1501
1502         /* Free thread_imc memory */
1503         if (pmu_ptr->domain == IMC_DOMAIN_THREAD) {
1504                 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE);
1505                 cleanup_all_thread_imc_memory();
1506         }
1507
1508         if (pmu_ptr->domain == IMC_DOMAIN_TRACE) {
1509                 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE);
1510                 cleanup_all_trace_imc_memory();
1511         }
1512 }
1513
1514 /*
1515  * Function to unregister thread-imc if core-imc
1516  * is not registered.
1517  */
1518 void unregister_thread_imc(void)
1519 {
1520         imc_common_cpuhp_mem_free(thread_imc_pmu);
1521         imc_common_mem_free(thread_imc_pmu);
1522         perf_pmu_unregister(&thread_imc_pmu->pmu);
1523 }
1524
1525 /*
1526  * imc_mem_init : Function to support memory allocation for core imc.
1527  */
1528 static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent,
1529                                                                 int pmu_index)
1530 {
1531         const char *s;
1532         int nr_cores, cpu, res = -ENOMEM;
1533
1534         if (of_property_read_string(parent, "name", &s))
1535                 return -ENODEV;
1536
1537         switch (pmu_ptr->domain) {
1538         case IMC_DOMAIN_NEST:
1539                 /* Update the pmu name */
1540                 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s);
1541                 if (!pmu_ptr->pmu.name)
1542                         goto err;
1543
1544                 /* Needed for hotplug/migration */
1545                 if (!per_nest_pmu_arr) {
1546                         per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1,
1547                                                 sizeof(struct imc_pmu *),
1548                                                 GFP_KERNEL);
1549                         if (!per_nest_pmu_arr)
1550                                 goto err;
1551                 }
1552                 per_nest_pmu_arr[pmu_index] = pmu_ptr;
1553                 break;
1554         case IMC_DOMAIN_CORE:
1555                 /* Update the pmu name */
1556                 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1557                 if (!pmu_ptr->pmu.name)
1558                         goto err;
1559
1560                 nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1561                 pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info),
1562                                                                 GFP_KERNEL);
1563
1564                 if (!pmu_ptr->mem_info)
1565                         goto err;
1566
1567                 core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1568                                                                 GFP_KERNEL);
1569
1570                 if (!core_imc_refc) {
1571                         kfree(pmu_ptr->mem_info);
1572                         goto err;
1573                 }
1574
1575                 core_imc_pmu = pmu_ptr;
1576                 break;
1577         case IMC_DOMAIN_THREAD:
1578                 /* Update the pmu name */
1579                 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1580                 if (!pmu_ptr->pmu.name)
1581                         goto err;
1582
1583                 thread_imc_mem_size = pmu_ptr->counter_mem_size;
1584                 for_each_online_cpu(cpu) {
1585                         res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size);
1586                         if (res) {
1587                                 cleanup_all_thread_imc_memory();
1588                                 goto err;
1589                         }
1590                 }
1591
1592                 thread_imc_pmu = pmu_ptr;
1593                 break;
1594         case IMC_DOMAIN_TRACE:
1595                 /* Update the pmu name */
1596                 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1597                 if (!pmu_ptr->pmu.name)
1598                         return -ENOMEM;
1599
1600                 nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1601                 trace_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1602                                                                 GFP_KERNEL);
1603                 if (!trace_imc_refc)
1604                         return -ENOMEM;
1605
1606                 trace_imc_mem_size = pmu_ptr->counter_mem_size;
1607                 for_each_online_cpu(cpu) {
1608                         res = trace_imc_mem_alloc(cpu, trace_imc_mem_size);
1609                         if (res) {
1610                                 cleanup_all_trace_imc_memory();
1611                                 goto err;
1612                         }
1613                 }
1614                 break;
1615         default:
1616                 return -EINVAL;
1617         }
1618
1619         return 0;
1620 err:
1621         return res;
1622 }
1623
1624 /*
1625  * init_imc_pmu : Setup and register the IMC pmu device.
1626  *
1627  * @parent:     Device tree unit node
1628  * @pmu_ptr:    memory allocated for this pmu
1629  * @pmu_idx:    Count of nest pmc registered
1630  *
1631  * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback.
1632  * Handles failure cases and accordingly frees memory.
1633  */
1634 int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx)
1635 {
1636         int ret;
1637
1638         ret = imc_mem_init(pmu_ptr, parent, pmu_idx);
1639         if (ret)
1640                 goto err_free_mem;
1641
1642         switch (pmu_ptr->domain) {
1643         case IMC_DOMAIN_NEST:
1644                 /*
1645                 * Nest imc pmu need only one cpu per chip, we initialize the
1646                 * cpumask for the first nest imc pmu and use the same for the
1647                 * rest. To handle the cpuhotplug callback unregister, we track
1648                 * the number of nest pmus in "nest_pmus".
1649                 */
1650                 mutex_lock(&nest_init_lock);
1651                 if (nest_pmus == 0) {
1652                         ret = init_nest_pmu_ref();
1653                         if (ret) {
1654                                 mutex_unlock(&nest_init_lock);
1655                                 kfree(per_nest_pmu_arr);
1656                                 per_nest_pmu_arr = NULL;
1657                                 goto err_free_mem;
1658                         }
1659                         /* Register for cpu hotplug notification. */
1660                         ret = nest_pmu_cpumask_init();
1661                         if (ret) {
1662                                 mutex_unlock(&nest_init_lock);
1663                                 kfree(nest_imc_refc);
1664                                 kfree(per_nest_pmu_arr);
1665                                 per_nest_pmu_arr = NULL;
1666                                 goto err_free_mem;
1667                         }
1668                 }
1669                 nest_pmus++;
1670                 mutex_unlock(&nest_init_lock);
1671                 break;
1672         case IMC_DOMAIN_CORE:
1673                 ret = core_imc_pmu_cpumask_init();
1674                 if (ret) {
1675                         cleanup_all_core_imc_memory();
1676                         goto err_free_mem;
1677                 }
1678
1679                 break;
1680         case IMC_DOMAIN_THREAD:
1681                 ret = thread_imc_cpu_init();
1682                 if (ret) {
1683                         cleanup_all_thread_imc_memory();
1684                         goto err_free_mem;
1685                 }
1686
1687                 break;
1688         case IMC_DOMAIN_TRACE:
1689                 ret = trace_imc_cpu_init();
1690                 if (ret) {
1691                         cleanup_all_trace_imc_memory();
1692                         goto err_free_mem;
1693                 }
1694
1695                 break;
1696         default:
1697                 return  -EINVAL;        /* Unknown domain */
1698         }
1699
1700         ret = update_events_in_group(parent, pmu_ptr);
1701         if (ret)
1702                 goto err_free_cpuhp_mem;
1703
1704         ret = update_pmu_ops(pmu_ptr);
1705         if (ret)
1706                 goto err_free_cpuhp_mem;
1707
1708         ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1);
1709         if (ret)
1710                 goto err_free_cpuhp_mem;
1711
1712         pr_debug("%s performance monitor hardware support registered\n",
1713                                                         pmu_ptr->pmu.name);
1714
1715         return 0;
1716
1717 err_free_cpuhp_mem:
1718         imc_common_cpuhp_mem_free(pmu_ptr);
1719 err_free_mem:
1720         imc_common_mem_free(pmu_ptr);
1721         return ret;
1722 }