]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/s390/crypto/aes_s390.c
Linux 5.6-rc7
[linux.git] / arch / s390 / crypto / aes_s390.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Cryptographic API.
4  *
5  * s390 implementation of the AES Cipher Algorithm.
6  *
7  * s390 Version:
8  *   Copyright IBM Corp. 2005, 2017
9  *   Author(s): Jan Glauber (jang@de.ibm.com)
10  *              Sebastian Siewior (sebastian@breakpoint.cc> SW-Fallback
11  *              Patrick Steuer <patrick.steuer@de.ibm.com>
12  *              Harald Freudenberger <freude@de.ibm.com>
13  *
14  * Derived from "crypto/aes_generic.c"
15  */
16
17 #define KMSG_COMPONENT "aes_s390"
18 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
19
20 #include <crypto/aes.h>
21 #include <crypto/algapi.h>
22 #include <crypto/ghash.h>
23 #include <crypto/internal/aead.h>
24 #include <crypto/internal/skcipher.h>
25 #include <crypto/scatterwalk.h>
26 #include <linux/err.h>
27 #include <linux/module.h>
28 #include <linux/cpufeature.h>
29 #include <linux/init.h>
30 #include <linux/mutex.h>
31 #include <linux/fips.h>
32 #include <linux/string.h>
33 #include <crypto/xts.h>
34 #include <asm/cpacf.h>
35
36 static u8 *ctrblk;
37 static DEFINE_MUTEX(ctrblk_lock);
38
39 static cpacf_mask_t km_functions, kmc_functions, kmctr_functions,
40                     kma_functions;
41
42 struct s390_aes_ctx {
43         u8 key[AES_MAX_KEY_SIZE];
44         int key_len;
45         unsigned long fc;
46         union {
47                 struct crypto_skcipher *skcipher;
48                 struct crypto_cipher *cip;
49         } fallback;
50 };
51
52 struct s390_xts_ctx {
53         u8 key[32];
54         u8 pcc_key[32];
55         int key_len;
56         unsigned long fc;
57         struct crypto_skcipher *fallback;
58 };
59
60 struct gcm_sg_walk {
61         struct scatter_walk walk;
62         unsigned int walk_bytes;
63         u8 *walk_ptr;
64         unsigned int walk_bytes_remain;
65         u8 buf[AES_BLOCK_SIZE];
66         unsigned int buf_bytes;
67         u8 *ptr;
68         unsigned int nbytes;
69 };
70
71 static int setkey_fallback_cip(struct crypto_tfm *tfm, const u8 *in_key,
72                 unsigned int key_len)
73 {
74         struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
75
76         sctx->fallback.cip->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
77         sctx->fallback.cip->base.crt_flags |= (tfm->crt_flags &
78                         CRYPTO_TFM_REQ_MASK);
79
80         return crypto_cipher_setkey(sctx->fallback.cip, in_key, key_len);
81 }
82
83 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
84                        unsigned int key_len)
85 {
86         struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
87         unsigned long fc;
88
89         /* Pick the correct function code based on the key length */
90         fc = (key_len == 16) ? CPACF_KM_AES_128 :
91              (key_len == 24) ? CPACF_KM_AES_192 :
92              (key_len == 32) ? CPACF_KM_AES_256 : 0;
93
94         /* Check if the function code is available */
95         sctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
96         if (!sctx->fc)
97                 return setkey_fallback_cip(tfm, in_key, key_len);
98
99         sctx->key_len = key_len;
100         memcpy(sctx->key, in_key, key_len);
101         return 0;
102 }
103
104 static void crypto_aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
105 {
106         struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
107
108         if (unlikely(!sctx->fc)) {
109                 crypto_cipher_encrypt_one(sctx->fallback.cip, out, in);
110                 return;
111         }
112         cpacf_km(sctx->fc, &sctx->key, out, in, AES_BLOCK_SIZE);
113 }
114
115 static void crypto_aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
116 {
117         struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
118
119         if (unlikely(!sctx->fc)) {
120                 crypto_cipher_decrypt_one(sctx->fallback.cip, out, in);
121                 return;
122         }
123         cpacf_km(sctx->fc | CPACF_DECRYPT,
124                  &sctx->key, out, in, AES_BLOCK_SIZE);
125 }
126
127 static int fallback_init_cip(struct crypto_tfm *tfm)
128 {
129         const char *name = tfm->__crt_alg->cra_name;
130         struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
131
132         sctx->fallback.cip = crypto_alloc_cipher(name, 0,
133                                                  CRYPTO_ALG_NEED_FALLBACK);
134
135         if (IS_ERR(sctx->fallback.cip)) {
136                 pr_err("Allocating AES fallback algorithm %s failed\n",
137                        name);
138                 return PTR_ERR(sctx->fallback.cip);
139         }
140
141         return 0;
142 }
143
144 static void fallback_exit_cip(struct crypto_tfm *tfm)
145 {
146         struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
147
148         crypto_free_cipher(sctx->fallback.cip);
149         sctx->fallback.cip = NULL;
150 }
151
152 static struct crypto_alg aes_alg = {
153         .cra_name               =       "aes",
154         .cra_driver_name        =       "aes-s390",
155         .cra_priority           =       300,
156         .cra_flags              =       CRYPTO_ALG_TYPE_CIPHER |
157                                         CRYPTO_ALG_NEED_FALLBACK,
158         .cra_blocksize          =       AES_BLOCK_SIZE,
159         .cra_ctxsize            =       sizeof(struct s390_aes_ctx),
160         .cra_module             =       THIS_MODULE,
161         .cra_init               =       fallback_init_cip,
162         .cra_exit               =       fallback_exit_cip,
163         .cra_u                  =       {
164                 .cipher = {
165                         .cia_min_keysize        =       AES_MIN_KEY_SIZE,
166                         .cia_max_keysize        =       AES_MAX_KEY_SIZE,
167                         .cia_setkey             =       aes_set_key,
168                         .cia_encrypt            =       crypto_aes_encrypt,
169                         .cia_decrypt            =       crypto_aes_decrypt,
170                 }
171         }
172 };
173
174 static int setkey_fallback_skcipher(struct crypto_skcipher *tfm, const u8 *key,
175                                     unsigned int len)
176 {
177         struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
178
179         crypto_skcipher_clear_flags(sctx->fallback.skcipher,
180                                     CRYPTO_TFM_REQ_MASK);
181         crypto_skcipher_set_flags(sctx->fallback.skcipher,
182                                   crypto_skcipher_get_flags(tfm) &
183                                   CRYPTO_TFM_REQ_MASK);
184         return crypto_skcipher_setkey(sctx->fallback.skcipher, key, len);
185 }
186
187 static int fallback_skcipher_crypt(struct s390_aes_ctx *sctx,
188                                    struct skcipher_request *req,
189                                    unsigned long modifier)
190 {
191         struct skcipher_request *subreq = skcipher_request_ctx(req);
192
193         *subreq = *req;
194         skcipher_request_set_tfm(subreq, sctx->fallback.skcipher);
195         return (modifier & CPACF_DECRYPT) ?
196                 crypto_skcipher_decrypt(subreq) :
197                 crypto_skcipher_encrypt(subreq);
198 }
199
200 static int ecb_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
201                            unsigned int key_len)
202 {
203         struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
204         unsigned long fc;
205
206         /* Pick the correct function code based on the key length */
207         fc = (key_len == 16) ? CPACF_KM_AES_128 :
208              (key_len == 24) ? CPACF_KM_AES_192 :
209              (key_len == 32) ? CPACF_KM_AES_256 : 0;
210
211         /* Check if the function code is available */
212         sctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
213         if (!sctx->fc)
214                 return setkey_fallback_skcipher(tfm, in_key, key_len);
215
216         sctx->key_len = key_len;
217         memcpy(sctx->key, in_key, key_len);
218         return 0;
219 }
220
221 static int ecb_aes_crypt(struct skcipher_request *req, unsigned long modifier)
222 {
223         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
224         struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
225         struct skcipher_walk walk;
226         unsigned int nbytes, n;
227         int ret;
228
229         if (unlikely(!sctx->fc))
230                 return fallback_skcipher_crypt(sctx, req, modifier);
231
232         ret = skcipher_walk_virt(&walk, req, false);
233         while ((nbytes = walk.nbytes) != 0) {
234                 /* only use complete blocks */
235                 n = nbytes & ~(AES_BLOCK_SIZE - 1);
236                 cpacf_km(sctx->fc | modifier, sctx->key,
237                          walk.dst.virt.addr, walk.src.virt.addr, n);
238                 ret = skcipher_walk_done(&walk, nbytes - n);
239         }
240         return ret;
241 }
242
243 static int ecb_aes_encrypt(struct skcipher_request *req)
244 {
245         return ecb_aes_crypt(req, 0);
246 }
247
248 static int ecb_aes_decrypt(struct skcipher_request *req)
249 {
250         return ecb_aes_crypt(req, CPACF_DECRYPT);
251 }
252
253 static int fallback_init_skcipher(struct crypto_skcipher *tfm)
254 {
255         const char *name = crypto_tfm_alg_name(&tfm->base);
256         struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
257
258         sctx->fallback.skcipher = crypto_alloc_skcipher(name, 0,
259                                 CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC);
260
261         if (IS_ERR(sctx->fallback.skcipher)) {
262                 pr_err("Allocating AES fallback algorithm %s failed\n",
263                        name);
264                 return PTR_ERR(sctx->fallback.skcipher);
265         }
266
267         crypto_skcipher_set_reqsize(tfm, sizeof(struct skcipher_request) +
268                                     crypto_skcipher_reqsize(sctx->fallback.skcipher));
269         return 0;
270 }
271
272 static void fallback_exit_skcipher(struct crypto_skcipher *tfm)
273 {
274         struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
275
276         crypto_free_skcipher(sctx->fallback.skcipher);
277 }
278
279 static struct skcipher_alg ecb_aes_alg = {
280         .base.cra_name          =       "ecb(aes)",
281         .base.cra_driver_name   =       "ecb-aes-s390",
282         .base.cra_priority      =       401,    /* combo: aes + ecb + 1 */
283         .base.cra_flags         =       CRYPTO_ALG_NEED_FALLBACK,
284         .base.cra_blocksize     =       AES_BLOCK_SIZE,
285         .base.cra_ctxsize       =       sizeof(struct s390_aes_ctx),
286         .base.cra_module        =       THIS_MODULE,
287         .init                   =       fallback_init_skcipher,
288         .exit                   =       fallback_exit_skcipher,
289         .min_keysize            =       AES_MIN_KEY_SIZE,
290         .max_keysize            =       AES_MAX_KEY_SIZE,
291         .setkey                 =       ecb_aes_set_key,
292         .encrypt                =       ecb_aes_encrypt,
293         .decrypt                =       ecb_aes_decrypt,
294 };
295
296 static int cbc_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
297                            unsigned int key_len)
298 {
299         struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
300         unsigned long fc;
301
302         /* Pick the correct function code based on the key length */
303         fc = (key_len == 16) ? CPACF_KMC_AES_128 :
304              (key_len == 24) ? CPACF_KMC_AES_192 :
305              (key_len == 32) ? CPACF_KMC_AES_256 : 0;
306
307         /* Check if the function code is available */
308         sctx->fc = (fc && cpacf_test_func(&kmc_functions, fc)) ? fc : 0;
309         if (!sctx->fc)
310                 return setkey_fallback_skcipher(tfm, in_key, key_len);
311
312         sctx->key_len = key_len;
313         memcpy(sctx->key, in_key, key_len);
314         return 0;
315 }
316
317 static int cbc_aes_crypt(struct skcipher_request *req, unsigned long modifier)
318 {
319         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
320         struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
321         struct skcipher_walk walk;
322         unsigned int nbytes, n;
323         int ret;
324         struct {
325                 u8 iv[AES_BLOCK_SIZE];
326                 u8 key[AES_MAX_KEY_SIZE];
327         } param;
328
329         if (unlikely(!sctx->fc))
330                 return fallback_skcipher_crypt(sctx, req, modifier);
331
332         ret = skcipher_walk_virt(&walk, req, false);
333         if (ret)
334                 return ret;
335         memcpy(param.iv, walk.iv, AES_BLOCK_SIZE);
336         memcpy(param.key, sctx->key, sctx->key_len);
337         while ((nbytes = walk.nbytes) != 0) {
338                 /* only use complete blocks */
339                 n = nbytes & ~(AES_BLOCK_SIZE - 1);
340                 cpacf_kmc(sctx->fc | modifier, &param,
341                           walk.dst.virt.addr, walk.src.virt.addr, n);
342                 memcpy(walk.iv, param.iv, AES_BLOCK_SIZE);
343                 ret = skcipher_walk_done(&walk, nbytes - n);
344         }
345         return ret;
346 }
347
348 static int cbc_aes_encrypt(struct skcipher_request *req)
349 {
350         return cbc_aes_crypt(req, 0);
351 }
352
353 static int cbc_aes_decrypt(struct skcipher_request *req)
354 {
355         return cbc_aes_crypt(req, CPACF_DECRYPT);
356 }
357
358 static struct skcipher_alg cbc_aes_alg = {
359         .base.cra_name          =       "cbc(aes)",
360         .base.cra_driver_name   =       "cbc-aes-s390",
361         .base.cra_priority      =       402,    /* ecb-aes-s390 + 1 */
362         .base.cra_flags         =       CRYPTO_ALG_NEED_FALLBACK,
363         .base.cra_blocksize     =       AES_BLOCK_SIZE,
364         .base.cra_ctxsize       =       sizeof(struct s390_aes_ctx),
365         .base.cra_module        =       THIS_MODULE,
366         .init                   =       fallback_init_skcipher,
367         .exit                   =       fallback_exit_skcipher,
368         .min_keysize            =       AES_MIN_KEY_SIZE,
369         .max_keysize            =       AES_MAX_KEY_SIZE,
370         .ivsize                 =       AES_BLOCK_SIZE,
371         .setkey                 =       cbc_aes_set_key,
372         .encrypt                =       cbc_aes_encrypt,
373         .decrypt                =       cbc_aes_decrypt,
374 };
375
376 static int xts_fallback_setkey(struct crypto_skcipher *tfm, const u8 *key,
377                                unsigned int len)
378 {
379         struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
380
381         crypto_skcipher_clear_flags(xts_ctx->fallback, CRYPTO_TFM_REQ_MASK);
382         crypto_skcipher_set_flags(xts_ctx->fallback,
383                                   crypto_skcipher_get_flags(tfm) &
384                                   CRYPTO_TFM_REQ_MASK);
385         return crypto_skcipher_setkey(xts_ctx->fallback, key, len);
386 }
387
388 static int xts_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
389                            unsigned int key_len)
390 {
391         struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
392         unsigned long fc;
393         int err;
394
395         err = xts_fallback_setkey(tfm, in_key, key_len);
396         if (err)
397                 return err;
398
399         /* In fips mode only 128 bit or 256 bit keys are valid */
400         if (fips_enabled && key_len != 32 && key_len != 64)
401                 return -EINVAL;
402
403         /* Pick the correct function code based on the key length */
404         fc = (key_len == 32) ? CPACF_KM_XTS_128 :
405              (key_len == 64) ? CPACF_KM_XTS_256 : 0;
406
407         /* Check if the function code is available */
408         xts_ctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
409         if (!xts_ctx->fc)
410                 return 0;
411
412         /* Split the XTS key into the two subkeys */
413         key_len = key_len / 2;
414         xts_ctx->key_len = key_len;
415         memcpy(xts_ctx->key, in_key, key_len);
416         memcpy(xts_ctx->pcc_key, in_key + key_len, key_len);
417         return 0;
418 }
419
420 static int xts_aes_crypt(struct skcipher_request *req, unsigned long modifier)
421 {
422         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
423         struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
424         struct skcipher_walk walk;
425         unsigned int offset, nbytes, n;
426         int ret;
427         struct {
428                 u8 key[32];
429                 u8 tweak[16];
430                 u8 block[16];
431                 u8 bit[16];
432                 u8 xts[16];
433         } pcc_param;
434         struct {
435                 u8 key[32];
436                 u8 init[16];
437         } xts_param;
438
439         if (req->cryptlen < AES_BLOCK_SIZE)
440                 return -EINVAL;
441
442         if (unlikely(!xts_ctx->fc || (req->cryptlen % AES_BLOCK_SIZE) != 0)) {
443                 struct skcipher_request *subreq = skcipher_request_ctx(req);
444
445                 *subreq = *req;
446                 skcipher_request_set_tfm(subreq, xts_ctx->fallback);
447                 return (modifier & CPACF_DECRYPT) ?
448                         crypto_skcipher_decrypt(subreq) :
449                         crypto_skcipher_encrypt(subreq);
450         }
451
452         ret = skcipher_walk_virt(&walk, req, false);
453         if (ret)
454                 return ret;
455         offset = xts_ctx->key_len & 0x10;
456         memset(pcc_param.block, 0, sizeof(pcc_param.block));
457         memset(pcc_param.bit, 0, sizeof(pcc_param.bit));
458         memset(pcc_param.xts, 0, sizeof(pcc_param.xts));
459         memcpy(pcc_param.tweak, walk.iv, sizeof(pcc_param.tweak));
460         memcpy(pcc_param.key + offset, xts_ctx->pcc_key, xts_ctx->key_len);
461         cpacf_pcc(xts_ctx->fc, pcc_param.key + offset);
462
463         memcpy(xts_param.key + offset, xts_ctx->key, xts_ctx->key_len);
464         memcpy(xts_param.init, pcc_param.xts, 16);
465
466         while ((nbytes = walk.nbytes) != 0) {
467                 /* only use complete blocks */
468                 n = nbytes & ~(AES_BLOCK_SIZE - 1);
469                 cpacf_km(xts_ctx->fc | modifier, xts_param.key + offset,
470                          walk.dst.virt.addr, walk.src.virt.addr, n);
471                 ret = skcipher_walk_done(&walk, nbytes - n);
472         }
473         return ret;
474 }
475
476 static int xts_aes_encrypt(struct skcipher_request *req)
477 {
478         return xts_aes_crypt(req, 0);
479 }
480
481 static int xts_aes_decrypt(struct skcipher_request *req)
482 {
483         return xts_aes_crypt(req, CPACF_DECRYPT);
484 }
485
486 static int xts_fallback_init(struct crypto_skcipher *tfm)
487 {
488         const char *name = crypto_tfm_alg_name(&tfm->base);
489         struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
490
491         xts_ctx->fallback = crypto_alloc_skcipher(name, 0,
492                                 CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC);
493
494         if (IS_ERR(xts_ctx->fallback)) {
495                 pr_err("Allocating XTS fallback algorithm %s failed\n",
496                        name);
497                 return PTR_ERR(xts_ctx->fallback);
498         }
499         crypto_skcipher_set_reqsize(tfm, sizeof(struct skcipher_request) +
500                                     crypto_skcipher_reqsize(xts_ctx->fallback));
501         return 0;
502 }
503
504 static void xts_fallback_exit(struct crypto_skcipher *tfm)
505 {
506         struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
507
508         crypto_free_skcipher(xts_ctx->fallback);
509 }
510
511 static struct skcipher_alg xts_aes_alg = {
512         .base.cra_name          =       "xts(aes)",
513         .base.cra_driver_name   =       "xts-aes-s390",
514         .base.cra_priority      =       402,    /* ecb-aes-s390 + 1 */
515         .base.cra_flags         =       CRYPTO_ALG_NEED_FALLBACK,
516         .base.cra_blocksize     =       AES_BLOCK_SIZE,
517         .base.cra_ctxsize       =       sizeof(struct s390_xts_ctx),
518         .base.cra_module        =       THIS_MODULE,
519         .init                   =       xts_fallback_init,
520         .exit                   =       xts_fallback_exit,
521         .min_keysize            =       2 * AES_MIN_KEY_SIZE,
522         .max_keysize            =       2 * AES_MAX_KEY_SIZE,
523         .ivsize                 =       AES_BLOCK_SIZE,
524         .setkey                 =       xts_aes_set_key,
525         .encrypt                =       xts_aes_encrypt,
526         .decrypt                =       xts_aes_decrypt,
527 };
528
529 static int ctr_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
530                            unsigned int key_len)
531 {
532         struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
533         unsigned long fc;
534
535         /* Pick the correct function code based on the key length */
536         fc = (key_len == 16) ? CPACF_KMCTR_AES_128 :
537              (key_len == 24) ? CPACF_KMCTR_AES_192 :
538              (key_len == 32) ? CPACF_KMCTR_AES_256 : 0;
539
540         /* Check if the function code is available */
541         sctx->fc = (fc && cpacf_test_func(&kmctr_functions, fc)) ? fc : 0;
542         if (!sctx->fc)
543                 return setkey_fallback_skcipher(tfm, in_key, key_len);
544
545         sctx->key_len = key_len;
546         memcpy(sctx->key, in_key, key_len);
547         return 0;
548 }
549
550 static unsigned int __ctrblk_init(u8 *ctrptr, u8 *iv, unsigned int nbytes)
551 {
552         unsigned int i, n;
553
554         /* only use complete blocks, max. PAGE_SIZE */
555         memcpy(ctrptr, iv, AES_BLOCK_SIZE);
556         n = (nbytes > PAGE_SIZE) ? PAGE_SIZE : nbytes & ~(AES_BLOCK_SIZE - 1);
557         for (i = (n / AES_BLOCK_SIZE) - 1; i > 0; i--) {
558                 memcpy(ctrptr + AES_BLOCK_SIZE, ctrptr, AES_BLOCK_SIZE);
559                 crypto_inc(ctrptr + AES_BLOCK_SIZE, AES_BLOCK_SIZE);
560                 ctrptr += AES_BLOCK_SIZE;
561         }
562         return n;
563 }
564
565 static int ctr_aes_crypt(struct skcipher_request *req)
566 {
567         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
568         struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
569         u8 buf[AES_BLOCK_SIZE], *ctrptr;
570         struct skcipher_walk walk;
571         unsigned int n, nbytes;
572         int ret, locked;
573
574         if (unlikely(!sctx->fc))
575                 return fallback_skcipher_crypt(sctx, req, 0);
576
577         locked = mutex_trylock(&ctrblk_lock);
578
579         ret = skcipher_walk_virt(&walk, req, false);
580         while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
581                 n = AES_BLOCK_SIZE;
582
583                 if (nbytes >= 2*AES_BLOCK_SIZE && locked)
584                         n = __ctrblk_init(ctrblk, walk.iv, nbytes);
585                 ctrptr = (n > AES_BLOCK_SIZE) ? ctrblk : walk.iv;
586                 cpacf_kmctr(sctx->fc, sctx->key, walk.dst.virt.addr,
587                             walk.src.virt.addr, n, ctrptr);
588                 if (ctrptr == ctrblk)
589                         memcpy(walk.iv, ctrptr + n - AES_BLOCK_SIZE,
590                                AES_BLOCK_SIZE);
591                 crypto_inc(walk.iv, AES_BLOCK_SIZE);
592                 ret = skcipher_walk_done(&walk, nbytes - n);
593         }
594         if (locked)
595                 mutex_unlock(&ctrblk_lock);
596         /*
597          * final block may be < AES_BLOCK_SIZE, copy only nbytes
598          */
599         if (nbytes) {
600                 cpacf_kmctr(sctx->fc, sctx->key, buf, walk.src.virt.addr,
601                             AES_BLOCK_SIZE, walk.iv);
602                 memcpy(walk.dst.virt.addr, buf, nbytes);
603                 crypto_inc(walk.iv, AES_BLOCK_SIZE);
604                 ret = skcipher_walk_done(&walk, 0);
605         }
606
607         return ret;
608 }
609
610 static struct skcipher_alg ctr_aes_alg = {
611         .base.cra_name          =       "ctr(aes)",
612         .base.cra_driver_name   =       "ctr-aes-s390",
613         .base.cra_priority      =       402,    /* ecb-aes-s390 + 1 */
614         .base.cra_flags         =       CRYPTO_ALG_NEED_FALLBACK,
615         .base.cra_blocksize     =       1,
616         .base.cra_ctxsize       =       sizeof(struct s390_aes_ctx),
617         .base.cra_module        =       THIS_MODULE,
618         .init                   =       fallback_init_skcipher,
619         .exit                   =       fallback_exit_skcipher,
620         .min_keysize            =       AES_MIN_KEY_SIZE,
621         .max_keysize            =       AES_MAX_KEY_SIZE,
622         .ivsize                 =       AES_BLOCK_SIZE,
623         .setkey                 =       ctr_aes_set_key,
624         .encrypt                =       ctr_aes_crypt,
625         .decrypt                =       ctr_aes_crypt,
626         .chunksize              =       AES_BLOCK_SIZE,
627 };
628
629 static int gcm_aes_setkey(struct crypto_aead *tfm, const u8 *key,
630                           unsigned int keylen)
631 {
632         struct s390_aes_ctx *ctx = crypto_aead_ctx(tfm);
633
634         switch (keylen) {
635         case AES_KEYSIZE_128:
636                 ctx->fc = CPACF_KMA_GCM_AES_128;
637                 break;
638         case AES_KEYSIZE_192:
639                 ctx->fc = CPACF_KMA_GCM_AES_192;
640                 break;
641         case AES_KEYSIZE_256:
642                 ctx->fc = CPACF_KMA_GCM_AES_256;
643                 break;
644         default:
645                 return -EINVAL;
646         }
647
648         memcpy(ctx->key, key, keylen);
649         ctx->key_len = keylen;
650         return 0;
651 }
652
653 static int gcm_aes_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
654 {
655         switch (authsize) {
656         case 4:
657         case 8:
658         case 12:
659         case 13:
660         case 14:
661         case 15:
662         case 16:
663                 break;
664         default:
665                 return -EINVAL;
666         }
667
668         return 0;
669 }
670
671 static void gcm_walk_start(struct gcm_sg_walk *gw, struct scatterlist *sg,
672                            unsigned int len)
673 {
674         memset(gw, 0, sizeof(*gw));
675         gw->walk_bytes_remain = len;
676         scatterwalk_start(&gw->walk, sg);
677 }
678
679 static inline unsigned int _gcm_sg_clamp_and_map(struct gcm_sg_walk *gw)
680 {
681         struct scatterlist *nextsg;
682
683         gw->walk_bytes = scatterwalk_clamp(&gw->walk, gw->walk_bytes_remain);
684         while (!gw->walk_bytes) {
685                 nextsg = sg_next(gw->walk.sg);
686                 if (!nextsg)
687                         return 0;
688                 scatterwalk_start(&gw->walk, nextsg);
689                 gw->walk_bytes = scatterwalk_clamp(&gw->walk,
690                                                    gw->walk_bytes_remain);
691         }
692         gw->walk_ptr = scatterwalk_map(&gw->walk);
693         return gw->walk_bytes;
694 }
695
696 static inline void _gcm_sg_unmap_and_advance(struct gcm_sg_walk *gw,
697                                              unsigned int nbytes)
698 {
699         gw->walk_bytes_remain -= nbytes;
700         scatterwalk_unmap(&gw->walk);
701         scatterwalk_advance(&gw->walk, nbytes);
702         scatterwalk_done(&gw->walk, 0, gw->walk_bytes_remain);
703         gw->walk_ptr = NULL;
704 }
705
706 static int gcm_in_walk_go(struct gcm_sg_walk *gw, unsigned int minbytesneeded)
707 {
708         int n;
709
710         if (gw->buf_bytes && gw->buf_bytes >= minbytesneeded) {
711                 gw->ptr = gw->buf;
712                 gw->nbytes = gw->buf_bytes;
713                 goto out;
714         }
715
716         if (gw->walk_bytes_remain == 0) {
717                 gw->ptr = NULL;
718                 gw->nbytes = 0;
719                 goto out;
720         }
721
722         if (!_gcm_sg_clamp_and_map(gw)) {
723                 gw->ptr = NULL;
724                 gw->nbytes = 0;
725                 goto out;
726         }
727
728         if (!gw->buf_bytes && gw->walk_bytes >= minbytesneeded) {
729                 gw->ptr = gw->walk_ptr;
730                 gw->nbytes = gw->walk_bytes;
731                 goto out;
732         }
733
734         while (1) {
735                 n = min(gw->walk_bytes, AES_BLOCK_SIZE - gw->buf_bytes);
736                 memcpy(gw->buf + gw->buf_bytes, gw->walk_ptr, n);
737                 gw->buf_bytes += n;
738                 _gcm_sg_unmap_and_advance(gw, n);
739                 if (gw->buf_bytes >= minbytesneeded) {
740                         gw->ptr = gw->buf;
741                         gw->nbytes = gw->buf_bytes;
742                         goto out;
743                 }
744                 if (!_gcm_sg_clamp_and_map(gw)) {
745                         gw->ptr = NULL;
746                         gw->nbytes = 0;
747                         goto out;
748                 }
749         }
750
751 out:
752         return gw->nbytes;
753 }
754
755 static int gcm_out_walk_go(struct gcm_sg_walk *gw, unsigned int minbytesneeded)
756 {
757         if (gw->walk_bytes_remain == 0) {
758                 gw->ptr = NULL;
759                 gw->nbytes = 0;
760                 goto out;
761         }
762
763         if (!_gcm_sg_clamp_and_map(gw)) {
764                 gw->ptr = NULL;
765                 gw->nbytes = 0;
766                 goto out;
767         }
768
769         if (gw->walk_bytes >= minbytesneeded) {
770                 gw->ptr = gw->walk_ptr;
771                 gw->nbytes = gw->walk_bytes;
772                 goto out;
773         }
774
775         scatterwalk_unmap(&gw->walk);
776         gw->walk_ptr = NULL;
777
778         gw->ptr = gw->buf;
779         gw->nbytes = sizeof(gw->buf);
780
781 out:
782         return gw->nbytes;
783 }
784
785 static int gcm_in_walk_done(struct gcm_sg_walk *gw, unsigned int bytesdone)
786 {
787         if (gw->ptr == NULL)
788                 return 0;
789
790         if (gw->ptr == gw->buf) {
791                 int n = gw->buf_bytes - bytesdone;
792                 if (n > 0) {
793                         memmove(gw->buf, gw->buf + bytesdone, n);
794                         gw->buf_bytes = n;
795                 } else
796                         gw->buf_bytes = 0;
797         } else
798                 _gcm_sg_unmap_and_advance(gw, bytesdone);
799
800         return bytesdone;
801 }
802
803 static int gcm_out_walk_done(struct gcm_sg_walk *gw, unsigned int bytesdone)
804 {
805         int i, n;
806
807         if (gw->ptr == NULL)
808                 return 0;
809
810         if (gw->ptr == gw->buf) {
811                 for (i = 0; i < bytesdone; i += n) {
812                         if (!_gcm_sg_clamp_and_map(gw))
813                                 return i;
814                         n = min(gw->walk_bytes, bytesdone - i);
815                         memcpy(gw->walk_ptr, gw->buf + i, n);
816                         _gcm_sg_unmap_and_advance(gw, n);
817                 }
818         } else
819                 _gcm_sg_unmap_and_advance(gw, bytesdone);
820
821         return bytesdone;
822 }
823
824 static int gcm_aes_crypt(struct aead_request *req, unsigned int flags)
825 {
826         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
827         struct s390_aes_ctx *ctx = crypto_aead_ctx(tfm);
828         unsigned int ivsize = crypto_aead_ivsize(tfm);
829         unsigned int taglen = crypto_aead_authsize(tfm);
830         unsigned int aadlen = req->assoclen;
831         unsigned int pclen = req->cryptlen;
832         int ret = 0;
833
834         unsigned int n, len, in_bytes, out_bytes,
835                      min_bytes, bytes, aad_bytes, pc_bytes;
836         struct gcm_sg_walk gw_in, gw_out;
837         u8 tag[GHASH_DIGEST_SIZE];
838
839         struct {
840                 u32 _[3];               /* reserved */
841                 u32 cv;                 /* Counter Value */
842                 u8 t[GHASH_DIGEST_SIZE];/* Tag */
843                 u8 h[AES_BLOCK_SIZE];   /* Hash-subkey */
844                 u64 taadl;              /* Total AAD Length */
845                 u64 tpcl;               /* Total Plain-/Cipher-text Length */
846                 u8 j0[GHASH_BLOCK_SIZE];/* initial counter value */
847                 u8 k[AES_MAX_KEY_SIZE]; /* Key */
848         } param;
849
850         /*
851          * encrypt
852          *   req->src: aad||plaintext
853          *   req->dst: aad||ciphertext||tag
854          * decrypt
855          *   req->src: aad||ciphertext||tag
856          *   req->dst: aad||plaintext, return 0 or -EBADMSG
857          * aad, plaintext and ciphertext may be empty.
858          */
859         if (flags & CPACF_DECRYPT)
860                 pclen -= taglen;
861         len = aadlen + pclen;
862
863         memset(&param, 0, sizeof(param));
864         param.cv = 1;
865         param.taadl = aadlen * 8;
866         param.tpcl = pclen * 8;
867         memcpy(param.j0, req->iv, ivsize);
868         *(u32 *)(param.j0 + ivsize) = 1;
869         memcpy(param.k, ctx->key, ctx->key_len);
870
871         gcm_walk_start(&gw_in, req->src, len);
872         gcm_walk_start(&gw_out, req->dst, len);
873
874         do {
875                 min_bytes = min_t(unsigned int,
876                                   aadlen > 0 ? aadlen : pclen, AES_BLOCK_SIZE);
877                 in_bytes = gcm_in_walk_go(&gw_in, min_bytes);
878                 out_bytes = gcm_out_walk_go(&gw_out, min_bytes);
879                 bytes = min(in_bytes, out_bytes);
880
881                 if (aadlen + pclen <= bytes) {
882                         aad_bytes = aadlen;
883                         pc_bytes = pclen;
884                         flags |= CPACF_KMA_LAAD | CPACF_KMA_LPC;
885                 } else {
886                         if (aadlen <= bytes) {
887                                 aad_bytes = aadlen;
888                                 pc_bytes = (bytes - aadlen) &
889                                            ~(AES_BLOCK_SIZE - 1);
890                                 flags |= CPACF_KMA_LAAD;
891                         } else {
892                                 aad_bytes = bytes & ~(AES_BLOCK_SIZE - 1);
893                                 pc_bytes = 0;
894                         }
895                 }
896
897                 if (aad_bytes > 0)
898                         memcpy(gw_out.ptr, gw_in.ptr, aad_bytes);
899
900                 cpacf_kma(ctx->fc | flags, &param,
901                           gw_out.ptr + aad_bytes,
902                           gw_in.ptr + aad_bytes, pc_bytes,
903                           gw_in.ptr, aad_bytes);
904
905                 n = aad_bytes + pc_bytes;
906                 if (gcm_in_walk_done(&gw_in, n) != n)
907                         return -ENOMEM;
908                 if (gcm_out_walk_done(&gw_out, n) != n)
909                         return -ENOMEM;
910                 aadlen -= aad_bytes;
911                 pclen -= pc_bytes;
912         } while (aadlen + pclen > 0);
913
914         if (flags & CPACF_DECRYPT) {
915                 scatterwalk_map_and_copy(tag, req->src, len, taglen, 0);
916                 if (crypto_memneq(tag, param.t, taglen))
917                         ret = -EBADMSG;
918         } else
919                 scatterwalk_map_and_copy(param.t, req->dst, len, taglen, 1);
920
921         memzero_explicit(&param, sizeof(param));
922         return ret;
923 }
924
925 static int gcm_aes_encrypt(struct aead_request *req)
926 {
927         return gcm_aes_crypt(req, CPACF_ENCRYPT);
928 }
929
930 static int gcm_aes_decrypt(struct aead_request *req)
931 {
932         return gcm_aes_crypt(req, CPACF_DECRYPT);
933 }
934
935 static struct aead_alg gcm_aes_aead = {
936         .setkey                 = gcm_aes_setkey,
937         .setauthsize            = gcm_aes_setauthsize,
938         .encrypt                = gcm_aes_encrypt,
939         .decrypt                = gcm_aes_decrypt,
940
941         .ivsize                 = GHASH_BLOCK_SIZE - sizeof(u32),
942         .maxauthsize            = GHASH_DIGEST_SIZE,
943         .chunksize              = AES_BLOCK_SIZE,
944
945         .base                   = {
946                 .cra_blocksize          = 1,
947                 .cra_ctxsize            = sizeof(struct s390_aes_ctx),
948                 .cra_priority           = 900,
949                 .cra_name               = "gcm(aes)",
950                 .cra_driver_name        = "gcm-aes-s390",
951                 .cra_module             = THIS_MODULE,
952         },
953 };
954
955 static struct crypto_alg *aes_s390_alg;
956 static struct skcipher_alg *aes_s390_skcipher_algs[4];
957 static int aes_s390_skciphers_num;
958 static struct aead_alg *aes_s390_aead_alg;
959
960 static int aes_s390_register_skcipher(struct skcipher_alg *alg)
961 {
962         int ret;
963
964         ret = crypto_register_skcipher(alg);
965         if (!ret)
966                 aes_s390_skcipher_algs[aes_s390_skciphers_num++] = alg;
967         return ret;
968 }
969
970 static void aes_s390_fini(void)
971 {
972         if (aes_s390_alg)
973                 crypto_unregister_alg(aes_s390_alg);
974         while (aes_s390_skciphers_num--)
975                 crypto_unregister_skcipher(aes_s390_skcipher_algs[aes_s390_skciphers_num]);
976         if (ctrblk)
977                 free_page((unsigned long) ctrblk);
978
979         if (aes_s390_aead_alg)
980                 crypto_unregister_aead(aes_s390_aead_alg);
981 }
982
983 static int __init aes_s390_init(void)
984 {
985         int ret;
986
987         /* Query available functions for KM, KMC, KMCTR and KMA */
988         cpacf_query(CPACF_KM, &km_functions);
989         cpacf_query(CPACF_KMC, &kmc_functions);
990         cpacf_query(CPACF_KMCTR, &kmctr_functions);
991         cpacf_query(CPACF_KMA, &kma_functions);
992
993         if (cpacf_test_func(&km_functions, CPACF_KM_AES_128) ||
994             cpacf_test_func(&km_functions, CPACF_KM_AES_192) ||
995             cpacf_test_func(&km_functions, CPACF_KM_AES_256)) {
996                 ret = crypto_register_alg(&aes_alg);
997                 if (ret)
998                         goto out_err;
999                 aes_s390_alg = &aes_alg;
1000                 ret = aes_s390_register_skcipher(&ecb_aes_alg);
1001                 if (ret)
1002                         goto out_err;
1003         }
1004
1005         if (cpacf_test_func(&kmc_functions, CPACF_KMC_AES_128) ||
1006             cpacf_test_func(&kmc_functions, CPACF_KMC_AES_192) ||
1007             cpacf_test_func(&kmc_functions, CPACF_KMC_AES_256)) {
1008                 ret = aes_s390_register_skcipher(&cbc_aes_alg);
1009                 if (ret)
1010                         goto out_err;
1011         }
1012
1013         if (cpacf_test_func(&km_functions, CPACF_KM_XTS_128) ||
1014             cpacf_test_func(&km_functions, CPACF_KM_XTS_256)) {
1015                 ret = aes_s390_register_skcipher(&xts_aes_alg);
1016                 if (ret)
1017                         goto out_err;
1018         }
1019
1020         if (cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_128) ||
1021             cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_192) ||
1022             cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_256)) {
1023                 ctrblk = (u8 *) __get_free_page(GFP_KERNEL);
1024                 if (!ctrblk) {
1025                         ret = -ENOMEM;
1026                         goto out_err;
1027                 }
1028                 ret = aes_s390_register_skcipher(&ctr_aes_alg);
1029                 if (ret)
1030                         goto out_err;
1031         }
1032
1033         if (cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_128) ||
1034             cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_192) ||
1035             cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_256)) {
1036                 ret = crypto_register_aead(&gcm_aes_aead);
1037                 if (ret)
1038                         goto out_err;
1039                 aes_s390_aead_alg = &gcm_aes_aead;
1040         }
1041
1042         return 0;
1043 out_err:
1044         aes_s390_fini();
1045         return ret;
1046 }
1047
1048 module_cpu_feature_match(MSA, aes_s390_init);
1049 module_exit(aes_s390_fini);
1050
1051 MODULE_ALIAS_CRYPTO("aes-all");
1052
1053 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm");
1054 MODULE_LICENSE("GPL");