]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/s390/kernel/smp.c
Merge tag 'at24-v5.2-updates-for-wolfram' of git://git.kernel.org/pub/scm/linux/kerne...
[linux.git] / arch / s390 / kernel / smp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  SMP related functions
4  *
5  *    Copyright IBM Corp. 1999, 2012
6  *    Author(s): Denis Joseph Barrow,
7  *               Martin Schwidefsky <schwidefsky@de.ibm.com>,
8  *               Heiko Carstens <heiko.carstens@de.ibm.com>,
9  *
10  *  based on other smp stuff by
11  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
12  *    (c) 1998 Ingo Molnar
13  *
14  * The code outside of smp.c uses logical cpu numbers, only smp.c does
15  * the translation of logical to physical cpu ids. All new code that
16  * operates on physical cpu numbers needs to go into smp.c.
17  */
18
19 #define KMSG_COMPONENT "cpu"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21
22 #include <linux/workqueue.h>
23 #include <linux/memblock.h>
24 #include <linux/export.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/err.h>
28 #include <linux/spinlock.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/irqflags.h>
33 #include <linux/cpu.h>
34 #include <linux/slab.h>
35 #include <linux/sched/hotplug.h>
36 #include <linux/sched/task_stack.h>
37 #include <linux/crash_dump.h>
38 #include <linux/kprobes.h>
39 #include <asm/asm-offsets.h>
40 #include <asm/diag.h>
41 #include <asm/switch_to.h>
42 #include <asm/facility.h>
43 #include <asm/ipl.h>
44 #include <asm/setup.h>
45 #include <asm/irq.h>
46 #include <asm/tlbflush.h>
47 #include <asm/vtimer.h>
48 #include <asm/lowcore.h>
49 #include <asm/sclp.h>
50 #include <asm/vdso.h>
51 #include <asm/debug.h>
52 #include <asm/os_info.h>
53 #include <asm/sigp.h>
54 #include <asm/idle.h>
55 #include <asm/nmi.h>
56 #include <asm/topology.h>
57 #include "entry.h"
58
59 enum {
60         ec_schedule = 0,
61         ec_call_function_single,
62         ec_stop_cpu,
63 };
64
65 enum {
66         CPU_STATE_STANDBY,
67         CPU_STATE_CONFIGURED,
68 };
69
70 static DEFINE_PER_CPU(struct cpu *, cpu_device);
71
72 struct pcpu {
73         struct lowcore *lowcore;        /* lowcore page(s) for the cpu */
74         unsigned long ec_mask;          /* bit mask for ec_xxx functions */
75         unsigned long ec_clk;           /* sigp timestamp for ec_xxx */
76         signed char state;              /* physical cpu state */
77         signed char polarization;       /* physical polarization */
78         u16 address;                    /* physical cpu address */
79 };
80
81 static u8 boot_core_type;
82 static struct pcpu pcpu_devices[NR_CPUS];
83
84 unsigned int smp_cpu_mt_shift;
85 EXPORT_SYMBOL(smp_cpu_mt_shift);
86
87 unsigned int smp_cpu_mtid;
88 EXPORT_SYMBOL(smp_cpu_mtid);
89
90 #ifdef CONFIG_CRASH_DUMP
91 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
92 #endif
93
94 static unsigned int smp_max_threads __initdata = -1U;
95
96 static int __init early_nosmt(char *s)
97 {
98         smp_max_threads = 1;
99         return 0;
100 }
101 early_param("nosmt", early_nosmt);
102
103 static int __init early_smt(char *s)
104 {
105         get_option(&s, &smp_max_threads);
106         return 0;
107 }
108 early_param("smt", early_smt);
109
110 /*
111  * The smp_cpu_state_mutex must be held when changing the state or polarization
112  * member of a pcpu data structure within the pcpu_devices arreay.
113  */
114 DEFINE_MUTEX(smp_cpu_state_mutex);
115
116 /*
117  * Signal processor helper functions.
118  */
119 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
120 {
121         int cc;
122
123         while (1) {
124                 cc = __pcpu_sigp(addr, order, parm, NULL);
125                 if (cc != SIGP_CC_BUSY)
126                         return cc;
127                 cpu_relax();
128         }
129 }
130
131 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
132 {
133         int cc, retry;
134
135         for (retry = 0; ; retry++) {
136                 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
137                 if (cc != SIGP_CC_BUSY)
138                         break;
139                 if (retry >= 3)
140                         udelay(10);
141         }
142         return cc;
143 }
144
145 static inline int pcpu_stopped(struct pcpu *pcpu)
146 {
147         u32 uninitialized_var(status);
148
149         if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
150                         0, &status) != SIGP_CC_STATUS_STORED)
151                 return 0;
152         return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
153 }
154
155 static inline int pcpu_running(struct pcpu *pcpu)
156 {
157         if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
158                         0, NULL) != SIGP_CC_STATUS_STORED)
159                 return 1;
160         /* Status stored condition code is equivalent to cpu not running. */
161         return 0;
162 }
163
164 /*
165  * Find struct pcpu by cpu address.
166  */
167 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
168 {
169         int cpu;
170
171         for_each_cpu(cpu, mask)
172                 if (pcpu_devices[cpu].address == address)
173                         return pcpu_devices + cpu;
174         return NULL;
175 }
176
177 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
178 {
179         int order;
180
181         if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
182                 return;
183         order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
184         pcpu->ec_clk = get_tod_clock_fast();
185         pcpu_sigp_retry(pcpu, order, 0);
186 }
187
188 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
189 {
190         unsigned long async_stack, nodat_stack;
191         struct lowcore *lc;
192
193         if (pcpu != &pcpu_devices[0]) {
194                 pcpu->lowcore = (struct lowcore *)
195                         __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
196                 nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
197                 if (!pcpu->lowcore || !nodat_stack)
198                         goto out;
199         } else {
200                 nodat_stack = pcpu->lowcore->nodat_stack - STACK_INIT_OFFSET;
201         }
202         async_stack = stack_alloc();
203         if (!async_stack)
204                 goto out;
205         lc = pcpu->lowcore;
206         memcpy(lc, &S390_lowcore, 512);
207         memset((char *) lc + 512, 0, sizeof(*lc) - 512);
208         lc->async_stack = async_stack + STACK_INIT_OFFSET;
209         lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
210         lc->cpu_nr = cpu;
211         lc->spinlock_lockval = arch_spin_lockval(cpu);
212         lc->spinlock_index = 0;
213         lc->br_r1_trampoline = 0x07f1;  /* br %r1 */
214         if (nmi_alloc_per_cpu(lc))
215                 goto out_async;
216         if (vdso_alloc_per_cpu(lc))
217                 goto out_mcesa;
218         lowcore_ptr[cpu] = lc;
219         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
220         return 0;
221
222 out_mcesa:
223         nmi_free_per_cpu(lc);
224 out_async:
225         stack_free(async_stack);
226 out:
227         if (pcpu != &pcpu_devices[0]) {
228                 free_pages(nodat_stack, THREAD_SIZE_ORDER);
229                 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
230         }
231         return -ENOMEM;
232 }
233
234 #ifdef CONFIG_HOTPLUG_CPU
235
236 static void pcpu_free_lowcore(struct pcpu *pcpu)
237 {
238         unsigned long async_stack, nodat_stack, lowcore;
239
240         nodat_stack = pcpu->lowcore->nodat_stack - STACK_INIT_OFFSET;
241         async_stack = pcpu->lowcore->async_stack - STACK_INIT_OFFSET;
242         lowcore = (unsigned long) pcpu->lowcore;
243
244         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
245         lowcore_ptr[pcpu - pcpu_devices] = NULL;
246         vdso_free_per_cpu(pcpu->lowcore);
247         nmi_free_per_cpu(pcpu->lowcore);
248         stack_free(async_stack);
249         if (pcpu == &pcpu_devices[0])
250                 return;
251         free_pages(nodat_stack, THREAD_SIZE_ORDER);
252         free_pages(lowcore, LC_ORDER);
253 }
254
255 #endif /* CONFIG_HOTPLUG_CPU */
256
257 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
258 {
259         struct lowcore *lc = pcpu->lowcore;
260
261         cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
262         cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
263         lc->cpu_nr = cpu;
264         lc->spinlock_lockval = arch_spin_lockval(cpu);
265         lc->spinlock_index = 0;
266         lc->percpu_offset = __per_cpu_offset[cpu];
267         lc->kernel_asce = S390_lowcore.kernel_asce;
268         lc->machine_flags = S390_lowcore.machine_flags;
269         lc->user_timer = lc->system_timer = lc->steal_timer = 0;
270         __ctl_store(lc->cregs_save_area, 0, 15);
271         save_access_regs((unsigned int *) lc->access_regs_save_area);
272         memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
273                sizeof(lc->stfle_fac_list));
274         memcpy(lc->alt_stfle_fac_list, S390_lowcore.alt_stfle_fac_list,
275                sizeof(lc->alt_stfle_fac_list));
276         arch_spin_lock_setup(cpu);
277 }
278
279 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
280 {
281         struct lowcore *lc = pcpu->lowcore;
282
283         lc->kernel_stack = (unsigned long) task_stack_page(tsk)
284                 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
285         lc->current_task = (unsigned long) tsk;
286         lc->lpp = LPP_MAGIC;
287         lc->current_pid = tsk->pid;
288         lc->user_timer = tsk->thread.user_timer;
289         lc->guest_timer = tsk->thread.guest_timer;
290         lc->system_timer = tsk->thread.system_timer;
291         lc->hardirq_timer = tsk->thread.hardirq_timer;
292         lc->softirq_timer = tsk->thread.softirq_timer;
293         lc->steal_timer = 0;
294 }
295
296 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
297 {
298         struct lowcore *lc = pcpu->lowcore;
299
300         lc->restart_stack = lc->nodat_stack;
301         lc->restart_fn = (unsigned long) func;
302         lc->restart_data = (unsigned long) data;
303         lc->restart_source = -1UL;
304         pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
305 }
306
307 /*
308  * Call function via PSW restart on pcpu and stop the current cpu.
309  */
310 static void __pcpu_delegate(void (*func)(void*), void *data)
311 {
312         func(data);     /* should not return */
313 }
314
315 static void __no_sanitize_address pcpu_delegate(struct pcpu *pcpu,
316                                                 void (*func)(void *),
317                                                 void *data, unsigned long stack)
318 {
319         struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
320         unsigned long source_cpu = stap();
321
322         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
323         if (pcpu->address == source_cpu)
324                 CALL_ON_STACK(__pcpu_delegate, stack, 2, func, data);
325         /* Stop target cpu (if func returns this stops the current cpu). */
326         pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
327         /* Restart func on the target cpu and stop the current cpu. */
328         mem_assign_absolute(lc->restart_stack, stack);
329         mem_assign_absolute(lc->restart_fn, (unsigned long) func);
330         mem_assign_absolute(lc->restart_data, (unsigned long) data);
331         mem_assign_absolute(lc->restart_source, source_cpu);
332         __bpon();
333         asm volatile(
334                 "0:     sigp    0,%0,%2 # sigp restart to target cpu\n"
335                 "       brc     2,0b    # busy, try again\n"
336                 "1:     sigp    0,%1,%3 # sigp stop to current cpu\n"
337                 "       brc     2,1b    # busy, try again\n"
338                 : : "d" (pcpu->address), "d" (source_cpu),
339                     "K" (SIGP_RESTART), "K" (SIGP_STOP)
340                 : "0", "1", "cc");
341         for (;;) ;
342 }
343
344 /*
345  * Enable additional logical cpus for multi-threading.
346  */
347 static int pcpu_set_smt(unsigned int mtid)
348 {
349         int cc;
350
351         if (smp_cpu_mtid == mtid)
352                 return 0;
353         cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
354         if (cc == 0) {
355                 smp_cpu_mtid = mtid;
356                 smp_cpu_mt_shift = 0;
357                 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
358                         smp_cpu_mt_shift++;
359                 pcpu_devices[0].address = stap();
360         }
361         return cc;
362 }
363
364 /*
365  * Call function on an online CPU.
366  */
367 void smp_call_online_cpu(void (*func)(void *), void *data)
368 {
369         struct pcpu *pcpu;
370
371         /* Use the current cpu if it is online. */
372         pcpu = pcpu_find_address(cpu_online_mask, stap());
373         if (!pcpu)
374                 /* Use the first online cpu. */
375                 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
376         pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
377 }
378
379 /*
380  * Call function on the ipl CPU.
381  */
382 void smp_call_ipl_cpu(void (*func)(void *), void *data)
383 {
384         struct lowcore *lc = pcpu_devices->lowcore;
385
386         if (pcpu_devices[0].address == stap())
387                 lc = &S390_lowcore;
388
389         pcpu_delegate(&pcpu_devices[0], func, data,
390                       lc->nodat_stack);
391 }
392
393 int smp_find_processor_id(u16 address)
394 {
395         int cpu;
396
397         for_each_present_cpu(cpu)
398                 if (pcpu_devices[cpu].address == address)
399                         return cpu;
400         return -1;
401 }
402
403 bool arch_vcpu_is_preempted(int cpu)
404 {
405         if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
406                 return false;
407         if (pcpu_running(pcpu_devices + cpu))
408                 return false;
409         return true;
410 }
411 EXPORT_SYMBOL(arch_vcpu_is_preempted);
412
413 void smp_yield_cpu(int cpu)
414 {
415         if (MACHINE_HAS_DIAG9C) {
416                 diag_stat_inc_norecursion(DIAG_STAT_X09C);
417                 asm volatile("diag %0,0,0x9c"
418                              : : "d" (pcpu_devices[cpu].address));
419         } else if (MACHINE_HAS_DIAG44) {
420                 diag_stat_inc_norecursion(DIAG_STAT_X044);
421                 asm volatile("diag 0,0,0x44");
422         }
423 }
424
425 /*
426  * Send cpus emergency shutdown signal. This gives the cpus the
427  * opportunity to complete outstanding interrupts.
428  */
429 void notrace smp_emergency_stop(void)
430 {
431         cpumask_t cpumask;
432         u64 end;
433         int cpu;
434
435         cpumask_copy(&cpumask, cpu_online_mask);
436         cpumask_clear_cpu(smp_processor_id(), &cpumask);
437
438         end = get_tod_clock() + (1000000UL << 12);
439         for_each_cpu(cpu, &cpumask) {
440                 struct pcpu *pcpu = pcpu_devices + cpu;
441                 set_bit(ec_stop_cpu, &pcpu->ec_mask);
442                 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
443                                    0, NULL) == SIGP_CC_BUSY &&
444                        get_tod_clock() < end)
445                         cpu_relax();
446         }
447         while (get_tod_clock() < end) {
448                 for_each_cpu(cpu, &cpumask)
449                         if (pcpu_stopped(pcpu_devices + cpu))
450                                 cpumask_clear_cpu(cpu, &cpumask);
451                 if (cpumask_empty(&cpumask))
452                         break;
453                 cpu_relax();
454         }
455 }
456 NOKPROBE_SYMBOL(smp_emergency_stop);
457
458 /*
459  * Stop all cpus but the current one.
460  */
461 void smp_send_stop(void)
462 {
463         int cpu;
464
465         /* Disable all interrupts/machine checks */
466         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
467         trace_hardirqs_off();
468
469         debug_set_critical();
470
471         if (oops_in_progress)
472                 smp_emergency_stop();
473
474         /* stop all processors */
475         for_each_online_cpu(cpu) {
476                 if (cpu == smp_processor_id())
477                         continue;
478                 pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
479                 while (!pcpu_stopped(pcpu_devices + cpu))
480                         cpu_relax();
481         }
482 }
483
484 /*
485  * This is the main routine where commands issued by other
486  * cpus are handled.
487  */
488 static void smp_handle_ext_call(void)
489 {
490         unsigned long bits;
491
492         /* handle bit signal external calls */
493         bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
494         if (test_bit(ec_stop_cpu, &bits))
495                 smp_stop_cpu();
496         if (test_bit(ec_schedule, &bits))
497                 scheduler_ipi();
498         if (test_bit(ec_call_function_single, &bits))
499                 generic_smp_call_function_single_interrupt();
500 }
501
502 static void do_ext_call_interrupt(struct ext_code ext_code,
503                                   unsigned int param32, unsigned long param64)
504 {
505         inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
506         smp_handle_ext_call();
507 }
508
509 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
510 {
511         int cpu;
512
513         for_each_cpu(cpu, mask)
514                 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
515 }
516
517 void arch_send_call_function_single_ipi(int cpu)
518 {
519         pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
520 }
521
522 /*
523  * this function sends a 'reschedule' IPI to another CPU.
524  * it goes straight through and wastes no time serializing
525  * anything. Worst case is that we lose a reschedule ...
526  */
527 void smp_send_reschedule(int cpu)
528 {
529         pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
530 }
531
532 /*
533  * parameter area for the set/clear control bit callbacks
534  */
535 struct ec_creg_mask_parms {
536         unsigned long orval;
537         unsigned long andval;
538         int cr;
539 };
540
541 /*
542  * callback for setting/clearing control bits
543  */
544 static void smp_ctl_bit_callback(void *info)
545 {
546         struct ec_creg_mask_parms *pp = info;
547         unsigned long cregs[16];
548
549         __ctl_store(cregs, 0, 15);
550         cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
551         __ctl_load(cregs, 0, 15);
552 }
553
554 /*
555  * Set a bit in a control register of all cpus
556  */
557 void smp_ctl_set_bit(int cr, int bit)
558 {
559         struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
560
561         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
562 }
563 EXPORT_SYMBOL(smp_ctl_set_bit);
564
565 /*
566  * Clear a bit in a control register of all cpus
567  */
568 void smp_ctl_clear_bit(int cr, int bit)
569 {
570         struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
571
572         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
573 }
574 EXPORT_SYMBOL(smp_ctl_clear_bit);
575
576 #ifdef CONFIG_CRASH_DUMP
577
578 int smp_store_status(int cpu)
579 {
580         struct pcpu *pcpu = pcpu_devices + cpu;
581         unsigned long pa;
582
583         pa = __pa(&pcpu->lowcore->floating_pt_save_area);
584         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
585                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
586                 return -EIO;
587         if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
588                 return 0;
589         pa = __pa(pcpu->lowcore->mcesad & MCESA_ORIGIN_MASK);
590         if (MACHINE_HAS_GS)
591                 pa |= pcpu->lowcore->mcesad & MCESA_LC_MASK;
592         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
593                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
594                 return -EIO;
595         return 0;
596 }
597
598 /*
599  * Collect CPU state of the previous, crashed system.
600  * There are four cases:
601  * 1) standard zfcp dump
602  *    condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
603  *    The state for all CPUs except the boot CPU needs to be collected
604  *    with sigp stop-and-store-status. The boot CPU state is located in
605  *    the absolute lowcore of the memory stored in the HSA. The zcore code
606  *    will copy the boot CPU state from the HSA.
607  * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
608  *    condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
609  *    The state for all CPUs except the boot CPU needs to be collected
610  *    with sigp stop-and-store-status. The firmware or the boot-loader
611  *    stored the registers of the boot CPU in the absolute lowcore in the
612  *    memory of the old system.
613  * 3) kdump and the old kernel did not store the CPU state,
614  *    or stand-alone kdump for DASD
615  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
616  *    The state for all CPUs except the boot CPU needs to be collected
617  *    with sigp stop-and-store-status. The kexec code or the boot-loader
618  *    stored the registers of the boot CPU in the memory of the old system.
619  * 4) kdump and the old kernel stored the CPU state
620  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
621  *    This case does not exist for s390 anymore, setup_arch explicitly
622  *    deactivates the elfcorehdr= kernel parameter
623  */
624 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
625                                      bool is_boot_cpu, unsigned long page)
626 {
627         __vector128 *vxrs = (__vector128 *) page;
628
629         if (is_boot_cpu)
630                 vxrs = boot_cpu_vector_save_area;
631         else
632                 __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
633         save_area_add_vxrs(sa, vxrs);
634 }
635
636 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
637                                      bool is_boot_cpu, unsigned long page)
638 {
639         void *regs = (void *) page;
640
641         if (is_boot_cpu)
642                 copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
643         else
644                 __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
645         save_area_add_regs(sa, regs);
646 }
647
648 void __init smp_save_dump_cpus(void)
649 {
650         int addr, boot_cpu_addr, max_cpu_addr;
651         struct save_area *sa;
652         unsigned long page;
653         bool is_boot_cpu;
654
655         if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
656                 /* No previous system present, normal boot. */
657                 return;
658         /* Allocate a page as dumping area for the store status sigps */
659         page = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0, 1UL << 31);
660         if (!page)
661                 panic("ERROR: Failed to allocate %lx bytes below %lx\n",
662                       PAGE_SIZE, 1UL << 31);
663
664         /* Set multi-threading state to the previous system. */
665         pcpu_set_smt(sclp.mtid_prev);
666         boot_cpu_addr = stap();
667         max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
668         for (addr = 0; addr <= max_cpu_addr; addr++) {
669                 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
670                     SIGP_CC_NOT_OPERATIONAL)
671                         continue;
672                 is_boot_cpu = (addr == boot_cpu_addr);
673                 /* Allocate save area */
674                 sa = save_area_alloc(is_boot_cpu);
675                 if (!sa)
676                         panic("could not allocate memory for save area\n");
677                 if (MACHINE_HAS_VX)
678                         /* Get the vector registers */
679                         smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
680                 /*
681                  * For a zfcp dump OLDMEM_BASE == NULL and the registers
682                  * of the boot CPU are stored in the HSA. To retrieve
683                  * these registers an SCLP request is required which is
684                  * done by drivers/s390/char/zcore.c:init_cpu_info()
685                  */
686                 if (!is_boot_cpu || OLDMEM_BASE)
687                         /* Get the CPU registers */
688                         smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
689         }
690         memblock_free(page, PAGE_SIZE);
691         diag308_reset();
692         pcpu_set_smt(0);
693 }
694 #endif /* CONFIG_CRASH_DUMP */
695
696 void smp_cpu_set_polarization(int cpu, int val)
697 {
698         pcpu_devices[cpu].polarization = val;
699 }
700
701 int smp_cpu_get_polarization(int cpu)
702 {
703         return pcpu_devices[cpu].polarization;
704 }
705
706 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
707 {
708         static int use_sigp_detection;
709         int address;
710
711         if (use_sigp_detection || sclp_get_core_info(info, early)) {
712                 use_sigp_detection = 1;
713                 for (address = 0;
714                      address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
715                      address += (1U << smp_cpu_mt_shift)) {
716                         if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
717                             SIGP_CC_NOT_OPERATIONAL)
718                                 continue;
719                         info->core[info->configured].core_id =
720                                 address >> smp_cpu_mt_shift;
721                         info->configured++;
722                 }
723                 info->combined = info->configured;
724         }
725 }
726
727 static int smp_add_present_cpu(int cpu);
728
729 static int __smp_rescan_cpus(struct sclp_core_info *info, int sysfs_add)
730 {
731         struct pcpu *pcpu;
732         cpumask_t avail;
733         int cpu, nr, i, j;
734         u16 address;
735
736         nr = 0;
737         cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
738         cpu = cpumask_first(&avail);
739         for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
740                 if (sclp.has_core_type && info->core[i].type != boot_core_type)
741                         continue;
742                 address = info->core[i].core_id << smp_cpu_mt_shift;
743                 for (j = 0; j <= smp_cpu_mtid; j++) {
744                         if (pcpu_find_address(cpu_present_mask, address + j))
745                                 continue;
746                         pcpu = pcpu_devices + cpu;
747                         pcpu->address = address + j;
748                         pcpu->state =
749                                 (cpu >= info->configured*(smp_cpu_mtid + 1)) ?
750                                 CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
751                         smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
752                         set_cpu_present(cpu, true);
753                         if (sysfs_add && smp_add_present_cpu(cpu) != 0)
754                                 set_cpu_present(cpu, false);
755                         else
756                                 nr++;
757                         cpu = cpumask_next(cpu, &avail);
758                         if (cpu >= nr_cpu_ids)
759                                 break;
760                 }
761         }
762         return nr;
763 }
764
765 void __init smp_detect_cpus(void)
766 {
767         unsigned int cpu, mtid, c_cpus, s_cpus;
768         struct sclp_core_info *info;
769         u16 address;
770
771         /* Get CPU information */
772         info = memblock_alloc(sizeof(*info), 8);
773         if (!info)
774                 panic("%s: Failed to allocate %zu bytes align=0x%x\n",
775                       __func__, sizeof(*info), 8);
776         smp_get_core_info(info, 1);
777         /* Find boot CPU type */
778         if (sclp.has_core_type) {
779                 address = stap();
780                 for (cpu = 0; cpu < info->combined; cpu++)
781                         if (info->core[cpu].core_id == address) {
782                                 /* The boot cpu dictates the cpu type. */
783                                 boot_core_type = info->core[cpu].type;
784                                 break;
785                         }
786                 if (cpu >= info->combined)
787                         panic("Could not find boot CPU type");
788         }
789
790         /* Set multi-threading state for the current system */
791         mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
792         mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
793         pcpu_set_smt(mtid);
794
795         /* Print number of CPUs */
796         c_cpus = s_cpus = 0;
797         for (cpu = 0; cpu < info->combined; cpu++) {
798                 if (sclp.has_core_type &&
799                     info->core[cpu].type != boot_core_type)
800                         continue;
801                 if (cpu < info->configured)
802                         c_cpus += smp_cpu_mtid + 1;
803                 else
804                         s_cpus += smp_cpu_mtid + 1;
805         }
806         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
807
808         /* Add CPUs present at boot */
809         get_online_cpus();
810         __smp_rescan_cpus(info, 0);
811         put_online_cpus();
812         memblock_free_early((unsigned long)info, sizeof(*info));
813 }
814
815 static void smp_init_secondary(void)
816 {
817         int cpu = smp_processor_id();
818
819         S390_lowcore.last_update_clock = get_tod_clock();
820         restore_access_regs(S390_lowcore.access_regs_save_area);
821         cpu_init();
822         preempt_disable();
823         init_cpu_timer();
824         vtime_init();
825         pfault_init();
826         notify_cpu_starting(smp_processor_id());
827         if (topology_cpu_dedicated(cpu))
828                 set_cpu_flag(CIF_DEDICATED_CPU);
829         else
830                 clear_cpu_flag(CIF_DEDICATED_CPU);
831         set_cpu_online(smp_processor_id(), true);
832         inc_irq_stat(CPU_RST);
833         local_irq_enable();
834         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
835 }
836
837 /*
838  *      Activate a secondary processor.
839  */
840 static void __no_sanitize_address smp_start_secondary(void *cpuvoid)
841 {
842         S390_lowcore.restart_stack = (unsigned long) restart_stack;
843         S390_lowcore.restart_fn = (unsigned long) do_restart;
844         S390_lowcore.restart_data = 0;
845         S390_lowcore.restart_source = -1UL;
846         __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
847         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
848         CALL_ON_STACK(smp_init_secondary, S390_lowcore.kernel_stack, 0);
849 }
850
851 /* Upping and downing of CPUs */
852 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
853 {
854         struct pcpu *pcpu;
855         int base, i, rc;
856
857         pcpu = pcpu_devices + cpu;
858         if (pcpu->state != CPU_STATE_CONFIGURED)
859                 return -EIO;
860         base = smp_get_base_cpu(cpu);
861         for (i = 0; i <= smp_cpu_mtid; i++) {
862                 if (base + i < nr_cpu_ids)
863                         if (cpu_online(base + i))
864                                 break;
865         }
866         /*
867          * If this is the first CPU of the core to get online
868          * do an initial CPU reset.
869          */
870         if (i > smp_cpu_mtid &&
871             pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
872             SIGP_CC_ORDER_CODE_ACCEPTED)
873                 return -EIO;
874
875         rc = pcpu_alloc_lowcore(pcpu, cpu);
876         if (rc)
877                 return rc;
878         pcpu_prepare_secondary(pcpu, cpu);
879         pcpu_attach_task(pcpu, tidle);
880         pcpu_start_fn(pcpu, smp_start_secondary, NULL);
881         /* Wait until cpu puts itself in the online & active maps */
882         while (!cpu_online(cpu))
883                 cpu_relax();
884         return 0;
885 }
886
887 static unsigned int setup_possible_cpus __initdata;
888
889 static int __init _setup_possible_cpus(char *s)
890 {
891         get_option(&s, &setup_possible_cpus);
892         return 0;
893 }
894 early_param("possible_cpus", _setup_possible_cpus);
895
896 #ifdef CONFIG_HOTPLUG_CPU
897
898 int __cpu_disable(void)
899 {
900         unsigned long cregs[16];
901
902         /* Handle possible pending IPIs */
903         smp_handle_ext_call();
904         set_cpu_online(smp_processor_id(), false);
905         /* Disable pseudo page faults on this cpu. */
906         pfault_fini();
907         /* Disable interrupt sources via control register. */
908         __ctl_store(cregs, 0, 15);
909         cregs[0]  &= ~0x0000ee70UL;     /* disable all external interrupts */
910         cregs[6]  &= ~0xff000000UL;     /* disable all I/O interrupts */
911         cregs[14] &= ~0x1f000000UL;     /* disable most machine checks */
912         __ctl_load(cregs, 0, 15);
913         clear_cpu_flag(CIF_NOHZ_DELAY);
914         return 0;
915 }
916
917 void __cpu_die(unsigned int cpu)
918 {
919         struct pcpu *pcpu;
920
921         /* Wait until target cpu is down */
922         pcpu = pcpu_devices + cpu;
923         while (!pcpu_stopped(pcpu))
924                 cpu_relax();
925         pcpu_free_lowcore(pcpu);
926         cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
927         cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
928 }
929
930 void __noreturn cpu_die(void)
931 {
932         idle_task_exit();
933         __bpon();
934         pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
935         for (;;) ;
936 }
937
938 #endif /* CONFIG_HOTPLUG_CPU */
939
940 void __init smp_fill_possible_mask(void)
941 {
942         unsigned int possible, sclp_max, cpu;
943
944         sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
945         sclp_max = min(smp_max_threads, sclp_max);
946         sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
947         possible = setup_possible_cpus ?: nr_cpu_ids;
948         possible = min(possible, sclp_max);
949         for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
950                 set_cpu_possible(cpu, true);
951 }
952
953 void __init smp_prepare_cpus(unsigned int max_cpus)
954 {
955         /* request the 0x1201 emergency signal external interrupt */
956         if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
957                 panic("Couldn't request external interrupt 0x1201");
958         /* request the 0x1202 external call external interrupt */
959         if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
960                 panic("Couldn't request external interrupt 0x1202");
961 }
962
963 void __init smp_prepare_boot_cpu(void)
964 {
965         struct pcpu *pcpu = pcpu_devices;
966
967         WARN_ON(!cpu_present(0) || !cpu_online(0));
968         pcpu->state = CPU_STATE_CONFIGURED;
969         pcpu->lowcore = (struct lowcore *)(unsigned long) store_prefix();
970         S390_lowcore.percpu_offset = __per_cpu_offset[0];
971         smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
972 }
973
974 void __init smp_cpus_done(unsigned int max_cpus)
975 {
976 }
977
978 void __init smp_setup_processor_id(void)
979 {
980         pcpu_devices[0].address = stap();
981         S390_lowcore.cpu_nr = 0;
982         S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
983         S390_lowcore.spinlock_index = 0;
984 }
985
986 /*
987  * the frequency of the profiling timer can be changed
988  * by writing a multiplier value into /proc/profile.
989  *
990  * usually you want to run this on all CPUs ;)
991  */
992 int setup_profiling_timer(unsigned int multiplier)
993 {
994         return 0;
995 }
996
997 #ifdef CONFIG_HOTPLUG_CPU
998 static ssize_t cpu_configure_show(struct device *dev,
999                                   struct device_attribute *attr, char *buf)
1000 {
1001         ssize_t count;
1002
1003         mutex_lock(&smp_cpu_state_mutex);
1004         count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1005         mutex_unlock(&smp_cpu_state_mutex);
1006         return count;
1007 }
1008
1009 static ssize_t cpu_configure_store(struct device *dev,
1010                                    struct device_attribute *attr,
1011                                    const char *buf, size_t count)
1012 {
1013         struct pcpu *pcpu;
1014         int cpu, val, rc, i;
1015         char delim;
1016
1017         if (sscanf(buf, "%d %c", &val, &delim) != 1)
1018                 return -EINVAL;
1019         if (val != 0 && val != 1)
1020                 return -EINVAL;
1021         get_online_cpus();
1022         mutex_lock(&smp_cpu_state_mutex);
1023         rc = -EBUSY;
1024         /* disallow configuration changes of online cpus and cpu 0 */
1025         cpu = dev->id;
1026         cpu = smp_get_base_cpu(cpu);
1027         if (cpu == 0)
1028                 goto out;
1029         for (i = 0; i <= smp_cpu_mtid; i++)
1030                 if (cpu_online(cpu + i))
1031                         goto out;
1032         pcpu = pcpu_devices + cpu;
1033         rc = 0;
1034         switch (val) {
1035         case 0:
1036                 if (pcpu->state != CPU_STATE_CONFIGURED)
1037                         break;
1038                 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1039                 if (rc)
1040                         break;
1041                 for (i = 0; i <= smp_cpu_mtid; i++) {
1042                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1043                                 continue;
1044                         pcpu[i].state = CPU_STATE_STANDBY;
1045                         smp_cpu_set_polarization(cpu + i,
1046                                                  POLARIZATION_UNKNOWN);
1047                 }
1048                 topology_expect_change();
1049                 break;
1050         case 1:
1051                 if (pcpu->state != CPU_STATE_STANDBY)
1052                         break;
1053                 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1054                 if (rc)
1055                         break;
1056                 for (i = 0; i <= smp_cpu_mtid; i++) {
1057                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1058                                 continue;
1059                         pcpu[i].state = CPU_STATE_CONFIGURED;
1060                         smp_cpu_set_polarization(cpu + i,
1061                                                  POLARIZATION_UNKNOWN);
1062                 }
1063                 topology_expect_change();
1064                 break;
1065         default:
1066                 break;
1067         }
1068 out:
1069         mutex_unlock(&smp_cpu_state_mutex);
1070         put_online_cpus();
1071         return rc ? rc : count;
1072 }
1073 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1074 #endif /* CONFIG_HOTPLUG_CPU */
1075
1076 static ssize_t show_cpu_address(struct device *dev,
1077                                 struct device_attribute *attr, char *buf)
1078 {
1079         return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1080 }
1081 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1082
1083 static struct attribute *cpu_common_attrs[] = {
1084 #ifdef CONFIG_HOTPLUG_CPU
1085         &dev_attr_configure.attr,
1086 #endif
1087         &dev_attr_address.attr,
1088         NULL,
1089 };
1090
1091 static struct attribute_group cpu_common_attr_group = {
1092         .attrs = cpu_common_attrs,
1093 };
1094
1095 static struct attribute *cpu_online_attrs[] = {
1096         &dev_attr_idle_count.attr,
1097         &dev_attr_idle_time_us.attr,
1098         NULL,
1099 };
1100
1101 static struct attribute_group cpu_online_attr_group = {
1102         .attrs = cpu_online_attrs,
1103 };
1104
1105 static int smp_cpu_online(unsigned int cpu)
1106 {
1107         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1108
1109         return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1110 }
1111 static int smp_cpu_pre_down(unsigned int cpu)
1112 {
1113         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1114
1115         sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1116         return 0;
1117 }
1118
1119 static int smp_add_present_cpu(int cpu)
1120 {
1121         struct device *s;
1122         struct cpu *c;
1123         int rc;
1124
1125         c = kzalloc(sizeof(*c), GFP_KERNEL);
1126         if (!c)
1127                 return -ENOMEM;
1128         per_cpu(cpu_device, cpu) = c;
1129         s = &c->dev;
1130         c->hotpluggable = 1;
1131         rc = register_cpu(c, cpu);
1132         if (rc)
1133                 goto out;
1134         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1135         if (rc)
1136                 goto out_cpu;
1137         rc = topology_cpu_init(c);
1138         if (rc)
1139                 goto out_topology;
1140         return 0;
1141
1142 out_topology:
1143         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1144 out_cpu:
1145 #ifdef CONFIG_HOTPLUG_CPU
1146         unregister_cpu(c);
1147 #endif
1148 out:
1149         return rc;
1150 }
1151
1152 #ifdef CONFIG_HOTPLUG_CPU
1153
1154 int __ref smp_rescan_cpus(void)
1155 {
1156         struct sclp_core_info *info;
1157         int nr;
1158
1159         info = kzalloc(sizeof(*info), GFP_KERNEL);
1160         if (!info)
1161                 return -ENOMEM;
1162         smp_get_core_info(info, 0);
1163         get_online_cpus();
1164         mutex_lock(&smp_cpu_state_mutex);
1165         nr = __smp_rescan_cpus(info, 1);
1166         mutex_unlock(&smp_cpu_state_mutex);
1167         put_online_cpus();
1168         kfree(info);
1169         if (nr)
1170                 topology_schedule_update();
1171         return 0;
1172 }
1173
1174 static ssize_t __ref rescan_store(struct device *dev,
1175                                   struct device_attribute *attr,
1176                                   const char *buf,
1177                                   size_t count)
1178 {
1179         int rc;
1180
1181         rc = lock_device_hotplug_sysfs();
1182         if (rc)
1183                 return rc;
1184         rc = smp_rescan_cpus();
1185         unlock_device_hotplug();
1186         return rc ? rc : count;
1187 }
1188 static DEVICE_ATTR_WO(rescan);
1189 #endif /* CONFIG_HOTPLUG_CPU */
1190
1191 static int __init s390_smp_init(void)
1192 {
1193         int cpu, rc = 0;
1194
1195 #ifdef CONFIG_HOTPLUG_CPU
1196         rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1197         if (rc)
1198                 return rc;
1199 #endif
1200         for_each_present_cpu(cpu) {
1201                 rc = smp_add_present_cpu(cpu);
1202                 if (rc)
1203                         goto out;
1204         }
1205
1206         rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1207                                smp_cpu_online, smp_cpu_pre_down);
1208         rc = rc <= 0 ? rc : 0;
1209 out:
1210         return rc;
1211 }
1212 subsys_initcall(s390_smp_init);