]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/s390/kernel/smp.c
ASoC: ux500: add MODULE_LICENSE tag
[linux.git] / arch / s390 / kernel / smp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  SMP related functions
4  *
5  *    Copyright IBM Corp. 1999, 2012
6  *    Author(s): Denis Joseph Barrow,
7  *               Martin Schwidefsky <schwidefsky@de.ibm.com>,
8  *               Heiko Carstens <heiko.carstens@de.ibm.com>,
9  *
10  *  based on other smp stuff by
11  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
12  *    (c) 1998 Ingo Molnar
13  *
14  * The code outside of smp.c uses logical cpu numbers, only smp.c does
15  * the translation of logical to physical cpu ids. All new code that
16  * operates on physical cpu numbers needs to go into smp.c.
17  */
18
19 #define KMSG_COMPONENT "cpu"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21
22 #include <linux/workqueue.h>
23 #include <linux/bootmem.h>
24 #include <linux/export.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/err.h>
28 #include <linux/spinlock.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/kmemleak.h>
31 #include <linux/delay.h>
32 #include <linux/interrupt.h>
33 #include <linux/irqflags.h>
34 #include <linux/cpu.h>
35 #include <linux/slab.h>
36 #include <linux/sched/hotplug.h>
37 #include <linux/sched/task_stack.h>
38 #include <linux/crash_dump.h>
39 #include <linux/memblock.h>
40 #include <linux/kprobes.h>
41 #include <asm/asm-offsets.h>
42 #include <asm/diag.h>
43 #include <asm/switch_to.h>
44 #include <asm/facility.h>
45 #include <asm/ipl.h>
46 #include <asm/setup.h>
47 #include <asm/irq.h>
48 #include <asm/tlbflush.h>
49 #include <asm/vtimer.h>
50 #include <asm/lowcore.h>
51 #include <asm/sclp.h>
52 #include <asm/vdso.h>
53 #include <asm/debug.h>
54 #include <asm/os_info.h>
55 #include <asm/sigp.h>
56 #include <asm/idle.h>
57 #include <asm/nmi.h>
58 #include "entry.h"
59
60 enum {
61         ec_schedule = 0,
62         ec_call_function_single,
63         ec_stop_cpu,
64 };
65
66 enum {
67         CPU_STATE_STANDBY,
68         CPU_STATE_CONFIGURED,
69 };
70
71 static DEFINE_PER_CPU(struct cpu *, cpu_device);
72
73 struct pcpu {
74         struct lowcore *lowcore;        /* lowcore page(s) for the cpu */
75         unsigned long ec_mask;          /* bit mask for ec_xxx functions */
76         unsigned long ec_clk;           /* sigp timestamp for ec_xxx */
77         signed char state;              /* physical cpu state */
78         signed char polarization;       /* physical polarization */
79         u16 address;                    /* physical cpu address */
80 };
81
82 static u8 boot_core_type;
83 static struct pcpu pcpu_devices[NR_CPUS];
84
85 unsigned int smp_cpu_mt_shift;
86 EXPORT_SYMBOL(smp_cpu_mt_shift);
87
88 unsigned int smp_cpu_mtid;
89 EXPORT_SYMBOL(smp_cpu_mtid);
90
91 #ifdef CONFIG_CRASH_DUMP
92 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
93 #endif
94
95 static unsigned int smp_max_threads __initdata = -1U;
96
97 static int __init early_nosmt(char *s)
98 {
99         smp_max_threads = 1;
100         return 0;
101 }
102 early_param("nosmt", early_nosmt);
103
104 static int __init early_smt(char *s)
105 {
106         get_option(&s, &smp_max_threads);
107         return 0;
108 }
109 early_param("smt", early_smt);
110
111 /*
112  * The smp_cpu_state_mutex must be held when changing the state or polarization
113  * member of a pcpu data structure within the pcpu_devices arreay.
114  */
115 DEFINE_MUTEX(smp_cpu_state_mutex);
116
117 /*
118  * Signal processor helper functions.
119  */
120 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
121 {
122         int cc;
123
124         while (1) {
125                 cc = __pcpu_sigp(addr, order, parm, NULL);
126                 if (cc != SIGP_CC_BUSY)
127                         return cc;
128                 cpu_relax();
129         }
130 }
131
132 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
133 {
134         int cc, retry;
135
136         for (retry = 0; ; retry++) {
137                 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
138                 if (cc != SIGP_CC_BUSY)
139                         break;
140                 if (retry >= 3)
141                         udelay(10);
142         }
143         return cc;
144 }
145
146 static inline int pcpu_stopped(struct pcpu *pcpu)
147 {
148         u32 uninitialized_var(status);
149
150         if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
151                         0, &status) != SIGP_CC_STATUS_STORED)
152                 return 0;
153         return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
154 }
155
156 static inline int pcpu_running(struct pcpu *pcpu)
157 {
158         if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
159                         0, NULL) != SIGP_CC_STATUS_STORED)
160                 return 1;
161         /* Status stored condition code is equivalent to cpu not running. */
162         return 0;
163 }
164
165 /*
166  * Find struct pcpu by cpu address.
167  */
168 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
169 {
170         int cpu;
171
172         for_each_cpu(cpu, mask)
173                 if (pcpu_devices[cpu].address == address)
174                         return pcpu_devices + cpu;
175         return NULL;
176 }
177
178 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
179 {
180         int order;
181
182         if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
183                 return;
184         order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
185         pcpu->ec_clk = get_tod_clock_fast();
186         pcpu_sigp_retry(pcpu, order, 0);
187 }
188
189 #define ASYNC_FRAME_OFFSET (ASYNC_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
190 #define PANIC_FRAME_OFFSET (PAGE_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
191
192 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
193 {
194         unsigned long async_stack, panic_stack;
195         struct lowcore *lc;
196
197         if (pcpu != &pcpu_devices[0]) {
198                 pcpu->lowcore = (struct lowcore *)
199                         __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
200                 async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
201                 panic_stack = __get_free_page(GFP_KERNEL);
202                 if (!pcpu->lowcore || !panic_stack || !async_stack)
203                         goto out;
204         } else {
205                 async_stack = pcpu->lowcore->async_stack - ASYNC_FRAME_OFFSET;
206                 panic_stack = pcpu->lowcore->panic_stack - PANIC_FRAME_OFFSET;
207         }
208         lc = pcpu->lowcore;
209         memcpy(lc, &S390_lowcore, 512);
210         memset((char *) lc + 512, 0, sizeof(*lc) - 512);
211         lc->async_stack = async_stack + ASYNC_FRAME_OFFSET;
212         lc->panic_stack = panic_stack + PANIC_FRAME_OFFSET;
213         lc->cpu_nr = cpu;
214         lc->spinlock_lockval = arch_spin_lockval(cpu);
215         lc->spinlock_index = 0;
216         if (nmi_alloc_per_cpu(lc))
217                 goto out;
218         if (vdso_alloc_per_cpu(lc))
219                 goto out_mcesa;
220         lowcore_ptr[cpu] = lc;
221         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
222         return 0;
223
224 out_mcesa:
225         nmi_free_per_cpu(lc);
226 out:
227         if (pcpu != &pcpu_devices[0]) {
228                 free_page(panic_stack);
229                 free_pages(async_stack, ASYNC_ORDER);
230                 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
231         }
232         return -ENOMEM;
233 }
234
235 #ifdef CONFIG_HOTPLUG_CPU
236
237 static void pcpu_free_lowcore(struct pcpu *pcpu)
238 {
239         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
240         lowcore_ptr[pcpu - pcpu_devices] = NULL;
241         vdso_free_per_cpu(pcpu->lowcore);
242         nmi_free_per_cpu(pcpu->lowcore);
243         if (pcpu == &pcpu_devices[0])
244                 return;
245         free_page(pcpu->lowcore->panic_stack-PANIC_FRAME_OFFSET);
246         free_pages(pcpu->lowcore->async_stack-ASYNC_FRAME_OFFSET, ASYNC_ORDER);
247         free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
248 }
249
250 #endif /* CONFIG_HOTPLUG_CPU */
251
252 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
253 {
254         struct lowcore *lc = pcpu->lowcore;
255
256         cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
257         cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
258         lc->cpu_nr = cpu;
259         lc->spinlock_lockval = arch_spin_lockval(cpu);
260         lc->spinlock_index = 0;
261         lc->percpu_offset = __per_cpu_offset[cpu];
262         lc->kernel_asce = S390_lowcore.kernel_asce;
263         lc->machine_flags = S390_lowcore.machine_flags;
264         lc->user_timer = lc->system_timer = lc->steal_timer = 0;
265         __ctl_store(lc->cregs_save_area, 0, 15);
266         save_access_regs((unsigned int *) lc->access_regs_save_area);
267         memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
268                MAX_FACILITY_BIT/8);
269         arch_spin_lock_setup(cpu);
270 }
271
272 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
273 {
274         struct lowcore *lc = pcpu->lowcore;
275
276         lc->kernel_stack = (unsigned long) task_stack_page(tsk)
277                 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
278         lc->current_task = (unsigned long) tsk;
279         lc->lpp = LPP_MAGIC;
280         lc->current_pid = tsk->pid;
281         lc->user_timer = tsk->thread.user_timer;
282         lc->guest_timer = tsk->thread.guest_timer;
283         lc->system_timer = tsk->thread.system_timer;
284         lc->hardirq_timer = tsk->thread.hardirq_timer;
285         lc->softirq_timer = tsk->thread.softirq_timer;
286         lc->steal_timer = 0;
287 }
288
289 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
290 {
291         struct lowcore *lc = pcpu->lowcore;
292
293         lc->restart_stack = lc->kernel_stack;
294         lc->restart_fn = (unsigned long) func;
295         lc->restart_data = (unsigned long) data;
296         lc->restart_source = -1UL;
297         pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
298 }
299
300 /*
301  * Call function via PSW restart on pcpu and stop the current cpu.
302  */
303 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
304                           void *data, unsigned long stack)
305 {
306         struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
307         unsigned long source_cpu = stap();
308
309         __load_psw_mask(PSW_KERNEL_BITS);
310         if (pcpu->address == source_cpu)
311                 func(data);     /* should not return */
312         /* Stop target cpu (if func returns this stops the current cpu). */
313         pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
314         /* Restart func on the target cpu and stop the current cpu. */
315         mem_assign_absolute(lc->restart_stack, stack);
316         mem_assign_absolute(lc->restart_fn, (unsigned long) func);
317         mem_assign_absolute(lc->restart_data, (unsigned long) data);
318         mem_assign_absolute(lc->restart_source, source_cpu);
319         asm volatile(
320                 "0:     sigp    0,%0,%2 # sigp restart to target cpu\n"
321                 "       brc     2,0b    # busy, try again\n"
322                 "1:     sigp    0,%1,%3 # sigp stop to current cpu\n"
323                 "       brc     2,1b    # busy, try again\n"
324                 : : "d" (pcpu->address), "d" (source_cpu),
325                     "K" (SIGP_RESTART), "K" (SIGP_STOP)
326                 : "0", "1", "cc");
327         for (;;) ;
328 }
329
330 /*
331  * Enable additional logical cpus for multi-threading.
332  */
333 static int pcpu_set_smt(unsigned int mtid)
334 {
335         int cc;
336
337         if (smp_cpu_mtid == mtid)
338                 return 0;
339         cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
340         if (cc == 0) {
341                 smp_cpu_mtid = mtid;
342                 smp_cpu_mt_shift = 0;
343                 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
344                         smp_cpu_mt_shift++;
345                 pcpu_devices[0].address = stap();
346         }
347         return cc;
348 }
349
350 /*
351  * Call function on an online CPU.
352  */
353 void smp_call_online_cpu(void (*func)(void *), void *data)
354 {
355         struct pcpu *pcpu;
356
357         /* Use the current cpu if it is online. */
358         pcpu = pcpu_find_address(cpu_online_mask, stap());
359         if (!pcpu)
360                 /* Use the first online cpu. */
361                 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
362         pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
363 }
364
365 /*
366  * Call function on the ipl CPU.
367  */
368 void smp_call_ipl_cpu(void (*func)(void *), void *data)
369 {
370         pcpu_delegate(&pcpu_devices[0], func, data,
371                       pcpu_devices->lowcore->panic_stack -
372                       PANIC_FRAME_OFFSET + PAGE_SIZE);
373 }
374
375 int smp_find_processor_id(u16 address)
376 {
377         int cpu;
378
379         for_each_present_cpu(cpu)
380                 if (pcpu_devices[cpu].address == address)
381                         return cpu;
382         return -1;
383 }
384
385 bool arch_vcpu_is_preempted(int cpu)
386 {
387         if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
388                 return false;
389         if (pcpu_running(pcpu_devices + cpu))
390                 return false;
391         return true;
392 }
393 EXPORT_SYMBOL(arch_vcpu_is_preempted);
394
395 void smp_yield_cpu(int cpu)
396 {
397         if (MACHINE_HAS_DIAG9C) {
398                 diag_stat_inc_norecursion(DIAG_STAT_X09C);
399                 asm volatile("diag %0,0,0x9c"
400                              : : "d" (pcpu_devices[cpu].address));
401         } else if (MACHINE_HAS_DIAG44) {
402                 diag_stat_inc_norecursion(DIAG_STAT_X044);
403                 asm volatile("diag 0,0,0x44");
404         }
405 }
406
407 /*
408  * Send cpus emergency shutdown signal. This gives the cpus the
409  * opportunity to complete outstanding interrupts.
410  */
411 void notrace smp_emergency_stop(void)
412 {
413         cpumask_t cpumask;
414         u64 end;
415         int cpu;
416
417         cpumask_copy(&cpumask, cpu_online_mask);
418         cpumask_clear_cpu(smp_processor_id(), &cpumask);
419
420         end = get_tod_clock() + (1000000UL << 12);
421         for_each_cpu(cpu, &cpumask) {
422                 struct pcpu *pcpu = pcpu_devices + cpu;
423                 set_bit(ec_stop_cpu, &pcpu->ec_mask);
424                 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
425                                    0, NULL) == SIGP_CC_BUSY &&
426                        get_tod_clock() < end)
427                         cpu_relax();
428         }
429         while (get_tod_clock() < end) {
430                 for_each_cpu(cpu, &cpumask)
431                         if (pcpu_stopped(pcpu_devices + cpu))
432                                 cpumask_clear_cpu(cpu, &cpumask);
433                 if (cpumask_empty(&cpumask))
434                         break;
435                 cpu_relax();
436         }
437 }
438 NOKPROBE_SYMBOL(smp_emergency_stop);
439
440 /*
441  * Stop all cpus but the current one.
442  */
443 void smp_send_stop(void)
444 {
445         int cpu;
446
447         /* Disable all interrupts/machine checks */
448         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
449         trace_hardirqs_off();
450
451         debug_set_critical();
452
453         if (oops_in_progress)
454                 smp_emergency_stop();
455
456         /* stop all processors */
457         for_each_online_cpu(cpu) {
458                 if (cpu == smp_processor_id())
459                         continue;
460                 pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
461                 while (!pcpu_stopped(pcpu_devices + cpu))
462                         cpu_relax();
463         }
464 }
465
466 /*
467  * This is the main routine where commands issued by other
468  * cpus are handled.
469  */
470 static void smp_handle_ext_call(void)
471 {
472         unsigned long bits;
473
474         /* handle bit signal external calls */
475         bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
476         if (test_bit(ec_stop_cpu, &bits))
477                 smp_stop_cpu();
478         if (test_bit(ec_schedule, &bits))
479                 scheduler_ipi();
480         if (test_bit(ec_call_function_single, &bits))
481                 generic_smp_call_function_single_interrupt();
482 }
483
484 static void do_ext_call_interrupt(struct ext_code ext_code,
485                                   unsigned int param32, unsigned long param64)
486 {
487         inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
488         smp_handle_ext_call();
489 }
490
491 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
492 {
493         int cpu;
494
495         for_each_cpu(cpu, mask)
496                 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
497 }
498
499 void arch_send_call_function_single_ipi(int cpu)
500 {
501         pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
502 }
503
504 /*
505  * this function sends a 'reschedule' IPI to another CPU.
506  * it goes straight through and wastes no time serializing
507  * anything. Worst case is that we lose a reschedule ...
508  */
509 void smp_send_reschedule(int cpu)
510 {
511         pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
512 }
513
514 /*
515  * parameter area for the set/clear control bit callbacks
516  */
517 struct ec_creg_mask_parms {
518         unsigned long orval;
519         unsigned long andval;
520         int cr;
521 };
522
523 /*
524  * callback for setting/clearing control bits
525  */
526 static void smp_ctl_bit_callback(void *info)
527 {
528         struct ec_creg_mask_parms *pp = info;
529         unsigned long cregs[16];
530
531         __ctl_store(cregs, 0, 15);
532         cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
533         __ctl_load(cregs, 0, 15);
534 }
535
536 /*
537  * Set a bit in a control register of all cpus
538  */
539 void smp_ctl_set_bit(int cr, int bit)
540 {
541         struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
542
543         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
544 }
545 EXPORT_SYMBOL(smp_ctl_set_bit);
546
547 /*
548  * Clear a bit in a control register of all cpus
549  */
550 void smp_ctl_clear_bit(int cr, int bit)
551 {
552         struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
553
554         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
555 }
556 EXPORT_SYMBOL(smp_ctl_clear_bit);
557
558 #ifdef CONFIG_CRASH_DUMP
559
560 int smp_store_status(int cpu)
561 {
562         struct pcpu *pcpu = pcpu_devices + cpu;
563         unsigned long pa;
564
565         pa = __pa(&pcpu->lowcore->floating_pt_save_area);
566         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
567                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
568                 return -EIO;
569         if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
570                 return 0;
571         pa = __pa(pcpu->lowcore->mcesad & MCESA_ORIGIN_MASK);
572         if (MACHINE_HAS_GS)
573                 pa |= pcpu->lowcore->mcesad & MCESA_LC_MASK;
574         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
575                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
576                 return -EIO;
577         return 0;
578 }
579
580 /*
581  * Collect CPU state of the previous, crashed system.
582  * There are four cases:
583  * 1) standard zfcp dump
584  *    condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
585  *    The state for all CPUs except the boot CPU needs to be collected
586  *    with sigp stop-and-store-status. The boot CPU state is located in
587  *    the absolute lowcore of the memory stored in the HSA. The zcore code
588  *    will copy the boot CPU state from the HSA.
589  * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
590  *    condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
591  *    The state for all CPUs except the boot CPU needs to be collected
592  *    with sigp stop-and-store-status. The firmware or the boot-loader
593  *    stored the registers of the boot CPU in the absolute lowcore in the
594  *    memory of the old system.
595  * 3) kdump and the old kernel did not store the CPU state,
596  *    or stand-alone kdump for DASD
597  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
598  *    The state for all CPUs except the boot CPU needs to be collected
599  *    with sigp stop-and-store-status. The kexec code or the boot-loader
600  *    stored the registers of the boot CPU in the memory of the old system.
601  * 4) kdump and the old kernel stored the CPU state
602  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
603  *    This case does not exist for s390 anymore, setup_arch explicitly
604  *    deactivates the elfcorehdr= kernel parameter
605  */
606 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
607                                      bool is_boot_cpu, unsigned long page)
608 {
609         __vector128 *vxrs = (__vector128 *) page;
610
611         if (is_boot_cpu)
612                 vxrs = boot_cpu_vector_save_area;
613         else
614                 __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
615         save_area_add_vxrs(sa, vxrs);
616 }
617
618 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
619                                      bool is_boot_cpu, unsigned long page)
620 {
621         void *regs = (void *) page;
622
623         if (is_boot_cpu)
624                 copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
625         else
626                 __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
627         save_area_add_regs(sa, regs);
628 }
629
630 void __init smp_save_dump_cpus(void)
631 {
632         int addr, boot_cpu_addr, max_cpu_addr;
633         struct save_area *sa;
634         unsigned long page;
635         bool is_boot_cpu;
636
637         if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
638                 /* No previous system present, normal boot. */
639                 return;
640         /* Allocate a page as dumping area for the store status sigps */
641         page = memblock_alloc_base(PAGE_SIZE, PAGE_SIZE, 1UL << 31);
642         /* Set multi-threading state to the previous system. */
643         pcpu_set_smt(sclp.mtid_prev);
644         boot_cpu_addr = stap();
645         max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
646         for (addr = 0; addr <= max_cpu_addr; addr++) {
647                 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
648                     SIGP_CC_NOT_OPERATIONAL)
649                         continue;
650                 is_boot_cpu = (addr == boot_cpu_addr);
651                 /* Allocate save area */
652                 sa = save_area_alloc(is_boot_cpu);
653                 if (!sa)
654                         panic("could not allocate memory for save area\n");
655                 if (MACHINE_HAS_VX)
656                         /* Get the vector registers */
657                         smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
658                 /*
659                  * For a zfcp dump OLDMEM_BASE == NULL and the registers
660                  * of the boot CPU are stored in the HSA. To retrieve
661                  * these registers an SCLP request is required which is
662                  * done by drivers/s390/char/zcore.c:init_cpu_info()
663                  */
664                 if (!is_boot_cpu || OLDMEM_BASE)
665                         /* Get the CPU registers */
666                         smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
667         }
668         memblock_free(page, PAGE_SIZE);
669         diag308_reset();
670         pcpu_set_smt(0);
671 }
672 #endif /* CONFIG_CRASH_DUMP */
673
674 void smp_cpu_set_polarization(int cpu, int val)
675 {
676         pcpu_devices[cpu].polarization = val;
677 }
678
679 int smp_cpu_get_polarization(int cpu)
680 {
681         return pcpu_devices[cpu].polarization;
682 }
683
684 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
685 {
686         static int use_sigp_detection;
687         int address;
688
689         if (use_sigp_detection || sclp_get_core_info(info, early)) {
690                 use_sigp_detection = 1;
691                 for (address = 0;
692                      address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
693                      address += (1U << smp_cpu_mt_shift)) {
694                         if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
695                             SIGP_CC_NOT_OPERATIONAL)
696                                 continue;
697                         info->core[info->configured].core_id =
698                                 address >> smp_cpu_mt_shift;
699                         info->configured++;
700                 }
701                 info->combined = info->configured;
702         }
703 }
704
705 static int smp_add_present_cpu(int cpu);
706
707 static int __smp_rescan_cpus(struct sclp_core_info *info, int sysfs_add)
708 {
709         struct pcpu *pcpu;
710         cpumask_t avail;
711         int cpu, nr, i, j;
712         u16 address;
713
714         nr = 0;
715         cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
716         cpu = cpumask_first(&avail);
717         for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
718                 if (sclp.has_core_type && info->core[i].type != boot_core_type)
719                         continue;
720                 address = info->core[i].core_id << smp_cpu_mt_shift;
721                 for (j = 0; j <= smp_cpu_mtid; j++) {
722                         if (pcpu_find_address(cpu_present_mask, address + j))
723                                 continue;
724                         pcpu = pcpu_devices + cpu;
725                         pcpu->address = address + j;
726                         pcpu->state =
727                                 (cpu >= info->configured*(smp_cpu_mtid + 1)) ?
728                                 CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
729                         smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
730                         set_cpu_present(cpu, true);
731                         if (sysfs_add && smp_add_present_cpu(cpu) != 0)
732                                 set_cpu_present(cpu, false);
733                         else
734                                 nr++;
735                         cpu = cpumask_next(cpu, &avail);
736                         if (cpu >= nr_cpu_ids)
737                                 break;
738                 }
739         }
740         return nr;
741 }
742
743 void __init smp_detect_cpus(void)
744 {
745         unsigned int cpu, mtid, c_cpus, s_cpus;
746         struct sclp_core_info *info;
747         u16 address;
748
749         /* Get CPU information */
750         info = memblock_virt_alloc(sizeof(*info), 8);
751         smp_get_core_info(info, 1);
752         /* Find boot CPU type */
753         if (sclp.has_core_type) {
754                 address = stap();
755                 for (cpu = 0; cpu < info->combined; cpu++)
756                         if (info->core[cpu].core_id == address) {
757                                 /* The boot cpu dictates the cpu type. */
758                                 boot_core_type = info->core[cpu].type;
759                                 break;
760                         }
761                 if (cpu >= info->combined)
762                         panic("Could not find boot CPU type");
763         }
764
765         /* Set multi-threading state for the current system */
766         mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
767         mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
768         pcpu_set_smt(mtid);
769
770         /* Print number of CPUs */
771         c_cpus = s_cpus = 0;
772         for (cpu = 0; cpu < info->combined; cpu++) {
773                 if (sclp.has_core_type &&
774                     info->core[cpu].type != boot_core_type)
775                         continue;
776                 if (cpu < info->configured)
777                         c_cpus += smp_cpu_mtid + 1;
778                 else
779                         s_cpus += smp_cpu_mtid + 1;
780         }
781         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
782
783         /* Add CPUs present at boot */
784         get_online_cpus();
785         __smp_rescan_cpus(info, 0);
786         put_online_cpus();
787         memblock_free_early((unsigned long)info, sizeof(*info));
788 }
789
790 /*
791  *      Activate a secondary processor.
792  */
793 static void smp_start_secondary(void *cpuvoid)
794 {
795         int cpu = smp_processor_id();
796
797         S390_lowcore.last_update_clock = get_tod_clock();
798         S390_lowcore.restart_stack = (unsigned long) restart_stack;
799         S390_lowcore.restart_fn = (unsigned long) do_restart;
800         S390_lowcore.restart_data = 0;
801         S390_lowcore.restart_source = -1UL;
802         restore_access_regs(S390_lowcore.access_regs_save_area);
803         __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
804         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
805         cpu_init();
806         preempt_disable();
807         init_cpu_timer();
808         vtime_init();
809         pfault_init();
810         notify_cpu_starting(cpu);
811         if (topology_cpu_dedicated(cpu))
812                 set_cpu_flag(CIF_DEDICATED_CPU);
813         else
814                 clear_cpu_flag(CIF_DEDICATED_CPU);
815         set_cpu_online(cpu, true);
816         inc_irq_stat(CPU_RST);
817         local_irq_enable();
818         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
819 }
820
821 /* Upping and downing of CPUs */
822 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
823 {
824         struct pcpu *pcpu;
825         int base, i, rc;
826
827         pcpu = pcpu_devices + cpu;
828         if (pcpu->state != CPU_STATE_CONFIGURED)
829                 return -EIO;
830         base = smp_get_base_cpu(cpu);
831         for (i = 0; i <= smp_cpu_mtid; i++) {
832                 if (base + i < nr_cpu_ids)
833                         if (cpu_online(base + i))
834                                 break;
835         }
836         /*
837          * If this is the first CPU of the core to get online
838          * do an initial CPU reset.
839          */
840         if (i > smp_cpu_mtid &&
841             pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
842             SIGP_CC_ORDER_CODE_ACCEPTED)
843                 return -EIO;
844
845         rc = pcpu_alloc_lowcore(pcpu, cpu);
846         if (rc)
847                 return rc;
848         pcpu_prepare_secondary(pcpu, cpu);
849         pcpu_attach_task(pcpu, tidle);
850         pcpu_start_fn(pcpu, smp_start_secondary, NULL);
851         /* Wait until cpu puts itself in the online & active maps */
852         while (!cpu_online(cpu))
853                 cpu_relax();
854         return 0;
855 }
856
857 static unsigned int setup_possible_cpus __initdata;
858
859 static int __init _setup_possible_cpus(char *s)
860 {
861         get_option(&s, &setup_possible_cpus);
862         return 0;
863 }
864 early_param("possible_cpus", _setup_possible_cpus);
865
866 #ifdef CONFIG_HOTPLUG_CPU
867
868 int __cpu_disable(void)
869 {
870         unsigned long cregs[16];
871
872         /* Handle possible pending IPIs */
873         smp_handle_ext_call();
874         set_cpu_online(smp_processor_id(), false);
875         /* Disable pseudo page faults on this cpu. */
876         pfault_fini();
877         /* Disable interrupt sources via control register. */
878         __ctl_store(cregs, 0, 15);
879         cregs[0]  &= ~0x0000ee70UL;     /* disable all external interrupts */
880         cregs[6]  &= ~0xff000000UL;     /* disable all I/O interrupts */
881         cregs[14] &= ~0x1f000000UL;     /* disable most machine checks */
882         __ctl_load(cregs, 0, 15);
883         clear_cpu_flag(CIF_NOHZ_DELAY);
884         return 0;
885 }
886
887 void __cpu_die(unsigned int cpu)
888 {
889         struct pcpu *pcpu;
890
891         /* Wait until target cpu is down */
892         pcpu = pcpu_devices + cpu;
893         while (!pcpu_stopped(pcpu))
894                 cpu_relax();
895         pcpu_free_lowcore(pcpu);
896         cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
897         cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
898 }
899
900 void __noreturn cpu_die(void)
901 {
902         idle_task_exit();
903         pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
904         for (;;) ;
905 }
906
907 #endif /* CONFIG_HOTPLUG_CPU */
908
909 void __init smp_fill_possible_mask(void)
910 {
911         unsigned int possible, sclp_max, cpu;
912
913         sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
914         sclp_max = min(smp_max_threads, sclp_max);
915         sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
916         possible = setup_possible_cpus ?: nr_cpu_ids;
917         possible = min(possible, sclp_max);
918         for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
919                 set_cpu_possible(cpu, true);
920 }
921
922 void __init smp_prepare_cpus(unsigned int max_cpus)
923 {
924         /* request the 0x1201 emergency signal external interrupt */
925         if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
926                 panic("Couldn't request external interrupt 0x1201");
927         /* request the 0x1202 external call external interrupt */
928         if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
929                 panic("Couldn't request external interrupt 0x1202");
930 }
931
932 void __init smp_prepare_boot_cpu(void)
933 {
934         struct pcpu *pcpu = pcpu_devices;
935
936         WARN_ON(!cpu_present(0) || !cpu_online(0));
937         pcpu->state = CPU_STATE_CONFIGURED;
938         pcpu->lowcore = (struct lowcore *)(unsigned long) store_prefix();
939         S390_lowcore.percpu_offset = __per_cpu_offset[0];
940         smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
941 }
942
943 void __init smp_cpus_done(unsigned int max_cpus)
944 {
945 }
946
947 void __init smp_setup_processor_id(void)
948 {
949         pcpu_devices[0].address = stap();
950         S390_lowcore.cpu_nr = 0;
951         S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
952         S390_lowcore.spinlock_index = 0;
953 }
954
955 /*
956  * the frequency of the profiling timer can be changed
957  * by writing a multiplier value into /proc/profile.
958  *
959  * usually you want to run this on all CPUs ;)
960  */
961 int setup_profiling_timer(unsigned int multiplier)
962 {
963         return 0;
964 }
965
966 #ifdef CONFIG_HOTPLUG_CPU
967 static ssize_t cpu_configure_show(struct device *dev,
968                                   struct device_attribute *attr, char *buf)
969 {
970         ssize_t count;
971
972         mutex_lock(&smp_cpu_state_mutex);
973         count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
974         mutex_unlock(&smp_cpu_state_mutex);
975         return count;
976 }
977
978 static ssize_t cpu_configure_store(struct device *dev,
979                                    struct device_attribute *attr,
980                                    const char *buf, size_t count)
981 {
982         struct pcpu *pcpu;
983         int cpu, val, rc, i;
984         char delim;
985
986         if (sscanf(buf, "%d %c", &val, &delim) != 1)
987                 return -EINVAL;
988         if (val != 0 && val != 1)
989                 return -EINVAL;
990         get_online_cpus();
991         mutex_lock(&smp_cpu_state_mutex);
992         rc = -EBUSY;
993         /* disallow configuration changes of online cpus and cpu 0 */
994         cpu = dev->id;
995         cpu = smp_get_base_cpu(cpu);
996         if (cpu == 0)
997                 goto out;
998         for (i = 0; i <= smp_cpu_mtid; i++)
999                 if (cpu_online(cpu + i))
1000                         goto out;
1001         pcpu = pcpu_devices + cpu;
1002         rc = 0;
1003         switch (val) {
1004         case 0:
1005                 if (pcpu->state != CPU_STATE_CONFIGURED)
1006                         break;
1007                 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1008                 if (rc)
1009                         break;
1010                 for (i = 0; i <= smp_cpu_mtid; i++) {
1011                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1012                                 continue;
1013                         pcpu[i].state = CPU_STATE_STANDBY;
1014                         smp_cpu_set_polarization(cpu + i,
1015                                                  POLARIZATION_UNKNOWN);
1016                 }
1017                 topology_expect_change();
1018                 break;
1019         case 1:
1020                 if (pcpu->state != CPU_STATE_STANDBY)
1021                         break;
1022                 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1023                 if (rc)
1024                         break;
1025                 for (i = 0; i <= smp_cpu_mtid; i++) {
1026                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1027                                 continue;
1028                         pcpu[i].state = CPU_STATE_CONFIGURED;
1029                         smp_cpu_set_polarization(cpu + i,
1030                                                  POLARIZATION_UNKNOWN);
1031                 }
1032                 topology_expect_change();
1033                 break;
1034         default:
1035                 break;
1036         }
1037 out:
1038         mutex_unlock(&smp_cpu_state_mutex);
1039         put_online_cpus();
1040         return rc ? rc : count;
1041 }
1042 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1043 #endif /* CONFIG_HOTPLUG_CPU */
1044
1045 static ssize_t show_cpu_address(struct device *dev,
1046                                 struct device_attribute *attr, char *buf)
1047 {
1048         return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1049 }
1050 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1051
1052 static struct attribute *cpu_common_attrs[] = {
1053 #ifdef CONFIG_HOTPLUG_CPU
1054         &dev_attr_configure.attr,
1055 #endif
1056         &dev_attr_address.attr,
1057         NULL,
1058 };
1059
1060 static struct attribute_group cpu_common_attr_group = {
1061         .attrs = cpu_common_attrs,
1062 };
1063
1064 static struct attribute *cpu_online_attrs[] = {
1065         &dev_attr_idle_count.attr,
1066         &dev_attr_idle_time_us.attr,
1067         NULL,
1068 };
1069
1070 static struct attribute_group cpu_online_attr_group = {
1071         .attrs = cpu_online_attrs,
1072 };
1073
1074 static int smp_cpu_online(unsigned int cpu)
1075 {
1076         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1077
1078         return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1079 }
1080 static int smp_cpu_pre_down(unsigned int cpu)
1081 {
1082         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1083
1084         sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1085         return 0;
1086 }
1087
1088 static int smp_add_present_cpu(int cpu)
1089 {
1090         struct device *s;
1091         struct cpu *c;
1092         int rc;
1093
1094         c = kzalloc(sizeof(*c), GFP_KERNEL);
1095         if (!c)
1096                 return -ENOMEM;
1097         per_cpu(cpu_device, cpu) = c;
1098         s = &c->dev;
1099         c->hotpluggable = 1;
1100         rc = register_cpu(c, cpu);
1101         if (rc)
1102                 goto out;
1103         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1104         if (rc)
1105                 goto out_cpu;
1106         rc = topology_cpu_init(c);
1107         if (rc)
1108                 goto out_topology;
1109         return 0;
1110
1111 out_topology:
1112         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1113 out_cpu:
1114 #ifdef CONFIG_HOTPLUG_CPU
1115         unregister_cpu(c);
1116 #endif
1117 out:
1118         return rc;
1119 }
1120
1121 #ifdef CONFIG_HOTPLUG_CPU
1122
1123 int __ref smp_rescan_cpus(void)
1124 {
1125         struct sclp_core_info *info;
1126         int nr;
1127
1128         info = kzalloc(sizeof(*info), GFP_KERNEL);
1129         if (!info)
1130                 return -ENOMEM;
1131         smp_get_core_info(info, 0);
1132         get_online_cpus();
1133         mutex_lock(&smp_cpu_state_mutex);
1134         nr = __smp_rescan_cpus(info, 1);
1135         mutex_unlock(&smp_cpu_state_mutex);
1136         put_online_cpus();
1137         kfree(info);
1138         if (nr)
1139                 topology_schedule_update();
1140         return 0;
1141 }
1142
1143 static ssize_t __ref rescan_store(struct device *dev,
1144                                   struct device_attribute *attr,
1145                                   const char *buf,
1146                                   size_t count)
1147 {
1148         int rc;
1149
1150         rc = smp_rescan_cpus();
1151         return rc ? rc : count;
1152 }
1153 static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1154 #endif /* CONFIG_HOTPLUG_CPU */
1155
1156 static int __init s390_smp_init(void)
1157 {
1158         int cpu, rc = 0;
1159
1160 #ifdef CONFIG_HOTPLUG_CPU
1161         rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1162         if (rc)
1163                 return rc;
1164 #endif
1165         for_each_present_cpu(cpu) {
1166                 rc = smp_add_present_cpu(cpu);
1167                 if (rc)
1168                         goto out;
1169         }
1170
1171         rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1172                                smp_cpu_online, smp_cpu_pre_down);
1173         rc = rc <= 0 ? rc : 0;
1174 out:
1175         return rc;
1176 }
1177 subsys_initcall(s390_smp_init);