]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/sparc/mm/tsb.c
23479c3d39f0221a98c86cf3923a040b3b3be658
[linux.git] / arch / sparc / mm / tsb.c
1 /* arch/sparc64/mm/tsb.c
2  *
3  * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
4  */
5
6 #include <linux/kernel.h>
7 #include <linux/preempt.h>
8 #include <linux/slab.h>
9 #include <asm/page.h>
10 #include <asm/pgtable.h>
11 #include <asm/mmu_context.h>
12 #include <asm/setup.h>
13 #include <asm/tsb.h>
14 #include <asm/tlb.h>
15 #include <asm/oplib.h>
16
17 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
18
19 static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
20 {
21         vaddr >>= hash_shift;
22         return vaddr & (nentries - 1);
23 }
24
25 static inline int tag_compare(unsigned long tag, unsigned long vaddr)
26 {
27         return (tag == (vaddr >> 22));
28 }
29
30 static void flush_tsb_kernel_range_scan(unsigned long start, unsigned long end)
31 {
32         unsigned long idx;
33
34         for (idx = 0; idx < KERNEL_TSB_NENTRIES; idx++) {
35                 struct tsb *ent = &swapper_tsb[idx];
36                 unsigned long match = idx << 13;
37
38                 match |= (ent->tag << 22);
39                 if (match >= start && match < end)
40                         ent->tag = (1UL << TSB_TAG_INVALID_BIT);
41         }
42 }
43
44 /* TSB flushes need only occur on the processor initiating the address
45  * space modification, not on each cpu the address space has run on.
46  * Only the TLB flush needs that treatment.
47  */
48
49 void flush_tsb_kernel_range(unsigned long start, unsigned long end)
50 {
51         unsigned long v;
52
53         if ((end - start) >> PAGE_SHIFT >= 2 * KERNEL_TSB_NENTRIES)
54                 return flush_tsb_kernel_range_scan(start, end);
55
56         for (v = start; v < end; v += PAGE_SIZE) {
57                 unsigned long hash = tsb_hash(v, PAGE_SHIFT,
58                                               KERNEL_TSB_NENTRIES);
59                 struct tsb *ent = &swapper_tsb[hash];
60
61                 if (tag_compare(ent->tag, v))
62                         ent->tag = (1UL << TSB_TAG_INVALID_BIT);
63         }
64 }
65
66 static void __flush_tsb_one_entry(unsigned long tsb, unsigned long v,
67                                   unsigned long hash_shift,
68                                   unsigned long nentries)
69 {
70         unsigned long tag, ent, hash;
71
72         v &= ~0x1UL;
73         hash = tsb_hash(v, hash_shift, nentries);
74         ent = tsb + (hash * sizeof(struct tsb));
75         tag = (v >> 22UL);
76
77         tsb_flush(ent, tag);
78 }
79
80 static void __flush_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
81                             unsigned long tsb, unsigned long nentries)
82 {
83         unsigned long i;
84
85         for (i = 0; i < tb->tlb_nr; i++)
86                 __flush_tsb_one_entry(tsb, tb->vaddrs[i], hash_shift, nentries);
87 }
88
89 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
90 static void __flush_huge_tsb_one_entry(unsigned long tsb, unsigned long v,
91                                        unsigned long hash_shift,
92                                        unsigned long nentries,
93                                        unsigned int hugepage_shift)
94 {
95         unsigned int hpage_entries;
96         unsigned int i;
97
98         hpage_entries = 1 << (hugepage_shift - hash_shift);
99         for (i = 0; i < hpage_entries; i++)
100                 __flush_tsb_one_entry(tsb, v + (i << hash_shift), hash_shift,
101                                       nentries);
102 }
103
104 static void __flush_huge_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
105                                  unsigned long tsb, unsigned long nentries,
106                                  unsigned int hugepage_shift)
107 {
108         unsigned long i;
109
110         for (i = 0; i < tb->tlb_nr; i++)
111                 __flush_huge_tsb_one_entry(tsb, tb->vaddrs[i], hash_shift,
112                                            nentries, hugepage_shift);
113 }
114 #endif
115
116 void flush_tsb_user(struct tlb_batch *tb)
117 {
118         struct mm_struct *mm = tb->mm;
119         unsigned long nentries, base, flags;
120
121         spin_lock_irqsave(&mm->context.lock, flags);
122
123         if (tb->hugepage_shift < HPAGE_SHIFT) {
124                 base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
125                 nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
126                 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
127                         base = __pa(base);
128                 if (tb->hugepage_shift == PAGE_SHIFT)
129                         __flush_tsb_one(tb, PAGE_SHIFT, base, nentries);
130 #if defined(CONFIG_HUGETLB_PAGE)
131                 else
132                         __flush_huge_tsb_one(tb, PAGE_SHIFT, base, nentries,
133                                              tb->hugepage_shift);
134 #endif
135         }
136 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
137         else if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
138                 base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
139                 nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
140                 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
141                         base = __pa(base);
142                 __flush_huge_tsb_one(tb, REAL_HPAGE_SHIFT, base, nentries,
143                                      tb->hugepage_shift);
144         }
145 #endif
146         spin_unlock_irqrestore(&mm->context.lock, flags);
147 }
148
149 void flush_tsb_user_page(struct mm_struct *mm, unsigned long vaddr,
150                          unsigned int hugepage_shift)
151 {
152         unsigned long nentries, base, flags;
153
154         spin_lock_irqsave(&mm->context.lock, flags);
155
156         if (hugepage_shift < HPAGE_SHIFT) {
157                 base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
158                 nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
159                 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
160                         base = __pa(base);
161                 if (hugepage_shift == PAGE_SHIFT)
162                         __flush_tsb_one_entry(base, vaddr, PAGE_SHIFT,
163                                               nentries);
164 #if defined(CONFIG_HUGETLB_PAGE)
165                 else
166                         __flush_huge_tsb_one_entry(base, vaddr, PAGE_SHIFT,
167                                                    nentries, hugepage_shift);
168 #endif
169         }
170 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
171         else if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
172                 base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
173                 nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
174                 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
175                         base = __pa(base);
176                 __flush_huge_tsb_one_entry(base, vaddr, REAL_HPAGE_SHIFT,
177                                            nentries, hugepage_shift);
178         }
179 #endif
180         spin_unlock_irqrestore(&mm->context.lock, flags);
181 }
182
183 #define HV_PGSZ_IDX_BASE        HV_PGSZ_IDX_8K
184 #define HV_PGSZ_MASK_BASE       HV_PGSZ_MASK_8K
185
186 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
187 #define HV_PGSZ_IDX_HUGE        HV_PGSZ_IDX_4MB
188 #define HV_PGSZ_MASK_HUGE       HV_PGSZ_MASK_4MB
189 #endif
190
191 static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
192 {
193         unsigned long tsb_reg, base, tsb_paddr;
194         unsigned long page_sz, tte;
195
196         mm->context.tsb_block[tsb_idx].tsb_nentries =
197                 tsb_bytes / sizeof(struct tsb);
198
199         switch (tsb_idx) {
200         case MM_TSB_BASE:
201                 base = TSBMAP_8K_BASE;
202                 break;
203 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
204         case MM_TSB_HUGE:
205                 base = TSBMAP_4M_BASE;
206                 break;
207 #endif
208         default:
209                 BUG();
210         }
211
212         tte = pgprot_val(PAGE_KERNEL_LOCKED);
213         tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
214         BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
215
216         /* Use the smallest page size that can map the whole TSB
217          * in one TLB entry.
218          */
219         switch (tsb_bytes) {
220         case 8192 << 0:
221                 tsb_reg = 0x0UL;
222 #ifdef DCACHE_ALIASING_POSSIBLE
223                 base += (tsb_paddr & 8192);
224 #endif
225                 page_sz = 8192;
226                 break;
227
228         case 8192 << 1:
229                 tsb_reg = 0x1UL;
230                 page_sz = 64 * 1024;
231                 break;
232
233         case 8192 << 2:
234                 tsb_reg = 0x2UL;
235                 page_sz = 64 * 1024;
236                 break;
237
238         case 8192 << 3:
239                 tsb_reg = 0x3UL;
240                 page_sz = 64 * 1024;
241                 break;
242
243         case 8192 << 4:
244                 tsb_reg = 0x4UL;
245                 page_sz = 512 * 1024;
246                 break;
247
248         case 8192 << 5:
249                 tsb_reg = 0x5UL;
250                 page_sz = 512 * 1024;
251                 break;
252
253         case 8192 << 6:
254                 tsb_reg = 0x6UL;
255                 page_sz = 512 * 1024;
256                 break;
257
258         case 8192 << 7:
259                 tsb_reg = 0x7UL;
260                 page_sz = 4 * 1024 * 1024;
261                 break;
262
263         default:
264                 printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
265                        current->comm, current->pid, tsb_bytes);
266                 do_exit(SIGSEGV);
267         }
268         tte |= pte_sz_bits(page_sz);
269
270         if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
271                 /* Physical mapping, no locked TLB entry for TSB.  */
272                 tsb_reg |= tsb_paddr;
273
274                 mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
275                 mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
276                 mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
277         } else {
278                 tsb_reg |= base;
279                 tsb_reg |= (tsb_paddr & (page_sz - 1UL));
280                 tte |= (tsb_paddr & ~(page_sz - 1UL));
281
282                 mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
283                 mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
284                 mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
285         }
286
287         /* Setup the Hypervisor TSB descriptor.  */
288         if (tlb_type == hypervisor) {
289                 struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
290
291                 switch (tsb_idx) {
292                 case MM_TSB_BASE:
293                         hp->pgsz_idx = HV_PGSZ_IDX_BASE;
294                         break;
295 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
296                 case MM_TSB_HUGE:
297                         hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
298                         break;
299 #endif
300                 default:
301                         BUG();
302                 }
303                 hp->assoc = 1;
304                 hp->num_ttes = tsb_bytes / 16;
305                 hp->ctx_idx = 0;
306                 switch (tsb_idx) {
307                 case MM_TSB_BASE:
308                         hp->pgsz_mask = HV_PGSZ_MASK_BASE;
309                         break;
310 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
311                 case MM_TSB_HUGE:
312                         hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
313                         break;
314 #endif
315                 default:
316                         BUG();
317                 }
318                 hp->tsb_base = tsb_paddr;
319                 hp->resv = 0;
320         }
321 }
322
323 struct kmem_cache *pgtable_cache __read_mostly;
324
325 static struct kmem_cache *tsb_caches[8] __read_mostly;
326
327 static const char *tsb_cache_names[8] = {
328         "tsb_8KB",
329         "tsb_16KB",
330         "tsb_32KB",
331         "tsb_64KB",
332         "tsb_128KB",
333         "tsb_256KB",
334         "tsb_512KB",
335         "tsb_1MB",
336 };
337
338 void __init pgtable_cache_init(void)
339 {
340         unsigned long i;
341
342         pgtable_cache = kmem_cache_create("pgtable_cache",
343                                           PAGE_SIZE, PAGE_SIZE,
344                                           0,
345                                           _clear_page);
346         if (!pgtable_cache) {
347                 prom_printf("pgtable_cache_init(): Could not create!\n");
348                 prom_halt();
349         }
350
351         for (i = 0; i < ARRAY_SIZE(tsb_cache_names); i++) {
352                 unsigned long size = 8192 << i;
353                 const char *name = tsb_cache_names[i];
354
355                 tsb_caches[i] = kmem_cache_create(name,
356                                                   size, size,
357                                                   0, NULL);
358                 if (!tsb_caches[i]) {
359                         prom_printf("Could not create %s cache\n", name);
360                         prom_halt();
361                 }
362         }
363 }
364
365 int sysctl_tsb_ratio = -2;
366
367 static unsigned long tsb_size_to_rss_limit(unsigned long new_size)
368 {
369         unsigned long num_ents = (new_size / sizeof(struct tsb));
370
371         if (sysctl_tsb_ratio < 0)
372                 return num_ents - (num_ents >> -sysctl_tsb_ratio);
373         else
374                 return num_ents + (num_ents >> sysctl_tsb_ratio);
375 }
376
377 /* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
378  * do_sparc64_fault() invokes this routine to try and grow it.
379  *
380  * When we reach the maximum TSB size supported, we stick ~0UL into
381  * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
382  * will not trigger any longer.
383  *
384  * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
385  * of two.  The TSB must be aligned to it's size, so f.e. a 512K TSB
386  * must be 512K aligned.  It also must be physically contiguous, so we
387  * cannot use vmalloc().
388  *
389  * The idea here is to grow the TSB when the RSS of the process approaches
390  * the number of entries that the current TSB can hold at once.  Currently,
391  * we trigger when the RSS hits 3/4 of the TSB capacity.
392  */
393 void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
394 {
395         unsigned long max_tsb_size = 1 * 1024 * 1024;
396         unsigned long new_size, old_size, flags;
397         struct tsb *old_tsb, *new_tsb;
398         unsigned long new_cache_index, old_cache_index;
399         unsigned long new_rss_limit;
400         gfp_t gfp_flags;
401
402         if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
403                 max_tsb_size = (PAGE_SIZE << MAX_ORDER);
404
405         new_cache_index = 0;
406         for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
407                 new_rss_limit = tsb_size_to_rss_limit(new_size);
408                 if (new_rss_limit > rss)
409                         break;
410                 new_cache_index++;
411         }
412
413         if (new_size == max_tsb_size)
414                 new_rss_limit = ~0UL;
415
416 retry_tsb_alloc:
417         gfp_flags = GFP_KERNEL;
418         if (new_size > (PAGE_SIZE * 2))
419                 gfp_flags |= __GFP_NOWARN | __GFP_NORETRY;
420
421         new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
422                                         gfp_flags, numa_node_id());
423         if (unlikely(!new_tsb)) {
424                 /* Not being able to fork due to a high-order TSB
425                  * allocation failure is very bad behavior.  Just back
426                  * down to a 0-order allocation and force no TSB
427                  * growing for this address space.
428                  */
429                 if (mm->context.tsb_block[tsb_index].tsb == NULL &&
430                     new_cache_index > 0) {
431                         new_cache_index = 0;
432                         new_size = 8192;
433                         new_rss_limit = ~0UL;
434                         goto retry_tsb_alloc;
435                 }
436
437                 /* If we failed on a TSB grow, we are under serious
438                  * memory pressure so don't try to grow any more.
439                  */
440                 if (mm->context.tsb_block[tsb_index].tsb != NULL)
441                         mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
442                 return;
443         }
444
445         /* Mark all tags as invalid.  */
446         tsb_init(new_tsb, new_size);
447
448         /* Ok, we are about to commit the changes.  If we are
449          * growing an existing TSB the locking is very tricky,
450          * so WATCH OUT!
451          *
452          * We have to hold mm->context.lock while committing to the
453          * new TSB, this synchronizes us with processors in
454          * flush_tsb_user() and switch_mm() for this address space.
455          *
456          * But even with that lock held, processors run asynchronously
457          * accessing the old TSB via TLB miss handling.  This is OK
458          * because those actions are just propagating state from the
459          * Linux page tables into the TSB, page table mappings are not
460          * being changed.  If a real fault occurs, the processor will
461          * synchronize with us when it hits flush_tsb_user(), this is
462          * also true for the case where vmscan is modifying the page
463          * tables.  The only thing we need to be careful with is to
464          * skip any locked TSB entries during copy_tsb().
465          *
466          * When we finish committing to the new TSB, we have to drop
467          * the lock and ask all other cpus running this address space
468          * to run tsb_context_switch() to see the new TSB table.
469          */
470         spin_lock_irqsave(&mm->context.lock, flags);
471
472         old_tsb = mm->context.tsb_block[tsb_index].tsb;
473         old_cache_index =
474                 (mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
475         old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
476                     sizeof(struct tsb));
477
478
479         /* Handle multiple threads trying to grow the TSB at the same time.
480          * One will get in here first, and bump the size and the RSS limit.
481          * The others will get in here next and hit this check.
482          */
483         if (unlikely(old_tsb &&
484                      (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
485                 spin_unlock_irqrestore(&mm->context.lock, flags);
486
487                 kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
488                 return;
489         }
490
491         mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
492
493         if (old_tsb) {
494                 extern void copy_tsb(unsigned long old_tsb_base,
495                                      unsigned long old_tsb_size,
496                                      unsigned long new_tsb_base,
497                                      unsigned long new_tsb_size);
498                 unsigned long old_tsb_base = (unsigned long) old_tsb;
499                 unsigned long new_tsb_base = (unsigned long) new_tsb;
500
501                 if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
502                         old_tsb_base = __pa(old_tsb_base);
503                         new_tsb_base = __pa(new_tsb_base);
504                 }
505                 copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size);
506         }
507
508         mm->context.tsb_block[tsb_index].tsb = new_tsb;
509         setup_tsb_params(mm, tsb_index, new_size);
510
511         spin_unlock_irqrestore(&mm->context.lock, flags);
512
513         /* If old_tsb is NULL, we're being invoked for the first time
514          * from init_new_context().
515          */
516         if (old_tsb) {
517                 /* Reload it on the local cpu.  */
518                 tsb_context_switch(mm);
519
520                 /* Now force other processors to do the same.  */
521                 preempt_disable();
522                 smp_tsb_sync(mm);
523                 preempt_enable();
524
525                 /* Now it is safe to free the old tsb.  */
526                 kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
527         }
528 }
529
530 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
531 {
532         unsigned long mm_rss = get_mm_rss(mm);
533 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
534         unsigned long saved_hugetlb_pte_count;
535         unsigned long saved_thp_pte_count;
536 #endif
537         unsigned int i;
538
539         spin_lock_init(&mm->context.lock);
540
541         mm->context.sparc64_ctx_val = 0UL;
542
543 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
544         /* We reset them to zero because the fork() page copying
545          * will re-increment the counters as the parent PTEs are
546          * copied into the child address space.
547          */
548         saved_hugetlb_pte_count = mm->context.hugetlb_pte_count;
549         saved_thp_pte_count = mm->context.thp_pte_count;
550         mm->context.hugetlb_pte_count = 0;
551         mm->context.thp_pte_count = 0;
552
553         mm_rss -= saved_thp_pte_count * (HPAGE_SIZE / PAGE_SIZE);
554 #endif
555
556         /* copy_mm() copies over the parent's mm_struct before calling
557          * us, so we need to zero out the TSB pointer or else tsb_grow()
558          * will be confused and think there is an older TSB to free up.
559          */
560         for (i = 0; i < MM_NUM_TSBS; i++)
561                 mm->context.tsb_block[i].tsb = NULL;
562
563         /* If this is fork, inherit the parent's TSB size.  We would
564          * grow it to that size on the first page fault anyways.
565          */
566         tsb_grow(mm, MM_TSB_BASE, mm_rss);
567
568 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
569         if (unlikely(saved_hugetlb_pte_count + saved_thp_pte_count))
570                 tsb_grow(mm, MM_TSB_HUGE,
571                          (saved_hugetlb_pte_count + saved_thp_pte_count) *
572                          REAL_HPAGE_PER_HPAGE);
573 #endif
574
575         if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
576                 return -ENOMEM;
577
578         return 0;
579 }
580
581 static void tsb_destroy_one(struct tsb_config *tp)
582 {
583         unsigned long cache_index;
584
585         if (!tp->tsb)
586                 return;
587         cache_index = tp->tsb_reg_val & 0x7UL;
588         kmem_cache_free(tsb_caches[cache_index], tp->tsb);
589         tp->tsb = NULL;
590         tp->tsb_reg_val = 0UL;
591 }
592
593 void destroy_context(struct mm_struct *mm)
594 {
595         unsigned long flags, i;
596
597         for (i = 0; i < MM_NUM_TSBS; i++)
598                 tsb_destroy_one(&mm->context.tsb_block[i]);
599
600         spin_lock_irqsave(&ctx_alloc_lock, flags);
601
602         if (CTX_VALID(mm->context)) {
603                 unsigned long nr = CTX_NRBITS(mm->context);
604                 mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
605         }
606
607         spin_unlock_irqrestore(&ctx_alloc_lock, flags);
608 }