]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/events/core.c
Merge tag 'gvt-fixes-2018-11-26' of https://github.com/intel/gvt-linux into drm-intel...
[linux.git] / arch / x86 / events / core.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31
32 #include <asm/apic.h>
33 #include <asm/stacktrace.h>
34 #include <asm/nmi.h>
35 #include <asm/smp.h>
36 #include <asm/alternative.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlbflush.h>
39 #include <asm/timer.h>
40 #include <asm/desc.h>
41 #include <asm/ldt.h>
42 #include <asm/unwind.h>
43
44 #include "perf_event.h"
45
46 struct x86_pmu x86_pmu __read_mostly;
47
48 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
49         .enabled = 1,
50 };
51
52 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
53
54 u64 __read_mostly hw_cache_event_ids
55                                 [PERF_COUNT_HW_CACHE_MAX]
56                                 [PERF_COUNT_HW_CACHE_OP_MAX]
57                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
58 u64 __read_mostly hw_cache_extra_regs
59                                 [PERF_COUNT_HW_CACHE_MAX]
60                                 [PERF_COUNT_HW_CACHE_OP_MAX]
61                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
62
63 /*
64  * Propagate event elapsed time into the generic event.
65  * Can only be executed on the CPU where the event is active.
66  * Returns the delta events processed.
67  */
68 u64 x86_perf_event_update(struct perf_event *event)
69 {
70         struct hw_perf_event *hwc = &event->hw;
71         int shift = 64 - x86_pmu.cntval_bits;
72         u64 prev_raw_count, new_raw_count;
73         int idx = hwc->idx;
74         u64 delta;
75
76         if (idx == INTEL_PMC_IDX_FIXED_BTS)
77                 return 0;
78
79         /*
80          * Careful: an NMI might modify the previous event value.
81          *
82          * Our tactic to handle this is to first atomically read and
83          * exchange a new raw count - then add that new-prev delta
84          * count to the generic event atomically:
85          */
86 again:
87         prev_raw_count = local64_read(&hwc->prev_count);
88         rdpmcl(hwc->event_base_rdpmc, new_raw_count);
89
90         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
91                                         new_raw_count) != prev_raw_count)
92                 goto again;
93
94         /*
95          * Now we have the new raw value and have updated the prev
96          * timestamp already. We can now calculate the elapsed delta
97          * (event-)time and add that to the generic event.
98          *
99          * Careful, not all hw sign-extends above the physical width
100          * of the count.
101          */
102         delta = (new_raw_count << shift) - (prev_raw_count << shift);
103         delta >>= shift;
104
105         local64_add(delta, &event->count);
106         local64_sub(delta, &hwc->period_left);
107
108         return new_raw_count;
109 }
110
111 /*
112  * Find and validate any extra registers to set up.
113  */
114 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
115 {
116         struct hw_perf_event_extra *reg;
117         struct extra_reg *er;
118
119         reg = &event->hw.extra_reg;
120
121         if (!x86_pmu.extra_regs)
122                 return 0;
123
124         for (er = x86_pmu.extra_regs; er->msr; er++) {
125                 if (er->event != (config & er->config_mask))
126                         continue;
127                 if (event->attr.config1 & ~er->valid_mask)
128                         return -EINVAL;
129                 /* Check if the extra msrs can be safely accessed*/
130                 if (!er->extra_msr_access)
131                         return -ENXIO;
132
133                 reg->idx = er->idx;
134                 reg->config = event->attr.config1;
135                 reg->reg = er->msr;
136                 break;
137         }
138         return 0;
139 }
140
141 static atomic_t active_events;
142 static atomic_t pmc_refcount;
143 static DEFINE_MUTEX(pmc_reserve_mutex);
144
145 #ifdef CONFIG_X86_LOCAL_APIC
146
147 static bool reserve_pmc_hardware(void)
148 {
149         int i;
150
151         for (i = 0; i < x86_pmu.num_counters; i++) {
152                 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
153                         goto perfctr_fail;
154         }
155
156         for (i = 0; i < x86_pmu.num_counters; i++) {
157                 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
158                         goto eventsel_fail;
159         }
160
161         return true;
162
163 eventsel_fail:
164         for (i--; i >= 0; i--)
165                 release_evntsel_nmi(x86_pmu_config_addr(i));
166
167         i = x86_pmu.num_counters;
168
169 perfctr_fail:
170         for (i--; i >= 0; i--)
171                 release_perfctr_nmi(x86_pmu_event_addr(i));
172
173         return false;
174 }
175
176 static void release_pmc_hardware(void)
177 {
178         int i;
179
180         for (i = 0; i < x86_pmu.num_counters; i++) {
181                 release_perfctr_nmi(x86_pmu_event_addr(i));
182                 release_evntsel_nmi(x86_pmu_config_addr(i));
183         }
184 }
185
186 #else
187
188 static bool reserve_pmc_hardware(void) { return true; }
189 static void release_pmc_hardware(void) {}
190
191 #endif
192
193 static bool check_hw_exists(void)
194 {
195         u64 val, val_fail = -1, val_new= ~0;
196         int i, reg, reg_fail = -1, ret = 0;
197         int bios_fail = 0;
198         int reg_safe = -1;
199
200         /*
201          * Check to see if the BIOS enabled any of the counters, if so
202          * complain and bail.
203          */
204         for (i = 0; i < x86_pmu.num_counters; i++) {
205                 reg = x86_pmu_config_addr(i);
206                 ret = rdmsrl_safe(reg, &val);
207                 if (ret)
208                         goto msr_fail;
209                 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
210                         bios_fail = 1;
211                         val_fail = val;
212                         reg_fail = reg;
213                 } else {
214                         reg_safe = i;
215                 }
216         }
217
218         if (x86_pmu.num_counters_fixed) {
219                 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
220                 ret = rdmsrl_safe(reg, &val);
221                 if (ret)
222                         goto msr_fail;
223                 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
224                         if (val & (0x03 << i*4)) {
225                                 bios_fail = 1;
226                                 val_fail = val;
227                                 reg_fail = reg;
228                         }
229                 }
230         }
231
232         /*
233          * If all the counters are enabled, the below test will always
234          * fail.  The tools will also become useless in this scenario.
235          * Just fail and disable the hardware counters.
236          */
237
238         if (reg_safe == -1) {
239                 reg = reg_safe;
240                 goto msr_fail;
241         }
242
243         /*
244          * Read the current value, change it and read it back to see if it
245          * matches, this is needed to detect certain hardware emulators
246          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
247          */
248         reg = x86_pmu_event_addr(reg_safe);
249         if (rdmsrl_safe(reg, &val))
250                 goto msr_fail;
251         val ^= 0xffffUL;
252         ret = wrmsrl_safe(reg, val);
253         ret |= rdmsrl_safe(reg, &val_new);
254         if (ret || val != val_new)
255                 goto msr_fail;
256
257         /*
258          * We still allow the PMU driver to operate:
259          */
260         if (bios_fail) {
261                 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
262                 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
263                               reg_fail, val_fail);
264         }
265
266         return true;
267
268 msr_fail:
269         if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
270                 pr_cont("PMU not available due to virtualization, using software events only.\n");
271         } else {
272                 pr_cont("Broken PMU hardware detected, using software events only.\n");
273                 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
274                        reg, val_new);
275         }
276
277         return false;
278 }
279
280 static void hw_perf_event_destroy(struct perf_event *event)
281 {
282         x86_release_hardware();
283         atomic_dec(&active_events);
284 }
285
286 void hw_perf_lbr_event_destroy(struct perf_event *event)
287 {
288         hw_perf_event_destroy(event);
289
290         /* undo the lbr/bts event accounting */
291         x86_del_exclusive(x86_lbr_exclusive_lbr);
292 }
293
294 static inline int x86_pmu_initialized(void)
295 {
296         return x86_pmu.handle_irq != NULL;
297 }
298
299 static inline int
300 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
301 {
302         struct perf_event_attr *attr = &event->attr;
303         unsigned int cache_type, cache_op, cache_result;
304         u64 config, val;
305
306         config = attr->config;
307
308         cache_type = (config >> 0) & 0xff;
309         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
310                 return -EINVAL;
311         cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
312
313         cache_op = (config >>  8) & 0xff;
314         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
315                 return -EINVAL;
316         cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
317
318         cache_result = (config >> 16) & 0xff;
319         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
320                 return -EINVAL;
321         cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
322
323         val = hw_cache_event_ids[cache_type][cache_op][cache_result];
324
325         if (val == 0)
326                 return -ENOENT;
327
328         if (val == -1)
329                 return -EINVAL;
330
331         hwc->config |= val;
332         attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
333         return x86_pmu_extra_regs(val, event);
334 }
335
336 int x86_reserve_hardware(void)
337 {
338         int err = 0;
339
340         if (!atomic_inc_not_zero(&pmc_refcount)) {
341                 mutex_lock(&pmc_reserve_mutex);
342                 if (atomic_read(&pmc_refcount) == 0) {
343                         if (!reserve_pmc_hardware())
344                                 err = -EBUSY;
345                         else
346                                 reserve_ds_buffers();
347                 }
348                 if (!err)
349                         atomic_inc(&pmc_refcount);
350                 mutex_unlock(&pmc_reserve_mutex);
351         }
352
353         return err;
354 }
355
356 void x86_release_hardware(void)
357 {
358         if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
359                 release_pmc_hardware();
360                 release_ds_buffers();
361                 mutex_unlock(&pmc_reserve_mutex);
362         }
363 }
364
365 /*
366  * Check if we can create event of a certain type (that no conflicting events
367  * are present).
368  */
369 int x86_add_exclusive(unsigned int what)
370 {
371         int i;
372
373         /*
374          * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
375          * LBR and BTS are still mutually exclusive.
376          */
377         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
378                 return 0;
379
380         if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
381                 mutex_lock(&pmc_reserve_mutex);
382                 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
383                         if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
384                                 goto fail_unlock;
385                 }
386                 atomic_inc(&x86_pmu.lbr_exclusive[what]);
387                 mutex_unlock(&pmc_reserve_mutex);
388         }
389
390         atomic_inc(&active_events);
391         return 0;
392
393 fail_unlock:
394         mutex_unlock(&pmc_reserve_mutex);
395         return -EBUSY;
396 }
397
398 void x86_del_exclusive(unsigned int what)
399 {
400         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
401                 return;
402
403         atomic_dec(&x86_pmu.lbr_exclusive[what]);
404         atomic_dec(&active_events);
405 }
406
407 int x86_setup_perfctr(struct perf_event *event)
408 {
409         struct perf_event_attr *attr = &event->attr;
410         struct hw_perf_event *hwc = &event->hw;
411         u64 config;
412
413         if (!is_sampling_event(event)) {
414                 hwc->sample_period = x86_pmu.max_period;
415                 hwc->last_period = hwc->sample_period;
416                 local64_set(&hwc->period_left, hwc->sample_period);
417         }
418
419         if (attr->type == PERF_TYPE_RAW)
420                 return x86_pmu_extra_regs(event->attr.config, event);
421
422         if (attr->type == PERF_TYPE_HW_CACHE)
423                 return set_ext_hw_attr(hwc, event);
424
425         if (attr->config >= x86_pmu.max_events)
426                 return -EINVAL;
427
428         attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
429
430         /*
431          * The generic map:
432          */
433         config = x86_pmu.event_map(attr->config);
434
435         if (config == 0)
436                 return -ENOENT;
437
438         if (config == -1LL)
439                 return -EINVAL;
440
441         /*
442          * Branch tracing:
443          */
444         if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
445             !attr->freq && hwc->sample_period == 1) {
446                 /* BTS is not supported by this architecture. */
447                 if (!x86_pmu.bts_active)
448                         return -EOPNOTSUPP;
449
450                 /* BTS is currently only allowed for user-mode. */
451                 if (!attr->exclude_kernel)
452                         return -EOPNOTSUPP;
453
454                 /* disallow bts if conflicting events are present */
455                 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
456                         return -EBUSY;
457
458                 event->destroy = hw_perf_lbr_event_destroy;
459         }
460
461         hwc->config |= config;
462
463         return 0;
464 }
465
466 /*
467  * check that branch_sample_type is compatible with
468  * settings needed for precise_ip > 1 which implies
469  * using the LBR to capture ALL taken branches at the
470  * priv levels of the measurement
471  */
472 static inline int precise_br_compat(struct perf_event *event)
473 {
474         u64 m = event->attr.branch_sample_type;
475         u64 b = 0;
476
477         /* must capture all branches */
478         if (!(m & PERF_SAMPLE_BRANCH_ANY))
479                 return 0;
480
481         m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
482
483         if (!event->attr.exclude_user)
484                 b |= PERF_SAMPLE_BRANCH_USER;
485
486         if (!event->attr.exclude_kernel)
487                 b |= PERF_SAMPLE_BRANCH_KERNEL;
488
489         /*
490          * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
491          */
492
493         return m == b;
494 }
495
496 int x86_pmu_max_precise(void)
497 {
498         int precise = 0;
499
500         /* Support for constant skid */
501         if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
502                 precise++;
503
504                 /* Support for IP fixup */
505                 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
506                         precise++;
507
508                 if (x86_pmu.pebs_prec_dist)
509                         precise++;
510         }
511         return precise;
512 }
513
514 int x86_pmu_hw_config(struct perf_event *event)
515 {
516         if (event->attr.precise_ip) {
517                 int precise = x86_pmu_max_precise();
518
519                 if (event->attr.precise_ip > precise)
520                         return -EOPNOTSUPP;
521
522                 /* There's no sense in having PEBS for non sampling events: */
523                 if (!is_sampling_event(event))
524                         return -EINVAL;
525         }
526         /*
527          * check that PEBS LBR correction does not conflict with
528          * whatever the user is asking with attr->branch_sample_type
529          */
530         if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
531                 u64 *br_type = &event->attr.branch_sample_type;
532
533                 if (has_branch_stack(event)) {
534                         if (!precise_br_compat(event))
535                                 return -EOPNOTSUPP;
536
537                         /* branch_sample_type is compatible */
538
539                 } else {
540                         /*
541                          * user did not specify  branch_sample_type
542                          *
543                          * For PEBS fixups, we capture all
544                          * the branches at the priv level of the
545                          * event.
546                          */
547                         *br_type = PERF_SAMPLE_BRANCH_ANY;
548
549                         if (!event->attr.exclude_user)
550                                 *br_type |= PERF_SAMPLE_BRANCH_USER;
551
552                         if (!event->attr.exclude_kernel)
553                                 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
554                 }
555         }
556
557         if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
558                 event->attach_state |= PERF_ATTACH_TASK_DATA;
559
560         /*
561          * Generate PMC IRQs:
562          * (keep 'enabled' bit clear for now)
563          */
564         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
565
566         /*
567          * Count user and OS events unless requested not to
568          */
569         if (!event->attr.exclude_user)
570                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
571         if (!event->attr.exclude_kernel)
572                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
573
574         if (event->attr.type == PERF_TYPE_RAW)
575                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
576
577         if (event->attr.sample_period && x86_pmu.limit_period) {
578                 if (x86_pmu.limit_period(event, event->attr.sample_period) >
579                                 event->attr.sample_period)
580                         return -EINVAL;
581         }
582
583         return x86_setup_perfctr(event);
584 }
585
586 /*
587  * Setup the hardware configuration for a given attr_type
588  */
589 static int __x86_pmu_event_init(struct perf_event *event)
590 {
591         int err;
592
593         if (!x86_pmu_initialized())
594                 return -ENODEV;
595
596         err = x86_reserve_hardware();
597         if (err)
598                 return err;
599
600         atomic_inc(&active_events);
601         event->destroy = hw_perf_event_destroy;
602
603         event->hw.idx = -1;
604         event->hw.last_cpu = -1;
605         event->hw.last_tag = ~0ULL;
606
607         /* mark unused */
608         event->hw.extra_reg.idx = EXTRA_REG_NONE;
609         event->hw.branch_reg.idx = EXTRA_REG_NONE;
610
611         return x86_pmu.hw_config(event);
612 }
613
614 void x86_pmu_disable_all(void)
615 {
616         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
617         int idx;
618
619         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
620                 u64 val;
621
622                 if (!test_bit(idx, cpuc->active_mask))
623                         continue;
624                 rdmsrl(x86_pmu_config_addr(idx), val);
625                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
626                         continue;
627                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
628                 wrmsrl(x86_pmu_config_addr(idx), val);
629         }
630 }
631
632 /*
633  * There may be PMI landing after enabled=0. The PMI hitting could be before or
634  * after disable_all.
635  *
636  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
637  * It will not be re-enabled in the NMI handler again, because enabled=0. After
638  * handling the NMI, disable_all will be called, which will not change the
639  * state either. If PMI hits after disable_all, the PMU is already disabled
640  * before entering NMI handler. The NMI handler will not change the state
641  * either.
642  *
643  * So either situation is harmless.
644  */
645 static void x86_pmu_disable(struct pmu *pmu)
646 {
647         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
648
649         if (!x86_pmu_initialized())
650                 return;
651
652         if (!cpuc->enabled)
653                 return;
654
655         cpuc->n_added = 0;
656         cpuc->enabled = 0;
657         barrier();
658
659         x86_pmu.disable_all();
660 }
661
662 void x86_pmu_enable_all(int added)
663 {
664         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
665         int idx;
666
667         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
668                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
669
670                 if (!test_bit(idx, cpuc->active_mask))
671                         continue;
672
673                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
674         }
675 }
676
677 static struct pmu pmu;
678
679 static inline int is_x86_event(struct perf_event *event)
680 {
681         return event->pmu == &pmu;
682 }
683
684 /*
685  * Event scheduler state:
686  *
687  * Assign events iterating over all events and counters, beginning
688  * with events with least weights first. Keep the current iterator
689  * state in struct sched_state.
690  */
691 struct sched_state {
692         int     weight;
693         int     event;          /* event index */
694         int     counter;        /* counter index */
695         int     unassigned;     /* number of events to be assigned left */
696         int     nr_gp;          /* number of GP counters used */
697         unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
698 };
699
700 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
701 #define SCHED_STATES_MAX        2
702
703 struct perf_sched {
704         int                     max_weight;
705         int                     max_events;
706         int                     max_gp;
707         int                     saved_states;
708         struct event_constraint **constraints;
709         struct sched_state      state;
710         struct sched_state      saved[SCHED_STATES_MAX];
711 };
712
713 /*
714  * Initialize interator that runs through all events and counters.
715  */
716 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
717                             int num, int wmin, int wmax, int gpmax)
718 {
719         int idx;
720
721         memset(sched, 0, sizeof(*sched));
722         sched->max_events       = num;
723         sched->max_weight       = wmax;
724         sched->max_gp           = gpmax;
725         sched->constraints      = constraints;
726
727         for (idx = 0; idx < num; idx++) {
728                 if (constraints[idx]->weight == wmin)
729                         break;
730         }
731
732         sched->state.event      = idx;          /* start with min weight */
733         sched->state.weight     = wmin;
734         sched->state.unassigned = num;
735 }
736
737 static void perf_sched_save_state(struct perf_sched *sched)
738 {
739         if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
740                 return;
741
742         sched->saved[sched->saved_states] = sched->state;
743         sched->saved_states++;
744 }
745
746 static bool perf_sched_restore_state(struct perf_sched *sched)
747 {
748         if (!sched->saved_states)
749                 return false;
750
751         sched->saved_states--;
752         sched->state = sched->saved[sched->saved_states];
753
754         /* continue with next counter: */
755         clear_bit(sched->state.counter++, sched->state.used);
756
757         return true;
758 }
759
760 /*
761  * Select a counter for the current event to schedule. Return true on
762  * success.
763  */
764 static bool __perf_sched_find_counter(struct perf_sched *sched)
765 {
766         struct event_constraint *c;
767         int idx;
768
769         if (!sched->state.unassigned)
770                 return false;
771
772         if (sched->state.event >= sched->max_events)
773                 return false;
774
775         c = sched->constraints[sched->state.event];
776         /* Prefer fixed purpose counters */
777         if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
778                 idx = INTEL_PMC_IDX_FIXED;
779                 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
780                         if (!__test_and_set_bit(idx, sched->state.used))
781                                 goto done;
782                 }
783         }
784
785         /* Grab the first unused counter starting with idx */
786         idx = sched->state.counter;
787         for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
788                 if (!__test_and_set_bit(idx, sched->state.used)) {
789                         if (sched->state.nr_gp++ >= sched->max_gp)
790                                 return false;
791
792                         goto done;
793                 }
794         }
795
796         return false;
797
798 done:
799         sched->state.counter = idx;
800
801         if (c->overlap)
802                 perf_sched_save_state(sched);
803
804         return true;
805 }
806
807 static bool perf_sched_find_counter(struct perf_sched *sched)
808 {
809         while (!__perf_sched_find_counter(sched)) {
810                 if (!perf_sched_restore_state(sched))
811                         return false;
812         }
813
814         return true;
815 }
816
817 /*
818  * Go through all unassigned events and find the next one to schedule.
819  * Take events with the least weight first. Return true on success.
820  */
821 static bool perf_sched_next_event(struct perf_sched *sched)
822 {
823         struct event_constraint *c;
824
825         if (!sched->state.unassigned || !--sched->state.unassigned)
826                 return false;
827
828         do {
829                 /* next event */
830                 sched->state.event++;
831                 if (sched->state.event >= sched->max_events) {
832                         /* next weight */
833                         sched->state.event = 0;
834                         sched->state.weight++;
835                         if (sched->state.weight > sched->max_weight)
836                                 return false;
837                 }
838                 c = sched->constraints[sched->state.event];
839         } while (c->weight != sched->state.weight);
840
841         sched->state.counter = 0;       /* start with first counter */
842
843         return true;
844 }
845
846 /*
847  * Assign a counter for each event.
848  */
849 int perf_assign_events(struct event_constraint **constraints, int n,
850                         int wmin, int wmax, int gpmax, int *assign)
851 {
852         struct perf_sched sched;
853
854         perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
855
856         do {
857                 if (!perf_sched_find_counter(&sched))
858                         break;  /* failed */
859                 if (assign)
860                         assign[sched.state.event] = sched.state.counter;
861         } while (perf_sched_next_event(&sched));
862
863         return sched.state.unassigned;
864 }
865 EXPORT_SYMBOL_GPL(perf_assign_events);
866
867 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
868 {
869         struct event_constraint *c;
870         unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
871         struct perf_event *e;
872         int i, wmin, wmax, unsched = 0;
873         struct hw_perf_event *hwc;
874
875         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
876
877         if (x86_pmu.start_scheduling)
878                 x86_pmu.start_scheduling(cpuc);
879
880         for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
881                 cpuc->event_constraint[i] = NULL;
882                 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
883                 cpuc->event_constraint[i] = c;
884
885                 wmin = min(wmin, c->weight);
886                 wmax = max(wmax, c->weight);
887         }
888
889         /*
890          * fastpath, try to reuse previous register
891          */
892         for (i = 0; i < n; i++) {
893                 hwc = &cpuc->event_list[i]->hw;
894                 c = cpuc->event_constraint[i];
895
896                 /* never assigned */
897                 if (hwc->idx == -1)
898                         break;
899
900                 /* constraint still honored */
901                 if (!test_bit(hwc->idx, c->idxmsk))
902                         break;
903
904                 /* not already used */
905                 if (test_bit(hwc->idx, used_mask))
906                         break;
907
908                 __set_bit(hwc->idx, used_mask);
909                 if (assign)
910                         assign[i] = hwc->idx;
911         }
912
913         /* slow path */
914         if (i != n) {
915                 int gpmax = x86_pmu.num_counters;
916
917                 /*
918                  * Do not allow scheduling of more than half the available
919                  * generic counters.
920                  *
921                  * This helps avoid counter starvation of sibling thread by
922                  * ensuring at most half the counters cannot be in exclusive
923                  * mode. There is no designated counters for the limits. Any
924                  * N/2 counters can be used. This helps with events with
925                  * specific counter constraints.
926                  */
927                 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
928                     READ_ONCE(cpuc->excl_cntrs->exclusive_present))
929                         gpmax /= 2;
930
931                 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
932                                              wmax, gpmax, assign);
933         }
934
935         /*
936          * In case of success (unsched = 0), mark events as committed,
937          * so we do not put_constraint() in case new events are added
938          * and fail to be scheduled
939          *
940          * We invoke the lower level commit callback to lock the resource
941          *
942          * We do not need to do all of this in case we are called to
943          * validate an event group (assign == NULL)
944          */
945         if (!unsched && assign) {
946                 for (i = 0; i < n; i++) {
947                         e = cpuc->event_list[i];
948                         e->hw.flags |= PERF_X86_EVENT_COMMITTED;
949                         if (x86_pmu.commit_scheduling)
950                                 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
951                 }
952         } else {
953                 for (i = 0; i < n; i++) {
954                         e = cpuc->event_list[i];
955                         /*
956                          * do not put_constraint() on comitted events,
957                          * because they are good to go
958                          */
959                         if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
960                                 continue;
961
962                         /*
963                          * release events that failed scheduling
964                          */
965                         if (x86_pmu.put_event_constraints)
966                                 x86_pmu.put_event_constraints(cpuc, e);
967                 }
968         }
969
970         if (x86_pmu.stop_scheduling)
971                 x86_pmu.stop_scheduling(cpuc);
972
973         return unsched ? -EINVAL : 0;
974 }
975
976 /*
977  * dogrp: true if must collect siblings events (group)
978  * returns total number of events and error code
979  */
980 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
981 {
982         struct perf_event *event;
983         int n, max_count;
984
985         max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
986
987         /* current number of events already accepted */
988         n = cpuc->n_events;
989
990         if (is_x86_event(leader)) {
991                 if (n >= max_count)
992                         return -EINVAL;
993                 cpuc->event_list[n] = leader;
994                 n++;
995         }
996         if (!dogrp)
997                 return n;
998
999         for_each_sibling_event(event, leader) {
1000                 if (!is_x86_event(event) ||
1001                     event->state <= PERF_EVENT_STATE_OFF)
1002                         continue;
1003
1004                 if (n >= max_count)
1005                         return -EINVAL;
1006
1007                 cpuc->event_list[n] = event;
1008                 n++;
1009         }
1010         return n;
1011 }
1012
1013 static inline void x86_assign_hw_event(struct perf_event *event,
1014                                 struct cpu_hw_events *cpuc, int i)
1015 {
1016         struct hw_perf_event *hwc = &event->hw;
1017
1018         hwc->idx = cpuc->assign[i];
1019         hwc->last_cpu = smp_processor_id();
1020         hwc->last_tag = ++cpuc->tags[i];
1021
1022         if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1023                 hwc->config_base = 0;
1024                 hwc->event_base = 0;
1025         } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1026                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1027                 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1028                 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1029         } else {
1030                 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1031                 hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1032                 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1033         }
1034 }
1035
1036 /**
1037  * x86_perf_rdpmc_index - Return PMC counter used for event
1038  * @event: the perf_event to which the PMC counter was assigned
1039  *
1040  * The counter assigned to this performance event may change if interrupts
1041  * are enabled. This counter should thus never be used while interrupts are
1042  * enabled. Before this function is used to obtain the assigned counter the
1043  * event should be checked for validity using, for example,
1044  * perf_event_read_local(), within the same interrupt disabled section in
1045  * which this counter is planned to be used.
1046  *
1047  * Return: The index of the performance monitoring counter assigned to
1048  * @perf_event.
1049  */
1050 int x86_perf_rdpmc_index(struct perf_event *event)
1051 {
1052         lockdep_assert_irqs_disabled();
1053
1054         return event->hw.event_base_rdpmc;
1055 }
1056
1057 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1058                                         struct cpu_hw_events *cpuc,
1059                                         int i)
1060 {
1061         return hwc->idx == cpuc->assign[i] &&
1062                 hwc->last_cpu == smp_processor_id() &&
1063                 hwc->last_tag == cpuc->tags[i];
1064 }
1065
1066 static void x86_pmu_start(struct perf_event *event, int flags);
1067
1068 static void x86_pmu_enable(struct pmu *pmu)
1069 {
1070         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1071         struct perf_event *event;
1072         struct hw_perf_event *hwc;
1073         int i, added = cpuc->n_added;
1074
1075         if (!x86_pmu_initialized())
1076                 return;
1077
1078         if (cpuc->enabled)
1079                 return;
1080
1081         if (cpuc->n_added) {
1082                 int n_running = cpuc->n_events - cpuc->n_added;
1083                 /*
1084                  * apply assignment obtained either from
1085                  * hw_perf_group_sched_in() or x86_pmu_enable()
1086                  *
1087                  * step1: save events moving to new counters
1088                  */
1089                 for (i = 0; i < n_running; i++) {
1090                         event = cpuc->event_list[i];
1091                         hwc = &event->hw;
1092
1093                         /*
1094                          * we can avoid reprogramming counter if:
1095                          * - assigned same counter as last time
1096                          * - running on same CPU as last time
1097                          * - no other event has used the counter since
1098                          */
1099                         if (hwc->idx == -1 ||
1100                             match_prev_assignment(hwc, cpuc, i))
1101                                 continue;
1102
1103                         /*
1104                          * Ensure we don't accidentally enable a stopped
1105                          * counter simply because we rescheduled.
1106                          */
1107                         if (hwc->state & PERF_HES_STOPPED)
1108                                 hwc->state |= PERF_HES_ARCH;
1109
1110                         x86_pmu_stop(event, PERF_EF_UPDATE);
1111                 }
1112
1113                 /*
1114                  * step2: reprogram moved events into new counters
1115                  */
1116                 for (i = 0; i < cpuc->n_events; i++) {
1117                         event = cpuc->event_list[i];
1118                         hwc = &event->hw;
1119
1120                         if (!match_prev_assignment(hwc, cpuc, i))
1121                                 x86_assign_hw_event(event, cpuc, i);
1122                         else if (i < n_running)
1123                                 continue;
1124
1125                         if (hwc->state & PERF_HES_ARCH)
1126                                 continue;
1127
1128                         x86_pmu_start(event, PERF_EF_RELOAD);
1129                 }
1130                 cpuc->n_added = 0;
1131                 perf_events_lapic_init();
1132         }
1133
1134         cpuc->enabled = 1;
1135         barrier();
1136
1137         x86_pmu.enable_all(added);
1138 }
1139
1140 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1141
1142 /*
1143  * Set the next IRQ period, based on the hwc->period_left value.
1144  * To be called with the event disabled in hw:
1145  */
1146 int x86_perf_event_set_period(struct perf_event *event)
1147 {
1148         struct hw_perf_event *hwc = &event->hw;
1149         s64 left = local64_read(&hwc->period_left);
1150         s64 period = hwc->sample_period;
1151         int ret = 0, idx = hwc->idx;
1152
1153         if (idx == INTEL_PMC_IDX_FIXED_BTS)
1154                 return 0;
1155
1156         /*
1157          * If we are way outside a reasonable range then just skip forward:
1158          */
1159         if (unlikely(left <= -period)) {
1160                 left = period;
1161                 local64_set(&hwc->period_left, left);
1162                 hwc->last_period = period;
1163                 ret = 1;
1164         }
1165
1166         if (unlikely(left <= 0)) {
1167                 left += period;
1168                 local64_set(&hwc->period_left, left);
1169                 hwc->last_period = period;
1170                 ret = 1;
1171         }
1172         /*
1173          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1174          */
1175         if (unlikely(left < 2))
1176                 left = 2;
1177
1178         if (left > x86_pmu.max_period)
1179                 left = x86_pmu.max_period;
1180
1181         if (x86_pmu.limit_period)
1182                 left = x86_pmu.limit_period(event, left);
1183
1184         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1185
1186         /*
1187          * The hw event starts counting from this event offset,
1188          * mark it to be able to extra future deltas:
1189          */
1190         local64_set(&hwc->prev_count, (u64)-left);
1191
1192         wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1193
1194         /*
1195          * Due to erratum on certan cpu we need
1196          * a second write to be sure the register
1197          * is updated properly
1198          */
1199         if (x86_pmu.perfctr_second_write) {
1200                 wrmsrl(hwc->event_base,
1201                         (u64)(-left) & x86_pmu.cntval_mask);
1202         }
1203
1204         perf_event_update_userpage(event);
1205
1206         return ret;
1207 }
1208
1209 void x86_pmu_enable_event(struct perf_event *event)
1210 {
1211         if (__this_cpu_read(cpu_hw_events.enabled))
1212                 __x86_pmu_enable_event(&event->hw,
1213                                        ARCH_PERFMON_EVENTSEL_ENABLE);
1214 }
1215
1216 /*
1217  * Add a single event to the PMU.
1218  *
1219  * The event is added to the group of enabled events
1220  * but only if it can be scehduled with existing events.
1221  */
1222 static int x86_pmu_add(struct perf_event *event, int flags)
1223 {
1224         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1225         struct hw_perf_event *hwc;
1226         int assign[X86_PMC_IDX_MAX];
1227         int n, n0, ret;
1228
1229         hwc = &event->hw;
1230
1231         n0 = cpuc->n_events;
1232         ret = n = collect_events(cpuc, event, false);
1233         if (ret < 0)
1234                 goto out;
1235
1236         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1237         if (!(flags & PERF_EF_START))
1238                 hwc->state |= PERF_HES_ARCH;
1239
1240         /*
1241          * If group events scheduling transaction was started,
1242          * skip the schedulability test here, it will be performed
1243          * at commit time (->commit_txn) as a whole.
1244          *
1245          * If commit fails, we'll call ->del() on all events
1246          * for which ->add() was called.
1247          */
1248         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1249                 goto done_collect;
1250
1251         ret = x86_pmu.schedule_events(cpuc, n, assign);
1252         if (ret)
1253                 goto out;
1254         /*
1255          * copy new assignment, now we know it is possible
1256          * will be used by hw_perf_enable()
1257          */
1258         memcpy(cpuc->assign, assign, n*sizeof(int));
1259
1260 done_collect:
1261         /*
1262          * Commit the collect_events() state. See x86_pmu_del() and
1263          * x86_pmu_*_txn().
1264          */
1265         cpuc->n_events = n;
1266         cpuc->n_added += n - n0;
1267         cpuc->n_txn += n - n0;
1268
1269         if (x86_pmu.add) {
1270                 /*
1271                  * This is before x86_pmu_enable() will call x86_pmu_start(),
1272                  * so we enable LBRs before an event needs them etc..
1273                  */
1274                 x86_pmu.add(event);
1275         }
1276
1277         ret = 0;
1278 out:
1279         return ret;
1280 }
1281
1282 static void x86_pmu_start(struct perf_event *event, int flags)
1283 {
1284         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1285         int idx = event->hw.idx;
1286
1287         if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1288                 return;
1289
1290         if (WARN_ON_ONCE(idx == -1))
1291                 return;
1292
1293         if (flags & PERF_EF_RELOAD) {
1294                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1295                 x86_perf_event_set_period(event);
1296         }
1297
1298         event->hw.state = 0;
1299
1300         cpuc->events[idx] = event;
1301         __set_bit(idx, cpuc->active_mask);
1302         __set_bit(idx, cpuc->running);
1303         x86_pmu.enable(event);
1304         perf_event_update_userpage(event);
1305 }
1306
1307 void perf_event_print_debug(void)
1308 {
1309         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1310         u64 pebs, debugctl;
1311         struct cpu_hw_events *cpuc;
1312         unsigned long flags;
1313         int cpu, idx;
1314
1315         if (!x86_pmu.num_counters)
1316                 return;
1317
1318         local_irq_save(flags);
1319
1320         cpu = smp_processor_id();
1321         cpuc = &per_cpu(cpu_hw_events, cpu);
1322
1323         if (x86_pmu.version >= 2) {
1324                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1325                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1326                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1327                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1328
1329                 pr_info("\n");
1330                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1331                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1332                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1333                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1334                 if (x86_pmu.pebs_constraints) {
1335                         rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1336                         pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1337                 }
1338                 if (x86_pmu.lbr_nr) {
1339                         rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1340                         pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1341                 }
1342         }
1343         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1344
1345         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1346                 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1347                 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1348
1349                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1350
1351                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1352                         cpu, idx, pmc_ctrl);
1353                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1354                         cpu, idx, pmc_count);
1355                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1356                         cpu, idx, prev_left);
1357         }
1358         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1359                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1360
1361                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1362                         cpu, idx, pmc_count);
1363         }
1364         local_irq_restore(flags);
1365 }
1366
1367 void x86_pmu_stop(struct perf_event *event, int flags)
1368 {
1369         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1370         struct hw_perf_event *hwc = &event->hw;
1371
1372         if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1373                 x86_pmu.disable(event);
1374                 cpuc->events[hwc->idx] = NULL;
1375                 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1376                 hwc->state |= PERF_HES_STOPPED;
1377         }
1378
1379         if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1380                 /*
1381                  * Drain the remaining delta count out of a event
1382                  * that we are disabling:
1383                  */
1384                 x86_perf_event_update(event);
1385                 hwc->state |= PERF_HES_UPTODATE;
1386         }
1387 }
1388
1389 static void x86_pmu_del(struct perf_event *event, int flags)
1390 {
1391         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1392         int i;
1393
1394         /*
1395          * event is descheduled
1396          */
1397         event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1398
1399         /*
1400          * If we're called during a txn, we only need to undo x86_pmu.add.
1401          * The events never got scheduled and ->cancel_txn will truncate
1402          * the event_list.
1403          *
1404          * XXX assumes any ->del() called during a TXN will only be on
1405          * an event added during that same TXN.
1406          */
1407         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1408                 goto do_del;
1409
1410         /*
1411          * Not a TXN, therefore cleanup properly.
1412          */
1413         x86_pmu_stop(event, PERF_EF_UPDATE);
1414
1415         for (i = 0; i < cpuc->n_events; i++) {
1416                 if (event == cpuc->event_list[i])
1417                         break;
1418         }
1419
1420         if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1421                 return;
1422
1423         /* If we have a newly added event; make sure to decrease n_added. */
1424         if (i >= cpuc->n_events - cpuc->n_added)
1425                 --cpuc->n_added;
1426
1427         if (x86_pmu.put_event_constraints)
1428                 x86_pmu.put_event_constraints(cpuc, event);
1429
1430         /* Delete the array entry. */
1431         while (++i < cpuc->n_events) {
1432                 cpuc->event_list[i-1] = cpuc->event_list[i];
1433                 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1434         }
1435         --cpuc->n_events;
1436
1437         perf_event_update_userpage(event);
1438
1439 do_del:
1440         if (x86_pmu.del) {
1441                 /*
1442                  * This is after x86_pmu_stop(); so we disable LBRs after any
1443                  * event can need them etc..
1444                  */
1445                 x86_pmu.del(event);
1446         }
1447 }
1448
1449 int x86_pmu_handle_irq(struct pt_regs *regs)
1450 {
1451         struct perf_sample_data data;
1452         struct cpu_hw_events *cpuc;
1453         struct perf_event *event;
1454         int idx, handled = 0;
1455         u64 val;
1456
1457         cpuc = this_cpu_ptr(&cpu_hw_events);
1458
1459         /*
1460          * Some chipsets need to unmask the LVTPC in a particular spot
1461          * inside the nmi handler.  As a result, the unmasking was pushed
1462          * into all the nmi handlers.
1463          *
1464          * This generic handler doesn't seem to have any issues where the
1465          * unmasking occurs so it was left at the top.
1466          */
1467         apic_write(APIC_LVTPC, APIC_DM_NMI);
1468
1469         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1470                 if (!test_bit(idx, cpuc->active_mask)) {
1471                         /*
1472                          * Though we deactivated the counter some cpus
1473                          * might still deliver spurious interrupts still
1474                          * in flight. Catch them:
1475                          */
1476                         if (__test_and_clear_bit(idx, cpuc->running))
1477                                 handled++;
1478                         continue;
1479                 }
1480
1481                 event = cpuc->events[idx];
1482
1483                 val = x86_perf_event_update(event);
1484                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1485                         continue;
1486
1487                 /*
1488                  * event overflow
1489                  */
1490                 handled++;
1491                 perf_sample_data_init(&data, 0, event->hw.last_period);
1492
1493                 if (!x86_perf_event_set_period(event))
1494                         continue;
1495
1496                 if (perf_event_overflow(event, &data, regs))
1497                         x86_pmu_stop(event, 0);
1498         }
1499
1500         if (handled)
1501                 inc_irq_stat(apic_perf_irqs);
1502
1503         return handled;
1504 }
1505
1506 void perf_events_lapic_init(void)
1507 {
1508         if (!x86_pmu.apic || !x86_pmu_initialized())
1509                 return;
1510
1511         /*
1512          * Always use NMI for PMU
1513          */
1514         apic_write(APIC_LVTPC, APIC_DM_NMI);
1515 }
1516
1517 static int
1518 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1519 {
1520         u64 start_clock;
1521         u64 finish_clock;
1522         int ret;
1523
1524         /*
1525          * All PMUs/events that share this PMI handler should make sure to
1526          * increment active_events for their events.
1527          */
1528         if (!atomic_read(&active_events))
1529                 return NMI_DONE;
1530
1531         start_clock = sched_clock();
1532         ret = x86_pmu.handle_irq(regs);
1533         finish_clock = sched_clock();
1534
1535         perf_sample_event_took(finish_clock - start_clock);
1536
1537         return ret;
1538 }
1539 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1540
1541 struct event_constraint emptyconstraint;
1542 struct event_constraint unconstrained;
1543
1544 static int x86_pmu_prepare_cpu(unsigned int cpu)
1545 {
1546         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1547         int i;
1548
1549         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1550                 cpuc->kfree_on_online[i] = NULL;
1551         if (x86_pmu.cpu_prepare)
1552                 return x86_pmu.cpu_prepare(cpu);
1553         return 0;
1554 }
1555
1556 static int x86_pmu_dead_cpu(unsigned int cpu)
1557 {
1558         if (x86_pmu.cpu_dead)
1559                 x86_pmu.cpu_dead(cpu);
1560         return 0;
1561 }
1562
1563 static int x86_pmu_online_cpu(unsigned int cpu)
1564 {
1565         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1566         int i;
1567
1568         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1569                 kfree(cpuc->kfree_on_online[i]);
1570                 cpuc->kfree_on_online[i] = NULL;
1571         }
1572         return 0;
1573 }
1574
1575 static int x86_pmu_starting_cpu(unsigned int cpu)
1576 {
1577         if (x86_pmu.cpu_starting)
1578                 x86_pmu.cpu_starting(cpu);
1579         return 0;
1580 }
1581
1582 static int x86_pmu_dying_cpu(unsigned int cpu)
1583 {
1584         if (x86_pmu.cpu_dying)
1585                 x86_pmu.cpu_dying(cpu);
1586         return 0;
1587 }
1588
1589 static void __init pmu_check_apic(void)
1590 {
1591         if (boot_cpu_has(X86_FEATURE_APIC))
1592                 return;
1593
1594         x86_pmu.apic = 0;
1595         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1596         pr_info("no hardware sampling interrupt available.\n");
1597
1598         /*
1599          * If we have a PMU initialized but no APIC
1600          * interrupts, we cannot sample hardware
1601          * events (user-space has to fall back and
1602          * sample via a hrtimer based software event):
1603          */
1604         pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1605
1606 }
1607
1608 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1609         .name = "format",
1610         .attrs = NULL,
1611 };
1612
1613 /*
1614  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1615  * out of events_attr attributes.
1616  */
1617 static void __init filter_events(struct attribute **attrs)
1618 {
1619         struct device_attribute *d;
1620         struct perf_pmu_events_attr *pmu_attr;
1621         int offset = 0;
1622         int i, j;
1623
1624         for (i = 0; attrs[i]; i++) {
1625                 d = (struct device_attribute *)attrs[i];
1626                 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1627                 /* str trumps id */
1628                 if (pmu_attr->event_str)
1629                         continue;
1630                 if (x86_pmu.event_map(i + offset))
1631                         continue;
1632
1633                 for (j = i; attrs[j]; j++)
1634                         attrs[j] = attrs[j + 1];
1635
1636                 /* Check the shifted attr. */
1637                 i--;
1638
1639                 /*
1640                  * event_map() is index based, the attrs array is organized
1641                  * by increasing event index. If we shift the events, then
1642                  * we need to compensate for the event_map(), otherwise
1643                  * we are looking up the wrong event in the map
1644                  */
1645                 offset++;
1646         }
1647 }
1648
1649 /* Merge two pointer arrays */
1650 __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1651 {
1652         struct attribute **new;
1653         int j, i;
1654
1655         for (j = 0; a && a[j]; j++)
1656                 ;
1657         for (i = 0; b && b[i]; i++)
1658                 j++;
1659         j++;
1660
1661         new = kmalloc_array(j, sizeof(struct attribute *), GFP_KERNEL);
1662         if (!new)
1663                 return NULL;
1664
1665         j = 0;
1666         for (i = 0; a && a[i]; i++)
1667                 new[j++] = a[i];
1668         for (i = 0; b && b[i]; i++)
1669                 new[j++] = b[i];
1670         new[j] = NULL;
1671
1672         return new;
1673 }
1674
1675 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1676 {
1677         struct perf_pmu_events_attr *pmu_attr = \
1678                 container_of(attr, struct perf_pmu_events_attr, attr);
1679         u64 config = x86_pmu.event_map(pmu_attr->id);
1680
1681         /* string trumps id */
1682         if (pmu_attr->event_str)
1683                 return sprintf(page, "%s", pmu_attr->event_str);
1684
1685         return x86_pmu.events_sysfs_show(page, config);
1686 }
1687 EXPORT_SYMBOL_GPL(events_sysfs_show);
1688
1689 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1690                           char *page)
1691 {
1692         struct perf_pmu_events_ht_attr *pmu_attr =
1693                 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1694
1695         /*
1696          * Report conditional events depending on Hyper-Threading.
1697          *
1698          * This is overly conservative as usually the HT special
1699          * handling is not needed if the other CPU thread is idle.
1700          *
1701          * Note this does not (and cannot) handle the case when thread
1702          * siblings are invisible, for example with virtualization
1703          * if they are owned by some other guest.  The user tool
1704          * has to re-read when a thread sibling gets onlined later.
1705          */
1706         return sprintf(page, "%s",
1707                         topology_max_smt_threads() > 1 ?
1708                         pmu_attr->event_str_ht :
1709                         pmu_attr->event_str_noht);
1710 }
1711
1712 EVENT_ATTR(cpu-cycles,                  CPU_CYCLES              );
1713 EVENT_ATTR(instructions,                INSTRUCTIONS            );
1714 EVENT_ATTR(cache-references,            CACHE_REFERENCES        );
1715 EVENT_ATTR(cache-misses,                CACHE_MISSES            );
1716 EVENT_ATTR(branch-instructions,         BRANCH_INSTRUCTIONS     );
1717 EVENT_ATTR(branch-misses,               BRANCH_MISSES           );
1718 EVENT_ATTR(bus-cycles,                  BUS_CYCLES              );
1719 EVENT_ATTR(stalled-cycles-frontend,     STALLED_CYCLES_FRONTEND );
1720 EVENT_ATTR(stalled-cycles-backend,      STALLED_CYCLES_BACKEND  );
1721 EVENT_ATTR(ref-cycles,                  REF_CPU_CYCLES          );
1722
1723 static struct attribute *empty_attrs;
1724
1725 static struct attribute *events_attr[] = {
1726         EVENT_PTR(CPU_CYCLES),
1727         EVENT_PTR(INSTRUCTIONS),
1728         EVENT_PTR(CACHE_REFERENCES),
1729         EVENT_PTR(CACHE_MISSES),
1730         EVENT_PTR(BRANCH_INSTRUCTIONS),
1731         EVENT_PTR(BRANCH_MISSES),
1732         EVENT_PTR(BUS_CYCLES),
1733         EVENT_PTR(STALLED_CYCLES_FRONTEND),
1734         EVENT_PTR(STALLED_CYCLES_BACKEND),
1735         EVENT_PTR(REF_CPU_CYCLES),
1736         NULL,
1737 };
1738
1739 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1740         .name = "events",
1741         .attrs = events_attr,
1742 };
1743
1744 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1745 {
1746         u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1747         u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1748         bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1749         bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1750         bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1751         bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1752         ssize_t ret;
1753
1754         /*
1755         * We have whole page size to spend and just little data
1756         * to write, so we can safely use sprintf.
1757         */
1758         ret = sprintf(page, "event=0x%02llx", event);
1759
1760         if (umask)
1761                 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1762
1763         if (edge)
1764                 ret += sprintf(page + ret, ",edge");
1765
1766         if (pc)
1767                 ret += sprintf(page + ret, ",pc");
1768
1769         if (any)
1770                 ret += sprintf(page + ret, ",any");
1771
1772         if (inv)
1773                 ret += sprintf(page + ret, ",inv");
1774
1775         if (cmask)
1776                 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1777
1778         ret += sprintf(page + ret, "\n");
1779
1780         return ret;
1781 }
1782
1783 static struct attribute_group x86_pmu_attr_group;
1784 static struct attribute_group x86_pmu_caps_group;
1785
1786 static int __init init_hw_perf_events(void)
1787 {
1788         struct x86_pmu_quirk *quirk;
1789         int err;
1790
1791         pr_info("Performance Events: ");
1792
1793         switch (boot_cpu_data.x86_vendor) {
1794         case X86_VENDOR_INTEL:
1795                 err = intel_pmu_init();
1796                 break;
1797         case X86_VENDOR_AMD:
1798                 err = amd_pmu_init();
1799                 break;
1800         case X86_VENDOR_HYGON:
1801                 err = amd_pmu_init();
1802                 x86_pmu.name = "HYGON";
1803                 break;
1804         default:
1805                 err = -ENOTSUPP;
1806         }
1807         if (err != 0) {
1808                 pr_cont("no PMU driver, software events only.\n");
1809                 return 0;
1810         }
1811
1812         pmu_check_apic();
1813
1814         /* sanity check that the hardware exists or is emulated */
1815         if (!check_hw_exists())
1816                 return 0;
1817
1818         pr_cont("%s PMU driver.\n", x86_pmu.name);
1819
1820         x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1821
1822         for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1823                 quirk->func();
1824
1825         if (!x86_pmu.intel_ctrl)
1826                 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1827
1828         perf_events_lapic_init();
1829         register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1830
1831         unconstrained = (struct event_constraint)
1832                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1833                                    0, x86_pmu.num_counters, 0, 0);
1834
1835         x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1836
1837         if (x86_pmu.caps_attrs) {
1838                 struct attribute **tmp;
1839
1840                 tmp = merge_attr(x86_pmu_caps_group.attrs, x86_pmu.caps_attrs);
1841                 if (!WARN_ON(!tmp))
1842                         x86_pmu_caps_group.attrs = tmp;
1843         }
1844
1845         if (x86_pmu.event_attrs)
1846                 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1847
1848         if (!x86_pmu.events_sysfs_show)
1849                 x86_pmu_events_group.attrs = &empty_attrs;
1850         else
1851                 filter_events(x86_pmu_events_group.attrs);
1852
1853         if (x86_pmu.cpu_events) {
1854                 struct attribute **tmp;
1855
1856                 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1857                 if (!WARN_ON(!tmp))
1858                         x86_pmu_events_group.attrs = tmp;
1859         }
1860
1861         if (x86_pmu.attrs) {
1862                 struct attribute **tmp;
1863
1864                 tmp = merge_attr(x86_pmu_attr_group.attrs, x86_pmu.attrs);
1865                 if (!WARN_ON(!tmp))
1866                         x86_pmu_attr_group.attrs = tmp;
1867         }
1868
1869         pr_info("... version:                %d\n",     x86_pmu.version);
1870         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1871         pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1872         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1873         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1874         pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1875         pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1876
1877         /*
1878          * Install callbacks. Core will call them for each online
1879          * cpu.
1880          */
1881         err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
1882                                 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1883         if (err)
1884                 return err;
1885
1886         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
1887                                 "perf/x86:starting", x86_pmu_starting_cpu,
1888                                 x86_pmu_dying_cpu);
1889         if (err)
1890                 goto out;
1891
1892         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
1893                                 x86_pmu_online_cpu, NULL);
1894         if (err)
1895                 goto out1;
1896
1897         err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1898         if (err)
1899                 goto out2;
1900
1901         return 0;
1902
1903 out2:
1904         cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1905 out1:
1906         cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1907 out:
1908         cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1909         return err;
1910 }
1911 early_initcall(init_hw_perf_events);
1912
1913 static inline void x86_pmu_read(struct perf_event *event)
1914 {
1915         if (x86_pmu.read)
1916                 return x86_pmu.read(event);
1917         x86_perf_event_update(event);
1918 }
1919
1920 /*
1921  * Start group events scheduling transaction
1922  * Set the flag to make pmu::enable() not perform the
1923  * schedulability test, it will be performed at commit time
1924  *
1925  * We only support PERF_PMU_TXN_ADD transactions. Save the
1926  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1927  * transactions.
1928  */
1929 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1930 {
1931         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1932
1933         WARN_ON_ONCE(cpuc->txn_flags);          /* txn already in flight */
1934
1935         cpuc->txn_flags = txn_flags;
1936         if (txn_flags & ~PERF_PMU_TXN_ADD)
1937                 return;
1938
1939         perf_pmu_disable(pmu);
1940         __this_cpu_write(cpu_hw_events.n_txn, 0);
1941 }
1942
1943 /*
1944  * Stop group events scheduling transaction
1945  * Clear the flag and pmu::enable() will perform the
1946  * schedulability test.
1947  */
1948 static void x86_pmu_cancel_txn(struct pmu *pmu)
1949 {
1950         unsigned int txn_flags;
1951         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1952
1953         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1954
1955         txn_flags = cpuc->txn_flags;
1956         cpuc->txn_flags = 0;
1957         if (txn_flags & ~PERF_PMU_TXN_ADD)
1958                 return;
1959
1960         /*
1961          * Truncate collected array by the number of events added in this
1962          * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1963          */
1964         __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1965         __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1966         perf_pmu_enable(pmu);
1967 }
1968
1969 /*
1970  * Commit group events scheduling transaction
1971  * Perform the group schedulability test as a whole
1972  * Return 0 if success
1973  *
1974  * Does not cancel the transaction on failure; expects the caller to do this.
1975  */
1976 static int x86_pmu_commit_txn(struct pmu *pmu)
1977 {
1978         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1979         int assign[X86_PMC_IDX_MAX];
1980         int n, ret;
1981
1982         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1983
1984         if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1985                 cpuc->txn_flags = 0;
1986                 return 0;
1987         }
1988
1989         n = cpuc->n_events;
1990
1991         if (!x86_pmu_initialized())
1992                 return -EAGAIN;
1993
1994         ret = x86_pmu.schedule_events(cpuc, n, assign);
1995         if (ret)
1996                 return ret;
1997
1998         /*
1999          * copy new assignment, now we know it is possible
2000          * will be used by hw_perf_enable()
2001          */
2002         memcpy(cpuc->assign, assign, n*sizeof(int));
2003
2004         cpuc->txn_flags = 0;
2005         perf_pmu_enable(pmu);
2006         return 0;
2007 }
2008 /*
2009  * a fake_cpuc is used to validate event groups. Due to
2010  * the extra reg logic, we need to also allocate a fake
2011  * per_core and per_cpu structure. Otherwise, group events
2012  * using extra reg may conflict without the kernel being
2013  * able to catch this when the last event gets added to
2014  * the group.
2015  */
2016 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2017 {
2018         kfree(cpuc->shared_regs);
2019         kfree(cpuc);
2020 }
2021
2022 static struct cpu_hw_events *allocate_fake_cpuc(void)
2023 {
2024         struct cpu_hw_events *cpuc;
2025         int cpu = raw_smp_processor_id();
2026
2027         cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2028         if (!cpuc)
2029                 return ERR_PTR(-ENOMEM);
2030
2031         /* only needed, if we have extra_regs */
2032         if (x86_pmu.extra_regs) {
2033                 cpuc->shared_regs = allocate_shared_regs(cpu);
2034                 if (!cpuc->shared_regs)
2035                         goto error;
2036         }
2037         cpuc->is_fake = 1;
2038         return cpuc;
2039 error:
2040         free_fake_cpuc(cpuc);
2041         return ERR_PTR(-ENOMEM);
2042 }
2043
2044 /*
2045  * validate that we can schedule this event
2046  */
2047 static int validate_event(struct perf_event *event)
2048 {
2049         struct cpu_hw_events *fake_cpuc;
2050         struct event_constraint *c;
2051         int ret = 0;
2052
2053         fake_cpuc = allocate_fake_cpuc();
2054         if (IS_ERR(fake_cpuc))
2055                 return PTR_ERR(fake_cpuc);
2056
2057         c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
2058
2059         if (!c || !c->weight)
2060                 ret = -EINVAL;
2061
2062         if (x86_pmu.put_event_constraints)
2063                 x86_pmu.put_event_constraints(fake_cpuc, event);
2064
2065         free_fake_cpuc(fake_cpuc);
2066
2067         return ret;
2068 }
2069
2070 /*
2071  * validate a single event group
2072  *
2073  * validation include:
2074  *      - check events are compatible which each other
2075  *      - events do not compete for the same counter
2076  *      - number of events <= number of counters
2077  *
2078  * validation ensures the group can be loaded onto the
2079  * PMU if it was the only group available.
2080  */
2081 static int validate_group(struct perf_event *event)
2082 {
2083         struct perf_event *leader = event->group_leader;
2084         struct cpu_hw_events *fake_cpuc;
2085         int ret = -EINVAL, n;
2086
2087         fake_cpuc = allocate_fake_cpuc();
2088         if (IS_ERR(fake_cpuc))
2089                 return PTR_ERR(fake_cpuc);
2090         /*
2091          * the event is not yet connected with its
2092          * siblings therefore we must first collect
2093          * existing siblings, then add the new event
2094          * before we can simulate the scheduling
2095          */
2096         n = collect_events(fake_cpuc, leader, true);
2097         if (n < 0)
2098                 goto out;
2099
2100         fake_cpuc->n_events = n;
2101         n = collect_events(fake_cpuc, event, false);
2102         if (n < 0)
2103                 goto out;
2104
2105         fake_cpuc->n_events = n;
2106
2107         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2108
2109 out:
2110         free_fake_cpuc(fake_cpuc);
2111         return ret;
2112 }
2113
2114 static int x86_pmu_event_init(struct perf_event *event)
2115 {
2116         struct pmu *tmp;
2117         int err;
2118
2119         switch (event->attr.type) {
2120         case PERF_TYPE_RAW:
2121         case PERF_TYPE_HARDWARE:
2122         case PERF_TYPE_HW_CACHE:
2123                 break;
2124
2125         default:
2126                 return -ENOENT;
2127         }
2128
2129         err = __x86_pmu_event_init(event);
2130         if (!err) {
2131                 /*
2132                  * we temporarily connect event to its pmu
2133                  * such that validate_group() can classify
2134                  * it as an x86 event using is_x86_event()
2135                  */
2136                 tmp = event->pmu;
2137                 event->pmu = &pmu;
2138
2139                 if (event->group_leader != event)
2140                         err = validate_group(event);
2141                 else
2142                         err = validate_event(event);
2143
2144                 event->pmu = tmp;
2145         }
2146         if (err) {
2147                 if (event->destroy)
2148                         event->destroy(event);
2149         }
2150
2151         if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2152             !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2153                 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2154
2155         return err;
2156 }
2157
2158 static void refresh_pce(void *ignored)
2159 {
2160         load_mm_cr4(this_cpu_read(cpu_tlbstate.loaded_mm));
2161 }
2162
2163 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2164 {
2165         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2166                 return;
2167
2168         /*
2169          * This function relies on not being called concurrently in two
2170          * tasks in the same mm.  Otherwise one task could observe
2171          * perf_rdpmc_allowed > 1 and return all the way back to
2172          * userspace with CR4.PCE clear while another task is still
2173          * doing on_each_cpu_mask() to propagate CR4.PCE.
2174          *
2175          * For now, this can't happen because all callers hold mmap_sem
2176          * for write.  If this changes, we'll need a different solution.
2177          */
2178         lockdep_assert_held_exclusive(&mm->mmap_sem);
2179
2180         if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2181                 on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2182 }
2183
2184 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2185 {
2186
2187         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2188                 return;
2189
2190         if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2191                 on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2192 }
2193
2194 static int x86_pmu_event_idx(struct perf_event *event)
2195 {
2196         int idx = event->hw.idx;
2197
2198         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2199                 return 0;
2200
2201         if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2202                 idx -= INTEL_PMC_IDX_FIXED;
2203                 idx |= 1 << 30;
2204         }
2205
2206         return idx + 1;
2207 }
2208
2209 static ssize_t get_attr_rdpmc(struct device *cdev,
2210                               struct device_attribute *attr,
2211                               char *buf)
2212 {
2213         return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2214 }
2215
2216 static ssize_t set_attr_rdpmc(struct device *cdev,
2217                               struct device_attribute *attr,
2218                               const char *buf, size_t count)
2219 {
2220         unsigned long val;
2221         ssize_t ret;
2222
2223         ret = kstrtoul(buf, 0, &val);
2224         if (ret)
2225                 return ret;
2226
2227         if (val > 2)
2228                 return -EINVAL;
2229
2230         if (x86_pmu.attr_rdpmc_broken)
2231                 return -ENOTSUPP;
2232
2233         if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2234                 /*
2235                  * Changing into or out of always available, aka
2236                  * perf-event-bypassing mode.  This path is extremely slow,
2237                  * but only root can trigger it, so it's okay.
2238                  */
2239                 if (val == 2)
2240                         static_branch_inc(&rdpmc_always_available_key);
2241                 else
2242                         static_branch_dec(&rdpmc_always_available_key);
2243                 on_each_cpu(refresh_pce, NULL, 1);
2244         }
2245
2246         x86_pmu.attr_rdpmc = val;
2247
2248         return count;
2249 }
2250
2251 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2252
2253 static struct attribute *x86_pmu_attrs[] = {
2254         &dev_attr_rdpmc.attr,
2255         NULL,
2256 };
2257
2258 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2259         .attrs = x86_pmu_attrs,
2260 };
2261
2262 static ssize_t max_precise_show(struct device *cdev,
2263                                   struct device_attribute *attr,
2264                                   char *buf)
2265 {
2266         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2267 }
2268
2269 static DEVICE_ATTR_RO(max_precise);
2270
2271 static struct attribute *x86_pmu_caps_attrs[] = {
2272         &dev_attr_max_precise.attr,
2273         NULL
2274 };
2275
2276 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2277         .name = "caps",
2278         .attrs = x86_pmu_caps_attrs,
2279 };
2280
2281 static const struct attribute_group *x86_pmu_attr_groups[] = {
2282         &x86_pmu_attr_group,
2283         &x86_pmu_format_group,
2284         &x86_pmu_events_group,
2285         &x86_pmu_caps_group,
2286         NULL,
2287 };
2288
2289 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2290 {
2291         if (x86_pmu.sched_task)
2292                 x86_pmu.sched_task(ctx, sched_in);
2293 }
2294
2295 void perf_check_microcode(void)
2296 {
2297         if (x86_pmu.check_microcode)
2298                 x86_pmu.check_microcode();
2299 }
2300
2301 static struct pmu pmu = {
2302         .pmu_enable             = x86_pmu_enable,
2303         .pmu_disable            = x86_pmu_disable,
2304
2305         .attr_groups            = x86_pmu_attr_groups,
2306
2307         .event_init             = x86_pmu_event_init,
2308
2309         .event_mapped           = x86_pmu_event_mapped,
2310         .event_unmapped         = x86_pmu_event_unmapped,
2311
2312         .add                    = x86_pmu_add,
2313         .del                    = x86_pmu_del,
2314         .start                  = x86_pmu_start,
2315         .stop                   = x86_pmu_stop,
2316         .read                   = x86_pmu_read,
2317
2318         .start_txn              = x86_pmu_start_txn,
2319         .cancel_txn             = x86_pmu_cancel_txn,
2320         .commit_txn             = x86_pmu_commit_txn,
2321
2322         .event_idx              = x86_pmu_event_idx,
2323         .sched_task             = x86_pmu_sched_task,
2324         .task_ctx_size          = sizeof(struct x86_perf_task_context),
2325 };
2326
2327 void arch_perf_update_userpage(struct perf_event *event,
2328                                struct perf_event_mmap_page *userpg, u64 now)
2329 {
2330         struct cyc2ns_data data;
2331         u64 offset;
2332
2333         userpg->cap_user_time = 0;
2334         userpg->cap_user_time_zero = 0;
2335         userpg->cap_user_rdpmc =
2336                 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2337         userpg->pmc_width = x86_pmu.cntval_bits;
2338
2339         if (!using_native_sched_clock() || !sched_clock_stable())
2340                 return;
2341
2342         cyc2ns_read_begin(&data);
2343
2344         offset = data.cyc2ns_offset + __sched_clock_offset;
2345
2346         /*
2347          * Internal timekeeping for enabled/running/stopped times
2348          * is always in the local_clock domain.
2349          */
2350         userpg->cap_user_time = 1;
2351         userpg->time_mult = data.cyc2ns_mul;
2352         userpg->time_shift = data.cyc2ns_shift;
2353         userpg->time_offset = offset - now;
2354
2355         /*
2356          * cap_user_time_zero doesn't make sense when we're using a different
2357          * time base for the records.
2358          */
2359         if (!event->attr.use_clockid) {
2360                 userpg->cap_user_time_zero = 1;
2361                 userpg->time_zero = offset;
2362         }
2363
2364         cyc2ns_read_end();
2365 }
2366
2367 void
2368 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2369 {
2370         struct unwind_state state;
2371         unsigned long addr;
2372
2373         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2374                 /* TODO: We don't support guest os callchain now */
2375                 return;
2376         }
2377
2378         if (perf_callchain_store(entry, regs->ip))
2379                 return;
2380
2381         for (unwind_start(&state, current, regs, NULL); !unwind_done(&state);
2382              unwind_next_frame(&state)) {
2383                 addr = unwind_get_return_address(&state);
2384                 if (!addr || perf_callchain_store(entry, addr))
2385                         return;
2386         }
2387 }
2388
2389 static inline int
2390 valid_user_frame(const void __user *fp, unsigned long size)
2391 {
2392         return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2393 }
2394
2395 static unsigned long get_segment_base(unsigned int segment)
2396 {
2397         struct desc_struct *desc;
2398         unsigned int idx = segment >> 3;
2399
2400         if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2401 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2402                 struct ldt_struct *ldt;
2403
2404                 /* IRQs are off, so this synchronizes with smp_store_release */
2405                 ldt = READ_ONCE(current->active_mm->context.ldt);
2406                 if (!ldt || idx >= ldt->nr_entries)
2407                         return 0;
2408
2409                 desc = &ldt->entries[idx];
2410 #else
2411                 return 0;
2412 #endif
2413         } else {
2414                 if (idx >= GDT_ENTRIES)
2415                         return 0;
2416
2417                 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2418         }
2419
2420         return get_desc_base(desc);
2421 }
2422
2423 #ifdef CONFIG_IA32_EMULATION
2424
2425 #include <linux/compat.h>
2426
2427 static inline int
2428 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2429 {
2430         /* 32-bit process in 64-bit kernel. */
2431         unsigned long ss_base, cs_base;
2432         struct stack_frame_ia32 frame;
2433         const void __user *fp;
2434
2435         if (!test_thread_flag(TIF_IA32))
2436                 return 0;
2437
2438         cs_base = get_segment_base(regs->cs);
2439         ss_base = get_segment_base(regs->ss);
2440
2441         fp = compat_ptr(ss_base + regs->bp);
2442         pagefault_disable();
2443         while (entry->nr < entry->max_stack) {
2444                 unsigned long bytes;
2445                 frame.next_frame     = 0;
2446                 frame.return_address = 0;
2447
2448                 if (!valid_user_frame(fp, sizeof(frame)))
2449                         break;
2450
2451                 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2452                 if (bytes != 0)
2453                         break;
2454                 bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2455                 if (bytes != 0)
2456                         break;
2457
2458                 perf_callchain_store(entry, cs_base + frame.return_address);
2459                 fp = compat_ptr(ss_base + frame.next_frame);
2460         }
2461         pagefault_enable();
2462         return 1;
2463 }
2464 #else
2465 static inline int
2466 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2467 {
2468     return 0;
2469 }
2470 #endif
2471
2472 void
2473 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2474 {
2475         struct stack_frame frame;
2476         const unsigned long __user *fp;
2477
2478         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2479                 /* TODO: We don't support guest os callchain now */
2480                 return;
2481         }
2482
2483         /*
2484          * We don't know what to do with VM86 stacks.. ignore them for now.
2485          */
2486         if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2487                 return;
2488
2489         fp = (unsigned long __user *)regs->bp;
2490
2491         perf_callchain_store(entry, regs->ip);
2492
2493         if (!nmi_uaccess_okay())
2494                 return;
2495
2496         if (perf_callchain_user32(regs, entry))
2497                 return;
2498
2499         pagefault_disable();
2500         while (entry->nr < entry->max_stack) {
2501                 unsigned long bytes;
2502
2503                 frame.next_frame             = NULL;
2504                 frame.return_address = 0;
2505
2506                 if (!valid_user_frame(fp, sizeof(frame)))
2507                         break;
2508
2509                 bytes = __copy_from_user_nmi(&frame.next_frame, fp, sizeof(*fp));
2510                 if (bytes != 0)
2511                         break;
2512                 bytes = __copy_from_user_nmi(&frame.return_address, fp + 1, sizeof(*fp));
2513                 if (bytes != 0)
2514                         break;
2515
2516                 perf_callchain_store(entry, frame.return_address);
2517                 fp = (void __user *)frame.next_frame;
2518         }
2519         pagefault_enable();
2520 }
2521
2522 /*
2523  * Deal with code segment offsets for the various execution modes:
2524  *
2525  *   VM86 - the good olde 16 bit days, where the linear address is
2526  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2527  *
2528  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2529  *          to figure out what the 32bit base address is.
2530  *
2531  *    X32 - has TIF_X32 set, but is running in x86_64
2532  *
2533  * X86_64 - CS,DS,SS,ES are all zero based.
2534  */
2535 static unsigned long code_segment_base(struct pt_regs *regs)
2536 {
2537         /*
2538          * For IA32 we look at the GDT/LDT segment base to convert the
2539          * effective IP to a linear address.
2540          */
2541
2542 #ifdef CONFIG_X86_32
2543         /*
2544          * If we are in VM86 mode, add the segment offset to convert to a
2545          * linear address.
2546          */
2547         if (regs->flags & X86_VM_MASK)
2548                 return 0x10 * regs->cs;
2549
2550         if (user_mode(regs) && regs->cs != __USER_CS)
2551                 return get_segment_base(regs->cs);
2552 #else
2553         if (user_mode(regs) && !user_64bit_mode(regs) &&
2554             regs->cs != __USER32_CS)
2555                 return get_segment_base(regs->cs);
2556 #endif
2557         return 0;
2558 }
2559
2560 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2561 {
2562         if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2563                 return perf_guest_cbs->get_guest_ip();
2564
2565         return regs->ip + code_segment_base(regs);
2566 }
2567
2568 unsigned long perf_misc_flags(struct pt_regs *regs)
2569 {
2570         int misc = 0;
2571
2572         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2573                 if (perf_guest_cbs->is_user_mode())
2574                         misc |= PERF_RECORD_MISC_GUEST_USER;
2575                 else
2576                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2577         } else {
2578                 if (user_mode(regs))
2579                         misc |= PERF_RECORD_MISC_USER;
2580                 else
2581                         misc |= PERF_RECORD_MISC_KERNEL;
2582         }
2583
2584         if (regs->flags & PERF_EFLAGS_EXACT)
2585                 misc |= PERF_RECORD_MISC_EXACT_IP;
2586
2587         return misc;
2588 }
2589
2590 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2591 {
2592         cap->version            = x86_pmu.version;
2593         cap->num_counters_gp    = x86_pmu.num_counters;
2594         cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2595         cap->bit_width_gp       = x86_pmu.cntval_bits;
2596         cap->bit_width_fixed    = x86_pmu.cntval_bits;
2597         cap->events_mask        = (unsigned int)x86_pmu.events_maskl;
2598         cap->events_mask_len    = x86_pmu.events_mask_len;
2599 }
2600 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);