]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kernel/cpu/common.c
x86/cpufeatures: Enumerate the new AVX512 BFLOAT16 instructions
[linux.git] / arch / x86 / kernel / cpu / common.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/init.h>
18 #include <linux/kprobes.h>
19 #include <linux/kgdb.h>
20 #include <linux/smp.h>
21 #include <linux/io.h>
22 #include <linux/syscore_ops.h>
23
24 #include <asm/stackprotector.h>
25 #include <asm/perf_event.h>
26 #include <asm/mmu_context.h>
27 #include <asm/archrandom.h>
28 #include <asm/hypervisor.h>
29 #include <asm/processor.h>
30 #include <asm/tlbflush.h>
31 #include <asm/debugreg.h>
32 #include <asm/sections.h>
33 #include <asm/vsyscall.h>
34 #include <linux/topology.h>
35 #include <linux/cpumask.h>
36 #include <asm/pgtable.h>
37 #include <linux/atomic.h>
38 #include <asm/proto.h>
39 #include <asm/setup.h>
40 #include <asm/apic.h>
41 #include <asm/desc.h>
42 #include <asm/fpu/internal.h>
43 #include <asm/mtrr.h>
44 #include <asm/hwcap2.h>
45 #include <linux/numa.h>
46 #include <asm/asm.h>
47 #include <asm/bugs.h>
48 #include <asm/cpu.h>
49 #include <asm/mce.h>
50 #include <asm/msr.h>
51 #include <asm/pat.h>
52 #include <asm/microcode.h>
53 #include <asm/microcode_intel.h>
54 #include <asm/intel-family.h>
55 #include <asm/cpu_device_id.h>
56
57 #ifdef CONFIG_X86_LOCAL_APIC
58 #include <asm/uv/uv.h>
59 #endif
60
61 #include "cpu.h"
62
63 u32 elf_hwcap2 __read_mostly;
64
65 /* all of these masks are initialized in setup_cpu_local_masks() */
66 cpumask_var_t cpu_initialized_mask;
67 cpumask_var_t cpu_callout_mask;
68 cpumask_var_t cpu_callin_mask;
69
70 /* representing cpus for which sibling maps can be computed */
71 cpumask_var_t cpu_sibling_setup_mask;
72
73 /* Number of siblings per CPU package */
74 int smp_num_siblings = 1;
75 EXPORT_SYMBOL(smp_num_siblings);
76
77 /* Last level cache ID of each logical CPU */
78 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
79
80 /* correctly size the local cpu masks */
81 void __init setup_cpu_local_masks(void)
82 {
83         alloc_bootmem_cpumask_var(&cpu_initialized_mask);
84         alloc_bootmem_cpumask_var(&cpu_callin_mask);
85         alloc_bootmem_cpumask_var(&cpu_callout_mask);
86         alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
87 }
88
89 static void default_init(struct cpuinfo_x86 *c)
90 {
91 #ifdef CONFIG_X86_64
92         cpu_detect_cache_sizes(c);
93 #else
94         /* Not much we can do here... */
95         /* Check if at least it has cpuid */
96         if (c->cpuid_level == -1) {
97                 /* No cpuid. It must be an ancient CPU */
98                 if (c->x86 == 4)
99                         strcpy(c->x86_model_id, "486");
100                 else if (c->x86 == 3)
101                         strcpy(c->x86_model_id, "386");
102         }
103 #endif
104 }
105
106 static const struct cpu_dev default_cpu = {
107         .c_init         = default_init,
108         .c_vendor       = "Unknown",
109         .c_x86_vendor   = X86_VENDOR_UNKNOWN,
110 };
111
112 static const struct cpu_dev *this_cpu = &default_cpu;
113
114 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
115 #ifdef CONFIG_X86_64
116         /*
117          * We need valid kernel segments for data and code in long mode too
118          * IRET will check the segment types  kkeil 2000/10/28
119          * Also sysret mandates a special GDT layout
120          *
121          * TLS descriptors are currently at a different place compared to i386.
122          * Hopefully nobody expects them at a fixed place (Wine?)
123          */
124         [GDT_ENTRY_KERNEL32_CS]         = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
125         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
126         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
127         [GDT_ENTRY_DEFAULT_USER32_CS]   = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
128         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
129         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
130 #else
131         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
132         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
133         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
134         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
135         /*
136          * Segments used for calling PnP BIOS have byte granularity.
137          * They code segments and data segments have fixed 64k limits,
138          * the transfer segment sizes are set at run time.
139          */
140         /* 32-bit code */
141         [GDT_ENTRY_PNPBIOS_CS32]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
142         /* 16-bit code */
143         [GDT_ENTRY_PNPBIOS_CS16]        = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
144         /* 16-bit data */
145         [GDT_ENTRY_PNPBIOS_DS]          = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
146         /* 16-bit data */
147         [GDT_ENTRY_PNPBIOS_TS1]         = GDT_ENTRY_INIT(0x0092, 0, 0),
148         /* 16-bit data */
149         [GDT_ENTRY_PNPBIOS_TS2]         = GDT_ENTRY_INIT(0x0092, 0, 0),
150         /*
151          * The APM segments have byte granularity and their bases
152          * are set at run time.  All have 64k limits.
153          */
154         /* 32-bit code */
155         [GDT_ENTRY_APMBIOS_BASE]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
156         /* 16-bit code */
157         [GDT_ENTRY_APMBIOS_BASE+1]      = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
158         /* data */
159         [GDT_ENTRY_APMBIOS_BASE+2]      = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
160
161         [GDT_ENTRY_ESPFIX_SS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
162         [GDT_ENTRY_PERCPU]              = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
163         GDT_STACK_CANARY_INIT
164 #endif
165 } };
166 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
167
168 static int __init x86_mpx_setup(char *s)
169 {
170         /* require an exact match without trailing characters */
171         if (strlen(s))
172                 return 0;
173
174         /* do not emit a message if the feature is not present */
175         if (!boot_cpu_has(X86_FEATURE_MPX))
176                 return 1;
177
178         setup_clear_cpu_cap(X86_FEATURE_MPX);
179         pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
180         return 1;
181 }
182 __setup("nompx", x86_mpx_setup);
183
184 #ifdef CONFIG_X86_64
185 static int __init x86_nopcid_setup(char *s)
186 {
187         /* nopcid doesn't accept parameters */
188         if (s)
189                 return -EINVAL;
190
191         /* do not emit a message if the feature is not present */
192         if (!boot_cpu_has(X86_FEATURE_PCID))
193                 return 0;
194
195         setup_clear_cpu_cap(X86_FEATURE_PCID);
196         pr_info("nopcid: PCID feature disabled\n");
197         return 0;
198 }
199 early_param("nopcid", x86_nopcid_setup);
200 #endif
201
202 static int __init x86_noinvpcid_setup(char *s)
203 {
204         /* noinvpcid doesn't accept parameters */
205         if (s)
206                 return -EINVAL;
207
208         /* do not emit a message if the feature is not present */
209         if (!boot_cpu_has(X86_FEATURE_INVPCID))
210                 return 0;
211
212         setup_clear_cpu_cap(X86_FEATURE_INVPCID);
213         pr_info("noinvpcid: INVPCID feature disabled\n");
214         return 0;
215 }
216 early_param("noinvpcid", x86_noinvpcid_setup);
217
218 #ifdef CONFIG_X86_32
219 static int cachesize_override = -1;
220 static int disable_x86_serial_nr = 1;
221
222 static int __init cachesize_setup(char *str)
223 {
224         get_option(&str, &cachesize_override);
225         return 1;
226 }
227 __setup("cachesize=", cachesize_setup);
228
229 static int __init x86_sep_setup(char *s)
230 {
231         setup_clear_cpu_cap(X86_FEATURE_SEP);
232         return 1;
233 }
234 __setup("nosep", x86_sep_setup);
235
236 /* Standard macro to see if a specific flag is changeable */
237 static inline int flag_is_changeable_p(u32 flag)
238 {
239         u32 f1, f2;
240
241         /*
242          * Cyrix and IDT cpus allow disabling of CPUID
243          * so the code below may return different results
244          * when it is executed before and after enabling
245          * the CPUID. Add "volatile" to not allow gcc to
246          * optimize the subsequent calls to this function.
247          */
248         asm volatile ("pushfl           \n\t"
249                       "pushfl           \n\t"
250                       "popl %0          \n\t"
251                       "movl %0, %1      \n\t"
252                       "xorl %2, %0      \n\t"
253                       "pushl %0         \n\t"
254                       "popfl            \n\t"
255                       "pushfl           \n\t"
256                       "popl %0          \n\t"
257                       "popfl            \n\t"
258
259                       : "=&r" (f1), "=&r" (f2)
260                       : "ir" (flag));
261
262         return ((f1^f2) & flag) != 0;
263 }
264
265 /* Probe for the CPUID instruction */
266 int have_cpuid_p(void)
267 {
268         return flag_is_changeable_p(X86_EFLAGS_ID);
269 }
270
271 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
272 {
273         unsigned long lo, hi;
274
275         if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
276                 return;
277
278         /* Disable processor serial number: */
279
280         rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
281         lo |= 0x200000;
282         wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
283
284         pr_notice("CPU serial number disabled.\n");
285         clear_cpu_cap(c, X86_FEATURE_PN);
286
287         /* Disabling the serial number may affect the cpuid level */
288         c->cpuid_level = cpuid_eax(0);
289 }
290
291 static int __init x86_serial_nr_setup(char *s)
292 {
293         disable_x86_serial_nr = 0;
294         return 1;
295 }
296 __setup("serialnumber", x86_serial_nr_setup);
297 #else
298 static inline int flag_is_changeable_p(u32 flag)
299 {
300         return 1;
301 }
302 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
303 {
304 }
305 #endif
306
307 static __init int setup_disable_smep(char *arg)
308 {
309         setup_clear_cpu_cap(X86_FEATURE_SMEP);
310         /* Check for things that depend on SMEP being enabled: */
311         check_mpx_erratum(&boot_cpu_data);
312         return 1;
313 }
314 __setup("nosmep", setup_disable_smep);
315
316 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
317 {
318         if (cpu_has(c, X86_FEATURE_SMEP))
319                 cr4_set_bits(X86_CR4_SMEP);
320 }
321
322 static __init int setup_disable_smap(char *arg)
323 {
324         setup_clear_cpu_cap(X86_FEATURE_SMAP);
325         return 1;
326 }
327 __setup("nosmap", setup_disable_smap);
328
329 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
330 {
331         unsigned long eflags = native_save_fl();
332
333         /* This should have been cleared long ago */
334         BUG_ON(eflags & X86_EFLAGS_AC);
335
336         if (cpu_has(c, X86_FEATURE_SMAP)) {
337 #ifdef CONFIG_X86_SMAP
338                 cr4_set_bits(X86_CR4_SMAP);
339 #else
340                 cr4_clear_bits(X86_CR4_SMAP);
341 #endif
342         }
343 }
344
345 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
346 {
347         /* Check the boot processor, plus build option for UMIP. */
348         if (!cpu_feature_enabled(X86_FEATURE_UMIP))
349                 goto out;
350
351         /* Check the current processor's cpuid bits. */
352         if (!cpu_has(c, X86_FEATURE_UMIP))
353                 goto out;
354
355         cr4_set_bits(X86_CR4_UMIP);
356
357         pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
358
359         return;
360
361 out:
362         /*
363          * Make sure UMIP is disabled in case it was enabled in a
364          * previous boot (e.g., via kexec).
365          */
366         cr4_clear_bits(X86_CR4_UMIP);
367 }
368
369 /*
370  * Protection Keys are not available in 32-bit mode.
371  */
372 static bool pku_disabled;
373
374 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
375 {
376         struct pkru_state *pk;
377
378         /* check the boot processor, plus compile options for PKU: */
379         if (!cpu_feature_enabled(X86_FEATURE_PKU))
380                 return;
381         /* checks the actual processor's cpuid bits: */
382         if (!cpu_has(c, X86_FEATURE_PKU))
383                 return;
384         if (pku_disabled)
385                 return;
386
387         cr4_set_bits(X86_CR4_PKE);
388         pk = get_xsave_addr(&init_fpstate.xsave, XFEATURE_PKRU);
389         if (pk)
390                 pk->pkru = init_pkru_value;
391         /*
392          * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
393          * cpuid bit to be set.  We need to ensure that we
394          * update that bit in this CPU's "cpu_info".
395          */
396         get_cpu_cap(c);
397 }
398
399 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
400 static __init int setup_disable_pku(char *arg)
401 {
402         /*
403          * Do not clear the X86_FEATURE_PKU bit.  All of the
404          * runtime checks are against OSPKE so clearing the
405          * bit does nothing.
406          *
407          * This way, we will see "pku" in cpuinfo, but not
408          * "ospke", which is exactly what we want.  It shows
409          * that the CPU has PKU, but the OS has not enabled it.
410          * This happens to be exactly how a system would look
411          * if we disabled the config option.
412          */
413         pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
414         pku_disabled = true;
415         return 1;
416 }
417 __setup("nopku", setup_disable_pku);
418 #endif /* CONFIG_X86_64 */
419
420 /*
421  * Some CPU features depend on higher CPUID levels, which may not always
422  * be available due to CPUID level capping or broken virtualization
423  * software.  Add those features to this table to auto-disable them.
424  */
425 struct cpuid_dependent_feature {
426         u32 feature;
427         u32 level;
428 };
429
430 static const struct cpuid_dependent_feature
431 cpuid_dependent_features[] = {
432         { X86_FEATURE_MWAIT,            0x00000005 },
433         { X86_FEATURE_DCA,              0x00000009 },
434         { X86_FEATURE_XSAVE,            0x0000000d },
435         { 0, 0 }
436 };
437
438 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
439 {
440         const struct cpuid_dependent_feature *df;
441
442         for (df = cpuid_dependent_features; df->feature; df++) {
443
444                 if (!cpu_has(c, df->feature))
445                         continue;
446                 /*
447                  * Note: cpuid_level is set to -1 if unavailable, but
448                  * extended_extended_level is set to 0 if unavailable
449                  * and the legitimate extended levels are all negative
450                  * when signed; hence the weird messing around with
451                  * signs here...
452                  */
453                 if (!((s32)df->level < 0 ?
454                      (u32)df->level > (u32)c->extended_cpuid_level :
455                      (s32)df->level > (s32)c->cpuid_level))
456                         continue;
457
458                 clear_cpu_cap(c, df->feature);
459                 if (!warn)
460                         continue;
461
462                 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
463                         x86_cap_flag(df->feature), df->level);
464         }
465 }
466
467 /*
468  * Naming convention should be: <Name> [(<Codename>)]
469  * This table only is used unless init_<vendor>() below doesn't set it;
470  * in particular, if CPUID levels 0x80000002..4 are supported, this
471  * isn't used
472  */
473
474 /* Look up CPU names by table lookup. */
475 static const char *table_lookup_model(struct cpuinfo_x86 *c)
476 {
477 #ifdef CONFIG_X86_32
478         const struct legacy_cpu_model_info *info;
479
480         if (c->x86_model >= 16)
481                 return NULL;    /* Range check */
482
483         if (!this_cpu)
484                 return NULL;
485
486         info = this_cpu->legacy_models;
487
488         while (info->family) {
489                 if (info->family == c->x86)
490                         return info->model_names[c->x86_model];
491                 info++;
492         }
493 #endif
494         return NULL;            /* Not found */
495 }
496
497 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
498 __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
499
500 void load_percpu_segment(int cpu)
501 {
502 #ifdef CONFIG_X86_32
503         loadsegment(fs, __KERNEL_PERCPU);
504 #else
505         __loadsegment_simple(gs, 0);
506         wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
507 #endif
508         load_stack_canary_segment();
509 }
510
511 #ifdef CONFIG_X86_32
512 /* The 32-bit entry code needs to find cpu_entry_area. */
513 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
514 #endif
515
516 /* Load the original GDT from the per-cpu structure */
517 void load_direct_gdt(int cpu)
518 {
519         struct desc_ptr gdt_descr;
520
521         gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
522         gdt_descr.size = GDT_SIZE - 1;
523         load_gdt(&gdt_descr);
524 }
525 EXPORT_SYMBOL_GPL(load_direct_gdt);
526
527 /* Load a fixmap remapping of the per-cpu GDT */
528 void load_fixmap_gdt(int cpu)
529 {
530         struct desc_ptr gdt_descr;
531
532         gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
533         gdt_descr.size = GDT_SIZE - 1;
534         load_gdt(&gdt_descr);
535 }
536 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
537
538 /*
539  * Current gdt points %fs at the "master" per-cpu area: after this,
540  * it's on the real one.
541  */
542 void switch_to_new_gdt(int cpu)
543 {
544         /* Load the original GDT */
545         load_direct_gdt(cpu);
546         /* Reload the per-cpu base */
547         load_percpu_segment(cpu);
548 }
549
550 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
551
552 static void get_model_name(struct cpuinfo_x86 *c)
553 {
554         unsigned int *v;
555         char *p, *q, *s;
556
557         if (c->extended_cpuid_level < 0x80000004)
558                 return;
559
560         v = (unsigned int *)c->x86_model_id;
561         cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
562         cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
563         cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
564         c->x86_model_id[48] = 0;
565
566         /* Trim whitespace */
567         p = q = s = &c->x86_model_id[0];
568
569         while (*p == ' ')
570                 p++;
571
572         while (*p) {
573                 /* Note the last non-whitespace index */
574                 if (!isspace(*p))
575                         s = q;
576
577                 *q++ = *p++;
578         }
579
580         *(s + 1) = '\0';
581 }
582
583 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
584 {
585         unsigned int eax, ebx, ecx, edx;
586
587         c->x86_max_cores = 1;
588         if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
589                 return;
590
591         cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
592         if (eax & 0x1f)
593                 c->x86_max_cores = (eax >> 26) + 1;
594 }
595
596 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
597 {
598         unsigned int n, dummy, ebx, ecx, edx, l2size;
599
600         n = c->extended_cpuid_level;
601
602         if (n >= 0x80000005) {
603                 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
604                 c->x86_cache_size = (ecx>>24) + (edx>>24);
605 #ifdef CONFIG_X86_64
606                 /* On K8 L1 TLB is inclusive, so don't count it */
607                 c->x86_tlbsize = 0;
608 #endif
609         }
610
611         if (n < 0x80000006)     /* Some chips just has a large L1. */
612                 return;
613
614         cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
615         l2size = ecx >> 16;
616
617 #ifdef CONFIG_X86_64
618         c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
619 #else
620         /* do processor-specific cache resizing */
621         if (this_cpu->legacy_cache_size)
622                 l2size = this_cpu->legacy_cache_size(c, l2size);
623
624         /* Allow user to override all this if necessary. */
625         if (cachesize_override != -1)
626                 l2size = cachesize_override;
627
628         if (l2size == 0)
629                 return;         /* Again, no L2 cache is possible */
630 #endif
631
632         c->x86_cache_size = l2size;
633 }
634
635 u16 __read_mostly tlb_lli_4k[NR_INFO];
636 u16 __read_mostly tlb_lli_2m[NR_INFO];
637 u16 __read_mostly tlb_lli_4m[NR_INFO];
638 u16 __read_mostly tlb_lld_4k[NR_INFO];
639 u16 __read_mostly tlb_lld_2m[NR_INFO];
640 u16 __read_mostly tlb_lld_4m[NR_INFO];
641 u16 __read_mostly tlb_lld_1g[NR_INFO];
642
643 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
644 {
645         if (this_cpu->c_detect_tlb)
646                 this_cpu->c_detect_tlb(c);
647
648         pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
649                 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
650                 tlb_lli_4m[ENTRIES]);
651
652         pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
653                 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
654                 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
655 }
656
657 int detect_ht_early(struct cpuinfo_x86 *c)
658 {
659 #ifdef CONFIG_SMP
660         u32 eax, ebx, ecx, edx;
661
662         if (!cpu_has(c, X86_FEATURE_HT))
663                 return -1;
664
665         if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
666                 return -1;
667
668         if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
669                 return -1;
670
671         cpuid(1, &eax, &ebx, &ecx, &edx);
672
673         smp_num_siblings = (ebx & 0xff0000) >> 16;
674         if (smp_num_siblings == 1)
675                 pr_info_once("CPU0: Hyper-Threading is disabled\n");
676 #endif
677         return 0;
678 }
679
680 void detect_ht(struct cpuinfo_x86 *c)
681 {
682 #ifdef CONFIG_SMP
683         int index_msb, core_bits;
684
685         if (detect_ht_early(c) < 0)
686                 return;
687
688         index_msb = get_count_order(smp_num_siblings);
689         c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
690
691         smp_num_siblings = smp_num_siblings / c->x86_max_cores;
692
693         index_msb = get_count_order(smp_num_siblings);
694
695         core_bits = get_count_order(c->x86_max_cores);
696
697         c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
698                                        ((1 << core_bits) - 1);
699 #endif
700 }
701
702 static void get_cpu_vendor(struct cpuinfo_x86 *c)
703 {
704         char *v = c->x86_vendor_id;
705         int i;
706
707         for (i = 0; i < X86_VENDOR_NUM; i++) {
708                 if (!cpu_devs[i])
709                         break;
710
711                 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
712                     (cpu_devs[i]->c_ident[1] &&
713                      !strcmp(v, cpu_devs[i]->c_ident[1]))) {
714
715                         this_cpu = cpu_devs[i];
716                         c->x86_vendor = this_cpu->c_x86_vendor;
717                         return;
718                 }
719         }
720
721         pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
722                     "CPU: Your system may be unstable.\n", v);
723
724         c->x86_vendor = X86_VENDOR_UNKNOWN;
725         this_cpu = &default_cpu;
726 }
727
728 void cpu_detect(struct cpuinfo_x86 *c)
729 {
730         /* Get vendor name */
731         cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
732               (unsigned int *)&c->x86_vendor_id[0],
733               (unsigned int *)&c->x86_vendor_id[8],
734               (unsigned int *)&c->x86_vendor_id[4]);
735
736         c->x86 = 4;
737         /* Intel-defined flags: level 0x00000001 */
738         if (c->cpuid_level >= 0x00000001) {
739                 u32 junk, tfms, cap0, misc;
740
741                 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
742                 c->x86          = x86_family(tfms);
743                 c->x86_model    = x86_model(tfms);
744                 c->x86_stepping = x86_stepping(tfms);
745
746                 if (cap0 & (1<<19)) {
747                         c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
748                         c->x86_cache_alignment = c->x86_clflush_size;
749                 }
750         }
751 }
752
753 static void apply_forced_caps(struct cpuinfo_x86 *c)
754 {
755         int i;
756
757         for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
758                 c->x86_capability[i] &= ~cpu_caps_cleared[i];
759                 c->x86_capability[i] |= cpu_caps_set[i];
760         }
761 }
762
763 static void init_speculation_control(struct cpuinfo_x86 *c)
764 {
765         /*
766          * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
767          * and they also have a different bit for STIBP support. Also,
768          * a hypervisor might have set the individual AMD bits even on
769          * Intel CPUs, for finer-grained selection of what's available.
770          */
771         if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
772                 set_cpu_cap(c, X86_FEATURE_IBRS);
773                 set_cpu_cap(c, X86_FEATURE_IBPB);
774                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
775         }
776
777         if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
778                 set_cpu_cap(c, X86_FEATURE_STIBP);
779
780         if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
781             cpu_has(c, X86_FEATURE_VIRT_SSBD))
782                 set_cpu_cap(c, X86_FEATURE_SSBD);
783
784         if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
785                 set_cpu_cap(c, X86_FEATURE_IBRS);
786                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
787         }
788
789         if (cpu_has(c, X86_FEATURE_AMD_IBPB))
790                 set_cpu_cap(c, X86_FEATURE_IBPB);
791
792         if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
793                 set_cpu_cap(c, X86_FEATURE_STIBP);
794                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
795         }
796
797         if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
798                 set_cpu_cap(c, X86_FEATURE_SSBD);
799                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
800                 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
801         }
802 }
803
804 static void init_cqm(struct cpuinfo_x86 *c)
805 {
806         if (!cpu_has(c, X86_FEATURE_CQM_LLC)) {
807                 c->x86_cache_max_rmid  = -1;
808                 c->x86_cache_occ_scale = -1;
809                 return;
810         }
811
812         /* will be overridden if occupancy monitoring exists */
813         c->x86_cache_max_rmid = cpuid_ebx(0xf);
814
815         if (cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC) ||
816             cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL) ||
817             cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)) {
818                 u32 eax, ebx, ecx, edx;
819
820                 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
821                 cpuid_count(0xf, 1, &eax, &ebx, &ecx, &edx);
822
823                 c->x86_cache_max_rmid  = ecx;
824                 c->x86_cache_occ_scale = ebx;
825         }
826 }
827
828 void get_cpu_cap(struct cpuinfo_x86 *c)
829 {
830         u32 eax, ebx, ecx, edx;
831
832         /* Intel-defined flags: level 0x00000001 */
833         if (c->cpuid_level >= 0x00000001) {
834                 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
835
836                 c->x86_capability[CPUID_1_ECX] = ecx;
837                 c->x86_capability[CPUID_1_EDX] = edx;
838         }
839
840         /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
841         if (c->cpuid_level >= 0x00000006)
842                 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
843
844         /* Additional Intel-defined flags: level 0x00000007 */
845         if (c->cpuid_level >= 0x00000007) {
846                 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
847                 c->x86_capability[CPUID_7_0_EBX] = ebx;
848                 c->x86_capability[CPUID_7_ECX] = ecx;
849                 c->x86_capability[CPUID_7_EDX] = edx;
850
851                 /* Check valid sub-leaf index before accessing it */
852                 if (eax >= 1) {
853                         cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
854                         c->x86_capability[CPUID_7_1_EAX] = eax;
855                 }
856         }
857
858         /* Extended state features: level 0x0000000d */
859         if (c->cpuid_level >= 0x0000000d) {
860                 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
861
862                 c->x86_capability[CPUID_D_1_EAX] = eax;
863         }
864
865         /* AMD-defined flags: level 0x80000001 */
866         eax = cpuid_eax(0x80000000);
867         c->extended_cpuid_level = eax;
868
869         if ((eax & 0xffff0000) == 0x80000000) {
870                 if (eax >= 0x80000001) {
871                         cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
872
873                         c->x86_capability[CPUID_8000_0001_ECX] = ecx;
874                         c->x86_capability[CPUID_8000_0001_EDX] = edx;
875                 }
876         }
877
878         if (c->extended_cpuid_level >= 0x80000007) {
879                 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
880
881                 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
882                 c->x86_power = edx;
883         }
884
885         if (c->extended_cpuid_level >= 0x80000008) {
886                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
887                 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
888         }
889
890         if (c->extended_cpuid_level >= 0x8000000a)
891                 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
892
893         init_scattered_cpuid_features(c);
894         init_speculation_control(c);
895         init_cqm(c);
896
897         /*
898          * Clear/Set all flags overridden by options, after probe.
899          * This needs to happen each time we re-probe, which may happen
900          * several times during CPU initialization.
901          */
902         apply_forced_caps(c);
903 }
904
905 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
906 {
907         u32 eax, ebx, ecx, edx;
908
909         if (c->extended_cpuid_level >= 0x80000008) {
910                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
911
912                 c->x86_virt_bits = (eax >> 8) & 0xff;
913                 c->x86_phys_bits = eax & 0xff;
914         }
915 #ifdef CONFIG_X86_32
916         else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
917                 c->x86_phys_bits = 36;
918 #endif
919         c->x86_cache_bits = c->x86_phys_bits;
920 }
921
922 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
923 {
924 #ifdef CONFIG_X86_32
925         int i;
926
927         /*
928          * First of all, decide if this is a 486 or higher
929          * It's a 486 if we can modify the AC flag
930          */
931         if (flag_is_changeable_p(X86_EFLAGS_AC))
932                 c->x86 = 4;
933         else
934                 c->x86 = 3;
935
936         for (i = 0; i < X86_VENDOR_NUM; i++)
937                 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
938                         c->x86_vendor_id[0] = 0;
939                         cpu_devs[i]->c_identify(c);
940                         if (c->x86_vendor_id[0]) {
941                                 get_cpu_vendor(c);
942                                 break;
943                         }
944                 }
945 #endif
946 }
947
948 #define NO_SPECULATION  BIT(0)
949 #define NO_MELTDOWN     BIT(1)
950 #define NO_SSB          BIT(2)
951 #define NO_L1TF         BIT(3)
952 #define NO_MDS          BIT(4)
953 #define MSBDS_ONLY      BIT(5)
954
955 #define VULNWL(_vendor, _family, _model, _whitelist)    \
956         { X86_VENDOR_##_vendor, _family, _model, X86_FEATURE_ANY, _whitelist }
957
958 #define VULNWL_INTEL(model, whitelist)          \
959         VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
960
961 #define VULNWL_AMD(family, whitelist)           \
962         VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
963
964 #define VULNWL_HYGON(family, whitelist)         \
965         VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
966
967 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
968         VULNWL(ANY,     4, X86_MODEL_ANY,       NO_SPECULATION),
969         VULNWL(CENTAUR, 5, X86_MODEL_ANY,       NO_SPECULATION),
970         VULNWL(INTEL,   5, X86_MODEL_ANY,       NO_SPECULATION),
971         VULNWL(NSC,     5, X86_MODEL_ANY,       NO_SPECULATION),
972
973         /* Intel Family 6 */
974         VULNWL_INTEL(ATOM_SALTWELL,             NO_SPECULATION),
975         VULNWL_INTEL(ATOM_SALTWELL_TABLET,      NO_SPECULATION),
976         VULNWL_INTEL(ATOM_SALTWELL_MID,         NO_SPECULATION),
977         VULNWL_INTEL(ATOM_BONNELL,              NO_SPECULATION),
978         VULNWL_INTEL(ATOM_BONNELL_MID,          NO_SPECULATION),
979
980         VULNWL_INTEL(ATOM_SILVERMONT,           NO_SSB | NO_L1TF | MSBDS_ONLY),
981         VULNWL_INTEL(ATOM_SILVERMONT_X,         NO_SSB | NO_L1TF | MSBDS_ONLY),
982         VULNWL_INTEL(ATOM_SILVERMONT_MID,       NO_SSB | NO_L1TF | MSBDS_ONLY),
983         VULNWL_INTEL(ATOM_AIRMONT,              NO_SSB | NO_L1TF | MSBDS_ONLY),
984         VULNWL_INTEL(XEON_PHI_KNL,              NO_SSB | NO_L1TF | MSBDS_ONLY),
985         VULNWL_INTEL(XEON_PHI_KNM,              NO_SSB | NO_L1TF | MSBDS_ONLY),
986
987         VULNWL_INTEL(CORE_YONAH,                NO_SSB),
988
989         VULNWL_INTEL(ATOM_AIRMONT_MID,          NO_L1TF | MSBDS_ONLY),
990
991         VULNWL_INTEL(ATOM_GOLDMONT,             NO_MDS | NO_L1TF),
992         VULNWL_INTEL(ATOM_GOLDMONT_X,           NO_MDS | NO_L1TF),
993         VULNWL_INTEL(ATOM_GOLDMONT_PLUS,        NO_MDS | NO_L1TF),
994
995         /* AMD Family 0xf - 0x12 */
996         VULNWL_AMD(0x0f,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS),
997         VULNWL_AMD(0x10,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS),
998         VULNWL_AMD(0x11,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS),
999         VULNWL_AMD(0x12,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS),
1000
1001         /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1002         VULNWL_AMD(X86_FAMILY_ANY,      NO_MELTDOWN | NO_L1TF | NO_MDS),
1003         VULNWL_HYGON(X86_FAMILY_ANY,    NO_MELTDOWN | NO_L1TF | NO_MDS),
1004         {}
1005 };
1006
1007 static bool __init cpu_matches(unsigned long which)
1008 {
1009         const struct x86_cpu_id *m = x86_match_cpu(cpu_vuln_whitelist);
1010
1011         return m && !!(m->driver_data & which);
1012 }
1013
1014 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1015 {
1016         u64 ia32_cap = 0;
1017
1018         if (cpu_matches(NO_SPECULATION))
1019                 return;
1020
1021         setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1022         setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1023
1024         if (cpu_has(c, X86_FEATURE_ARCH_CAPABILITIES))
1025                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1026
1027         if (!cpu_matches(NO_SSB) && !(ia32_cap & ARCH_CAP_SSB_NO) &&
1028            !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1029                 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1030
1031         if (ia32_cap & ARCH_CAP_IBRS_ALL)
1032                 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1033
1034         if (!cpu_matches(NO_MDS) && !(ia32_cap & ARCH_CAP_MDS_NO)) {
1035                 setup_force_cpu_bug(X86_BUG_MDS);
1036                 if (cpu_matches(MSBDS_ONLY))
1037                         setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1038         }
1039
1040         if (cpu_matches(NO_MELTDOWN))
1041                 return;
1042
1043         /* Rogue Data Cache Load? No! */
1044         if (ia32_cap & ARCH_CAP_RDCL_NO)
1045                 return;
1046
1047         setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1048
1049         if (cpu_matches(NO_L1TF))
1050                 return;
1051
1052         setup_force_cpu_bug(X86_BUG_L1TF);
1053 }
1054
1055 /*
1056  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1057  * unfortunately, that's not true in practice because of early VIA
1058  * chips and (more importantly) broken virtualizers that are not easy
1059  * to detect. In the latter case it doesn't even *fail* reliably, so
1060  * probing for it doesn't even work. Disable it completely on 32-bit
1061  * unless we can find a reliable way to detect all the broken cases.
1062  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1063  */
1064 static void detect_nopl(void)
1065 {
1066 #ifdef CONFIG_X86_32
1067         setup_clear_cpu_cap(X86_FEATURE_NOPL);
1068 #else
1069         setup_force_cpu_cap(X86_FEATURE_NOPL);
1070 #endif
1071 }
1072
1073 /*
1074  * Do minimum CPU detection early.
1075  * Fields really needed: vendor, cpuid_level, family, model, mask,
1076  * cache alignment.
1077  * The others are not touched to avoid unwanted side effects.
1078  *
1079  * WARNING: this function is only called on the boot CPU.  Don't add code
1080  * here that is supposed to run on all CPUs.
1081  */
1082 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1083 {
1084 #ifdef CONFIG_X86_64
1085         c->x86_clflush_size = 64;
1086         c->x86_phys_bits = 36;
1087         c->x86_virt_bits = 48;
1088 #else
1089         c->x86_clflush_size = 32;
1090         c->x86_phys_bits = 32;
1091         c->x86_virt_bits = 32;
1092 #endif
1093         c->x86_cache_alignment = c->x86_clflush_size;
1094
1095         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1096         c->extended_cpuid_level = 0;
1097
1098         if (!have_cpuid_p())
1099                 identify_cpu_without_cpuid(c);
1100
1101         /* cyrix could have cpuid enabled via c_identify()*/
1102         if (have_cpuid_p()) {
1103                 cpu_detect(c);
1104                 get_cpu_vendor(c);
1105                 get_cpu_cap(c);
1106                 get_cpu_address_sizes(c);
1107                 setup_force_cpu_cap(X86_FEATURE_CPUID);
1108
1109                 if (this_cpu->c_early_init)
1110                         this_cpu->c_early_init(c);
1111
1112                 c->cpu_index = 0;
1113                 filter_cpuid_features(c, false);
1114
1115                 if (this_cpu->c_bsp_init)
1116                         this_cpu->c_bsp_init(c);
1117         } else {
1118                 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1119         }
1120
1121         setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1122
1123         cpu_set_bug_bits(c);
1124
1125         fpu__init_system(c);
1126
1127 #ifdef CONFIG_X86_32
1128         /*
1129          * Regardless of whether PCID is enumerated, the SDM says
1130          * that it can't be enabled in 32-bit mode.
1131          */
1132         setup_clear_cpu_cap(X86_FEATURE_PCID);
1133 #endif
1134
1135         /*
1136          * Later in the boot process pgtable_l5_enabled() relies on
1137          * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1138          * enabled by this point we need to clear the feature bit to avoid
1139          * false-positives at the later stage.
1140          *
1141          * pgtable_l5_enabled() can be false here for several reasons:
1142          *  - 5-level paging is disabled compile-time;
1143          *  - it's 32-bit kernel;
1144          *  - machine doesn't support 5-level paging;
1145          *  - user specified 'no5lvl' in kernel command line.
1146          */
1147         if (!pgtable_l5_enabled())
1148                 setup_clear_cpu_cap(X86_FEATURE_LA57);
1149
1150         detect_nopl();
1151 }
1152
1153 void __init early_cpu_init(void)
1154 {
1155         const struct cpu_dev *const *cdev;
1156         int count = 0;
1157
1158 #ifdef CONFIG_PROCESSOR_SELECT
1159         pr_info("KERNEL supported cpus:\n");
1160 #endif
1161
1162         for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1163                 const struct cpu_dev *cpudev = *cdev;
1164
1165                 if (count >= X86_VENDOR_NUM)
1166                         break;
1167                 cpu_devs[count] = cpudev;
1168                 count++;
1169
1170 #ifdef CONFIG_PROCESSOR_SELECT
1171                 {
1172                         unsigned int j;
1173
1174                         for (j = 0; j < 2; j++) {
1175                                 if (!cpudev->c_ident[j])
1176                                         continue;
1177                                 pr_info("  %s %s\n", cpudev->c_vendor,
1178                                         cpudev->c_ident[j]);
1179                         }
1180                 }
1181 #endif
1182         }
1183         early_identify_cpu(&boot_cpu_data);
1184 }
1185
1186 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1187 {
1188 #ifdef CONFIG_X86_64
1189         /*
1190          * Empirically, writing zero to a segment selector on AMD does
1191          * not clear the base, whereas writing zero to a segment
1192          * selector on Intel does clear the base.  Intel's behavior
1193          * allows slightly faster context switches in the common case
1194          * where GS is unused by the prev and next threads.
1195          *
1196          * Since neither vendor documents this anywhere that I can see,
1197          * detect it directly instead of hardcoding the choice by
1198          * vendor.
1199          *
1200          * I've designated AMD's behavior as the "bug" because it's
1201          * counterintuitive and less friendly.
1202          */
1203
1204         unsigned long old_base, tmp;
1205         rdmsrl(MSR_FS_BASE, old_base);
1206         wrmsrl(MSR_FS_BASE, 1);
1207         loadsegment(fs, 0);
1208         rdmsrl(MSR_FS_BASE, tmp);
1209         if (tmp != 0)
1210                 set_cpu_bug(c, X86_BUG_NULL_SEG);
1211         wrmsrl(MSR_FS_BASE, old_base);
1212 #endif
1213 }
1214
1215 static void generic_identify(struct cpuinfo_x86 *c)
1216 {
1217         c->extended_cpuid_level = 0;
1218
1219         if (!have_cpuid_p())
1220                 identify_cpu_without_cpuid(c);
1221
1222         /* cyrix could have cpuid enabled via c_identify()*/
1223         if (!have_cpuid_p())
1224                 return;
1225
1226         cpu_detect(c);
1227
1228         get_cpu_vendor(c);
1229
1230         get_cpu_cap(c);
1231
1232         get_cpu_address_sizes(c);
1233
1234         if (c->cpuid_level >= 0x00000001) {
1235                 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1236 #ifdef CONFIG_X86_32
1237 # ifdef CONFIG_SMP
1238                 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1239 # else
1240                 c->apicid = c->initial_apicid;
1241 # endif
1242 #endif
1243                 c->phys_proc_id = c->initial_apicid;
1244         }
1245
1246         get_model_name(c); /* Default name */
1247
1248         detect_null_seg_behavior(c);
1249
1250         /*
1251          * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1252          * systems that run Linux at CPL > 0 may or may not have the
1253          * issue, but, even if they have the issue, there's absolutely
1254          * nothing we can do about it because we can't use the real IRET
1255          * instruction.
1256          *
1257          * NB: For the time being, only 32-bit kernels support
1258          * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1259          * whether to apply espfix using paravirt hooks.  If any
1260          * non-paravirt system ever shows up that does *not* have the
1261          * ESPFIX issue, we can change this.
1262          */
1263 #ifdef CONFIG_X86_32
1264 # ifdef CONFIG_PARAVIRT_XXL
1265         do {
1266                 extern void native_iret(void);
1267                 if (pv_ops.cpu.iret == native_iret)
1268                         set_cpu_bug(c, X86_BUG_ESPFIX);
1269         } while (0);
1270 # else
1271         set_cpu_bug(c, X86_BUG_ESPFIX);
1272 # endif
1273 #endif
1274 }
1275
1276 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1277 {
1278         /*
1279          * The heavy lifting of max_rmid and cache_occ_scale are handled
1280          * in get_cpu_cap().  Here we just set the max_rmid for the boot_cpu
1281          * in case CQM bits really aren't there in this CPU.
1282          */
1283         if (c != &boot_cpu_data) {
1284                 boot_cpu_data.x86_cache_max_rmid =
1285                         min(boot_cpu_data.x86_cache_max_rmid,
1286                             c->x86_cache_max_rmid);
1287         }
1288 }
1289
1290 /*
1291  * Validate that ACPI/mptables have the same information about the
1292  * effective APIC id and update the package map.
1293  */
1294 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1295 {
1296 #ifdef CONFIG_SMP
1297         unsigned int apicid, cpu = smp_processor_id();
1298
1299         apicid = apic->cpu_present_to_apicid(cpu);
1300
1301         if (apicid != c->apicid) {
1302                 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1303                        cpu, apicid, c->initial_apicid);
1304         }
1305         BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1306 #else
1307         c->logical_proc_id = 0;
1308 #endif
1309 }
1310
1311 /*
1312  * This does the hard work of actually picking apart the CPU stuff...
1313  */
1314 static void identify_cpu(struct cpuinfo_x86 *c)
1315 {
1316         int i;
1317
1318         c->loops_per_jiffy = loops_per_jiffy;
1319         c->x86_cache_size = 0;
1320         c->x86_vendor = X86_VENDOR_UNKNOWN;
1321         c->x86_model = c->x86_stepping = 0;     /* So far unknown... */
1322         c->x86_vendor_id[0] = '\0'; /* Unset */
1323         c->x86_model_id[0] = '\0';  /* Unset */
1324         c->x86_max_cores = 1;
1325         c->x86_coreid_bits = 0;
1326         c->cu_id = 0xff;
1327 #ifdef CONFIG_X86_64
1328         c->x86_clflush_size = 64;
1329         c->x86_phys_bits = 36;
1330         c->x86_virt_bits = 48;
1331 #else
1332         c->cpuid_level = -1;    /* CPUID not detected */
1333         c->x86_clflush_size = 32;
1334         c->x86_phys_bits = 32;
1335         c->x86_virt_bits = 32;
1336 #endif
1337         c->x86_cache_alignment = c->x86_clflush_size;
1338         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1339
1340         generic_identify(c);
1341
1342         if (this_cpu->c_identify)
1343                 this_cpu->c_identify(c);
1344
1345         /* Clear/Set all flags overridden by options, after probe */
1346         apply_forced_caps(c);
1347
1348 #ifdef CONFIG_X86_64
1349         c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1350 #endif
1351
1352         /*
1353          * Vendor-specific initialization.  In this section we
1354          * canonicalize the feature flags, meaning if there are
1355          * features a certain CPU supports which CPUID doesn't
1356          * tell us, CPUID claiming incorrect flags, or other bugs,
1357          * we handle them here.
1358          *
1359          * At the end of this section, c->x86_capability better
1360          * indicate the features this CPU genuinely supports!
1361          */
1362         if (this_cpu->c_init)
1363                 this_cpu->c_init(c);
1364
1365         /* Disable the PN if appropriate */
1366         squash_the_stupid_serial_number(c);
1367
1368         /* Set up SMEP/SMAP/UMIP */
1369         setup_smep(c);
1370         setup_smap(c);
1371         setup_umip(c);
1372
1373         /*
1374          * The vendor-specific functions might have changed features.
1375          * Now we do "generic changes."
1376          */
1377
1378         /* Filter out anything that depends on CPUID levels we don't have */
1379         filter_cpuid_features(c, true);
1380
1381         /* If the model name is still unset, do table lookup. */
1382         if (!c->x86_model_id[0]) {
1383                 const char *p;
1384                 p = table_lookup_model(c);
1385                 if (p)
1386                         strcpy(c->x86_model_id, p);
1387                 else
1388                         /* Last resort... */
1389                         sprintf(c->x86_model_id, "%02x/%02x",
1390                                 c->x86, c->x86_model);
1391         }
1392
1393 #ifdef CONFIG_X86_64
1394         detect_ht(c);
1395 #endif
1396
1397         x86_init_rdrand(c);
1398         x86_init_cache_qos(c);
1399         setup_pku(c);
1400
1401         /*
1402          * Clear/Set all flags overridden by options, need do it
1403          * before following smp all cpus cap AND.
1404          */
1405         apply_forced_caps(c);
1406
1407         /*
1408          * On SMP, boot_cpu_data holds the common feature set between
1409          * all CPUs; so make sure that we indicate which features are
1410          * common between the CPUs.  The first time this routine gets
1411          * executed, c == &boot_cpu_data.
1412          */
1413         if (c != &boot_cpu_data) {
1414                 /* AND the already accumulated flags with these */
1415                 for (i = 0; i < NCAPINTS; i++)
1416                         boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1417
1418                 /* OR, i.e. replicate the bug flags */
1419                 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1420                         c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1421         }
1422
1423         /* Init Machine Check Exception if available. */
1424         mcheck_cpu_init(c);
1425
1426         select_idle_routine(c);
1427
1428 #ifdef CONFIG_NUMA
1429         numa_add_cpu(smp_processor_id());
1430 #endif
1431 }
1432
1433 /*
1434  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1435  * on 32-bit kernels:
1436  */
1437 #ifdef CONFIG_X86_32
1438 void enable_sep_cpu(void)
1439 {
1440         struct tss_struct *tss;
1441         int cpu;
1442
1443         if (!boot_cpu_has(X86_FEATURE_SEP))
1444                 return;
1445
1446         cpu = get_cpu();
1447         tss = &per_cpu(cpu_tss_rw, cpu);
1448
1449         /*
1450          * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1451          * see the big comment in struct x86_hw_tss's definition.
1452          */
1453
1454         tss->x86_tss.ss1 = __KERNEL_CS;
1455         wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1456         wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1457         wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1458
1459         put_cpu();
1460 }
1461 #endif
1462
1463 void __init identify_boot_cpu(void)
1464 {
1465         identify_cpu(&boot_cpu_data);
1466 #ifdef CONFIG_X86_32
1467         sysenter_setup();
1468         enable_sep_cpu();
1469 #endif
1470         cpu_detect_tlb(&boot_cpu_data);
1471 }
1472
1473 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1474 {
1475         BUG_ON(c == &boot_cpu_data);
1476         identify_cpu(c);
1477 #ifdef CONFIG_X86_32
1478         enable_sep_cpu();
1479 #endif
1480         mtrr_ap_init();
1481         validate_apic_and_package_id(c);
1482         x86_spec_ctrl_setup_ap();
1483 }
1484
1485 static __init int setup_noclflush(char *arg)
1486 {
1487         setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1488         setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1489         return 1;
1490 }
1491 __setup("noclflush", setup_noclflush);
1492
1493 void print_cpu_info(struct cpuinfo_x86 *c)
1494 {
1495         const char *vendor = NULL;
1496
1497         if (c->x86_vendor < X86_VENDOR_NUM) {
1498                 vendor = this_cpu->c_vendor;
1499         } else {
1500                 if (c->cpuid_level >= 0)
1501                         vendor = c->x86_vendor_id;
1502         }
1503
1504         if (vendor && !strstr(c->x86_model_id, vendor))
1505                 pr_cont("%s ", vendor);
1506
1507         if (c->x86_model_id[0])
1508                 pr_cont("%s", c->x86_model_id);
1509         else
1510                 pr_cont("%d86", c->x86);
1511
1512         pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1513
1514         if (c->x86_stepping || c->cpuid_level >= 0)
1515                 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1516         else
1517                 pr_cont(")\n");
1518 }
1519
1520 /*
1521  * clearcpuid= was already parsed in fpu__init_parse_early_param.
1522  * But we need to keep a dummy __setup around otherwise it would
1523  * show up as an environment variable for init.
1524  */
1525 static __init int setup_clearcpuid(char *arg)
1526 {
1527         return 1;
1528 }
1529 __setup("clearcpuid=", setup_clearcpuid);
1530
1531 #ifdef CONFIG_X86_64
1532 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1533                      fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1534 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1535
1536 /*
1537  * The following percpu variables are hot.  Align current_task to
1538  * cacheline size such that they fall in the same cacheline.
1539  */
1540 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1541         &init_task;
1542 EXPORT_PER_CPU_SYMBOL(current_task);
1543
1544 DEFINE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
1545 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1546
1547 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1548 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1549
1550 /* May not be marked __init: used by software suspend */
1551 void syscall_init(void)
1552 {
1553         wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1554         wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1555
1556 #ifdef CONFIG_IA32_EMULATION
1557         wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1558         /*
1559          * This only works on Intel CPUs.
1560          * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1561          * This does not cause SYSENTER to jump to the wrong location, because
1562          * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1563          */
1564         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1565         wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1566                     (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1567         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1568 #else
1569         wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1570         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1571         wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1572         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1573 #endif
1574
1575         /* Flags to clear on syscall */
1576         wrmsrl(MSR_SYSCALL_MASK,
1577                X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1578                X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1579 }
1580
1581 DEFINE_PER_CPU(int, debug_stack_usage);
1582 DEFINE_PER_CPU(u32, debug_idt_ctr);
1583
1584 void debug_stack_set_zero(void)
1585 {
1586         this_cpu_inc(debug_idt_ctr);
1587         load_current_idt();
1588 }
1589 NOKPROBE_SYMBOL(debug_stack_set_zero);
1590
1591 void debug_stack_reset(void)
1592 {
1593         if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1594                 return;
1595         if (this_cpu_dec_return(debug_idt_ctr) == 0)
1596                 load_current_idt();
1597 }
1598 NOKPROBE_SYMBOL(debug_stack_reset);
1599
1600 #else   /* CONFIG_X86_64 */
1601
1602 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1603 EXPORT_PER_CPU_SYMBOL(current_task);
1604 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1605 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1606
1607 /*
1608  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1609  * the top of the kernel stack.  Use an extra percpu variable to track the
1610  * top of the kernel stack directly.
1611  */
1612 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1613         (unsigned long)&init_thread_union + THREAD_SIZE;
1614 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1615
1616 #ifdef CONFIG_STACKPROTECTOR
1617 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1618 #endif
1619
1620 #endif  /* CONFIG_X86_64 */
1621
1622 /*
1623  * Clear all 6 debug registers:
1624  */
1625 static void clear_all_debug_regs(void)
1626 {
1627         int i;
1628
1629         for (i = 0; i < 8; i++) {
1630                 /* Ignore db4, db5 */
1631                 if ((i == 4) || (i == 5))
1632                         continue;
1633
1634                 set_debugreg(0, i);
1635         }
1636 }
1637
1638 #ifdef CONFIG_KGDB
1639 /*
1640  * Restore debug regs if using kgdbwait and you have a kernel debugger
1641  * connection established.
1642  */
1643 static void dbg_restore_debug_regs(void)
1644 {
1645         if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1646                 arch_kgdb_ops.correct_hw_break();
1647 }
1648 #else /* ! CONFIG_KGDB */
1649 #define dbg_restore_debug_regs()
1650 #endif /* ! CONFIG_KGDB */
1651
1652 static void wait_for_master_cpu(int cpu)
1653 {
1654 #ifdef CONFIG_SMP
1655         /*
1656          * wait for ACK from master CPU before continuing
1657          * with AP initialization
1658          */
1659         WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1660         while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1661                 cpu_relax();
1662 #endif
1663 }
1664
1665 #ifdef CONFIG_X86_64
1666 static void setup_getcpu(int cpu)
1667 {
1668         unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
1669         struct desc_struct d = { };
1670
1671         if (boot_cpu_has(X86_FEATURE_RDTSCP))
1672                 write_rdtscp_aux(cpudata);
1673
1674         /* Store CPU and node number in limit. */
1675         d.limit0 = cpudata;
1676         d.limit1 = cpudata >> 16;
1677
1678         d.type = 5;             /* RO data, expand down, accessed */
1679         d.dpl = 3;              /* Visible to user code */
1680         d.s = 1;                /* Not a system segment */
1681         d.p = 1;                /* Present */
1682         d.d = 1;                /* 32-bit */
1683
1684         write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
1685 }
1686 #endif
1687
1688 /*
1689  * cpu_init() initializes state that is per-CPU. Some data is already
1690  * initialized (naturally) in the bootstrap process, such as the GDT
1691  * and IDT. We reload them nevertheless, this function acts as a
1692  * 'CPU state barrier', nothing should get across.
1693  */
1694 #ifdef CONFIG_X86_64
1695
1696 void cpu_init(void)
1697 {
1698         int cpu = raw_smp_processor_id();
1699         struct task_struct *me;
1700         struct tss_struct *t;
1701         int i;
1702
1703         wait_for_master_cpu(cpu);
1704
1705         /*
1706          * Initialize the CR4 shadow before doing anything that could
1707          * try to read it.
1708          */
1709         cr4_init_shadow();
1710
1711         if (cpu)
1712                 load_ucode_ap();
1713
1714         t = &per_cpu(cpu_tss_rw, cpu);
1715
1716 #ifdef CONFIG_NUMA
1717         if (this_cpu_read(numa_node) == 0 &&
1718             early_cpu_to_node(cpu) != NUMA_NO_NODE)
1719                 set_numa_node(early_cpu_to_node(cpu));
1720 #endif
1721         setup_getcpu(cpu);
1722
1723         me = current;
1724
1725         pr_debug("Initializing CPU#%d\n", cpu);
1726
1727         cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1728
1729         /*
1730          * Initialize the per-CPU GDT with the boot GDT,
1731          * and set up the GDT descriptor:
1732          */
1733
1734         switch_to_new_gdt(cpu);
1735         loadsegment(fs, 0);
1736
1737         load_current_idt();
1738
1739         memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1740         syscall_init();
1741
1742         wrmsrl(MSR_FS_BASE, 0);
1743         wrmsrl(MSR_KERNEL_GS_BASE, 0);
1744         barrier();
1745
1746         x86_configure_nx();
1747         x2apic_setup();
1748
1749         /*
1750          * set up and load the per-CPU TSS
1751          */
1752         if (!t->x86_tss.ist[0]) {
1753                 t->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1754                 t->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1755                 t->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1756                 t->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1757         }
1758
1759         t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1760
1761         /*
1762          * <= is required because the CPU will access up to
1763          * 8 bits beyond the end of the IO permission bitmap.
1764          */
1765         for (i = 0; i <= IO_BITMAP_LONGS; i++)
1766                 t->io_bitmap[i] = ~0UL;
1767
1768         mmgrab(&init_mm);
1769         me->active_mm = &init_mm;
1770         BUG_ON(me->mm);
1771         initialize_tlbstate_and_flush();
1772         enter_lazy_tlb(&init_mm, me);
1773
1774         /*
1775          * Initialize the TSS.  sp0 points to the entry trampoline stack
1776          * regardless of what task is running.
1777          */
1778         set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1779         load_TR_desc();
1780         load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1781
1782         load_mm_ldt(&init_mm);
1783
1784         clear_all_debug_regs();
1785         dbg_restore_debug_regs();
1786
1787         fpu__init_cpu();
1788
1789         if (is_uv_system())
1790                 uv_cpu_init();
1791
1792         load_fixmap_gdt(cpu);
1793 }
1794
1795 #else
1796
1797 void cpu_init(void)
1798 {
1799         int cpu = smp_processor_id();
1800         struct task_struct *curr = current;
1801         struct tss_struct *t = &per_cpu(cpu_tss_rw, cpu);
1802
1803         wait_for_master_cpu(cpu);
1804
1805         /*
1806          * Initialize the CR4 shadow before doing anything that could
1807          * try to read it.
1808          */
1809         cr4_init_shadow();
1810
1811         show_ucode_info_early();
1812
1813         pr_info("Initializing CPU#%d\n", cpu);
1814
1815         if (cpu_feature_enabled(X86_FEATURE_VME) ||
1816             boot_cpu_has(X86_FEATURE_TSC) ||
1817             boot_cpu_has(X86_FEATURE_DE))
1818                 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1819
1820         load_current_idt();
1821         switch_to_new_gdt(cpu);
1822
1823         /*
1824          * Set up and load the per-CPU TSS and LDT
1825          */
1826         mmgrab(&init_mm);
1827         curr->active_mm = &init_mm;
1828         BUG_ON(curr->mm);
1829         initialize_tlbstate_and_flush();
1830         enter_lazy_tlb(&init_mm, curr);
1831
1832         /*
1833          * Initialize the TSS.  sp0 points to the entry trampoline stack
1834          * regardless of what task is running.
1835          */
1836         set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1837         load_TR_desc();
1838         load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1839
1840         load_mm_ldt(&init_mm);
1841
1842         t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1843
1844 #ifdef CONFIG_DOUBLEFAULT
1845         /* Set up doublefault TSS pointer in the GDT */
1846         __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1847 #endif
1848
1849         clear_all_debug_regs();
1850         dbg_restore_debug_regs();
1851
1852         fpu__init_cpu();
1853
1854         load_fixmap_gdt(cpu);
1855 }
1856 #endif
1857
1858 /*
1859  * The microcode loader calls this upon late microcode load to recheck features,
1860  * only when microcode has been updated. Caller holds microcode_mutex and CPU
1861  * hotplug lock.
1862  */
1863 void microcode_check(void)
1864 {
1865         struct cpuinfo_x86 info;
1866
1867         perf_check_microcode();
1868
1869         /* Reload CPUID max function as it might've changed. */
1870         info.cpuid_level = cpuid_eax(0);
1871
1872         /*
1873          * Copy all capability leafs to pick up the synthetic ones so that
1874          * memcmp() below doesn't fail on that. The ones coming from CPUID will
1875          * get overwritten in get_cpu_cap().
1876          */
1877         memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
1878
1879         get_cpu_cap(&info);
1880
1881         if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
1882                 return;
1883
1884         pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
1885         pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
1886 }