]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kernel/cpu/mcheck/mce_amd.c
x86/ras/amd: Make sysfs names of banks more user-friendly
[linux.git] / arch / x86 / kernel / cpu / mcheck / mce_amd.c
1 /*
2  *  (c) 2005-2016 Advanced Micro Devices, Inc.
3  *  Your use of this code is subject to the terms and conditions of the
4  *  GNU general public license version 2. See "COPYING" or
5  *  http://www.gnu.org/licenses/gpl.html
6  *
7  *  Written by Jacob Shin - AMD, Inc.
8  *  Maintained by: Borislav Petkov <bp@alien8.de>
9  *
10  *  All MC4_MISCi registers are shared between cores on a node.
11  */
12 #include <linux/interrupt.h>
13 #include <linux/notifier.h>
14 #include <linux/kobject.h>
15 #include <linux/percpu.h>
16 #include <linux/errno.h>
17 #include <linux/sched.h>
18 #include <linux/sysfs.h>
19 #include <linux/slab.h>
20 #include <linux/init.h>
21 #include <linux/cpu.h>
22 #include <linux/smp.h>
23 #include <linux/string.h>
24
25 #include <asm/amd_nb.h>
26 #include <asm/apic.h>
27 #include <asm/mce.h>
28 #include <asm/msr.h>
29 #include <asm/trace/irq_vectors.h>
30
31 #define NR_BLOCKS         5
32 #define THRESHOLD_MAX     0xFFF
33 #define INT_TYPE_APIC     0x00020000
34 #define MASK_VALID_HI     0x80000000
35 #define MASK_CNTP_HI      0x40000000
36 #define MASK_LOCKED_HI    0x20000000
37 #define MASK_LVTOFF_HI    0x00F00000
38 #define MASK_COUNT_EN_HI  0x00080000
39 #define MASK_INT_TYPE_HI  0x00060000
40 #define MASK_OVERFLOW_HI  0x00010000
41 #define MASK_ERR_COUNT_HI 0x00000FFF
42 #define MASK_BLKPTR_LO    0xFF000000
43 #define MCG_XBLK_ADDR     0xC0000400
44
45 /* Deferred error settings */
46 #define MSR_CU_DEF_ERR          0xC0000410
47 #define MASK_DEF_LVTOFF         0x000000F0
48 #define MASK_DEF_INT_TYPE       0x00000006
49 #define DEF_LVT_OFF             0x2
50 #define DEF_INT_TYPE_APIC       0x2
51
52 /* Scalable MCA: */
53
54 /* Threshold LVT offset is at MSR0xC0000410[15:12] */
55 #define SMCA_THR_LVT_OFF        0xF000
56
57 static bool thresholding_en;
58
59 static const char * const th_names[] = {
60         "load_store",
61         "insn_fetch",
62         "combined_unit",
63         "",
64         "northbridge",
65         "execution_unit",
66 };
67
68 static const char * const smca_umc_block_names[] = {
69         "dram_ecc",
70         "misc_umc"
71 };
72
73 struct smca_bank_name {
74         const char *name;       /* Short name for sysfs */
75         const char *long_name;  /* Long name for pretty-printing */
76 };
77
78 static struct smca_bank_name smca_names[] = {
79         [SMCA_LS]       = { "load_store",       "Load Store Unit" },
80         [SMCA_IF]       = { "insn_fetch",       "Instruction Fetch Unit" },
81         [SMCA_L2_CACHE] = { "l2_cache",         "L2 Cache" },
82         [SMCA_DE]       = { "decode_unit",      "Decode Unit" },
83         [SMCA_EX]       = { "execution_unit",   "Execution Unit" },
84         [SMCA_FP]       = { "floating_point",   "Floating Point Unit" },
85         [SMCA_L3_CACHE] = { "l3_cache",         "L3 Cache" },
86         [SMCA_CS]       = { "coherent_slave",   "Coherent Slave" },
87         [SMCA_PIE]      = { "pie",              "Power, Interrupts, etc." },
88         [SMCA_UMC]      = { "umc",              "Unified Memory Controller" },
89         [SMCA_PB]       = { "param_block",      "Parameter Block" },
90         [SMCA_PSP]      = { "psp",              "Platform Security Processor" },
91         [SMCA_SMU]      = { "smu",              "System Management Unit" },
92 };
93
94 const char *smca_get_name(enum smca_bank_types t)
95 {
96         if (t >= N_SMCA_BANK_TYPES)
97                 return NULL;
98
99         return smca_names[t].name;
100 }
101
102 const char *smca_get_long_name(enum smca_bank_types t)
103 {
104         if (t >= N_SMCA_BANK_TYPES)
105                 return NULL;
106
107         return smca_names[t].long_name;
108 }
109 EXPORT_SYMBOL_GPL(smca_get_long_name);
110
111 static struct smca_hwid smca_hwid_mcatypes[] = {
112         /* { bank_type, hwid_mcatype, xec_bitmap } */
113
114         /* ZN Core (HWID=0xB0) MCA types */
115         { SMCA_LS,       HWID_MCATYPE(0xB0, 0x0), 0x1FFFEF },
116         { SMCA_IF,       HWID_MCATYPE(0xB0, 0x1), 0x3FFF },
117         { SMCA_L2_CACHE, HWID_MCATYPE(0xB0, 0x2), 0xF },
118         { SMCA_DE,       HWID_MCATYPE(0xB0, 0x3), 0x1FF },
119         /* HWID 0xB0 MCATYPE 0x4 is Reserved */
120         { SMCA_EX,       HWID_MCATYPE(0xB0, 0x5), 0x7FF },
121         { SMCA_FP,       HWID_MCATYPE(0xB0, 0x6), 0x7F },
122         { SMCA_L3_CACHE, HWID_MCATYPE(0xB0, 0x7), 0xFF },
123
124         /* Data Fabric MCA types */
125         { SMCA_CS,       HWID_MCATYPE(0x2E, 0x0), 0x1FF },
126         { SMCA_PIE,      HWID_MCATYPE(0x2E, 0x1), 0xF },
127
128         /* Unified Memory Controller MCA type */
129         { SMCA_UMC,      HWID_MCATYPE(0x96, 0x0), 0x3F },
130
131         /* Parameter Block MCA type */
132         { SMCA_PB,       HWID_MCATYPE(0x05, 0x0), 0x1 },
133
134         /* Platform Security Processor MCA type */
135         { SMCA_PSP,      HWID_MCATYPE(0xFF, 0x0), 0x1 },
136
137         /* System Management Unit MCA type */
138         { SMCA_SMU,      HWID_MCATYPE(0x01, 0x0), 0x1 },
139 };
140
141 struct smca_bank smca_banks[MAX_NR_BANKS];
142 EXPORT_SYMBOL_GPL(smca_banks);
143
144 /*
145  * In SMCA enabled processors, we can have multiple banks for a given IP type.
146  * So to define a unique name for each bank, we use a temp c-string to append
147  * the MCA_IPID[InstanceId] to type's name in get_name().
148  *
149  * InstanceId is 32 bits which is 8 characters. Make sure MAX_MCATYPE_NAME_LEN
150  * is greater than 8 plus 1 (for underscore) plus length of longest type name.
151  */
152 #define MAX_MCATYPE_NAME_LEN    30
153 static char buf_mcatype[MAX_MCATYPE_NAME_LEN];
154
155 static DEFINE_PER_CPU(struct threshold_bank **, threshold_banks);
156 static DEFINE_PER_CPU(unsigned int, bank_map);  /* see which banks are on */
157
158 static void amd_threshold_interrupt(void);
159 static void amd_deferred_error_interrupt(void);
160
161 static void default_deferred_error_interrupt(void)
162 {
163         pr_err("Unexpected deferred interrupt at vector %x\n", DEFERRED_ERROR_VECTOR);
164 }
165 void (*deferred_error_int_vector)(void) = default_deferred_error_interrupt;
166
167 static void get_smca_bank_info(unsigned int bank)
168 {
169         unsigned int i, hwid_mcatype, cpu = smp_processor_id();
170         struct smca_hwid *s_hwid;
171         u32 high, instance_id;
172
173         /* Collect bank_info using CPU 0 for now. */
174         if (cpu)
175                 return;
176
177         if (rdmsr_safe_on_cpu(cpu, MSR_AMD64_SMCA_MCx_IPID(bank), &instance_id, &high)) {
178                 pr_warn("Failed to read MCA_IPID for bank %d\n", bank);
179                 return;
180         }
181
182         hwid_mcatype = HWID_MCATYPE(high & MCI_IPID_HWID,
183                                     (high & MCI_IPID_MCATYPE) >> 16);
184
185         for (i = 0; i < ARRAY_SIZE(smca_hwid_mcatypes); i++) {
186                 s_hwid = &smca_hwid_mcatypes[i];
187                 if (hwid_mcatype == s_hwid->hwid_mcatype) {
188
189                         WARN(smca_banks[bank].hwid,
190                              "Bank %s already initialized!\n",
191                              smca_get_name(s_hwid->bank_type));
192
193                         smca_banks[bank].hwid = s_hwid;
194                         smca_banks[bank].id = instance_id;
195                         smca_banks[bank].sysfs_id = s_hwid->count++;
196                         break;
197                 }
198         }
199 }
200
201 struct thresh_restart {
202         struct threshold_block  *b;
203         int                     reset;
204         int                     set_lvt_off;
205         int                     lvt_off;
206         u16                     old_limit;
207 };
208
209 static inline bool is_shared_bank(int bank)
210 {
211         /*
212          * Scalable MCA provides for only one core to have access to the MSRs of
213          * a shared bank.
214          */
215         if (mce_flags.smca)
216                 return false;
217
218         /* Bank 4 is for northbridge reporting and is thus shared */
219         return (bank == 4);
220 }
221
222 static const char *bank4_names(const struct threshold_block *b)
223 {
224         switch (b->address) {
225         /* MSR4_MISC0 */
226         case 0x00000413:
227                 return "dram";
228
229         case 0xc0000408:
230                 return "ht_links";
231
232         case 0xc0000409:
233                 return "l3_cache";
234
235         default:
236                 WARN(1, "Funny MSR: 0x%08x\n", b->address);
237                 return "";
238         }
239 };
240
241
242 static bool lvt_interrupt_supported(unsigned int bank, u32 msr_high_bits)
243 {
244         /*
245          * bank 4 supports APIC LVT interrupts implicitly since forever.
246          */
247         if (bank == 4)
248                 return true;
249
250         /*
251          * IntP: interrupt present; if this bit is set, the thresholding
252          * bank can generate APIC LVT interrupts
253          */
254         return msr_high_bits & BIT(28);
255 }
256
257 static int lvt_off_valid(struct threshold_block *b, int apic, u32 lo, u32 hi)
258 {
259         int msr = (hi & MASK_LVTOFF_HI) >> 20;
260
261         if (apic < 0) {
262                 pr_err(FW_BUG "cpu %d, failed to setup threshold interrupt "
263                        "for bank %d, block %d (MSR%08X=0x%x%08x)\n", b->cpu,
264                        b->bank, b->block, b->address, hi, lo);
265                 return 0;
266         }
267
268         if (apic != msr) {
269                 /*
270                  * On SMCA CPUs, LVT offset is programmed at a different MSR, and
271                  * the BIOS provides the value. The original field where LVT offset
272                  * was set is reserved. Return early here:
273                  */
274                 if (mce_flags.smca)
275                         return 0;
276
277                 pr_err(FW_BUG "cpu %d, invalid threshold interrupt offset %d "
278                        "for bank %d, block %d (MSR%08X=0x%x%08x)\n",
279                        b->cpu, apic, b->bank, b->block, b->address, hi, lo);
280                 return 0;
281         }
282
283         return 1;
284 };
285
286 /* Reprogram MCx_MISC MSR behind this threshold bank. */
287 static void threshold_restart_bank(void *_tr)
288 {
289         struct thresh_restart *tr = _tr;
290         u32 hi, lo;
291
292         rdmsr(tr->b->address, lo, hi);
293
294         if (tr->b->threshold_limit < (hi & THRESHOLD_MAX))
295                 tr->reset = 1;  /* limit cannot be lower than err count */
296
297         if (tr->reset) {                /* reset err count and overflow bit */
298                 hi =
299                     (hi & ~(MASK_ERR_COUNT_HI | MASK_OVERFLOW_HI)) |
300                     (THRESHOLD_MAX - tr->b->threshold_limit);
301         } else if (tr->old_limit) {     /* change limit w/o reset */
302                 int new_count = (hi & THRESHOLD_MAX) +
303                     (tr->old_limit - tr->b->threshold_limit);
304
305                 hi = (hi & ~MASK_ERR_COUNT_HI) |
306                     (new_count & THRESHOLD_MAX);
307         }
308
309         /* clear IntType */
310         hi &= ~MASK_INT_TYPE_HI;
311
312         if (!tr->b->interrupt_capable)
313                 goto done;
314
315         if (tr->set_lvt_off) {
316                 if (lvt_off_valid(tr->b, tr->lvt_off, lo, hi)) {
317                         /* set new lvt offset */
318                         hi &= ~MASK_LVTOFF_HI;
319                         hi |= tr->lvt_off << 20;
320                 }
321         }
322
323         if (tr->b->interrupt_enable)
324                 hi |= INT_TYPE_APIC;
325
326  done:
327
328         hi |= MASK_COUNT_EN_HI;
329         wrmsr(tr->b->address, lo, hi);
330 }
331
332 static void mce_threshold_block_init(struct threshold_block *b, int offset)
333 {
334         struct thresh_restart tr = {
335                 .b                      = b,
336                 .set_lvt_off            = 1,
337                 .lvt_off                = offset,
338         };
339
340         b->threshold_limit              = THRESHOLD_MAX;
341         threshold_restart_bank(&tr);
342 };
343
344 static int setup_APIC_mce_threshold(int reserved, int new)
345 {
346         if (reserved < 0 && !setup_APIC_eilvt(new, THRESHOLD_APIC_VECTOR,
347                                               APIC_EILVT_MSG_FIX, 0))
348                 return new;
349
350         return reserved;
351 }
352
353 static int setup_APIC_deferred_error(int reserved, int new)
354 {
355         if (reserved < 0 && !setup_APIC_eilvt(new, DEFERRED_ERROR_VECTOR,
356                                               APIC_EILVT_MSG_FIX, 0))
357                 return new;
358
359         return reserved;
360 }
361
362 static void deferred_error_interrupt_enable(struct cpuinfo_x86 *c)
363 {
364         u32 low = 0, high = 0;
365         int def_offset = -1, def_new;
366
367         if (rdmsr_safe(MSR_CU_DEF_ERR, &low, &high))
368                 return;
369
370         def_new = (low & MASK_DEF_LVTOFF) >> 4;
371         if (!(low & MASK_DEF_LVTOFF)) {
372                 pr_err(FW_BUG "Your BIOS is not setting up LVT offset 0x2 for deferred error IRQs correctly.\n");
373                 def_new = DEF_LVT_OFF;
374                 low = (low & ~MASK_DEF_LVTOFF) | (DEF_LVT_OFF << 4);
375         }
376
377         def_offset = setup_APIC_deferred_error(def_offset, def_new);
378         if ((def_offset == def_new) &&
379             (deferred_error_int_vector != amd_deferred_error_interrupt))
380                 deferred_error_int_vector = amd_deferred_error_interrupt;
381
382         low = (low & ~MASK_DEF_INT_TYPE) | DEF_INT_TYPE_APIC;
383         wrmsr(MSR_CU_DEF_ERR, low, high);
384 }
385
386 static u32 get_block_address(unsigned int cpu, u32 current_addr, u32 low, u32 high,
387                              unsigned int bank, unsigned int block)
388 {
389         u32 addr = 0, offset = 0;
390
391         if (mce_flags.smca) {
392                 if (!block) {
393                         addr = MSR_AMD64_SMCA_MCx_MISC(bank);
394                 } else {
395                         /*
396                          * For SMCA enabled processors, BLKPTR field of the
397                          * first MISC register (MCx_MISC0) indicates presence of
398                          * additional MISC register set (MISC1-4).
399                          */
400                         u32 low, high;
401
402                         if (rdmsr_safe_on_cpu(cpu, MSR_AMD64_SMCA_MCx_CONFIG(bank), &low, &high))
403                                 return addr;
404
405                         if (!(low & MCI_CONFIG_MCAX))
406                                 return addr;
407
408                         if (!rdmsr_safe_on_cpu(cpu, MSR_AMD64_SMCA_MCx_MISC(bank), &low, &high) &&
409                             (low & MASK_BLKPTR_LO))
410                                 addr = MSR_AMD64_SMCA_MCx_MISCy(bank, block - 1);
411                 }
412                 return addr;
413         }
414
415         /* Fall back to method we used for older processors: */
416         switch (block) {
417         case 0:
418                 addr = msr_ops.misc(bank);
419                 break;
420         case 1:
421                 offset = ((low & MASK_BLKPTR_LO) >> 21);
422                 if (offset)
423                         addr = MCG_XBLK_ADDR + offset;
424                 break;
425         default:
426                 addr = ++current_addr;
427         }
428         return addr;
429 }
430
431 static int
432 prepare_threshold_block(unsigned int bank, unsigned int block, u32 addr,
433                         int offset, u32 misc_high)
434 {
435         unsigned int cpu = smp_processor_id();
436         u32 smca_low, smca_high, smca_addr;
437         struct threshold_block b;
438         int new;
439
440         if (!block)
441                 per_cpu(bank_map, cpu) |= (1 << bank);
442
443         memset(&b, 0, sizeof(b));
444         b.cpu                   = cpu;
445         b.bank                  = bank;
446         b.block                 = block;
447         b.address               = addr;
448         b.interrupt_capable     = lvt_interrupt_supported(bank, misc_high);
449
450         if (!b.interrupt_capable)
451                 goto done;
452
453         b.interrupt_enable = 1;
454
455         if (!mce_flags.smca) {
456                 new = (misc_high & MASK_LVTOFF_HI) >> 20;
457                 goto set_offset;
458         }
459
460         smca_addr = MSR_AMD64_SMCA_MCx_CONFIG(bank);
461
462         if (!rdmsr_safe(smca_addr, &smca_low, &smca_high)) {
463                 /*
464                  * OS is required to set the MCAX bit to acknowledge that it is
465                  * now using the new MSR ranges and new registers under each
466                  * bank. It also means that the OS will configure deferred
467                  * errors in the new MCx_CONFIG register. If the bit is not set,
468                  * uncorrectable errors will cause a system panic.
469                  *
470                  * MCA_CONFIG[MCAX] is bit 32 (0 in the high portion of the MSR.)
471                  */
472                 smca_high |= BIT(0);
473
474                 /*
475                  * SMCA logs Deferred Error information in MCA_DE{STAT,ADDR}
476                  * registers with the option of additionally logging to
477                  * MCA_{STATUS,ADDR} if MCA_CONFIG[LogDeferredInMcaStat] is set.
478                  *
479                  * This bit is usually set by BIOS to retain the old behavior
480                  * for OSes that don't use the new registers. Linux supports the
481                  * new registers so let's disable that additional logging here.
482                  *
483                  * MCA_CONFIG[LogDeferredInMcaStat] is bit 34 (bit 2 in the high
484                  * portion of the MSR).
485                  */
486                 smca_high &= ~BIT(2);
487
488                 /*
489                  * SMCA sets the Deferred Error Interrupt type per bank.
490                  *
491                  * MCA_CONFIG[DeferredIntTypeSupported] is bit 5, and tells us
492                  * if the DeferredIntType bit field is available.
493                  *
494                  * MCA_CONFIG[DeferredIntType] is bits [38:37] ([6:5] in the
495                  * high portion of the MSR). OS should set this to 0x1 to enable
496                  * APIC based interrupt. First, check that no interrupt has been
497                  * set.
498                  */
499                 if ((smca_low & BIT(5)) && !((smca_high >> 5) & 0x3))
500                         smca_high |= BIT(5);
501
502                 wrmsr(smca_addr, smca_low, smca_high);
503         }
504
505         /* Gather LVT offset for thresholding: */
506         if (rdmsr_safe(MSR_CU_DEF_ERR, &smca_low, &smca_high))
507                 goto out;
508
509         new = (smca_low & SMCA_THR_LVT_OFF) >> 12;
510
511 set_offset:
512         offset = setup_APIC_mce_threshold(offset, new);
513
514         if ((offset == new) && (mce_threshold_vector != amd_threshold_interrupt))
515                 mce_threshold_vector = amd_threshold_interrupt;
516
517 done:
518         mce_threshold_block_init(&b, offset);
519
520 out:
521         return offset;
522 }
523
524 /* cpu init entry point, called from mce.c with preempt off */
525 void mce_amd_feature_init(struct cpuinfo_x86 *c)
526 {
527         u32 low = 0, high = 0, address = 0;
528         unsigned int bank, block, cpu = smp_processor_id();
529         int offset = -1;
530
531         for (bank = 0; bank < mca_cfg.banks; ++bank) {
532                 if (mce_flags.smca)
533                         get_smca_bank_info(bank);
534
535                 for (block = 0; block < NR_BLOCKS; ++block) {
536                         address = get_block_address(cpu, address, low, high, bank, block);
537                         if (!address)
538                                 break;
539
540                         if (rdmsr_safe(address, &low, &high))
541                                 break;
542
543                         if (!(high & MASK_VALID_HI))
544                                 continue;
545
546                         if (!(high & MASK_CNTP_HI)  ||
547                              (high & MASK_LOCKED_HI))
548                                 continue;
549
550                         offset = prepare_threshold_block(bank, block, address, offset, high);
551                 }
552         }
553
554         if (mce_flags.succor)
555                 deferred_error_interrupt_enable(c);
556 }
557
558 int umc_normaddr_to_sysaddr(u64 norm_addr, u16 nid, u8 umc, u64 *sys_addr)
559 {
560         u64 dram_base_addr, dram_limit_addr, dram_hole_base;
561         /* We start from the normalized address */
562         u64 ret_addr = norm_addr;
563
564         u32 tmp;
565
566         u8 die_id_shift, die_id_mask, socket_id_shift, socket_id_mask;
567         u8 intlv_num_dies, intlv_num_chan, intlv_num_sockets;
568         u8 intlv_addr_sel, intlv_addr_bit;
569         u8 num_intlv_bits, hashed_bit;
570         u8 lgcy_mmio_hole_en, base = 0;
571         u8 cs_mask, cs_id = 0;
572         bool hash_enabled = false;
573
574         /* Read D18F0x1B4 (DramOffset), check if base 1 is used. */
575         if (amd_df_indirect_read(nid, 0, 0x1B4, umc, &tmp))
576                 goto out_err;
577
578         /* Remove HiAddrOffset from normalized address, if enabled: */
579         if (tmp & BIT(0)) {
580                 u64 hi_addr_offset = (tmp & GENMASK_ULL(31, 20)) << 8;
581
582                 if (norm_addr >= hi_addr_offset) {
583                         ret_addr -= hi_addr_offset;
584                         base = 1;
585                 }
586         }
587
588         /* Read D18F0x110 (DramBaseAddress). */
589         if (amd_df_indirect_read(nid, 0, 0x110 + (8 * base), umc, &tmp))
590                 goto out_err;
591
592         /* Check if address range is valid. */
593         if (!(tmp & BIT(0))) {
594                 pr_err("%s: Invalid DramBaseAddress range: 0x%x.\n",
595                         __func__, tmp);
596                 goto out_err;
597         }
598
599         lgcy_mmio_hole_en = tmp & BIT(1);
600         intlv_num_chan    = (tmp >> 4) & 0xF;
601         intlv_addr_sel    = (tmp >> 8) & 0x7;
602         dram_base_addr    = (tmp & GENMASK_ULL(31, 12)) << 16;
603
604         /* {0, 1, 2, 3} map to address bits {8, 9, 10, 11} respectively */
605         if (intlv_addr_sel > 3) {
606                 pr_err("%s: Invalid interleave address select %d.\n",
607                         __func__, intlv_addr_sel);
608                 goto out_err;
609         }
610
611         /* Read D18F0x114 (DramLimitAddress). */
612         if (amd_df_indirect_read(nid, 0, 0x114 + (8 * base), umc, &tmp))
613                 goto out_err;
614
615         intlv_num_sockets = (tmp >> 8) & 0x1;
616         intlv_num_dies    = (tmp >> 10) & 0x3;
617         dram_limit_addr   = ((tmp & GENMASK_ULL(31, 12)) << 16) | GENMASK_ULL(27, 0);
618
619         intlv_addr_bit = intlv_addr_sel + 8;
620
621         /* Re-use intlv_num_chan by setting it equal to log2(#channels) */
622         switch (intlv_num_chan) {
623         case 0: intlv_num_chan = 0; break;
624         case 1: intlv_num_chan = 1; break;
625         case 3: intlv_num_chan = 2; break;
626         case 5: intlv_num_chan = 3; break;
627         case 7: intlv_num_chan = 4; break;
628
629         case 8: intlv_num_chan = 1;
630                 hash_enabled = true;
631                 break;
632         default:
633                 pr_err("%s: Invalid number of interleaved channels %d.\n",
634                         __func__, intlv_num_chan);
635                 goto out_err;
636         }
637
638         num_intlv_bits = intlv_num_chan;
639
640         if (intlv_num_dies > 2) {
641                 pr_err("%s: Invalid number of interleaved nodes/dies %d.\n",
642                         __func__, intlv_num_dies);
643                 goto out_err;
644         }
645
646         num_intlv_bits += intlv_num_dies;
647
648         /* Add a bit if sockets are interleaved. */
649         num_intlv_bits += intlv_num_sockets;
650
651         /* Assert num_intlv_bits <= 4 */
652         if (num_intlv_bits > 4) {
653                 pr_err("%s: Invalid interleave bits %d.\n",
654                         __func__, num_intlv_bits);
655                 goto out_err;
656         }
657
658         if (num_intlv_bits > 0) {
659                 u64 temp_addr_x, temp_addr_i, temp_addr_y;
660                 u8 die_id_bit, sock_id_bit, cs_fabric_id;
661
662                 /*
663                  * Read FabricBlockInstanceInformation3_CS[BlockFabricID].
664                  * This is the fabric id for this coherent slave. Use
665                  * umc/channel# as instance id of the coherent slave
666                  * for FICAA.
667                  */
668                 if (amd_df_indirect_read(nid, 0, 0x50, umc, &tmp))
669                         goto out_err;
670
671                 cs_fabric_id = (tmp >> 8) & 0xFF;
672                 die_id_bit   = 0;
673
674                 /* If interleaved over more than 1 channel: */
675                 if (intlv_num_chan) {
676                         die_id_bit = intlv_num_chan;
677                         cs_mask    = (1 << die_id_bit) - 1;
678                         cs_id      = cs_fabric_id & cs_mask;
679                 }
680
681                 sock_id_bit = die_id_bit;
682
683                 /* Read D18F1x208 (SystemFabricIdMask). */
684                 if (intlv_num_dies || intlv_num_sockets)
685                         if (amd_df_indirect_read(nid, 1, 0x208, umc, &tmp))
686                                 goto out_err;
687
688                 /* If interleaved over more than 1 die. */
689                 if (intlv_num_dies) {
690                         sock_id_bit  = die_id_bit + intlv_num_dies;
691                         die_id_shift = (tmp >> 24) & 0xF;
692                         die_id_mask  = (tmp >> 8) & 0xFF;
693
694                         cs_id |= ((cs_fabric_id & die_id_mask) >> die_id_shift) << die_id_bit;
695                 }
696
697                 /* If interleaved over more than 1 socket. */
698                 if (intlv_num_sockets) {
699                         socket_id_shift = (tmp >> 28) & 0xF;
700                         socket_id_mask  = (tmp >> 16) & 0xFF;
701
702                         cs_id |= ((cs_fabric_id & socket_id_mask) >> socket_id_shift) << sock_id_bit;
703                 }
704
705                 /*
706                  * The pre-interleaved address consists of XXXXXXIIIYYYYY
707                  * where III is the ID for this CS, and XXXXXXYYYYY are the
708                  * address bits from the post-interleaved address.
709                  * "num_intlv_bits" has been calculated to tell us how many "I"
710                  * bits there are. "intlv_addr_bit" tells us how many "Y" bits
711                  * there are (where "I" starts).
712                  */
713                 temp_addr_y = ret_addr & GENMASK_ULL(intlv_addr_bit-1, 0);
714                 temp_addr_i = (cs_id << intlv_addr_bit);
715                 temp_addr_x = (ret_addr & GENMASK_ULL(63, intlv_addr_bit)) << num_intlv_bits;
716                 ret_addr    = temp_addr_x | temp_addr_i | temp_addr_y;
717         }
718
719         /* Add dram base address */
720         ret_addr += dram_base_addr;
721
722         /* If legacy MMIO hole enabled */
723         if (lgcy_mmio_hole_en) {
724                 if (amd_df_indirect_read(nid, 0, 0x104, umc, &tmp))
725                         goto out_err;
726
727                 dram_hole_base = tmp & GENMASK(31, 24);
728                 if (ret_addr >= dram_hole_base)
729                         ret_addr += (BIT_ULL(32) - dram_hole_base);
730         }
731
732         if (hash_enabled) {
733                 /* Save some parentheses and grab ls-bit at the end. */
734                 hashed_bit =    (ret_addr >> 12) ^
735                                 (ret_addr >> 18) ^
736                                 (ret_addr >> 21) ^
737                                 (ret_addr >> 30) ^
738                                 cs_id;
739
740                 hashed_bit &= BIT(0);
741
742                 if (hashed_bit != ((ret_addr >> intlv_addr_bit) & BIT(0)))
743                         ret_addr ^= BIT(intlv_addr_bit);
744         }
745
746         /* Is calculated system address is above DRAM limit address? */
747         if (ret_addr > dram_limit_addr)
748                 goto out_err;
749
750         *sys_addr = ret_addr;
751         return 0;
752
753 out_err:
754         return -EINVAL;
755 }
756 EXPORT_SYMBOL_GPL(umc_normaddr_to_sysaddr);
757
758 static void
759 __log_error(unsigned int bank, bool deferred_err, bool threshold_err, u64 misc)
760 {
761         u32 msr_status = msr_ops.status(bank);
762         u32 msr_addr = msr_ops.addr(bank);
763         struct mce m;
764         u64 status;
765
766         WARN_ON_ONCE(deferred_err && threshold_err);
767
768         if (deferred_err && mce_flags.smca) {
769                 msr_status = MSR_AMD64_SMCA_MCx_DESTAT(bank);
770                 msr_addr = MSR_AMD64_SMCA_MCx_DEADDR(bank);
771         }
772
773         rdmsrl(msr_status, status);
774
775         if (!(status & MCI_STATUS_VAL))
776                 return;
777
778         mce_setup(&m);
779
780         m.status = status;
781         m.bank = bank;
782
783         if (threshold_err)
784                 m.misc = misc;
785
786         if (m.status & MCI_STATUS_ADDRV) {
787                 rdmsrl(msr_addr, m.addr);
788
789                 /*
790                  * Extract [55:<lsb>] where lsb is the least significant
791                  * *valid* bit of the address bits.
792                  */
793                 if (mce_flags.smca) {
794                         u8 lsb = (m.addr >> 56) & 0x3f;
795
796                         m.addr &= GENMASK_ULL(55, lsb);
797                 }
798         }
799
800         if (mce_flags.smca) {
801                 rdmsrl(MSR_AMD64_SMCA_MCx_IPID(bank), m.ipid);
802
803                 if (m.status & MCI_STATUS_SYNDV)
804                         rdmsrl(MSR_AMD64_SMCA_MCx_SYND(bank), m.synd);
805         }
806
807         mce_log(&m);
808
809         wrmsrl(msr_status, 0);
810 }
811
812 static inline void __smp_deferred_error_interrupt(void)
813 {
814         inc_irq_stat(irq_deferred_error_count);
815         deferred_error_int_vector();
816 }
817
818 asmlinkage __visible void smp_deferred_error_interrupt(void)
819 {
820         entering_irq();
821         __smp_deferred_error_interrupt();
822         exiting_ack_irq();
823 }
824
825 asmlinkage __visible void smp_trace_deferred_error_interrupt(void)
826 {
827         entering_irq();
828         trace_deferred_error_apic_entry(DEFERRED_ERROR_VECTOR);
829         __smp_deferred_error_interrupt();
830         trace_deferred_error_apic_exit(DEFERRED_ERROR_VECTOR);
831         exiting_ack_irq();
832 }
833
834 /* APIC interrupt handler for deferred errors */
835 static void amd_deferred_error_interrupt(void)
836 {
837         unsigned int bank;
838         u32 msr_status;
839         u64 status;
840
841         for (bank = 0; bank < mca_cfg.banks; ++bank) {
842                 msr_status = (mce_flags.smca) ? MSR_AMD64_SMCA_MCx_DESTAT(bank)
843                                               : msr_ops.status(bank);
844
845                 rdmsrl(msr_status, status);
846
847                 if (!(status & MCI_STATUS_VAL) ||
848                     !(status & MCI_STATUS_DEFERRED))
849                         continue;
850
851                 __log_error(bank, true, false, 0);
852                 break;
853         }
854 }
855
856 /*
857  * APIC Interrupt Handler
858  */
859
860 /*
861  * threshold interrupt handler will service THRESHOLD_APIC_VECTOR.
862  * the interrupt goes off when error_count reaches threshold_limit.
863  * the handler will simply log mcelog w/ software defined bank number.
864  */
865
866 static void amd_threshold_interrupt(void)
867 {
868         u32 low = 0, high = 0, address = 0;
869         unsigned int bank, block, cpu = smp_processor_id();
870         struct thresh_restart tr;
871
872         /* assume first bank caused it */
873         for (bank = 0; bank < mca_cfg.banks; ++bank) {
874                 if (!(per_cpu(bank_map, cpu) & (1 << bank)))
875                         continue;
876                 for (block = 0; block < NR_BLOCKS; ++block) {
877                         address = get_block_address(cpu, address, low, high, bank, block);
878                         if (!address)
879                                 break;
880
881                         if (rdmsr_safe(address, &low, &high))
882                                 break;
883
884                         if (!(high & MASK_VALID_HI)) {
885                                 if (block)
886                                         continue;
887                                 else
888                                         break;
889                         }
890
891                         if (!(high & MASK_CNTP_HI)  ||
892                              (high & MASK_LOCKED_HI))
893                                 continue;
894
895                         /*
896                          * Log the machine check that caused the threshold
897                          * event.
898                          */
899                         if (high & MASK_OVERFLOW_HI)
900                                 goto log;
901                 }
902         }
903         return;
904
905 log:
906         __log_error(bank, false, true, ((u64)high << 32) | low);
907
908         /* Reset threshold block after logging error. */
909         memset(&tr, 0, sizeof(tr));
910         tr.b = &per_cpu(threshold_banks, cpu)[bank]->blocks[block];
911         threshold_restart_bank(&tr);
912 }
913
914 /*
915  * Sysfs Interface
916  */
917
918 struct threshold_attr {
919         struct attribute attr;
920         ssize_t (*show) (struct threshold_block *, char *);
921         ssize_t (*store) (struct threshold_block *, const char *, size_t count);
922 };
923
924 #define SHOW_FIELDS(name)                                               \
925 static ssize_t show_ ## name(struct threshold_block *b, char *buf)      \
926 {                                                                       \
927         return sprintf(buf, "%lu\n", (unsigned long) b->name);          \
928 }
929 SHOW_FIELDS(interrupt_enable)
930 SHOW_FIELDS(threshold_limit)
931
932 static ssize_t
933 store_interrupt_enable(struct threshold_block *b, const char *buf, size_t size)
934 {
935         struct thresh_restart tr;
936         unsigned long new;
937
938         if (!b->interrupt_capable)
939                 return -EINVAL;
940
941         if (kstrtoul(buf, 0, &new) < 0)
942                 return -EINVAL;
943
944         b->interrupt_enable = !!new;
945
946         memset(&tr, 0, sizeof(tr));
947         tr.b            = b;
948
949         smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1);
950
951         return size;
952 }
953
954 static ssize_t
955 store_threshold_limit(struct threshold_block *b, const char *buf, size_t size)
956 {
957         struct thresh_restart tr;
958         unsigned long new;
959
960         if (kstrtoul(buf, 0, &new) < 0)
961                 return -EINVAL;
962
963         if (new > THRESHOLD_MAX)
964                 new = THRESHOLD_MAX;
965         if (new < 1)
966                 new = 1;
967
968         memset(&tr, 0, sizeof(tr));
969         tr.old_limit = b->threshold_limit;
970         b->threshold_limit = new;
971         tr.b = b;
972
973         smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1);
974
975         return size;
976 }
977
978 static ssize_t show_error_count(struct threshold_block *b, char *buf)
979 {
980         u32 lo, hi;
981
982         rdmsr_on_cpu(b->cpu, b->address, &lo, &hi);
983
984         return sprintf(buf, "%u\n", ((hi & THRESHOLD_MAX) -
985                                      (THRESHOLD_MAX - b->threshold_limit)));
986 }
987
988 static struct threshold_attr error_count = {
989         .attr = {.name = __stringify(error_count), .mode = 0444 },
990         .show = show_error_count,
991 };
992
993 #define RW_ATTR(val)                                                    \
994 static struct threshold_attr val = {                                    \
995         .attr   = {.name = __stringify(val), .mode = 0644 },            \
996         .show   = show_## val,                                          \
997         .store  = store_## val,                                         \
998 };
999
1000 RW_ATTR(interrupt_enable);
1001 RW_ATTR(threshold_limit);
1002
1003 static struct attribute *default_attrs[] = {
1004         &threshold_limit.attr,
1005         &error_count.attr,
1006         NULL,   /* possibly interrupt_enable if supported, see below */
1007         NULL,
1008 };
1009
1010 #define to_block(k)     container_of(k, struct threshold_block, kobj)
1011 #define to_attr(a)      container_of(a, struct threshold_attr, attr)
1012
1013 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
1014 {
1015         struct threshold_block *b = to_block(kobj);
1016         struct threshold_attr *a = to_attr(attr);
1017         ssize_t ret;
1018
1019         ret = a->show ? a->show(b, buf) : -EIO;
1020
1021         return ret;
1022 }
1023
1024 static ssize_t store(struct kobject *kobj, struct attribute *attr,
1025                      const char *buf, size_t count)
1026 {
1027         struct threshold_block *b = to_block(kobj);
1028         struct threshold_attr *a = to_attr(attr);
1029         ssize_t ret;
1030
1031         ret = a->store ? a->store(b, buf, count) : -EIO;
1032
1033         return ret;
1034 }
1035
1036 static const struct sysfs_ops threshold_ops = {
1037         .show                   = show,
1038         .store                  = store,
1039 };
1040
1041 static struct kobj_type threshold_ktype = {
1042         .sysfs_ops              = &threshold_ops,
1043         .default_attrs          = default_attrs,
1044 };
1045
1046 static const char *get_name(unsigned int bank, struct threshold_block *b)
1047 {
1048         unsigned int bank_type;
1049
1050         if (!mce_flags.smca) {
1051                 if (b && bank == 4)
1052                         return bank4_names(b);
1053
1054                 return th_names[bank];
1055         }
1056
1057         if (!smca_banks[bank].hwid)
1058                 return NULL;
1059
1060         bank_type = smca_banks[bank].hwid->bank_type;
1061
1062         if (b && bank_type == SMCA_UMC) {
1063                 if (b->block < ARRAY_SIZE(smca_umc_block_names))
1064                         return smca_umc_block_names[b->block];
1065                 return NULL;
1066         }
1067
1068         if (smca_banks[bank].hwid->count == 1)
1069                 return smca_get_name(bank_type);
1070
1071         snprintf(buf_mcatype, MAX_MCATYPE_NAME_LEN,
1072                  "%s_%x", smca_get_name(bank_type),
1073                           smca_banks[bank].sysfs_id);
1074         return buf_mcatype;
1075 }
1076
1077 static int allocate_threshold_blocks(unsigned int cpu, unsigned int bank,
1078                                      unsigned int block, u32 address)
1079 {
1080         struct threshold_block *b = NULL;
1081         u32 low, high;
1082         int err;
1083
1084         if ((bank >= mca_cfg.banks) || (block >= NR_BLOCKS))
1085                 return 0;
1086
1087         if (rdmsr_safe_on_cpu(cpu, address, &low, &high))
1088                 return 0;
1089
1090         if (!(high & MASK_VALID_HI)) {
1091                 if (block)
1092                         goto recurse;
1093                 else
1094                         return 0;
1095         }
1096
1097         if (!(high & MASK_CNTP_HI)  ||
1098              (high & MASK_LOCKED_HI))
1099                 goto recurse;
1100
1101         b = kzalloc(sizeof(struct threshold_block), GFP_KERNEL);
1102         if (!b)
1103                 return -ENOMEM;
1104
1105         b->block                = block;
1106         b->bank                 = bank;
1107         b->cpu                  = cpu;
1108         b->address              = address;
1109         b->interrupt_enable     = 0;
1110         b->interrupt_capable    = lvt_interrupt_supported(bank, high);
1111         b->threshold_limit      = THRESHOLD_MAX;
1112
1113         if (b->interrupt_capable) {
1114                 threshold_ktype.default_attrs[2] = &interrupt_enable.attr;
1115                 b->interrupt_enable = 1;
1116         } else {
1117                 threshold_ktype.default_attrs[2] = NULL;
1118         }
1119
1120         INIT_LIST_HEAD(&b->miscj);
1121
1122         if (per_cpu(threshold_banks, cpu)[bank]->blocks) {
1123                 list_add(&b->miscj,
1124                          &per_cpu(threshold_banks, cpu)[bank]->blocks->miscj);
1125         } else {
1126                 per_cpu(threshold_banks, cpu)[bank]->blocks = b;
1127         }
1128
1129         err = kobject_init_and_add(&b->kobj, &threshold_ktype,
1130                                    per_cpu(threshold_banks, cpu)[bank]->kobj,
1131                                    get_name(bank, b));
1132         if (err)
1133                 goto out_free;
1134 recurse:
1135         address = get_block_address(cpu, address, low, high, bank, ++block);
1136         if (!address)
1137                 return 0;
1138
1139         err = allocate_threshold_blocks(cpu, bank, block, address);
1140         if (err)
1141                 goto out_free;
1142
1143         if (b)
1144                 kobject_uevent(&b->kobj, KOBJ_ADD);
1145
1146         return err;
1147
1148 out_free:
1149         if (b) {
1150                 kobject_put(&b->kobj);
1151                 list_del(&b->miscj);
1152                 kfree(b);
1153         }
1154         return err;
1155 }
1156
1157 static int __threshold_add_blocks(struct threshold_bank *b)
1158 {
1159         struct list_head *head = &b->blocks->miscj;
1160         struct threshold_block *pos = NULL;
1161         struct threshold_block *tmp = NULL;
1162         int err = 0;
1163
1164         err = kobject_add(&b->blocks->kobj, b->kobj, b->blocks->kobj.name);
1165         if (err)
1166                 return err;
1167
1168         list_for_each_entry_safe(pos, tmp, head, miscj) {
1169
1170                 err = kobject_add(&pos->kobj, b->kobj, pos->kobj.name);
1171                 if (err) {
1172                         list_for_each_entry_safe_reverse(pos, tmp, head, miscj)
1173                                 kobject_del(&pos->kobj);
1174
1175                         return err;
1176                 }
1177         }
1178         return err;
1179 }
1180
1181 static int threshold_create_bank(unsigned int cpu, unsigned int bank)
1182 {
1183         struct device *dev = per_cpu(mce_device, cpu);
1184         struct amd_northbridge *nb = NULL;
1185         struct threshold_bank *b = NULL;
1186         const char *name = get_name(bank, NULL);
1187         int err = 0;
1188
1189         if (!dev)
1190                 return -ENODEV;
1191
1192         if (is_shared_bank(bank)) {
1193                 nb = node_to_amd_nb(amd_get_nb_id(cpu));
1194
1195                 /* threshold descriptor already initialized on this node? */
1196                 if (nb && nb->bank4) {
1197                         /* yes, use it */
1198                         b = nb->bank4;
1199                         err = kobject_add(b->kobj, &dev->kobj, name);
1200                         if (err)
1201                                 goto out;
1202
1203                         per_cpu(threshold_banks, cpu)[bank] = b;
1204                         atomic_inc(&b->cpus);
1205
1206                         err = __threshold_add_blocks(b);
1207
1208                         goto out;
1209                 }
1210         }
1211
1212         b = kzalloc(sizeof(struct threshold_bank), GFP_KERNEL);
1213         if (!b) {
1214                 err = -ENOMEM;
1215                 goto out;
1216         }
1217
1218         b->kobj = kobject_create_and_add(name, &dev->kobj);
1219         if (!b->kobj) {
1220                 err = -EINVAL;
1221                 goto out_free;
1222         }
1223
1224         per_cpu(threshold_banks, cpu)[bank] = b;
1225
1226         if (is_shared_bank(bank)) {
1227                 atomic_set(&b->cpus, 1);
1228
1229                 /* nb is already initialized, see above */
1230                 if (nb) {
1231                         WARN_ON(nb->bank4);
1232                         nb->bank4 = b;
1233                 }
1234         }
1235
1236         err = allocate_threshold_blocks(cpu, bank, 0, msr_ops.misc(bank));
1237         if (!err)
1238                 goto out;
1239
1240  out_free:
1241         kfree(b);
1242
1243  out:
1244         return err;
1245 }
1246
1247 static void deallocate_threshold_block(unsigned int cpu,
1248                                                  unsigned int bank)
1249 {
1250         struct threshold_block *pos = NULL;
1251         struct threshold_block *tmp = NULL;
1252         struct threshold_bank *head = per_cpu(threshold_banks, cpu)[bank];
1253
1254         if (!head)
1255                 return;
1256
1257         list_for_each_entry_safe(pos, tmp, &head->blocks->miscj, miscj) {
1258                 kobject_put(&pos->kobj);
1259                 list_del(&pos->miscj);
1260                 kfree(pos);
1261         }
1262
1263         kfree(per_cpu(threshold_banks, cpu)[bank]->blocks);
1264         per_cpu(threshold_banks, cpu)[bank]->blocks = NULL;
1265 }
1266
1267 static void __threshold_remove_blocks(struct threshold_bank *b)
1268 {
1269         struct threshold_block *pos = NULL;
1270         struct threshold_block *tmp = NULL;
1271
1272         kobject_del(b->kobj);
1273
1274         list_for_each_entry_safe(pos, tmp, &b->blocks->miscj, miscj)
1275                 kobject_del(&pos->kobj);
1276 }
1277
1278 static void threshold_remove_bank(unsigned int cpu, int bank)
1279 {
1280         struct amd_northbridge *nb;
1281         struct threshold_bank *b;
1282
1283         b = per_cpu(threshold_banks, cpu)[bank];
1284         if (!b)
1285                 return;
1286
1287         if (!b->blocks)
1288                 goto free_out;
1289
1290         if (is_shared_bank(bank)) {
1291                 if (!atomic_dec_and_test(&b->cpus)) {
1292                         __threshold_remove_blocks(b);
1293                         per_cpu(threshold_banks, cpu)[bank] = NULL;
1294                         return;
1295                 } else {
1296                         /*
1297                          * the last CPU on this node using the shared bank is
1298                          * going away, remove that bank now.
1299                          */
1300                         nb = node_to_amd_nb(amd_get_nb_id(cpu));
1301                         nb->bank4 = NULL;
1302                 }
1303         }
1304
1305         deallocate_threshold_block(cpu, bank);
1306
1307 free_out:
1308         kobject_del(b->kobj);
1309         kobject_put(b->kobj);
1310         kfree(b);
1311         per_cpu(threshold_banks, cpu)[bank] = NULL;
1312 }
1313
1314 int mce_threshold_remove_device(unsigned int cpu)
1315 {
1316         unsigned int bank;
1317
1318         if (!thresholding_en)
1319                 return 0;
1320
1321         for (bank = 0; bank < mca_cfg.banks; ++bank) {
1322                 if (!(per_cpu(bank_map, cpu) & (1 << bank)))
1323                         continue;
1324                 threshold_remove_bank(cpu, bank);
1325         }
1326         kfree(per_cpu(threshold_banks, cpu));
1327         per_cpu(threshold_banks, cpu) = NULL;
1328         return 0;
1329 }
1330
1331 /* create dir/files for all valid threshold banks */
1332 int mce_threshold_create_device(unsigned int cpu)
1333 {
1334         unsigned int bank;
1335         struct threshold_bank **bp;
1336         int err = 0;
1337
1338         if (!thresholding_en)
1339                 return 0;
1340
1341         bp = per_cpu(threshold_banks, cpu);
1342         if (bp)
1343                 return 0;
1344
1345         bp = kzalloc(sizeof(struct threshold_bank *) * mca_cfg.banks,
1346                      GFP_KERNEL);
1347         if (!bp)
1348                 return -ENOMEM;
1349
1350         per_cpu(threshold_banks, cpu) = bp;
1351
1352         for (bank = 0; bank < mca_cfg.banks; ++bank) {
1353                 if (!(per_cpu(bank_map, cpu) & (1 << bank)))
1354                         continue;
1355                 err = threshold_create_bank(cpu, bank);
1356                 if (err)
1357                         goto err;
1358         }
1359         return err;
1360 err:
1361         mce_threshold_remove_device(cpu);
1362         return err;
1363 }
1364
1365 static __init int threshold_init_device(void)
1366 {
1367         unsigned lcpu = 0;
1368
1369         if (mce_threshold_vector == amd_threshold_interrupt)
1370                 thresholding_en = true;
1371
1372         /* to hit CPUs online before the notifier is up */
1373         for_each_online_cpu(lcpu) {
1374                 int err = mce_threshold_create_device(lcpu);
1375
1376                 if (err)
1377                         return err;
1378         }
1379
1380         return 0;
1381 }
1382 /*
1383  * there are 3 funcs which need to be _initcalled in a logic sequence:
1384  * 1. xen_late_init_mcelog
1385  * 2. mcheck_init_device
1386  * 3. threshold_init_device
1387  *
1388  * xen_late_init_mcelog must register xen_mce_chrdev_device before
1389  * native mce_chrdev_device registration if running under xen platform;
1390  *
1391  * mcheck_init_device should be inited before threshold_init_device to
1392  * initialize mce_device, otherwise a NULL ptr dereference will cause panic.
1393  *
1394  * so we use following _initcalls
1395  * 1. device_initcall(xen_late_init_mcelog);
1396  * 2. device_initcall_sync(mcheck_init_device);
1397  * 3. late_initcall(threshold_init_device);
1398  *
1399  * when running under xen, the initcall order is 1,2,3;
1400  * on baremetal, we skip 1 and we do only 2 and 3.
1401  */
1402 late_initcall(threshold_init_device);