]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kernel/cpu/perf_event_intel.c
regmap: Introduce regmap_get_reg_stride
[linux.git] / arch / x86 / kernel / cpu / perf_event_intel.c
1 /*
2  * Per core/cpu state
3  *
4  * Used to coordinate shared registers between HT threads or
5  * among events on a single PMU.
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/watchdog.h>
16
17 #include <asm/cpufeature.h>
18 #include <asm/hardirq.h>
19 #include <asm/apic.h>
20
21 #include "perf_event.h"
22
23 /*
24  * Intel PerfMon, used on Core and later.
25  */
26 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
27 {
28         [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
29         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
30         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
31         [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
32         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
33         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
34         [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
35         [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
36 };
37
38 static struct event_constraint intel_core_event_constraints[] __read_mostly =
39 {
40         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
41         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
42         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
43         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
44         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
45         INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
46         EVENT_CONSTRAINT_END
47 };
48
49 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
50 {
51         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
52         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
53         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
54         INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
55         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
56         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
57         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
58         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
59         INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
60         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
61         INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
62         INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
63         INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
64         EVENT_CONSTRAINT_END
65 };
66
67 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
68 {
69         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
70         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
71         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
72         INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
73         INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
74         INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
75         INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
76         INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
77         INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
78         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
79         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
80         EVENT_CONSTRAINT_END
81 };
82
83 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
84 {
85         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
86         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
87         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
88         EVENT_EXTRA_END
89 };
90
91 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
92 {
93         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
94         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
95         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
96         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
97         INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
98         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
99         INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
100         EVENT_CONSTRAINT_END
101 };
102
103 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
104 {
105         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
106         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
107         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
108         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
109         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
110         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
111         INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
112         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
113         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
114         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
115         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
116         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
117
118         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
119         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
120         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
121         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
122
123         EVENT_CONSTRAINT_END
124 };
125
126 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
127 {
128         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
129         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
130         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
131         INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
132         INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
133         INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
134         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
135         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
136         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
137         INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
138         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
139         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
140         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
141
142         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
143         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
144         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
145         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
146
147         EVENT_CONSTRAINT_END
148 };
149
150 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
151 {
152         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
153         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
154         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
155         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
156         EVENT_EXTRA_END
157 };
158
159 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
160 {
161         EVENT_CONSTRAINT_END
162 };
163
164 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
165 {
166         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
167         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
168         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
169         EVENT_CONSTRAINT_END
170 };
171
172 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
173 {
174         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
175         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
176         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
177         EVENT_CONSTRAINT_END
178 };
179
180 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
181         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
182         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
183         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
184         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
185         EVENT_EXTRA_END
186 };
187
188 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
189         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
190         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
191         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
192         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
193         EVENT_EXTRA_END
194 };
195
196 EVENT_ATTR_STR(mem-loads,       mem_ld_nhm,     "event=0x0b,umask=0x10,ldlat=3");
197 EVENT_ATTR_STR(mem-loads,       mem_ld_snb,     "event=0xcd,umask=0x1,ldlat=3");
198 EVENT_ATTR_STR(mem-stores,      mem_st_snb,     "event=0xcd,umask=0x2");
199
200 struct attribute *nhm_events_attrs[] = {
201         EVENT_PTR(mem_ld_nhm),
202         NULL,
203 };
204
205 struct attribute *snb_events_attrs[] = {
206         EVENT_PTR(mem_ld_snb),
207         EVENT_PTR(mem_st_snb),
208         NULL,
209 };
210
211 static struct event_constraint intel_hsw_event_constraints[] = {
212         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
213         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
214         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
215         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.* */
216         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
217         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
218         /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
219         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
220         /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
221         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
222         /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
223         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
224
225         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
226         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
227         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
228         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
229
230         EVENT_CONSTRAINT_END
231 };
232
233 struct event_constraint intel_bdw_event_constraints[] = {
234         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
235         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
236         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
237         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
238         INTEL_EVENT_CONSTRAINT(0xa3, 0x4),      /* CYCLE_ACTIVITY.* */
239         EVENT_CONSTRAINT_END
240 };
241
242 static u64 intel_pmu_event_map(int hw_event)
243 {
244         return intel_perfmon_event_map[hw_event];
245 }
246
247 #define SNB_DMND_DATA_RD        (1ULL << 0)
248 #define SNB_DMND_RFO            (1ULL << 1)
249 #define SNB_DMND_IFETCH         (1ULL << 2)
250 #define SNB_DMND_WB             (1ULL << 3)
251 #define SNB_PF_DATA_RD          (1ULL << 4)
252 #define SNB_PF_RFO              (1ULL << 5)
253 #define SNB_PF_IFETCH           (1ULL << 6)
254 #define SNB_LLC_DATA_RD         (1ULL << 7)
255 #define SNB_LLC_RFO             (1ULL << 8)
256 #define SNB_LLC_IFETCH          (1ULL << 9)
257 #define SNB_BUS_LOCKS           (1ULL << 10)
258 #define SNB_STRM_ST             (1ULL << 11)
259 #define SNB_OTHER               (1ULL << 15)
260 #define SNB_RESP_ANY            (1ULL << 16)
261 #define SNB_NO_SUPP             (1ULL << 17)
262 #define SNB_LLC_HITM            (1ULL << 18)
263 #define SNB_LLC_HITE            (1ULL << 19)
264 #define SNB_LLC_HITS            (1ULL << 20)
265 #define SNB_LLC_HITF            (1ULL << 21)
266 #define SNB_LOCAL               (1ULL << 22)
267 #define SNB_REMOTE              (0xffULL << 23)
268 #define SNB_SNP_NONE            (1ULL << 31)
269 #define SNB_SNP_NOT_NEEDED      (1ULL << 32)
270 #define SNB_SNP_MISS            (1ULL << 33)
271 #define SNB_NO_FWD              (1ULL << 34)
272 #define SNB_SNP_FWD             (1ULL << 35)
273 #define SNB_HITM                (1ULL << 36)
274 #define SNB_NON_DRAM            (1ULL << 37)
275
276 #define SNB_DMND_READ           (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
277 #define SNB_DMND_WRITE          (SNB_DMND_RFO|SNB_LLC_RFO)
278 #define SNB_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
279
280 #define SNB_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
281                                  SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
282                                  SNB_HITM)
283
284 #define SNB_DRAM_ANY            (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
285 #define SNB_DRAM_REMOTE         (SNB_REMOTE|SNB_SNP_ANY)
286
287 #define SNB_L3_ACCESS           SNB_RESP_ANY
288 #define SNB_L3_MISS             (SNB_DRAM_ANY|SNB_NON_DRAM)
289
290 static __initconst const u64 snb_hw_cache_extra_regs
291                                 [PERF_COUNT_HW_CACHE_MAX]
292                                 [PERF_COUNT_HW_CACHE_OP_MAX]
293                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
294 {
295  [ C(LL  ) ] = {
296         [ C(OP_READ) ] = {
297                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
298                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
299         },
300         [ C(OP_WRITE) ] = {
301                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
302                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
303         },
304         [ C(OP_PREFETCH) ] = {
305                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
306                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
307         },
308  },
309  [ C(NODE) ] = {
310         [ C(OP_READ) ] = {
311                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
312                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
313         },
314         [ C(OP_WRITE) ] = {
315                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
316                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
317         },
318         [ C(OP_PREFETCH) ] = {
319                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
320                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
321         },
322  },
323 };
324
325 static __initconst const u64 snb_hw_cache_event_ids
326                                 [PERF_COUNT_HW_CACHE_MAX]
327                                 [PERF_COUNT_HW_CACHE_OP_MAX]
328                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
329 {
330  [ C(L1D) ] = {
331         [ C(OP_READ) ] = {
332                 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
333                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
334         },
335         [ C(OP_WRITE) ] = {
336                 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
337                 [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
338         },
339         [ C(OP_PREFETCH) ] = {
340                 [ C(RESULT_ACCESS) ] = 0x0,
341                 [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
342         },
343  },
344  [ C(L1I ) ] = {
345         [ C(OP_READ) ] = {
346                 [ C(RESULT_ACCESS) ] = 0x0,
347                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
348         },
349         [ C(OP_WRITE) ] = {
350                 [ C(RESULT_ACCESS) ] = -1,
351                 [ C(RESULT_MISS)   ] = -1,
352         },
353         [ C(OP_PREFETCH) ] = {
354                 [ C(RESULT_ACCESS) ] = 0x0,
355                 [ C(RESULT_MISS)   ] = 0x0,
356         },
357  },
358  [ C(LL  ) ] = {
359         [ C(OP_READ) ] = {
360                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
361                 [ C(RESULT_ACCESS) ] = 0x01b7,
362                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
363                 [ C(RESULT_MISS)   ] = 0x01b7,
364         },
365         [ C(OP_WRITE) ] = {
366                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
367                 [ C(RESULT_ACCESS) ] = 0x01b7,
368                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
369                 [ C(RESULT_MISS)   ] = 0x01b7,
370         },
371         [ C(OP_PREFETCH) ] = {
372                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
373                 [ C(RESULT_ACCESS) ] = 0x01b7,
374                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
375                 [ C(RESULT_MISS)   ] = 0x01b7,
376         },
377  },
378  [ C(DTLB) ] = {
379         [ C(OP_READ) ] = {
380                 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
381                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
382         },
383         [ C(OP_WRITE) ] = {
384                 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
385                 [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
386         },
387         [ C(OP_PREFETCH) ] = {
388                 [ C(RESULT_ACCESS) ] = 0x0,
389                 [ C(RESULT_MISS)   ] = 0x0,
390         },
391  },
392  [ C(ITLB) ] = {
393         [ C(OP_READ) ] = {
394                 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
395                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
396         },
397         [ C(OP_WRITE) ] = {
398                 [ C(RESULT_ACCESS) ] = -1,
399                 [ C(RESULT_MISS)   ] = -1,
400         },
401         [ C(OP_PREFETCH) ] = {
402                 [ C(RESULT_ACCESS) ] = -1,
403                 [ C(RESULT_MISS)   ] = -1,
404         },
405  },
406  [ C(BPU ) ] = {
407         [ C(OP_READ) ] = {
408                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
409                 [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
410         },
411         [ C(OP_WRITE) ] = {
412                 [ C(RESULT_ACCESS) ] = -1,
413                 [ C(RESULT_MISS)   ] = -1,
414         },
415         [ C(OP_PREFETCH) ] = {
416                 [ C(RESULT_ACCESS) ] = -1,
417                 [ C(RESULT_MISS)   ] = -1,
418         },
419  },
420  [ C(NODE) ] = {
421         [ C(OP_READ) ] = {
422                 [ C(RESULT_ACCESS) ] = 0x01b7,
423                 [ C(RESULT_MISS)   ] = 0x01b7,
424         },
425         [ C(OP_WRITE) ] = {
426                 [ C(RESULT_ACCESS) ] = 0x01b7,
427                 [ C(RESULT_MISS)   ] = 0x01b7,
428         },
429         [ C(OP_PREFETCH) ] = {
430                 [ C(RESULT_ACCESS) ] = 0x01b7,
431                 [ C(RESULT_MISS)   ] = 0x01b7,
432         },
433  },
434
435 };
436
437 /*
438  * Notes on the events:
439  * - data reads do not include code reads (comparable to earlier tables)
440  * - data counts include speculative execution (except L1 write, dtlb, bpu)
441  * - remote node access includes remote memory, remote cache, remote mmio.
442  * - prefetches are not included in the counts because they are not
443  *   reliably counted.
444  */
445
446 #define HSW_DEMAND_DATA_RD              BIT_ULL(0)
447 #define HSW_DEMAND_RFO                  BIT_ULL(1)
448 #define HSW_ANY_RESPONSE                BIT_ULL(16)
449 #define HSW_SUPPLIER_NONE               BIT_ULL(17)
450 #define HSW_L3_MISS_LOCAL_DRAM          BIT_ULL(22)
451 #define HSW_L3_MISS_REMOTE_HOP0         BIT_ULL(27)
452 #define HSW_L3_MISS_REMOTE_HOP1         BIT_ULL(28)
453 #define HSW_L3_MISS_REMOTE_HOP2P        BIT_ULL(29)
454 #define HSW_L3_MISS                     (HSW_L3_MISS_LOCAL_DRAM| \
455                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
456                                          HSW_L3_MISS_REMOTE_HOP2P)
457 #define HSW_SNOOP_NONE                  BIT_ULL(31)
458 #define HSW_SNOOP_NOT_NEEDED            BIT_ULL(32)
459 #define HSW_SNOOP_MISS                  BIT_ULL(33)
460 #define HSW_SNOOP_HIT_NO_FWD            BIT_ULL(34)
461 #define HSW_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
462 #define HSW_SNOOP_HITM                  BIT_ULL(36)
463 #define HSW_SNOOP_NON_DRAM              BIT_ULL(37)
464 #define HSW_ANY_SNOOP                   (HSW_SNOOP_NONE| \
465                                          HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
466                                          HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
467                                          HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
468 #define HSW_SNOOP_DRAM                  (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
469 #define HSW_DEMAND_READ                 HSW_DEMAND_DATA_RD
470 #define HSW_DEMAND_WRITE                HSW_DEMAND_RFO
471 #define HSW_L3_MISS_REMOTE              (HSW_L3_MISS_REMOTE_HOP0|\
472                                          HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
473 #define HSW_LLC_ACCESS                  HSW_ANY_RESPONSE
474
475 #define BDW_L3_MISS_LOCAL               BIT(26)
476 #define BDW_L3_MISS                     (BDW_L3_MISS_LOCAL| \
477                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
478                                          HSW_L3_MISS_REMOTE_HOP2P)
479
480
481 static __initconst const u64 hsw_hw_cache_event_ids
482                                 [PERF_COUNT_HW_CACHE_MAX]
483                                 [PERF_COUNT_HW_CACHE_OP_MAX]
484                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
485 {
486  [ C(L1D ) ] = {
487         [ C(OP_READ) ] = {
488                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
489                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
490         },
491         [ C(OP_WRITE) ] = {
492                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
493                 [ C(RESULT_MISS)   ] = 0x0,
494         },
495         [ C(OP_PREFETCH) ] = {
496                 [ C(RESULT_ACCESS) ] = 0x0,
497                 [ C(RESULT_MISS)   ] = 0x0,
498         },
499  },
500  [ C(L1I ) ] = {
501         [ C(OP_READ) ] = {
502                 [ C(RESULT_ACCESS) ] = 0x0,
503                 [ C(RESULT_MISS)   ] = 0x280,   /* ICACHE.MISSES */
504         },
505         [ C(OP_WRITE) ] = {
506                 [ C(RESULT_ACCESS) ] = -1,
507                 [ C(RESULT_MISS)   ] = -1,
508         },
509         [ C(OP_PREFETCH) ] = {
510                 [ C(RESULT_ACCESS) ] = 0x0,
511                 [ C(RESULT_MISS)   ] = 0x0,
512         },
513  },
514  [ C(LL  ) ] = {
515         [ C(OP_READ) ] = {
516                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
517                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
518         },
519         [ C(OP_WRITE) ] = {
520                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
521                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
522         },
523         [ C(OP_PREFETCH) ] = {
524                 [ C(RESULT_ACCESS) ] = 0x0,
525                 [ C(RESULT_MISS)   ] = 0x0,
526         },
527  },
528  [ C(DTLB) ] = {
529         [ C(OP_READ) ] = {
530                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
531                 [ C(RESULT_MISS)   ] = 0x108,   /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
532         },
533         [ C(OP_WRITE) ] = {
534                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
535                 [ C(RESULT_MISS)   ] = 0x149,   /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
536         },
537         [ C(OP_PREFETCH) ] = {
538                 [ C(RESULT_ACCESS) ] = 0x0,
539                 [ C(RESULT_MISS)   ] = 0x0,
540         },
541  },
542  [ C(ITLB) ] = {
543         [ C(OP_READ) ] = {
544                 [ C(RESULT_ACCESS) ] = 0x6085,  /* ITLB_MISSES.STLB_HIT */
545                 [ C(RESULT_MISS)   ] = 0x185,   /* ITLB_MISSES.MISS_CAUSES_A_WALK */
546         },
547         [ C(OP_WRITE) ] = {
548                 [ C(RESULT_ACCESS) ] = -1,
549                 [ C(RESULT_MISS)   ] = -1,
550         },
551         [ C(OP_PREFETCH) ] = {
552                 [ C(RESULT_ACCESS) ] = -1,
553                 [ C(RESULT_MISS)   ] = -1,
554         },
555  },
556  [ C(BPU ) ] = {
557         [ C(OP_READ) ] = {
558                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
559                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
560         },
561         [ C(OP_WRITE) ] = {
562                 [ C(RESULT_ACCESS) ] = -1,
563                 [ C(RESULT_MISS)   ] = -1,
564         },
565         [ C(OP_PREFETCH) ] = {
566                 [ C(RESULT_ACCESS) ] = -1,
567                 [ C(RESULT_MISS)   ] = -1,
568         },
569  },
570  [ C(NODE) ] = {
571         [ C(OP_READ) ] = {
572                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
573                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
574         },
575         [ C(OP_WRITE) ] = {
576                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
577                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
578         },
579         [ C(OP_PREFETCH) ] = {
580                 [ C(RESULT_ACCESS) ] = 0x0,
581                 [ C(RESULT_MISS)   ] = 0x0,
582         },
583  },
584 };
585
586 static __initconst const u64 hsw_hw_cache_extra_regs
587                                 [PERF_COUNT_HW_CACHE_MAX]
588                                 [PERF_COUNT_HW_CACHE_OP_MAX]
589                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
590 {
591  [ C(LL  ) ] = {
592         [ C(OP_READ) ] = {
593                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
594                                        HSW_LLC_ACCESS,
595                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
596                                        HSW_L3_MISS|HSW_ANY_SNOOP,
597         },
598         [ C(OP_WRITE) ] = {
599                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
600                                        HSW_LLC_ACCESS,
601                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
602                                        HSW_L3_MISS|HSW_ANY_SNOOP,
603         },
604         [ C(OP_PREFETCH) ] = {
605                 [ C(RESULT_ACCESS) ] = 0x0,
606                 [ C(RESULT_MISS)   ] = 0x0,
607         },
608  },
609  [ C(NODE) ] = {
610         [ C(OP_READ) ] = {
611                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
612                                        HSW_L3_MISS_LOCAL_DRAM|
613                                        HSW_SNOOP_DRAM,
614                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
615                                        HSW_L3_MISS_REMOTE|
616                                        HSW_SNOOP_DRAM,
617         },
618         [ C(OP_WRITE) ] = {
619                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
620                                        HSW_L3_MISS_LOCAL_DRAM|
621                                        HSW_SNOOP_DRAM,
622                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
623                                        HSW_L3_MISS_REMOTE|
624                                        HSW_SNOOP_DRAM,
625         },
626         [ C(OP_PREFETCH) ] = {
627                 [ C(RESULT_ACCESS) ] = 0x0,
628                 [ C(RESULT_MISS)   ] = 0x0,
629         },
630  },
631 };
632
633 static __initconst const u64 westmere_hw_cache_event_ids
634                                 [PERF_COUNT_HW_CACHE_MAX]
635                                 [PERF_COUNT_HW_CACHE_OP_MAX]
636                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
637 {
638  [ C(L1D) ] = {
639         [ C(OP_READ) ] = {
640                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
641                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
642         },
643         [ C(OP_WRITE) ] = {
644                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
645                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
646         },
647         [ C(OP_PREFETCH) ] = {
648                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
649                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
650         },
651  },
652  [ C(L1I ) ] = {
653         [ C(OP_READ) ] = {
654                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
655                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
656         },
657         [ C(OP_WRITE) ] = {
658                 [ C(RESULT_ACCESS) ] = -1,
659                 [ C(RESULT_MISS)   ] = -1,
660         },
661         [ C(OP_PREFETCH) ] = {
662                 [ C(RESULT_ACCESS) ] = 0x0,
663                 [ C(RESULT_MISS)   ] = 0x0,
664         },
665  },
666  [ C(LL  ) ] = {
667         [ C(OP_READ) ] = {
668                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
669                 [ C(RESULT_ACCESS) ] = 0x01b7,
670                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
671                 [ C(RESULT_MISS)   ] = 0x01b7,
672         },
673         /*
674          * Use RFO, not WRITEBACK, because a write miss would typically occur
675          * on RFO.
676          */
677         [ C(OP_WRITE) ] = {
678                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
679                 [ C(RESULT_ACCESS) ] = 0x01b7,
680                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
681                 [ C(RESULT_MISS)   ] = 0x01b7,
682         },
683         [ C(OP_PREFETCH) ] = {
684                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
685                 [ C(RESULT_ACCESS) ] = 0x01b7,
686                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
687                 [ C(RESULT_MISS)   ] = 0x01b7,
688         },
689  },
690  [ C(DTLB) ] = {
691         [ C(OP_READ) ] = {
692                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
693                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
694         },
695         [ C(OP_WRITE) ] = {
696                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
697                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
698         },
699         [ C(OP_PREFETCH) ] = {
700                 [ C(RESULT_ACCESS) ] = 0x0,
701                 [ C(RESULT_MISS)   ] = 0x0,
702         },
703  },
704  [ C(ITLB) ] = {
705         [ C(OP_READ) ] = {
706                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
707                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
708         },
709         [ C(OP_WRITE) ] = {
710                 [ C(RESULT_ACCESS) ] = -1,
711                 [ C(RESULT_MISS)   ] = -1,
712         },
713         [ C(OP_PREFETCH) ] = {
714                 [ C(RESULT_ACCESS) ] = -1,
715                 [ C(RESULT_MISS)   ] = -1,
716         },
717  },
718  [ C(BPU ) ] = {
719         [ C(OP_READ) ] = {
720                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
721                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
722         },
723         [ C(OP_WRITE) ] = {
724                 [ C(RESULT_ACCESS) ] = -1,
725                 [ C(RESULT_MISS)   ] = -1,
726         },
727         [ C(OP_PREFETCH) ] = {
728                 [ C(RESULT_ACCESS) ] = -1,
729                 [ C(RESULT_MISS)   ] = -1,
730         },
731  },
732  [ C(NODE) ] = {
733         [ C(OP_READ) ] = {
734                 [ C(RESULT_ACCESS) ] = 0x01b7,
735                 [ C(RESULT_MISS)   ] = 0x01b7,
736         },
737         [ C(OP_WRITE) ] = {
738                 [ C(RESULT_ACCESS) ] = 0x01b7,
739                 [ C(RESULT_MISS)   ] = 0x01b7,
740         },
741         [ C(OP_PREFETCH) ] = {
742                 [ C(RESULT_ACCESS) ] = 0x01b7,
743                 [ C(RESULT_MISS)   ] = 0x01b7,
744         },
745  },
746 };
747
748 /*
749  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
750  * See IA32 SDM Vol 3B 30.6.1.3
751  */
752
753 #define NHM_DMND_DATA_RD        (1 << 0)
754 #define NHM_DMND_RFO            (1 << 1)
755 #define NHM_DMND_IFETCH         (1 << 2)
756 #define NHM_DMND_WB             (1 << 3)
757 #define NHM_PF_DATA_RD          (1 << 4)
758 #define NHM_PF_DATA_RFO         (1 << 5)
759 #define NHM_PF_IFETCH           (1 << 6)
760 #define NHM_OFFCORE_OTHER       (1 << 7)
761 #define NHM_UNCORE_HIT          (1 << 8)
762 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
763 #define NHM_OTHER_CORE_HITM     (1 << 10)
764                                 /* reserved */
765 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
766 #define NHM_REMOTE_DRAM         (1 << 13)
767 #define NHM_LOCAL_DRAM          (1 << 14)
768 #define NHM_NON_DRAM            (1 << 15)
769
770 #define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
771 #define NHM_REMOTE              (NHM_REMOTE_DRAM)
772
773 #define NHM_DMND_READ           (NHM_DMND_DATA_RD)
774 #define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
775 #define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
776
777 #define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
778 #define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
779 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
780
781 static __initconst const u64 nehalem_hw_cache_extra_regs
782                                 [PERF_COUNT_HW_CACHE_MAX]
783                                 [PERF_COUNT_HW_CACHE_OP_MAX]
784                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
785 {
786  [ C(LL  ) ] = {
787         [ C(OP_READ) ] = {
788                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
789                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
790         },
791         [ C(OP_WRITE) ] = {
792                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
793                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
794         },
795         [ C(OP_PREFETCH) ] = {
796                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
797                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
798         },
799  },
800  [ C(NODE) ] = {
801         [ C(OP_READ) ] = {
802                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
803                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
804         },
805         [ C(OP_WRITE) ] = {
806                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
807                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
808         },
809         [ C(OP_PREFETCH) ] = {
810                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
811                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
812         },
813  },
814 };
815
816 static __initconst const u64 nehalem_hw_cache_event_ids
817                                 [PERF_COUNT_HW_CACHE_MAX]
818                                 [PERF_COUNT_HW_CACHE_OP_MAX]
819                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
820 {
821  [ C(L1D) ] = {
822         [ C(OP_READ) ] = {
823                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
824                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
825         },
826         [ C(OP_WRITE) ] = {
827                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
828                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
829         },
830         [ C(OP_PREFETCH) ] = {
831                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
832                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
833         },
834  },
835  [ C(L1I ) ] = {
836         [ C(OP_READ) ] = {
837                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
838                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
839         },
840         [ C(OP_WRITE) ] = {
841                 [ C(RESULT_ACCESS) ] = -1,
842                 [ C(RESULT_MISS)   ] = -1,
843         },
844         [ C(OP_PREFETCH) ] = {
845                 [ C(RESULT_ACCESS) ] = 0x0,
846                 [ C(RESULT_MISS)   ] = 0x0,
847         },
848  },
849  [ C(LL  ) ] = {
850         [ C(OP_READ) ] = {
851                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
852                 [ C(RESULT_ACCESS) ] = 0x01b7,
853                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
854                 [ C(RESULT_MISS)   ] = 0x01b7,
855         },
856         /*
857          * Use RFO, not WRITEBACK, because a write miss would typically occur
858          * on RFO.
859          */
860         [ C(OP_WRITE) ] = {
861                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
862                 [ C(RESULT_ACCESS) ] = 0x01b7,
863                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
864                 [ C(RESULT_MISS)   ] = 0x01b7,
865         },
866         [ C(OP_PREFETCH) ] = {
867                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
868                 [ C(RESULT_ACCESS) ] = 0x01b7,
869                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
870                 [ C(RESULT_MISS)   ] = 0x01b7,
871         },
872  },
873  [ C(DTLB) ] = {
874         [ C(OP_READ) ] = {
875                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
876                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
877         },
878         [ C(OP_WRITE) ] = {
879                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
880                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
881         },
882         [ C(OP_PREFETCH) ] = {
883                 [ C(RESULT_ACCESS) ] = 0x0,
884                 [ C(RESULT_MISS)   ] = 0x0,
885         },
886  },
887  [ C(ITLB) ] = {
888         [ C(OP_READ) ] = {
889                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
890                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
891         },
892         [ C(OP_WRITE) ] = {
893                 [ C(RESULT_ACCESS) ] = -1,
894                 [ C(RESULT_MISS)   ] = -1,
895         },
896         [ C(OP_PREFETCH) ] = {
897                 [ C(RESULT_ACCESS) ] = -1,
898                 [ C(RESULT_MISS)   ] = -1,
899         },
900  },
901  [ C(BPU ) ] = {
902         [ C(OP_READ) ] = {
903                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
904                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
905         },
906         [ C(OP_WRITE) ] = {
907                 [ C(RESULT_ACCESS) ] = -1,
908                 [ C(RESULT_MISS)   ] = -1,
909         },
910         [ C(OP_PREFETCH) ] = {
911                 [ C(RESULT_ACCESS) ] = -1,
912                 [ C(RESULT_MISS)   ] = -1,
913         },
914  },
915  [ C(NODE) ] = {
916         [ C(OP_READ) ] = {
917                 [ C(RESULT_ACCESS) ] = 0x01b7,
918                 [ C(RESULT_MISS)   ] = 0x01b7,
919         },
920         [ C(OP_WRITE) ] = {
921                 [ C(RESULT_ACCESS) ] = 0x01b7,
922                 [ C(RESULT_MISS)   ] = 0x01b7,
923         },
924         [ C(OP_PREFETCH) ] = {
925                 [ C(RESULT_ACCESS) ] = 0x01b7,
926                 [ C(RESULT_MISS)   ] = 0x01b7,
927         },
928  },
929 };
930
931 static __initconst const u64 core2_hw_cache_event_ids
932                                 [PERF_COUNT_HW_CACHE_MAX]
933                                 [PERF_COUNT_HW_CACHE_OP_MAX]
934                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
935 {
936  [ C(L1D) ] = {
937         [ C(OP_READ) ] = {
938                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
939                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
940         },
941         [ C(OP_WRITE) ] = {
942                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
943                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
944         },
945         [ C(OP_PREFETCH) ] = {
946                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
947                 [ C(RESULT_MISS)   ] = 0,
948         },
949  },
950  [ C(L1I ) ] = {
951         [ C(OP_READ) ] = {
952                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
953                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
954         },
955         [ C(OP_WRITE) ] = {
956                 [ C(RESULT_ACCESS) ] = -1,
957                 [ C(RESULT_MISS)   ] = -1,
958         },
959         [ C(OP_PREFETCH) ] = {
960                 [ C(RESULT_ACCESS) ] = 0,
961                 [ C(RESULT_MISS)   ] = 0,
962         },
963  },
964  [ C(LL  ) ] = {
965         [ C(OP_READ) ] = {
966                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
967                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
968         },
969         [ C(OP_WRITE) ] = {
970                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
971                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
972         },
973         [ C(OP_PREFETCH) ] = {
974                 [ C(RESULT_ACCESS) ] = 0,
975                 [ C(RESULT_MISS)   ] = 0,
976         },
977  },
978  [ C(DTLB) ] = {
979         [ C(OP_READ) ] = {
980                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
981                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
982         },
983         [ C(OP_WRITE) ] = {
984                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
985                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
986         },
987         [ C(OP_PREFETCH) ] = {
988                 [ C(RESULT_ACCESS) ] = 0,
989                 [ C(RESULT_MISS)   ] = 0,
990         },
991  },
992  [ C(ITLB) ] = {
993         [ C(OP_READ) ] = {
994                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
995                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
996         },
997         [ C(OP_WRITE) ] = {
998                 [ C(RESULT_ACCESS) ] = -1,
999                 [ C(RESULT_MISS)   ] = -1,
1000         },
1001         [ C(OP_PREFETCH) ] = {
1002                 [ C(RESULT_ACCESS) ] = -1,
1003                 [ C(RESULT_MISS)   ] = -1,
1004         },
1005  },
1006  [ C(BPU ) ] = {
1007         [ C(OP_READ) ] = {
1008                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1009                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1010         },
1011         [ C(OP_WRITE) ] = {
1012                 [ C(RESULT_ACCESS) ] = -1,
1013                 [ C(RESULT_MISS)   ] = -1,
1014         },
1015         [ C(OP_PREFETCH) ] = {
1016                 [ C(RESULT_ACCESS) ] = -1,
1017                 [ C(RESULT_MISS)   ] = -1,
1018         },
1019  },
1020 };
1021
1022 static __initconst const u64 atom_hw_cache_event_ids
1023                                 [PERF_COUNT_HW_CACHE_MAX]
1024                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1025                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1026 {
1027  [ C(L1D) ] = {
1028         [ C(OP_READ) ] = {
1029                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1030                 [ C(RESULT_MISS)   ] = 0,
1031         },
1032         [ C(OP_WRITE) ] = {
1033                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1034                 [ C(RESULT_MISS)   ] = 0,
1035         },
1036         [ C(OP_PREFETCH) ] = {
1037                 [ C(RESULT_ACCESS) ] = 0x0,
1038                 [ C(RESULT_MISS)   ] = 0,
1039         },
1040  },
1041  [ C(L1I ) ] = {
1042         [ C(OP_READ) ] = {
1043                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1044                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1045         },
1046         [ C(OP_WRITE) ] = {
1047                 [ C(RESULT_ACCESS) ] = -1,
1048                 [ C(RESULT_MISS)   ] = -1,
1049         },
1050         [ C(OP_PREFETCH) ] = {
1051                 [ C(RESULT_ACCESS) ] = 0,
1052                 [ C(RESULT_MISS)   ] = 0,
1053         },
1054  },
1055  [ C(LL  ) ] = {
1056         [ C(OP_READ) ] = {
1057                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1058                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1059         },
1060         [ C(OP_WRITE) ] = {
1061                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1062                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1063         },
1064         [ C(OP_PREFETCH) ] = {
1065                 [ C(RESULT_ACCESS) ] = 0,
1066                 [ C(RESULT_MISS)   ] = 0,
1067         },
1068  },
1069  [ C(DTLB) ] = {
1070         [ C(OP_READ) ] = {
1071                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1072                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1073         },
1074         [ C(OP_WRITE) ] = {
1075                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1076                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1077         },
1078         [ C(OP_PREFETCH) ] = {
1079                 [ C(RESULT_ACCESS) ] = 0,
1080                 [ C(RESULT_MISS)   ] = 0,
1081         },
1082  },
1083  [ C(ITLB) ] = {
1084         [ C(OP_READ) ] = {
1085                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1086                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1087         },
1088         [ C(OP_WRITE) ] = {
1089                 [ C(RESULT_ACCESS) ] = -1,
1090                 [ C(RESULT_MISS)   ] = -1,
1091         },
1092         [ C(OP_PREFETCH) ] = {
1093                 [ C(RESULT_ACCESS) ] = -1,
1094                 [ C(RESULT_MISS)   ] = -1,
1095         },
1096  },
1097  [ C(BPU ) ] = {
1098         [ C(OP_READ) ] = {
1099                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1100                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1101         },
1102         [ C(OP_WRITE) ] = {
1103                 [ C(RESULT_ACCESS) ] = -1,
1104                 [ C(RESULT_MISS)   ] = -1,
1105         },
1106         [ C(OP_PREFETCH) ] = {
1107                 [ C(RESULT_ACCESS) ] = -1,
1108                 [ C(RESULT_MISS)   ] = -1,
1109         },
1110  },
1111 };
1112
1113 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1114 {
1115         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1116         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1117         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x768005ffffull, RSP_1),
1118         EVENT_EXTRA_END
1119 };
1120
1121 #define SLM_DMND_READ           SNB_DMND_DATA_RD
1122 #define SLM_DMND_WRITE          SNB_DMND_RFO
1123 #define SLM_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
1124
1125 #define SLM_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1126 #define SLM_LLC_ACCESS          SNB_RESP_ANY
1127 #define SLM_LLC_MISS            (SLM_SNP_ANY|SNB_NON_DRAM)
1128
1129 static __initconst const u64 slm_hw_cache_extra_regs
1130                                 [PERF_COUNT_HW_CACHE_MAX]
1131                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1132                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1133 {
1134  [ C(LL  ) ] = {
1135         [ C(OP_READ) ] = {
1136                 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1137                 [ C(RESULT_MISS)   ] = SLM_DMND_READ|SLM_LLC_MISS,
1138         },
1139         [ C(OP_WRITE) ] = {
1140                 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1141                 [ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1142         },
1143         [ C(OP_PREFETCH) ] = {
1144                 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1145                 [ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1146         },
1147  },
1148 };
1149
1150 static __initconst const u64 slm_hw_cache_event_ids
1151                                 [PERF_COUNT_HW_CACHE_MAX]
1152                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1153                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1154 {
1155  [ C(L1D) ] = {
1156         [ C(OP_READ) ] = {
1157                 [ C(RESULT_ACCESS) ] = 0,
1158                 [ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1159         },
1160         [ C(OP_WRITE) ] = {
1161                 [ C(RESULT_ACCESS) ] = 0,
1162                 [ C(RESULT_MISS)   ] = 0,
1163         },
1164         [ C(OP_PREFETCH) ] = {
1165                 [ C(RESULT_ACCESS) ] = 0,
1166                 [ C(RESULT_MISS)   ] = 0,
1167         },
1168  },
1169  [ C(L1I ) ] = {
1170         [ C(OP_READ) ] = {
1171                 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1172                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1173         },
1174         [ C(OP_WRITE) ] = {
1175                 [ C(RESULT_ACCESS) ] = -1,
1176                 [ C(RESULT_MISS)   ] = -1,
1177         },
1178         [ C(OP_PREFETCH) ] = {
1179                 [ C(RESULT_ACCESS) ] = 0,
1180                 [ C(RESULT_MISS)   ] = 0,
1181         },
1182  },
1183  [ C(LL  ) ] = {
1184         [ C(OP_READ) ] = {
1185                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1186                 [ C(RESULT_ACCESS) ] = 0x01b7,
1187                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1188                 [ C(RESULT_MISS)   ] = 0x01b7,
1189         },
1190         [ C(OP_WRITE) ] = {
1191                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1192                 [ C(RESULT_ACCESS) ] = 0x01b7,
1193                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1194                 [ C(RESULT_MISS)   ] = 0x01b7,
1195         },
1196         [ C(OP_PREFETCH) ] = {
1197                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1198                 [ C(RESULT_ACCESS) ] = 0x01b7,
1199                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1200                 [ C(RESULT_MISS)   ] = 0x01b7,
1201         },
1202  },
1203  [ C(DTLB) ] = {
1204         [ C(OP_READ) ] = {
1205                 [ C(RESULT_ACCESS) ] = 0,
1206                 [ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1207         },
1208         [ C(OP_WRITE) ] = {
1209                 [ C(RESULT_ACCESS) ] = 0,
1210                 [ C(RESULT_MISS)   ] = 0,
1211         },
1212         [ C(OP_PREFETCH) ] = {
1213                 [ C(RESULT_ACCESS) ] = 0,
1214                 [ C(RESULT_MISS)   ] = 0,
1215         },
1216  },
1217  [ C(ITLB) ] = {
1218         [ C(OP_READ) ] = {
1219                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1220                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES */
1221         },
1222         [ C(OP_WRITE) ] = {
1223                 [ C(RESULT_ACCESS) ] = -1,
1224                 [ C(RESULT_MISS)   ] = -1,
1225         },
1226         [ C(OP_PREFETCH) ] = {
1227                 [ C(RESULT_ACCESS) ] = -1,
1228                 [ C(RESULT_MISS)   ] = -1,
1229         },
1230  },
1231  [ C(BPU ) ] = {
1232         [ C(OP_READ) ] = {
1233                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1234                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1235         },
1236         [ C(OP_WRITE) ] = {
1237                 [ C(RESULT_ACCESS) ] = -1,
1238                 [ C(RESULT_MISS)   ] = -1,
1239         },
1240         [ C(OP_PREFETCH) ] = {
1241                 [ C(RESULT_ACCESS) ] = -1,
1242                 [ C(RESULT_MISS)   ] = -1,
1243         },
1244  },
1245 };
1246
1247 /*
1248  * Use from PMIs where the LBRs are already disabled.
1249  */
1250 static void __intel_pmu_disable_all(void)
1251 {
1252         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1253
1254         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1255
1256         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1257                 intel_pmu_disable_bts();
1258         else
1259                 intel_bts_disable_local();
1260
1261         intel_pmu_pebs_disable_all();
1262 }
1263
1264 static void intel_pmu_disable_all(void)
1265 {
1266         __intel_pmu_disable_all();
1267         intel_pmu_lbr_disable_all();
1268 }
1269
1270 static void __intel_pmu_enable_all(int added, bool pmi)
1271 {
1272         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1273
1274         intel_pmu_pebs_enable_all();
1275         intel_pmu_lbr_enable_all(pmi);
1276         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1277                         x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1278
1279         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1280                 struct perf_event *event =
1281                         cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1282
1283                 if (WARN_ON_ONCE(!event))
1284                         return;
1285
1286                 intel_pmu_enable_bts(event->hw.config);
1287         } else
1288                 intel_bts_enable_local();
1289 }
1290
1291 static void intel_pmu_enable_all(int added)
1292 {
1293         __intel_pmu_enable_all(added, false);
1294 }
1295
1296 /*
1297  * Workaround for:
1298  *   Intel Errata AAK100 (model 26)
1299  *   Intel Errata AAP53  (model 30)
1300  *   Intel Errata BD53   (model 44)
1301  *
1302  * The official story:
1303  *   These chips need to be 'reset' when adding counters by programming the
1304  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1305  *   in sequence on the same PMC or on different PMCs.
1306  *
1307  * In practise it appears some of these events do in fact count, and
1308  * we need to programm all 4 events.
1309  */
1310 static void intel_pmu_nhm_workaround(void)
1311 {
1312         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1313         static const unsigned long nhm_magic[4] = {
1314                 0x4300B5,
1315                 0x4300D2,
1316                 0x4300B1,
1317                 0x4300B1
1318         };
1319         struct perf_event *event;
1320         int i;
1321
1322         /*
1323          * The Errata requires below steps:
1324          * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1325          * 2) Configure 4 PERFEVTSELx with the magic events and clear
1326          *    the corresponding PMCx;
1327          * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1328          * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1329          * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1330          */
1331
1332         /*
1333          * The real steps we choose are a little different from above.
1334          * A) To reduce MSR operations, we don't run step 1) as they
1335          *    are already cleared before this function is called;
1336          * B) Call x86_perf_event_update to save PMCx before configuring
1337          *    PERFEVTSELx with magic number;
1338          * C) With step 5), we do clear only when the PERFEVTSELx is
1339          *    not used currently.
1340          * D) Call x86_perf_event_set_period to restore PMCx;
1341          */
1342
1343         /* We always operate 4 pairs of PERF Counters */
1344         for (i = 0; i < 4; i++) {
1345                 event = cpuc->events[i];
1346                 if (event)
1347                         x86_perf_event_update(event);
1348         }
1349
1350         for (i = 0; i < 4; i++) {
1351                 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1352                 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1353         }
1354
1355         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1356         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1357
1358         for (i = 0; i < 4; i++) {
1359                 event = cpuc->events[i];
1360
1361                 if (event) {
1362                         x86_perf_event_set_period(event);
1363                         __x86_pmu_enable_event(&event->hw,
1364                                         ARCH_PERFMON_EVENTSEL_ENABLE);
1365                 } else
1366                         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1367         }
1368 }
1369
1370 static void intel_pmu_nhm_enable_all(int added)
1371 {
1372         if (added)
1373                 intel_pmu_nhm_workaround();
1374         intel_pmu_enable_all(added);
1375 }
1376
1377 static inline u64 intel_pmu_get_status(void)
1378 {
1379         u64 status;
1380
1381         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1382
1383         return status;
1384 }
1385
1386 static inline void intel_pmu_ack_status(u64 ack)
1387 {
1388         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
1389 }
1390
1391 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
1392 {
1393         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1394         u64 ctrl_val, mask;
1395
1396         mask = 0xfULL << (idx * 4);
1397
1398         rdmsrl(hwc->config_base, ctrl_val);
1399         ctrl_val &= ~mask;
1400         wrmsrl(hwc->config_base, ctrl_val);
1401 }
1402
1403 static inline bool event_is_checkpointed(struct perf_event *event)
1404 {
1405         return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
1406 }
1407
1408 static void intel_pmu_disable_event(struct perf_event *event)
1409 {
1410         struct hw_perf_event *hwc = &event->hw;
1411         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1412
1413         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1414                 intel_pmu_disable_bts();
1415                 intel_pmu_drain_bts_buffer();
1416                 return;
1417         }
1418
1419         cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
1420         cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
1421         cpuc->intel_cp_status &= ~(1ull << hwc->idx);
1422
1423         /*
1424          * must disable before any actual event
1425          * because any event may be combined with LBR
1426          */
1427         if (needs_branch_stack(event))
1428                 intel_pmu_lbr_disable(event);
1429
1430         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1431                 intel_pmu_disable_fixed(hwc);
1432                 return;
1433         }
1434
1435         x86_pmu_disable_event(event);
1436
1437         if (unlikely(event->attr.precise_ip))
1438                 intel_pmu_pebs_disable(event);
1439 }
1440
1441 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
1442 {
1443         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1444         u64 ctrl_val, bits, mask;
1445
1446         /*
1447          * Enable IRQ generation (0x8),
1448          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1449          * if requested:
1450          */
1451         bits = 0x8ULL;
1452         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1453                 bits |= 0x2;
1454         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1455                 bits |= 0x1;
1456
1457         /*
1458          * ANY bit is supported in v3 and up
1459          */
1460         if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1461                 bits |= 0x4;
1462
1463         bits <<= (idx * 4);
1464         mask = 0xfULL << (idx * 4);
1465
1466         rdmsrl(hwc->config_base, ctrl_val);
1467         ctrl_val &= ~mask;
1468         ctrl_val |= bits;
1469         wrmsrl(hwc->config_base, ctrl_val);
1470 }
1471
1472 static void intel_pmu_enable_event(struct perf_event *event)
1473 {
1474         struct hw_perf_event *hwc = &event->hw;
1475         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1476
1477         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1478                 if (!__this_cpu_read(cpu_hw_events.enabled))
1479                         return;
1480
1481                 intel_pmu_enable_bts(hwc->config);
1482                 return;
1483         }
1484         /*
1485          * must enabled before any actual event
1486          * because any event may be combined with LBR
1487          */
1488         if (needs_branch_stack(event))
1489                 intel_pmu_lbr_enable(event);
1490
1491         if (event->attr.exclude_host)
1492                 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
1493         if (event->attr.exclude_guest)
1494                 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
1495
1496         if (unlikely(event_is_checkpointed(event)))
1497                 cpuc->intel_cp_status |= (1ull << hwc->idx);
1498
1499         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1500                 intel_pmu_enable_fixed(hwc);
1501                 return;
1502         }
1503
1504         if (unlikely(event->attr.precise_ip))
1505                 intel_pmu_pebs_enable(event);
1506
1507         __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1508 }
1509
1510 /*
1511  * Save and restart an expired event. Called by NMI contexts,
1512  * so it has to be careful about preempting normal event ops:
1513  */
1514 int intel_pmu_save_and_restart(struct perf_event *event)
1515 {
1516         x86_perf_event_update(event);
1517         /*
1518          * For a checkpointed counter always reset back to 0.  This
1519          * avoids a situation where the counter overflows, aborts the
1520          * transaction and is then set back to shortly before the
1521          * overflow, and overflows and aborts again.
1522          */
1523         if (unlikely(event_is_checkpointed(event))) {
1524                 /* No race with NMIs because the counter should not be armed */
1525                 wrmsrl(event->hw.event_base, 0);
1526                 local64_set(&event->hw.prev_count, 0);
1527         }
1528         return x86_perf_event_set_period(event);
1529 }
1530
1531 static void intel_pmu_reset(void)
1532 {
1533         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1534         unsigned long flags;
1535         int idx;
1536
1537         if (!x86_pmu.num_counters)
1538                 return;
1539
1540         local_irq_save(flags);
1541
1542         pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
1543
1544         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1545                 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
1546                 wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
1547         }
1548         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
1549                 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1550
1551         if (ds)
1552                 ds->bts_index = ds->bts_buffer_base;
1553
1554         /* Ack all overflows and disable fixed counters */
1555         if (x86_pmu.version >= 2) {
1556                 intel_pmu_ack_status(intel_pmu_get_status());
1557                 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1558         }
1559
1560         /* Reset LBRs and LBR freezing */
1561         if (x86_pmu.lbr_nr) {
1562                 update_debugctlmsr(get_debugctlmsr() &
1563                         ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
1564         }
1565
1566         local_irq_restore(flags);
1567 }
1568
1569 /*
1570  * This handler is triggered by the local APIC, so the APIC IRQ handling
1571  * rules apply:
1572  */
1573 static int intel_pmu_handle_irq(struct pt_regs *regs)
1574 {
1575         struct perf_sample_data data;
1576         struct cpu_hw_events *cpuc;
1577         int bit, loops;
1578         u64 status;
1579         int handled;
1580
1581         cpuc = this_cpu_ptr(&cpu_hw_events);
1582
1583         /*
1584          * No known reason to not always do late ACK,
1585          * but just in case do it opt-in.
1586          */
1587         if (!x86_pmu.late_ack)
1588                 apic_write(APIC_LVTPC, APIC_DM_NMI);
1589         __intel_pmu_disable_all();
1590         handled = intel_pmu_drain_bts_buffer();
1591         handled += intel_bts_interrupt();
1592         status = intel_pmu_get_status();
1593         if (!status)
1594                 goto done;
1595
1596         loops = 0;
1597 again:
1598         intel_pmu_ack_status(status);
1599         if (++loops > 100) {
1600                 static bool warned = false;
1601                 if (!warned) {
1602                         WARN(1, "perfevents: irq loop stuck!\n");
1603                         perf_event_print_debug();
1604                         warned = true;
1605                 }
1606                 intel_pmu_reset();
1607                 goto done;
1608         }
1609
1610         inc_irq_stat(apic_perf_irqs);
1611
1612         intel_pmu_lbr_read();
1613
1614         /*
1615          * CondChgd bit 63 doesn't mean any overflow status. Ignore
1616          * and clear the bit.
1617          */
1618         if (__test_and_clear_bit(63, (unsigned long *)&status)) {
1619                 if (!status)
1620                         goto done;
1621         }
1622
1623         /*
1624          * PEBS overflow sets bit 62 in the global status register
1625          */
1626         if (__test_and_clear_bit(62, (unsigned long *)&status)) {
1627                 handled++;
1628                 x86_pmu.drain_pebs(regs);
1629         }
1630
1631         /*
1632          * Intel PT
1633          */
1634         if (__test_and_clear_bit(55, (unsigned long *)&status)) {
1635                 handled++;
1636                 intel_pt_interrupt();
1637         }
1638
1639         /*
1640          * Checkpointed counters can lead to 'spurious' PMIs because the
1641          * rollback caused by the PMI will have cleared the overflow status
1642          * bit. Therefore always force probe these counters.
1643          */
1644         status |= cpuc->intel_cp_status;
1645
1646         for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1647                 struct perf_event *event = cpuc->events[bit];
1648
1649                 handled++;
1650
1651                 if (!test_bit(bit, cpuc->active_mask))
1652                         continue;
1653
1654                 if (!intel_pmu_save_and_restart(event))
1655                         continue;
1656
1657                 perf_sample_data_init(&data, 0, event->hw.last_period);
1658
1659                 if (has_branch_stack(event))
1660                         data.br_stack = &cpuc->lbr_stack;
1661
1662                 if (perf_event_overflow(event, &data, regs))
1663                         x86_pmu_stop(event, 0);
1664         }
1665
1666         /*
1667          * Repeat if there is more work to be done:
1668          */
1669         status = intel_pmu_get_status();
1670         if (status)
1671                 goto again;
1672
1673 done:
1674         __intel_pmu_enable_all(0, true);
1675         /*
1676          * Only unmask the NMI after the overflow counters
1677          * have been reset. This avoids spurious NMIs on
1678          * Haswell CPUs.
1679          */
1680         if (x86_pmu.late_ack)
1681                 apic_write(APIC_LVTPC, APIC_DM_NMI);
1682         return handled;
1683 }
1684
1685 static struct event_constraint *
1686 intel_bts_constraints(struct perf_event *event)
1687 {
1688         struct hw_perf_event *hwc = &event->hw;
1689         unsigned int hw_event, bts_event;
1690
1691         if (event->attr.freq)
1692                 return NULL;
1693
1694         hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
1695         bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
1696
1697         if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
1698                 return &bts_constraint;
1699
1700         return NULL;
1701 }
1702
1703 static int intel_alt_er(int idx)
1704 {
1705         if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
1706                 return idx;
1707
1708         if (idx == EXTRA_REG_RSP_0)
1709                 return EXTRA_REG_RSP_1;
1710
1711         if (idx == EXTRA_REG_RSP_1)
1712                 return EXTRA_REG_RSP_0;
1713
1714         return idx;
1715 }
1716
1717 static void intel_fixup_er(struct perf_event *event, int idx)
1718 {
1719         event->hw.extra_reg.idx = idx;
1720
1721         if (idx == EXTRA_REG_RSP_0) {
1722                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1723                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
1724                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
1725         } else if (idx == EXTRA_REG_RSP_1) {
1726                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1727                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
1728                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
1729         }
1730 }
1731
1732 /*
1733  * manage allocation of shared extra msr for certain events
1734  *
1735  * sharing can be:
1736  * per-cpu: to be shared between the various events on a single PMU
1737  * per-core: per-cpu + shared by HT threads
1738  */
1739 static struct event_constraint *
1740 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
1741                                    struct perf_event *event,
1742                                    struct hw_perf_event_extra *reg)
1743 {
1744         struct event_constraint *c = &emptyconstraint;
1745         struct er_account *era;
1746         unsigned long flags;
1747         int idx = reg->idx;
1748
1749         /*
1750          * reg->alloc can be set due to existing state, so for fake cpuc we
1751          * need to ignore this, otherwise we might fail to allocate proper fake
1752          * state for this extra reg constraint. Also see the comment below.
1753          */
1754         if (reg->alloc && !cpuc->is_fake)
1755                 return NULL; /* call x86_get_event_constraint() */
1756
1757 again:
1758         era = &cpuc->shared_regs->regs[idx];
1759         /*
1760          * we use spin_lock_irqsave() to avoid lockdep issues when
1761          * passing a fake cpuc
1762          */
1763         raw_spin_lock_irqsave(&era->lock, flags);
1764
1765         if (!atomic_read(&era->ref) || era->config == reg->config) {
1766
1767                 /*
1768                  * If its a fake cpuc -- as per validate_{group,event}() we
1769                  * shouldn't touch event state and we can avoid doing so
1770                  * since both will only call get_event_constraints() once
1771                  * on each event, this avoids the need for reg->alloc.
1772                  *
1773                  * Not doing the ER fixup will only result in era->reg being
1774                  * wrong, but since we won't actually try and program hardware
1775                  * this isn't a problem either.
1776                  */
1777                 if (!cpuc->is_fake) {
1778                         if (idx != reg->idx)
1779                                 intel_fixup_er(event, idx);
1780
1781                         /*
1782                          * x86_schedule_events() can call get_event_constraints()
1783                          * multiple times on events in the case of incremental
1784                          * scheduling(). reg->alloc ensures we only do the ER
1785                          * allocation once.
1786                          */
1787                         reg->alloc = 1;
1788                 }
1789
1790                 /* lock in msr value */
1791                 era->config = reg->config;
1792                 era->reg = reg->reg;
1793
1794                 /* one more user */
1795                 atomic_inc(&era->ref);
1796
1797                 /*
1798                  * need to call x86_get_event_constraint()
1799                  * to check if associated event has constraints
1800                  */
1801                 c = NULL;
1802         } else {
1803                 idx = intel_alt_er(idx);
1804                 if (idx != reg->idx) {
1805                         raw_spin_unlock_irqrestore(&era->lock, flags);
1806                         goto again;
1807                 }
1808         }
1809         raw_spin_unlock_irqrestore(&era->lock, flags);
1810
1811         return c;
1812 }
1813
1814 static void
1815 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
1816                                    struct hw_perf_event_extra *reg)
1817 {
1818         struct er_account *era;
1819
1820         /*
1821          * Only put constraint if extra reg was actually allocated. Also takes
1822          * care of event which do not use an extra shared reg.
1823          *
1824          * Also, if this is a fake cpuc we shouldn't touch any event state
1825          * (reg->alloc) and we don't care about leaving inconsistent cpuc state
1826          * either since it'll be thrown out.
1827          */
1828         if (!reg->alloc || cpuc->is_fake)
1829                 return;
1830
1831         era = &cpuc->shared_regs->regs[reg->idx];
1832
1833         /* one fewer user */
1834         atomic_dec(&era->ref);
1835
1836         /* allocate again next time */
1837         reg->alloc = 0;
1838 }
1839
1840 static struct event_constraint *
1841 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
1842                               struct perf_event *event)
1843 {
1844         struct event_constraint *c = NULL, *d;
1845         struct hw_perf_event_extra *xreg, *breg;
1846
1847         xreg = &event->hw.extra_reg;
1848         if (xreg->idx != EXTRA_REG_NONE) {
1849                 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
1850                 if (c == &emptyconstraint)
1851                         return c;
1852         }
1853         breg = &event->hw.branch_reg;
1854         if (breg->idx != EXTRA_REG_NONE) {
1855                 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
1856                 if (d == &emptyconstraint) {
1857                         __intel_shared_reg_put_constraints(cpuc, xreg);
1858                         c = d;
1859                 }
1860         }
1861         return c;
1862 }
1863
1864 struct event_constraint *
1865 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
1866                           struct perf_event *event)
1867 {
1868         struct event_constraint *c;
1869
1870         if (x86_pmu.event_constraints) {
1871                 for_each_event_constraint(c, x86_pmu.event_constraints) {
1872                         if ((event->hw.config & c->cmask) == c->code) {
1873                                 event->hw.flags |= c->flags;
1874                                 return c;
1875                         }
1876                 }
1877         }
1878
1879         return &unconstrained;
1880 }
1881
1882 static struct event_constraint *
1883 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
1884                             struct perf_event *event)
1885 {
1886         struct event_constraint *c;
1887
1888         c = intel_bts_constraints(event);
1889         if (c)
1890                 return c;
1891
1892         c = intel_shared_regs_constraints(cpuc, event);
1893         if (c)
1894                 return c;
1895
1896         c = intel_pebs_constraints(event);
1897         if (c)
1898                 return c;
1899
1900         return x86_get_event_constraints(cpuc, idx, event);
1901 }
1902
1903 static void
1904 intel_start_scheduling(struct cpu_hw_events *cpuc)
1905 {
1906         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
1907         struct intel_excl_states *xl, *xlo;
1908         int tid = cpuc->excl_thread_id;
1909         int o_tid = 1 - tid; /* sibling thread */
1910
1911         /*
1912          * nothing needed if in group validation mode
1913          */
1914         if (cpuc->is_fake || !is_ht_workaround_enabled())
1915                 return;
1916
1917         /*
1918          * no exclusion needed
1919          */
1920         if (!excl_cntrs)
1921                 return;
1922
1923         xlo = &excl_cntrs->states[o_tid];
1924         xl = &excl_cntrs->states[tid];
1925
1926         xl->sched_started = true;
1927         xl->num_alloc_cntrs = 0;
1928         /*
1929          * lock shared state until we are done scheduling
1930          * in stop_event_scheduling()
1931          * makes scheduling appear as a transaction
1932          */
1933         WARN_ON_ONCE(!irqs_disabled());
1934         raw_spin_lock(&excl_cntrs->lock);
1935
1936         /*
1937          * save initial state of sibling thread
1938          */
1939         memcpy(xlo->init_state, xlo->state, sizeof(xlo->init_state));
1940 }
1941
1942 static void
1943 intel_stop_scheduling(struct cpu_hw_events *cpuc)
1944 {
1945         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
1946         struct intel_excl_states *xl, *xlo;
1947         int tid = cpuc->excl_thread_id;
1948         int o_tid = 1 - tid; /* sibling thread */
1949
1950         /*
1951          * nothing needed if in group validation mode
1952          */
1953         if (cpuc->is_fake || !is_ht_workaround_enabled())
1954                 return;
1955         /*
1956          * no exclusion needed
1957          */
1958         if (!excl_cntrs)
1959                 return;
1960
1961         xlo = &excl_cntrs->states[o_tid];
1962         xl = &excl_cntrs->states[tid];
1963
1964         /*
1965          * make new sibling thread state visible
1966          */
1967         memcpy(xlo->state, xlo->init_state, sizeof(xlo->state));
1968
1969         xl->sched_started = false;
1970         /*
1971          * release shared state lock (acquired in intel_start_scheduling())
1972          */
1973         raw_spin_unlock(&excl_cntrs->lock);
1974 }
1975
1976 static struct event_constraint *
1977 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
1978                            int idx, struct event_constraint *c)
1979 {
1980         struct event_constraint *cx;
1981         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
1982         struct intel_excl_states *xl, *xlo;
1983         int is_excl, i;
1984         int tid = cpuc->excl_thread_id;
1985         int o_tid = 1 - tid; /* alternate */
1986
1987         /*
1988          * validating a group does not require
1989          * enforcing cross-thread  exclusion
1990          */
1991         if (cpuc->is_fake || !is_ht_workaround_enabled())
1992                 return c;
1993
1994         /*
1995          * no exclusion needed
1996          */
1997         if (!excl_cntrs)
1998                 return c;
1999         /*
2000          * event requires exclusive counter access
2001          * across HT threads
2002          */
2003         is_excl = c->flags & PERF_X86_EVENT_EXCL;
2004
2005         /*
2006          * xl = state of current HT
2007          * xlo = state of sibling HT
2008          */
2009         xl = &excl_cntrs->states[tid];
2010         xlo = &excl_cntrs->states[o_tid];
2011
2012         /*
2013          * do not allow scheduling of more than max_alloc_cntrs
2014          * which is set to half the available generic counters.
2015          * this helps avoid counter starvation of sibling thread
2016          * by ensuring at most half the counters cannot be in
2017          * exclusive mode. There is not designated counters for the
2018          * limits. Any N/2 counters can be used. This helps with
2019          * events with specifix counter constraints
2020          */
2021         if (xl->num_alloc_cntrs++ == xl->max_alloc_cntrs)
2022                 return &emptyconstraint;
2023
2024         cx = c;
2025
2026         /*
2027          * because we modify the constraint, we need
2028          * to make a copy. Static constraints come
2029          * from static const tables.
2030          *
2031          * only needed when constraint has not yet
2032          * been cloned (marked dynamic)
2033          */
2034         if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2035
2036                 /* sanity check */
2037                 if (idx < 0)
2038                         return &emptyconstraint;
2039
2040                 /*
2041                  * grab pre-allocated constraint entry
2042                  */
2043                 cx = &cpuc->constraint_list[idx];
2044
2045                 /*
2046                  * initialize dynamic constraint
2047                  * with static constraint
2048                  */
2049                 memcpy(cx, c, sizeof(*cx));
2050
2051                 /*
2052                  * mark constraint as dynamic, so we
2053                  * can free it later on
2054                  */
2055                 cx->flags |= PERF_X86_EVENT_DYNAMIC;
2056         }
2057
2058         /*
2059          * From here on, the constraint is dynamic.
2060          * Either it was just allocated above, or it
2061          * was allocated during a earlier invocation
2062          * of this function
2063          */
2064
2065         /*
2066          * Modify static constraint with current dynamic
2067          * state of thread
2068          *
2069          * EXCLUSIVE: sibling counter measuring exclusive event
2070          * SHARED   : sibling counter measuring non-exclusive event
2071          * UNUSED   : sibling counter unused
2072          */
2073         for_each_set_bit(i, cx->idxmsk, X86_PMC_IDX_MAX) {
2074                 /*
2075                  * exclusive event in sibling counter
2076                  * our corresponding counter cannot be used
2077                  * regardless of our event
2078                  */
2079                 if (xl->state[i] == INTEL_EXCL_EXCLUSIVE)
2080                         __clear_bit(i, cx->idxmsk);
2081                 /*
2082                  * if measuring an exclusive event, sibling
2083                  * measuring non-exclusive, then counter cannot
2084                  * be used
2085                  */
2086                 if (is_excl && xl->state[i] == INTEL_EXCL_SHARED)
2087                         __clear_bit(i, cx->idxmsk);
2088         }
2089
2090         /*
2091          * recompute actual bit weight for scheduling algorithm
2092          */
2093         cx->weight = hweight64(cx->idxmsk64);
2094
2095         /*
2096          * if we return an empty mask, then switch
2097          * back to static empty constraint to avoid
2098          * the cost of freeing later on
2099          */
2100         if (cx->weight == 0)
2101                 cx = &emptyconstraint;
2102
2103         return cx;
2104 }
2105
2106 static struct event_constraint *
2107 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2108                             struct perf_event *event)
2109 {
2110         struct event_constraint *c1 = event->hw.constraint;
2111         struct event_constraint *c2;
2112
2113         /*
2114          * first time only
2115          * - static constraint: no change across incremental scheduling calls
2116          * - dynamic constraint: handled by intel_get_excl_constraints()
2117          */
2118         c2 = __intel_get_event_constraints(cpuc, idx, event);
2119         if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2120                 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2121                 c1->weight = c2->weight;
2122                 c2 = c1;
2123         }
2124
2125         if (cpuc->excl_cntrs)
2126                 return intel_get_excl_constraints(cpuc, event, idx, c2);
2127
2128         return c2;
2129 }
2130
2131 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2132                 struct perf_event *event)
2133 {
2134         struct hw_perf_event *hwc = &event->hw;
2135         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2136         struct intel_excl_states *xlo, *xl;
2137         unsigned long flags = 0; /* keep compiler happy */
2138         int tid = cpuc->excl_thread_id;
2139         int o_tid = 1 - tid;
2140
2141         /*
2142          * nothing needed if in group validation mode
2143          */
2144         if (cpuc->is_fake)
2145                 return;
2146
2147         WARN_ON_ONCE(!excl_cntrs);
2148
2149         if (!excl_cntrs)
2150                 return;
2151
2152         xl = &excl_cntrs->states[tid];
2153         xlo = &excl_cntrs->states[o_tid];
2154
2155         /*
2156          * put_constraint may be called from x86_schedule_events()
2157          * which already has the lock held so here make locking
2158          * conditional
2159          */
2160         if (!xl->sched_started)
2161                 raw_spin_lock_irqsave(&excl_cntrs->lock, flags);
2162
2163         /*
2164          * if event was actually assigned, then mark the
2165          * counter state as unused now
2166          */
2167         if (hwc->idx >= 0)
2168                 xlo->state[hwc->idx] = INTEL_EXCL_UNUSED;
2169
2170         if (!xl->sched_started)
2171                 raw_spin_unlock_irqrestore(&excl_cntrs->lock, flags);
2172 }
2173
2174 static void
2175 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
2176                                         struct perf_event *event)
2177 {
2178         struct hw_perf_event_extra *reg;
2179
2180         reg = &event->hw.extra_reg;
2181         if (reg->idx != EXTRA_REG_NONE)
2182                 __intel_shared_reg_put_constraints(cpuc, reg);
2183
2184         reg = &event->hw.branch_reg;
2185         if (reg->idx != EXTRA_REG_NONE)
2186                 __intel_shared_reg_put_constraints(cpuc, reg);
2187 }
2188
2189 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
2190                                         struct perf_event *event)
2191 {
2192         struct event_constraint *c = event->hw.constraint;
2193
2194         intel_put_shared_regs_event_constraints(cpuc, event);
2195
2196         /*
2197          * is PMU has exclusive counter restrictions, then
2198          * all events are subject to and must call the
2199          * put_excl_constraints() routine
2200          */
2201         if (c && cpuc->excl_cntrs)
2202                 intel_put_excl_constraints(cpuc, event);
2203
2204         /* cleanup dynamic constraint */
2205         if (c && (c->flags & PERF_X86_EVENT_DYNAMIC))
2206                 event->hw.constraint = NULL;
2207 }
2208
2209 static void intel_commit_scheduling(struct cpu_hw_events *cpuc,
2210                                     struct perf_event *event, int cntr)
2211 {
2212         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2213         struct event_constraint *c = event->hw.constraint;
2214         struct intel_excl_states *xlo, *xl;
2215         int tid = cpuc->excl_thread_id;
2216         int o_tid = 1 - tid;
2217         int is_excl;
2218
2219         if (cpuc->is_fake || !c)
2220                 return;
2221
2222         is_excl = c->flags & PERF_X86_EVENT_EXCL;
2223
2224         if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2225                 return;
2226
2227         WARN_ON_ONCE(!excl_cntrs);
2228
2229         if (!excl_cntrs)
2230                 return;
2231
2232         xl = &excl_cntrs->states[tid];
2233         xlo = &excl_cntrs->states[o_tid];
2234
2235         WARN_ON_ONCE(!raw_spin_is_locked(&excl_cntrs->lock));
2236
2237         if (cntr >= 0) {
2238                 if (is_excl)
2239                         xlo->init_state[cntr] = INTEL_EXCL_EXCLUSIVE;
2240                 else
2241                         xlo->init_state[cntr] = INTEL_EXCL_SHARED;
2242         }
2243 }
2244
2245 static void intel_pebs_aliases_core2(struct perf_event *event)
2246 {
2247         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2248                 /*
2249                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2250                  * (0x003c) so that we can use it with PEBS.
2251                  *
2252                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2253                  * PEBS capable. However we can use INST_RETIRED.ANY_P
2254                  * (0x00c0), which is a PEBS capable event, to get the same
2255                  * count.
2256                  *
2257                  * INST_RETIRED.ANY_P counts the number of cycles that retires
2258                  * CNTMASK instructions. By setting CNTMASK to a value (16)
2259                  * larger than the maximum number of instructions that can be
2260                  * retired per cycle (4) and then inverting the condition, we
2261                  * count all cycles that retire 16 or less instructions, which
2262                  * is every cycle.
2263                  *
2264                  * Thereby we gain a PEBS capable cycle counter.
2265                  */
2266                 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
2267
2268                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2269                 event->hw.config = alt_config;
2270         }
2271 }
2272
2273 static void intel_pebs_aliases_snb(struct perf_event *event)
2274 {
2275         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2276                 /*
2277                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2278                  * (0x003c) so that we can use it with PEBS.
2279                  *
2280                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2281                  * PEBS capable. However we can use UOPS_RETIRED.ALL
2282                  * (0x01c2), which is a PEBS capable event, to get the same
2283                  * count.
2284                  *
2285                  * UOPS_RETIRED.ALL counts the number of cycles that retires
2286                  * CNTMASK micro-ops. By setting CNTMASK to a value (16)
2287                  * larger than the maximum number of micro-ops that can be
2288                  * retired per cycle (4) and then inverting the condition, we
2289                  * count all cycles that retire 16 or less micro-ops, which
2290                  * is every cycle.
2291                  *
2292                  * Thereby we gain a PEBS capable cycle counter.
2293                  */
2294                 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
2295
2296                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2297                 event->hw.config = alt_config;
2298         }
2299 }
2300
2301 static int intel_pmu_hw_config(struct perf_event *event)
2302 {
2303         int ret = x86_pmu_hw_config(event);
2304
2305         if (ret)
2306                 return ret;
2307
2308         if (event->attr.precise_ip && x86_pmu.pebs_aliases)
2309                 x86_pmu.pebs_aliases(event);
2310
2311         if (needs_branch_stack(event)) {
2312                 ret = intel_pmu_setup_lbr_filter(event);
2313                 if (ret)
2314                         return ret;
2315
2316                 /*
2317                  * BTS is set up earlier in this path, so don't account twice
2318                  */
2319                 if (!intel_pmu_has_bts(event)) {
2320                         /* disallow lbr if conflicting events are present */
2321                         if (x86_add_exclusive(x86_lbr_exclusive_lbr))
2322                                 return -EBUSY;
2323
2324                         event->destroy = hw_perf_lbr_event_destroy;
2325                 }
2326         }
2327
2328         if (event->attr.type != PERF_TYPE_RAW)
2329                 return 0;
2330
2331         if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
2332                 return 0;
2333
2334         if (x86_pmu.version < 3)
2335                 return -EINVAL;
2336
2337         if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2338                 return -EACCES;
2339
2340         event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
2341
2342         return 0;
2343 }
2344
2345 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
2346 {
2347         if (x86_pmu.guest_get_msrs)
2348                 return x86_pmu.guest_get_msrs(nr);
2349         *nr = 0;
2350         return NULL;
2351 }
2352 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
2353
2354 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
2355 {
2356         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2357         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2358
2359         arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
2360         arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
2361         arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
2362         /*
2363          * If PMU counter has PEBS enabled it is not enough to disable counter
2364          * on a guest entry since PEBS memory write can overshoot guest entry
2365          * and corrupt guest memory. Disabling PEBS solves the problem.
2366          */
2367         arr[1].msr = MSR_IA32_PEBS_ENABLE;
2368         arr[1].host = cpuc->pebs_enabled;
2369         arr[1].guest = 0;
2370
2371         *nr = 2;
2372         return arr;
2373 }
2374
2375 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
2376 {
2377         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2378         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2379         int idx;
2380
2381         for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
2382                 struct perf_event *event = cpuc->events[idx];
2383
2384                 arr[idx].msr = x86_pmu_config_addr(idx);
2385                 arr[idx].host = arr[idx].guest = 0;
2386
2387                 if (!test_bit(idx, cpuc->active_mask))
2388                         continue;
2389
2390                 arr[idx].host = arr[idx].guest =
2391                         event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
2392
2393                 if (event->attr.exclude_host)
2394                         arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2395                 else if (event->attr.exclude_guest)
2396                         arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2397         }
2398
2399         *nr = x86_pmu.num_counters;
2400         return arr;
2401 }
2402
2403 static void core_pmu_enable_event(struct perf_event *event)
2404 {
2405         if (!event->attr.exclude_host)
2406                 x86_pmu_enable_event(event);
2407 }
2408
2409 static void core_pmu_enable_all(int added)
2410 {
2411         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2412         int idx;
2413
2414         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2415                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
2416
2417                 if (!test_bit(idx, cpuc->active_mask) ||
2418                                 cpuc->events[idx]->attr.exclude_host)
2419                         continue;
2420
2421                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2422         }
2423 }
2424
2425 static int hsw_hw_config(struct perf_event *event)
2426 {
2427         int ret = intel_pmu_hw_config(event);
2428
2429         if (ret)
2430                 return ret;
2431         if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
2432                 return 0;
2433         event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
2434
2435         /*
2436          * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
2437          * PEBS or in ANY thread mode. Since the results are non-sensical forbid
2438          * this combination.
2439          */
2440         if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
2441              ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
2442               event->attr.precise_ip > 0))
2443                 return -EOPNOTSUPP;
2444
2445         if (event_is_checkpointed(event)) {
2446                 /*
2447                  * Sampling of checkpointed events can cause situations where
2448                  * the CPU constantly aborts because of a overflow, which is
2449                  * then checkpointed back and ignored. Forbid checkpointing
2450                  * for sampling.
2451                  *
2452                  * But still allow a long sampling period, so that perf stat
2453                  * from KVM works.
2454                  */
2455                 if (event->attr.sample_period > 0 &&
2456                     event->attr.sample_period < 0x7fffffff)
2457                         return -EOPNOTSUPP;
2458         }
2459         return 0;
2460 }
2461
2462 static struct event_constraint counter2_constraint =
2463                         EVENT_CONSTRAINT(0, 0x4, 0);
2464
2465 static struct event_constraint *
2466 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2467                           struct perf_event *event)
2468 {
2469         struct event_constraint *c;
2470
2471         c = intel_get_event_constraints(cpuc, idx, event);
2472
2473         /* Handle special quirk on in_tx_checkpointed only in counter 2 */
2474         if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
2475                 if (c->idxmsk64 & (1U << 2))
2476                         return &counter2_constraint;
2477                 return &emptyconstraint;
2478         }
2479
2480         return c;
2481 }
2482
2483 /*
2484  * Broadwell:
2485  *
2486  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
2487  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
2488  * the two to enforce a minimum period of 128 (the smallest value that has bits
2489  * 0-5 cleared and >= 100).
2490  *
2491  * Because of how the code in x86_perf_event_set_period() works, the truncation
2492  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
2493  * to make up for the 'lost' events due to carrying the 'error' in period_left.
2494  *
2495  * Therefore the effective (average) period matches the requested period,
2496  * despite coarser hardware granularity.
2497  */
2498 static unsigned bdw_limit_period(struct perf_event *event, unsigned left)
2499 {
2500         if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
2501                         X86_CONFIG(.event=0xc0, .umask=0x01)) {
2502                 if (left < 128)
2503                         left = 128;
2504                 left &= ~0x3fu;
2505         }
2506         return left;
2507 }
2508
2509 PMU_FORMAT_ATTR(event,  "config:0-7"    );
2510 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
2511 PMU_FORMAT_ATTR(edge,   "config:18"     );
2512 PMU_FORMAT_ATTR(pc,     "config:19"     );
2513 PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
2514 PMU_FORMAT_ATTR(inv,    "config:23"     );
2515 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
2516 PMU_FORMAT_ATTR(in_tx,  "config:32");
2517 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
2518
2519 static struct attribute *intel_arch_formats_attr[] = {
2520         &format_attr_event.attr,
2521         &format_attr_umask.attr,
2522         &format_attr_edge.attr,
2523         &format_attr_pc.attr,
2524         &format_attr_inv.attr,
2525         &format_attr_cmask.attr,
2526         NULL,
2527 };
2528
2529 ssize_t intel_event_sysfs_show(char *page, u64 config)
2530 {
2531         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
2532
2533         return x86_event_sysfs_show(page, config, event);
2534 }
2535
2536 static __initconst const struct x86_pmu core_pmu = {
2537         .name                   = "core",
2538         .handle_irq             = x86_pmu_handle_irq,
2539         .disable_all            = x86_pmu_disable_all,
2540         .enable_all             = core_pmu_enable_all,
2541         .enable                 = core_pmu_enable_event,
2542         .disable                = x86_pmu_disable_event,
2543         .hw_config              = x86_pmu_hw_config,
2544         .schedule_events        = x86_schedule_events,
2545         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
2546         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
2547         .event_map              = intel_pmu_event_map,
2548         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
2549         .apic                   = 1,
2550         /*
2551          * Intel PMCs cannot be accessed sanely above 32 bit width,
2552          * so we install an artificial 1<<31 period regardless of
2553          * the generic event period:
2554          */
2555         .max_period             = (1ULL << 31) - 1,
2556         .get_event_constraints  = intel_get_event_constraints,
2557         .put_event_constraints  = intel_put_event_constraints,
2558         .event_constraints      = intel_core_event_constraints,
2559         .guest_get_msrs         = core_guest_get_msrs,
2560         .format_attrs           = intel_arch_formats_attr,
2561         .events_sysfs_show      = intel_event_sysfs_show,
2562 };
2563
2564 struct intel_shared_regs *allocate_shared_regs(int cpu)
2565 {
2566         struct intel_shared_regs *regs;
2567         int i;
2568
2569         regs = kzalloc_node(sizeof(struct intel_shared_regs),
2570                             GFP_KERNEL, cpu_to_node(cpu));
2571         if (regs) {
2572                 /*
2573                  * initialize the locks to keep lockdep happy
2574                  */
2575                 for (i = 0; i < EXTRA_REG_MAX; i++)
2576                         raw_spin_lock_init(&regs->regs[i].lock);
2577
2578                 regs->core_id = -1;
2579         }
2580         return regs;
2581 }
2582
2583 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
2584 {
2585         struct intel_excl_cntrs *c;
2586         int i;
2587
2588         c = kzalloc_node(sizeof(struct intel_excl_cntrs),
2589                          GFP_KERNEL, cpu_to_node(cpu));
2590         if (c) {
2591                 raw_spin_lock_init(&c->lock);
2592                 for (i = 0; i < X86_PMC_IDX_MAX; i++) {
2593                         c->states[0].state[i] = INTEL_EXCL_UNUSED;
2594                         c->states[0].init_state[i] = INTEL_EXCL_UNUSED;
2595
2596                         c->states[1].state[i] = INTEL_EXCL_UNUSED;
2597                         c->states[1].init_state[i] = INTEL_EXCL_UNUSED;
2598                 }
2599                 c->core_id = -1;
2600         }
2601         return c;
2602 }
2603
2604 static int intel_pmu_cpu_prepare(int cpu)
2605 {
2606         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2607
2608         if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
2609                 cpuc->shared_regs = allocate_shared_regs(cpu);
2610                 if (!cpuc->shared_regs)
2611                         return NOTIFY_BAD;
2612         }
2613
2614         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
2615                 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
2616
2617                 cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
2618                 if (!cpuc->constraint_list)
2619                         return NOTIFY_BAD;
2620
2621                 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
2622                 if (!cpuc->excl_cntrs) {
2623                         kfree(cpuc->constraint_list);
2624                         kfree(cpuc->shared_regs);
2625                         return NOTIFY_BAD;
2626                 }
2627                 cpuc->excl_thread_id = 0;
2628         }
2629
2630         return NOTIFY_OK;
2631 }
2632
2633 static void intel_pmu_cpu_starting(int cpu)
2634 {
2635         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2636         int core_id = topology_core_id(cpu);
2637         int i;
2638
2639         init_debug_store_on_cpu(cpu);
2640         /*
2641          * Deal with CPUs that don't clear their LBRs on power-up.
2642          */
2643         intel_pmu_lbr_reset();
2644
2645         cpuc->lbr_sel = NULL;
2646
2647         if (!cpuc->shared_regs)
2648                 return;
2649
2650         if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
2651                 void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
2652
2653                 for_each_cpu(i, topology_thread_cpumask(cpu)) {
2654                         struct intel_shared_regs *pc;
2655
2656                         pc = per_cpu(cpu_hw_events, i).shared_regs;
2657                         if (pc && pc->core_id == core_id) {
2658                                 *onln = cpuc->shared_regs;
2659                                 cpuc->shared_regs = pc;
2660                                 break;
2661                         }
2662                 }
2663                 cpuc->shared_regs->core_id = core_id;
2664                 cpuc->shared_regs->refcnt++;
2665         }
2666
2667         if (x86_pmu.lbr_sel_map)
2668                 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
2669
2670         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
2671                 int h = x86_pmu.num_counters >> 1;
2672
2673                 for_each_cpu(i, topology_thread_cpumask(cpu)) {
2674                         struct intel_excl_cntrs *c;
2675
2676                         c = per_cpu(cpu_hw_events, i).excl_cntrs;
2677                         if (c && c->core_id == core_id) {
2678                                 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
2679                                 cpuc->excl_cntrs = c;
2680                                 cpuc->excl_thread_id = 1;
2681                                 break;
2682                         }
2683                 }
2684                 cpuc->excl_cntrs->core_id = core_id;
2685                 cpuc->excl_cntrs->refcnt++;
2686                 /*
2687                  * set hard limit to half the number of generic counters
2688                  */
2689                 cpuc->excl_cntrs->states[0].max_alloc_cntrs = h;
2690                 cpuc->excl_cntrs->states[1].max_alloc_cntrs = h;
2691         }
2692 }
2693
2694 static void free_excl_cntrs(int cpu)
2695 {
2696         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2697         struct intel_excl_cntrs *c;
2698
2699         c = cpuc->excl_cntrs;
2700         if (c) {
2701                 if (c->core_id == -1 || --c->refcnt == 0)
2702                         kfree(c);
2703                 cpuc->excl_cntrs = NULL;
2704                 kfree(cpuc->constraint_list);
2705                 cpuc->constraint_list = NULL;
2706         }
2707 }
2708
2709 static void intel_pmu_cpu_dying(int cpu)
2710 {
2711         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2712         struct intel_shared_regs *pc;
2713
2714         pc = cpuc->shared_regs;
2715         if (pc) {
2716                 if (pc->core_id == -1 || --pc->refcnt == 0)
2717                         kfree(pc);
2718                 cpuc->shared_regs = NULL;
2719         }
2720
2721         free_excl_cntrs(cpu);
2722
2723         fini_debug_store_on_cpu(cpu);
2724 }
2725
2726 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
2727
2728 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
2729
2730 static struct attribute *intel_arch3_formats_attr[] = {
2731         &format_attr_event.attr,
2732         &format_attr_umask.attr,
2733         &format_attr_edge.attr,
2734         &format_attr_pc.attr,
2735         &format_attr_any.attr,
2736         &format_attr_inv.attr,
2737         &format_attr_cmask.attr,
2738         &format_attr_in_tx.attr,
2739         &format_attr_in_tx_cp.attr,
2740
2741         &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
2742         &format_attr_ldlat.attr, /* PEBS load latency */
2743         NULL,
2744 };
2745
2746 static __initconst const struct x86_pmu intel_pmu = {
2747         .name                   = "Intel",
2748         .handle_irq             = intel_pmu_handle_irq,
2749         .disable_all            = intel_pmu_disable_all,
2750         .enable_all             = intel_pmu_enable_all,
2751         .enable                 = intel_pmu_enable_event,
2752         .disable                = intel_pmu_disable_event,
2753         .hw_config              = intel_pmu_hw_config,
2754         .schedule_events        = x86_schedule_events,
2755         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
2756         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
2757         .event_map              = intel_pmu_event_map,
2758         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
2759         .apic                   = 1,
2760         /*
2761          * Intel PMCs cannot be accessed sanely above 32 bit width,
2762          * so we install an artificial 1<<31 period regardless of
2763          * the generic event period:
2764          */
2765         .max_period             = (1ULL << 31) - 1,
2766         .get_event_constraints  = intel_get_event_constraints,
2767         .put_event_constraints  = intel_put_event_constraints,
2768         .pebs_aliases           = intel_pebs_aliases_core2,
2769
2770         .format_attrs           = intel_arch3_formats_attr,
2771         .events_sysfs_show      = intel_event_sysfs_show,
2772
2773         .cpu_prepare            = intel_pmu_cpu_prepare,
2774         .cpu_starting           = intel_pmu_cpu_starting,
2775         .cpu_dying              = intel_pmu_cpu_dying,
2776         .guest_get_msrs         = intel_guest_get_msrs,
2777         .sched_task             = intel_pmu_lbr_sched_task,
2778 };
2779
2780 static __init void intel_clovertown_quirk(void)
2781 {
2782         /*
2783          * PEBS is unreliable due to:
2784          *
2785          *   AJ67  - PEBS may experience CPL leaks
2786          *   AJ68  - PEBS PMI may be delayed by one event
2787          *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
2788          *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
2789          *
2790          * AJ67 could be worked around by restricting the OS/USR flags.
2791          * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
2792          *
2793          * AJ106 could possibly be worked around by not allowing LBR
2794          *       usage from PEBS, including the fixup.
2795          * AJ68  could possibly be worked around by always programming
2796          *       a pebs_event_reset[0] value and coping with the lost events.
2797          *
2798          * But taken together it might just make sense to not enable PEBS on
2799          * these chips.
2800          */
2801         pr_warn("PEBS disabled due to CPU errata\n");
2802         x86_pmu.pebs = 0;
2803         x86_pmu.pebs_constraints = NULL;
2804 }
2805
2806 static int intel_snb_pebs_broken(int cpu)
2807 {
2808         u32 rev = UINT_MAX; /* default to broken for unknown models */
2809
2810         switch (cpu_data(cpu).x86_model) {
2811         case 42: /* SNB */
2812                 rev = 0x28;
2813                 break;
2814
2815         case 45: /* SNB-EP */
2816                 switch (cpu_data(cpu).x86_mask) {
2817                 case 6: rev = 0x618; break;
2818                 case 7: rev = 0x70c; break;
2819                 }
2820         }
2821
2822         return (cpu_data(cpu).microcode < rev);
2823 }
2824
2825 static void intel_snb_check_microcode(void)
2826 {
2827         int pebs_broken = 0;
2828         int cpu;
2829
2830         get_online_cpus();
2831         for_each_online_cpu(cpu) {
2832                 if ((pebs_broken = intel_snb_pebs_broken(cpu)))
2833                         break;
2834         }
2835         put_online_cpus();
2836
2837         if (pebs_broken == x86_pmu.pebs_broken)
2838                 return;
2839
2840         /*
2841          * Serialized by the microcode lock..
2842          */
2843         if (x86_pmu.pebs_broken) {
2844                 pr_info("PEBS enabled due to microcode update\n");
2845                 x86_pmu.pebs_broken = 0;
2846         } else {
2847                 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
2848                 x86_pmu.pebs_broken = 1;
2849         }
2850 }
2851
2852 /*
2853  * Under certain circumstances, access certain MSR may cause #GP.
2854  * The function tests if the input MSR can be safely accessed.
2855  */
2856 static bool check_msr(unsigned long msr, u64 mask)
2857 {
2858         u64 val_old, val_new, val_tmp;
2859
2860         /*
2861          * Read the current value, change it and read it back to see if it
2862          * matches, this is needed to detect certain hardware emulators
2863          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
2864          */
2865         if (rdmsrl_safe(msr, &val_old))
2866                 return false;
2867
2868         /*
2869          * Only change the bits which can be updated by wrmsrl.
2870          */
2871         val_tmp = val_old ^ mask;
2872         if (wrmsrl_safe(msr, val_tmp) ||
2873             rdmsrl_safe(msr, &val_new))
2874                 return false;
2875
2876         if (val_new != val_tmp)
2877                 return false;
2878
2879         /* Here it's sure that the MSR can be safely accessed.
2880          * Restore the old value and return.
2881          */
2882         wrmsrl(msr, val_old);
2883
2884         return true;
2885 }
2886
2887 static __init void intel_sandybridge_quirk(void)
2888 {
2889         x86_pmu.check_microcode = intel_snb_check_microcode;
2890         intel_snb_check_microcode();
2891 }
2892
2893 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
2894         { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
2895         { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
2896         { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
2897         { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
2898         { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
2899         { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
2900         { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
2901 };
2902
2903 static __init void intel_arch_events_quirk(void)
2904 {
2905         int bit;
2906
2907         /* disable event that reported as not presend by cpuid */
2908         for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
2909                 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
2910                 pr_warn("CPUID marked event: \'%s\' unavailable\n",
2911                         intel_arch_events_map[bit].name);
2912         }
2913 }
2914
2915 static __init void intel_nehalem_quirk(void)
2916 {
2917         union cpuid10_ebx ebx;
2918
2919         ebx.full = x86_pmu.events_maskl;
2920         if (ebx.split.no_branch_misses_retired) {
2921                 /*
2922                  * Erratum AAJ80 detected, we work it around by using
2923                  * the BR_MISP_EXEC.ANY event. This will over-count
2924                  * branch-misses, but it's still much better than the
2925                  * architectural event which is often completely bogus:
2926                  */
2927                 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
2928                 ebx.split.no_branch_misses_retired = 0;
2929                 x86_pmu.events_maskl = ebx.full;
2930                 pr_info("CPU erratum AAJ80 worked around\n");
2931         }
2932 }
2933
2934 /*
2935  * enable software workaround for errata:
2936  * SNB: BJ122
2937  * IVB: BV98
2938  * HSW: HSD29
2939  *
2940  * Only needed when HT is enabled. However detecting
2941  * if HT is enabled is difficult (model specific). So instead,
2942  * we enable the workaround in the early boot, and verify if
2943  * it is needed in a later initcall phase once we have valid
2944  * topology information to check if HT is actually enabled
2945  */
2946 static __init void intel_ht_bug(void)
2947 {
2948         x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
2949
2950         x86_pmu.commit_scheduling = intel_commit_scheduling;
2951         x86_pmu.start_scheduling = intel_start_scheduling;
2952         x86_pmu.stop_scheduling = intel_stop_scheduling;
2953 }
2954
2955 EVENT_ATTR_STR(mem-loads,       mem_ld_hsw,     "event=0xcd,umask=0x1,ldlat=3");
2956 EVENT_ATTR_STR(mem-stores,      mem_st_hsw,     "event=0xd0,umask=0x82")
2957
2958 /* Haswell special events */
2959 EVENT_ATTR_STR(tx-start,        tx_start,       "event=0xc9,umask=0x1");
2960 EVENT_ATTR_STR(tx-commit,       tx_commit,      "event=0xc9,umask=0x2");
2961 EVENT_ATTR_STR(tx-abort,        tx_abort,       "event=0xc9,umask=0x4");
2962 EVENT_ATTR_STR(tx-capacity,     tx_capacity,    "event=0x54,umask=0x2");
2963 EVENT_ATTR_STR(tx-conflict,     tx_conflict,    "event=0x54,umask=0x1");
2964 EVENT_ATTR_STR(el-start,        el_start,       "event=0xc8,umask=0x1");
2965 EVENT_ATTR_STR(el-commit,       el_commit,      "event=0xc8,umask=0x2");
2966 EVENT_ATTR_STR(el-abort,        el_abort,       "event=0xc8,umask=0x4");
2967 EVENT_ATTR_STR(el-capacity,     el_capacity,    "event=0x54,umask=0x2");
2968 EVENT_ATTR_STR(el-conflict,     el_conflict,    "event=0x54,umask=0x1");
2969 EVENT_ATTR_STR(cycles-t,        cycles_t,       "event=0x3c,in_tx=1");
2970 EVENT_ATTR_STR(cycles-ct,       cycles_ct,      "event=0x3c,in_tx=1,in_tx_cp=1");
2971
2972 static struct attribute *hsw_events_attrs[] = {
2973         EVENT_PTR(tx_start),
2974         EVENT_PTR(tx_commit),
2975         EVENT_PTR(tx_abort),
2976         EVENT_PTR(tx_capacity),
2977         EVENT_PTR(tx_conflict),
2978         EVENT_PTR(el_start),
2979         EVENT_PTR(el_commit),
2980         EVENT_PTR(el_abort),
2981         EVENT_PTR(el_capacity),
2982         EVENT_PTR(el_conflict),
2983         EVENT_PTR(cycles_t),
2984         EVENT_PTR(cycles_ct),
2985         EVENT_PTR(mem_ld_hsw),
2986         EVENT_PTR(mem_st_hsw),
2987         NULL
2988 };
2989
2990 __init int intel_pmu_init(void)
2991 {
2992         union cpuid10_edx edx;
2993         union cpuid10_eax eax;
2994         union cpuid10_ebx ebx;
2995         struct event_constraint *c;
2996         unsigned int unused;
2997         struct extra_reg *er;
2998         int version, i;
2999
3000         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
3001                 switch (boot_cpu_data.x86) {
3002                 case 0x6:
3003                         return p6_pmu_init();
3004                 case 0xb:
3005                         return knc_pmu_init();
3006                 case 0xf:
3007                         return p4_pmu_init();
3008                 }
3009                 return -ENODEV;
3010         }
3011
3012         /*
3013          * Check whether the Architectural PerfMon supports
3014          * Branch Misses Retired hw_event or not.
3015          */
3016         cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
3017         if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
3018                 return -ENODEV;
3019
3020         version = eax.split.version_id;
3021         if (version < 2)
3022                 x86_pmu = core_pmu;
3023         else
3024                 x86_pmu = intel_pmu;
3025
3026         x86_pmu.version                 = version;
3027         x86_pmu.num_counters            = eax.split.num_counters;
3028         x86_pmu.cntval_bits             = eax.split.bit_width;
3029         x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
3030
3031         x86_pmu.events_maskl            = ebx.full;
3032         x86_pmu.events_mask_len         = eax.split.mask_length;
3033
3034         x86_pmu.max_pebs_events         = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
3035
3036         /*
3037          * Quirk: v2 perfmon does not report fixed-purpose events, so
3038          * assume at least 3 events:
3039          */
3040         if (version > 1)
3041                 x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
3042
3043         if (boot_cpu_has(X86_FEATURE_PDCM)) {
3044                 u64 capabilities;
3045
3046                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
3047                 x86_pmu.intel_cap.capabilities = capabilities;
3048         }
3049
3050         intel_ds_init();
3051
3052         x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
3053
3054         /*
3055          * Install the hw-cache-events table:
3056          */
3057         switch (boot_cpu_data.x86_model) {
3058         case 14: /* 65nm Core "Yonah" */
3059                 pr_cont("Core events, ");
3060                 break;
3061
3062         case 15: /* 65nm Core2 "Merom"          */
3063                 x86_add_quirk(intel_clovertown_quirk);
3064         case 22: /* 65nm Core2 "Merom-L"        */
3065         case 23: /* 45nm Core2 "Penryn"         */
3066         case 29: /* 45nm Core2 "Dunnington (MP) */
3067                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
3068                        sizeof(hw_cache_event_ids));
3069
3070                 intel_pmu_lbr_init_core();
3071
3072                 x86_pmu.event_constraints = intel_core2_event_constraints;
3073                 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
3074                 pr_cont("Core2 events, ");
3075                 break;
3076
3077         case 30: /* 45nm Nehalem    */
3078         case 26: /* 45nm Nehalem-EP */
3079         case 46: /* 45nm Nehalem-EX */
3080                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
3081                        sizeof(hw_cache_event_ids));
3082                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3083                        sizeof(hw_cache_extra_regs));
3084
3085                 intel_pmu_lbr_init_nhm();
3086
3087                 x86_pmu.event_constraints = intel_nehalem_event_constraints;
3088                 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
3089                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3090                 x86_pmu.extra_regs = intel_nehalem_extra_regs;
3091
3092                 x86_pmu.cpu_events = nhm_events_attrs;
3093
3094                 /* UOPS_ISSUED.STALLED_CYCLES */
3095                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3096                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3097                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3098                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3099                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3100
3101                 x86_add_quirk(intel_nehalem_quirk);
3102
3103                 pr_cont("Nehalem events, ");
3104                 break;
3105
3106         case 28: /* 45nm Atom "Pineview"   */
3107         case 38: /* 45nm Atom "Lincroft"   */
3108         case 39: /* 32nm Atom "Penwell"    */
3109         case 53: /* 32nm Atom "Cloverview" */
3110         case 54: /* 32nm Atom "Cedarview"  */
3111                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
3112                        sizeof(hw_cache_event_ids));
3113
3114                 intel_pmu_lbr_init_atom();
3115
3116                 x86_pmu.event_constraints = intel_gen_event_constraints;
3117                 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
3118                 pr_cont("Atom events, ");
3119                 break;
3120
3121         case 55: /* 22nm Atom "Silvermont"                */
3122         case 76: /* 14nm Atom "Airmont"                   */
3123         case 77: /* 22nm Atom "Silvermont Avoton/Rangely" */
3124                 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
3125                         sizeof(hw_cache_event_ids));
3126                 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
3127                        sizeof(hw_cache_extra_regs));
3128
3129                 intel_pmu_lbr_init_atom();
3130
3131                 x86_pmu.event_constraints = intel_slm_event_constraints;
3132                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
3133                 x86_pmu.extra_regs = intel_slm_extra_regs;
3134                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3135                 pr_cont("Silvermont events, ");
3136                 break;
3137
3138         case 37: /* 32nm Westmere    */
3139         case 44: /* 32nm Westmere-EP */
3140         case 47: /* 32nm Westmere-EX */
3141                 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
3142                        sizeof(hw_cache_event_ids));
3143                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3144                        sizeof(hw_cache_extra_regs));
3145
3146                 intel_pmu_lbr_init_nhm();
3147
3148                 x86_pmu.event_constraints = intel_westmere_event_constraints;
3149                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3150                 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
3151                 x86_pmu.extra_regs = intel_westmere_extra_regs;
3152                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3153
3154                 x86_pmu.cpu_events = nhm_events_attrs;
3155
3156                 /* UOPS_ISSUED.STALLED_CYCLES */
3157                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3158                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3159                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3160                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3161                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3162
3163                 pr_cont("Westmere events, ");
3164                 break;
3165
3166         case 42: /* 32nm SandyBridge         */
3167         case 45: /* 32nm SandyBridge-E/EN/EP */
3168                 x86_add_quirk(intel_sandybridge_quirk);
3169                 x86_add_quirk(intel_ht_bug);
3170                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3171                        sizeof(hw_cache_event_ids));
3172                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3173                        sizeof(hw_cache_extra_regs));
3174
3175                 intel_pmu_lbr_init_snb();
3176
3177                 x86_pmu.event_constraints = intel_snb_event_constraints;
3178                 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
3179                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3180                 if (boot_cpu_data.x86_model == 45)
3181                         x86_pmu.extra_regs = intel_snbep_extra_regs;
3182                 else
3183                         x86_pmu.extra_regs = intel_snb_extra_regs;
3184
3185
3186                 /* all extra regs are per-cpu when HT is on */
3187                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3188                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3189
3190                 x86_pmu.cpu_events = snb_events_attrs;
3191
3192                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3193                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3194                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3195                 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
3196                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3197                         X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
3198
3199                 pr_cont("SandyBridge events, ");
3200                 break;
3201
3202         case 58: /* 22nm IvyBridge       */
3203         case 62: /* 22nm IvyBridge-EP/EX */
3204                 x86_add_quirk(intel_ht_bug);
3205                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3206                        sizeof(hw_cache_event_ids));
3207                 /* dTLB-load-misses on IVB is different than SNB */
3208                 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
3209
3210                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3211                        sizeof(hw_cache_extra_regs));
3212
3213                 intel_pmu_lbr_init_snb();
3214
3215                 x86_pmu.event_constraints = intel_ivb_event_constraints;
3216                 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
3217                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3218                 if (boot_cpu_data.x86_model == 62)
3219                         x86_pmu.extra_regs = intel_snbep_extra_regs;
3220                 else
3221                         x86_pmu.extra_regs = intel_snb_extra_regs;
3222                 /* all extra regs are per-cpu when HT is on */
3223                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3224                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3225
3226                 x86_pmu.cpu_events = snb_events_attrs;
3227
3228                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3229                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3230                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3231
3232                 pr_cont("IvyBridge events, ");
3233                 break;
3234
3235
3236         case 60: /* 22nm Haswell Core */
3237         case 63: /* 22nm Haswell Server */
3238         case 69: /* 22nm Haswell ULT */
3239         case 70: /* 22nm Haswell + GT3e (Intel Iris Pro graphics) */
3240                 x86_add_quirk(intel_ht_bug);
3241                 x86_pmu.late_ack = true;
3242                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3243                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3244
3245                 intel_pmu_lbr_init_hsw();
3246
3247                 x86_pmu.event_constraints = intel_hsw_event_constraints;
3248                 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
3249                 x86_pmu.extra_regs = intel_snbep_extra_regs;
3250                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3251                 /* all extra regs are per-cpu when HT is on */
3252                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3253                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3254
3255                 x86_pmu.hw_config = hsw_hw_config;
3256                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
3257                 x86_pmu.cpu_events = hsw_events_attrs;
3258                 x86_pmu.lbr_double_abort = true;
3259                 pr_cont("Haswell events, ");
3260                 break;
3261
3262         case 61: /* 14nm Broadwell Core-M */
3263         case 86: /* 14nm Broadwell Xeon D */
3264                 x86_pmu.late_ack = true;
3265                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3266                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3267
3268                 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
3269                 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
3270                                                                          BDW_L3_MISS|HSW_SNOOP_DRAM;
3271                 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
3272                                                                           HSW_SNOOP_DRAM;
3273                 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
3274                                                                              BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3275                 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
3276                                                                               BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3277
3278                 intel_pmu_lbr_init_hsw();
3279
3280                 x86_pmu.event_constraints = intel_bdw_event_constraints;
3281                 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
3282                 x86_pmu.extra_regs = intel_snbep_extra_regs;
3283                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3284                 /* all extra regs are per-cpu when HT is on */
3285                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3286                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3287
3288                 x86_pmu.hw_config = hsw_hw_config;
3289                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
3290                 x86_pmu.cpu_events = hsw_events_attrs;
3291                 x86_pmu.limit_period = bdw_limit_period;
3292                 pr_cont("Broadwell events, ");
3293                 break;
3294
3295         default:
3296                 switch (x86_pmu.version) {
3297                 case 1:
3298                         x86_pmu.event_constraints = intel_v1_event_constraints;
3299                         pr_cont("generic architected perfmon v1, ");
3300                         break;
3301                 default:
3302                         /*
3303                          * default constraints for v2 and up
3304                          */
3305                         x86_pmu.event_constraints = intel_gen_event_constraints;
3306                         pr_cont("generic architected perfmon, ");
3307                         break;
3308                 }
3309         }
3310
3311         if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
3312                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
3313                      x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
3314                 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
3315         }
3316         x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
3317
3318         if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
3319                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
3320                      x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
3321                 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
3322         }
3323
3324         x86_pmu.intel_ctrl |=
3325                 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
3326
3327         if (x86_pmu.event_constraints) {
3328                 /*
3329                  * event on fixed counter2 (REF_CYCLES) only works on this
3330                  * counter, so do not extend mask to generic counters
3331                  */
3332                 for_each_event_constraint(c, x86_pmu.event_constraints) {
3333                         if (c->cmask != FIXED_EVENT_FLAGS
3334                             || c->idxmsk64 == INTEL_PMC_MSK_FIXED_REF_CYCLES) {
3335                                 continue;
3336                         }
3337
3338                         c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
3339                         c->weight += x86_pmu.num_counters;
3340                 }
3341         }
3342
3343         /*
3344          * Access LBR MSR may cause #GP under certain circumstances.
3345          * E.g. KVM doesn't support LBR MSR
3346          * Check all LBT MSR here.
3347          * Disable LBR access if any LBR MSRs can not be accessed.
3348          */
3349         if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
3350                 x86_pmu.lbr_nr = 0;
3351         for (i = 0; i < x86_pmu.lbr_nr; i++) {
3352                 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
3353                       check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
3354                         x86_pmu.lbr_nr = 0;
3355         }
3356
3357         /*
3358          * Access extra MSR may cause #GP under certain circumstances.
3359          * E.g. KVM doesn't support offcore event
3360          * Check all extra_regs here.
3361          */
3362         if (x86_pmu.extra_regs) {
3363                 for (er = x86_pmu.extra_regs; er->msr; er++) {
3364                         er->extra_msr_access = check_msr(er->msr, 0x1ffUL);
3365                         /* Disable LBR select mapping */
3366                         if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
3367                                 x86_pmu.lbr_sel_map = NULL;
3368                 }
3369         }
3370
3371         /* Support full width counters using alternative MSR range */
3372         if (x86_pmu.intel_cap.full_width_write) {
3373                 x86_pmu.max_period = x86_pmu.cntval_mask;
3374                 x86_pmu.perfctr = MSR_IA32_PMC0;
3375                 pr_cont("full-width counters, ");
3376         }
3377
3378         return 0;
3379 }
3380
3381 /*
3382  * HT bug: phase 2 init
3383  * Called once we have valid topology information to check
3384  * whether or not HT is enabled
3385  * If HT is off, then we disable the workaround
3386  */
3387 static __init int fixup_ht_bug(void)
3388 {
3389         int cpu = smp_processor_id();
3390         int w, c;
3391         /*
3392          * problem not present on this CPU model, nothing to do
3393          */
3394         if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
3395                 return 0;
3396
3397         w = cpumask_weight(topology_thread_cpumask(cpu));
3398         if (w > 1) {
3399                 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
3400                 return 0;
3401         }
3402
3403         watchdog_nmi_disable_all();
3404
3405         x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
3406
3407         x86_pmu.commit_scheduling = NULL;
3408         x86_pmu.start_scheduling = NULL;
3409         x86_pmu.stop_scheduling = NULL;
3410
3411         watchdog_nmi_enable_all();
3412
3413         get_online_cpus();
3414
3415         for_each_online_cpu(c) {
3416                 free_excl_cntrs(c);
3417         }
3418
3419         put_online_cpus();
3420         pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
3421         return 0;
3422 }
3423 subsys_initcall(fixup_ht_bug)