]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kernel/machine_kexec_64.c
Linux 5.6-rc7
[linux.git] / arch / x86 / kernel / machine_kexec_64.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * handle transition of Linux booting another kernel
4  * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
5  */
6
7 #define pr_fmt(fmt)     "kexec: " fmt
8
9 #include <linux/mm.h>
10 #include <linux/kexec.h>
11 #include <linux/string.h>
12 #include <linux/gfp.h>
13 #include <linux/reboot.h>
14 #include <linux/numa.h>
15 #include <linux/ftrace.h>
16 #include <linux/io.h>
17 #include <linux/suspend.h>
18 #include <linux/vmalloc.h>
19 #include <linux/efi.h>
20
21 #include <asm/init.h>
22 #include <asm/pgtable.h>
23 #include <asm/tlbflush.h>
24 #include <asm/mmu_context.h>
25 #include <asm/io_apic.h>
26 #include <asm/debugreg.h>
27 #include <asm/kexec-bzimage64.h>
28 #include <asm/setup.h>
29 #include <asm/set_memory.h>
30
31 #ifdef CONFIG_ACPI
32 /*
33  * Used while adding mapping for ACPI tables.
34  * Can be reused when other iomem regions need be mapped
35  */
36 struct init_pgtable_data {
37         struct x86_mapping_info *info;
38         pgd_t *level4p;
39 };
40
41 static int mem_region_callback(struct resource *res, void *arg)
42 {
43         struct init_pgtable_data *data = arg;
44         unsigned long mstart, mend;
45
46         mstart = res->start;
47         mend = mstart + resource_size(res) - 1;
48
49         return kernel_ident_mapping_init(data->info, data->level4p, mstart, mend);
50 }
51
52 static int
53 map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p)
54 {
55         struct init_pgtable_data data;
56         unsigned long flags;
57         int ret;
58
59         data.info = info;
60         data.level4p = level4p;
61         flags = IORESOURCE_MEM | IORESOURCE_BUSY;
62
63         ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1,
64                                   &data, mem_region_callback);
65         if (ret && ret != -EINVAL)
66                 return ret;
67
68         /* ACPI tables could be located in ACPI Non-volatile Storage region */
69         ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1,
70                                   &data, mem_region_callback);
71         if (ret && ret != -EINVAL)
72                 return ret;
73
74         return 0;
75 }
76 #else
77 static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; }
78 #endif
79
80 #ifdef CONFIG_KEXEC_FILE
81 const struct kexec_file_ops * const kexec_file_loaders[] = {
82                 &kexec_bzImage64_ops,
83                 NULL
84 };
85 #endif
86
87 static int
88 map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p)
89 {
90 #ifdef CONFIG_EFI
91         unsigned long mstart, mend;
92
93         if (!efi_enabled(EFI_BOOT))
94                 return 0;
95
96         mstart = (boot_params.efi_info.efi_systab |
97                         ((u64)boot_params.efi_info.efi_systab_hi<<32));
98
99         if (efi_enabled(EFI_64BIT))
100                 mend = mstart + sizeof(efi_system_table_64_t);
101         else
102                 mend = mstart + sizeof(efi_system_table_32_t);
103
104         if (!mstart)
105                 return 0;
106
107         return kernel_ident_mapping_init(info, level4p, mstart, mend);
108 #endif
109         return 0;
110 }
111
112 static void free_transition_pgtable(struct kimage *image)
113 {
114         free_page((unsigned long)image->arch.p4d);
115         image->arch.p4d = NULL;
116         free_page((unsigned long)image->arch.pud);
117         image->arch.pud = NULL;
118         free_page((unsigned long)image->arch.pmd);
119         image->arch.pmd = NULL;
120         free_page((unsigned long)image->arch.pte);
121         image->arch.pte = NULL;
122 }
123
124 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
125 {
126         pgprot_t prot = PAGE_KERNEL_EXEC_NOENC;
127         unsigned long vaddr, paddr;
128         int result = -ENOMEM;
129         p4d_t *p4d;
130         pud_t *pud;
131         pmd_t *pmd;
132         pte_t *pte;
133
134         vaddr = (unsigned long)relocate_kernel;
135         paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
136         pgd += pgd_index(vaddr);
137         if (!pgd_present(*pgd)) {
138                 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
139                 if (!p4d)
140                         goto err;
141                 image->arch.p4d = p4d;
142                 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
143         }
144         p4d = p4d_offset(pgd, vaddr);
145         if (!p4d_present(*p4d)) {
146                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
147                 if (!pud)
148                         goto err;
149                 image->arch.pud = pud;
150                 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
151         }
152         pud = pud_offset(p4d, vaddr);
153         if (!pud_present(*pud)) {
154                 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
155                 if (!pmd)
156                         goto err;
157                 image->arch.pmd = pmd;
158                 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
159         }
160         pmd = pmd_offset(pud, vaddr);
161         if (!pmd_present(*pmd)) {
162                 pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
163                 if (!pte)
164                         goto err;
165                 image->arch.pte = pte;
166                 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
167         }
168         pte = pte_offset_kernel(pmd, vaddr);
169
170         if (sev_active())
171                 prot = PAGE_KERNEL_EXEC;
172
173         set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
174         return 0;
175 err:
176         return result;
177 }
178
179 static void *alloc_pgt_page(void *data)
180 {
181         struct kimage *image = (struct kimage *)data;
182         struct page *page;
183         void *p = NULL;
184
185         page = kimage_alloc_control_pages(image, 0);
186         if (page) {
187                 p = page_address(page);
188                 clear_page(p);
189         }
190
191         return p;
192 }
193
194 static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
195 {
196         struct x86_mapping_info info = {
197                 .alloc_pgt_page = alloc_pgt_page,
198                 .context        = image,
199                 .page_flag      = __PAGE_KERNEL_LARGE_EXEC,
200                 .kernpg_flag    = _KERNPG_TABLE_NOENC,
201         };
202         unsigned long mstart, mend;
203         pgd_t *level4p;
204         int result;
205         int i;
206
207         level4p = (pgd_t *)__va(start_pgtable);
208         clear_page(level4p);
209
210         if (sev_active()) {
211                 info.page_flag   |= _PAGE_ENC;
212                 info.kernpg_flag |= _PAGE_ENC;
213         }
214
215         if (direct_gbpages)
216                 info.direct_gbpages = true;
217
218         for (i = 0; i < nr_pfn_mapped; i++) {
219                 mstart = pfn_mapped[i].start << PAGE_SHIFT;
220                 mend   = pfn_mapped[i].end << PAGE_SHIFT;
221
222                 result = kernel_ident_mapping_init(&info,
223                                                  level4p, mstart, mend);
224                 if (result)
225                         return result;
226         }
227
228         /*
229          * segments's mem ranges could be outside 0 ~ max_pfn,
230          * for example when jump back to original kernel from kexeced kernel.
231          * or first kernel is booted with user mem map, and second kernel
232          * could be loaded out of that range.
233          */
234         for (i = 0; i < image->nr_segments; i++) {
235                 mstart = image->segment[i].mem;
236                 mend   = mstart + image->segment[i].memsz;
237
238                 result = kernel_ident_mapping_init(&info,
239                                                  level4p, mstart, mend);
240
241                 if (result)
242                         return result;
243         }
244
245         /*
246          * Prepare EFI systab and ACPI tables for kexec kernel since they are
247          * not covered by pfn_mapped.
248          */
249         result = map_efi_systab(&info, level4p);
250         if (result)
251                 return result;
252
253         result = map_acpi_tables(&info, level4p);
254         if (result)
255                 return result;
256
257         return init_transition_pgtable(image, level4p);
258 }
259
260 static void set_idt(void *newidt, u16 limit)
261 {
262         struct desc_ptr curidt;
263
264         /* x86-64 supports unaliged loads & stores */
265         curidt.size    = limit;
266         curidt.address = (unsigned long)newidt;
267
268         __asm__ __volatile__ (
269                 "lidtq %0\n"
270                 : : "m" (curidt)
271                 );
272 };
273
274
275 static void set_gdt(void *newgdt, u16 limit)
276 {
277         struct desc_ptr curgdt;
278
279         /* x86-64 supports unaligned loads & stores */
280         curgdt.size    = limit;
281         curgdt.address = (unsigned long)newgdt;
282
283         __asm__ __volatile__ (
284                 "lgdtq %0\n"
285                 : : "m" (curgdt)
286                 );
287 };
288
289 static void load_segments(void)
290 {
291         __asm__ __volatile__ (
292                 "\tmovl %0,%%ds\n"
293                 "\tmovl %0,%%es\n"
294                 "\tmovl %0,%%ss\n"
295                 "\tmovl %0,%%fs\n"
296                 "\tmovl %0,%%gs\n"
297                 : : "a" (__KERNEL_DS) : "memory"
298                 );
299 }
300
301 int machine_kexec_prepare(struct kimage *image)
302 {
303         unsigned long start_pgtable;
304         int result;
305
306         /* Calculate the offsets */
307         start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
308
309         /* Setup the identity mapped 64bit page table */
310         result = init_pgtable(image, start_pgtable);
311         if (result)
312                 return result;
313
314         return 0;
315 }
316
317 void machine_kexec_cleanup(struct kimage *image)
318 {
319         free_transition_pgtable(image);
320 }
321
322 /*
323  * Do not allocate memory (or fail in any way) in machine_kexec().
324  * We are past the point of no return, committed to rebooting now.
325  */
326 void machine_kexec(struct kimage *image)
327 {
328         unsigned long page_list[PAGES_NR];
329         void *control_page;
330         int save_ftrace_enabled;
331
332 #ifdef CONFIG_KEXEC_JUMP
333         if (image->preserve_context)
334                 save_processor_state();
335 #endif
336
337         save_ftrace_enabled = __ftrace_enabled_save();
338
339         /* Interrupts aren't acceptable while we reboot */
340         local_irq_disable();
341         hw_breakpoint_disable();
342
343         if (image->preserve_context) {
344 #ifdef CONFIG_X86_IO_APIC
345                 /*
346                  * We need to put APICs in legacy mode so that we can
347                  * get timer interrupts in second kernel. kexec/kdump
348                  * paths already have calls to restore_boot_irq_mode()
349                  * in one form or other. kexec jump path also need one.
350                  */
351                 clear_IO_APIC();
352                 restore_boot_irq_mode();
353 #endif
354         }
355
356         control_page = page_address(image->control_code_page) + PAGE_SIZE;
357         memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
358
359         page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
360         page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
361         page_list[PA_TABLE_PAGE] =
362           (unsigned long)__pa(page_address(image->control_code_page));
363
364         if (image->type == KEXEC_TYPE_DEFAULT)
365                 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
366                                                 << PAGE_SHIFT);
367
368         /*
369          * The segment registers are funny things, they have both a
370          * visible and an invisible part.  Whenever the visible part is
371          * set to a specific selector, the invisible part is loaded
372          * with from a table in memory.  At no other time is the
373          * descriptor table in memory accessed.
374          *
375          * I take advantage of this here by force loading the
376          * segments, before I zap the gdt with an invalid value.
377          */
378         load_segments();
379         /*
380          * The gdt & idt are now invalid.
381          * If you want to load them you must set up your own idt & gdt.
382          */
383         set_gdt(phys_to_virt(0), 0);
384         set_idt(phys_to_virt(0), 0);
385
386         /* now call it */
387         image->start = relocate_kernel((unsigned long)image->head,
388                                        (unsigned long)page_list,
389                                        image->start,
390                                        image->preserve_context,
391                                        sme_active());
392
393 #ifdef CONFIG_KEXEC_JUMP
394         if (image->preserve_context)
395                 restore_processor_state();
396 #endif
397
398         __ftrace_enabled_restore(save_ftrace_enabled);
399 }
400
401 /* arch-dependent functionality related to kexec file-based syscall */
402
403 #ifdef CONFIG_KEXEC_FILE
404 void *arch_kexec_kernel_image_load(struct kimage *image)
405 {
406         vfree(image->arch.elf_headers);
407         image->arch.elf_headers = NULL;
408
409         if (!image->fops || !image->fops->load)
410                 return ERR_PTR(-ENOEXEC);
411
412         return image->fops->load(image, image->kernel_buf,
413                                  image->kernel_buf_len, image->initrd_buf,
414                                  image->initrd_buf_len, image->cmdline_buf,
415                                  image->cmdline_buf_len);
416 }
417
418 /*
419  * Apply purgatory relocations.
420  *
421  * @pi:         Purgatory to be relocated.
422  * @section:    Section relocations applying to.
423  * @relsec:     Section containing RELAs.
424  * @symtabsec:  Corresponding symtab.
425  *
426  * TODO: Some of the code belongs to generic code. Move that in kexec.c.
427  */
428 int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
429                                      Elf_Shdr *section, const Elf_Shdr *relsec,
430                                      const Elf_Shdr *symtabsec)
431 {
432         unsigned int i;
433         Elf64_Rela *rel;
434         Elf64_Sym *sym;
435         void *location;
436         unsigned long address, sec_base, value;
437         const char *strtab, *name, *shstrtab;
438         const Elf_Shdr *sechdrs;
439
440         /* String & section header string table */
441         sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
442         strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
443         shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
444
445         rel = (void *)pi->ehdr + relsec->sh_offset;
446
447         pr_debug("Applying relocate section %s to %u\n",
448                  shstrtab + relsec->sh_name, relsec->sh_info);
449
450         for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
451
452                 /*
453                  * rel[i].r_offset contains byte offset from beginning
454                  * of section to the storage unit affected.
455                  *
456                  * This is location to update. This is temporary buffer
457                  * where section is currently loaded. This will finally be
458                  * loaded to a different address later, pointed to by
459                  * ->sh_addr. kexec takes care of moving it
460                  *  (kexec_load_segment()).
461                  */
462                 location = pi->purgatory_buf;
463                 location += section->sh_offset;
464                 location += rel[i].r_offset;
465
466                 /* Final address of the location */
467                 address = section->sh_addr + rel[i].r_offset;
468
469                 /*
470                  * rel[i].r_info contains information about symbol table index
471                  * w.r.t which relocation must be made and type of relocation
472                  * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
473                  * these respectively.
474                  */
475                 sym = (void *)pi->ehdr + symtabsec->sh_offset;
476                 sym += ELF64_R_SYM(rel[i].r_info);
477
478                 if (sym->st_name)
479                         name = strtab + sym->st_name;
480                 else
481                         name = shstrtab + sechdrs[sym->st_shndx].sh_name;
482
483                 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
484                          name, sym->st_info, sym->st_shndx, sym->st_value,
485                          sym->st_size);
486
487                 if (sym->st_shndx == SHN_UNDEF) {
488                         pr_err("Undefined symbol: %s\n", name);
489                         return -ENOEXEC;
490                 }
491
492                 if (sym->st_shndx == SHN_COMMON) {
493                         pr_err("symbol '%s' in common section\n", name);
494                         return -ENOEXEC;
495                 }
496
497                 if (sym->st_shndx == SHN_ABS)
498                         sec_base = 0;
499                 else if (sym->st_shndx >= pi->ehdr->e_shnum) {
500                         pr_err("Invalid section %d for symbol %s\n",
501                                sym->st_shndx, name);
502                         return -ENOEXEC;
503                 } else
504                         sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
505
506                 value = sym->st_value;
507                 value += sec_base;
508                 value += rel[i].r_addend;
509
510                 switch (ELF64_R_TYPE(rel[i].r_info)) {
511                 case R_X86_64_NONE:
512                         break;
513                 case R_X86_64_64:
514                         *(u64 *)location = value;
515                         break;
516                 case R_X86_64_32:
517                         *(u32 *)location = value;
518                         if (value != *(u32 *)location)
519                                 goto overflow;
520                         break;
521                 case R_X86_64_32S:
522                         *(s32 *)location = value;
523                         if ((s64)value != *(s32 *)location)
524                                 goto overflow;
525                         break;
526                 case R_X86_64_PC32:
527                 case R_X86_64_PLT32:
528                         value -= (u64)address;
529                         *(u32 *)location = value;
530                         break;
531                 default:
532                         pr_err("Unknown rela relocation: %llu\n",
533                                ELF64_R_TYPE(rel[i].r_info));
534                         return -ENOEXEC;
535                 }
536         }
537         return 0;
538
539 overflow:
540         pr_err("Overflow in relocation type %d value 0x%lx\n",
541                (int)ELF64_R_TYPE(rel[i].r_info), value);
542         return -ENOEXEC;
543 }
544 #endif /* CONFIG_KEXEC_FILE */
545
546 static int
547 kexec_mark_range(unsigned long start, unsigned long end, bool protect)
548 {
549         struct page *page;
550         unsigned int nr_pages;
551
552         /*
553          * For physical range: [start, end]. We must skip the unassigned
554          * crashk resource with zero-valued "end" member.
555          */
556         if (!end || start > end)
557                 return 0;
558
559         page = pfn_to_page(start >> PAGE_SHIFT);
560         nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
561         if (protect)
562                 return set_pages_ro(page, nr_pages);
563         else
564                 return set_pages_rw(page, nr_pages);
565 }
566
567 static void kexec_mark_crashkres(bool protect)
568 {
569         unsigned long control;
570
571         kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
572
573         /* Don't touch the control code page used in crash_kexec().*/
574         control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
575         /* Control code page is located in the 2nd page. */
576         kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
577         control += KEXEC_CONTROL_PAGE_SIZE;
578         kexec_mark_range(control, crashk_res.end, protect);
579 }
580
581 void arch_kexec_protect_crashkres(void)
582 {
583         kexec_mark_crashkres(true);
584 }
585
586 void arch_kexec_unprotect_crashkres(void)
587 {
588         kexec_mark_crashkres(false);
589 }
590
591 /*
592  * During a traditional boot under SME, SME will encrypt the kernel,
593  * so the SME kexec kernel also needs to be un-encrypted in order to
594  * replicate a normal SME boot.
595  *
596  * During a traditional boot under SEV, the kernel has already been
597  * loaded encrypted, so the SEV kexec kernel needs to be encrypted in
598  * order to replicate a normal SEV boot.
599  */
600 int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
601 {
602         if (sev_active())
603                 return 0;
604
605         /*
606          * If SME is active we need to be sure that kexec pages are
607          * not encrypted because when we boot to the new kernel the
608          * pages won't be accessed encrypted (initially).
609          */
610         return set_memory_decrypted((unsigned long)vaddr, pages);
611 }
612
613 void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
614 {
615         if (sev_active())
616                 return;
617
618         /*
619          * If SME is active we need to reset the pages back to being
620          * an encrypted mapping before freeing them.
621          */
622         set_memory_encrypted((unsigned long)vaddr, pages);
623 }