]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kernel/vm86_32.c
x86/entry/32: Pull the MSR_IA32_SYSENTER_CS update code out of native_load_sp0()
[linux.git] / arch / x86 / kernel / vm86_32.c
1 /*
2  *  Copyright (C) 1994  Linus Torvalds
3  *
4  *  29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
5  *                stack - Manfred Spraul <manfred@colorfullife.com>
6  *
7  *  22 mar 2002 - Manfred detected the stackfaults, but didn't handle
8  *                them correctly. Now the emulation will be in a
9  *                consistent state after stackfaults - Kasper Dupont
10  *                <kasperd@daimi.au.dk>
11  *
12  *  22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
13  *                <kasperd@daimi.au.dk>
14  *
15  *  ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
16  *                caused by Kasper Dupont's changes - Stas Sergeev
17  *
18  *   4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
19  *                Kasper Dupont <kasperd@daimi.au.dk>
20  *
21  *   9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
22  *                Kasper Dupont <kasperd@daimi.au.dk>
23  *
24  *   9 apr 2002 - Changed stack access macros to jump to a label
25  *                instead of returning to userspace. This simplifies
26  *                do_int, and is needed by handle_vm6_fault. Kasper
27  *                Dupont <kasperd@daimi.au.dk>
28  *
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/capability.h>
34 #include <linux/errno.h>
35 #include <linux/interrupt.h>
36 #include <linux/syscalls.h>
37 #include <linux/sched.h>
38 #include <linux/sched/task_stack.h>
39 #include <linux/kernel.h>
40 #include <linux/signal.h>
41 #include <linux/string.h>
42 #include <linux/mm.h>
43 #include <linux/smp.h>
44 #include <linux/highmem.h>
45 #include <linux/ptrace.h>
46 #include <linux/audit.h>
47 #include <linux/stddef.h>
48 #include <linux/slab.h>
49 #include <linux/security.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/io.h>
53 #include <asm/tlbflush.h>
54 #include <asm/irq.h>
55 #include <asm/traps.h>
56 #include <asm/vm86.h>
57 #include <asm/switch_to.h>
58
59 /*
60  * Known problems:
61  *
62  * Interrupt handling is not guaranteed:
63  * - a real x86 will disable all interrupts for one instruction
64  *   after a "mov ss,xx" to make stack handling atomic even without
65  *   the 'lss' instruction. We can't guarantee this in v86 mode,
66  *   as the next instruction might result in a page fault or similar.
67  * - a real x86 will have interrupts disabled for one instruction
68  *   past the 'sti' that enables them. We don't bother with all the
69  *   details yet.
70  *
71  * Let's hope these problems do not actually matter for anything.
72  */
73
74
75 /*
76  * 8- and 16-bit register defines..
77  */
78 #define AL(regs)        (((unsigned char *)&((regs)->pt.ax))[0])
79 #define AH(regs)        (((unsigned char *)&((regs)->pt.ax))[1])
80 #define IP(regs)        (*(unsigned short *)&((regs)->pt.ip))
81 #define SP(regs)        (*(unsigned short *)&((regs)->pt.sp))
82
83 /*
84  * virtual flags (16 and 32-bit versions)
85  */
86 #define VFLAGS  (*(unsigned short *)&(current->thread.vm86->veflags))
87 #define VEFLAGS (current->thread.vm86->veflags)
88
89 #define set_flags(X, new, mask) \
90 ((X) = ((X) & ~(mask)) | ((new) & (mask)))
91
92 #define SAFE_MASK       (0xDD5)
93 #define RETURN_MASK     (0xDFF)
94
95 void save_v86_state(struct kernel_vm86_regs *regs, int retval)
96 {
97         struct tss_struct *tss;
98         struct task_struct *tsk = current;
99         struct vm86plus_struct __user *user;
100         struct vm86 *vm86 = current->thread.vm86;
101         long err = 0;
102
103         /*
104          * This gets called from entry.S with interrupts disabled, but
105          * from process context. Enable interrupts here, before trying
106          * to access user space.
107          */
108         local_irq_enable();
109
110         if (!vm86 || !vm86->user_vm86) {
111                 pr_alert("no user_vm86: BAD\n");
112                 do_exit(SIGSEGV);
113         }
114         set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | vm86->veflags_mask);
115         user = vm86->user_vm86;
116
117         if (!access_ok(VERIFY_WRITE, user, vm86->vm86plus.is_vm86pus ?
118                        sizeof(struct vm86plus_struct) :
119                        sizeof(struct vm86_struct))) {
120                 pr_alert("could not access userspace vm86 info\n");
121                 do_exit(SIGSEGV);
122         }
123
124         put_user_try {
125                 put_user_ex(regs->pt.bx, &user->regs.ebx);
126                 put_user_ex(regs->pt.cx, &user->regs.ecx);
127                 put_user_ex(regs->pt.dx, &user->regs.edx);
128                 put_user_ex(regs->pt.si, &user->regs.esi);
129                 put_user_ex(regs->pt.di, &user->regs.edi);
130                 put_user_ex(regs->pt.bp, &user->regs.ebp);
131                 put_user_ex(regs->pt.ax, &user->regs.eax);
132                 put_user_ex(regs->pt.ip, &user->regs.eip);
133                 put_user_ex(regs->pt.cs, &user->regs.cs);
134                 put_user_ex(regs->pt.flags, &user->regs.eflags);
135                 put_user_ex(regs->pt.sp, &user->regs.esp);
136                 put_user_ex(regs->pt.ss, &user->regs.ss);
137                 put_user_ex(regs->es, &user->regs.es);
138                 put_user_ex(regs->ds, &user->regs.ds);
139                 put_user_ex(regs->fs, &user->regs.fs);
140                 put_user_ex(regs->gs, &user->regs.gs);
141
142                 put_user_ex(vm86->screen_bitmap, &user->screen_bitmap);
143         } put_user_catch(err);
144         if (err) {
145                 pr_alert("could not access userspace vm86 info\n");
146                 do_exit(SIGSEGV);
147         }
148
149         tss = &per_cpu(cpu_tss, get_cpu());
150         tsk->thread.sp0 = vm86->saved_sp0;
151         tsk->thread.sysenter_cs = __KERNEL_CS;
152         load_sp0(tss, &tsk->thread);
153         refresh_sysenter_cs(&tsk->thread);
154         vm86->saved_sp0 = 0;
155         put_cpu();
156
157         memcpy(&regs->pt, &vm86->regs32, sizeof(struct pt_regs));
158
159         lazy_load_gs(vm86->regs32.gs);
160
161         regs->pt.ax = retval;
162 }
163
164 static void mark_screen_rdonly(struct mm_struct *mm)
165 {
166         struct vm_area_struct *vma;
167         spinlock_t *ptl;
168         pgd_t *pgd;
169         p4d_t *p4d;
170         pud_t *pud;
171         pmd_t *pmd;
172         pte_t *pte;
173         int i;
174
175         down_write(&mm->mmap_sem);
176         pgd = pgd_offset(mm, 0xA0000);
177         if (pgd_none_or_clear_bad(pgd))
178                 goto out;
179         p4d = p4d_offset(pgd, 0xA0000);
180         if (p4d_none_or_clear_bad(p4d))
181                 goto out;
182         pud = pud_offset(p4d, 0xA0000);
183         if (pud_none_or_clear_bad(pud))
184                 goto out;
185         pmd = pmd_offset(pud, 0xA0000);
186
187         if (pmd_trans_huge(*pmd)) {
188                 vma = find_vma(mm, 0xA0000);
189                 split_huge_pmd(vma, pmd, 0xA0000);
190         }
191         if (pmd_none_or_clear_bad(pmd))
192                 goto out;
193         pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
194         for (i = 0; i < 32; i++) {
195                 if (pte_present(*pte))
196                         set_pte(pte, pte_wrprotect(*pte));
197                 pte++;
198         }
199         pte_unmap_unlock(pte, ptl);
200 out:
201         up_write(&mm->mmap_sem);
202         flush_tlb_mm_range(mm, 0xA0000, 0xA0000 + 32*PAGE_SIZE, 0UL);
203 }
204
205
206
207 static int do_vm86_irq_handling(int subfunction, int irqnumber);
208 static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus);
209
210 SYSCALL_DEFINE1(vm86old, struct vm86_struct __user *, user_vm86)
211 {
212         return do_sys_vm86((struct vm86plus_struct __user *) user_vm86, false);
213 }
214
215
216 SYSCALL_DEFINE2(vm86, unsigned long, cmd, unsigned long, arg)
217 {
218         switch (cmd) {
219         case VM86_REQUEST_IRQ:
220         case VM86_FREE_IRQ:
221         case VM86_GET_IRQ_BITS:
222         case VM86_GET_AND_RESET_IRQ:
223                 return do_vm86_irq_handling(cmd, (int)arg);
224         case VM86_PLUS_INSTALL_CHECK:
225                 /*
226                  * NOTE: on old vm86 stuff this will return the error
227                  *  from access_ok(), because the subfunction is
228                  *  interpreted as (invalid) address to vm86_struct.
229                  *  So the installation check works.
230                  */
231                 return 0;
232         }
233
234         /* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
235         return do_sys_vm86((struct vm86plus_struct __user *) arg, true);
236 }
237
238
239 static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus)
240 {
241         struct tss_struct *tss;
242         struct task_struct *tsk = current;
243         struct vm86 *vm86 = tsk->thread.vm86;
244         struct kernel_vm86_regs vm86regs;
245         struct pt_regs *regs = current_pt_regs();
246         unsigned long err = 0;
247
248         err = security_mmap_addr(0);
249         if (err) {
250                 /*
251                  * vm86 cannot virtualize the address space, so vm86 users
252                  * need to manage the low 1MB themselves using mmap.  Given
253                  * that BIOS places important data in the first page, vm86
254                  * is essentially useless if mmap_min_addr != 0.  DOSEMU,
255                  * for example, won't even bother trying to use vm86 if it
256                  * can't map a page at virtual address 0.
257                  *
258                  * To reduce the available kernel attack surface, simply
259                  * disallow vm86(old) for users who cannot mmap at va 0.
260                  *
261                  * The implementation of security_mmap_addr will allow
262                  * suitably privileged users to map va 0 even if
263                  * vm.mmap_min_addr is set above 0, and we want this
264                  * behavior for vm86 as well, as it ensures that legacy
265                  * tools like vbetool will not fail just because of
266                  * vm.mmap_min_addr.
267                  */
268                 pr_info_once("Denied a call to vm86(old) from %s[%d] (uid: %d).  Set the vm.mmap_min_addr sysctl to 0 and/or adjust LSM mmap_min_addr policy to enable vm86 if you are using a vm86-based DOS emulator.\n",
269                              current->comm, task_pid_nr(current),
270                              from_kuid_munged(&init_user_ns, current_uid()));
271                 return -EPERM;
272         }
273
274         if (!vm86) {
275                 if (!(vm86 = kzalloc(sizeof(*vm86), GFP_KERNEL)))
276                         return -ENOMEM;
277                 tsk->thread.vm86 = vm86;
278         }
279         if (vm86->saved_sp0)
280                 return -EPERM;
281
282         if (!access_ok(VERIFY_READ, user_vm86, plus ?
283                        sizeof(struct vm86_struct) :
284                        sizeof(struct vm86plus_struct)))
285                 return -EFAULT;
286
287         memset(&vm86regs, 0, sizeof(vm86regs));
288         get_user_try {
289                 unsigned short seg;
290                 get_user_ex(vm86regs.pt.bx, &user_vm86->regs.ebx);
291                 get_user_ex(vm86regs.pt.cx, &user_vm86->regs.ecx);
292                 get_user_ex(vm86regs.pt.dx, &user_vm86->regs.edx);
293                 get_user_ex(vm86regs.pt.si, &user_vm86->regs.esi);
294                 get_user_ex(vm86regs.pt.di, &user_vm86->regs.edi);
295                 get_user_ex(vm86regs.pt.bp, &user_vm86->regs.ebp);
296                 get_user_ex(vm86regs.pt.ax, &user_vm86->regs.eax);
297                 get_user_ex(vm86regs.pt.ip, &user_vm86->regs.eip);
298                 get_user_ex(seg, &user_vm86->regs.cs);
299                 vm86regs.pt.cs = seg;
300                 get_user_ex(vm86regs.pt.flags, &user_vm86->regs.eflags);
301                 get_user_ex(vm86regs.pt.sp, &user_vm86->regs.esp);
302                 get_user_ex(seg, &user_vm86->regs.ss);
303                 vm86regs.pt.ss = seg;
304                 get_user_ex(vm86regs.es, &user_vm86->regs.es);
305                 get_user_ex(vm86regs.ds, &user_vm86->regs.ds);
306                 get_user_ex(vm86regs.fs, &user_vm86->regs.fs);
307                 get_user_ex(vm86regs.gs, &user_vm86->regs.gs);
308
309                 get_user_ex(vm86->flags, &user_vm86->flags);
310                 get_user_ex(vm86->screen_bitmap, &user_vm86->screen_bitmap);
311                 get_user_ex(vm86->cpu_type, &user_vm86->cpu_type);
312         } get_user_catch(err);
313         if (err)
314                 return err;
315
316         if (copy_from_user(&vm86->int_revectored,
317                            &user_vm86->int_revectored,
318                            sizeof(struct revectored_struct)))
319                 return -EFAULT;
320         if (copy_from_user(&vm86->int21_revectored,
321                            &user_vm86->int21_revectored,
322                            sizeof(struct revectored_struct)))
323                 return -EFAULT;
324         if (plus) {
325                 if (copy_from_user(&vm86->vm86plus, &user_vm86->vm86plus,
326                                    sizeof(struct vm86plus_info_struct)))
327                         return -EFAULT;
328                 vm86->vm86plus.is_vm86pus = 1;
329         } else
330                 memset(&vm86->vm86plus, 0,
331                        sizeof(struct vm86plus_info_struct));
332
333         memcpy(&vm86->regs32, regs, sizeof(struct pt_regs));
334         vm86->user_vm86 = user_vm86;
335
336 /*
337  * The flags register is also special: we cannot trust that the user
338  * has set it up safely, so this makes sure interrupt etc flags are
339  * inherited from protected mode.
340  */
341         VEFLAGS = vm86regs.pt.flags;
342         vm86regs.pt.flags &= SAFE_MASK;
343         vm86regs.pt.flags |= regs->flags & ~SAFE_MASK;
344         vm86regs.pt.flags |= X86_VM_MASK;
345
346         vm86regs.pt.orig_ax = regs->orig_ax;
347
348         switch (vm86->cpu_type) {
349         case CPU_286:
350                 vm86->veflags_mask = 0;
351                 break;
352         case CPU_386:
353                 vm86->veflags_mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
354                 break;
355         case CPU_486:
356                 vm86->veflags_mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
357                 break;
358         default:
359                 vm86->veflags_mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
360                 break;
361         }
362
363 /*
364  * Save old state
365  */
366         vm86->saved_sp0 = tsk->thread.sp0;
367         lazy_save_gs(vm86->regs32.gs);
368
369         tss = &per_cpu(cpu_tss, get_cpu());
370         /* make room for real-mode segments */
371         tsk->thread.sp0 += 16;
372
373         if (static_cpu_has(X86_FEATURE_SEP)) {
374                 tsk->thread.sysenter_cs = 0;
375                 refresh_sysenter_cs(&tsk->thread);
376         }
377
378         load_sp0(tss, &tsk->thread);
379         put_cpu();
380
381         if (vm86->flags & VM86_SCREEN_BITMAP)
382                 mark_screen_rdonly(tsk->mm);
383
384         memcpy((struct kernel_vm86_regs *)regs, &vm86regs, sizeof(vm86regs));
385         force_iret();
386         return regs->ax;
387 }
388
389 static inline void set_IF(struct kernel_vm86_regs *regs)
390 {
391         VEFLAGS |= X86_EFLAGS_VIF;
392 }
393
394 static inline void clear_IF(struct kernel_vm86_regs *regs)
395 {
396         VEFLAGS &= ~X86_EFLAGS_VIF;
397 }
398
399 static inline void clear_TF(struct kernel_vm86_regs *regs)
400 {
401         regs->pt.flags &= ~X86_EFLAGS_TF;
402 }
403
404 static inline void clear_AC(struct kernel_vm86_regs *regs)
405 {
406         regs->pt.flags &= ~X86_EFLAGS_AC;
407 }
408
409 /*
410  * It is correct to call set_IF(regs) from the set_vflags_*
411  * functions. However someone forgot to call clear_IF(regs)
412  * in the opposite case.
413  * After the command sequence CLI PUSHF STI POPF you should
414  * end up with interrupts disabled, but you ended up with
415  * interrupts enabled.
416  *  ( I was testing my own changes, but the only bug I
417  *    could find was in a function I had not changed. )
418  * [KD]
419  */
420
421 static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
422 {
423         set_flags(VEFLAGS, flags, current->thread.vm86->veflags_mask);
424         set_flags(regs->pt.flags, flags, SAFE_MASK);
425         if (flags & X86_EFLAGS_IF)
426                 set_IF(regs);
427         else
428                 clear_IF(regs);
429 }
430
431 static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
432 {
433         set_flags(VFLAGS, flags, current->thread.vm86->veflags_mask);
434         set_flags(regs->pt.flags, flags, SAFE_MASK);
435         if (flags & X86_EFLAGS_IF)
436                 set_IF(regs);
437         else
438                 clear_IF(regs);
439 }
440
441 static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
442 {
443         unsigned long flags = regs->pt.flags & RETURN_MASK;
444
445         if (VEFLAGS & X86_EFLAGS_VIF)
446                 flags |= X86_EFLAGS_IF;
447         flags |= X86_EFLAGS_IOPL;
448         return flags | (VEFLAGS & current->thread.vm86->veflags_mask);
449 }
450
451 static inline int is_revectored(int nr, struct revectored_struct *bitmap)
452 {
453         return test_bit(nr, bitmap->__map);
454 }
455
456 #define val_byte(val, n) (((__u8 *)&val)[n])
457
458 #define pushb(base, ptr, val, err_label) \
459         do { \
460                 __u8 __val = val; \
461                 ptr--; \
462                 if (put_user(__val, base + ptr) < 0) \
463                         goto err_label; \
464         } while (0)
465
466 #define pushw(base, ptr, val, err_label) \
467         do { \
468                 __u16 __val = val; \
469                 ptr--; \
470                 if (put_user(val_byte(__val, 1), base + ptr) < 0) \
471                         goto err_label; \
472                 ptr--; \
473                 if (put_user(val_byte(__val, 0), base + ptr) < 0) \
474                         goto err_label; \
475         } while (0)
476
477 #define pushl(base, ptr, val, err_label) \
478         do { \
479                 __u32 __val = val; \
480                 ptr--; \
481                 if (put_user(val_byte(__val, 3), base + ptr) < 0) \
482                         goto err_label; \
483                 ptr--; \
484                 if (put_user(val_byte(__val, 2), base + ptr) < 0) \
485                         goto err_label; \
486                 ptr--; \
487                 if (put_user(val_byte(__val, 1), base + ptr) < 0) \
488                         goto err_label; \
489                 ptr--; \
490                 if (put_user(val_byte(__val, 0), base + ptr) < 0) \
491                         goto err_label; \
492         } while (0)
493
494 #define popb(base, ptr, err_label) \
495         ({ \
496                 __u8 __res; \
497                 if (get_user(__res, base + ptr) < 0) \
498                         goto err_label; \
499                 ptr++; \
500                 __res; \
501         })
502
503 #define popw(base, ptr, err_label) \
504         ({ \
505                 __u16 __res; \
506                 if (get_user(val_byte(__res, 0), base + ptr) < 0) \
507                         goto err_label; \
508                 ptr++; \
509                 if (get_user(val_byte(__res, 1), base + ptr) < 0) \
510                         goto err_label; \
511                 ptr++; \
512                 __res; \
513         })
514
515 #define popl(base, ptr, err_label) \
516         ({ \
517                 __u32 __res; \
518                 if (get_user(val_byte(__res, 0), base + ptr) < 0) \
519                         goto err_label; \
520                 ptr++; \
521                 if (get_user(val_byte(__res, 1), base + ptr) < 0) \
522                         goto err_label; \
523                 ptr++; \
524                 if (get_user(val_byte(__res, 2), base + ptr) < 0) \
525                         goto err_label; \
526                 ptr++; \
527                 if (get_user(val_byte(__res, 3), base + ptr) < 0) \
528                         goto err_label; \
529                 ptr++; \
530                 __res; \
531         })
532
533 /* There are so many possible reasons for this function to return
534  * VM86_INTx, so adding another doesn't bother me. We can expect
535  * userspace programs to be able to handle it. (Getting a problem
536  * in userspace is always better than an Oops anyway.) [KD]
537  */
538 static void do_int(struct kernel_vm86_regs *regs, int i,
539     unsigned char __user *ssp, unsigned short sp)
540 {
541         unsigned long __user *intr_ptr;
542         unsigned long segoffs;
543         struct vm86 *vm86 = current->thread.vm86;
544
545         if (regs->pt.cs == BIOSSEG)
546                 goto cannot_handle;
547         if (is_revectored(i, &vm86->int_revectored))
548                 goto cannot_handle;
549         if (i == 0x21 && is_revectored(AH(regs), &vm86->int21_revectored))
550                 goto cannot_handle;
551         intr_ptr = (unsigned long __user *) (i << 2);
552         if (get_user(segoffs, intr_ptr))
553                 goto cannot_handle;
554         if ((segoffs >> 16) == BIOSSEG)
555                 goto cannot_handle;
556         pushw(ssp, sp, get_vflags(regs), cannot_handle);
557         pushw(ssp, sp, regs->pt.cs, cannot_handle);
558         pushw(ssp, sp, IP(regs), cannot_handle);
559         regs->pt.cs = segoffs >> 16;
560         SP(regs) -= 6;
561         IP(regs) = segoffs & 0xffff;
562         clear_TF(regs);
563         clear_IF(regs);
564         clear_AC(regs);
565         return;
566
567 cannot_handle:
568         save_v86_state(regs, VM86_INTx + (i << 8));
569 }
570
571 int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
572 {
573         struct vm86 *vm86 = current->thread.vm86;
574
575         if (vm86->vm86plus.is_vm86pus) {
576                 if ((trapno == 3) || (trapno == 1)) {
577                         save_v86_state(regs, VM86_TRAP + (trapno << 8));
578                         return 0;
579                 }
580                 do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
581                 return 0;
582         }
583         if (trapno != 1)
584                 return 1; /* we let this handle by the calling routine */
585         current->thread.trap_nr = trapno;
586         current->thread.error_code = error_code;
587         force_sig(SIGTRAP, current);
588         return 0;
589 }
590
591 void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
592 {
593         unsigned char opcode;
594         unsigned char __user *csp;
595         unsigned char __user *ssp;
596         unsigned short ip, sp, orig_flags;
597         int data32, pref_done;
598         struct vm86plus_info_struct *vmpi = &current->thread.vm86->vm86plus;
599
600 #define CHECK_IF_IN_TRAP \
601         if (vmpi->vm86dbg_active && vmpi->vm86dbg_TFpendig) \
602                 newflags |= X86_EFLAGS_TF
603
604         orig_flags = *(unsigned short *)&regs->pt.flags;
605
606         csp = (unsigned char __user *) (regs->pt.cs << 4);
607         ssp = (unsigned char __user *) (regs->pt.ss << 4);
608         sp = SP(regs);
609         ip = IP(regs);
610
611         data32 = 0;
612         pref_done = 0;
613         do {
614                 switch (opcode = popb(csp, ip, simulate_sigsegv)) {
615                 case 0x66:      /* 32-bit data */     data32 = 1; break;
616                 case 0x67:      /* 32-bit address */  break;
617                 case 0x2e:      /* CS */              break;
618                 case 0x3e:      /* DS */              break;
619                 case 0x26:      /* ES */              break;
620                 case 0x36:      /* SS */              break;
621                 case 0x65:      /* GS */              break;
622                 case 0x64:      /* FS */              break;
623                 case 0xf2:      /* repnz */       break;
624                 case 0xf3:      /* rep */             break;
625                 default: pref_done = 1;
626                 }
627         } while (!pref_done);
628
629         switch (opcode) {
630
631         /* pushf */
632         case 0x9c:
633                 if (data32) {
634                         pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
635                         SP(regs) -= 4;
636                 } else {
637                         pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
638                         SP(regs) -= 2;
639                 }
640                 IP(regs) = ip;
641                 goto vm86_fault_return;
642
643         /* popf */
644         case 0x9d:
645                 {
646                 unsigned long newflags;
647                 if (data32) {
648                         newflags = popl(ssp, sp, simulate_sigsegv);
649                         SP(regs) += 4;
650                 } else {
651                         newflags = popw(ssp, sp, simulate_sigsegv);
652                         SP(regs) += 2;
653                 }
654                 IP(regs) = ip;
655                 CHECK_IF_IN_TRAP;
656                 if (data32)
657                         set_vflags_long(newflags, regs);
658                 else
659                         set_vflags_short(newflags, regs);
660
661                 goto check_vip;
662                 }
663
664         /* int xx */
665         case 0xcd: {
666                 int intno = popb(csp, ip, simulate_sigsegv);
667                 IP(regs) = ip;
668                 if (vmpi->vm86dbg_active) {
669                         if ((1 << (intno & 7)) & vmpi->vm86dbg_intxxtab[intno >> 3]) {
670                                 save_v86_state(regs, VM86_INTx + (intno << 8));
671                                 return;
672                         }
673                 }
674                 do_int(regs, intno, ssp, sp);
675                 return;
676         }
677
678         /* iret */
679         case 0xcf:
680                 {
681                 unsigned long newip;
682                 unsigned long newcs;
683                 unsigned long newflags;
684                 if (data32) {
685                         newip = popl(ssp, sp, simulate_sigsegv);
686                         newcs = popl(ssp, sp, simulate_sigsegv);
687                         newflags = popl(ssp, sp, simulate_sigsegv);
688                         SP(regs) += 12;
689                 } else {
690                         newip = popw(ssp, sp, simulate_sigsegv);
691                         newcs = popw(ssp, sp, simulate_sigsegv);
692                         newflags = popw(ssp, sp, simulate_sigsegv);
693                         SP(regs) += 6;
694                 }
695                 IP(regs) = newip;
696                 regs->pt.cs = newcs;
697                 CHECK_IF_IN_TRAP;
698                 if (data32) {
699                         set_vflags_long(newflags, regs);
700                 } else {
701                         set_vflags_short(newflags, regs);
702                 }
703                 goto check_vip;
704                 }
705
706         /* cli */
707         case 0xfa:
708                 IP(regs) = ip;
709                 clear_IF(regs);
710                 goto vm86_fault_return;
711
712         /* sti */
713         /*
714          * Damn. This is incorrect: the 'sti' instruction should actually
715          * enable interrupts after the /next/ instruction. Not good.
716          *
717          * Probably needs some horsing around with the TF flag. Aiee..
718          */
719         case 0xfb:
720                 IP(regs) = ip;
721                 set_IF(regs);
722                 goto check_vip;
723
724         default:
725                 save_v86_state(regs, VM86_UNKNOWN);
726         }
727
728         return;
729
730 check_vip:
731         if (VEFLAGS & X86_EFLAGS_VIP) {
732                 save_v86_state(regs, VM86_STI);
733                 return;
734         }
735
736 vm86_fault_return:
737         if (vmpi->force_return_for_pic  && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) {
738                 save_v86_state(regs, VM86_PICRETURN);
739                 return;
740         }
741         if (orig_flags & X86_EFLAGS_TF)
742                 handle_vm86_trap(regs, 0, X86_TRAP_DB);
743         return;
744
745 simulate_sigsegv:
746         /* FIXME: After a long discussion with Stas we finally
747          *        agreed, that this is wrong. Here we should
748          *        really send a SIGSEGV to the user program.
749          *        But how do we create the correct context? We
750          *        are inside a general protection fault handler
751          *        and has just returned from a page fault handler.
752          *        The correct context for the signal handler
753          *        should be a mixture of the two, but how do we
754          *        get the information? [KD]
755          */
756         save_v86_state(regs, VM86_UNKNOWN);
757 }
758
759 /* ---------------- vm86 special IRQ passing stuff ----------------- */
760
761 #define VM86_IRQNAME            "vm86irq"
762
763 static struct vm86_irqs {
764         struct task_struct *tsk;
765         int sig;
766 } vm86_irqs[16];
767
768 static DEFINE_SPINLOCK(irqbits_lock);
769 static int irqbits;
770
771 #define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
772         | (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO)  | (1 << SIGURG) \
773         | (1 << SIGUNUSED))
774
775 static irqreturn_t irq_handler(int intno, void *dev_id)
776 {
777         int irq_bit;
778         unsigned long flags;
779
780         spin_lock_irqsave(&irqbits_lock, flags);
781         irq_bit = 1 << intno;
782         if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
783                 goto out;
784         irqbits |= irq_bit;
785         if (vm86_irqs[intno].sig)
786                 send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
787         /*
788          * IRQ will be re-enabled when user asks for the irq (whether
789          * polling or as a result of the signal)
790          */
791         disable_irq_nosync(intno);
792         spin_unlock_irqrestore(&irqbits_lock, flags);
793         return IRQ_HANDLED;
794
795 out:
796         spin_unlock_irqrestore(&irqbits_lock, flags);
797         return IRQ_NONE;
798 }
799
800 static inline void free_vm86_irq(int irqnumber)
801 {
802         unsigned long flags;
803
804         free_irq(irqnumber, NULL);
805         vm86_irqs[irqnumber].tsk = NULL;
806
807         spin_lock_irqsave(&irqbits_lock, flags);
808         irqbits &= ~(1 << irqnumber);
809         spin_unlock_irqrestore(&irqbits_lock, flags);
810 }
811
812 void release_vm86_irqs(struct task_struct *task)
813 {
814         int i;
815         for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
816             if (vm86_irqs[i].tsk == task)
817                 free_vm86_irq(i);
818 }
819
820 static inline int get_and_reset_irq(int irqnumber)
821 {
822         int bit;
823         unsigned long flags;
824         int ret = 0;
825
826         if (invalid_vm86_irq(irqnumber)) return 0;
827         if (vm86_irqs[irqnumber].tsk != current) return 0;
828         spin_lock_irqsave(&irqbits_lock, flags);
829         bit = irqbits & (1 << irqnumber);
830         irqbits &= ~bit;
831         if (bit) {
832                 enable_irq(irqnumber);
833                 ret = 1;
834         }
835
836         spin_unlock_irqrestore(&irqbits_lock, flags);
837         return ret;
838 }
839
840
841 static int do_vm86_irq_handling(int subfunction, int irqnumber)
842 {
843         int ret;
844         switch (subfunction) {
845                 case VM86_GET_AND_RESET_IRQ: {
846                         return get_and_reset_irq(irqnumber);
847                 }
848                 case VM86_GET_IRQ_BITS: {
849                         return irqbits;
850                 }
851                 case VM86_REQUEST_IRQ: {
852                         int sig = irqnumber >> 8;
853                         int irq = irqnumber & 255;
854                         if (!capable(CAP_SYS_ADMIN)) return -EPERM;
855                         if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
856                         if (invalid_vm86_irq(irq)) return -EPERM;
857                         if (vm86_irqs[irq].tsk) return -EPERM;
858                         ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
859                         if (ret) return ret;
860                         vm86_irqs[irq].sig = sig;
861                         vm86_irqs[irq].tsk = current;
862                         return irq;
863                 }
864                 case  VM86_FREE_IRQ: {
865                         if (invalid_vm86_irq(irqnumber)) return -EPERM;
866                         if (!vm86_irqs[irqnumber].tsk) return 0;
867                         if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
868                         free_vm86_irq(irqnumber);
869                         return 0;
870                 }
871         }
872         return -EINVAL;
873 }
874