]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/cpuid.c
2b3b06458f6f67dd693cafc2c2dc202cfe94956a
[linux.git] / arch / x86 / kvm / cpuid.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  * cpuid support routines
4  *
5  * derived from arch/x86/kvm/x86.c
6  *
7  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
8  * Copyright IBM Corporation, 2008
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2.  See
11  * the COPYING file in the top-level directory.
12  *
13  */
14
15 #include <linux/kvm_host.h>
16 #include <linux/export.h>
17 #include <linux/vmalloc.h>
18 #include <linux/uaccess.h>
19 #include <linux/sched/stat.h>
20
21 #include <asm/processor.h>
22 #include <asm/user.h>
23 #include <asm/fpu/xstate.h>
24 #include "cpuid.h"
25 #include "lapic.h"
26 #include "mmu.h"
27 #include "trace.h"
28 #include "pmu.h"
29
30 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
31 {
32         int feature_bit = 0;
33         u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
34
35         xstate_bv &= XFEATURE_MASK_EXTEND;
36         while (xstate_bv) {
37                 if (xstate_bv & 0x1) {
38                         u32 eax, ebx, ecx, edx, offset;
39                         cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
40                         offset = compacted ? ret : ebx;
41                         ret = max(ret, offset + eax);
42                 }
43
44                 xstate_bv >>= 1;
45                 feature_bit++;
46         }
47
48         return ret;
49 }
50
51 bool kvm_mpx_supported(void)
52 {
53         return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
54                  && kvm_x86_ops->mpx_supported());
55 }
56 EXPORT_SYMBOL_GPL(kvm_mpx_supported);
57
58 u64 kvm_supported_xcr0(void)
59 {
60         u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
61
62         if (!kvm_mpx_supported())
63                 xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
64
65         return xcr0;
66 }
67
68 #define F(x) bit(X86_FEATURE_##x)
69
70 /* These are scattered features in cpufeatures.h. */
71 #define KVM_CPUID_BIT_AVX512_4VNNIW     2
72 #define KVM_CPUID_BIT_AVX512_4FMAPS     3
73 #define KF(x) bit(KVM_CPUID_BIT_##x)
74
75 int kvm_update_cpuid(struct kvm_vcpu *vcpu)
76 {
77         struct kvm_cpuid_entry2 *best;
78         struct kvm_lapic *apic = vcpu->arch.apic;
79
80         best = kvm_find_cpuid_entry(vcpu, 1, 0);
81         if (!best)
82                 return 0;
83
84         /* Update OSXSAVE bit */
85         if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) {
86                 best->ecx &= ~F(OSXSAVE);
87                 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
88                         best->ecx |= F(OSXSAVE);
89         }
90
91         best->edx &= ~F(APIC);
92         if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)
93                 best->edx |= F(APIC);
94
95         if (apic) {
96                 if (best->ecx & F(TSC_DEADLINE_TIMER))
97                         apic->lapic_timer.timer_mode_mask = 3 << 17;
98                 else
99                         apic->lapic_timer.timer_mode_mask = 1 << 17;
100         }
101
102         best = kvm_find_cpuid_entry(vcpu, 7, 0);
103         if (best) {
104                 /* Update OSPKE bit */
105                 if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
106                         best->ecx &= ~F(OSPKE);
107                         if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
108                                 best->ecx |= F(OSPKE);
109                 }
110         }
111
112         best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
113         if (!best) {
114                 vcpu->arch.guest_supported_xcr0 = 0;
115                 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
116         } else {
117                 vcpu->arch.guest_supported_xcr0 =
118                         (best->eax | ((u64)best->edx << 32)) &
119                         kvm_supported_xcr0();
120                 vcpu->arch.guest_xstate_size = best->ebx =
121                         xstate_required_size(vcpu->arch.xcr0, false);
122         }
123
124         best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
125         if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
126                 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
127
128         /*
129          * The existing code assumes virtual address is 48-bit or 57-bit in the
130          * canonical address checks; exit if it is ever changed.
131          */
132         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
133         if (best) {
134                 int vaddr_bits = (best->eax & 0xff00) >> 8;
135
136                 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
137                         return -EINVAL;
138         }
139
140         /* Update physical-address width */
141         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
142         kvm_mmu_reset_context(vcpu);
143
144         kvm_pmu_refresh(vcpu);
145         return 0;
146 }
147
148 static int is_efer_nx(void)
149 {
150         unsigned long long efer = 0;
151
152         rdmsrl_safe(MSR_EFER, &efer);
153         return efer & EFER_NX;
154 }
155
156 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
157 {
158         int i;
159         struct kvm_cpuid_entry2 *e, *entry;
160
161         entry = NULL;
162         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
163                 e = &vcpu->arch.cpuid_entries[i];
164                 if (e->function == 0x80000001) {
165                         entry = e;
166                         break;
167                 }
168         }
169         if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
170                 entry->edx &= ~F(NX);
171                 printk(KERN_INFO "kvm: guest NX capability removed\n");
172         }
173 }
174
175 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
176 {
177         struct kvm_cpuid_entry2 *best;
178
179         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
180         if (!best || best->eax < 0x80000008)
181                 goto not_found;
182         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
183         if (best)
184                 return best->eax & 0xff;
185 not_found:
186         return 36;
187 }
188 EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
189
190 /* when an old userspace process fills a new kernel module */
191 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
192                              struct kvm_cpuid *cpuid,
193                              struct kvm_cpuid_entry __user *entries)
194 {
195         int r, i;
196         struct kvm_cpuid_entry *cpuid_entries = NULL;
197
198         r = -E2BIG;
199         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
200                 goto out;
201         r = -ENOMEM;
202         if (cpuid->nent) {
203                 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) *
204                                         cpuid->nent);
205                 if (!cpuid_entries)
206                         goto out;
207                 r = -EFAULT;
208                 if (copy_from_user(cpuid_entries, entries,
209                                    cpuid->nent * sizeof(struct kvm_cpuid_entry)))
210                         goto out;
211         }
212         for (i = 0; i < cpuid->nent; i++) {
213                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
214                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
215                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
216                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
217                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
218                 vcpu->arch.cpuid_entries[i].index = 0;
219                 vcpu->arch.cpuid_entries[i].flags = 0;
220                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
221                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
222                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
223         }
224         vcpu->arch.cpuid_nent = cpuid->nent;
225         cpuid_fix_nx_cap(vcpu);
226         kvm_apic_set_version(vcpu);
227         kvm_x86_ops->cpuid_update(vcpu);
228         r = kvm_update_cpuid(vcpu);
229
230 out:
231         vfree(cpuid_entries);
232         return r;
233 }
234
235 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
236                               struct kvm_cpuid2 *cpuid,
237                               struct kvm_cpuid_entry2 __user *entries)
238 {
239         int r;
240
241         r = -E2BIG;
242         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
243                 goto out;
244         r = -EFAULT;
245         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
246                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
247                 goto out;
248         vcpu->arch.cpuid_nent = cpuid->nent;
249         kvm_apic_set_version(vcpu);
250         kvm_x86_ops->cpuid_update(vcpu);
251         r = kvm_update_cpuid(vcpu);
252 out:
253         return r;
254 }
255
256 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
257                               struct kvm_cpuid2 *cpuid,
258                               struct kvm_cpuid_entry2 __user *entries)
259 {
260         int r;
261
262         r = -E2BIG;
263         if (cpuid->nent < vcpu->arch.cpuid_nent)
264                 goto out;
265         r = -EFAULT;
266         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
267                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
268                 goto out;
269         return 0;
270
271 out:
272         cpuid->nent = vcpu->arch.cpuid_nent;
273         return r;
274 }
275
276 static void cpuid_mask(u32 *word, int wordnum)
277 {
278         *word &= boot_cpu_data.x86_capability[wordnum];
279 }
280
281 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
282                            u32 index)
283 {
284         entry->function = function;
285         entry->index = index;
286         cpuid_count(entry->function, entry->index,
287                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
288         entry->flags = 0;
289 }
290
291 static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
292                                    u32 func, u32 index, int *nent, int maxnent)
293 {
294         switch (func) {
295         case 0:
296                 entry->eax = 1;         /* only one leaf currently */
297                 ++*nent;
298                 break;
299         case 1:
300                 entry->ecx = F(MOVBE);
301                 ++*nent;
302                 break;
303         default:
304                 break;
305         }
306
307         entry->function = func;
308         entry->index = index;
309
310         return 0;
311 }
312
313 static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
314                                  u32 index, int *nent, int maxnent)
315 {
316         int r;
317         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
318 #ifdef CONFIG_X86_64
319         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
320                                 ? F(GBPAGES) : 0;
321         unsigned f_lm = F(LM);
322 #else
323         unsigned f_gbpages = 0;
324         unsigned f_lm = 0;
325 #endif
326         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
327         unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
328         unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
329         unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
330         unsigned f_umip = kvm_x86_ops->umip_emulated() ? F(UMIP) : 0;
331
332         /* cpuid 1.edx */
333         const u32 kvm_cpuid_1_edx_x86_features =
334                 F(FPU) | F(VME) | F(DE) | F(PSE) |
335                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
336                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
337                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
338                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
339                 0 /* Reserved, DS, ACPI */ | F(MMX) |
340                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
341                 0 /* HTT, TM, Reserved, PBE */;
342         /* cpuid 0x80000001.edx */
343         const u32 kvm_cpuid_8000_0001_edx_x86_features =
344                 F(FPU) | F(VME) | F(DE) | F(PSE) |
345                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
346                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
347                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
348                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
349                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
350                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
351                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
352         /* cpuid 1.ecx */
353         const u32 kvm_cpuid_1_ecx_x86_features =
354                 /* NOTE: MONITOR (and MWAIT) are emulated as NOP,
355                  * but *not* advertised to guests via CPUID ! */
356                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
357                 0 /* DS-CPL, VMX, SMX, EST */ |
358                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
359                 F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
360                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
361                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
362                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
363                 F(F16C) | F(RDRAND);
364         /* cpuid 0x80000001.ecx */
365         const u32 kvm_cpuid_8000_0001_ecx_x86_features =
366                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
367                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
368                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
369                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
370
371         /* cpuid 0xC0000001.edx */
372         const u32 kvm_cpuid_C000_0001_edx_x86_features =
373                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
374                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
375                 F(PMM) | F(PMM_EN);
376
377         /* cpuid 7.0.ebx */
378         const u32 kvm_cpuid_7_0_ebx_x86_features =
379                 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
380                 F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
381                 F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
382                 F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
383                 F(SHA_NI) | F(AVX512BW) | F(AVX512VL);
384
385         /* cpuid 0xD.1.eax */
386         const u32 kvm_cpuid_D_1_eax_x86_features =
387                 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
388
389         /* cpuid 7.0.ecx*/
390         const u32 kvm_cpuid_7_0_ecx_x86_features =
391                 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ |
392                 F(AVX512_VPOPCNTDQ) | F(UMIP);
393
394         /* cpuid 7.0.edx*/
395         const u32 kvm_cpuid_7_0_edx_x86_features =
396                 KF(AVX512_4VNNIW) | KF(AVX512_4FMAPS);
397
398         /* all calls to cpuid_count() should be made on the same cpu */
399         get_cpu();
400
401         r = -E2BIG;
402
403         if (*nent >= maxnent)
404                 goto out;
405
406         do_cpuid_1_ent(entry, function, index);
407         ++*nent;
408
409         switch (function) {
410         case 0:
411                 entry->eax = min(entry->eax, (u32)0xd);
412                 break;
413         case 1:
414                 entry->edx &= kvm_cpuid_1_edx_x86_features;
415                 cpuid_mask(&entry->edx, CPUID_1_EDX);
416                 entry->ecx &= kvm_cpuid_1_ecx_x86_features;
417                 cpuid_mask(&entry->ecx, CPUID_1_ECX);
418                 /* we support x2apic emulation even if host does not support
419                  * it since we emulate x2apic in software */
420                 entry->ecx |= F(X2APIC);
421                 break;
422         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
423          * may return different values. This forces us to get_cpu() before
424          * issuing the first command, and also to emulate this annoying behavior
425          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
426         case 2: {
427                 int t, times = entry->eax & 0xff;
428
429                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
430                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
431                 for (t = 1; t < times; ++t) {
432                         if (*nent >= maxnent)
433                                 goto out;
434
435                         do_cpuid_1_ent(&entry[t], function, 0);
436                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
437                         ++*nent;
438                 }
439                 break;
440         }
441         /* function 4 has additional index. */
442         case 4: {
443                 int i, cache_type;
444
445                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
446                 /* read more entries until cache_type is zero */
447                 for (i = 1; ; ++i) {
448                         if (*nent >= maxnent)
449                                 goto out;
450
451                         cache_type = entry[i - 1].eax & 0x1f;
452                         if (!cache_type)
453                                 break;
454                         do_cpuid_1_ent(&entry[i], function, i);
455                         entry[i].flags |=
456                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
457                         ++*nent;
458                 }
459                 break;
460         }
461         case 6: /* Thermal management */
462                 entry->eax = 0x4; /* allow ARAT */
463                 entry->ebx = 0;
464                 entry->ecx = 0;
465                 entry->edx = 0;
466                 break;
467         case 7: {
468                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
469                 /* Mask ebx against host capability word 9 */
470                 if (index == 0) {
471                         entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
472                         cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
473                         // TSC_ADJUST is emulated
474                         entry->ebx |= F(TSC_ADJUST);
475                         entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
476                         cpuid_mask(&entry->ecx, CPUID_7_ECX);
477                         entry->ecx |= f_umip;
478                         /* PKU is not yet implemented for shadow paging. */
479                         if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
480                                 entry->ecx &= ~F(PKU);
481                         entry->edx &= kvm_cpuid_7_0_edx_x86_features;
482                         entry->edx &= get_scattered_cpuid_leaf(7, 0, CPUID_EDX);
483                 } else {
484                         entry->ebx = 0;
485                         entry->ecx = 0;
486                         entry->edx = 0;
487                 }
488                 entry->eax = 0;
489                 break;
490         }
491         case 9:
492                 break;
493         case 0xa: { /* Architectural Performance Monitoring */
494                 struct x86_pmu_capability cap;
495                 union cpuid10_eax eax;
496                 union cpuid10_edx edx;
497
498                 perf_get_x86_pmu_capability(&cap);
499
500                 /*
501                  * Only support guest architectural pmu on a host
502                  * with architectural pmu.
503                  */
504                 if (!cap.version)
505                         memset(&cap, 0, sizeof(cap));
506
507                 eax.split.version_id = min(cap.version, 2);
508                 eax.split.num_counters = cap.num_counters_gp;
509                 eax.split.bit_width = cap.bit_width_gp;
510                 eax.split.mask_length = cap.events_mask_len;
511
512                 edx.split.num_counters_fixed = cap.num_counters_fixed;
513                 edx.split.bit_width_fixed = cap.bit_width_fixed;
514                 edx.split.reserved = 0;
515
516                 entry->eax = eax.full;
517                 entry->ebx = cap.events_mask;
518                 entry->ecx = 0;
519                 entry->edx = edx.full;
520                 break;
521         }
522         /* function 0xb has additional index. */
523         case 0xb: {
524                 int i, level_type;
525
526                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
527                 /* read more entries until level_type is zero */
528                 for (i = 1; ; ++i) {
529                         if (*nent >= maxnent)
530                                 goto out;
531
532                         level_type = entry[i - 1].ecx & 0xff00;
533                         if (!level_type)
534                                 break;
535                         do_cpuid_1_ent(&entry[i], function, i);
536                         entry[i].flags |=
537                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
538                         ++*nent;
539                 }
540                 break;
541         }
542         case 0xd: {
543                 int idx, i;
544                 u64 supported = kvm_supported_xcr0();
545
546                 entry->eax &= supported;
547                 entry->ebx = xstate_required_size(supported, false);
548                 entry->ecx = entry->ebx;
549                 entry->edx &= supported >> 32;
550                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
551                 if (!supported)
552                         break;
553
554                 for (idx = 1, i = 1; idx < 64; ++idx) {
555                         u64 mask = ((u64)1 << idx);
556                         if (*nent >= maxnent)
557                                 goto out;
558
559                         do_cpuid_1_ent(&entry[i], function, idx);
560                         if (idx == 1) {
561                                 entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
562                                 cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
563                                 entry[i].ebx = 0;
564                                 if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
565                                         entry[i].ebx =
566                                                 xstate_required_size(supported,
567                                                                      true);
568                         } else {
569                                 if (entry[i].eax == 0 || !(supported & mask))
570                                         continue;
571                                 if (WARN_ON_ONCE(entry[i].ecx & 1))
572                                         continue;
573                         }
574                         entry[i].ecx = 0;
575                         entry[i].edx = 0;
576                         entry[i].flags |=
577                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
578                         ++*nent;
579                         ++i;
580                 }
581                 break;
582         }
583         case KVM_CPUID_SIGNATURE: {
584                 static const char signature[12] = "KVMKVMKVM\0\0";
585                 const u32 *sigptr = (const u32 *)signature;
586                 entry->eax = KVM_CPUID_FEATURES;
587                 entry->ebx = sigptr[0];
588                 entry->ecx = sigptr[1];
589                 entry->edx = sigptr[2];
590                 break;
591         }
592         case KVM_CPUID_FEATURES:
593                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
594                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
595                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
596                              (1 << KVM_FEATURE_ASYNC_PF) |
597                              (1 << KVM_FEATURE_PV_EOI) |
598                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
599                              (1 << KVM_FEATURE_PV_UNHALT);
600
601                 if (sched_info_on())
602                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
603
604                 entry->ebx = 0;
605                 entry->ecx = 0;
606                 entry->edx = 0;
607                 break;
608         case 0x80000000:
609                 entry->eax = min(entry->eax, 0x8000001a);
610                 break;
611         case 0x80000001:
612                 entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
613                 cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
614                 entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
615                 cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
616                 break;
617         case 0x80000007: /* Advanced power management */
618                 /* invariant TSC is CPUID.80000007H:EDX[8] */
619                 entry->edx &= (1 << 8);
620                 /* mask against host */
621                 entry->edx &= boot_cpu_data.x86_power;
622                 entry->eax = entry->ebx = entry->ecx = 0;
623                 break;
624         case 0x80000008: {
625                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
626                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
627                 unsigned phys_as = entry->eax & 0xff;
628
629                 if (!g_phys_as)
630                         g_phys_as = phys_as;
631                 entry->eax = g_phys_as | (virt_as << 8);
632                 entry->ebx = entry->edx = 0;
633                 break;
634         }
635         case 0x80000019:
636                 entry->ecx = entry->edx = 0;
637                 break;
638         case 0x8000001a:
639                 break;
640         case 0x8000001d:
641                 break;
642         /*Add support for Centaur's CPUID instruction*/
643         case 0xC0000000:
644                 /*Just support up to 0xC0000004 now*/
645                 entry->eax = min(entry->eax, 0xC0000004);
646                 break;
647         case 0xC0000001:
648                 entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
649                 cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
650                 break;
651         case 3: /* Processor serial number */
652         case 5: /* MONITOR/MWAIT */
653         case 0xC0000002:
654         case 0xC0000003:
655         case 0xC0000004:
656         default:
657                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
658                 break;
659         }
660
661         kvm_x86_ops->set_supported_cpuid(function, entry);
662
663         r = 0;
664
665 out:
666         put_cpu();
667
668         return r;
669 }
670
671 static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
672                         u32 idx, int *nent, int maxnent, unsigned int type)
673 {
674         if (type == KVM_GET_EMULATED_CPUID)
675                 return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
676
677         return __do_cpuid_ent(entry, func, idx, nent, maxnent);
678 }
679
680 #undef F
681
682 struct kvm_cpuid_param {
683         u32 func;
684         u32 idx;
685         bool has_leaf_count;
686         bool (*qualifier)(const struct kvm_cpuid_param *param);
687 };
688
689 static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
690 {
691         return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
692 }
693
694 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
695                                  __u32 num_entries, unsigned int ioctl_type)
696 {
697         int i;
698         __u32 pad[3];
699
700         if (ioctl_type != KVM_GET_EMULATED_CPUID)
701                 return false;
702
703         /*
704          * We want to make sure that ->padding is being passed clean from
705          * userspace in case we want to use it for something in the future.
706          *
707          * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
708          * have to give ourselves satisfied only with the emulated side. /me
709          * sheds a tear.
710          */
711         for (i = 0; i < num_entries; i++) {
712                 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
713                         return true;
714
715                 if (pad[0] || pad[1] || pad[2])
716                         return true;
717         }
718         return false;
719 }
720
721 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
722                             struct kvm_cpuid_entry2 __user *entries,
723                             unsigned int type)
724 {
725         struct kvm_cpuid_entry2 *cpuid_entries;
726         int limit, nent = 0, r = -E2BIG, i;
727         u32 func;
728         static const struct kvm_cpuid_param param[] = {
729                 { .func = 0, .has_leaf_count = true },
730                 { .func = 0x80000000, .has_leaf_count = true },
731                 { .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
732                 { .func = KVM_CPUID_SIGNATURE },
733                 { .func = KVM_CPUID_FEATURES },
734         };
735
736         if (cpuid->nent < 1)
737                 goto out;
738         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
739                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
740
741         if (sanity_check_entries(entries, cpuid->nent, type))
742                 return -EINVAL;
743
744         r = -ENOMEM;
745         cpuid_entries = vzalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
746         if (!cpuid_entries)
747                 goto out;
748
749         r = 0;
750         for (i = 0; i < ARRAY_SIZE(param); i++) {
751                 const struct kvm_cpuid_param *ent = &param[i];
752
753                 if (ent->qualifier && !ent->qualifier(ent))
754                         continue;
755
756                 r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
757                                 &nent, cpuid->nent, type);
758
759                 if (r)
760                         goto out_free;
761
762                 if (!ent->has_leaf_count)
763                         continue;
764
765                 limit = cpuid_entries[nent - 1].eax;
766                 for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
767                         r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
768                                      &nent, cpuid->nent, type);
769
770                 if (r)
771                         goto out_free;
772         }
773
774         r = -EFAULT;
775         if (copy_to_user(entries, cpuid_entries,
776                          nent * sizeof(struct kvm_cpuid_entry2)))
777                 goto out_free;
778         cpuid->nent = nent;
779         r = 0;
780
781 out_free:
782         vfree(cpuid_entries);
783 out:
784         return r;
785 }
786
787 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
788 {
789         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
790         struct kvm_cpuid_entry2 *ej;
791         int j = i;
792         int nent = vcpu->arch.cpuid_nent;
793
794         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
795         /* when no next entry is found, the current entry[i] is reselected */
796         do {
797                 j = (j + 1) % nent;
798                 ej = &vcpu->arch.cpuid_entries[j];
799         } while (ej->function != e->function);
800
801         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
802
803         return j;
804 }
805
806 /* find an entry with matching function, matching index (if needed), and that
807  * should be read next (if it's stateful) */
808 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
809         u32 function, u32 index)
810 {
811         if (e->function != function)
812                 return 0;
813         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
814                 return 0;
815         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
816             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
817                 return 0;
818         return 1;
819 }
820
821 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
822                                               u32 function, u32 index)
823 {
824         int i;
825         struct kvm_cpuid_entry2 *best = NULL;
826
827         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
828                 struct kvm_cpuid_entry2 *e;
829
830                 e = &vcpu->arch.cpuid_entries[i];
831                 if (is_matching_cpuid_entry(e, function, index)) {
832                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
833                                 move_to_next_stateful_cpuid_entry(vcpu, i);
834                         best = e;
835                         break;
836                 }
837         }
838         return best;
839 }
840 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
841
842 /*
843  * If no match is found, check whether we exceed the vCPU's limit
844  * and return the content of the highest valid _standard_ leaf instead.
845  * This is to satisfy the CPUID specification.
846  */
847 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
848                                                   u32 function, u32 index)
849 {
850         struct kvm_cpuid_entry2 *maxlevel;
851
852         maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
853         if (!maxlevel || maxlevel->eax >= function)
854                 return NULL;
855         if (function & 0x80000000) {
856                 maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
857                 if (!maxlevel)
858                         return NULL;
859         }
860         return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
861 }
862
863 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
864                u32 *ecx, u32 *edx, bool check_limit)
865 {
866         u32 function = *eax, index = *ecx;
867         struct kvm_cpuid_entry2 *best;
868         bool entry_found = true;
869
870         best = kvm_find_cpuid_entry(vcpu, function, index);
871
872         if (!best) {
873                 entry_found = false;
874                 if (!check_limit)
875                         goto out;
876
877                 best = check_cpuid_limit(vcpu, function, index);
878         }
879
880 out:
881         if (best) {
882                 *eax = best->eax;
883                 *ebx = best->ebx;
884                 *ecx = best->ecx;
885                 *edx = best->edx;
886         } else
887                 *eax = *ebx = *ecx = *edx = 0;
888         trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx, entry_found);
889         return entry_found;
890 }
891 EXPORT_SYMBOL_GPL(kvm_cpuid);
892
893 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
894 {
895         u32 eax, ebx, ecx, edx;
896
897         if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
898                 return 1;
899
900         eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
901         ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
902         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, true);
903         kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
904         kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
905         kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
906         kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
907         return kvm_skip_emulated_instruction(vcpu);
908 }
909 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);