]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/hyperv.c
x86/kvm/hyper-v: add reenlightenment MSRs support
[linux.git] / arch / x86 / kvm / hyperv.c
1 /*
2  * KVM Microsoft Hyper-V emulation
3  *
4  * derived from arch/x86/kvm/x86.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  * Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com>
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  *   Andrey Smetanin <asmetanin@virtuozzo.com>
18  *
19  * This work is licensed under the terms of the GNU GPL, version 2.  See
20  * the COPYING file in the top-level directory.
21  *
22  */
23
24 #include "x86.h"
25 #include "lapic.h"
26 #include "ioapic.h"
27 #include "hyperv.h"
28
29 #include <linux/kvm_host.h>
30 #include <linux/highmem.h>
31 #include <linux/sched/cputime.h>
32 #include <linux/eventfd.h>
33
34 #include <asm/apicdef.h>
35 #include <trace/events/kvm.h>
36
37 #include "trace.h"
38
39 static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
40 {
41         return atomic64_read(&synic->sint[sint]);
42 }
43
44 static inline int synic_get_sint_vector(u64 sint_value)
45 {
46         if (sint_value & HV_SYNIC_SINT_MASKED)
47                 return -1;
48         return sint_value & HV_SYNIC_SINT_VECTOR_MASK;
49 }
50
51 static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic,
52                                       int vector)
53 {
54         int i;
55
56         for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
57                 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
58                         return true;
59         }
60         return false;
61 }
62
63 static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic,
64                                      int vector)
65 {
66         int i;
67         u64 sint_value;
68
69         for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
70                 sint_value = synic_read_sint(synic, i);
71                 if (synic_get_sint_vector(sint_value) == vector &&
72                     sint_value & HV_SYNIC_SINT_AUTO_EOI)
73                         return true;
74         }
75         return false;
76 }
77
78 static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint,
79                           u64 data, bool host)
80 {
81         int vector;
82
83         vector = data & HV_SYNIC_SINT_VECTOR_MASK;
84         if (vector < 16 && !host)
85                 return 1;
86         /*
87          * Guest may configure multiple SINTs to use the same vector, so
88          * we maintain a bitmap of vectors handled by synic, and a
89          * bitmap of vectors with auto-eoi behavior.  The bitmaps are
90          * updated here, and atomically queried on fast paths.
91          */
92
93         atomic64_set(&synic->sint[sint], data);
94
95         if (synic_has_vector_connected(synic, vector))
96                 __set_bit(vector, synic->vec_bitmap);
97         else
98                 __clear_bit(vector, synic->vec_bitmap);
99
100         if (synic_has_vector_auto_eoi(synic, vector))
101                 __set_bit(vector, synic->auto_eoi_bitmap);
102         else
103                 __clear_bit(vector, synic->auto_eoi_bitmap);
104
105         /* Load SynIC vectors into EOI exit bitmap */
106         kvm_make_request(KVM_REQ_SCAN_IOAPIC, synic_to_vcpu(synic));
107         return 0;
108 }
109
110 static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx)
111 {
112         struct kvm_vcpu *vcpu = NULL;
113         int i;
114
115         if (vpidx < KVM_MAX_VCPUS)
116                 vcpu = kvm_get_vcpu(kvm, vpidx);
117         if (vcpu && vcpu_to_hv_vcpu(vcpu)->vp_index == vpidx)
118                 return vcpu;
119         kvm_for_each_vcpu(i, vcpu, kvm)
120                 if (vcpu_to_hv_vcpu(vcpu)->vp_index == vpidx)
121                         return vcpu;
122         return NULL;
123 }
124
125 static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx)
126 {
127         struct kvm_vcpu *vcpu;
128         struct kvm_vcpu_hv_synic *synic;
129
130         vcpu = get_vcpu_by_vpidx(kvm, vpidx);
131         if (!vcpu)
132                 return NULL;
133         synic = vcpu_to_synic(vcpu);
134         return (synic->active) ? synic : NULL;
135 }
136
137 static void synic_clear_sint_msg_pending(struct kvm_vcpu_hv_synic *synic,
138                                         u32 sint)
139 {
140         struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
141         struct page *page;
142         gpa_t gpa;
143         struct hv_message *msg;
144         struct hv_message_page *msg_page;
145
146         gpa = synic->msg_page & PAGE_MASK;
147         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
148         if (is_error_page(page)) {
149                 vcpu_err(vcpu, "Hyper-V SynIC can't get msg page, gpa 0x%llx\n",
150                          gpa);
151                 return;
152         }
153         msg_page = kmap_atomic(page);
154
155         msg = &msg_page->sint_message[sint];
156         msg->header.message_flags.msg_pending = 0;
157
158         kunmap_atomic(msg_page);
159         kvm_release_page_dirty(page);
160         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
161 }
162
163 static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint)
164 {
165         struct kvm *kvm = vcpu->kvm;
166         struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
167         struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
168         struct kvm_vcpu_hv_stimer *stimer;
169         int gsi, idx, stimers_pending;
170
171         trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint);
172
173         if (synic->msg_page & HV_SYNIC_SIMP_ENABLE)
174                 synic_clear_sint_msg_pending(synic, sint);
175
176         /* Try to deliver pending Hyper-V SynIC timers messages */
177         stimers_pending = 0;
178         for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) {
179                 stimer = &hv_vcpu->stimer[idx];
180                 if (stimer->msg_pending &&
181                     (stimer->config & HV_STIMER_ENABLE) &&
182                     HV_STIMER_SINT(stimer->config) == sint) {
183                         set_bit(stimer->index,
184                                 hv_vcpu->stimer_pending_bitmap);
185                         stimers_pending++;
186                 }
187         }
188         if (stimers_pending)
189                 kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
190
191         idx = srcu_read_lock(&kvm->irq_srcu);
192         gsi = atomic_read(&synic->sint_to_gsi[sint]);
193         if (gsi != -1)
194                 kvm_notify_acked_gsi(kvm, gsi);
195         srcu_read_unlock(&kvm->irq_srcu, idx);
196 }
197
198 static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr)
199 {
200         struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
201         struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
202
203         hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC;
204         hv_vcpu->exit.u.synic.msr = msr;
205         hv_vcpu->exit.u.synic.control = synic->control;
206         hv_vcpu->exit.u.synic.evt_page = synic->evt_page;
207         hv_vcpu->exit.u.synic.msg_page = synic->msg_page;
208
209         kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
210 }
211
212 static int synic_set_msr(struct kvm_vcpu_hv_synic *synic,
213                          u32 msr, u64 data, bool host)
214 {
215         struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
216         int ret;
217
218         if (!synic->active)
219                 return 1;
220
221         trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host);
222
223         ret = 0;
224         switch (msr) {
225         case HV_X64_MSR_SCONTROL:
226                 synic->control = data;
227                 if (!host)
228                         synic_exit(synic, msr);
229                 break;
230         case HV_X64_MSR_SVERSION:
231                 if (!host) {
232                         ret = 1;
233                         break;
234                 }
235                 synic->version = data;
236                 break;
237         case HV_X64_MSR_SIEFP:
238                 if ((data & HV_SYNIC_SIEFP_ENABLE) && !host &&
239                     !synic->dont_zero_synic_pages)
240                         if (kvm_clear_guest(vcpu->kvm,
241                                             data & PAGE_MASK, PAGE_SIZE)) {
242                                 ret = 1;
243                                 break;
244                         }
245                 synic->evt_page = data;
246                 if (!host)
247                         synic_exit(synic, msr);
248                 break;
249         case HV_X64_MSR_SIMP:
250                 if ((data & HV_SYNIC_SIMP_ENABLE) && !host &&
251                     !synic->dont_zero_synic_pages)
252                         if (kvm_clear_guest(vcpu->kvm,
253                                             data & PAGE_MASK, PAGE_SIZE)) {
254                                 ret = 1;
255                                 break;
256                         }
257                 synic->msg_page = data;
258                 if (!host)
259                         synic_exit(synic, msr);
260                 break;
261         case HV_X64_MSR_EOM: {
262                 int i;
263
264                 for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
265                         kvm_hv_notify_acked_sint(vcpu, i);
266                 break;
267         }
268         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
269                 ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host);
270                 break;
271         default:
272                 ret = 1;
273                 break;
274         }
275         return ret;
276 }
277
278 static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata)
279 {
280         int ret;
281
282         if (!synic->active)
283                 return 1;
284
285         ret = 0;
286         switch (msr) {
287         case HV_X64_MSR_SCONTROL:
288                 *pdata = synic->control;
289                 break;
290         case HV_X64_MSR_SVERSION:
291                 *pdata = synic->version;
292                 break;
293         case HV_X64_MSR_SIEFP:
294                 *pdata = synic->evt_page;
295                 break;
296         case HV_X64_MSR_SIMP:
297                 *pdata = synic->msg_page;
298                 break;
299         case HV_X64_MSR_EOM:
300                 *pdata = 0;
301                 break;
302         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
303                 *pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]);
304                 break;
305         default:
306                 ret = 1;
307                 break;
308         }
309         return ret;
310 }
311
312 static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint)
313 {
314         struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
315         struct kvm_lapic_irq irq;
316         int ret, vector;
317
318         if (sint >= ARRAY_SIZE(synic->sint))
319                 return -EINVAL;
320
321         vector = synic_get_sint_vector(synic_read_sint(synic, sint));
322         if (vector < 0)
323                 return -ENOENT;
324
325         memset(&irq, 0, sizeof(irq));
326         irq.shorthand = APIC_DEST_SELF;
327         irq.dest_mode = APIC_DEST_PHYSICAL;
328         irq.delivery_mode = APIC_DM_FIXED;
329         irq.vector = vector;
330         irq.level = 1;
331
332         ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL);
333         trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret);
334         return ret;
335 }
336
337 int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint)
338 {
339         struct kvm_vcpu_hv_synic *synic;
340
341         synic = synic_get(kvm, vpidx);
342         if (!synic)
343                 return -EINVAL;
344
345         return synic_set_irq(synic, sint);
346 }
347
348 void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector)
349 {
350         struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
351         int i;
352
353         trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector);
354
355         for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
356                 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
357                         kvm_hv_notify_acked_sint(vcpu, i);
358 }
359
360 static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi)
361 {
362         struct kvm_vcpu_hv_synic *synic;
363
364         synic = synic_get(kvm, vpidx);
365         if (!synic)
366                 return -EINVAL;
367
368         if (sint >= ARRAY_SIZE(synic->sint_to_gsi))
369                 return -EINVAL;
370
371         atomic_set(&synic->sint_to_gsi[sint], gsi);
372         return 0;
373 }
374
375 void kvm_hv_irq_routing_update(struct kvm *kvm)
376 {
377         struct kvm_irq_routing_table *irq_rt;
378         struct kvm_kernel_irq_routing_entry *e;
379         u32 gsi;
380
381         irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu,
382                                         lockdep_is_held(&kvm->irq_lock));
383
384         for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) {
385                 hlist_for_each_entry(e, &irq_rt->map[gsi], link) {
386                         if (e->type == KVM_IRQ_ROUTING_HV_SINT)
387                                 kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu,
388                                                     e->hv_sint.sint, gsi);
389                 }
390         }
391 }
392
393 static void synic_init(struct kvm_vcpu_hv_synic *synic)
394 {
395         int i;
396
397         memset(synic, 0, sizeof(*synic));
398         synic->version = HV_SYNIC_VERSION_1;
399         for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
400                 atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED);
401                 atomic_set(&synic->sint_to_gsi[i], -1);
402         }
403 }
404
405 static u64 get_time_ref_counter(struct kvm *kvm)
406 {
407         struct kvm_hv *hv = &kvm->arch.hyperv;
408         struct kvm_vcpu *vcpu;
409         u64 tsc;
410
411         /*
412          * The guest has not set up the TSC page or the clock isn't
413          * stable, fall back to get_kvmclock_ns.
414          */
415         if (!hv->tsc_ref.tsc_sequence)
416                 return div_u64(get_kvmclock_ns(kvm), 100);
417
418         vcpu = kvm_get_vcpu(kvm, 0);
419         tsc = kvm_read_l1_tsc(vcpu, rdtsc());
420         return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64)
421                 + hv->tsc_ref.tsc_offset;
422 }
423
424 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
425                                 bool vcpu_kick)
426 {
427         struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
428
429         set_bit(stimer->index,
430                 vcpu_to_hv_vcpu(vcpu)->stimer_pending_bitmap);
431         kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
432         if (vcpu_kick)
433                 kvm_vcpu_kick(vcpu);
434 }
435
436 static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer)
437 {
438         struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
439
440         trace_kvm_hv_stimer_cleanup(stimer_to_vcpu(stimer)->vcpu_id,
441                                     stimer->index);
442
443         hrtimer_cancel(&stimer->timer);
444         clear_bit(stimer->index,
445                   vcpu_to_hv_vcpu(vcpu)->stimer_pending_bitmap);
446         stimer->msg_pending = false;
447         stimer->exp_time = 0;
448 }
449
450 static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer)
451 {
452         struct kvm_vcpu_hv_stimer *stimer;
453
454         stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer);
455         trace_kvm_hv_stimer_callback(stimer_to_vcpu(stimer)->vcpu_id,
456                                      stimer->index);
457         stimer_mark_pending(stimer, true);
458
459         return HRTIMER_NORESTART;
460 }
461
462 /*
463  * stimer_start() assumptions:
464  * a) stimer->count is not equal to 0
465  * b) stimer->config has HV_STIMER_ENABLE flag
466  */
467 static int stimer_start(struct kvm_vcpu_hv_stimer *stimer)
468 {
469         u64 time_now;
470         ktime_t ktime_now;
471
472         time_now = get_time_ref_counter(stimer_to_vcpu(stimer)->kvm);
473         ktime_now = ktime_get();
474
475         if (stimer->config & HV_STIMER_PERIODIC) {
476                 if (stimer->exp_time) {
477                         if (time_now >= stimer->exp_time) {
478                                 u64 remainder;
479
480                                 div64_u64_rem(time_now - stimer->exp_time,
481                                               stimer->count, &remainder);
482                                 stimer->exp_time =
483                                         time_now + (stimer->count - remainder);
484                         }
485                 } else
486                         stimer->exp_time = time_now + stimer->count;
487
488                 trace_kvm_hv_stimer_start_periodic(
489                                         stimer_to_vcpu(stimer)->vcpu_id,
490                                         stimer->index,
491                                         time_now, stimer->exp_time);
492
493                 hrtimer_start(&stimer->timer,
494                               ktime_add_ns(ktime_now,
495                                            100 * (stimer->exp_time - time_now)),
496                               HRTIMER_MODE_ABS);
497                 return 0;
498         }
499         stimer->exp_time = stimer->count;
500         if (time_now >= stimer->count) {
501                 /*
502                  * Expire timer according to Hypervisor Top-Level Functional
503                  * specification v4(15.3.1):
504                  * "If a one shot is enabled and the specified count is in
505                  * the past, it will expire immediately."
506                  */
507                 stimer_mark_pending(stimer, false);
508                 return 0;
509         }
510
511         trace_kvm_hv_stimer_start_one_shot(stimer_to_vcpu(stimer)->vcpu_id,
512                                            stimer->index,
513                                            time_now, stimer->count);
514
515         hrtimer_start(&stimer->timer,
516                       ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)),
517                       HRTIMER_MODE_ABS);
518         return 0;
519 }
520
521 static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config,
522                              bool host)
523 {
524         trace_kvm_hv_stimer_set_config(stimer_to_vcpu(stimer)->vcpu_id,
525                                        stimer->index, config, host);
526
527         stimer_cleanup(stimer);
528         if ((stimer->config & HV_STIMER_ENABLE) && HV_STIMER_SINT(config) == 0)
529                 config &= ~HV_STIMER_ENABLE;
530         stimer->config = config;
531         stimer_mark_pending(stimer, false);
532         return 0;
533 }
534
535 static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count,
536                             bool host)
537 {
538         trace_kvm_hv_stimer_set_count(stimer_to_vcpu(stimer)->vcpu_id,
539                                       stimer->index, count, host);
540
541         stimer_cleanup(stimer);
542         stimer->count = count;
543         if (stimer->count == 0)
544                 stimer->config &= ~HV_STIMER_ENABLE;
545         else if (stimer->config & HV_STIMER_AUTOENABLE)
546                 stimer->config |= HV_STIMER_ENABLE;
547         stimer_mark_pending(stimer, false);
548         return 0;
549 }
550
551 static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig)
552 {
553         *pconfig = stimer->config;
554         return 0;
555 }
556
557 static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount)
558 {
559         *pcount = stimer->count;
560         return 0;
561 }
562
563 static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint,
564                              struct hv_message *src_msg)
565 {
566         struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
567         struct page *page;
568         gpa_t gpa;
569         struct hv_message *dst_msg;
570         int r;
571         struct hv_message_page *msg_page;
572
573         if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE))
574                 return -ENOENT;
575
576         gpa = synic->msg_page & PAGE_MASK;
577         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
578         if (is_error_page(page))
579                 return -EFAULT;
580
581         msg_page = kmap_atomic(page);
582         dst_msg = &msg_page->sint_message[sint];
583         if (sync_cmpxchg(&dst_msg->header.message_type, HVMSG_NONE,
584                          src_msg->header.message_type) != HVMSG_NONE) {
585                 dst_msg->header.message_flags.msg_pending = 1;
586                 r = -EAGAIN;
587         } else {
588                 memcpy(&dst_msg->u.payload, &src_msg->u.payload,
589                        src_msg->header.payload_size);
590                 dst_msg->header.message_type = src_msg->header.message_type;
591                 dst_msg->header.payload_size = src_msg->header.payload_size;
592                 r = synic_set_irq(synic, sint);
593                 if (r >= 1)
594                         r = 0;
595                 else if (r == 0)
596                         r = -EFAULT;
597         }
598         kunmap_atomic(msg_page);
599         kvm_release_page_dirty(page);
600         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
601         return r;
602 }
603
604 static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer)
605 {
606         struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
607         struct hv_message *msg = &stimer->msg;
608         struct hv_timer_message_payload *payload =
609                         (struct hv_timer_message_payload *)&msg->u.payload;
610
611         payload->expiration_time = stimer->exp_time;
612         payload->delivery_time = get_time_ref_counter(vcpu->kvm);
613         return synic_deliver_msg(vcpu_to_synic(vcpu),
614                                  HV_STIMER_SINT(stimer->config), msg);
615 }
616
617 static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer)
618 {
619         int r;
620
621         stimer->msg_pending = true;
622         r = stimer_send_msg(stimer);
623         trace_kvm_hv_stimer_expiration(stimer_to_vcpu(stimer)->vcpu_id,
624                                        stimer->index, r);
625         if (!r) {
626                 stimer->msg_pending = false;
627                 if (!(stimer->config & HV_STIMER_PERIODIC))
628                         stimer->config &= ~HV_STIMER_ENABLE;
629         }
630 }
631
632 void kvm_hv_process_stimers(struct kvm_vcpu *vcpu)
633 {
634         struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
635         struct kvm_vcpu_hv_stimer *stimer;
636         u64 time_now, exp_time;
637         int i;
638
639         for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
640                 if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) {
641                         stimer = &hv_vcpu->stimer[i];
642                         if (stimer->config & HV_STIMER_ENABLE) {
643                                 exp_time = stimer->exp_time;
644
645                                 if (exp_time) {
646                                         time_now =
647                                                 get_time_ref_counter(vcpu->kvm);
648                                         if (time_now >= exp_time)
649                                                 stimer_expiration(stimer);
650                                 }
651
652                                 if ((stimer->config & HV_STIMER_ENABLE) &&
653                                     stimer->count) {
654                                         if (!stimer->msg_pending)
655                                                 stimer_start(stimer);
656                                 } else
657                                         stimer_cleanup(stimer);
658                         }
659                 }
660 }
661
662 void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu)
663 {
664         struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
665         int i;
666
667         for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
668                 stimer_cleanup(&hv_vcpu->stimer[i]);
669 }
670
671 static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer)
672 {
673         struct hv_message *msg = &stimer->msg;
674         struct hv_timer_message_payload *payload =
675                         (struct hv_timer_message_payload *)&msg->u.payload;
676
677         memset(&msg->header, 0, sizeof(msg->header));
678         msg->header.message_type = HVMSG_TIMER_EXPIRED;
679         msg->header.payload_size = sizeof(*payload);
680
681         payload->timer_index = stimer->index;
682         payload->expiration_time = 0;
683         payload->delivery_time = 0;
684 }
685
686 static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index)
687 {
688         memset(stimer, 0, sizeof(*stimer));
689         stimer->index = timer_index;
690         hrtimer_init(&stimer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
691         stimer->timer.function = stimer_timer_callback;
692         stimer_prepare_msg(stimer);
693 }
694
695 void kvm_hv_vcpu_init(struct kvm_vcpu *vcpu)
696 {
697         struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
698         int i;
699
700         synic_init(&hv_vcpu->synic);
701
702         bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
703         for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
704                 stimer_init(&hv_vcpu->stimer[i], i);
705 }
706
707 void kvm_hv_vcpu_postcreate(struct kvm_vcpu *vcpu)
708 {
709         struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
710
711         hv_vcpu->vp_index = kvm_vcpu_get_idx(vcpu);
712 }
713
714 int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages)
715 {
716         struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
717
718         /*
719          * Hyper-V SynIC auto EOI SINT's are
720          * not compatible with APICV, so deactivate APICV
721          */
722         kvm_vcpu_deactivate_apicv(vcpu);
723         synic->active = true;
724         synic->dont_zero_synic_pages = dont_zero_synic_pages;
725         return 0;
726 }
727
728 static bool kvm_hv_msr_partition_wide(u32 msr)
729 {
730         bool r = false;
731
732         switch (msr) {
733         case HV_X64_MSR_GUEST_OS_ID:
734         case HV_X64_MSR_HYPERCALL:
735         case HV_X64_MSR_REFERENCE_TSC:
736         case HV_X64_MSR_TIME_REF_COUNT:
737         case HV_X64_MSR_CRASH_CTL:
738         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
739         case HV_X64_MSR_RESET:
740         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
741         case HV_X64_MSR_TSC_EMULATION_CONTROL:
742         case HV_X64_MSR_TSC_EMULATION_STATUS:
743                 r = true;
744                 break;
745         }
746
747         return r;
748 }
749
750 static int kvm_hv_msr_get_crash_data(struct kvm_vcpu *vcpu,
751                                      u32 index, u64 *pdata)
752 {
753         struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
754
755         if (WARN_ON_ONCE(index >= ARRAY_SIZE(hv->hv_crash_param)))
756                 return -EINVAL;
757
758         *pdata = hv->hv_crash_param[index];
759         return 0;
760 }
761
762 static int kvm_hv_msr_get_crash_ctl(struct kvm_vcpu *vcpu, u64 *pdata)
763 {
764         struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
765
766         *pdata = hv->hv_crash_ctl;
767         return 0;
768 }
769
770 static int kvm_hv_msr_set_crash_ctl(struct kvm_vcpu *vcpu, u64 data, bool host)
771 {
772         struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
773
774         if (host)
775                 hv->hv_crash_ctl = data & HV_X64_MSR_CRASH_CTL_NOTIFY;
776
777         if (!host && (data & HV_X64_MSR_CRASH_CTL_NOTIFY)) {
778
779                 vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n",
780                           hv->hv_crash_param[0],
781                           hv->hv_crash_param[1],
782                           hv->hv_crash_param[2],
783                           hv->hv_crash_param[3],
784                           hv->hv_crash_param[4]);
785
786                 /* Send notification about crash to user space */
787                 kvm_make_request(KVM_REQ_HV_CRASH, vcpu);
788         }
789
790         return 0;
791 }
792
793 static int kvm_hv_msr_set_crash_data(struct kvm_vcpu *vcpu,
794                                      u32 index, u64 data)
795 {
796         struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
797
798         if (WARN_ON_ONCE(index >= ARRAY_SIZE(hv->hv_crash_param)))
799                 return -EINVAL;
800
801         hv->hv_crash_param[index] = data;
802         return 0;
803 }
804
805 /*
806  * The kvmclock and Hyper-V TSC page use similar formulas, and converting
807  * between them is possible:
808  *
809  * kvmclock formula:
810  *    nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32)
811  *           + system_time
812  *
813  * Hyper-V formula:
814  *    nsec/100 = ticks * scale / 2^64 + offset
815  *
816  * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula.
817  * By dividing the kvmclock formula by 100 and equating what's left we get:
818  *    ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
819  *            scale / 2^64 =         tsc_to_system_mul * 2^(tsc_shift-32) / 100
820  *            scale        =         tsc_to_system_mul * 2^(32+tsc_shift) / 100
821  *
822  * Now expand the kvmclock formula and divide by 100:
823  *    nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32)
824  *           - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32)
825  *           + system_time
826  *    nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
827  *               - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100
828  *               + system_time / 100
829  *
830  * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64:
831  *    nsec/100 = ticks * scale / 2^64
832  *               - tsc_timestamp * scale / 2^64
833  *               + system_time / 100
834  *
835  * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out:
836  *    offset = system_time / 100 - tsc_timestamp * scale / 2^64
837  *
838  * These two equivalencies are implemented in this function.
839  */
840 static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock,
841                                         HV_REFERENCE_TSC_PAGE *tsc_ref)
842 {
843         u64 max_mul;
844
845         if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT))
846                 return false;
847
848         /*
849          * check if scale would overflow, if so we use the time ref counter
850          *    tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64
851          *    tsc_to_system_mul / 100 >= 2^(32-tsc_shift)
852          *    tsc_to_system_mul >= 100 * 2^(32-tsc_shift)
853          */
854         max_mul = 100ull << (32 - hv_clock->tsc_shift);
855         if (hv_clock->tsc_to_system_mul >= max_mul)
856                 return false;
857
858         /*
859          * Otherwise compute the scale and offset according to the formulas
860          * derived above.
861          */
862         tsc_ref->tsc_scale =
863                 mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift),
864                                 hv_clock->tsc_to_system_mul,
865                                 100);
866
867         tsc_ref->tsc_offset = hv_clock->system_time;
868         do_div(tsc_ref->tsc_offset, 100);
869         tsc_ref->tsc_offset -=
870                 mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64);
871         return true;
872 }
873
874 void kvm_hv_setup_tsc_page(struct kvm *kvm,
875                            struct pvclock_vcpu_time_info *hv_clock)
876 {
877         struct kvm_hv *hv = &kvm->arch.hyperv;
878         u32 tsc_seq;
879         u64 gfn;
880
881         BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence));
882         BUILD_BUG_ON(offsetof(HV_REFERENCE_TSC_PAGE, tsc_sequence) != 0);
883
884         if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
885                 return;
886
887         mutex_lock(&kvm->arch.hyperv.hv_lock);
888         if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
889                 goto out_unlock;
890
891         gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
892         /*
893          * Because the TSC parameters only vary when there is a
894          * change in the master clock, do not bother with caching.
895          */
896         if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn),
897                                     &tsc_seq, sizeof(tsc_seq))))
898                 goto out_unlock;
899
900         /*
901          * While we're computing and writing the parameters, force the
902          * guest to use the time reference count MSR.
903          */
904         hv->tsc_ref.tsc_sequence = 0;
905         if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
906                             &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
907                 goto out_unlock;
908
909         if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref))
910                 goto out_unlock;
911
912         /* Ensure sequence is zero before writing the rest of the struct.  */
913         smp_wmb();
914         if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
915                 goto out_unlock;
916
917         /*
918          * Now switch to the TSC page mechanism by writing the sequence.
919          */
920         tsc_seq++;
921         if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0)
922                 tsc_seq = 1;
923
924         /* Write the struct entirely before the non-zero sequence.  */
925         smp_wmb();
926
927         hv->tsc_ref.tsc_sequence = tsc_seq;
928         kvm_write_guest(kvm, gfn_to_gpa(gfn),
929                         &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence));
930 out_unlock:
931         mutex_unlock(&kvm->arch.hyperv.hv_lock);
932 }
933
934 static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data,
935                              bool host)
936 {
937         struct kvm *kvm = vcpu->kvm;
938         struct kvm_hv *hv = &kvm->arch.hyperv;
939
940         switch (msr) {
941         case HV_X64_MSR_GUEST_OS_ID:
942                 hv->hv_guest_os_id = data;
943                 /* setting guest os id to zero disables hypercall page */
944                 if (!hv->hv_guest_os_id)
945                         hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
946                 break;
947         case HV_X64_MSR_HYPERCALL: {
948                 u64 gfn;
949                 unsigned long addr;
950                 u8 instructions[4];
951
952                 /* if guest os id is not set hypercall should remain disabled */
953                 if (!hv->hv_guest_os_id)
954                         break;
955                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
956                         hv->hv_hypercall = data;
957                         break;
958                 }
959                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
960                 addr = gfn_to_hva(kvm, gfn);
961                 if (kvm_is_error_hva(addr))
962                         return 1;
963                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
964                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
965                 if (__copy_to_user((void __user *)addr, instructions, 4))
966                         return 1;
967                 hv->hv_hypercall = data;
968                 mark_page_dirty(kvm, gfn);
969                 break;
970         }
971         case HV_X64_MSR_REFERENCE_TSC:
972                 hv->hv_tsc_page = data;
973                 if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE)
974                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
975                 break;
976         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
977                 return kvm_hv_msr_set_crash_data(vcpu,
978                                                  msr - HV_X64_MSR_CRASH_P0,
979                                                  data);
980         case HV_X64_MSR_CRASH_CTL:
981                 return kvm_hv_msr_set_crash_ctl(vcpu, data, host);
982         case HV_X64_MSR_RESET:
983                 if (data == 1) {
984                         vcpu_debug(vcpu, "hyper-v reset requested\n");
985                         kvm_make_request(KVM_REQ_HV_RESET, vcpu);
986                 }
987                 break;
988         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
989                 hv->hv_reenlightenment_control = data;
990                 break;
991         case HV_X64_MSR_TSC_EMULATION_CONTROL:
992                 hv->hv_tsc_emulation_control = data;
993                 break;
994         case HV_X64_MSR_TSC_EMULATION_STATUS:
995                 hv->hv_tsc_emulation_status = data;
996                 break;
997         default:
998                 vcpu_unimpl(vcpu, "Hyper-V uhandled wrmsr: 0x%x data 0x%llx\n",
999                             msr, data);
1000                 return 1;
1001         }
1002         return 0;
1003 }
1004
1005 /* Calculate cpu time spent by current task in 100ns units */
1006 static u64 current_task_runtime_100ns(void)
1007 {
1008         u64 utime, stime;
1009
1010         task_cputime_adjusted(current, &utime, &stime);
1011
1012         return div_u64(utime + stime, 100);
1013 }
1014
1015 static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1016 {
1017         struct kvm_vcpu_hv *hv = &vcpu->arch.hyperv;
1018
1019         switch (msr) {
1020         case HV_X64_MSR_VP_INDEX:
1021                 if (!host)
1022                         return 1;
1023                 hv->vp_index = (u32)data;
1024                 break;
1025         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1026                 u64 gfn;
1027                 unsigned long addr;
1028
1029                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1030                         hv->hv_vapic = data;
1031                         if (kvm_lapic_enable_pv_eoi(vcpu, 0))
1032                                 return 1;
1033                         break;
1034                 }
1035                 gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
1036                 addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
1037                 if (kvm_is_error_hva(addr))
1038                         return 1;
1039                 if (__clear_user((void __user *)addr, PAGE_SIZE))
1040                         return 1;
1041                 hv->hv_vapic = data;
1042                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
1043                 if (kvm_lapic_enable_pv_eoi(vcpu,
1044                                             gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
1045                         return 1;
1046                 break;
1047         }
1048         case HV_X64_MSR_EOI:
1049                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1050         case HV_X64_MSR_ICR:
1051                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1052         case HV_X64_MSR_TPR:
1053                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1054         case HV_X64_MSR_VP_RUNTIME:
1055                 if (!host)
1056                         return 1;
1057                 hv->runtime_offset = data - current_task_runtime_100ns();
1058                 break;
1059         case HV_X64_MSR_SCONTROL:
1060         case HV_X64_MSR_SVERSION:
1061         case HV_X64_MSR_SIEFP:
1062         case HV_X64_MSR_SIMP:
1063         case HV_X64_MSR_EOM:
1064         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1065                 return synic_set_msr(vcpu_to_synic(vcpu), msr, data, host);
1066         case HV_X64_MSR_STIMER0_CONFIG:
1067         case HV_X64_MSR_STIMER1_CONFIG:
1068         case HV_X64_MSR_STIMER2_CONFIG:
1069         case HV_X64_MSR_STIMER3_CONFIG: {
1070                 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1071
1072                 return stimer_set_config(vcpu_to_stimer(vcpu, timer_index),
1073                                          data, host);
1074         }
1075         case HV_X64_MSR_STIMER0_COUNT:
1076         case HV_X64_MSR_STIMER1_COUNT:
1077         case HV_X64_MSR_STIMER2_COUNT:
1078         case HV_X64_MSR_STIMER3_COUNT: {
1079                 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1080
1081                 return stimer_set_count(vcpu_to_stimer(vcpu, timer_index),
1082                                         data, host);
1083         }
1084         default:
1085                 vcpu_unimpl(vcpu, "Hyper-V uhandled wrmsr: 0x%x data 0x%llx\n",
1086                             msr, data);
1087                 return 1;
1088         }
1089
1090         return 0;
1091 }
1092
1093 static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1094 {
1095         u64 data = 0;
1096         struct kvm *kvm = vcpu->kvm;
1097         struct kvm_hv *hv = &kvm->arch.hyperv;
1098
1099         switch (msr) {
1100         case HV_X64_MSR_GUEST_OS_ID:
1101                 data = hv->hv_guest_os_id;
1102                 break;
1103         case HV_X64_MSR_HYPERCALL:
1104                 data = hv->hv_hypercall;
1105                 break;
1106         case HV_X64_MSR_TIME_REF_COUNT:
1107                 data = get_time_ref_counter(kvm);
1108                 break;
1109         case HV_X64_MSR_REFERENCE_TSC:
1110                 data = hv->hv_tsc_page;
1111                 break;
1112         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1113                 return kvm_hv_msr_get_crash_data(vcpu,
1114                                                  msr - HV_X64_MSR_CRASH_P0,
1115                                                  pdata);
1116         case HV_X64_MSR_CRASH_CTL:
1117                 return kvm_hv_msr_get_crash_ctl(vcpu, pdata);
1118         case HV_X64_MSR_RESET:
1119                 data = 0;
1120                 break;
1121         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1122                 data = hv->hv_reenlightenment_control;
1123                 break;
1124         case HV_X64_MSR_TSC_EMULATION_CONTROL:
1125                 data = hv->hv_tsc_emulation_control;
1126                 break;
1127         case HV_X64_MSR_TSC_EMULATION_STATUS:
1128                 data = hv->hv_tsc_emulation_status;
1129                 break;
1130         default:
1131                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1132                 return 1;
1133         }
1134
1135         *pdata = data;
1136         return 0;
1137 }
1138
1139 static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1140 {
1141         u64 data = 0;
1142         struct kvm_vcpu_hv *hv = &vcpu->arch.hyperv;
1143
1144         switch (msr) {
1145         case HV_X64_MSR_VP_INDEX:
1146                 data = hv->vp_index;
1147                 break;
1148         case HV_X64_MSR_EOI:
1149                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1150         case HV_X64_MSR_ICR:
1151                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1152         case HV_X64_MSR_TPR:
1153                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1154         case HV_X64_MSR_APIC_ASSIST_PAGE:
1155                 data = hv->hv_vapic;
1156                 break;
1157         case HV_X64_MSR_VP_RUNTIME:
1158                 data = current_task_runtime_100ns() + hv->runtime_offset;
1159                 break;
1160         case HV_X64_MSR_SCONTROL:
1161         case HV_X64_MSR_SVERSION:
1162         case HV_X64_MSR_SIEFP:
1163         case HV_X64_MSR_SIMP:
1164         case HV_X64_MSR_EOM:
1165         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1166                 return synic_get_msr(vcpu_to_synic(vcpu), msr, pdata);
1167         case HV_X64_MSR_STIMER0_CONFIG:
1168         case HV_X64_MSR_STIMER1_CONFIG:
1169         case HV_X64_MSR_STIMER2_CONFIG:
1170         case HV_X64_MSR_STIMER3_CONFIG: {
1171                 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1172
1173                 return stimer_get_config(vcpu_to_stimer(vcpu, timer_index),
1174                                          pdata);
1175         }
1176         case HV_X64_MSR_STIMER0_COUNT:
1177         case HV_X64_MSR_STIMER1_COUNT:
1178         case HV_X64_MSR_STIMER2_COUNT:
1179         case HV_X64_MSR_STIMER3_COUNT: {
1180                 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1181
1182                 return stimer_get_count(vcpu_to_stimer(vcpu, timer_index),
1183                                         pdata);
1184         }
1185         case HV_X64_MSR_TSC_FREQUENCY:
1186                 data = (u64)vcpu->arch.virtual_tsc_khz * 1000;
1187                 break;
1188         case HV_X64_MSR_APIC_FREQUENCY:
1189                 data = APIC_BUS_FREQUENCY;
1190                 break;
1191         default:
1192                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1193                 return 1;
1194         }
1195         *pdata = data;
1196         return 0;
1197 }
1198
1199 int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1200 {
1201         if (kvm_hv_msr_partition_wide(msr)) {
1202                 int r;
1203
1204                 mutex_lock(&vcpu->kvm->arch.hyperv.hv_lock);
1205                 r = kvm_hv_set_msr_pw(vcpu, msr, data, host);
1206                 mutex_unlock(&vcpu->kvm->arch.hyperv.hv_lock);
1207                 return r;
1208         } else
1209                 return kvm_hv_set_msr(vcpu, msr, data, host);
1210 }
1211
1212 int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1213 {
1214         if (kvm_hv_msr_partition_wide(msr)) {
1215                 int r;
1216
1217                 mutex_lock(&vcpu->kvm->arch.hyperv.hv_lock);
1218                 r = kvm_hv_get_msr_pw(vcpu, msr, pdata);
1219                 mutex_unlock(&vcpu->kvm->arch.hyperv.hv_lock);
1220                 return r;
1221         } else
1222                 return kvm_hv_get_msr(vcpu, msr, pdata);
1223 }
1224
1225 bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1226 {
1227         return READ_ONCE(kvm->arch.hyperv.hv_hypercall) & HV_X64_MSR_HYPERCALL_ENABLE;
1228 }
1229
1230 static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
1231 {
1232         bool longmode;
1233
1234         longmode = is_64_bit_mode(vcpu);
1235         if (longmode)
1236                 kvm_register_write(vcpu, VCPU_REGS_RAX, result);
1237         else {
1238                 kvm_register_write(vcpu, VCPU_REGS_RDX, result >> 32);
1239                 kvm_register_write(vcpu, VCPU_REGS_RAX, result & 0xffffffff);
1240         }
1241 }
1242
1243 static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
1244 {
1245         struct kvm_run *run = vcpu->run;
1246
1247         kvm_hv_hypercall_set_result(vcpu, run->hyperv.u.hcall.result);
1248         return 1;
1249 }
1250
1251 static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, bool fast, u64 param)
1252 {
1253         struct eventfd_ctx *eventfd;
1254
1255         if (unlikely(!fast)) {
1256                 int ret;
1257                 gpa_t gpa = param;
1258
1259                 if ((gpa & (__alignof__(param) - 1)) ||
1260                     offset_in_page(gpa) + sizeof(param) > PAGE_SIZE)
1261                         return HV_STATUS_INVALID_ALIGNMENT;
1262
1263                 ret = kvm_vcpu_read_guest(vcpu, gpa, &param, sizeof(param));
1264                 if (ret < 0)
1265                         return HV_STATUS_INVALID_ALIGNMENT;
1266         }
1267
1268         /*
1269          * Per spec, bits 32-47 contain the extra "flag number".  However, we
1270          * have no use for it, and in all known usecases it is zero, so just
1271          * report lookup failure if it isn't.
1272          */
1273         if (param & 0xffff00000000ULL)
1274                 return HV_STATUS_INVALID_PORT_ID;
1275         /* remaining bits are reserved-zero */
1276         if (param & ~KVM_HYPERV_CONN_ID_MASK)
1277                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1278
1279         /* conn_to_evt is protected by vcpu->kvm->srcu */
1280         eventfd = idr_find(&vcpu->kvm->arch.hyperv.conn_to_evt, param);
1281         if (!eventfd)
1282                 return HV_STATUS_INVALID_PORT_ID;
1283
1284         eventfd_signal(eventfd, 1);
1285         return HV_STATUS_SUCCESS;
1286 }
1287
1288 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
1289 {
1290         u64 param, ingpa, outgpa, ret;
1291         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
1292         bool fast, longmode;
1293
1294         /*
1295          * hypercall generates UD from non zero cpl and real mode
1296          * per HYPER-V spec
1297          */
1298         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
1299                 kvm_queue_exception(vcpu, UD_VECTOR);
1300                 return 1;
1301         }
1302
1303         longmode = is_64_bit_mode(vcpu);
1304
1305         if (!longmode) {
1306                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
1307                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
1308                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
1309                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
1310                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
1311                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
1312         }
1313 #ifdef CONFIG_X86_64
1314         else {
1315                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
1316                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
1317                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
1318         }
1319 #endif
1320
1321         code = param & 0xffff;
1322         fast = (param >> 16) & 0x1;
1323         rep_cnt = (param >> 32) & 0xfff;
1324         rep_idx = (param >> 48) & 0xfff;
1325
1326         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
1327
1328         /* Hypercall continuation is not supported yet */
1329         if (rep_cnt || rep_idx) {
1330                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
1331                 goto set_result;
1332         }
1333
1334         switch (code) {
1335         case HVCALL_NOTIFY_LONG_SPIN_WAIT:
1336                 kvm_vcpu_on_spin(vcpu, true);
1337                 break;
1338         case HVCALL_SIGNAL_EVENT:
1339                 res = kvm_hvcall_signal_event(vcpu, fast, ingpa);
1340                 if (res != HV_STATUS_INVALID_PORT_ID)
1341                         break;
1342                 /* maybe userspace knows this conn_id: fall through */
1343         case HVCALL_POST_MESSAGE:
1344                 /* don't bother userspace if it has no way to handle it */
1345                 if (!vcpu_to_synic(vcpu)->active) {
1346                         res = HV_STATUS_INVALID_HYPERCALL_CODE;
1347                         break;
1348                 }
1349                 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
1350                 vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
1351                 vcpu->run->hyperv.u.hcall.input = param;
1352                 vcpu->run->hyperv.u.hcall.params[0] = ingpa;
1353                 vcpu->run->hyperv.u.hcall.params[1] = outgpa;
1354                 vcpu->arch.complete_userspace_io =
1355                                 kvm_hv_hypercall_complete_userspace;
1356                 return 0;
1357         default:
1358                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
1359                 break;
1360         }
1361
1362 set_result:
1363         ret = res | (((u64)rep_done & 0xfff) << 32);
1364         kvm_hv_hypercall_set_result(vcpu, ret);
1365         return 1;
1366 }
1367
1368 void kvm_hv_init_vm(struct kvm *kvm)
1369 {
1370         mutex_init(&kvm->arch.hyperv.hv_lock);
1371         idr_init(&kvm->arch.hyperv.conn_to_evt);
1372 }
1373
1374 void kvm_hv_destroy_vm(struct kvm *kvm)
1375 {
1376         struct eventfd_ctx *eventfd;
1377         int i;
1378
1379         idr_for_each_entry(&kvm->arch.hyperv.conn_to_evt, eventfd, i)
1380                 eventfd_ctx_put(eventfd);
1381         idr_destroy(&kvm->arch.hyperv.conn_to_evt);
1382 }
1383
1384 static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd)
1385 {
1386         struct kvm_hv *hv = &kvm->arch.hyperv;
1387         struct eventfd_ctx *eventfd;
1388         int ret;
1389
1390         eventfd = eventfd_ctx_fdget(fd);
1391         if (IS_ERR(eventfd))
1392                 return PTR_ERR(eventfd);
1393
1394         mutex_lock(&hv->hv_lock);
1395         ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1,
1396                         GFP_KERNEL);
1397         mutex_unlock(&hv->hv_lock);
1398
1399         if (ret >= 0)
1400                 return 0;
1401
1402         if (ret == -ENOSPC)
1403                 ret = -EEXIST;
1404         eventfd_ctx_put(eventfd);
1405         return ret;
1406 }
1407
1408 static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id)
1409 {
1410         struct kvm_hv *hv = &kvm->arch.hyperv;
1411         struct eventfd_ctx *eventfd;
1412
1413         mutex_lock(&hv->hv_lock);
1414         eventfd = idr_remove(&hv->conn_to_evt, conn_id);
1415         mutex_unlock(&hv->hv_lock);
1416
1417         if (!eventfd)
1418                 return -ENOENT;
1419
1420         synchronize_srcu(&kvm->srcu);
1421         eventfd_ctx_put(eventfd);
1422         return 0;
1423 }
1424
1425 int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args)
1426 {
1427         if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) ||
1428             (args->conn_id & ~KVM_HYPERV_CONN_ID_MASK))
1429                 return -EINVAL;
1430
1431         if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN)
1432                 return kvm_hv_eventfd_deassign(kvm, args->conn_id);
1433         return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd);
1434 }