]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/mmu/mmu.c
KVM: x86/mmu: Persist gfn_lpage_is_disallowed() to max_level
[linux.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17
18 #include "irq.h"
19 #include "mmu.h"
20 #include "x86.h"
21 #include "kvm_cache_regs.h"
22 #include "cpuid.h"
23
24 #include <linux/kvm_host.h>
25 #include <linux/types.h>
26 #include <linux/string.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/moduleparam.h>
30 #include <linux/export.h>
31 #include <linux/swap.h>
32 #include <linux/hugetlb.h>
33 #include <linux/compiler.h>
34 #include <linux/srcu.h>
35 #include <linux/slab.h>
36 #include <linux/sched/signal.h>
37 #include <linux/uaccess.h>
38 #include <linux/hash.h>
39 #include <linux/kern_levels.h>
40 #include <linux/kthread.h>
41
42 #include <asm/page.h>
43 #include <asm/pat.h>
44 #include <asm/cmpxchg.h>
45 #include <asm/e820/api.h>
46 #include <asm/io.h>
47 #include <asm/vmx.h>
48 #include <asm/kvm_page_track.h>
49 #include "trace.h"
50
51 extern bool itlb_multihit_kvm_mitigation;
52
53 static int __read_mostly nx_huge_pages = -1;
54 #ifdef CONFIG_PREEMPT_RT
55 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
56 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
57 #else
58 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
59 #endif
60
61 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
62 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
63
64 static struct kernel_param_ops nx_huge_pages_ops = {
65         .set = set_nx_huge_pages,
66         .get = param_get_bool,
67 };
68
69 static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
70         .set = set_nx_huge_pages_recovery_ratio,
71         .get = param_get_uint,
72 };
73
74 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
75 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
76 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
77                 &nx_huge_pages_recovery_ratio, 0644);
78 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
79
80 /*
81  * When setting this variable to true it enables Two-Dimensional-Paging
82  * where the hardware walks 2 page tables:
83  * 1. the guest-virtual to guest-physical
84  * 2. while doing 1. it walks guest-physical to host-physical
85  * If the hardware supports that we don't need to do shadow paging.
86  */
87 bool tdp_enabled = false;
88
89 enum {
90         AUDIT_PRE_PAGE_FAULT,
91         AUDIT_POST_PAGE_FAULT,
92         AUDIT_PRE_PTE_WRITE,
93         AUDIT_POST_PTE_WRITE,
94         AUDIT_PRE_SYNC,
95         AUDIT_POST_SYNC
96 };
97
98 #undef MMU_DEBUG
99
100 #ifdef MMU_DEBUG
101 static bool dbg = 0;
102 module_param(dbg, bool, 0644);
103
104 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
105 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
106 #define MMU_WARN_ON(x) WARN_ON(x)
107 #else
108 #define pgprintk(x...) do { } while (0)
109 #define rmap_printk(x...) do { } while (0)
110 #define MMU_WARN_ON(x) do { } while (0)
111 #endif
112
113 #define PTE_PREFETCH_NUM                8
114
115 #define PT_FIRST_AVAIL_BITS_SHIFT 10
116 #define PT64_SECOND_AVAIL_BITS_SHIFT 54
117
118 /*
119  * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
120  * Access Tracking SPTEs.
121  */
122 #define SPTE_SPECIAL_MASK (3ULL << 52)
123 #define SPTE_AD_ENABLED_MASK (0ULL << 52)
124 #define SPTE_AD_DISABLED_MASK (1ULL << 52)
125 #define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52)
126 #define SPTE_MMIO_MASK (3ULL << 52)
127
128 #define PT64_LEVEL_BITS 9
129
130 #define PT64_LEVEL_SHIFT(level) \
131                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
132
133 #define PT64_INDEX(address, level)\
134         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
135
136
137 #define PT32_LEVEL_BITS 10
138
139 #define PT32_LEVEL_SHIFT(level) \
140                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
141
142 #define PT32_LVL_OFFSET_MASK(level) \
143         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
144                                                 * PT32_LEVEL_BITS))) - 1))
145
146 #define PT32_INDEX(address, level)\
147         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
148
149
150 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
151 #define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
152 #else
153 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
154 #endif
155 #define PT64_LVL_ADDR_MASK(level) \
156         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
157                                                 * PT64_LEVEL_BITS))) - 1))
158 #define PT64_LVL_OFFSET_MASK(level) \
159         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
160                                                 * PT64_LEVEL_BITS))) - 1))
161
162 #define PT32_BASE_ADDR_MASK PAGE_MASK
163 #define PT32_DIR_BASE_ADDR_MASK \
164         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
165 #define PT32_LVL_ADDR_MASK(level) \
166         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
167                                             * PT32_LEVEL_BITS))) - 1))
168
169 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
170                         | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
171
172 #define ACC_EXEC_MASK    1
173 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
174 #define ACC_USER_MASK    PT_USER_MASK
175 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
176
177 /* The mask for the R/X bits in EPT PTEs */
178 #define PT64_EPT_READABLE_MASK                  0x1ull
179 #define PT64_EPT_EXECUTABLE_MASK                0x4ull
180
181 #include <trace/events/kvm.h>
182
183 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
184 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
185
186 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
187
188 /* make pte_list_desc fit well in cache line */
189 #define PTE_LIST_EXT 3
190
191 /*
192  * Return values of handle_mmio_page_fault and mmu.page_fault:
193  * RET_PF_RETRY: let CPU fault again on the address.
194  * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
195  *
196  * For handle_mmio_page_fault only:
197  * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
198  */
199 enum {
200         RET_PF_RETRY = 0,
201         RET_PF_EMULATE = 1,
202         RET_PF_INVALID = 2,
203 };
204
205 struct pte_list_desc {
206         u64 *sptes[PTE_LIST_EXT];
207         struct pte_list_desc *more;
208 };
209
210 struct kvm_shadow_walk_iterator {
211         u64 addr;
212         hpa_t shadow_addr;
213         u64 *sptep;
214         int level;
215         unsigned index;
216 };
217
218 static const union kvm_mmu_page_role mmu_base_role_mask = {
219         .cr0_wp = 1,
220         .gpte_is_8_bytes = 1,
221         .nxe = 1,
222         .smep_andnot_wp = 1,
223         .smap_andnot_wp = 1,
224         .smm = 1,
225         .guest_mode = 1,
226         .ad_disabled = 1,
227 };
228
229 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
230         for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
231                                          (_root), (_addr));                \
232              shadow_walk_okay(&(_walker));                                 \
233              shadow_walk_next(&(_walker)))
234
235 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
236         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
237              shadow_walk_okay(&(_walker));                      \
238              shadow_walk_next(&(_walker)))
239
240 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
241         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
242              shadow_walk_okay(&(_walker)) &&                            \
243                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
244              __shadow_walk_next(&(_walker), spte))
245
246 static struct kmem_cache *pte_list_desc_cache;
247 static struct kmem_cache *mmu_page_header_cache;
248 static struct percpu_counter kvm_total_used_mmu_pages;
249
250 static u64 __read_mostly shadow_nx_mask;
251 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
252 static u64 __read_mostly shadow_user_mask;
253 static u64 __read_mostly shadow_accessed_mask;
254 static u64 __read_mostly shadow_dirty_mask;
255 static u64 __read_mostly shadow_mmio_mask;
256 static u64 __read_mostly shadow_mmio_value;
257 static u64 __read_mostly shadow_mmio_access_mask;
258 static u64 __read_mostly shadow_present_mask;
259 static u64 __read_mostly shadow_me_mask;
260
261 /*
262  * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK;
263  * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
264  * pages.
265  */
266 static u64 __read_mostly shadow_acc_track_mask;
267
268 /*
269  * The mask/shift to use for saving the original R/X bits when marking the PTE
270  * as not-present for access tracking purposes. We do not save the W bit as the
271  * PTEs being access tracked also need to be dirty tracked, so the W bit will be
272  * restored only when a write is attempted to the page.
273  */
274 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
275                                                     PT64_EPT_EXECUTABLE_MASK;
276 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
277
278 /*
279  * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
280  * to guard against L1TF attacks.
281  */
282 static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
283
284 /*
285  * The number of high-order 1 bits to use in the mask above.
286  */
287 static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
288
289 /*
290  * In some cases, we need to preserve the GFN of a non-present or reserved
291  * SPTE when we usurp the upper five bits of the physical address space to
292  * defend against L1TF, e.g. for MMIO SPTEs.  To preserve the GFN, we'll
293  * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
294  * left into the reserved bits, i.e. the GFN in the SPTE will be split into
295  * high and low parts.  This mask covers the lower bits of the GFN.
296  */
297 static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
298
299 /*
300  * The number of non-reserved physical address bits irrespective of features
301  * that repurpose legal bits, e.g. MKTME.
302  */
303 static u8 __read_mostly shadow_phys_bits;
304
305 static void mmu_spte_set(u64 *sptep, u64 spte);
306 static bool is_executable_pte(u64 spte);
307 static union kvm_mmu_page_role
308 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
309
310 #define CREATE_TRACE_POINTS
311 #include "mmutrace.h"
312
313
314 static inline bool kvm_available_flush_tlb_with_range(void)
315 {
316         return kvm_x86_ops->tlb_remote_flush_with_range;
317 }
318
319 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
320                 struct kvm_tlb_range *range)
321 {
322         int ret = -ENOTSUPP;
323
324         if (range && kvm_x86_ops->tlb_remote_flush_with_range)
325                 ret = kvm_x86_ops->tlb_remote_flush_with_range(kvm, range);
326
327         if (ret)
328                 kvm_flush_remote_tlbs(kvm);
329 }
330
331 static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
332                 u64 start_gfn, u64 pages)
333 {
334         struct kvm_tlb_range range;
335
336         range.start_gfn = start_gfn;
337         range.pages = pages;
338
339         kvm_flush_remote_tlbs_with_range(kvm, &range);
340 }
341
342 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value, u64 access_mask)
343 {
344         BUG_ON((u64)(unsigned)access_mask != access_mask);
345         BUG_ON((mmio_mask & mmio_value) != mmio_value);
346         shadow_mmio_value = mmio_value | SPTE_MMIO_MASK;
347         shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
348         shadow_mmio_access_mask = access_mask;
349 }
350 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
351
352 static bool is_mmio_spte(u64 spte)
353 {
354         return (spte & shadow_mmio_mask) == shadow_mmio_value;
355 }
356
357 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
358 {
359         return sp->role.ad_disabled;
360 }
361
362 static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu)
363 {
364         /*
365          * When using the EPT page-modification log, the GPAs in the log
366          * would come from L2 rather than L1.  Therefore, we need to rely
367          * on write protection to record dirty pages.  This also bypasses
368          * PML, since writes now result in a vmexit.
369          */
370         return vcpu->arch.mmu == &vcpu->arch.guest_mmu;
371 }
372
373 static inline bool spte_ad_enabled(u64 spte)
374 {
375         MMU_WARN_ON(is_mmio_spte(spte));
376         return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK;
377 }
378
379 static inline bool spte_ad_need_write_protect(u64 spte)
380 {
381         MMU_WARN_ON(is_mmio_spte(spte));
382         return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK;
383 }
384
385 static bool is_nx_huge_page_enabled(void)
386 {
387         return READ_ONCE(nx_huge_pages);
388 }
389
390 static inline u64 spte_shadow_accessed_mask(u64 spte)
391 {
392         MMU_WARN_ON(is_mmio_spte(spte));
393         return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
394 }
395
396 static inline u64 spte_shadow_dirty_mask(u64 spte)
397 {
398         MMU_WARN_ON(is_mmio_spte(spte));
399         return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
400 }
401
402 static inline bool is_access_track_spte(u64 spte)
403 {
404         return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
405 }
406
407 /*
408  * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
409  * the memslots generation and is derived as follows:
410  *
411  * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
412  * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
413  *
414  * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
415  * the MMIO generation number, as doing so would require stealing a bit from
416  * the "real" generation number and thus effectively halve the maximum number
417  * of MMIO generations that can be handled before encountering a wrap (which
418  * requires a full MMU zap).  The flag is instead explicitly queried when
419  * checking for MMIO spte cache hits.
420  */
421 #define MMIO_SPTE_GEN_MASK              GENMASK_ULL(18, 0)
422
423 #define MMIO_SPTE_GEN_LOW_START         3
424 #define MMIO_SPTE_GEN_LOW_END           11
425 #define MMIO_SPTE_GEN_LOW_MASK          GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
426                                                     MMIO_SPTE_GEN_LOW_START)
427
428 #define MMIO_SPTE_GEN_HIGH_START        52
429 #define MMIO_SPTE_GEN_HIGH_END          61
430 #define MMIO_SPTE_GEN_HIGH_MASK         GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
431                                                     MMIO_SPTE_GEN_HIGH_START)
432 static u64 generation_mmio_spte_mask(u64 gen)
433 {
434         u64 mask;
435
436         WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
437
438         mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
439         mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
440         return mask;
441 }
442
443 static u64 get_mmio_spte_generation(u64 spte)
444 {
445         u64 gen;
446
447         spte &= ~shadow_mmio_mask;
448
449         gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
450         gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
451         return gen;
452 }
453
454 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
455                            unsigned access)
456 {
457         u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
458         u64 mask = generation_mmio_spte_mask(gen);
459         u64 gpa = gfn << PAGE_SHIFT;
460
461         access &= shadow_mmio_access_mask;
462         mask |= shadow_mmio_value | access;
463         mask |= gpa | shadow_nonpresent_or_rsvd_mask;
464         mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
465                 << shadow_nonpresent_or_rsvd_mask_len;
466
467         trace_mark_mmio_spte(sptep, gfn, access, gen);
468         mmu_spte_set(sptep, mask);
469 }
470
471 static gfn_t get_mmio_spte_gfn(u64 spte)
472 {
473         u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
474
475         gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
476                & shadow_nonpresent_or_rsvd_mask;
477
478         return gpa >> PAGE_SHIFT;
479 }
480
481 static unsigned get_mmio_spte_access(u64 spte)
482 {
483         return spte & shadow_mmio_access_mask;
484 }
485
486 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
487                           kvm_pfn_t pfn, unsigned access)
488 {
489         if (unlikely(is_noslot_pfn(pfn))) {
490                 mark_mmio_spte(vcpu, sptep, gfn, access);
491                 return true;
492         }
493
494         return false;
495 }
496
497 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
498 {
499         u64 kvm_gen, spte_gen, gen;
500
501         gen = kvm_vcpu_memslots(vcpu)->generation;
502         if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
503                 return false;
504
505         kvm_gen = gen & MMIO_SPTE_GEN_MASK;
506         spte_gen = get_mmio_spte_generation(spte);
507
508         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
509         return likely(kvm_gen == spte_gen);
510 }
511
512 /*
513  * Sets the shadow PTE masks used by the MMU.
514  *
515  * Assumptions:
516  *  - Setting either @accessed_mask or @dirty_mask requires setting both
517  *  - At least one of @accessed_mask or @acc_track_mask must be set
518  */
519 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
520                 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
521                 u64 acc_track_mask, u64 me_mask)
522 {
523         BUG_ON(!dirty_mask != !accessed_mask);
524         BUG_ON(!accessed_mask && !acc_track_mask);
525         BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK);
526
527         shadow_user_mask = user_mask;
528         shadow_accessed_mask = accessed_mask;
529         shadow_dirty_mask = dirty_mask;
530         shadow_nx_mask = nx_mask;
531         shadow_x_mask = x_mask;
532         shadow_present_mask = p_mask;
533         shadow_acc_track_mask = acc_track_mask;
534         shadow_me_mask = me_mask;
535 }
536 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
537
538 static u8 kvm_get_shadow_phys_bits(void)
539 {
540         /*
541          * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
542          * in CPU detection code, but the processor treats those reduced bits as
543          * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
544          * the physical address bits reported by CPUID.
545          */
546         if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
547                 return cpuid_eax(0x80000008) & 0xff;
548
549         /*
550          * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
551          * custom CPUID.  Proceed with whatever the kernel found since these features
552          * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
553          */
554         return boot_cpu_data.x86_phys_bits;
555 }
556
557 static void kvm_mmu_reset_all_pte_masks(void)
558 {
559         u8 low_phys_bits;
560
561         shadow_user_mask = 0;
562         shadow_accessed_mask = 0;
563         shadow_dirty_mask = 0;
564         shadow_nx_mask = 0;
565         shadow_x_mask = 0;
566         shadow_mmio_mask = 0;
567         shadow_present_mask = 0;
568         shadow_acc_track_mask = 0;
569
570         shadow_phys_bits = kvm_get_shadow_phys_bits();
571
572         /*
573          * If the CPU has 46 or less physical address bits, then set an
574          * appropriate mask to guard against L1TF attacks. Otherwise, it is
575          * assumed that the CPU is not vulnerable to L1TF.
576          *
577          * Some Intel CPUs address the L1 cache using more PA bits than are
578          * reported by CPUID. Use the PA width of the L1 cache when possible
579          * to achieve more effective mitigation, e.g. if system RAM overlaps
580          * the most significant bits of legal physical address space.
581          */
582         shadow_nonpresent_or_rsvd_mask = 0;
583         low_phys_bits = boot_cpu_data.x86_cache_bits;
584         if (boot_cpu_data.x86_cache_bits <
585             52 - shadow_nonpresent_or_rsvd_mask_len) {
586                 shadow_nonpresent_or_rsvd_mask =
587                         rsvd_bits(boot_cpu_data.x86_cache_bits -
588                                   shadow_nonpresent_or_rsvd_mask_len,
589                                   boot_cpu_data.x86_cache_bits - 1);
590                 low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
591         } else
592                 WARN_ON_ONCE(boot_cpu_has_bug(X86_BUG_L1TF));
593
594         shadow_nonpresent_or_rsvd_lower_gfn_mask =
595                 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
596 }
597
598 static int is_cpuid_PSE36(void)
599 {
600         return 1;
601 }
602
603 static int is_nx(struct kvm_vcpu *vcpu)
604 {
605         return vcpu->arch.efer & EFER_NX;
606 }
607
608 static int is_shadow_present_pte(u64 pte)
609 {
610         return (pte != 0) && !is_mmio_spte(pte);
611 }
612
613 static int is_large_pte(u64 pte)
614 {
615         return pte & PT_PAGE_SIZE_MASK;
616 }
617
618 static int is_last_spte(u64 pte, int level)
619 {
620         if (level == PT_PAGE_TABLE_LEVEL)
621                 return 1;
622         if (is_large_pte(pte))
623                 return 1;
624         return 0;
625 }
626
627 static bool is_executable_pte(u64 spte)
628 {
629         return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
630 }
631
632 static kvm_pfn_t spte_to_pfn(u64 pte)
633 {
634         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
635 }
636
637 static gfn_t pse36_gfn_delta(u32 gpte)
638 {
639         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
640
641         return (gpte & PT32_DIR_PSE36_MASK) << shift;
642 }
643
644 #ifdef CONFIG_X86_64
645 static void __set_spte(u64 *sptep, u64 spte)
646 {
647         WRITE_ONCE(*sptep, spte);
648 }
649
650 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
651 {
652         WRITE_ONCE(*sptep, spte);
653 }
654
655 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
656 {
657         return xchg(sptep, spte);
658 }
659
660 static u64 __get_spte_lockless(u64 *sptep)
661 {
662         return READ_ONCE(*sptep);
663 }
664 #else
665 union split_spte {
666         struct {
667                 u32 spte_low;
668                 u32 spte_high;
669         };
670         u64 spte;
671 };
672
673 static void count_spte_clear(u64 *sptep, u64 spte)
674 {
675         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
676
677         if (is_shadow_present_pte(spte))
678                 return;
679
680         /* Ensure the spte is completely set before we increase the count */
681         smp_wmb();
682         sp->clear_spte_count++;
683 }
684
685 static void __set_spte(u64 *sptep, u64 spte)
686 {
687         union split_spte *ssptep, sspte;
688
689         ssptep = (union split_spte *)sptep;
690         sspte = (union split_spte)spte;
691
692         ssptep->spte_high = sspte.spte_high;
693
694         /*
695          * If we map the spte from nonpresent to present, We should store
696          * the high bits firstly, then set present bit, so cpu can not
697          * fetch this spte while we are setting the spte.
698          */
699         smp_wmb();
700
701         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
702 }
703
704 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
705 {
706         union split_spte *ssptep, sspte;
707
708         ssptep = (union split_spte *)sptep;
709         sspte = (union split_spte)spte;
710
711         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
712
713         /*
714          * If we map the spte from present to nonpresent, we should clear
715          * present bit firstly to avoid vcpu fetch the old high bits.
716          */
717         smp_wmb();
718
719         ssptep->spte_high = sspte.spte_high;
720         count_spte_clear(sptep, spte);
721 }
722
723 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
724 {
725         union split_spte *ssptep, sspte, orig;
726
727         ssptep = (union split_spte *)sptep;
728         sspte = (union split_spte)spte;
729
730         /* xchg acts as a barrier before the setting of the high bits */
731         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
732         orig.spte_high = ssptep->spte_high;
733         ssptep->spte_high = sspte.spte_high;
734         count_spte_clear(sptep, spte);
735
736         return orig.spte;
737 }
738
739 /*
740  * The idea using the light way get the spte on x86_32 guest is from
741  * gup_get_pte (mm/gup.c).
742  *
743  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
744  * coalesces them and we are running out of the MMU lock.  Therefore
745  * we need to protect against in-progress updates of the spte.
746  *
747  * Reading the spte while an update is in progress may get the old value
748  * for the high part of the spte.  The race is fine for a present->non-present
749  * change (because the high part of the spte is ignored for non-present spte),
750  * but for a present->present change we must reread the spte.
751  *
752  * All such changes are done in two steps (present->non-present and
753  * non-present->present), hence it is enough to count the number of
754  * present->non-present updates: if it changed while reading the spte,
755  * we might have hit the race.  This is done using clear_spte_count.
756  */
757 static u64 __get_spte_lockless(u64 *sptep)
758 {
759         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
760         union split_spte spte, *orig = (union split_spte *)sptep;
761         int count;
762
763 retry:
764         count = sp->clear_spte_count;
765         smp_rmb();
766
767         spte.spte_low = orig->spte_low;
768         smp_rmb();
769
770         spte.spte_high = orig->spte_high;
771         smp_rmb();
772
773         if (unlikely(spte.spte_low != orig->spte_low ||
774               count != sp->clear_spte_count))
775                 goto retry;
776
777         return spte.spte;
778 }
779 #endif
780
781 static bool spte_can_locklessly_be_made_writable(u64 spte)
782 {
783         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
784                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
785 }
786
787 static bool spte_has_volatile_bits(u64 spte)
788 {
789         if (!is_shadow_present_pte(spte))
790                 return false;
791
792         /*
793          * Always atomically update spte if it can be updated
794          * out of mmu-lock, it can ensure dirty bit is not lost,
795          * also, it can help us to get a stable is_writable_pte()
796          * to ensure tlb flush is not missed.
797          */
798         if (spte_can_locklessly_be_made_writable(spte) ||
799             is_access_track_spte(spte))
800                 return true;
801
802         if (spte_ad_enabled(spte)) {
803                 if ((spte & shadow_accessed_mask) == 0 ||
804                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
805                         return true;
806         }
807
808         return false;
809 }
810
811 static bool is_accessed_spte(u64 spte)
812 {
813         u64 accessed_mask = spte_shadow_accessed_mask(spte);
814
815         return accessed_mask ? spte & accessed_mask
816                              : !is_access_track_spte(spte);
817 }
818
819 static bool is_dirty_spte(u64 spte)
820 {
821         u64 dirty_mask = spte_shadow_dirty_mask(spte);
822
823         return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
824 }
825
826 /* Rules for using mmu_spte_set:
827  * Set the sptep from nonpresent to present.
828  * Note: the sptep being assigned *must* be either not present
829  * or in a state where the hardware will not attempt to update
830  * the spte.
831  */
832 static void mmu_spte_set(u64 *sptep, u64 new_spte)
833 {
834         WARN_ON(is_shadow_present_pte(*sptep));
835         __set_spte(sptep, new_spte);
836 }
837
838 /*
839  * Update the SPTE (excluding the PFN), but do not track changes in its
840  * accessed/dirty status.
841  */
842 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
843 {
844         u64 old_spte = *sptep;
845
846         WARN_ON(!is_shadow_present_pte(new_spte));
847
848         if (!is_shadow_present_pte(old_spte)) {
849                 mmu_spte_set(sptep, new_spte);
850                 return old_spte;
851         }
852
853         if (!spte_has_volatile_bits(old_spte))
854                 __update_clear_spte_fast(sptep, new_spte);
855         else
856                 old_spte = __update_clear_spte_slow(sptep, new_spte);
857
858         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
859
860         return old_spte;
861 }
862
863 /* Rules for using mmu_spte_update:
864  * Update the state bits, it means the mapped pfn is not changed.
865  *
866  * Whenever we overwrite a writable spte with a read-only one we
867  * should flush remote TLBs. Otherwise rmap_write_protect
868  * will find a read-only spte, even though the writable spte
869  * might be cached on a CPU's TLB, the return value indicates this
870  * case.
871  *
872  * Returns true if the TLB needs to be flushed
873  */
874 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
875 {
876         bool flush = false;
877         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
878
879         if (!is_shadow_present_pte(old_spte))
880                 return false;
881
882         /*
883          * For the spte updated out of mmu-lock is safe, since
884          * we always atomically update it, see the comments in
885          * spte_has_volatile_bits().
886          */
887         if (spte_can_locklessly_be_made_writable(old_spte) &&
888               !is_writable_pte(new_spte))
889                 flush = true;
890
891         /*
892          * Flush TLB when accessed/dirty states are changed in the page tables,
893          * to guarantee consistency between TLB and page tables.
894          */
895
896         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
897                 flush = true;
898                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
899         }
900
901         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
902                 flush = true;
903                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
904         }
905
906         return flush;
907 }
908
909 /*
910  * Rules for using mmu_spte_clear_track_bits:
911  * It sets the sptep from present to nonpresent, and track the
912  * state bits, it is used to clear the last level sptep.
913  * Returns non-zero if the PTE was previously valid.
914  */
915 static int mmu_spte_clear_track_bits(u64 *sptep)
916 {
917         kvm_pfn_t pfn;
918         u64 old_spte = *sptep;
919
920         if (!spte_has_volatile_bits(old_spte))
921                 __update_clear_spte_fast(sptep, 0ull);
922         else
923                 old_spte = __update_clear_spte_slow(sptep, 0ull);
924
925         if (!is_shadow_present_pte(old_spte))
926                 return 0;
927
928         pfn = spte_to_pfn(old_spte);
929
930         /*
931          * KVM does not hold the refcount of the page used by
932          * kvm mmu, before reclaiming the page, we should
933          * unmap it from mmu first.
934          */
935         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
936
937         if (is_accessed_spte(old_spte))
938                 kvm_set_pfn_accessed(pfn);
939
940         if (is_dirty_spte(old_spte))
941                 kvm_set_pfn_dirty(pfn);
942
943         return 1;
944 }
945
946 /*
947  * Rules for using mmu_spte_clear_no_track:
948  * Directly clear spte without caring the state bits of sptep,
949  * it is used to set the upper level spte.
950  */
951 static void mmu_spte_clear_no_track(u64 *sptep)
952 {
953         __update_clear_spte_fast(sptep, 0ull);
954 }
955
956 static u64 mmu_spte_get_lockless(u64 *sptep)
957 {
958         return __get_spte_lockless(sptep);
959 }
960
961 static u64 mark_spte_for_access_track(u64 spte)
962 {
963         if (spte_ad_enabled(spte))
964                 return spte & ~shadow_accessed_mask;
965
966         if (is_access_track_spte(spte))
967                 return spte;
968
969         /*
970          * Making an Access Tracking PTE will result in removal of write access
971          * from the PTE. So, verify that we will be able to restore the write
972          * access in the fast page fault path later on.
973          */
974         WARN_ONCE((spte & PT_WRITABLE_MASK) &&
975                   !spte_can_locklessly_be_made_writable(spte),
976                   "kvm: Writable SPTE is not locklessly dirty-trackable\n");
977
978         WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
979                           shadow_acc_track_saved_bits_shift),
980                   "kvm: Access Tracking saved bit locations are not zero\n");
981
982         spte |= (spte & shadow_acc_track_saved_bits_mask) <<
983                 shadow_acc_track_saved_bits_shift;
984         spte &= ~shadow_acc_track_mask;
985
986         return spte;
987 }
988
989 /* Restore an acc-track PTE back to a regular PTE */
990 static u64 restore_acc_track_spte(u64 spte)
991 {
992         u64 new_spte = spte;
993         u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
994                          & shadow_acc_track_saved_bits_mask;
995
996         WARN_ON_ONCE(spte_ad_enabled(spte));
997         WARN_ON_ONCE(!is_access_track_spte(spte));
998
999         new_spte &= ~shadow_acc_track_mask;
1000         new_spte &= ~(shadow_acc_track_saved_bits_mask <<
1001                       shadow_acc_track_saved_bits_shift);
1002         new_spte |= saved_bits;
1003
1004         return new_spte;
1005 }
1006
1007 /* Returns the Accessed status of the PTE and resets it at the same time. */
1008 static bool mmu_spte_age(u64 *sptep)
1009 {
1010         u64 spte = mmu_spte_get_lockless(sptep);
1011
1012         if (!is_accessed_spte(spte))
1013                 return false;
1014
1015         if (spte_ad_enabled(spte)) {
1016                 clear_bit((ffs(shadow_accessed_mask) - 1),
1017                           (unsigned long *)sptep);
1018         } else {
1019                 /*
1020                  * Capture the dirty status of the page, so that it doesn't get
1021                  * lost when the SPTE is marked for access tracking.
1022                  */
1023                 if (is_writable_pte(spte))
1024                         kvm_set_pfn_dirty(spte_to_pfn(spte));
1025
1026                 spte = mark_spte_for_access_track(spte);
1027                 mmu_spte_update_no_track(sptep, spte);
1028         }
1029
1030         return true;
1031 }
1032
1033 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
1034 {
1035         /*
1036          * Prevent page table teardown by making any free-er wait during
1037          * kvm_flush_remote_tlbs() IPI to all active vcpus.
1038          */
1039         local_irq_disable();
1040
1041         /*
1042          * Make sure a following spte read is not reordered ahead of the write
1043          * to vcpu->mode.
1044          */
1045         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
1046 }
1047
1048 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
1049 {
1050         /*
1051          * Make sure the write to vcpu->mode is not reordered in front of
1052          * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
1053          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
1054          */
1055         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
1056         local_irq_enable();
1057 }
1058
1059 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
1060                                   struct kmem_cache *base_cache, int min)
1061 {
1062         void *obj;
1063
1064         if (cache->nobjs >= min)
1065                 return 0;
1066         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1067                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT);
1068                 if (!obj)
1069                         return cache->nobjs >= min ? 0 : -ENOMEM;
1070                 cache->objects[cache->nobjs++] = obj;
1071         }
1072         return 0;
1073 }
1074
1075 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
1076 {
1077         return cache->nobjs;
1078 }
1079
1080 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
1081                                   struct kmem_cache *cache)
1082 {
1083         while (mc->nobjs)
1084                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
1085 }
1086
1087 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
1088                                        int min)
1089 {
1090         void *page;
1091
1092         if (cache->nobjs >= min)
1093                 return 0;
1094         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1095                 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
1096                 if (!page)
1097                         return cache->nobjs >= min ? 0 : -ENOMEM;
1098                 cache->objects[cache->nobjs++] = page;
1099         }
1100         return 0;
1101 }
1102
1103 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
1104 {
1105         while (mc->nobjs)
1106                 free_page((unsigned long)mc->objects[--mc->nobjs]);
1107 }
1108
1109 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
1110 {
1111         int r;
1112
1113         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1114                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
1115         if (r)
1116                 goto out;
1117         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
1118         if (r)
1119                 goto out;
1120         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
1121                                    mmu_page_header_cache, 4);
1122 out:
1123         return r;
1124 }
1125
1126 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1127 {
1128         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1129                                 pte_list_desc_cache);
1130         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
1131         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
1132                                 mmu_page_header_cache);
1133 }
1134
1135 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
1136 {
1137         void *p;
1138
1139         BUG_ON(!mc->nobjs);
1140         p = mc->objects[--mc->nobjs];
1141         return p;
1142 }
1143
1144 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1145 {
1146         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1147 }
1148
1149 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1150 {
1151         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1152 }
1153
1154 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1155 {
1156         if (!sp->role.direct)
1157                 return sp->gfns[index];
1158
1159         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1160 }
1161
1162 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1163 {
1164         if (!sp->role.direct) {
1165                 sp->gfns[index] = gfn;
1166                 return;
1167         }
1168
1169         if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
1170                 pr_err_ratelimited("gfn mismatch under direct page %llx "
1171                                    "(expected %llx, got %llx)\n",
1172                                    sp->gfn,
1173                                    kvm_mmu_page_get_gfn(sp, index), gfn);
1174 }
1175
1176 /*
1177  * Return the pointer to the large page information for a given gfn,
1178  * handling slots that are not large page aligned.
1179  */
1180 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1181                                               struct kvm_memory_slot *slot,
1182                                               int level)
1183 {
1184         unsigned long idx;
1185
1186         idx = gfn_to_index(gfn, slot->base_gfn, level);
1187         return &slot->arch.lpage_info[level - 2][idx];
1188 }
1189
1190 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1191                                             gfn_t gfn, int count)
1192 {
1193         struct kvm_lpage_info *linfo;
1194         int i;
1195
1196         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1197                 linfo = lpage_info_slot(gfn, slot, i);
1198                 linfo->disallow_lpage += count;
1199                 WARN_ON(linfo->disallow_lpage < 0);
1200         }
1201 }
1202
1203 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1204 {
1205         update_gfn_disallow_lpage_count(slot, gfn, 1);
1206 }
1207
1208 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1209 {
1210         update_gfn_disallow_lpage_count(slot, gfn, -1);
1211 }
1212
1213 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1214 {
1215         struct kvm_memslots *slots;
1216         struct kvm_memory_slot *slot;
1217         gfn_t gfn;
1218
1219         kvm->arch.indirect_shadow_pages++;
1220         gfn = sp->gfn;
1221         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1222         slot = __gfn_to_memslot(slots, gfn);
1223
1224         /* the non-leaf shadow pages are keeping readonly. */
1225         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1226                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1227                                                     KVM_PAGE_TRACK_WRITE);
1228
1229         kvm_mmu_gfn_disallow_lpage(slot, gfn);
1230 }
1231
1232 static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1233 {
1234         if (sp->lpage_disallowed)
1235                 return;
1236
1237         ++kvm->stat.nx_lpage_splits;
1238         list_add_tail(&sp->lpage_disallowed_link,
1239                       &kvm->arch.lpage_disallowed_mmu_pages);
1240         sp->lpage_disallowed = true;
1241 }
1242
1243 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1244 {
1245         struct kvm_memslots *slots;
1246         struct kvm_memory_slot *slot;
1247         gfn_t gfn;
1248
1249         kvm->arch.indirect_shadow_pages--;
1250         gfn = sp->gfn;
1251         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1252         slot = __gfn_to_memslot(slots, gfn);
1253         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1254                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1255                                                        KVM_PAGE_TRACK_WRITE);
1256
1257         kvm_mmu_gfn_allow_lpage(slot, gfn);
1258 }
1259
1260 static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1261 {
1262         --kvm->stat.nx_lpage_splits;
1263         sp->lpage_disallowed = false;
1264         list_del(&sp->lpage_disallowed_link);
1265 }
1266
1267 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1268                                           struct kvm_memory_slot *slot)
1269 {
1270         struct kvm_lpage_info *linfo;
1271
1272         if (slot) {
1273                 linfo = lpage_info_slot(gfn, slot, level);
1274                 return !!linfo->disallow_lpage;
1275         }
1276
1277         return true;
1278 }
1279
1280 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1281                                         int level)
1282 {
1283         struct kvm_memory_slot *slot;
1284
1285         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1286         return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1287 }
1288
1289 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
1290 {
1291         unsigned long page_size;
1292         int i, ret = 0;
1293
1294         page_size = kvm_host_page_size(kvm, gfn);
1295
1296         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1297                 if (page_size >= KVM_HPAGE_SIZE(i))
1298                         ret = i;
1299                 else
1300                         break;
1301         }
1302
1303         return ret;
1304 }
1305
1306 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1307                                           bool no_dirty_log)
1308 {
1309         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1310                 return false;
1311         if (no_dirty_log && slot->dirty_bitmap)
1312                 return false;
1313
1314         return true;
1315 }
1316
1317 static struct kvm_memory_slot *
1318 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1319                             bool no_dirty_log)
1320 {
1321         struct kvm_memory_slot *slot;
1322
1323         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1324         if (!memslot_valid_for_gpte(slot, no_dirty_log))
1325                 slot = NULL;
1326
1327         return slot;
1328 }
1329
1330 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1331                          int *max_levelp)
1332 {
1333         int max_level = *max_levelp;
1334         struct kvm_memory_slot *slot;
1335
1336         if (unlikely(max_level == PT_PAGE_TABLE_LEVEL))
1337                 return PT_PAGE_TABLE_LEVEL;
1338
1339         slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1340         if (!memslot_valid_for_gpte(slot, true)) {
1341                 *max_levelp = PT_PAGE_TABLE_LEVEL;
1342                 return PT_PAGE_TABLE_LEVEL;
1343         }
1344
1345         max_level = min(max_level, kvm_x86_ops->get_lpage_level());
1346         for ( ; max_level > PT_PAGE_TABLE_LEVEL; max_level--) {
1347                 if (!__mmu_gfn_lpage_is_disallowed(large_gfn, max_level, slot))
1348                         break;
1349         }
1350
1351         *max_levelp = max_level;
1352
1353         if (max_level == PT_PAGE_TABLE_LEVEL)
1354                 return PT_PAGE_TABLE_LEVEL;
1355
1356         /*
1357          * Note, host_mapping_level() does *not* handle transparent huge pages.
1358          * As suggested by "mapping", it reflects the page size established by
1359          * the associated vma, if there is one, i.e. host_mapping_level() will
1360          * return a huge page level if and only if a vma exists and the backing
1361          * implementation for the vma uses huge pages, e.g. hugetlbfs and dax.
1362          * So, do not propagate host_mapping_level() to max_level as KVM can
1363          * still promote the guest mapping to a huge page in the THP case.
1364          */
1365         return host_mapping_level(vcpu->kvm, large_gfn);
1366 }
1367
1368 /*
1369  * About rmap_head encoding:
1370  *
1371  * If the bit zero of rmap_head->val is clear, then it points to the only spte
1372  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1373  * pte_list_desc containing more mappings.
1374  */
1375
1376 /*
1377  * Returns the number of pointers in the rmap chain, not counting the new one.
1378  */
1379 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1380                         struct kvm_rmap_head *rmap_head)
1381 {
1382         struct pte_list_desc *desc;
1383         int i, count = 0;
1384
1385         if (!rmap_head->val) {
1386                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1387                 rmap_head->val = (unsigned long)spte;
1388         } else if (!(rmap_head->val & 1)) {
1389                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1390                 desc = mmu_alloc_pte_list_desc(vcpu);
1391                 desc->sptes[0] = (u64 *)rmap_head->val;
1392                 desc->sptes[1] = spte;
1393                 rmap_head->val = (unsigned long)desc | 1;
1394                 ++count;
1395         } else {
1396                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1397                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1398                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1399                         desc = desc->more;
1400                         count += PTE_LIST_EXT;
1401                 }
1402                 if (desc->sptes[PTE_LIST_EXT-1]) {
1403                         desc->more = mmu_alloc_pte_list_desc(vcpu);
1404                         desc = desc->more;
1405                 }
1406                 for (i = 0; desc->sptes[i]; ++i)
1407                         ++count;
1408                 desc->sptes[i] = spte;
1409         }
1410         return count;
1411 }
1412
1413 static void
1414 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1415                            struct pte_list_desc *desc, int i,
1416                            struct pte_list_desc *prev_desc)
1417 {
1418         int j;
1419
1420         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1421                 ;
1422         desc->sptes[i] = desc->sptes[j];
1423         desc->sptes[j] = NULL;
1424         if (j != 0)
1425                 return;
1426         if (!prev_desc && !desc->more)
1427                 rmap_head->val = 0;
1428         else
1429                 if (prev_desc)
1430                         prev_desc->more = desc->more;
1431                 else
1432                         rmap_head->val = (unsigned long)desc->more | 1;
1433         mmu_free_pte_list_desc(desc);
1434 }
1435
1436 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1437 {
1438         struct pte_list_desc *desc;
1439         struct pte_list_desc *prev_desc;
1440         int i;
1441
1442         if (!rmap_head->val) {
1443                 pr_err("%s: %p 0->BUG\n", __func__, spte);
1444                 BUG();
1445         } else if (!(rmap_head->val & 1)) {
1446                 rmap_printk("%s:  %p 1->0\n", __func__, spte);
1447                 if ((u64 *)rmap_head->val != spte) {
1448                         pr_err("%s:  %p 1->BUG\n", __func__, spte);
1449                         BUG();
1450                 }
1451                 rmap_head->val = 0;
1452         } else {
1453                 rmap_printk("%s:  %p many->many\n", __func__, spte);
1454                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1455                 prev_desc = NULL;
1456                 while (desc) {
1457                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1458                                 if (desc->sptes[i] == spte) {
1459                                         pte_list_desc_remove_entry(rmap_head,
1460                                                         desc, i, prev_desc);
1461                                         return;
1462                                 }
1463                         }
1464                         prev_desc = desc;
1465                         desc = desc->more;
1466                 }
1467                 pr_err("%s: %p many->many\n", __func__, spte);
1468                 BUG();
1469         }
1470 }
1471
1472 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1473 {
1474         mmu_spte_clear_track_bits(sptep);
1475         __pte_list_remove(sptep, rmap_head);
1476 }
1477
1478 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1479                                            struct kvm_memory_slot *slot)
1480 {
1481         unsigned long idx;
1482
1483         idx = gfn_to_index(gfn, slot->base_gfn, level);
1484         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1485 }
1486
1487 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1488                                          struct kvm_mmu_page *sp)
1489 {
1490         struct kvm_memslots *slots;
1491         struct kvm_memory_slot *slot;
1492
1493         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1494         slot = __gfn_to_memslot(slots, gfn);
1495         return __gfn_to_rmap(gfn, sp->role.level, slot);
1496 }
1497
1498 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1499 {
1500         struct kvm_mmu_memory_cache *cache;
1501
1502         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1503         return mmu_memory_cache_free_objects(cache);
1504 }
1505
1506 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1507 {
1508         struct kvm_mmu_page *sp;
1509         struct kvm_rmap_head *rmap_head;
1510
1511         sp = page_header(__pa(spte));
1512         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1513         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1514         return pte_list_add(vcpu, spte, rmap_head);
1515 }
1516
1517 static void rmap_remove(struct kvm *kvm, u64 *spte)
1518 {
1519         struct kvm_mmu_page *sp;
1520         gfn_t gfn;
1521         struct kvm_rmap_head *rmap_head;
1522
1523         sp = page_header(__pa(spte));
1524         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1525         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1526         __pte_list_remove(spte, rmap_head);
1527 }
1528
1529 /*
1530  * Used by the following functions to iterate through the sptes linked by a
1531  * rmap.  All fields are private and not assumed to be used outside.
1532  */
1533 struct rmap_iterator {
1534         /* private fields */
1535         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1536         int pos;                        /* index of the sptep */
1537 };
1538
1539 /*
1540  * Iteration must be started by this function.  This should also be used after
1541  * removing/dropping sptes from the rmap link because in such cases the
1542  * information in the iterator may not be valid.
1543  *
1544  * Returns sptep if found, NULL otherwise.
1545  */
1546 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1547                            struct rmap_iterator *iter)
1548 {
1549         u64 *sptep;
1550
1551         if (!rmap_head->val)
1552                 return NULL;
1553
1554         if (!(rmap_head->val & 1)) {
1555                 iter->desc = NULL;
1556                 sptep = (u64 *)rmap_head->val;
1557                 goto out;
1558         }
1559
1560         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1561         iter->pos = 0;
1562         sptep = iter->desc->sptes[iter->pos];
1563 out:
1564         BUG_ON(!is_shadow_present_pte(*sptep));
1565         return sptep;
1566 }
1567
1568 /*
1569  * Must be used with a valid iterator: e.g. after rmap_get_first().
1570  *
1571  * Returns sptep if found, NULL otherwise.
1572  */
1573 static u64 *rmap_get_next(struct rmap_iterator *iter)
1574 {
1575         u64 *sptep;
1576
1577         if (iter->desc) {
1578                 if (iter->pos < PTE_LIST_EXT - 1) {
1579                         ++iter->pos;
1580                         sptep = iter->desc->sptes[iter->pos];
1581                         if (sptep)
1582                                 goto out;
1583                 }
1584
1585                 iter->desc = iter->desc->more;
1586
1587                 if (iter->desc) {
1588                         iter->pos = 0;
1589                         /* desc->sptes[0] cannot be NULL */
1590                         sptep = iter->desc->sptes[iter->pos];
1591                         goto out;
1592                 }
1593         }
1594
1595         return NULL;
1596 out:
1597         BUG_ON(!is_shadow_present_pte(*sptep));
1598         return sptep;
1599 }
1600
1601 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1602         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1603              _spte_; _spte_ = rmap_get_next(_iter_))
1604
1605 static void drop_spte(struct kvm *kvm, u64 *sptep)
1606 {
1607         if (mmu_spte_clear_track_bits(sptep))
1608                 rmap_remove(kvm, sptep);
1609 }
1610
1611
1612 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1613 {
1614         if (is_large_pte(*sptep)) {
1615                 WARN_ON(page_header(__pa(sptep))->role.level ==
1616                         PT_PAGE_TABLE_LEVEL);
1617                 drop_spte(kvm, sptep);
1618                 --kvm->stat.lpages;
1619                 return true;
1620         }
1621
1622         return false;
1623 }
1624
1625 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1626 {
1627         if (__drop_large_spte(vcpu->kvm, sptep)) {
1628                 struct kvm_mmu_page *sp = page_header(__pa(sptep));
1629
1630                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1631                         KVM_PAGES_PER_HPAGE(sp->role.level));
1632         }
1633 }
1634
1635 /*
1636  * Write-protect on the specified @sptep, @pt_protect indicates whether
1637  * spte write-protection is caused by protecting shadow page table.
1638  *
1639  * Note: write protection is difference between dirty logging and spte
1640  * protection:
1641  * - for dirty logging, the spte can be set to writable at anytime if
1642  *   its dirty bitmap is properly set.
1643  * - for spte protection, the spte can be writable only after unsync-ing
1644  *   shadow page.
1645  *
1646  * Return true if tlb need be flushed.
1647  */
1648 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1649 {
1650         u64 spte = *sptep;
1651
1652         if (!is_writable_pte(spte) &&
1653               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1654                 return false;
1655
1656         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1657
1658         if (pt_protect)
1659                 spte &= ~SPTE_MMU_WRITEABLE;
1660         spte = spte & ~PT_WRITABLE_MASK;
1661
1662         return mmu_spte_update(sptep, spte);
1663 }
1664
1665 static bool __rmap_write_protect(struct kvm *kvm,
1666                                  struct kvm_rmap_head *rmap_head,
1667                                  bool pt_protect)
1668 {
1669         u64 *sptep;
1670         struct rmap_iterator iter;
1671         bool flush = false;
1672
1673         for_each_rmap_spte(rmap_head, &iter, sptep)
1674                 flush |= spte_write_protect(sptep, pt_protect);
1675
1676         return flush;
1677 }
1678
1679 static bool spte_clear_dirty(u64 *sptep)
1680 {
1681         u64 spte = *sptep;
1682
1683         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1684
1685         MMU_WARN_ON(!spte_ad_enabled(spte));
1686         spte &= ~shadow_dirty_mask;
1687         return mmu_spte_update(sptep, spte);
1688 }
1689
1690 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1691 {
1692         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1693                                                (unsigned long *)sptep);
1694         if (was_writable && !spte_ad_enabled(*sptep))
1695                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1696
1697         return was_writable;
1698 }
1699
1700 /*
1701  * Gets the GFN ready for another round of dirty logging by clearing the
1702  *      - D bit on ad-enabled SPTEs, and
1703  *      - W bit on ad-disabled SPTEs.
1704  * Returns true iff any D or W bits were cleared.
1705  */
1706 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1707 {
1708         u64 *sptep;
1709         struct rmap_iterator iter;
1710         bool flush = false;
1711
1712         for_each_rmap_spte(rmap_head, &iter, sptep)
1713                 if (spte_ad_need_write_protect(*sptep))
1714                         flush |= spte_wrprot_for_clear_dirty(sptep);
1715                 else
1716                         flush |= spte_clear_dirty(sptep);
1717
1718         return flush;
1719 }
1720
1721 static bool spte_set_dirty(u64 *sptep)
1722 {
1723         u64 spte = *sptep;
1724
1725         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1726
1727         /*
1728          * Similar to the !kvm_x86_ops->slot_disable_log_dirty case,
1729          * do not bother adding back write access to pages marked
1730          * SPTE_AD_WRPROT_ONLY_MASK.
1731          */
1732         spte |= shadow_dirty_mask;
1733
1734         return mmu_spte_update(sptep, spte);
1735 }
1736
1737 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1738 {
1739         u64 *sptep;
1740         struct rmap_iterator iter;
1741         bool flush = false;
1742
1743         for_each_rmap_spte(rmap_head, &iter, sptep)
1744                 if (spte_ad_enabled(*sptep))
1745                         flush |= spte_set_dirty(sptep);
1746
1747         return flush;
1748 }
1749
1750 /**
1751  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1752  * @kvm: kvm instance
1753  * @slot: slot to protect
1754  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1755  * @mask: indicates which pages we should protect
1756  *
1757  * Used when we do not need to care about huge page mappings: e.g. during dirty
1758  * logging we do not have any such mappings.
1759  */
1760 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1761                                      struct kvm_memory_slot *slot,
1762                                      gfn_t gfn_offset, unsigned long mask)
1763 {
1764         struct kvm_rmap_head *rmap_head;
1765
1766         while (mask) {
1767                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1768                                           PT_PAGE_TABLE_LEVEL, slot);
1769                 __rmap_write_protect(kvm, rmap_head, false);
1770
1771                 /* clear the first set bit */
1772                 mask &= mask - 1;
1773         }
1774 }
1775
1776 /**
1777  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1778  * protect the page if the D-bit isn't supported.
1779  * @kvm: kvm instance
1780  * @slot: slot to clear D-bit
1781  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1782  * @mask: indicates which pages we should clear D-bit
1783  *
1784  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1785  */
1786 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1787                                      struct kvm_memory_slot *slot,
1788                                      gfn_t gfn_offset, unsigned long mask)
1789 {
1790         struct kvm_rmap_head *rmap_head;
1791
1792         while (mask) {
1793                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1794                                           PT_PAGE_TABLE_LEVEL, slot);
1795                 __rmap_clear_dirty(kvm, rmap_head);
1796
1797                 /* clear the first set bit */
1798                 mask &= mask - 1;
1799         }
1800 }
1801 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1802
1803 /**
1804  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1805  * PT level pages.
1806  *
1807  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1808  * enable dirty logging for them.
1809  *
1810  * Used when we do not need to care about huge page mappings: e.g. during dirty
1811  * logging we do not have any such mappings.
1812  */
1813 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1814                                 struct kvm_memory_slot *slot,
1815                                 gfn_t gfn_offset, unsigned long mask)
1816 {
1817         if (kvm_x86_ops->enable_log_dirty_pt_masked)
1818                 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1819                                 mask);
1820         else
1821                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1822 }
1823
1824 /**
1825  * kvm_arch_write_log_dirty - emulate dirty page logging
1826  * @vcpu: Guest mode vcpu
1827  *
1828  * Emulate arch specific page modification logging for the
1829  * nested hypervisor
1830  */
1831 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1832 {
1833         if (kvm_x86_ops->write_log_dirty)
1834                 return kvm_x86_ops->write_log_dirty(vcpu);
1835
1836         return 0;
1837 }
1838
1839 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1840                                     struct kvm_memory_slot *slot, u64 gfn)
1841 {
1842         struct kvm_rmap_head *rmap_head;
1843         int i;
1844         bool write_protected = false;
1845
1846         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1847                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1848                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1849         }
1850
1851         return write_protected;
1852 }
1853
1854 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1855 {
1856         struct kvm_memory_slot *slot;
1857
1858         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1859         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1860 }
1861
1862 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1863 {
1864         u64 *sptep;
1865         struct rmap_iterator iter;
1866         bool flush = false;
1867
1868         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1869                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1870
1871                 pte_list_remove(rmap_head, sptep);
1872                 flush = true;
1873         }
1874
1875         return flush;
1876 }
1877
1878 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1879                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1880                            unsigned long data)
1881 {
1882         return kvm_zap_rmapp(kvm, rmap_head);
1883 }
1884
1885 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1886                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1887                              unsigned long data)
1888 {
1889         u64 *sptep;
1890         struct rmap_iterator iter;
1891         int need_flush = 0;
1892         u64 new_spte;
1893         pte_t *ptep = (pte_t *)data;
1894         kvm_pfn_t new_pfn;
1895
1896         WARN_ON(pte_huge(*ptep));
1897         new_pfn = pte_pfn(*ptep);
1898
1899 restart:
1900         for_each_rmap_spte(rmap_head, &iter, sptep) {
1901                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1902                             sptep, *sptep, gfn, level);
1903
1904                 need_flush = 1;
1905
1906                 if (pte_write(*ptep)) {
1907                         pte_list_remove(rmap_head, sptep);
1908                         goto restart;
1909                 } else {
1910                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1911                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1912
1913                         new_spte &= ~PT_WRITABLE_MASK;
1914                         new_spte &= ~SPTE_HOST_WRITEABLE;
1915
1916                         new_spte = mark_spte_for_access_track(new_spte);
1917
1918                         mmu_spte_clear_track_bits(sptep);
1919                         mmu_spte_set(sptep, new_spte);
1920                 }
1921         }
1922
1923         if (need_flush && kvm_available_flush_tlb_with_range()) {
1924                 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1925                 return 0;
1926         }
1927
1928         return need_flush;
1929 }
1930
1931 struct slot_rmap_walk_iterator {
1932         /* input fields. */
1933         struct kvm_memory_slot *slot;
1934         gfn_t start_gfn;
1935         gfn_t end_gfn;
1936         int start_level;
1937         int end_level;
1938
1939         /* output fields. */
1940         gfn_t gfn;
1941         struct kvm_rmap_head *rmap;
1942         int level;
1943
1944         /* private field. */
1945         struct kvm_rmap_head *end_rmap;
1946 };
1947
1948 static void
1949 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1950 {
1951         iterator->level = level;
1952         iterator->gfn = iterator->start_gfn;
1953         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1954         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1955                                            iterator->slot);
1956 }
1957
1958 static void
1959 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1960                     struct kvm_memory_slot *slot, int start_level,
1961                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1962 {
1963         iterator->slot = slot;
1964         iterator->start_level = start_level;
1965         iterator->end_level = end_level;
1966         iterator->start_gfn = start_gfn;
1967         iterator->end_gfn = end_gfn;
1968
1969         rmap_walk_init_level(iterator, iterator->start_level);
1970 }
1971
1972 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1973 {
1974         return !!iterator->rmap;
1975 }
1976
1977 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1978 {
1979         if (++iterator->rmap <= iterator->end_rmap) {
1980                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1981                 return;
1982         }
1983
1984         if (++iterator->level > iterator->end_level) {
1985                 iterator->rmap = NULL;
1986                 return;
1987         }
1988
1989         rmap_walk_init_level(iterator, iterator->level);
1990 }
1991
1992 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1993            _start_gfn, _end_gfn, _iter_)                                \
1994         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1995                                  _end_level_, _start_gfn, _end_gfn);    \
1996              slot_rmap_walk_okay(_iter_);                               \
1997              slot_rmap_walk_next(_iter_))
1998
1999 static int kvm_handle_hva_range(struct kvm *kvm,
2000                                 unsigned long start,
2001                                 unsigned long end,
2002                                 unsigned long data,
2003                                 int (*handler)(struct kvm *kvm,
2004                                                struct kvm_rmap_head *rmap_head,
2005                                                struct kvm_memory_slot *slot,
2006                                                gfn_t gfn,
2007                                                int level,
2008                                                unsigned long data))
2009 {
2010         struct kvm_memslots *slots;
2011         struct kvm_memory_slot *memslot;
2012         struct slot_rmap_walk_iterator iterator;
2013         int ret = 0;
2014         int i;
2015
2016         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
2017                 slots = __kvm_memslots(kvm, i);
2018                 kvm_for_each_memslot(memslot, slots) {
2019                         unsigned long hva_start, hva_end;
2020                         gfn_t gfn_start, gfn_end;
2021
2022                         hva_start = max(start, memslot->userspace_addr);
2023                         hva_end = min(end, memslot->userspace_addr +
2024                                       (memslot->npages << PAGE_SHIFT));
2025                         if (hva_start >= hva_end)
2026                                 continue;
2027                         /*
2028                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
2029                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
2030                          */
2031                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
2032                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
2033
2034                         for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
2035                                                  PT_MAX_HUGEPAGE_LEVEL,
2036                                                  gfn_start, gfn_end - 1,
2037                                                  &iterator)
2038                                 ret |= handler(kvm, iterator.rmap, memslot,
2039                                                iterator.gfn, iterator.level, data);
2040                 }
2041         }
2042
2043         return ret;
2044 }
2045
2046 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
2047                           unsigned long data,
2048                           int (*handler)(struct kvm *kvm,
2049                                          struct kvm_rmap_head *rmap_head,
2050                                          struct kvm_memory_slot *slot,
2051                                          gfn_t gfn, int level,
2052                                          unsigned long data))
2053 {
2054         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
2055 }
2056
2057 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
2058 {
2059         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
2060 }
2061
2062 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
2063 {
2064         return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
2065 }
2066
2067 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
2068                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
2069                          unsigned long data)
2070 {
2071         u64 *sptep;
2072         struct rmap_iterator uninitialized_var(iter);
2073         int young = 0;
2074
2075         for_each_rmap_spte(rmap_head, &iter, sptep)
2076                 young |= mmu_spte_age(sptep);
2077
2078         trace_kvm_age_page(gfn, level, slot, young);
2079         return young;
2080 }
2081
2082 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
2083                               struct kvm_memory_slot *slot, gfn_t gfn,
2084                               int level, unsigned long data)
2085 {
2086         u64 *sptep;
2087         struct rmap_iterator iter;
2088
2089         for_each_rmap_spte(rmap_head, &iter, sptep)
2090                 if (is_accessed_spte(*sptep))
2091                         return 1;
2092         return 0;
2093 }
2094
2095 #define RMAP_RECYCLE_THRESHOLD 1000
2096
2097 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
2098 {
2099         struct kvm_rmap_head *rmap_head;
2100         struct kvm_mmu_page *sp;
2101
2102         sp = page_header(__pa(spte));
2103
2104         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
2105
2106         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
2107         kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
2108                         KVM_PAGES_PER_HPAGE(sp->role.level));
2109 }
2110
2111 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
2112 {
2113         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
2114 }
2115
2116 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2117 {
2118         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
2119 }
2120
2121 #ifdef MMU_DEBUG
2122 static int is_empty_shadow_page(u64 *spt)
2123 {
2124         u64 *pos;
2125         u64 *end;
2126
2127         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
2128                 if (is_shadow_present_pte(*pos)) {
2129                         printk(KERN_ERR "%s: %p %llx\n", __func__,
2130                                pos, *pos);
2131                         return 0;
2132                 }
2133         return 1;
2134 }
2135 #endif
2136
2137 /*
2138  * This value is the sum of all of the kvm instances's
2139  * kvm->arch.n_used_mmu_pages values.  We need a global,
2140  * aggregate version in order to make the slab shrinker
2141  * faster
2142  */
2143 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
2144 {
2145         kvm->arch.n_used_mmu_pages += nr;
2146         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2147 }
2148
2149 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
2150 {
2151         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
2152         hlist_del(&sp->hash_link);
2153         list_del(&sp->link);
2154         free_page((unsigned long)sp->spt);
2155         if (!sp->role.direct)
2156                 free_page((unsigned long)sp->gfns);
2157         kmem_cache_free(mmu_page_header_cache, sp);
2158 }
2159
2160 static unsigned kvm_page_table_hashfn(gfn_t gfn)
2161 {
2162         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
2163 }
2164
2165 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
2166                                     struct kvm_mmu_page *sp, u64 *parent_pte)
2167 {
2168         if (!parent_pte)
2169                 return;
2170
2171         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
2172 }
2173
2174 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
2175                                        u64 *parent_pte)
2176 {
2177         __pte_list_remove(parent_pte, &sp->parent_ptes);
2178 }
2179
2180 static void drop_parent_pte(struct kvm_mmu_page *sp,
2181                             u64 *parent_pte)
2182 {
2183         mmu_page_remove_parent_pte(sp, parent_pte);
2184         mmu_spte_clear_no_track(parent_pte);
2185 }
2186
2187 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
2188 {
2189         struct kvm_mmu_page *sp;
2190
2191         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2192         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2193         if (!direct)
2194                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2195         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2196
2197         /*
2198          * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2199          * depends on valid pages being added to the head of the list.  See
2200          * comments in kvm_zap_obsolete_pages().
2201          */
2202         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2203         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
2204         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2205         return sp;
2206 }
2207
2208 static void mark_unsync(u64 *spte);
2209 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2210 {
2211         u64 *sptep;
2212         struct rmap_iterator iter;
2213
2214         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2215                 mark_unsync(sptep);
2216         }
2217 }
2218
2219 static void mark_unsync(u64 *spte)
2220 {
2221         struct kvm_mmu_page *sp;
2222         unsigned int index;
2223
2224         sp = page_header(__pa(spte));
2225         index = spte - sp->spt;
2226         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2227                 return;
2228         if (sp->unsync_children++)
2229                 return;
2230         kvm_mmu_mark_parents_unsync(sp);
2231 }
2232
2233 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2234                                struct kvm_mmu_page *sp)
2235 {
2236         return 0;
2237 }
2238
2239 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
2240 {
2241 }
2242
2243 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2244                                  struct kvm_mmu_page *sp, u64 *spte,
2245                                  const void *pte)
2246 {
2247         WARN_ON(1);
2248 }
2249
2250 #define KVM_PAGE_ARRAY_NR 16
2251
2252 struct kvm_mmu_pages {
2253         struct mmu_page_and_offset {
2254                 struct kvm_mmu_page *sp;
2255                 unsigned int idx;
2256         } page[KVM_PAGE_ARRAY_NR];
2257         unsigned int nr;
2258 };
2259
2260 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2261                          int idx)
2262 {
2263         int i;
2264
2265         if (sp->unsync)
2266                 for (i=0; i < pvec->nr; i++)
2267                         if (pvec->page[i].sp == sp)
2268                                 return 0;
2269
2270         pvec->page[pvec->nr].sp = sp;
2271         pvec->page[pvec->nr].idx = idx;
2272         pvec->nr++;
2273         return (pvec->nr == KVM_PAGE_ARRAY_NR);
2274 }
2275
2276 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2277 {
2278         --sp->unsync_children;
2279         WARN_ON((int)sp->unsync_children < 0);
2280         __clear_bit(idx, sp->unsync_child_bitmap);
2281 }
2282
2283 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2284                            struct kvm_mmu_pages *pvec)
2285 {
2286         int i, ret, nr_unsync_leaf = 0;
2287
2288         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2289                 struct kvm_mmu_page *child;
2290                 u64 ent = sp->spt[i];
2291
2292                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2293                         clear_unsync_child_bit(sp, i);
2294                         continue;
2295                 }
2296
2297                 child = page_header(ent & PT64_BASE_ADDR_MASK);
2298
2299                 if (child->unsync_children) {
2300                         if (mmu_pages_add(pvec, child, i))
2301                                 return -ENOSPC;
2302
2303                         ret = __mmu_unsync_walk(child, pvec);
2304                         if (!ret) {
2305                                 clear_unsync_child_bit(sp, i);
2306                                 continue;
2307                         } else if (ret > 0) {
2308                                 nr_unsync_leaf += ret;
2309                         } else
2310                                 return ret;
2311                 } else if (child->unsync) {
2312                         nr_unsync_leaf++;
2313                         if (mmu_pages_add(pvec, child, i))
2314                                 return -ENOSPC;
2315                 } else
2316                         clear_unsync_child_bit(sp, i);
2317         }
2318
2319         return nr_unsync_leaf;
2320 }
2321
2322 #define INVALID_INDEX (-1)
2323
2324 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2325                            struct kvm_mmu_pages *pvec)
2326 {
2327         pvec->nr = 0;
2328         if (!sp->unsync_children)
2329                 return 0;
2330
2331         mmu_pages_add(pvec, sp, INVALID_INDEX);
2332         return __mmu_unsync_walk(sp, pvec);
2333 }
2334
2335 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2336 {
2337         WARN_ON(!sp->unsync);
2338         trace_kvm_mmu_sync_page(sp);
2339         sp->unsync = 0;
2340         --kvm->stat.mmu_unsync;
2341 }
2342
2343 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2344                                      struct list_head *invalid_list);
2345 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2346                                     struct list_head *invalid_list);
2347
2348
2349 #define for_each_valid_sp(_kvm, _sp, _gfn)                              \
2350         hlist_for_each_entry(_sp,                                       \
2351           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2352                 if (is_obsolete_sp((_kvm), (_sp))) {                    \
2353                 } else
2354
2355 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
2356         for_each_valid_sp(_kvm, _sp, _gfn)                              \
2357                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2358
2359 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
2360 {
2361         return sp->role.cr0_wp && sp->role.smap_andnot_wp;
2362 }
2363
2364 /* @sp->gfn should be write-protected at the call site */
2365 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2366                             struct list_head *invalid_list)
2367 {
2368         if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
2369             vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
2370                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2371                 return false;
2372         }
2373
2374         return true;
2375 }
2376
2377 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
2378                                         struct list_head *invalid_list,
2379                                         bool remote_flush)
2380 {
2381         if (!remote_flush && list_empty(invalid_list))
2382                 return false;
2383
2384         if (!list_empty(invalid_list))
2385                 kvm_mmu_commit_zap_page(kvm, invalid_list);
2386         else
2387                 kvm_flush_remote_tlbs(kvm);
2388         return true;
2389 }
2390
2391 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2392                                  struct list_head *invalid_list,
2393                                  bool remote_flush, bool local_flush)
2394 {
2395         if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
2396                 return;
2397
2398         if (local_flush)
2399                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2400 }
2401
2402 #ifdef CONFIG_KVM_MMU_AUDIT
2403 #include "mmu_audit.c"
2404 #else
2405 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2406 static void mmu_audit_disable(void) { }
2407 #endif
2408
2409 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2410 {
2411         return sp->role.invalid ||
2412                unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2413 }
2414
2415 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2416                          struct list_head *invalid_list)
2417 {
2418         kvm_unlink_unsync_page(vcpu->kvm, sp);
2419         return __kvm_sync_page(vcpu, sp, invalid_list);
2420 }
2421
2422 /* @gfn should be write-protected at the call site */
2423 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2424                            struct list_head *invalid_list)
2425 {
2426         struct kvm_mmu_page *s;
2427         bool ret = false;
2428
2429         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2430                 if (!s->unsync)
2431                         continue;
2432
2433                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2434                 ret |= kvm_sync_page(vcpu, s, invalid_list);
2435         }
2436
2437         return ret;
2438 }
2439
2440 struct mmu_page_path {
2441         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2442         unsigned int idx[PT64_ROOT_MAX_LEVEL];
2443 };
2444
2445 #define for_each_sp(pvec, sp, parents, i)                       \
2446                 for (i = mmu_pages_first(&pvec, &parents);      \
2447                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
2448                         i = mmu_pages_next(&pvec, &parents, i))
2449
2450 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2451                           struct mmu_page_path *parents,
2452                           int i)
2453 {
2454         int n;
2455
2456         for (n = i+1; n < pvec->nr; n++) {
2457                 struct kvm_mmu_page *sp = pvec->page[n].sp;
2458                 unsigned idx = pvec->page[n].idx;
2459                 int level = sp->role.level;
2460
2461                 parents->idx[level-1] = idx;
2462                 if (level == PT_PAGE_TABLE_LEVEL)
2463                         break;
2464
2465                 parents->parent[level-2] = sp;
2466         }
2467
2468         return n;
2469 }
2470
2471 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2472                            struct mmu_page_path *parents)
2473 {
2474         struct kvm_mmu_page *sp;
2475         int level;
2476
2477         if (pvec->nr == 0)
2478                 return 0;
2479
2480         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2481
2482         sp = pvec->page[0].sp;
2483         level = sp->role.level;
2484         WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2485
2486         parents->parent[level-2] = sp;
2487
2488         /* Also set up a sentinel.  Further entries in pvec are all
2489          * children of sp, so this element is never overwritten.
2490          */
2491         parents->parent[level-1] = NULL;
2492         return mmu_pages_next(pvec, parents, 0);
2493 }
2494
2495 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2496 {
2497         struct kvm_mmu_page *sp;
2498         unsigned int level = 0;
2499
2500         do {
2501                 unsigned int idx = parents->idx[level];
2502                 sp = parents->parent[level];
2503                 if (!sp)
2504                         return;
2505
2506                 WARN_ON(idx == INVALID_INDEX);
2507                 clear_unsync_child_bit(sp, idx);
2508                 level++;
2509         } while (!sp->unsync_children);
2510 }
2511
2512 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2513                               struct kvm_mmu_page *parent)
2514 {
2515         int i;
2516         struct kvm_mmu_page *sp;
2517         struct mmu_page_path parents;
2518         struct kvm_mmu_pages pages;
2519         LIST_HEAD(invalid_list);
2520         bool flush = false;
2521
2522         while (mmu_unsync_walk(parent, &pages)) {
2523                 bool protected = false;
2524
2525                 for_each_sp(pages, sp, parents, i)
2526                         protected |= rmap_write_protect(vcpu, sp->gfn);
2527
2528                 if (protected) {
2529                         kvm_flush_remote_tlbs(vcpu->kvm);
2530                         flush = false;
2531                 }
2532
2533                 for_each_sp(pages, sp, parents, i) {
2534                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2535                         mmu_pages_clear_parents(&parents);
2536                 }
2537                 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2538                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2539                         cond_resched_lock(&vcpu->kvm->mmu_lock);
2540                         flush = false;
2541                 }
2542         }
2543
2544         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2545 }
2546
2547 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2548 {
2549         atomic_set(&sp->write_flooding_count,  0);
2550 }
2551
2552 static void clear_sp_write_flooding_count(u64 *spte)
2553 {
2554         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2555
2556         __clear_sp_write_flooding_count(sp);
2557 }
2558
2559 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2560                                              gfn_t gfn,
2561                                              gva_t gaddr,
2562                                              unsigned level,
2563                                              int direct,
2564                                              unsigned access)
2565 {
2566         union kvm_mmu_page_role role;
2567         unsigned quadrant;
2568         struct kvm_mmu_page *sp;
2569         bool need_sync = false;
2570         bool flush = false;
2571         int collisions = 0;
2572         LIST_HEAD(invalid_list);
2573
2574         role = vcpu->arch.mmu->mmu_role.base;
2575         role.level = level;
2576         role.direct = direct;
2577         if (role.direct)
2578                 role.gpte_is_8_bytes = true;
2579         role.access = access;
2580         if (!vcpu->arch.mmu->direct_map
2581             && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2582                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2583                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2584                 role.quadrant = quadrant;
2585         }
2586         for_each_valid_sp(vcpu->kvm, sp, gfn) {
2587                 if (sp->gfn != gfn) {
2588                         collisions++;
2589                         continue;
2590                 }
2591
2592                 if (!need_sync && sp->unsync)
2593                         need_sync = true;
2594
2595                 if (sp->role.word != role.word)
2596                         continue;
2597
2598                 if (sp->unsync) {
2599                         /* The page is good, but __kvm_sync_page might still end
2600                          * up zapping it.  If so, break in order to rebuild it.
2601                          */
2602                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2603                                 break;
2604
2605                         WARN_ON(!list_empty(&invalid_list));
2606                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2607                 }
2608
2609                 if (sp->unsync_children)
2610                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2611
2612                 __clear_sp_write_flooding_count(sp);
2613                 trace_kvm_mmu_get_page(sp, false);
2614                 goto out;
2615         }
2616
2617         ++vcpu->kvm->stat.mmu_cache_miss;
2618
2619         sp = kvm_mmu_alloc_page(vcpu, direct);
2620
2621         sp->gfn = gfn;
2622         sp->role = role;
2623         hlist_add_head(&sp->hash_link,
2624                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2625         if (!direct) {
2626                 /*
2627                  * we should do write protection before syncing pages
2628                  * otherwise the content of the synced shadow page may
2629                  * be inconsistent with guest page table.
2630                  */
2631                 account_shadowed(vcpu->kvm, sp);
2632                 if (level == PT_PAGE_TABLE_LEVEL &&
2633                       rmap_write_protect(vcpu, gfn))
2634                         kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2635
2636                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2637                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2638         }
2639         clear_page(sp->spt);
2640         trace_kvm_mmu_get_page(sp, true);
2641
2642         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2643 out:
2644         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2645                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2646         return sp;
2647 }
2648
2649 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2650                                         struct kvm_vcpu *vcpu, hpa_t root,
2651                                         u64 addr)
2652 {
2653         iterator->addr = addr;
2654         iterator->shadow_addr = root;
2655         iterator->level = vcpu->arch.mmu->shadow_root_level;
2656
2657         if (iterator->level == PT64_ROOT_4LEVEL &&
2658             vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2659             !vcpu->arch.mmu->direct_map)
2660                 --iterator->level;
2661
2662         if (iterator->level == PT32E_ROOT_LEVEL) {
2663                 /*
2664                  * prev_root is currently only used for 64-bit hosts. So only
2665                  * the active root_hpa is valid here.
2666                  */
2667                 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2668
2669                 iterator->shadow_addr
2670                         = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2671                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2672                 --iterator->level;
2673                 if (!iterator->shadow_addr)
2674                         iterator->level = 0;
2675         }
2676 }
2677
2678 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2679                              struct kvm_vcpu *vcpu, u64 addr)
2680 {
2681         shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2682                                     addr);
2683 }
2684
2685 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2686 {
2687         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2688                 return false;
2689
2690         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2691         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2692         return true;
2693 }
2694
2695 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2696                                u64 spte)
2697 {
2698         if (is_last_spte(spte, iterator->level)) {
2699                 iterator->level = 0;
2700                 return;
2701         }
2702
2703         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2704         --iterator->level;
2705 }
2706
2707 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2708 {
2709         __shadow_walk_next(iterator, *iterator->sptep);
2710 }
2711
2712 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2713                              struct kvm_mmu_page *sp)
2714 {
2715         u64 spte;
2716
2717         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2718
2719         spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2720                shadow_user_mask | shadow_x_mask | shadow_me_mask;
2721
2722         if (sp_ad_disabled(sp))
2723                 spte |= SPTE_AD_DISABLED_MASK;
2724         else
2725                 spte |= shadow_accessed_mask;
2726
2727         mmu_spte_set(sptep, spte);
2728
2729         mmu_page_add_parent_pte(vcpu, sp, sptep);
2730
2731         if (sp->unsync_children || sp->unsync)
2732                 mark_unsync(sptep);
2733 }
2734
2735 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2736                                    unsigned direct_access)
2737 {
2738         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2739                 struct kvm_mmu_page *child;
2740
2741                 /*
2742                  * For the direct sp, if the guest pte's dirty bit
2743                  * changed form clean to dirty, it will corrupt the
2744                  * sp's access: allow writable in the read-only sp,
2745                  * so we should update the spte at this point to get
2746                  * a new sp with the correct access.
2747                  */
2748                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2749                 if (child->role.access == direct_access)
2750                         return;
2751
2752                 drop_parent_pte(child, sptep);
2753                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2754         }
2755 }
2756
2757 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2758                              u64 *spte)
2759 {
2760         u64 pte;
2761         struct kvm_mmu_page *child;
2762
2763         pte = *spte;
2764         if (is_shadow_present_pte(pte)) {
2765                 if (is_last_spte(pte, sp->role.level)) {
2766                         drop_spte(kvm, spte);
2767                         if (is_large_pte(pte))
2768                                 --kvm->stat.lpages;
2769                 } else {
2770                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2771                         drop_parent_pte(child, spte);
2772                 }
2773                 return true;
2774         }
2775
2776         if (is_mmio_spte(pte))
2777                 mmu_spte_clear_no_track(spte);
2778
2779         return false;
2780 }
2781
2782 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2783                                          struct kvm_mmu_page *sp)
2784 {
2785         unsigned i;
2786
2787         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2788                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2789 }
2790
2791 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2792 {
2793         u64 *sptep;
2794         struct rmap_iterator iter;
2795
2796         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2797                 drop_parent_pte(sp, sptep);
2798 }
2799
2800 static int mmu_zap_unsync_children(struct kvm *kvm,
2801                                    struct kvm_mmu_page *parent,
2802                                    struct list_head *invalid_list)
2803 {
2804         int i, zapped = 0;
2805         struct mmu_page_path parents;
2806         struct kvm_mmu_pages pages;
2807
2808         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2809                 return 0;
2810
2811         while (mmu_unsync_walk(parent, &pages)) {
2812                 struct kvm_mmu_page *sp;
2813
2814                 for_each_sp(pages, sp, parents, i) {
2815                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2816                         mmu_pages_clear_parents(&parents);
2817                         zapped++;
2818                 }
2819         }
2820
2821         return zapped;
2822 }
2823
2824 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2825                                        struct kvm_mmu_page *sp,
2826                                        struct list_head *invalid_list,
2827                                        int *nr_zapped)
2828 {
2829         bool list_unstable;
2830
2831         trace_kvm_mmu_prepare_zap_page(sp);
2832         ++kvm->stat.mmu_shadow_zapped;
2833         *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2834         kvm_mmu_page_unlink_children(kvm, sp);
2835         kvm_mmu_unlink_parents(kvm, sp);
2836
2837         /* Zapping children means active_mmu_pages has become unstable. */
2838         list_unstable = *nr_zapped;
2839
2840         if (!sp->role.invalid && !sp->role.direct)
2841                 unaccount_shadowed(kvm, sp);
2842
2843         if (sp->unsync)
2844                 kvm_unlink_unsync_page(kvm, sp);
2845         if (!sp->root_count) {
2846                 /* Count self */
2847                 (*nr_zapped)++;
2848                 list_move(&sp->link, invalid_list);
2849                 kvm_mod_used_mmu_pages(kvm, -1);
2850         } else {
2851                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2852
2853                 /*
2854                  * Obsolete pages cannot be used on any vCPUs, see the comment
2855                  * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2856                  * treats invalid shadow pages as being obsolete.
2857                  */
2858                 if (!is_obsolete_sp(kvm, sp))
2859                         kvm_reload_remote_mmus(kvm);
2860         }
2861
2862         if (sp->lpage_disallowed)
2863                 unaccount_huge_nx_page(kvm, sp);
2864
2865         sp->role.invalid = 1;
2866         return list_unstable;
2867 }
2868
2869 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2870                                      struct list_head *invalid_list)
2871 {
2872         int nr_zapped;
2873
2874         __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2875         return nr_zapped;
2876 }
2877
2878 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2879                                     struct list_head *invalid_list)
2880 {
2881         struct kvm_mmu_page *sp, *nsp;
2882
2883         if (list_empty(invalid_list))
2884                 return;
2885
2886         /*
2887          * We need to make sure everyone sees our modifications to
2888          * the page tables and see changes to vcpu->mode here. The barrier
2889          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2890          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2891          *
2892          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2893          * guest mode and/or lockless shadow page table walks.
2894          */
2895         kvm_flush_remote_tlbs(kvm);
2896
2897         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2898                 WARN_ON(!sp->role.invalid || sp->root_count);
2899                 kvm_mmu_free_page(sp);
2900         }
2901 }
2902
2903 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2904                                         struct list_head *invalid_list)
2905 {
2906         struct kvm_mmu_page *sp;
2907
2908         if (list_empty(&kvm->arch.active_mmu_pages))
2909                 return false;
2910
2911         sp = list_last_entry(&kvm->arch.active_mmu_pages,
2912                              struct kvm_mmu_page, link);
2913         return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2914 }
2915
2916 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2917 {
2918         LIST_HEAD(invalid_list);
2919
2920         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
2921                 return 0;
2922
2923         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
2924                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
2925                         break;
2926
2927                 ++vcpu->kvm->stat.mmu_recycled;
2928         }
2929         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2930
2931         if (!kvm_mmu_available_pages(vcpu->kvm))
2932                 return -ENOSPC;
2933         return 0;
2934 }
2935
2936 /*
2937  * Changing the number of mmu pages allocated to the vm
2938  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2939  */
2940 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2941 {
2942         LIST_HEAD(invalid_list);
2943
2944         spin_lock(&kvm->mmu_lock);
2945
2946         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2947                 /* Need to free some mmu pages to achieve the goal. */
2948                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2949                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2950                                 break;
2951
2952                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2953                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2954         }
2955
2956         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2957
2958         spin_unlock(&kvm->mmu_lock);
2959 }
2960
2961 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2962 {
2963         struct kvm_mmu_page *sp;
2964         LIST_HEAD(invalid_list);
2965         int r;
2966
2967         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2968         r = 0;
2969         spin_lock(&kvm->mmu_lock);
2970         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2971                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2972                          sp->role.word);
2973                 r = 1;
2974                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2975         }
2976         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2977         spin_unlock(&kvm->mmu_lock);
2978
2979         return r;
2980 }
2981 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2982
2983 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2984 {
2985         trace_kvm_mmu_unsync_page(sp);
2986         ++vcpu->kvm->stat.mmu_unsync;
2987         sp->unsync = 1;
2988
2989         kvm_mmu_mark_parents_unsync(sp);
2990 }
2991
2992 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2993                                    bool can_unsync)
2994 {
2995         struct kvm_mmu_page *sp;
2996
2997         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2998                 return true;
2999
3000         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
3001                 if (!can_unsync)
3002                         return true;
3003
3004                 if (sp->unsync)
3005                         continue;
3006
3007                 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
3008                 kvm_unsync_page(vcpu, sp);
3009         }
3010
3011         /*
3012          * We need to ensure that the marking of unsync pages is visible
3013          * before the SPTE is updated to allow writes because
3014          * kvm_mmu_sync_roots() checks the unsync flags without holding
3015          * the MMU lock and so can race with this. If the SPTE was updated
3016          * before the page had been marked as unsync-ed, something like the
3017          * following could happen:
3018          *
3019          * CPU 1                    CPU 2
3020          * ---------------------------------------------------------------------
3021          * 1.2 Host updates SPTE
3022          *     to be writable
3023          *                      2.1 Guest writes a GPTE for GVA X.
3024          *                          (GPTE being in the guest page table shadowed
3025          *                           by the SP from CPU 1.)
3026          *                          This reads SPTE during the page table walk.
3027          *                          Since SPTE.W is read as 1, there is no
3028          *                          fault.
3029          *
3030          *                      2.2 Guest issues TLB flush.
3031          *                          That causes a VM Exit.
3032          *
3033          *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
3034          *                          Since it is false, so it just returns.
3035          *
3036          *                      2.4 Guest accesses GVA X.
3037          *                          Since the mapping in the SP was not updated,
3038          *                          so the old mapping for GVA X incorrectly
3039          *                          gets used.
3040          * 1.1 Host marks SP
3041          *     as unsync
3042          *     (sp->unsync = true)
3043          *
3044          * The write barrier below ensures that 1.1 happens before 1.2 and thus
3045          * the situation in 2.4 does not arise. The implicit barrier in 2.2
3046          * pairs with this write barrier.
3047          */
3048         smp_wmb();
3049
3050         return false;
3051 }
3052
3053 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
3054 {
3055         if (pfn_valid(pfn))
3056                 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
3057                         /*
3058                          * Some reserved pages, such as those from NVDIMM
3059                          * DAX devices, are not for MMIO, and can be mapped
3060                          * with cached memory type for better performance.
3061                          * However, the above check misconceives those pages
3062                          * as MMIO, and results in KVM mapping them with UC
3063                          * memory type, which would hurt the performance.
3064                          * Therefore, we check the host memory type in addition
3065                          * and only treat UC/UC-/WC pages as MMIO.
3066                          */
3067                         (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
3068
3069         return !e820__mapped_raw_any(pfn_to_hpa(pfn),
3070                                      pfn_to_hpa(pfn + 1) - 1,
3071                                      E820_TYPE_RAM);
3072 }
3073
3074 /* Bits which may be returned by set_spte() */
3075 #define SET_SPTE_WRITE_PROTECTED_PT     BIT(0)
3076 #define SET_SPTE_NEED_REMOTE_TLB_FLUSH  BIT(1)
3077
3078 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
3079                     unsigned pte_access, int level,
3080                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
3081                     bool can_unsync, bool host_writable)
3082 {
3083         u64 spte = 0;
3084         int ret = 0;
3085         struct kvm_mmu_page *sp;
3086
3087         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
3088                 return 0;
3089
3090         sp = page_header(__pa(sptep));
3091         if (sp_ad_disabled(sp))
3092                 spte |= SPTE_AD_DISABLED_MASK;
3093         else if (kvm_vcpu_ad_need_write_protect(vcpu))
3094                 spte |= SPTE_AD_WRPROT_ONLY_MASK;
3095
3096         /*
3097          * For the EPT case, shadow_present_mask is 0 if hardware
3098          * supports exec-only page table entries.  In that case,
3099          * ACC_USER_MASK and shadow_user_mask are used to represent
3100          * read access.  See FNAME(gpte_access) in paging_tmpl.h.
3101          */
3102         spte |= shadow_present_mask;
3103         if (!speculative)
3104                 spte |= spte_shadow_accessed_mask(spte);
3105
3106         if (level > PT_PAGE_TABLE_LEVEL && (pte_access & ACC_EXEC_MASK) &&
3107             is_nx_huge_page_enabled()) {
3108                 pte_access &= ~ACC_EXEC_MASK;
3109         }
3110
3111         if (pte_access & ACC_EXEC_MASK)
3112                 spte |= shadow_x_mask;
3113         else
3114                 spte |= shadow_nx_mask;
3115
3116         if (pte_access & ACC_USER_MASK)
3117                 spte |= shadow_user_mask;
3118
3119         if (level > PT_PAGE_TABLE_LEVEL)
3120                 spte |= PT_PAGE_SIZE_MASK;
3121         if (tdp_enabled)
3122                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
3123                         kvm_is_mmio_pfn(pfn));
3124
3125         if (host_writable)
3126                 spte |= SPTE_HOST_WRITEABLE;
3127         else
3128                 pte_access &= ~ACC_WRITE_MASK;
3129
3130         if (!kvm_is_mmio_pfn(pfn))
3131                 spte |= shadow_me_mask;
3132
3133         spte |= (u64)pfn << PAGE_SHIFT;
3134
3135         if (pte_access & ACC_WRITE_MASK) {
3136
3137                 /*
3138                  * Other vcpu creates new sp in the window between
3139                  * mapping_level() and acquiring mmu-lock. We can
3140                  * allow guest to retry the access, the mapping can
3141                  * be fixed if guest refault.
3142                  */
3143                 if (level > PT_PAGE_TABLE_LEVEL &&
3144                     mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
3145                         goto done;
3146
3147                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
3148
3149                 /*
3150                  * Optimization: for pte sync, if spte was writable the hash
3151                  * lookup is unnecessary (and expensive). Write protection
3152                  * is responsibility of mmu_get_page / kvm_sync_page.
3153                  * Same reasoning can be applied to dirty page accounting.
3154                  */
3155                 if (!can_unsync && is_writable_pte(*sptep))
3156                         goto set_pte;
3157
3158                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
3159                         pgprintk("%s: found shadow page for %llx, marking ro\n",
3160                                  __func__, gfn);
3161                         ret |= SET_SPTE_WRITE_PROTECTED_PT;
3162                         pte_access &= ~ACC_WRITE_MASK;
3163                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
3164                 }
3165         }
3166
3167         if (pte_access & ACC_WRITE_MASK) {
3168                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3169                 spte |= spte_shadow_dirty_mask(spte);
3170         }
3171
3172         if (speculative)
3173                 spte = mark_spte_for_access_track(spte);
3174
3175 set_pte:
3176         if (mmu_spte_update(sptep, spte))
3177                 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
3178 done:
3179         return ret;
3180 }
3181
3182 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
3183                         int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
3184                         bool speculative, bool host_writable)
3185 {
3186         int was_rmapped = 0;
3187         int rmap_count;
3188         int set_spte_ret;
3189         int ret = RET_PF_RETRY;
3190         bool flush = false;
3191
3192         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
3193                  *sptep, write_fault, gfn);
3194
3195         if (is_shadow_present_pte(*sptep)) {
3196                 /*
3197                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3198                  * the parent of the now unreachable PTE.
3199                  */
3200                 if (level > PT_PAGE_TABLE_LEVEL &&
3201                     !is_large_pte(*sptep)) {
3202                         struct kvm_mmu_page *child;
3203                         u64 pte = *sptep;
3204
3205                         child = page_header(pte & PT64_BASE_ADDR_MASK);
3206                         drop_parent_pte(child, sptep);
3207                         flush = true;
3208                 } else if (pfn != spte_to_pfn(*sptep)) {
3209                         pgprintk("hfn old %llx new %llx\n",
3210                                  spte_to_pfn(*sptep), pfn);
3211                         drop_spte(vcpu->kvm, sptep);
3212                         flush = true;
3213                 } else
3214                         was_rmapped = 1;
3215         }
3216
3217         set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
3218                                 speculative, true, host_writable);
3219         if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
3220                 if (write_fault)
3221                         ret = RET_PF_EMULATE;
3222                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3223         }
3224
3225         if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
3226                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
3227                                 KVM_PAGES_PER_HPAGE(level));
3228
3229         if (unlikely(is_mmio_spte(*sptep)))
3230                 ret = RET_PF_EMULATE;
3231
3232         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
3233         trace_kvm_mmu_set_spte(level, gfn, sptep);
3234         if (!was_rmapped && is_large_pte(*sptep))
3235                 ++vcpu->kvm->stat.lpages;
3236
3237         if (is_shadow_present_pte(*sptep)) {
3238                 if (!was_rmapped) {
3239                         rmap_count = rmap_add(vcpu, sptep, gfn);
3240                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3241                                 rmap_recycle(vcpu, sptep, gfn);
3242                 }
3243         }
3244
3245         return ret;
3246 }
3247
3248 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
3249                                      bool no_dirty_log)
3250 {
3251         struct kvm_memory_slot *slot;
3252
3253         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3254         if (!slot)
3255                 return KVM_PFN_ERR_FAULT;
3256
3257         return gfn_to_pfn_memslot_atomic(slot, gfn);
3258 }
3259
3260 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3261                                     struct kvm_mmu_page *sp,
3262                                     u64 *start, u64 *end)
3263 {
3264         struct page *pages[PTE_PREFETCH_NUM];
3265         struct kvm_memory_slot *slot;
3266         unsigned access = sp->role.access;
3267         int i, ret;
3268         gfn_t gfn;
3269
3270         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3271         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3272         if (!slot)
3273                 return -1;
3274
3275         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3276         if (ret <= 0)
3277                 return -1;
3278
3279         for (i = 0; i < ret; i++, gfn++, start++) {
3280                 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3281                              page_to_pfn(pages[i]), true, true);
3282                 put_page(pages[i]);
3283         }
3284
3285         return 0;
3286 }
3287
3288 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3289                                   struct kvm_mmu_page *sp, u64 *sptep)
3290 {
3291         u64 *spte, *start = NULL;
3292         int i;
3293
3294         WARN_ON(!sp->role.direct);
3295
3296         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3297         spte = sp->spt + i;
3298
3299         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3300                 if (is_shadow_present_pte(*spte) || spte == sptep) {
3301                         if (!start)
3302                                 continue;
3303                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3304                                 break;
3305                         start = NULL;
3306                 } else if (!start)
3307                         start = spte;
3308         }
3309 }
3310
3311 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3312 {
3313         struct kvm_mmu_page *sp;
3314
3315         sp = page_header(__pa(sptep));
3316
3317         /*
3318          * Without accessed bits, there's no way to distinguish between
3319          * actually accessed translations and prefetched, so disable pte
3320          * prefetch if accessed bits aren't available.
3321          */
3322         if (sp_ad_disabled(sp))
3323                 return;
3324
3325         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3326                 return;
3327
3328         __direct_pte_prefetch(vcpu, sp, sptep);
3329 }
3330
3331 static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
3332                                        gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
3333 {
3334         int level = *levelp;
3335         u64 spte = *it.sptep;
3336
3337         if (it.level == level && level > PT_PAGE_TABLE_LEVEL &&
3338             is_nx_huge_page_enabled() &&
3339             is_shadow_present_pte(spte) &&
3340             !is_large_pte(spte)) {
3341                 /*
3342                  * A small SPTE exists for this pfn, but FNAME(fetch)
3343                  * and __direct_map would like to create a large PTE
3344                  * instead: just force them to go down another level,
3345                  * patching back for them into pfn the next 9 bits of
3346                  * the address.
3347                  */
3348                 u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
3349                 *pfnp |= gfn & page_mask;
3350                 (*levelp)--;
3351         }
3352 }
3353
3354 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
3355                         int map_writable, int level, kvm_pfn_t pfn,
3356                         bool prefault, bool lpage_disallowed)
3357 {
3358         struct kvm_shadow_walk_iterator it;
3359         struct kvm_mmu_page *sp;
3360         int ret;
3361         gfn_t gfn = gpa >> PAGE_SHIFT;
3362         gfn_t base_gfn = gfn;
3363
3364         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3365                 return RET_PF_RETRY;
3366
3367         trace_kvm_mmu_spte_requested(gpa, level, pfn);
3368         for_each_shadow_entry(vcpu, gpa, it) {
3369                 /*
3370                  * We cannot overwrite existing page tables with an NX
3371                  * large page, as the leaf could be executable.
3372                  */
3373                 disallowed_hugepage_adjust(it, gfn, &pfn, &level);
3374
3375                 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3376                 if (it.level == level)
3377                         break;
3378
3379                 drop_large_spte(vcpu, it.sptep);
3380                 if (!is_shadow_present_pte(*it.sptep)) {
3381                         sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
3382                                               it.level - 1, true, ACC_ALL);
3383
3384                         link_shadow_page(vcpu, it.sptep, sp);
3385                         if (lpage_disallowed)
3386                                 account_huge_nx_page(vcpu->kvm, sp);
3387                 }
3388         }
3389
3390         ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3391                            write, level, base_gfn, pfn, prefault,
3392                            map_writable);
3393         direct_pte_prefetch(vcpu, it.sptep);
3394         ++vcpu->stat.pf_fixed;
3395         return ret;
3396 }
3397
3398 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3399 {
3400         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3401 }
3402
3403 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3404 {
3405         /*
3406          * Do not cache the mmio info caused by writing the readonly gfn
3407          * into the spte otherwise read access on readonly gfn also can
3408          * caused mmio page fault and treat it as mmio access.
3409          */
3410         if (pfn == KVM_PFN_ERR_RO_FAULT)
3411                 return RET_PF_EMULATE;
3412
3413         if (pfn == KVM_PFN_ERR_HWPOISON) {
3414                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3415                 return RET_PF_RETRY;
3416         }
3417
3418         return -EFAULT;
3419 }
3420
3421 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
3422                                         gfn_t gfn, kvm_pfn_t *pfnp,
3423                                         int *levelp)
3424 {
3425         kvm_pfn_t pfn = *pfnp;
3426         int level = *levelp;
3427
3428         /*
3429          * Check if it's a transparent hugepage. If this would be an
3430          * hugetlbfs page, level wouldn't be set to
3431          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3432          * here.
3433          */
3434         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3435             !kvm_is_zone_device_pfn(pfn) && level == PT_PAGE_TABLE_LEVEL &&
3436             PageTransCompoundMap(pfn_to_page(pfn))) {
3437                 unsigned long mask;
3438                 /*
3439                  * mmu_notifier_retry was successful and we hold the
3440                  * mmu_lock here, so the pmd can't become splitting
3441                  * from under us, and in turn
3442                  * __split_huge_page_refcount() can't run from under
3443                  * us and we can safely transfer the refcount from
3444                  * PG_tail to PG_head as we switch the pfn to tail to
3445                  * head.
3446                  */
3447                 *levelp = level = PT_DIRECTORY_LEVEL;
3448                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3449                 VM_BUG_ON((gfn & mask) != (pfn & mask));
3450                 if (pfn & mask) {
3451                         kvm_release_pfn_clean(pfn);
3452                         pfn &= ~mask;
3453                         kvm_get_pfn(pfn);
3454                         *pfnp = pfn;
3455                 }
3456         }
3457 }
3458
3459 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3460                                 kvm_pfn_t pfn, unsigned access, int *ret_val)
3461 {
3462         /* The pfn is invalid, report the error! */
3463         if (unlikely(is_error_pfn(pfn))) {
3464                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3465                 return true;
3466         }
3467
3468         if (unlikely(is_noslot_pfn(pfn)))
3469                 vcpu_cache_mmio_info(vcpu, gva, gfn,
3470                                      access & shadow_mmio_access_mask);
3471
3472         return false;
3473 }
3474
3475 static bool page_fault_can_be_fast(u32 error_code)
3476 {
3477         /*
3478          * Do not fix the mmio spte with invalid generation number which
3479          * need to be updated by slow page fault path.
3480          */
3481         if (unlikely(error_code & PFERR_RSVD_MASK))
3482                 return false;
3483
3484         /* See if the page fault is due to an NX violation */
3485         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3486                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3487                 return false;
3488
3489         /*
3490          * #PF can be fast if:
3491          * 1. The shadow page table entry is not present, which could mean that
3492          *    the fault is potentially caused by access tracking (if enabled).
3493          * 2. The shadow page table entry is present and the fault
3494          *    is caused by write-protect, that means we just need change the W
3495          *    bit of the spte which can be done out of mmu-lock.
3496          *
3497          * However, if access tracking is disabled we know that a non-present
3498          * page must be a genuine page fault where we have to create a new SPTE.
3499          * So, if access tracking is disabled, we return true only for write
3500          * accesses to a present page.
3501          */
3502
3503         return shadow_acc_track_mask != 0 ||
3504                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3505                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3506 }
3507
3508 /*
3509  * Returns true if the SPTE was fixed successfully. Otherwise,
3510  * someone else modified the SPTE from its original value.
3511  */
3512 static bool
3513 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3514                         u64 *sptep, u64 old_spte, u64 new_spte)
3515 {
3516         gfn_t gfn;
3517
3518         WARN_ON(!sp->role.direct);
3519
3520         /*
3521          * Theoretically we could also set dirty bit (and flush TLB) here in
3522          * order to eliminate unnecessary PML logging. See comments in
3523          * set_spte. But fast_page_fault is very unlikely to happen with PML
3524          * enabled, so we do not do this. This might result in the same GPA
3525          * to be logged in PML buffer again when the write really happens, and
3526          * eventually to be called by mark_page_dirty twice. But it's also no
3527          * harm. This also avoids the TLB flush needed after setting dirty bit
3528          * so non-PML cases won't be impacted.
3529          *
3530          * Compare with set_spte where instead shadow_dirty_mask is set.
3531          */
3532         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3533                 return false;
3534
3535         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3536                 /*
3537                  * The gfn of direct spte is stable since it is
3538                  * calculated by sp->gfn.
3539                  */
3540                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3541                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3542         }
3543
3544         return true;
3545 }
3546
3547 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3548 {
3549         if (fault_err_code & PFERR_FETCH_MASK)
3550                 return is_executable_pte(spte);
3551
3552         if (fault_err_code & PFERR_WRITE_MASK)
3553                 return is_writable_pte(spte);
3554
3555         /* Fault was on Read access */
3556         return spte & PT_PRESENT_MASK;
3557 }
3558
3559 /*
3560  * Return value:
3561  * - true: let the vcpu to access on the same address again.
3562  * - false: let the real page fault path to fix it.
3563  */
3564 static bool fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, int level,
3565                             u32 error_code)
3566 {
3567         struct kvm_shadow_walk_iterator iterator;
3568         struct kvm_mmu_page *sp;
3569         bool fault_handled = false;
3570         u64 spte = 0ull;
3571         uint retry_count = 0;
3572
3573         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3574                 return false;
3575
3576         if (!page_fault_can_be_fast(error_code))
3577                 return false;
3578
3579         walk_shadow_page_lockless_begin(vcpu);
3580
3581         do {
3582                 u64 new_spte;
3583
3584                 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3585                         if (!is_shadow_present_pte(spte) ||
3586                             iterator.level < level)
3587                                 break;
3588
3589                 sp = page_header(__pa(iterator.sptep));
3590                 if (!is_last_spte(spte, sp->role.level))
3591                         break;
3592
3593                 /*
3594                  * Check whether the memory access that caused the fault would
3595                  * still cause it if it were to be performed right now. If not,
3596                  * then this is a spurious fault caused by TLB lazily flushed,
3597                  * or some other CPU has already fixed the PTE after the
3598                  * current CPU took the fault.
3599                  *
3600                  * Need not check the access of upper level table entries since
3601                  * they are always ACC_ALL.
3602                  */
3603                 if (is_access_allowed(error_code, spte)) {
3604                         fault_handled = true;
3605                         break;
3606                 }
3607
3608                 new_spte = spte;
3609
3610                 if (is_access_track_spte(spte))
3611                         new_spte = restore_acc_track_spte(new_spte);
3612
3613                 /*
3614                  * Currently, to simplify the code, write-protection can
3615                  * be removed in the fast path only if the SPTE was
3616                  * write-protected for dirty-logging or access tracking.
3617                  */
3618                 if ((error_code & PFERR_WRITE_MASK) &&
3619                     spte_can_locklessly_be_made_writable(spte))
3620                 {
3621                         new_spte |= PT_WRITABLE_MASK;
3622
3623                         /*
3624                          * Do not fix write-permission on the large spte.  Since
3625                          * we only dirty the first page into the dirty-bitmap in
3626                          * fast_pf_fix_direct_spte(), other pages are missed
3627                          * if its slot has dirty logging enabled.
3628                          *
3629                          * Instead, we let the slow page fault path create a
3630                          * normal spte to fix the access.
3631                          *
3632                          * See the comments in kvm_arch_commit_memory_region().
3633                          */
3634                         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3635                                 break;
3636                 }
3637
3638                 /* Verify that the fault can be handled in the fast path */
3639                 if (new_spte == spte ||
3640                     !is_access_allowed(error_code, new_spte))
3641                         break;
3642
3643                 /*
3644                  * Currently, fast page fault only works for direct mapping
3645                  * since the gfn is not stable for indirect shadow page. See
3646                  * Documentation/virt/kvm/locking.txt to get more detail.
3647                  */
3648                 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3649                                                         iterator.sptep, spte,
3650                                                         new_spte);
3651                 if (fault_handled)
3652                         break;
3653
3654                 if (++retry_count > 4) {
3655                         printk_once(KERN_WARNING
3656                                 "kvm: Fast #PF retrying more than 4 times.\n");
3657                         break;
3658                 }
3659
3660         } while (true);
3661
3662         trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3663                               spte, fault_handled);
3664         walk_shadow_page_lockless_end(vcpu);
3665
3666         return fault_handled;
3667 }
3668
3669 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3670                                struct list_head *invalid_list)
3671 {
3672         struct kvm_mmu_page *sp;
3673
3674         if (!VALID_PAGE(*root_hpa))
3675                 return;
3676
3677         sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3678         --sp->root_count;
3679         if (!sp->root_count && sp->role.invalid)
3680                 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3681
3682         *root_hpa = INVALID_PAGE;
3683 }
3684
3685 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3686 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3687                         ulong roots_to_free)
3688 {
3689         int i;
3690         LIST_HEAD(invalid_list);
3691         bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3692
3693         BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3694
3695         /* Before acquiring the MMU lock, see if we need to do any real work. */
3696         if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3697                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3698                         if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3699                             VALID_PAGE(mmu->prev_roots[i].hpa))
3700                                 break;
3701
3702                 if (i == KVM_MMU_NUM_PREV_ROOTS)
3703                         return;
3704         }
3705
3706         spin_lock(&vcpu->kvm->mmu_lock);
3707
3708         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3709                 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3710                         mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3711                                            &invalid_list);
3712
3713         if (free_active_root) {
3714                 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3715                     (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3716                         mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3717                                            &invalid_list);
3718                 } else {
3719                         for (i = 0; i < 4; ++i)
3720                                 if (mmu->pae_root[i] != 0)
3721                                         mmu_free_root_page(vcpu->kvm,
3722                                                            &mmu->pae_root[i],
3723                                                            &invalid_list);
3724                         mmu->root_hpa = INVALID_PAGE;
3725                 }
3726                 mmu->root_cr3 = 0;
3727         }
3728
3729         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3730         spin_unlock(&vcpu->kvm->mmu_lock);
3731 }
3732 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3733
3734 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3735 {
3736         int ret = 0;
3737
3738         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3739                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3740                 ret = 1;
3741         }
3742
3743         return ret;
3744 }
3745
3746 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3747 {
3748         struct kvm_mmu_page *sp;
3749         unsigned i;
3750
3751         if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3752                 spin_lock(&vcpu->kvm->mmu_lock);
3753                 if(make_mmu_pages_available(vcpu) < 0) {
3754                         spin_unlock(&vcpu->kvm->mmu_lock);
3755                         return -ENOSPC;
3756                 }
3757                 sp = kvm_mmu_get_page(vcpu, 0, 0,
3758                                 vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
3759                 ++sp->root_count;
3760                 spin_unlock(&vcpu->kvm->mmu_lock);
3761                 vcpu->arch.mmu->root_hpa = __pa(sp->spt);
3762         } else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
3763                 for (i = 0; i < 4; ++i) {
3764                         hpa_t root = vcpu->arch.mmu->pae_root[i];
3765
3766                         MMU_WARN_ON(VALID_PAGE(root));
3767                         spin_lock(&vcpu->kvm->mmu_lock);
3768                         if (make_mmu_pages_available(vcpu) < 0) {
3769                                 spin_unlock(&vcpu->kvm->mmu_lock);
3770                                 return -ENOSPC;
3771                         }
3772                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3773                                         i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3774                         root = __pa(sp->spt);
3775                         ++sp->root_count;
3776                         spin_unlock(&vcpu->kvm->mmu_lock);
3777                         vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3778                 }
3779                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3780         } else
3781                 BUG();
3782         vcpu->arch.mmu->root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
3783
3784         return 0;
3785 }
3786
3787 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3788 {
3789         struct kvm_mmu_page *sp;
3790         u64 pdptr, pm_mask;
3791         gfn_t root_gfn, root_cr3;
3792         int i;
3793
3794         root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
3795         root_gfn = root_cr3 >> PAGE_SHIFT;
3796
3797         if (mmu_check_root(vcpu, root_gfn))
3798                 return 1;
3799
3800         /*
3801          * Do we shadow a long mode page table? If so we need to
3802          * write-protect the guests page table root.
3803          */
3804         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3805                 hpa_t root = vcpu->arch.mmu->root_hpa;
3806
3807                 MMU_WARN_ON(VALID_PAGE(root));
3808
3809                 spin_lock(&vcpu->kvm->mmu_lock);
3810                 if (make_mmu_pages_available(vcpu) < 0) {
3811                         spin_unlock(&vcpu->kvm->mmu_lock);
3812                         return -ENOSPC;
3813                 }
3814                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3815                                 vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
3816                 root = __pa(sp->spt);
3817                 ++sp->root_count;
3818                 spin_unlock(&vcpu->kvm->mmu_lock);
3819                 vcpu->arch.mmu->root_hpa = root;
3820                 goto set_root_cr3;
3821         }
3822
3823         /*
3824          * We shadow a 32 bit page table. This may be a legacy 2-level
3825          * or a PAE 3-level page table. In either case we need to be aware that
3826          * the shadow page table may be a PAE or a long mode page table.
3827          */
3828         pm_mask = PT_PRESENT_MASK;
3829         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3830                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3831
3832         for (i = 0; i < 4; ++i) {
3833                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3834
3835                 MMU_WARN_ON(VALID_PAGE(root));
3836                 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3837                         pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3838                         if (!(pdptr & PT_PRESENT_MASK)) {
3839                                 vcpu->arch.mmu->pae_root[i] = 0;
3840                                 continue;
3841                         }
3842                         root_gfn = pdptr >> PAGE_SHIFT;
3843                         if (mmu_check_root(vcpu, root_gfn))
3844                                 return 1;
3845                 }
3846                 spin_lock(&vcpu->kvm->mmu_lock);
3847                 if (make_mmu_pages_available(vcpu) < 0) {
3848                         spin_unlock(&vcpu->kvm->mmu_lock);
3849                         return -ENOSPC;
3850                 }
3851                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3852                                       0, ACC_ALL);
3853                 root = __pa(sp->spt);
3854                 ++sp->root_count;
3855                 spin_unlock(&vcpu->kvm->mmu_lock);
3856
3857                 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3858         }
3859         vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3860
3861         /*
3862          * If we shadow a 32 bit page table with a long mode page
3863          * table we enter this path.
3864          */
3865         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3866                 if (vcpu->arch.mmu->lm_root == NULL) {
3867                         /*
3868                          * The additional page necessary for this is only
3869                          * allocated on demand.
3870                          */
3871
3872                         u64 *lm_root;
3873
3874                         lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3875                         if (lm_root == NULL)
3876                                 return 1;
3877
3878                         lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3879
3880                         vcpu->arch.mmu->lm_root = lm_root;
3881                 }
3882
3883                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3884         }
3885
3886 set_root_cr3:
3887         vcpu->arch.mmu->root_cr3 = root_cr3;
3888
3889         return 0;
3890 }
3891
3892 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3893 {
3894         if (vcpu->arch.mmu->direct_map)
3895                 return mmu_alloc_direct_roots(vcpu);
3896         else
3897                 return mmu_alloc_shadow_roots(vcpu);
3898 }
3899
3900 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3901 {
3902         int i;
3903         struct kvm_mmu_page *sp;
3904
3905         if (vcpu->arch.mmu->direct_map)
3906                 return;
3907
3908         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3909                 return;
3910
3911         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3912
3913         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3914                 hpa_t root = vcpu->arch.mmu->root_hpa;
3915                 sp = page_header(root);
3916
3917                 /*
3918                  * Even if another CPU was marking the SP as unsync-ed
3919                  * simultaneously, any guest page table changes are not
3920                  * guaranteed to be visible anyway until this VCPU issues a TLB
3921                  * flush strictly after those changes are made. We only need to
3922                  * ensure that the other CPU sets these flags before any actual
3923                  * changes to the page tables are made. The comments in
3924                  * mmu_need_write_protect() describe what could go wrong if this
3925                  * requirement isn't satisfied.
3926                  */
3927                 if (!smp_load_acquire(&sp->unsync) &&
3928                     !smp_load_acquire(&sp->unsync_children))
3929                         return;
3930
3931                 spin_lock(&vcpu->kvm->mmu_lock);
3932                 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3933
3934                 mmu_sync_children(vcpu, sp);
3935
3936                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3937                 spin_unlock(&vcpu->kvm->mmu_lock);
3938                 return;
3939         }
3940
3941         spin_lock(&vcpu->kvm->mmu_lock);
3942         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3943
3944         for (i = 0; i < 4; ++i) {
3945                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3946
3947                 if (root && VALID_PAGE(root)) {
3948                         root &= PT64_BASE_ADDR_MASK;
3949                         sp = page_header(root);
3950                         mmu_sync_children(vcpu, sp);
3951                 }
3952         }
3953
3954         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3955         spin_unlock(&vcpu->kvm->mmu_lock);
3956 }
3957 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3958
3959 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3960                                   u32 access, struct x86_exception *exception)
3961 {
3962         if (exception)
3963                 exception->error_code = 0;
3964         return vaddr;
3965 }
3966
3967 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3968                                          u32 access,
3969                                          struct x86_exception *exception)
3970 {
3971         if (exception)
3972                 exception->error_code = 0;
3973         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3974 }
3975
3976 static bool
3977 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3978 {
3979         int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3980
3981         return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3982                 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3983 }
3984
3985 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3986 {
3987         return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3988 }
3989
3990 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3991 {
3992         return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3993 }
3994
3995 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3996 {
3997         /*
3998          * A nested guest cannot use the MMIO cache if it is using nested
3999          * page tables, because cr2 is a nGPA while the cache stores GPAs.
4000          */
4001         if (mmu_is_nested(vcpu))
4002                 return false;
4003
4004         if (direct)
4005                 return vcpu_match_mmio_gpa(vcpu, addr);
4006
4007         return vcpu_match_mmio_gva(vcpu, addr);
4008 }
4009
4010 /* return true if reserved bit is detected on spte. */
4011 static bool
4012 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
4013 {
4014         struct kvm_shadow_walk_iterator iterator;
4015         u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
4016         int root, leaf;
4017         bool reserved = false;
4018
4019         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
4020                 goto exit;
4021
4022         walk_shadow_page_lockless_begin(vcpu);
4023
4024         for (shadow_walk_init(&iterator, vcpu, addr),
4025                  leaf = root = iterator.level;
4026              shadow_walk_okay(&iterator);
4027              __shadow_walk_next(&iterator, spte)) {
4028                 spte = mmu_spte_get_lockless(iterator.sptep);
4029
4030                 sptes[leaf - 1] = spte;
4031                 leaf--;
4032
4033                 if (!is_shadow_present_pte(spte))
4034                         break;
4035
4036                 reserved |= is_shadow_zero_bits_set(vcpu->arch.mmu, spte,
4037                                                     iterator.level);
4038         }
4039
4040         walk_shadow_page_lockless_end(vcpu);
4041
4042         if (reserved) {
4043                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
4044                        __func__, addr);
4045                 while (root > leaf) {
4046                         pr_err("------ spte 0x%llx level %d.\n",
4047                                sptes[root - 1], root);
4048                         root--;
4049                 }
4050         }
4051 exit:
4052         *sptep = spte;
4053         return reserved;
4054 }
4055
4056 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4057 {
4058         u64 spte;
4059         bool reserved;
4060
4061         if (mmio_info_in_cache(vcpu, addr, direct))
4062                 return RET_PF_EMULATE;
4063
4064         reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
4065         if (WARN_ON(reserved))
4066                 return -EINVAL;
4067
4068         if (is_mmio_spte(spte)) {
4069                 gfn_t gfn = get_mmio_spte_gfn(spte);
4070                 unsigned access = get_mmio_spte_access(spte);
4071
4072                 if (!check_mmio_spte(vcpu, spte))
4073                         return RET_PF_INVALID;
4074
4075                 if (direct)
4076                         addr = 0;
4077
4078                 trace_handle_mmio_page_fault(addr, gfn, access);
4079                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
4080                 return RET_PF_EMULATE;
4081         }
4082
4083         /*
4084          * If the page table is zapped by other cpus, let CPU fault again on
4085          * the address.
4086          */
4087         return RET_PF_RETRY;
4088 }
4089
4090 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
4091                                          u32 error_code, gfn_t gfn)
4092 {
4093         if (unlikely(error_code & PFERR_RSVD_MASK))
4094                 return false;
4095
4096         if (!(error_code & PFERR_PRESENT_MASK) ||
4097               !(error_code & PFERR_WRITE_MASK))
4098                 return false;
4099
4100         /*
4101          * guest is writing the page which is write tracked which can
4102          * not be fixed by page fault handler.
4103          */
4104         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
4105                 return true;
4106
4107         return false;
4108 }
4109
4110 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4111 {
4112         struct kvm_shadow_walk_iterator iterator;
4113         u64 spte;
4114
4115         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
4116                 return;
4117
4118         walk_shadow_page_lockless_begin(vcpu);
4119         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4120                 clear_sp_write_flooding_count(iterator.sptep);
4121                 if (!is_shadow_present_pte(spte))
4122                         break;
4123         }
4124         walk_shadow_page_lockless_end(vcpu);
4125 }
4126
4127 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
4128                                    gfn_t gfn)
4129 {
4130         struct kvm_arch_async_pf arch;
4131
4132         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4133         arch.gfn = gfn;
4134         arch.direct_map = vcpu->arch.mmu->direct_map;
4135         arch.cr3 = vcpu->arch.mmu->get_cr3(vcpu);
4136
4137         return kvm_setup_async_pf(vcpu, cr2_or_gpa,
4138                                   kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4139 }
4140
4141 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
4142                          gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
4143                          bool *writable)
4144 {
4145         struct kvm_memory_slot *slot;
4146         bool async;
4147
4148         /*
4149          * Don't expose private memslots to L2.
4150          */
4151         if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
4152                 *pfn = KVM_PFN_NOSLOT;
4153                 return false;
4154         }
4155
4156         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
4157         async = false;
4158         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
4159         if (!async)
4160                 return false; /* *pfn has correct page already */
4161
4162         if (!prefault && kvm_can_do_async_pf(vcpu)) {
4163                 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
4164                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4165                         trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
4166                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4167                         return true;
4168                 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
4169                         return true;
4170         }
4171
4172         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
4173         return false;
4174 }
4175
4176 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
4177                                 u32 error_code, bool prefault)
4178 {
4179         int r;
4180         int level;
4181         kvm_pfn_t pfn;
4182         unsigned long mmu_seq;
4183         gfn_t gfn = gpa >> PAGE_SHIFT;
4184         bool write = error_code & PFERR_WRITE_MASK;
4185         bool map_writable;
4186         bool exec = error_code & PFERR_FETCH_MASK;
4187         bool lpage_disallowed = exec && is_nx_huge_page_enabled();
4188         int max_level;
4189
4190         /* Note, paging is disabled, ergo gva == gpa. */
4191         pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
4192
4193         gpa &= PAGE_MASK;
4194
4195         if (page_fault_handle_page_track(vcpu, error_code, gfn))
4196                 return RET_PF_EMULATE;
4197
4198         r = mmu_topup_memory_caches(vcpu);
4199         if (r)
4200                 return r;
4201
4202         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
4203
4204         /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4205         max_level = lpage_disallowed ? PT_PAGE_TABLE_LEVEL : PT_DIRECTORY_LEVEL;
4206
4207         level = mapping_level(vcpu, gfn, &max_level);
4208         if (level > PT_PAGE_TABLE_LEVEL)
4209                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
4210
4211         if (fast_page_fault(vcpu, gpa, level, error_code))
4212                 return RET_PF_RETRY;
4213
4214         mmu_seq = vcpu->kvm->mmu_notifier_seq;
4215         smp_rmb();
4216
4217         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4218                 return RET_PF_RETRY;
4219
4220         if (handle_abnormal_pfn(vcpu, gpa, gfn, pfn, ACC_ALL, &r))
4221                 return r;
4222
4223         r = RET_PF_RETRY;
4224         spin_lock(&vcpu->kvm->mmu_lock);
4225         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4226                 goto out_unlock;
4227         if (make_mmu_pages_available(vcpu) < 0)
4228                 goto out_unlock;
4229         if (likely(max_level > PT_PAGE_TABLE_LEVEL))
4230                 transparent_hugepage_adjust(vcpu, gfn, &pfn, &level);
4231         r = __direct_map(vcpu, gpa, write, map_writable, level, pfn,
4232                          prefault, false);
4233 out_unlock:
4234         spin_unlock(&vcpu->kvm->mmu_lock);
4235         kvm_release_pfn_clean(pfn);
4236         return r;
4237 }
4238
4239 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4240                                 u64 fault_address, char *insn, int insn_len)
4241 {
4242         int r = 1;
4243
4244 #ifndef CONFIG_X86_64
4245         /* A 64-bit CR2 should be impossible on 32-bit KVM. */
4246         if (WARN_ON_ONCE(fault_address >> 32))
4247                 return -EFAULT;
4248 #endif
4249
4250         vcpu->arch.l1tf_flush_l1d = true;
4251         switch (vcpu->arch.apf.host_apf_reason) {
4252         default:
4253                 trace_kvm_page_fault(fault_address, error_code);
4254
4255                 if (kvm_event_needs_reinjection(vcpu))
4256                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4257                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4258                                 insn_len);
4259                 break;
4260         case KVM_PV_REASON_PAGE_NOT_PRESENT:
4261                 vcpu->arch.apf.host_apf_reason = 0;
4262                 local_irq_disable();
4263                 kvm_async_pf_task_wait(fault_address, 0);
4264                 local_irq_enable();
4265                 break;
4266         case KVM_PV_REASON_PAGE_READY:
4267                 vcpu->arch.apf.host_apf_reason = 0;
4268                 local_irq_disable();
4269                 kvm_async_pf_task_wake(fault_address);
4270                 local_irq_enable();
4271                 break;
4272         }
4273         return r;
4274 }
4275 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4276
4277 static int tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4278                           bool prefault)
4279 {
4280         kvm_pfn_t pfn;
4281         int r;
4282         int level;
4283         gfn_t gfn = gpa >> PAGE_SHIFT;
4284         unsigned long mmu_seq;
4285         int write = error_code & PFERR_WRITE_MASK;
4286         bool map_writable;
4287         bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
4288                                 is_nx_huge_page_enabled();
4289         int max_level;
4290
4291         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
4292
4293         if (page_fault_handle_page_track(vcpu, error_code, gfn))
4294                 return RET_PF_EMULATE;
4295
4296         r = mmu_topup_memory_caches(vcpu);
4297         if (r)
4298                 return r;
4299
4300         for (max_level = PT_MAX_HUGEPAGE_LEVEL;
4301              max_level > PT_PAGE_TABLE_LEVEL;
4302              max_level--) {
4303                 int page_num = KVM_PAGES_PER_HPAGE(max_level);
4304                 gfn_t base = gfn & ~(page_num - 1);
4305
4306                 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4307                         break;
4308         }
4309
4310         if (lpage_disallowed)
4311                 max_level = PT_PAGE_TABLE_LEVEL;
4312
4313         level = mapping_level(vcpu, gfn, &max_level);
4314         if (level > PT_PAGE_TABLE_LEVEL)
4315                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
4316
4317         if (fast_page_fault(vcpu, gpa, level, error_code))
4318                 return RET_PF_RETRY;
4319
4320         mmu_seq = vcpu->kvm->mmu_notifier_seq;
4321         smp_rmb();
4322
4323         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4324                 return RET_PF_RETRY;
4325
4326         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
4327                 return r;
4328
4329         r = RET_PF_RETRY;
4330         spin_lock(&vcpu->kvm->mmu_lock);
4331         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4332                 goto out_unlock;
4333         if (make_mmu_pages_available(vcpu) < 0)
4334                 goto out_unlock;
4335         if (likely(max_level > PT_PAGE_TABLE_LEVEL))
4336                 transparent_hugepage_adjust(vcpu, gfn, &pfn, &level);
4337         r = __direct_map(vcpu, gpa, write, map_writable, level, pfn,
4338                          prefault, lpage_disallowed);
4339 out_unlock:
4340         spin_unlock(&vcpu->kvm->mmu_lock);
4341         kvm_release_pfn_clean(pfn);
4342         return r;
4343 }
4344
4345 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4346                                    struct kvm_mmu *context)
4347 {
4348         context->page_fault = nonpaging_page_fault;
4349         context->gva_to_gpa = nonpaging_gva_to_gpa;
4350         context->sync_page = nonpaging_sync_page;
4351         context->invlpg = nonpaging_invlpg;
4352         context->update_pte = nonpaging_update_pte;
4353         context->root_level = 0;
4354         context->shadow_root_level = PT32E_ROOT_LEVEL;
4355         context->direct_map = true;
4356         context->nx = false;
4357 }
4358
4359 /*
4360  * Find out if a previously cached root matching the new CR3/role is available.
4361  * The current root is also inserted into the cache.
4362  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4363  * returned.
4364  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4365  * false is returned. This root should now be freed by the caller.
4366  */
4367 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4368                                   union kvm_mmu_page_role new_role)
4369 {
4370         uint i;
4371         struct kvm_mmu_root_info root;
4372         struct kvm_mmu *mmu = vcpu->arch.mmu;
4373
4374         root.cr3 = mmu->root_cr3;
4375         root.hpa = mmu->root_hpa;
4376
4377         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4378                 swap(root, mmu->prev_roots[i]);
4379
4380                 if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) &&
4381                     page_header(root.hpa) != NULL &&
4382                     new_role.word == page_header(root.hpa)->role.word)
4383                         break;
4384         }
4385
4386         mmu->root_hpa = root.hpa;
4387         mmu->root_cr3 = root.cr3;
4388
4389         return i < KVM_MMU_NUM_PREV_ROOTS;
4390 }
4391
4392 static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4393                             union kvm_mmu_page_role new_role,
4394                             bool skip_tlb_flush)
4395 {
4396         struct kvm_mmu *mmu = vcpu->arch.mmu;
4397
4398         /*
4399          * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4400          * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4401          * later if necessary.
4402          */
4403         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4404             mmu->root_level >= PT64_ROOT_4LEVEL) {
4405                 if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
4406                         return false;
4407
4408                 if (cached_root_available(vcpu, new_cr3, new_role)) {
4409                         /*
4410                          * It is possible that the cached previous root page is
4411                          * obsolete because of a change in the MMU generation
4412                          * number. However, changing the generation number is
4413                          * accompanied by KVM_REQ_MMU_RELOAD, which will free
4414                          * the root set here and allocate a new one.
4415                          */
4416                         kvm_make_request(KVM_REQ_LOAD_CR3, vcpu);
4417                         if (!skip_tlb_flush) {
4418                                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4419                                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4420                         }
4421
4422                         /*
4423                          * The last MMIO access's GVA and GPA are cached in the
4424                          * VCPU. When switching to a new CR3, that GVA->GPA
4425                          * mapping may no longer be valid. So clear any cached
4426                          * MMIO info even when we don't need to sync the shadow
4427                          * page tables.
4428                          */
4429                         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4430
4431                         __clear_sp_write_flooding_count(
4432                                 page_header(mmu->root_hpa));
4433
4434                         return true;
4435                 }
4436         }
4437
4438         return false;
4439 }
4440
4441 static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4442                               union kvm_mmu_page_role new_role,
4443                               bool skip_tlb_flush)
4444 {
4445         if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
4446                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu,
4447                                    KVM_MMU_ROOT_CURRENT);
4448 }
4449
4450 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
4451 {
4452         __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
4453                           skip_tlb_flush);
4454 }
4455 EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
4456
4457 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4458 {
4459         return kvm_read_cr3(vcpu);
4460 }
4461
4462 static void inject_page_fault(struct kvm_vcpu *vcpu,
4463                               struct x86_exception *fault)
4464 {
4465         vcpu->arch.mmu->inject_page_fault(vcpu, fault);
4466 }
4467
4468 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4469                            unsigned access, int *nr_present)
4470 {
4471         if (unlikely(is_mmio_spte(*sptep))) {
4472                 if (gfn != get_mmio_spte_gfn(*sptep)) {
4473                         mmu_spte_clear_no_track(sptep);
4474                         return true;
4475                 }
4476
4477                 (*nr_present)++;
4478                 mark_mmio_spte(vcpu, sptep, gfn, access);
4479                 return true;
4480         }
4481
4482         return false;
4483 }
4484
4485 static inline bool is_last_gpte(struct kvm_mmu *mmu,
4486                                 unsigned level, unsigned gpte)
4487 {
4488         /*
4489          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4490          * If it is clear, there are no large pages at this level, so clear
4491          * PT_PAGE_SIZE_MASK in gpte if that is the case.
4492          */
4493         gpte &= level - mmu->last_nonleaf_level;
4494
4495         /*
4496          * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
4497          * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4498          * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4499          */
4500         gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4501
4502         return gpte & PT_PAGE_SIZE_MASK;
4503 }
4504
4505 #define PTTYPE_EPT 18 /* arbitrary */
4506 #define PTTYPE PTTYPE_EPT
4507 #include "paging_tmpl.h"
4508 #undef PTTYPE
4509
4510 #define PTTYPE 64
4511 #include "paging_tmpl.h"
4512 #undef PTTYPE
4513
4514 #define PTTYPE 32
4515 #include "paging_tmpl.h"
4516 #undef PTTYPE
4517
4518 static void
4519 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4520                         struct rsvd_bits_validate *rsvd_check,
4521                         int maxphyaddr, int level, bool nx, bool gbpages,
4522                         bool pse, bool amd)
4523 {
4524         u64 exb_bit_rsvd = 0;
4525         u64 gbpages_bit_rsvd = 0;
4526         u64 nonleaf_bit8_rsvd = 0;
4527
4528         rsvd_check->bad_mt_xwr = 0;
4529
4530         if (!nx)
4531                 exb_bit_rsvd = rsvd_bits(63, 63);
4532         if (!gbpages)
4533                 gbpages_bit_rsvd = rsvd_bits(7, 7);
4534
4535         /*
4536          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4537          * leaf entries) on AMD CPUs only.
4538          */
4539         if (amd)
4540                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4541
4542         switch (level) {
4543         case PT32_ROOT_LEVEL:
4544                 /* no rsvd bits for 2 level 4K page table entries */
4545                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4546                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4547                 rsvd_check->rsvd_bits_mask[1][0] =
4548                         rsvd_check->rsvd_bits_mask[0][0];
4549
4550                 if (!pse) {
4551                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4552                         break;
4553                 }
4554
4555                 if (is_cpuid_PSE36())
4556                         /* 36bits PSE 4MB page */
4557                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4558                 else
4559                         /* 32 bits PSE 4MB page */
4560                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4561                 break;
4562         case PT32E_ROOT_LEVEL:
4563                 rsvd_check->rsvd_bits_mask[0][2] =
4564                         rsvd_bits(maxphyaddr, 63) |
4565                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
4566                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4567                         rsvd_bits(maxphyaddr, 62);      /* PDE */
4568                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4569                         rsvd_bits(maxphyaddr, 62);      /* PTE */
4570                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4571                         rsvd_bits(maxphyaddr, 62) |
4572                         rsvd_bits(13, 20);              /* large page */
4573                 rsvd_check->rsvd_bits_mask[1][0] =
4574                         rsvd_check->rsvd_bits_mask[0][0];
4575                 break;
4576         case PT64_ROOT_5LEVEL:
4577                 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4578                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4579                         rsvd_bits(maxphyaddr, 51);
4580                 rsvd_check->rsvd_bits_mask[1][4] =
4581                         rsvd_check->rsvd_bits_mask[0][4];
4582                 /* fall through */
4583         case PT64_ROOT_4LEVEL:
4584                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4585                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4586                         rsvd_bits(maxphyaddr, 51);
4587                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4588                         nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4589                         rsvd_bits(maxphyaddr, 51);
4590                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4591                         rsvd_bits(maxphyaddr, 51);
4592                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4593                         rsvd_bits(maxphyaddr, 51);
4594                 rsvd_check->rsvd_bits_mask[1][3] =
4595                         rsvd_check->rsvd_bits_mask[0][3];
4596                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4597                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4598                         rsvd_bits(13, 29);
4599                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4600                         rsvd_bits(maxphyaddr, 51) |
4601                         rsvd_bits(13, 20);              /* large page */
4602                 rsvd_check->rsvd_bits_mask[1][0] =
4603                         rsvd_check->rsvd_bits_mask[0][0];
4604                 break;
4605         }
4606 }
4607
4608 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4609                                   struct kvm_mmu *context)
4610 {
4611         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4612                                 cpuid_maxphyaddr(vcpu), context->root_level,
4613                                 context->nx,
4614                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4615                                 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4616 }
4617
4618 static void
4619 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4620                             int maxphyaddr, bool execonly)
4621 {
4622         u64 bad_mt_xwr;
4623
4624         rsvd_check->rsvd_bits_mask[0][4] =
4625                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4626         rsvd_check->rsvd_bits_mask[0][3] =
4627                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4628         rsvd_check->rsvd_bits_mask[0][2] =
4629                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4630         rsvd_check->rsvd_bits_mask[0][1] =
4631                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4632         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4633
4634         /* large page */
4635         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4636         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4637         rsvd_check->rsvd_bits_mask[1][2] =
4638                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4639         rsvd_check->rsvd_bits_mask[1][1] =
4640                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4641         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4642
4643         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4644         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4645         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4646         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4647         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4648         if (!execonly) {
4649                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4650                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4651         }
4652         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4653 }
4654
4655 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4656                 struct kvm_mmu *context, bool execonly)
4657 {
4658         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4659                                     cpuid_maxphyaddr(vcpu), execonly);
4660 }
4661
4662 /*
4663  * the page table on host is the shadow page table for the page
4664  * table in guest or amd nested guest, its mmu features completely
4665  * follow the features in guest.
4666  */
4667 void
4668 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4669 {
4670         bool uses_nx = context->nx ||
4671                 context->mmu_role.base.smep_andnot_wp;
4672         struct rsvd_bits_validate *shadow_zero_check;
4673         int i;
4674
4675         /*
4676          * Passing "true" to the last argument is okay; it adds a check
4677          * on bit 8 of the SPTEs which KVM doesn't use anyway.
4678          */
4679         shadow_zero_check = &context->shadow_zero_check;
4680         __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4681                                 shadow_phys_bits,
4682                                 context->shadow_root_level, uses_nx,
4683                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4684                                 is_pse(vcpu), true);
4685
4686         if (!shadow_me_mask)
4687                 return;
4688
4689         for (i = context->shadow_root_level; --i >= 0;) {
4690                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4691                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4692         }
4693
4694 }
4695 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4696
4697 static inline bool boot_cpu_is_amd(void)
4698 {
4699         WARN_ON_ONCE(!tdp_enabled);
4700         return shadow_x_mask == 0;
4701 }
4702
4703 /*
4704  * the direct page table on host, use as much mmu features as
4705  * possible, however, kvm currently does not do execution-protection.
4706  */
4707 static void
4708 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4709                                 struct kvm_mmu *context)
4710 {
4711         struct rsvd_bits_validate *shadow_zero_check;
4712         int i;
4713
4714         shadow_zero_check = &context->shadow_zero_check;
4715
4716         if (boot_cpu_is_amd())
4717                 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4718                                         shadow_phys_bits,
4719                                         context->shadow_root_level, false,
4720                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4721                                         true, true);
4722         else
4723                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4724                                             shadow_phys_bits,
4725                                             false);
4726
4727         if (!shadow_me_mask)
4728                 return;
4729
4730         for (i = context->shadow_root_level; --i >= 0;) {
4731                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4732                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4733         }
4734 }
4735
4736 /*
4737  * as the comments in reset_shadow_zero_bits_mask() except it
4738  * is the shadow page table for intel nested guest.
4739  */
4740 static void
4741 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4742                                 struct kvm_mmu *context, bool execonly)
4743 {
4744         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4745                                     shadow_phys_bits, execonly);
4746 }
4747
4748 #define BYTE_MASK(access) \
4749         ((1 & (access) ? 2 : 0) | \
4750          (2 & (access) ? 4 : 0) | \
4751          (3 & (access) ? 8 : 0) | \
4752          (4 & (access) ? 16 : 0) | \
4753          (5 & (access) ? 32 : 0) | \
4754          (6 & (access) ? 64 : 0) | \
4755          (7 & (access) ? 128 : 0))
4756
4757
4758 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4759                                       struct kvm_mmu *mmu, bool ept)
4760 {
4761         unsigned byte;
4762
4763         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4764         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4765         const u8 u = BYTE_MASK(ACC_USER_MASK);
4766
4767         bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4768         bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4769         bool cr0_wp = is_write_protection(vcpu);
4770
4771         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4772                 unsigned pfec = byte << 1;
4773
4774                 /*
4775                  * Each "*f" variable has a 1 bit for each UWX value
4776                  * that causes a fault with the given PFEC.
4777                  */
4778
4779                 /* Faults from writes to non-writable pages */
4780                 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4781                 /* Faults from user mode accesses to supervisor pages */
4782                 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4783                 /* Faults from fetches of non-executable pages*/
4784                 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4785                 /* Faults from kernel mode fetches of user pages */
4786                 u8 smepf = 0;
4787                 /* Faults from kernel mode accesses of user pages */
4788                 u8 smapf = 0;
4789
4790                 if (!ept) {
4791                         /* Faults from kernel mode accesses to user pages */
4792                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4793
4794                         /* Not really needed: !nx will cause pte.nx to fault */
4795                         if (!mmu->nx)
4796                                 ff = 0;
4797
4798                         /* Allow supervisor writes if !cr0.wp */
4799                         if (!cr0_wp)
4800                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4801
4802                         /* Disallow supervisor fetches of user code if cr4.smep */
4803                         if (cr4_smep)
4804                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4805
4806                         /*
4807                          * SMAP:kernel-mode data accesses from user-mode
4808                          * mappings should fault. A fault is considered
4809                          * as a SMAP violation if all of the following
4810                          * conditions are true:
4811                          *   - X86_CR4_SMAP is set in CR4
4812                          *   - A user page is accessed
4813                          *   - The access is not a fetch
4814                          *   - Page fault in kernel mode
4815                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4816                          *
4817                          * Here, we cover the first three conditions.
4818                          * The fourth is computed dynamically in permission_fault();
4819                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4820                          * *not* subject to SMAP restrictions.
4821                          */
4822                         if (cr4_smap)
4823                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4824                 }
4825
4826                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4827         }
4828 }
4829
4830 /*
4831 * PKU is an additional mechanism by which the paging controls access to
4832 * user-mode addresses based on the value in the PKRU register.  Protection
4833 * key violations are reported through a bit in the page fault error code.
4834 * Unlike other bits of the error code, the PK bit is not known at the
4835 * call site of e.g. gva_to_gpa; it must be computed directly in
4836 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4837 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4838 *
4839 * In particular the following conditions come from the error code, the
4840 * page tables and the machine state:
4841 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4842 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4843 * - PK is always zero if U=0 in the page tables
4844 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4845 *
4846 * The PKRU bitmask caches the result of these four conditions.  The error
4847 * code (minus the P bit) and the page table's U bit form an index into the
4848 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4849 * with the two bits of the PKRU register corresponding to the protection key.
4850 * For the first three conditions above the bits will be 00, thus masking
4851 * away both AD and WD.  For all reads or if the last condition holds, WD
4852 * only will be masked away.
4853 */
4854 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4855                                 bool ept)
4856 {
4857         unsigned bit;
4858         bool wp;
4859
4860         if (ept) {
4861                 mmu->pkru_mask = 0;
4862                 return;
4863         }
4864
4865         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4866         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4867                 mmu->pkru_mask = 0;
4868                 return;
4869         }
4870
4871         wp = is_write_protection(vcpu);
4872
4873         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4874                 unsigned pfec, pkey_bits;
4875                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4876
4877                 pfec = bit << 1;
4878                 ff = pfec & PFERR_FETCH_MASK;
4879                 uf = pfec & PFERR_USER_MASK;
4880                 wf = pfec & PFERR_WRITE_MASK;
4881
4882                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4883                 pte_user = pfec & PFERR_RSVD_MASK;
4884
4885                 /*
4886                  * Only need to check the access which is not an
4887                  * instruction fetch and is to a user page.
4888                  */
4889                 check_pkey = (!ff && pte_user);
4890                 /*
4891                  * write access is controlled by PKRU if it is a
4892                  * user access or CR0.WP = 1.
4893                  */
4894                 check_write = check_pkey && wf && (uf || wp);
4895
4896                 /* PKRU.AD stops both read and write access. */
4897                 pkey_bits = !!check_pkey;
4898                 /* PKRU.WD stops write access. */
4899                 pkey_bits |= (!!check_write) << 1;
4900
4901                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4902         }
4903 }
4904
4905 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4906 {
4907         unsigned root_level = mmu->root_level;
4908
4909         mmu->last_nonleaf_level = root_level;
4910         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4911                 mmu->last_nonleaf_level++;
4912 }
4913
4914 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4915                                          struct kvm_mmu *context,
4916                                          int level)
4917 {
4918         context->nx = is_nx(vcpu);
4919         context->root_level = level;
4920
4921         reset_rsvds_bits_mask(vcpu, context);
4922         update_permission_bitmask(vcpu, context, false);
4923         update_pkru_bitmask(vcpu, context, false);
4924         update_last_nonleaf_level(vcpu, context);
4925
4926         MMU_WARN_ON(!is_pae(vcpu));
4927         context->page_fault = paging64_page_fault;
4928         context->gva_to_gpa = paging64_gva_to_gpa;
4929         context->sync_page = paging64_sync_page;
4930         context->invlpg = paging64_invlpg;
4931         context->update_pte = paging64_update_pte;
4932         context->shadow_root_level = level;
4933         context->direct_map = false;
4934 }
4935
4936 static void paging64_init_context(struct kvm_vcpu *vcpu,
4937                                   struct kvm_mmu *context)
4938 {
4939         int root_level = is_la57_mode(vcpu) ?
4940                          PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4941
4942         paging64_init_context_common(vcpu, context, root_level);
4943 }
4944
4945 static void paging32_init_context(struct kvm_vcpu *vcpu,
4946                                   struct kvm_mmu *context)
4947 {
4948         context->nx = false;
4949         context->root_level = PT32_ROOT_LEVEL;
4950
4951         reset_rsvds_bits_mask(vcpu, context);
4952         update_permission_bitmask(vcpu, context, false);
4953         update_pkru_bitmask(vcpu, context, false);
4954         update_last_nonleaf_level(vcpu, context);
4955
4956         context->page_fault = paging32_page_fault;
4957         context->gva_to_gpa = paging32_gva_to_gpa;
4958         context->sync_page = paging32_sync_page;
4959         context->invlpg = paging32_invlpg;
4960         context->update_pte = paging32_update_pte;
4961         context->shadow_root_level = PT32E_ROOT_LEVEL;
4962         context->direct_map = false;
4963 }
4964
4965 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4966                                    struct kvm_mmu *context)
4967 {
4968         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4969 }
4970
4971 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4972 {
4973         union kvm_mmu_extended_role ext = {0};
4974
4975         ext.cr0_pg = !!is_paging(vcpu);
4976         ext.cr4_pae = !!is_pae(vcpu);
4977         ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4978         ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4979         ext.cr4_pse = !!is_pse(vcpu);
4980         ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4981         ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
4982         ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4983
4984         ext.valid = 1;
4985
4986         return ext;
4987 }
4988
4989 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4990                                                    bool base_only)
4991 {
4992         union kvm_mmu_role role = {0};
4993
4994         role.base.access = ACC_ALL;
4995         role.base.nxe = !!is_nx(vcpu);
4996         role.base.cr0_wp = is_write_protection(vcpu);
4997         role.base.smm = is_smm(vcpu);
4998         role.base.guest_mode = is_guest_mode(vcpu);
4999
5000         if (base_only)
5001                 return role;
5002
5003         role.ext = kvm_calc_mmu_role_ext(vcpu);
5004
5005         return role;
5006 }
5007
5008 static union kvm_mmu_role
5009 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
5010 {
5011         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
5012
5013         role.base.ad_disabled = (shadow_accessed_mask == 0);
5014         role.base.level = kvm_x86_ops->get_tdp_level(vcpu);
5015         role.base.direct = true;
5016         role.base.gpte_is_8_bytes = true;
5017
5018         return role;
5019 }
5020
5021 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
5022 {
5023         struct kvm_mmu *context = vcpu->arch.mmu;
5024         union kvm_mmu_role new_role =
5025                 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
5026
5027         new_role.base.word &= mmu_base_role_mask.word;
5028         if (new_role.as_u64 == context->mmu_role.as_u64)
5029                 return;
5030
5031         context->mmu_role.as_u64 = new_role.as_u64;
5032         context->page_fault = tdp_page_fault;
5033         context->sync_page = nonpaging_sync_page;
5034         context->invlpg = nonpaging_invlpg;
5035         context->update_pte = nonpaging_update_pte;
5036         context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
5037         context->direct_map = true;
5038         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5039         context->get_cr3 = get_cr3;
5040         context->get_pdptr = kvm_pdptr_read;
5041         context->inject_page_fault = kvm_inject_page_fault;
5042
5043         if (!is_paging(vcpu)) {
5044                 context->nx = false;
5045                 context->gva_to_gpa = nonpaging_gva_to_gpa;
5046                 context->root_level = 0;
5047         } else if (is_long_mode(vcpu)) {
5048                 context->nx = is_nx(vcpu);
5049                 context->root_level = is_la57_mode(vcpu) ?
5050                                 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5051                 reset_rsvds_bits_mask(vcpu, context);
5052                 context->gva_to_gpa = paging64_gva_to_gpa;
5053         } else if (is_pae(vcpu)) {
5054                 context->nx = is_nx(vcpu);
5055                 context->root_level = PT32E_ROOT_LEVEL;
5056                 reset_rsvds_bits_mask(vcpu, context);
5057                 context->gva_to_gpa = paging64_gva_to_gpa;
5058         } else {
5059                 context->nx = false;
5060                 context->root_level = PT32_ROOT_LEVEL;
5061                 reset_rsvds_bits_mask(vcpu, context);
5062                 context->gva_to_gpa = paging32_gva_to_gpa;
5063         }
5064
5065         update_permission_bitmask(vcpu, context, false);
5066         update_pkru_bitmask(vcpu, context, false);
5067         update_last_nonleaf_level(vcpu, context);
5068         reset_tdp_shadow_zero_bits_mask(vcpu, context);
5069 }
5070
5071 static union kvm_mmu_role
5072 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
5073 {
5074         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
5075
5076         role.base.smep_andnot_wp = role.ext.cr4_smep &&
5077                 !is_write_protection(vcpu);
5078         role.base.smap_andnot_wp = role.ext.cr4_smap &&
5079                 !is_write_protection(vcpu);
5080         role.base.direct = !is_paging(vcpu);
5081         role.base.gpte_is_8_bytes = !!is_pae(vcpu);
5082
5083         if (!is_long_mode(vcpu))
5084                 role.base.level = PT32E_ROOT_LEVEL;
5085         else if (is_la57_mode(vcpu))
5086                 role.base.level = PT64_ROOT_5LEVEL;
5087         else
5088                 role.base.level = PT64_ROOT_4LEVEL;
5089
5090         return role;
5091 }
5092
5093 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
5094 {
5095         struct kvm_mmu *context = vcpu->arch.mmu;
5096         union kvm_mmu_role new_role =
5097                 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
5098
5099         new_role.base.word &= mmu_base_role_mask.word;
5100         if (new_role.as_u64 == context->mmu_role.as_u64)
5101                 return;
5102
5103         if (!is_paging(vcpu))
5104                 nonpaging_init_context(vcpu, context);
5105         else if (is_long_mode(vcpu))
5106                 paging64_init_context(vcpu, context);
5107         else if (is_pae(vcpu))
5108                 paging32E_init_context(vcpu, context);
5109         else
5110                 paging32_init_context(vcpu, context);
5111
5112         context->mmu_role.as_u64 = new_role.as_u64;
5113         reset_shadow_zero_bits_mask(vcpu, context);
5114 }
5115 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
5116
5117 static union kvm_mmu_role
5118 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
5119                                    bool execonly)
5120 {
5121         union kvm_mmu_role role = {0};
5122
5123         /* SMM flag is inherited from root_mmu */
5124         role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
5125
5126         role.base.level = PT64_ROOT_4LEVEL;
5127         role.base.gpte_is_8_bytes = true;
5128         role.base.direct = false;
5129         role.base.ad_disabled = !accessed_dirty;
5130         role.base.guest_mode = true;
5131         role.base.access = ACC_ALL;
5132
5133         /*
5134          * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
5135          * SMAP variation to denote shadow EPT entries.
5136          */
5137         role.base.cr0_wp = true;
5138         role.base.smap_andnot_wp = true;
5139
5140         role.ext = kvm_calc_mmu_role_ext(vcpu);
5141         role.ext.execonly = execonly;
5142
5143         return role;
5144 }
5145
5146 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5147                              bool accessed_dirty, gpa_t new_eptp)
5148 {
5149         struct kvm_mmu *context = vcpu->arch.mmu;
5150         union kvm_mmu_role new_role =
5151                 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5152                                                    execonly);
5153
5154         __kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false);
5155
5156         new_role.base.word &= mmu_base_role_mask.word;
5157         if (new_role.as_u64 == context->mmu_role.as_u64)
5158                 return;
5159
5160         context->shadow_root_level = PT64_ROOT_4LEVEL;
5161
5162         context->nx = true;
5163         context->ept_ad = accessed_dirty;
5164         context->page_fault = ept_page_fault;
5165         context->gva_to_gpa = ept_gva_to_gpa;
5166         context->sync_page = ept_sync_page;
5167         context->invlpg = ept_invlpg;
5168         context->update_pte = ept_update_pte;
5169         context->root_level = PT64_ROOT_4LEVEL;
5170         context->direct_map = false;
5171         context->mmu_role.as_u64 = new_role.as_u64;
5172
5173         update_permission_bitmask(vcpu, context, true);
5174         update_pkru_bitmask(vcpu, context, true);
5175         update_last_nonleaf_level(vcpu, context);
5176         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
5177         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
5178 }
5179 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5180
5181 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
5182 {
5183         struct kvm_mmu *context = vcpu->arch.mmu;
5184
5185         kvm_init_shadow_mmu(vcpu);
5186         context->set_cr3           = kvm_x86_ops->set_cr3;
5187         context->get_cr3           = get_cr3;
5188         context->get_pdptr         = kvm_pdptr_read;
5189         context->inject_page_fault = kvm_inject_page_fault;
5190 }
5191
5192 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
5193 {
5194         union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
5195         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5196
5197         new_role.base.word &= mmu_base_role_mask.word;
5198         if (new_role.as_u64 == g_context->mmu_role.as_u64)
5199                 return;
5200
5201         g_context->mmu_role.as_u64 = new_role.as_u64;
5202         g_context->get_cr3           = get_cr3;
5203         g_context->get_pdptr         = kvm_pdptr_read;
5204         g_context->inject_page_fault = kvm_inject_page_fault;
5205
5206         /*
5207          * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5208          * L1's nested page tables (e.g. EPT12). The nested translation
5209          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5210          * L2's page tables as the first level of translation and L1's
5211          * nested page tables as the second level of translation. Basically
5212          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5213          */
5214         if (!is_paging(vcpu)) {
5215                 g_context->nx = false;
5216                 g_context->root_level = 0;
5217                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5218         } else if (is_long_mode(vcpu)) {
5219                 g_context->nx = is_nx(vcpu);
5220                 g_context->root_level = is_la57_mode(vcpu) ?
5221                                         PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5222                 reset_rsvds_bits_mask(vcpu, g_context);
5223                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5224         } else if (is_pae(vcpu)) {
5225                 g_context->nx = is_nx(vcpu);
5226                 g_context->root_level = PT32E_ROOT_LEVEL;
5227                 reset_rsvds_bits_mask(vcpu, g_context);
5228                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5229         } else {
5230                 g_context->nx = false;
5231                 g_context->root_level = PT32_ROOT_LEVEL;
5232                 reset_rsvds_bits_mask(vcpu, g_context);
5233                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5234         }
5235
5236         update_permission_bitmask(vcpu, g_context, false);
5237         update_pkru_bitmask(vcpu, g_context, false);
5238         update_last_nonleaf_level(vcpu, g_context);
5239 }
5240
5241 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
5242 {
5243         if (reset_roots) {
5244                 uint i;
5245
5246                 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
5247
5248                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5249                         vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5250         }
5251
5252         if (mmu_is_nested(vcpu))
5253                 init_kvm_nested_mmu(vcpu);
5254         else if (tdp_enabled)
5255                 init_kvm_tdp_mmu(vcpu);
5256         else
5257                 init_kvm_softmmu(vcpu);
5258 }
5259 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5260
5261 static union kvm_mmu_page_role
5262 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5263 {
5264         union kvm_mmu_role role;
5265
5266         if (tdp_enabled)
5267                 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
5268         else
5269                 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5270
5271         return role.base;
5272 }
5273
5274 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5275 {
5276         kvm_mmu_unload(vcpu);
5277         kvm_init_mmu(vcpu, true);
5278 }
5279 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5280
5281 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5282 {
5283         int r;
5284
5285         r = mmu_topup_memory_caches(vcpu);
5286         if (r)
5287                 goto out;
5288         r = mmu_alloc_roots(vcpu);
5289         kvm_mmu_sync_roots(vcpu);
5290         if (r)
5291                 goto out;
5292         kvm_mmu_load_cr3(vcpu);
5293         kvm_x86_ops->tlb_flush(vcpu, true);
5294 out:
5295         return r;
5296 }
5297 EXPORT_SYMBOL_GPL(kvm_mmu_load);
5298
5299 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5300 {
5301         kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5302         WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5303         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5304         WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
5305 }
5306 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
5307
5308 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
5309                                   struct kvm_mmu_page *sp, u64 *spte,
5310                                   const void *new)
5311 {
5312         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
5313                 ++vcpu->kvm->stat.mmu_pde_zapped;
5314                 return;
5315         }
5316
5317         ++vcpu->kvm->stat.mmu_pte_updated;
5318         vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
5319 }
5320
5321 static bool need_remote_flush(u64 old, u64 new)
5322 {
5323         if (!is_shadow_present_pte(old))
5324                 return false;
5325         if (!is_shadow_present_pte(new))
5326                 return true;
5327         if ((old ^ new) & PT64_BASE_ADDR_MASK)
5328                 return true;
5329         old ^= shadow_nx_mask;
5330         new ^= shadow_nx_mask;
5331         return (old & ~new & PT64_PERM_MASK) != 0;
5332 }
5333
5334 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5335                                     int *bytes)
5336 {
5337         u64 gentry = 0;
5338         int r;
5339
5340         /*
5341          * Assume that the pte write on a page table of the same type
5342          * as the current vcpu paging mode since we update the sptes only
5343          * when they have the same mode.
5344          */
5345         if (is_pae(vcpu) && *bytes == 4) {
5346                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5347                 *gpa &= ~(gpa_t)7;
5348                 *bytes = 8;
5349         }
5350
5351         if (*bytes == 4 || *bytes == 8) {
5352                 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5353                 if (r)
5354                         gentry = 0;
5355         }
5356
5357         return gentry;
5358 }
5359
5360 /*
5361  * If we're seeing too many writes to a page, it may no longer be a page table,
5362  * or we may be forking, in which case it is better to unmap the page.
5363  */
5364 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5365 {
5366         /*
5367          * Skip write-flooding detected for the sp whose level is 1, because
5368          * it can become unsync, then the guest page is not write-protected.
5369          */
5370         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
5371                 return false;
5372
5373         atomic_inc(&sp->write_flooding_count);
5374         return atomic_read(&sp->write_flooding_count) >= 3;
5375 }
5376
5377 /*
5378  * Misaligned accesses are too much trouble to fix up; also, they usually
5379  * indicate a page is not used as a page table.
5380  */
5381 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5382                                     int bytes)
5383 {
5384         unsigned offset, pte_size, misaligned;
5385
5386         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5387                  gpa, bytes, sp->role.word);
5388
5389         offset = offset_in_page(gpa);
5390         pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5391
5392         /*
5393          * Sometimes, the OS only writes the last one bytes to update status
5394          * bits, for example, in linux, andb instruction is used in clear_bit().
5395          */
5396         if (!(offset & (pte_size - 1)) && bytes == 1)
5397                 return false;
5398
5399         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5400         misaligned |= bytes < 4;
5401
5402         return misaligned;
5403 }
5404
5405 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5406 {
5407         unsigned page_offset, quadrant;
5408         u64 *spte;
5409         int level;
5410
5411         page_offset = offset_in_page(gpa);
5412         level = sp->role.level;
5413         *nspte = 1;
5414         if (!sp->role.gpte_is_8_bytes) {
5415                 page_offset <<= 1;      /* 32->64 */
5416                 /*
5417                  * A 32-bit pde maps 4MB while the shadow pdes map
5418                  * only 2MB.  So we need to double the offset again
5419                  * and zap two pdes instead of one.
5420                  */
5421                 if (level == PT32_ROOT_LEVEL) {
5422                         page_offset &= ~7; /* kill rounding error */
5423                         page_offset <<= 1;
5424                         *nspte = 2;
5425                 }
5426                 quadrant = page_offset >> PAGE_SHIFT;
5427                 page_offset &= ~PAGE_MASK;
5428                 if (quadrant != sp->role.quadrant)
5429                         return NULL;
5430         }
5431
5432         spte = &sp->spt[page_offset / sizeof(*spte)];
5433         return spte;
5434 }
5435
5436 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5437                               const u8 *new, int bytes,
5438                               struct kvm_page_track_notifier_node *node)
5439 {
5440         gfn_t gfn = gpa >> PAGE_SHIFT;
5441         struct kvm_mmu_page *sp;
5442         LIST_HEAD(invalid_list);
5443         u64 entry, gentry, *spte;
5444         int npte;
5445         bool remote_flush, local_flush;
5446
5447         /*
5448          * If we don't have indirect shadow pages, it means no page is
5449          * write-protected, so we can exit simply.
5450          */
5451         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5452                 return;
5453
5454         remote_flush = local_flush = false;
5455
5456         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5457
5458         /*
5459          * No need to care whether allocation memory is successful
5460          * or not since pte prefetch is skiped if it does not have
5461          * enough objects in the cache.
5462          */
5463         mmu_topup_memory_caches(vcpu);
5464
5465         spin_lock(&vcpu->kvm->mmu_lock);
5466
5467         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5468
5469         ++vcpu->kvm->stat.mmu_pte_write;
5470         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5471
5472         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5473                 if (detect_write_misaligned(sp, gpa, bytes) ||
5474                       detect_write_flooding(sp)) {
5475                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5476                         ++vcpu->kvm->stat.mmu_flooded;
5477                         continue;
5478                 }
5479
5480                 spte = get_written_sptes(sp, gpa, &npte);
5481                 if (!spte)
5482                         continue;
5483
5484                 local_flush = true;
5485                 while (npte--) {
5486                         u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5487
5488                         entry = *spte;
5489                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
5490                         if (gentry &&
5491                               !((sp->role.word ^ base_role)
5492                               & mmu_base_role_mask.word) && rmap_can_add(vcpu))
5493                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5494                         if (need_remote_flush(entry, *spte))
5495                                 remote_flush = true;
5496                         ++spte;
5497                 }
5498         }
5499         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5500         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5501         spin_unlock(&vcpu->kvm->mmu_lock);
5502 }
5503
5504 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5505 {
5506         gpa_t gpa;
5507         int r;
5508
5509         if (vcpu->arch.mmu->direct_map)
5510                 return 0;
5511
5512         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5513
5514         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5515
5516         return r;
5517 }
5518 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5519
5520 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5521                        void *insn, int insn_len)
5522 {
5523         int r, emulation_type = 0;
5524         bool direct = vcpu->arch.mmu->direct_map;
5525
5526         /* With shadow page tables, fault_address contains a GVA or nGPA.  */
5527         if (vcpu->arch.mmu->direct_map) {
5528                 vcpu->arch.gpa_available = true;
5529                 vcpu->arch.gpa_val = cr2_or_gpa;
5530         }
5531
5532         r = RET_PF_INVALID;
5533         if (unlikely(error_code & PFERR_RSVD_MASK)) {
5534                 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5535                 if (r == RET_PF_EMULATE)
5536                         goto emulate;
5537         }
5538
5539         if (r == RET_PF_INVALID) {
5540                 r = vcpu->arch.mmu->page_fault(vcpu, cr2_or_gpa,
5541                                                lower_32_bits(error_code),
5542                                                false);
5543                 WARN_ON(r == RET_PF_INVALID);
5544         }
5545
5546         if (r == RET_PF_RETRY)
5547                 return 1;
5548         if (r < 0)
5549                 return r;
5550
5551         /*
5552          * Before emulating the instruction, check if the error code
5553          * was due to a RO violation while translating the guest page.
5554          * This can occur when using nested virtualization with nested
5555          * paging in both guests. If true, we simply unprotect the page
5556          * and resume the guest.
5557          */
5558         if (vcpu->arch.mmu->direct_map &&
5559             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5560                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5561                 return 1;
5562         }
5563
5564         /*
5565          * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5566          * optimistically try to just unprotect the page and let the processor
5567          * re-execute the instruction that caused the page fault.  Do not allow
5568          * retrying MMIO emulation, as it's not only pointless but could also
5569          * cause us to enter an infinite loop because the processor will keep
5570          * faulting on the non-existent MMIO address.  Retrying an instruction
5571          * from a nested guest is also pointless and dangerous as we are only
5572          * explicitly shadowing L1's page tables, i.e. unprotecting something
5573          * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5574          */
5575         if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5576                 emulation_type = EMULTYPE_ALLOW_RETRY;
5577 emulate:
5578         /*
5579          * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5580          * This can happen if a guest gets a page-fault on data access but the HW
5581          * table walker is not able to read the instruction page (e.g instruction
5582          * page is not present in memory). In those cases we simply restart the
5583          * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
5584          */
5585         if (unlikely(insn && !insn_len)) {
5586                 if (!kvm_x86_ops->need_emulation_on_page_fault(vcpu))
5587                         return 1;
5588         }
5589
5590         return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5591                                        insn_len);
5592 }
5593 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5594
5595 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5596 {
5597         struct kvm_mmu *mmu = vcpu->arch.mmu;
5598         int i;
5599
5600         /* INVLPG on a * non-canonical address is a NOP according to the SDM.  */
5601         if (is_noncanonical_address(gva, vcpu))
5602                 return;
5603
5604         mmu->invlpg(vcpu, gva, mmu->root_hpa);
5605
5606         /*
5607          * INVLPG is required to invalidate any global mappings for the VA,
5608          * irrespective of PCID. Since it would take us roughly similar amount
5609          * of work to determine whether any of the prev_root mappings of the VA
5610          * is marked global, or to just sync it blindly, so we might as well
5611          * just always sync it.
5612          *
5613          * Mappings not reachable via the current cr3 or the prev_roots will be
5614          * synced when switching to that cr3, so nothing needs to be done here
5615          * for them.
5616          */
5617         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5618                 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5619                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5620
5621         kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5622         ++vcpu->stat.invlpg;
5623 }
5624 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5625
5626 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5627 {
5628         struct kvm_mmu *mmu = vcpu->arch.mmu;
5629         bool tlb_flush = false;
5630         uint i;
5631
5632         if (pcid == kvm_get_active_pcid(vcpu)) {
5633                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5634                 tlb_flush = true;
5635         }
5636
5637         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5638                 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5639                     pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
5640                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5641                         tlb_flush = true;
5642                 }
5643         }
5644
5645         if (tlb_flush)
5646                 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5647
5648         ++vcpu->stat.invlpg;
5649
5650         /*
5651          * Mappings not reachable via the current cr3 or the prev_roots will be
5652          * synced when switching to that cr3, so nothing needs to be done here
5653          * for them.
5654          */
5655 }
5656 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5657
5658 void kvm_enable_tdp(void)
5659 {
5660         tdp_enabled = true;
5661 }
5662 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5663
5664 void kvm_disable_tdp(void)
5665 {
5666         tdp_enabled = false;
5667 }
5668 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5669
5670
5671 /* The return value indicates if tlb flush on all vcpus is needed. */
5672 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5673
5674 /* The caller should hold mmu-lock before calling this function. */
5675 static __always_inline bool
5676 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5677                         slot_level_handler fn, int start_level, int end_level,
5678                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5679 {
5680         struct slot_rmap_walk_iterator iterator;
5681         bool flush = false;
5682
5683         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5684                         end_gfn, &iterator) {
5685                 if (iterator.rmap)
5686                         flush |= fn(kvm, iterator.rmap);
5687
5688                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5689                         if (flush && lock_flush_tlb) {
5690                                 kvm_flush_remote_tlbs_with_address(kvm,
5691                                                 start_gfn,
5692                                                 iterator.gfn - start_gfn + 1);
5693                                 flush = false;
5694                         }
5695                         cond_resched_lock(&kvm->mmu_lock);
5696                 }
5697         }
5698
5699         if (flush && lock_flush_tlb) {
5700                 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5701                                                    end_gfn - start_gfn + 1);
5702                 flush = false;
5703         }
5704
5705         return flush;
5706 }
5707
5708 static __always_inline bool
5709 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5710                   slot_level_handler fn, int start_level, int end_level,
5711                   bool lock_flush_tlb)
5712 {
5713         return slot_handle_level_range(kvm, memslot, fn, start_level,
5714                         end_level, memslot->base_gfn,
5715                         memslot->base_gfn + memslot->npages - 1,
5716                         lock_flush_tlb);
5717 }
5718
5719 static __always_inline bool
5720 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5721                       slot_level_handler fn, bool lock_flush_tlb)
5722 {
5723         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5724                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5725 }
5726
5727 static __always_inline bool
5728 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5729                         slot_level_handler fn, bool lock_flush_tlb)
5730 {
5731         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5732                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5733 }
5734
5735 static __always_inline bool
5736 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5737                  slot_level_handler fn, bool lock_flush_tlb)
5738 {
5739         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5740                                  PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5741 }
5742
5743 static void free_mmu_pages(struct kvm_mmu *mmu)
5744 {
5745         free_page((unsigned long)mmu->pae_root);
5746         free_page((unsigned long)mmu->lm_root);
5747 }
5748
5749 static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5750 {
5751         struct page *page;
5752         int i;
5753
5754         /*
5755          * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5756          * while the PDP table is a per-vCPU construct that's allocated at MMU
5757          * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5758          * x86_64.  Therefore we need to allocate the PDP table in the first
5759          * 4GB of memory, which happens to fit the DMA32 zone.  Except for
5760          * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5761          * skip allocating the PDP table.
5762          */
5763         if (tdp_enabled && kvm_x86_ops->get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5764                 return 0;
5765
5766         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5767         if (!page)
5768                 return -ENOMEM;
5769
5770         mmu->pae_root = page_address(page);
5771         for (i = 0; i < 4; ++i)
5772                 mmu->pae_root[i] = INVALID_PAGE;
5773
5774         return 0;
5775 }
5776
5777 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5778 {
5779         uint i;
5780         int ret;
5781
5782         vcpu->arch.mmu = &vcpu->arch.root_mmu;
5783         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5784
5785         vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
5786         vcpu->arch.root_mmu.root_cr3 = 0;
5787         vcpu->arch.root_mmu.translate_gpa = translate_gpa;
5788         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5789                 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5790
5791         vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
5792         vcpu->arch.guest_mmu.root_cr3 = 0;
5793         vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5794         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5795                 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5796
5797         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5798
5799         ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu);
5800         if (ret)
5801                 return ret;
5802
5803         ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu);
5804         if (ret)
5805                 goto fail_allocate_root;
5806
5807         return ret;
5808  fail_allocate_root:
5809         free_mmu_pages(&vcpu->arch.guest_mmu);
5810         return ret;
5811 }
5812
5813 #define BATCH_ZAP_PAGES 10
5814 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5815 {
5816         struct kvm_mmu_page *sp, *node;
5817         int nr_zapped, batch = 0;
5818
5819 restart:
5820         list_for_each_entry_safe_reverse(sp, node,
5821               &kvm->arch.active_mmu_pages, link) {
5822                 /*
5823                  * No obsolete valid page exists before a newly created page
5824                  * since active_mmu_pages is a FIFO list.
5825                  */
5826                 if (!is_obsolete_sp(kvm, sp))
5827                         break;
5828
5829                 /*
5830                  * Skip invalid pages with a non-zero root count, zapping pages
5831                  * with a non-zero root count will never succeed, i.e. the page
5832                  * will get thrown back on active_mmu_pages and we'll get stuck
5833                  * in an infinite loop.
5834                  */
5835                 if (sp->role.invalid && sp->root_count)
5836                         continue;
5837
5838                 /*
5839                  * No need to flush the TLB since we're only zapping shadow
5840                  * pages with an obsolete generation number and all vCPUS have
5841                  * loaded a new root, i.e. the shadow pages being zapped cannot
5842                  * be in active use by the guest.
5843                  */
5844                 if (batch >= BATCH_ZAP_PAGES &&
5845                     cond_resched_lock(&kvm->mmu_lock)) {
5846                         batch = 0;
5847                         goto restart;
5848                 }
5849
5850                 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5851                                 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5852                         batch += nr_zapped;
5853                         goto restart;
5854                 }
5855         }
5856
5857         /*
5858          * Trigger a remote TLB flush before freeing the page tables to ensure
5859          * KVM is not in the middle of a lockless shadow page table walk, which
5860          * may reference the pages.
5861          */
5862         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5863 }
5864
5865 /*
5866  * Fast invalidate all shadow pages and use lock-break technique
5867  * to zap obsolete pages.
5868  *
5869  * It's required when memslot is being deleted or VM is being
5870  * destroyed, in these cases, we should ensure that KVM MMU does
5871  * not use any resource of the being-deleted slot or all slots
5872  * after calling the function.
5873  */
5874 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5875 {
5876         lockdep_assert_held(&kvm->slots_lock);
5877
5878         spin_lock(&kvm->mmu_lock);
5879         trace_kvm_mmu_zap_all_fast(kvm);
5880
5881         /*
5882          * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5883          * held for the entire duration of zapping obsolete pages, it's
5884          * impossible for there to be multiple invalid generations associated
5885          * with *valid* shadow pages at any given time, i.e. there is exactly
5886          * one valid generation and (at most) one invalid generation.
5887          */
5888         kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5889
5890         /*
5891          * Notify all vcpus to reload its shadow page table and flush TLB.
5892          * Then all vcpus will switch to new shadow page table with the new
5893          * mmu_valid_gen.
5894          *
5895          * Note: we need to do this under the protection of mmu_lock,
5896          * otherwise, vcpu would purge shadow page but miss tlb flush.
5897          */
5898         kvm_reload_remote_mmus(kvm);
5899
5900         kvm_zap_obsolete_pages(kvm);
5901         spin_unlock(&kvm->mmu_lock);
5902 }
5903
5904 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5905 {
5906         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5907 }
5908
5909 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5910                         struct kvm_memory_slot *slot,
5911                         struct kvm_page_track_notifier_node *node)
5912 {
5913         kvm_mmu_zap_all_fast(kvm);
5914 }
5915
5916 void kvm_mmu_init_vm(struct kvm *kvm)
5917 {
5918         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5919
5920         node->track_write = kvm_mmu_pte_write;
5921         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5922         kvm_page_track_register_notifier(kvm, node);
5923 }
5924
5925 void kvm_mmu_uninit_vm(struct kvm *kvm)
5926 {
5927         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5928
5929         kvm_page_track_unregister_notifier(kvm, node);
5930 }
5931
5932 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5933 {
5934         struct kvm_memslots *slots;
5935         struct kvm_memory_slot *memslot;
5936         int i;
5937
5938         spin_lock(&kvm->mmu_lock);
5939         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5940                 slots = __kvm_memslots(kvm, i);
5941                 kvm_for_each_memslot(memslot, slots) {
5942                         gfn_t start, end;
5943
5944                         start = max(gfn_start, memslot->base_gfn);
5945                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
5946                         if (start >= end)
5947                                 continue;
5948
5949                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5950                                                 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5951                                                 start, end - 1, true);
5952                 }
5953         }
5954
5955         spin_unlock(&kvm->mmu_lock);
5956 }
5957
5958 static bool slot_rmap_write_protect(struct kvm *kvm,
5959                                     struct kvm_rmap_head *rmap_head)
5960 {
5961         return __rmap_write_protect(kvm, rmap_head, false);
5962 }
5963
5964 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5965                                       struct kvm_memory_slot *memslot)
5966 {
5967         bool flush;
5968
5969         spin_lock(&kvm->mmu_lock);
5970         flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5971                                       false);
5972         spin_unlock(&kvm->mmu_lock);
5973
5974         /*
5975          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5976          * which do tlb flush out of mmu-lock should be serialized by
5977          * kvm->slots_lock otherwise tlb flush would be missed.
5978          */
5979         lockdep_assert_held(&kvm->slots_lock);
5980
5981         /*
5982          * We can flush all the TLBs out of the mmu lock without TLB
5983          * corruption since we just change the spte from writable to
5984          * readonly so that we only need to care the case of changing
5985          * spte from present to present (changing the spte from present
5986          * to nonpresent will flush all the TLBs immediately), in other
5987          * words, the only case we care is mmu_spte_update() where we
5988          * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5989          * instead of PT_WRITABLE_MASK, that means it does not depend
5990          * on PT_WRITABLE_MASK anymore.
5991          */
5992         if (flush)
5993                 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5994                         memslot->npages);
5995 }
5996
5997 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5998                                          struct kvm_rmap_head *rmap_head)
5999 {
6000         u64 *sptep;
6001         struct rmap_iterator iter;
6002         int need_tlb_flush = 0;
6003         kvm_pfn_t pfn;
6004         struct kvm_mmu_page *sp;
6005
6006 restart:
6007         for_each_rmap_spte(rmap_head, &iter, sptep) {
6008                 sp = page_header(__pa(sptep));
6009                 pfn = spte_to_pfn(*sptep);
6010
6011                 /*
6012                  * We cannot do huge page mapping for indirect shadow pages,
6013                  * which are found on the last rmap (level = 1) when not using
6014                  * tdp; such shadow pages are synced with the page table in
6015                  * the guest, and the guest page table is using 4K page size
6016                  * mapping if the indirect sp has level = 1.
6017                  */
6018                 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
6019                     !kvm_is_zone_device_pfn(pfn) &&
6020                     PageTransCompoundMap(pfn_to_page(pfn))) {
6021                         pte_list_remove(rmap_head, sptep);
6022
6023                         if (kvm_available_flush_tlb_with_range())
6024                                 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
6025                                         KVM_PAGES_PER_HPAGE(sp->role.level));
6026                         else
6027                                 need_tlb_flush = 1;
6028
6029                         goto restart;
6030                 }
6031         }
6032
6033         return need_tlb_flush;
6034 }
6035
6036 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
6037                                    const struct kvm_memory_slot *memslot)
6038 {
6039         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
6040         spin_lock(&kvm->mmu_lock);
6041         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
6042                          kvm_mmu_zap_collapsible_spte, true);
6043         spin_unlock(&kvm->mmu_lock);
6044 }
6045
6046 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
6047                                    struct kvm_memory_slot *memslot)
6048 {
6049         bool flush;
6050
6051         spin_lock(&kvm->mmu_lock);
6052         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
6053         spin_unlock(&kvm->mmu_lock);
6054
6055         lockdep_assert_held(&kvm->slots_lock);
6056
6057         /*
6058          * It's also safe to flush TLBs out of mmu lock here as currently this
6059          * function is only used for dirty logging, in which case flushing TLB
6060          * out of mmu lock also guarantees no dirty pages will be lost in
6061          * dirty_bitmap.
6062          */
6063         if (flush)
6064                 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
6065                                 memslot->npages);
6066 }
6067 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
6068
6069 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
6070                                         struct kvm_memory_slot *memslot)
6071 {
6072         bool flush;
6073
6074         spin_lock(&kvm->mmu_lock);
6075         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
6076                                         false);
6077         spin_unlock(&kvm->mmu_lock);
6078
6079         /* see kvm_mmu_slot_remove_write_access */
6080         lockdep_assert_held(&kvm->slots_lock);
6081
6082         if (flush)
6083                 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
6084                                 memslot->npages);
6085 }
6086 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
6087
6088 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
6089                             struct kvm_memory_slot *memslot)
6090 {
6091         bool flush;
6092
6093         spin_lock(&kvm->mmu_lock);
6094         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
6095         spin_unlock(&kvm->mmu_lock);
6096
6097         lockdep_assert_held(&kvm->slots_lock);
6098
6099         /* see kvm_mmu_slot_leaf_clear_dirty */
6100         if (flush)
6101                 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
6102                                 memslot->npages);
6103 }
6104 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
6105
6106 void kvm_mmu_zap_all(struct kvm *kvm)
6107 {
6108         struct kvm_mmu_page *sp, *node;
6109         LIST_HEAD(invalid_list);
6110         int ign;
6111
6112         spin_lock(&kvm->mmu_lock);
6113 restart:
6114         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6115                 if (sp->role.invalid && sp->root_count)
6116                         continue;
6117                 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6118                         goto restart;
6119                 if (cond_resched_lock(&kvm->mmu_lock))
6120                         goto restart;
6121         }
6122
6123         kvm_mmu_commit_zap_page(kvm, &invalid_list);
6124         spin_unlock(&kvm->mmu_lock);
6125 }
6126
6127 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6128 {
6129         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6130
6131         gen &= MMIO_SPTE_GEN_MASK;
6132
6133         /*
6134          * Generation numbers are incremented in multiples of the number of
6135          * address spaces in order to provide unique generations across all
6136          * address spaces.  Strip what is effectively the address space
6137          * modifier prior to checking for a wrap of the MMIO generation so
6138          * that a wrap in any address space is detected.
6139          */
6140         gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
6141
6142         /*
6143          * The very rare case: if the MMIO generation number has wrapped,
6144          * zap all shadow pages.
6145          */
6146         if (unlikely(gen == 0)) {
6147                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
6148                 kvm_mmu_zap_all_fast(kvm);
6149         }
6150 }
6151
6152 static unsigned long
6153 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6154 {
6155         struct kvm *kvm;
6156         int nr_to_scan = sc->nr_to_scan;
6157         unsigned long freed = 0;
6158
6159         mutex_lock(&kvm_lock);
6160
6161         list_for_each_entry(kvm, &vm_list, vm_list) {
6162                 int idx;
6163                 LIST_HEAD(invalid_list);
6164
6165                 /*
6166                  * Never scan more than sc->nr_to_scan VM instances.
6167                  * Will not hit this condition practically since we do not try
6168                  * to shrink more than one VM and it is very unlikely to see
6169                  * !n_used_mmu_pages so many times.
6170                  */
6171                 if (!nr_to_scan--)
6172                         break;
6173                 /*
6174                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6175                  * here. We may skip a VM instance errorneosly, but we do not
6176                  * want to shrink a VM that only started to populate its MMU
6177                  * anyway.
6178                  */
6179                 if (!kvm->arch.n_used_mmu_pages &&
6180                     !kvm_has_zapped_obsolete_pages(kvm))
6181                         continue;
6182
6183                 idx = srcu_read_lock(&kvm->srcu);
6184                 spin_lock(&kvm->mmu_lock);
6185
6186                 if (kvm_has_zapped_obsolete_pages(kvm)) {
6187                         kvm_mmu_commit_zap_page(kvm,
6188                               &kvm->arch.zapped_obsolete_pages);
6189                         goto unlock;
6190                 }
6191
6192                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
6193                         freed++;
6194                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6195
6196 unlock:
6197                 spin_unlock(&kvm->mmu_lock);
6198                 srcu_read_unlock(&kvm->srcu, idx);
6199
6200                 /*
6201                  * unfair on small ones
6202                  * per-vm shrinkers cry out
6203                  * sadness comes quickly
6204                  */
6205                 list_move_tail(&kvm->vm_list, &vm_list);
6206                 break;
6207         }
6208
6209         mutex_unlock(&kvm_lock);
6210         return freed;
6211 }
6212
6213 static unsigned long
6214 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6215 {
6216         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6217 }
6218
6219 static struct shrinker mmu_shrinker = {
6220         .count_objects = mmu_shrink_count,
6221         .scan_objects = mmu_shrink_scan,
6222         .seeks = DEFAULT_SEEKS * 10,
6223 };
6224
6225 static void mmu_destroy_caches(void)
6226 {
6227         kmem_cache_destroy(pte_list_desc_cache);
6228         kmem_cache_destroy(mmu_page_header_cache);
6229 }
6230
6231 static void kvm_set_mmio_spte_mask(void)
6232 {
6233         u64 mask;
6234
6235         /*
6236          * Set the reserved bits and the present bit of an paging-structure
6237          * entry to generate page fault with PFER.RSV = 1.
6238          */
6239
6240         /*
6241          * Mask the uppermost physical address bit, which would be reserved as
6242          * long as the supported physical address width is less than 52.
6243          */
6244         mask = 1ull << 51;
6245
6246         /* Set the present bit. */
6247         mask |= 1ull;
6248
6249         /*
6250          * If reserved bit is not supported, clear the present bit to disable
6251          * mmio page fault.
6252          */
6253         if (IS_ENABLED(CONFIG_X86_64) && shadow_phys_bits == 52)
6254                 mask &= ~1ull;
6255
6256         kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
6257 }
6258
6259 static bool get_nx_auto_mode(void)
6260 {
6261         /* Return true when CPU has the bug, and mitigations are ON */
6262         return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6263 }
6264
6265 static void __set_nx_huge_pages(bool val)
6266 {
6267         nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6268 }
6269
6270 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6271 {
6272         bool old_val = nx_huge_pages;
6273         bool new_val;
6274
6275         /* In "auto" mode deploy workaround only if CPU has the bug. */
6276         if (sysfs_streq(val, "off"))
6277                 new_val = 0;
6278         else if (sysfs_streq(val, "force"))
6279                 new_val = 1;
6280         else if (sysfs_streq(val, "auto"))
6281                 new_val = get_nx_auto_mode();
6282         else if (strtobool(val, &new_val) < 0)
6283                 return -EINVAL;
6284
6285         __set_nx_huge_pages(new_val);
6286
6287         if (new_val != old_val) {
6288                 struct kvm *kvm;
6289
6290                 mutex_lock(&kvm_lock);
6291
6292                 list_for_each_entry(kvm, &vm_list, vm_list) {
6293                         mutex_lock(&kvm->slots_lock);
6294                         kvm_mmu_zap_all_fast(kvm);
6295                         mutex_unlock(&kvm->slots_lock);
6296
6297                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6298                 }
6299                 mutex_unlock(&kvm_lock);
6300         }
6301
6302         return 0;
6303 }
6304
6305 int kvm_mmu_module_init(void)
6306 {
6307         int ret = -ENOMEM;
6308
6309         if (nx_huge_pages == -1)
6310                 __set_nx_huge_pages(get_nx_auto_mode());
6311
6312         /*
6313          * MMU roles use union aliasing which is, generally speaking, an
6314          * undefined behavior. However, we supposedly know how compilers behave
6315          * and the current status quo is unlikely to change. Guardians below are
6316          * supposed to let us know if the assumption becomes false.
6317          */
6318         BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6319         BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6320         BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6321
6322         kvm_mmu_reset_all_pte_masks();
6323
6324         kvm_set_mmio_spte_mask();
6325
6326         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6327                                             sizeof(struct pte_list_desc),
6328                                             0, SLAB_ACCOUNT, NULL);
6329         if (!pte_list_desc_cache)
6330                 goto out;
6331
6332         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6333                                                   sizeof(struct kvm_mmu_page),
6334                                                   0, SLAB_ACCOUNT, NULL);
6335         if (!mmu_page_header_cache)
6336                 goto out;
6337
6338         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6339                 goto out;
6340
6341         ret = register_shrinker(&mmu_shrinker);
6342         if (ret)
6343                 goto out;
6344
6345         return 0;
6346
6347 out:
6348         mmu_destroy_caches();
6349         return ret;
6350 }
6351
6352 /*
6353  * Calculate mmu pages needed for kvm.
6354  */
6355 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6356 {
6357         unsigned long nr_mmu_pages;
6358         unsigned long nr_pages = 0;
6359         struct kvm_memslots *slots;
6360         struct kvm_memory_slot *memslot;
6361         int i;
6362
6363         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6364                 slots = __kvm_memslots(kvm, i);
6365
6366                 kvm_for_each_memslot(memslot, slots)
6367                         nr_pages += memslot->npages;
6368         }
6369
6370         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6371         nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6372
6373         return nr_mmu_pages;
6374 }
6375
6376 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6377 {
6378         kvm_mmu_unload(vcpu);
6379         free_mmu_pages(&vcpu->arch.root_mmu);
6380         free_mmu_pages(&vcpu->arch.guest_mmu);
6381         mmu_free_memory_caches(vcpu);
6382 }
6383
6384 void kvm_mmu_module_exit(void)
6385 {
6386         mmu_destroy_caches();
6387         percpu_counter_destroy(&kvm_total_used_mmu_pages);
6388         unregister_shrinker(&mmu_shrinker);
6389         mmu_audit_disable();
6390 }
6391
6392 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6393 {
6394         unsigned int old_val;
6395         int err;
6396
6397         old_val = nx_huge_pages_recovery_ratio;
6398         err = param_set_uint(val, kp);
6399         if (err)
6400                 return err;
6401
6402         if (READ_ONCE(nx_huge_pages) &&
6403             !old_val && nx_huge_pages_recovery_ratio) {
6404                 struct kvm *kvm;
6405
6406                 mutex_lock(&kvm_lock);
6407
6408                 list_for_each_entry(kvm, &vm_list, vm_list)
6409                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6410
6411                 mutex_unlock(&kvm_lock);
6412         }
6413
6414         return err;
6415 }
6416
6417 static void kvm_recover_nx_lpages(struct kvm *kvm)
6418 {
6419         int rcu_idx;
6420         struct kvm_mmu_page *sp;
6421         unsigned int ratio;
6422         LIST_HEAD(invalid_list);
6423         ulong to_zap;
6424
6425         rcu_idx = srcu_read_lock(&kvm->srcu);
6426         spin_lock(&kvm->mmu_lock);
6427
6428         ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6429         to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
6430         while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
6431                 /*
6432                  * We use a separate list instead of just using active_mmu_pages
6433                  * because the number of lpage_disallowed pages is expected to
6434                  * be relatively small compared to the total.
6435                  */
6436                 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6437                                       struct kvm_mmu_page,
6438                                       lpage_disallowed_link);
6439                 WARN_ON_ONCE(!sp->lpage_disallowed);
6440                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6441                 WARN_ON_ONCE(sp->lpage_disallowed);
6442
6443                 if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6444                         kvm_mmu_commit_zap_page(kvm, &invalid_list);
6445                         if (to_zap)
6446                                 cond_resched_lock(&kvm->mmu_lock);
6447                 }
6448         }
6449
6450         spin_unlock(&kvm->mmu_lock);
6451         srcu_read_unlock(&kvm->srcu, rcu_idx);
6452 }
6453
6454 static long get_nx_lpage_recovery_timeout(u64 start_time)
6455 {
6456         return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6457                 ? start_time + 60 * HZ - get_jiffies_64()
6458                 : MAX_SCHEDULE_TIMEOUT;
6459 }
6460
6461 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6462 {
6463         u64 start_time;
6464         long remaining_time;
6465
6466         while (true) {
6467                 start_time = get_jiffies_64();
6468                 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6469
6470                 set_current_state(TASK_INTERRUPTIBLE);
6471                 while (!kthread_should_stop() && remaining_time > 0) {
6472                         schedule_timeout(remaining_time);
6473                         remaining_time = get_nx_lpage_recovery_timeout(start_time);
6474                         set_current_state(TASK_INTERRUPTIBLE);
6475                 }
6476
6477                 set_current_state(TASK_RUNNING);
6478
6479                 if (kthread_should_stop())
6480                         return 0;
6481
6482                 kvm_recover_nx_lpages(kvm);
6483         }
6484 }
6485
6486 int kvm_mmu_post_init_vm(struct kvm *kvm)
6487 {
6488         int err;
6489
6490         err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6491                                           "kvm-nx-lpage-recovery",
6492                                           &kvm->arch.nx_lpage_recovery_thread);
6493         if (!err)
6494                 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6495
6496         return err;
6497 }
6498
6499 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6500 {
6501         if (kvm->arch.nx_lpage_recovery_thread)
6502                 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6503 }