]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/mmu/mmu.c
Merge tag 'sound-fix-5.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[linux.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17
18 #include "irq.h"
19 #include "mmu.h"
20 #include "x86.h"
21 #include "kvm_cache_regs.h"
22 #include "cpuid.h"
23
24 #include <linux/kvm_host.h>
25 #include <linux/types.h>
26 #include <linux/string.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/moduleparam.h>
30 #include <linux/export.h>
31 #include <linux/swap.h>
32 #include <linux/hugetlb.h>
33 #include <linux/compiler.h>
34 #include <linux/srcu.h>
35 #include <linux/slab.h>
36 #include <linux/sched/signal.h>
37 #include <linux/uaccess.h>
38 #include <linux/hash.h>
39 #include <linux/kern_levels.h>
40 #include <linux/kthread.h>
41
42 #include <asm/page.h>
43 #include <asm/pat.h>
44 #include <asm/cmpxchg.h>
45 #include <asm/e820/api.h>
46 #include <asm/io.h>
47 #include <asm/vmx.h>
48 #include <asm/kvm_page_track.h>
49 #include "trace.h"
50
51 extern bool itlb_multihit_kvm_mitigation;
52
53 static int __read_mostly nx_huge_pages = -1;
54 #ifdef CONFIG_PREEMPT_RT
55 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
56 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
57 #else
58 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
59 #endif
60
61 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
62 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
63
64 static struct kernel_param_ops nx_huge_pages_ops = {
65         .set = set_nx_huge_pages,
66         .get = param_get_bool,
67 };
68
69 static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
70         .set = set_nx_huge_pages_recovery_ratio,
71         .get = param_get_uint,
72 };
73
74 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
75 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
76 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
77                 &nx_huge_pages_recovery_ratio, 0644);
78 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
79
80 /*
81  * When setting this variable to true it enables Two-Dimensional-Paging
82  * where the hardware walks 2 page tables:
83  * 1. the guest-virtual to guest-physical
84  * 2. while doing 1. it walks guest-physical to host-physical
85  * If the hardware supports that we don't need to do shadow paging.
86  */
87 bool tdp_enabled = false;
88
89 enum {
90         AUDIT_PRE_PAGE_FAULT,
91         AUDIT_POST_PAGE_FAULT,
92         AUDIT_PRE_PTE_WRITE,
93         AUDIT_POST_PTE_WRITE,
94         AUDIT_PRE_SYNC,
95         AUDIT_POST_SYNC
96 };
97
98 #undef MMU_DEBUG
99
100 #ifdef MMU_DEBUG
101 static bool dbg = 0;
102 module_param(dbg, bool, 0644);
103
104 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
105 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
106 #define MMU_WARN_ON(x) WARN_ON(x)
107 #else
108 #define pgprintk(x...) do { } while (0)
109 #define rmap_printk(x...) do { } while (0)
110 #define MMU_WARN_ON(x) do { } while (0)
111 #endif
112
113 #define PTE_PREFETCH_NUM                8
114
115 #define PT_FIRST_AVAIL_BITS_SHIFT 10
116 #define PT64_SECOND_AVAIL_BITS_SHIFT 54
117
118 /*
119  * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
120  * Access Tracking SPTEs.
121  */
122 #define SPTE_SPECIAL_MASK (3ULL << 52)
123 #define SPTE_AD_ENABLED_MASK (0ULL << 52)
124 #define SPTE_AD_DISABLED_MASK (1ULL << 52)
125 #define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52)
126 #define SPTE_MMIO_MASK (3ULL << 52)
127
128 #define PT64_LEVEL_BITS 9
129
130 #define PT64_LEVEL_SHIFT(level) \
131                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
132
133 #define PT64_INDEX(address, level)\
134         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
135
136
137 #define PT32_LEVEL_BITS 10
138
139 #define PT32_LEVEL_SHIFT(level) \
140                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
141
142 #define PT32_LVL_OFFSET_MASK(level) \
143         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
144                                                 * PT32_LEVEL_BITS))) - 1))
145
146 #define PT32_INDEX(address, level)\
147         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
148
149
150 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
151 #define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
152 #else
153 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
154 #endif
155 #define PT64_LVL_ADDR_MASK(level) \
156         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
157                                                 * PT64_LEVEL_BITS))) - 1))
158 #define PT64_LVL_OFFSET_MASK(level) \
159         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
160                                                 * PT64_LEVEL_BITS))) - 1))
161
162 #define PT32_BASE_ADDR_MASK PAGE_MASK
163 #define PT32_DIR_BASE_ADDR_MASK \
164         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
165 #define PT32_LVL_ADDR_MASK(level) \
166         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
167                                             * PT32_LEVEL_BITS))) - 1))
168
169 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
170                         | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
171
172 #define ACC_EXEC_MASK    1
173 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
174 #define ACC_USER_MASK    PT_USER_MASK
175 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
176
177 /* The mask for the R/X bits in EPT PTEs */
178 #define PT64_EPT_READABLE_MASK                  0x1ull
179 #define PT64_EPT_EXECUTABLE_MASK                0x4ull
180
181 #include <trace/events/kvm.h>
182
183 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
184 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
185
186 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
187
188 /* make pte_list_desc fit well in cache line */
189 #define PTE_LIST_EXT 3
190
191 /*
192  * Return values of handle_mmio_page_fault and mmu.page_fault:
193  * RET_PF_RETRY: let CPU fault again on the address.
194  * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
195  *
196  * For handle_mmio_page_fault only:
197  * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
198  */
199 enum {
200         RET_PF_RETRY = 0,
201         RET_PF_EMULATE = 1,
202         RET_PF_INVALID = 2,
203 };
204
205 struct pte_list_desc {
206         u64 *sptes[PTE_LIST_EXT];
207         struct pte_list_desc *more;
208 };
209
210 struct kvm_shadow_walk_iterator {
211         u64 addr;
212         hpa_t shadow_addr;
213         u64 *sptep;
214         int level;
215         unsigned index;
216 };
217
218 static const union kvm_mmu_page_role mmu_base_role_mask = {
219         .cr0_wp = 1,
220         .gpte_is_8_bytes = 1,
221         .nxe = 1,
222         .smep_andnot_wp = 1,
223         .smap_andnot_wp = 1,
224         .smm = 1,
225         .guest_mode = 1,
226         .ad_disabled = 1,
227 };
228
229 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
230         for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
231                                          (_root), (_addr));                \
232              shadow_walk_okay(&(_walker));                                 \
233              shadow_walk_next(&(_walker)))
234
235 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
236         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
237              shadow_walk_okay(&(_walker));                      \
238              shadow_walk_next(&(_walker)))
239
240 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
241         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
242              shadow_walk_okay(&(_walker)) &&                            \
243                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
244              __shadow_walk_next(&(_walker), spte))
245
246 static struct kmem_cache *pte_list_desc_cache;
247 static struct kmem_cache *mmu_page_header_cache;
248 static struct percpu_counter kvm_total_used_mmu_pages;
249
250 static u64 __read_mostly shadow_nx_mask;
251 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
252 static u64 __read_mostly shadow_user_mask;
253 static u64 __read_mostly shadow_accessed_mask;
254 static u64 __read_mostly shadow_dirty_mask;
255 static u64 __read_mostly shadow_mmio_mask;
256 static u64 __read_mostly shadow_mmio_value;
257 static u64 __read_mostly shadow_mmio_access_mask;
258 static u64 __read_mostly shadow_present_mask;
259 static u64 __read_mostly shadow_me_mask;
260
261 /*
262  * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK;
263  * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
264  * pages.
265  */
266 static u64 __read_mostly shadow_acc_track_mask;
267
268 /*
269  * The mask/shift to use for saving the original R/X bits when marking the PTE
270  * as not-present for access tracking purposes. We do not save the W bit as the
271  * PTEs being access tracked also need to be dirty tracked, so the W bit will be
272  * restored only when a write is attempted to the page.
273  */
274 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
275                                                     PT64_EPT_EXECUTABLE_MASK;
276 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
277
278 /*
279  * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
280  * to guard against L1TF attacks.
281  */
282 static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
283
284 /*
285  * The number of high-order 1 bits to use in the mask above.
286  */
287 static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
288
289 /*
290  * In some cases, we need to preserve the GFN of a non-present or reserved
291  * SPTE when we usurp the upper five bits of the physical address space to
292  * defend against L1TF, e.g. for MMIO SPTEs.  To preserve the GFN, we'll
293  * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
294  * left into the reserved bits, i.e. the GFN in the SPTE will be split into
295  * high and low parts.  This mask covers the lower bits of the GFN.
296  */
297 static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
298
299 /*
300  * The number of non-reserved physical address bits irrespective of features
301  * that repurpose legal bits, e.g. MKTME.
302  */
303 static u8 __read_mostly shadow_phys_bits;
304
305 static void mmu_spte_set(u64 *sptep, u64 spte);
306 static bool is_executable_pte(u64 spte);
307 static union kvm_mmu_page_role
308 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
309
310 #define CREATE_TRACE_POINTS
311 #include "mmutrace.h"
312
313
314 static inline bool kvm_available_flush_tlb_with_range(void)
315 {
316         return kvm_x86_ops->tlb_remote_flush_with_range;
317 }
318
319 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
320                 struct kvm_tlb_range *range)
321 {
322         int ret = -ENOTSUPP;
323
324         if (range && kvm_x86_ops->tlb_remote_flush_with_range)
325                 ret = kvm_x86_ops->tlb_remote_flush_with_range(kvm, range);
326
327         if (ret)
328                 kvm_flush_remote_tlbs(kvm);
329 }
330
331 static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
332                 u64 start_gfn, u64 pages)
333 {
334         struct kvm_tlb_range range;
335
336         range.start_gfn = start_gfn;
337         range.pages = pages;
338
339         kvm_flush_remote_tlbs_with_range(kvm, &range);
340 }
341
342 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value, u64 access_mask)
343 {
344         BUG_ON((u64)(unsigned)access_mask != access_mask);
345         BUG_ON((mmio_mask & mmio_value) != mmio_value);
346         shadow_mmio_value = mmio_value | SPTE_MMIO_MASK;
347         shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
348         shadow_mmio_access_mask = access_mask;
349 }
350 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
351
352 static bool is_mmio_spte(u64 spte)
353 {
354         return (spte & shadow_mmio_mask) == shadow_mmio_value;
355 }
356
357 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
358 {
359         return sp->role.ad_disabled;
360 }
361
362 static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu)
363 {
364         /*
365          * When using the EPT page-modification log, the GPAs in the log
366          * would come from L2 rather than L1.  Therefore, we need to rely
367          * on write protection to record dirty pages.  This also bypasses
368          * PML, since writes now result in a vmexit.
369          */
370         return vcpu->arch.mmu == &vcpu->arch.guest_mmu;
371 }
372
373 static inline bool spte_ad_enabled(u64 spte)
374 {
375         MMU_WARN_ON(is_mmio_spte(spte));
376         return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK;
377 }
378
379 static inline bool spte_ad_need_write_protect(u64 spte)
380 {
381         MMU_WARN_ON(is_mmio_spte(spte));
382         return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK;
383 }
384
385 static bool is_nx_huge_page_enabled(void)
386 {
387         return READ_ONCE(nx_huge_pages);
388 }
389
390 static inline u64 spte_shadow_accessed_mask(u64 spte)
391 {
392         MMU_WARN_ON(is_mmio_spte(spte));
393         return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
394 }
395
396 static inline u64 spte_shadow_dirty_mask(u64 spte)
397 {
398         MMU_WARN_ON(is_mmio_spte(spte));
399         return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
400 }
401
402 static inline bool is_access_track_spte(u64 spte)
403 {
404         return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
405 }
406
407 /*
408  * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
409  * the memslots generation and is derived as follows:
410  *
411  * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
412  * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
413  *
414  * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
415  * the MMIO generation number, as doing so would require stealing a bit from
416  * the "real" generation number and thus effectively halve the maximum number
417  * of MMIO generations that can be handled before encountering a wrap (which
418  * requires a full MMU zap).  The flag is instead explicitly queried when
419  * checking for MMIO spte cache hits.
420  */
421 #define MMIO_SPTE_GEN_MASK              GENMASK_ULL(18, 0)
422
423 #define MMIO_SPTE_GEN_LOW_START         3
424 #define MMIO_SPTE_GEN_LOW_END           11
425 #define MMIO_SPTE_GEN_LOW_MASK          GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
426                                                     MMIO_SPTE_GEN_LOW_START)
427
428 #define MMIO_SPTE_GEN_HIGH_START        52
429 #define MMIO_SPTE_GEN_HIGH_END          61
430 #define MMIO_SPTE_GEN_HIGH_MASK         GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
431                                                     MMIO_SPTE_GEN_HIGH_START)
432 static u64 generation_mmio_spte_mask(u64 gen)
433 {
434         u64 mask;
435
436         WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
437
438         mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
439         mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
440         return mask;
441 }
442
443 static u64 get_mmio_spte_generation(u64 spte)
444 {
445         u64 gen;
446
447         spte &= ~shadow_mmio_mask;
448
449         gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
450         gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
451         return gen;
452 }
453
454 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
455                            unsigned access)
456 {
457         u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
458         u64 mask = generation_mmio_spte_mask(gen);
459         u64 gpa = gfn << PAGE_SHIFT;
460
461         access &= shadow_mmio_access_mask;
462         mask |= shadow_mmio_value | access;
463         mask |= gpa | shadow_nonpresent_or_rsvd_mask;
464         mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
465                 << shadow_nonpresent_or_rsvd_mask_len;
466
467         trace_mark_mmio_spte(sptep, gfn, access, gen);
468         mmu_spte_set(sptep, mask);
469 }
470
471 static gfn_t get_mmio_spte_gfn(u64 spte)
472 {
473         u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
474
475         gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
476                & shadow_nonpresent_or_rsvd_mask;
477
478         return gpa >> PAGE_SHIFT;
479 }
480
481 static unsigned get_mmio_spte_access(u64 spte)
482 {
483         return spte & shadow_mmio_access_mask;
484 }
485
486 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
487                           kvm_pfn_t pfn, unsigned access)
488 {
489         if (unlikely(is_noslot_pfn(pfn))) {
490                 mark_mmio_spte(vcpu, sptep, gfn, access);
491                 return true;
492         }
493
494         return false;
495 }
496
497 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
498 {
499         u64 kvm_gen, spte_gen, gen;
500
501         gen = kvm_vcpu_memslots(vcpu)->generation;
502         if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
503                 return false;
504
505         kvm_gen = gen & MMIO_SPTE_GEN_MASK;
506         spte_gen = get_mmio_spte_generation(spte);
507
508         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
509         return likely(kvm_gen == spte_gen);
510 }
511
512 /*
513  * Sets the shadow PTE masks used by the MMU.
514  *
515  * Assumptions:
516  *  - Setting either @accessed_mask or @dirty_mask requires setting both
517  *  - At least one of @accessed_mask or @acc_track_mask must be set
518  */
519 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
520                 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
521                 u64 acc_track_mask, u64 me_mask)
522 {
523         BUG_ON(!dirty_mask != !accessed_mask);
524         BUG_ON(!accessed_mask && !acc_track_mask);
525         BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK);
526
527         shadow_user_mask = user_mask;
528         shadow_accessed_mask = accessed_mask;
529         shadow_dirty_mask = dirty_mask;
530         shadow_nx_mask = nx_mask;
531         shadow_x_mask = x_mask;
532         shadow_present_mask = p_mask;
533         shadow_acc_track_mask = acc_track_mask;
534         shadow_me_mask = me_mask;
535 }
536 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
537
538 static u8 kvm_get_shadow_phys_bits(void)
539 {
540         /*
541          * boot_cpu_data.x86_phys_bits is reduced when MKTME is detected
542          * in CPU detection code, but MKTME treats those reduced bits as
543          * 'keyID' thus they are not reserved bits. Therefore for MKTME
544          * we should still return physical address bits reported by CPUID.
545          */
546         if (!boot_cpu_has(X86_FEATURE_TME) ||
547             WARN_ON_ONCE(boot_cpu_data.extended_cpuid_level < 0x80000008))
548                 return boot_cpu_data.x86_phys_bits;
549
550         return cpuid_eax(0x80000008) & 0xff;
551 }
552
553 static void kvm_mmu_reset_all_pte_masks(void)
554 {
555         u8 low_phys_bits;
556
557         shadow_user_mask = 0;
558         shadow_accessed_mask = 0;
559         shadow_dirty_mask = 0;
560         shadow_nx_mask = 0;
561         shadow_x_mask = 0;
562         shadow_mmio_mask = 0;
563         shadow_present_mask = 0;
564         shadow_acc_track_mask = 0;
565
566         shadow_phys_bits = kvm_get_shadow_phys_bits();
567
568         /*
569          * If the CPU has 46 or less physical address bits, then set an
570          * appropriate mask to guard against L1TF attacks. Otherwise, it is
571          * assumed that the CPU is not vulnerable to L1TF.
572          *
573          * Some Intel CPUs address the L1 cache using more PA bits than are
574          * reported by CPUID. Use the PA width of the L1 cache when possible
575          * to achieve more effective mitigation, e.g. if system RAM overlaps
576          * the most significant bits of legal physical address space.
577          */
578         shadow_nonpresent_or_rsvd_mask = 0;
579         low_phys_bits = boot_cpu_data.x86_cache_bits;
580         if (boot_cpu_data.x86_cache_bits <
581             52 - shadow_nonpresent_or_rsvd_mask_len) {
582                 shadow_nonpresent_or_rsvd_mask =
583                         rsvd_bits(boot_cpu_data.x86_cache_bits -
584                                   shadow_nonpresent_or_rsvd_mask_len,
585                                   boot_cpu_data.x86_cache_bits - 1);
586                 low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
587         } else
588                 WARN_ON_ONCE(boot_cpu_has_bug(X86_BUG_L1TF));
589
590         shadow_nonpresent_or_rsvd_lower_gfn_mask =
591                 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
592 }
593
594 static int is_cpuid_PSE36(void)
595 {
596         return 1;
597 }
598
599 static int is_nx(struct kvm_vcpu *vcpu)
600 {
601         return vcpu->arch.efer & EFER_NX;
602 }
603
604 static int is_shadow_present_pte(u64 pte)
605 {
606         return (pte != 0) && !is_mmio_spte(pte);
607 }
608
609 static int is_large_pte(u64 pte)
610 {
611         return pte & PT_PAGE_SIZE_MASK;
612 }
613
614 static int is_last_spte(u64 pte, int level)
615 {
616         if (level == PT_PAGE_TABLE_LEVEL)
617                 return 1;
618         if (is_large_pte(pte))
619                 return 1;
620         return 0;
621 }
622
623 static bool is_executable_pte(u64 spte)
624 {
625         return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
626 }
627
628 static kvm_pfn_t spte_to_pfn(u64 pte)
629 {
630         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
631 }
632
633 static gfn_t pse36_gfn_delta(u32 gpte)
634 {
635         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
636
637         return (gpte & PT32_DIR_PSE36_MASK) << shift;
638 }
639
640 #ifdef CONFIG_X86_64
641 static void __set_spte(u64 *sptep, u64 spte)
642 {
643         WRITE_ONCE(*sptep, spte);
644 }
645
646 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
647 {
648         WRITE_ONCE(*sptep, spte);
649 }
650
651 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
652 {
653         return xchg(sptep, spte);
654 }
655
656 static u64 __get_spte_lockless(u64 *sptep)
657 {
658         return READ_ONCE(*sptep);
659 }
660 #else
661 union split_spte {
662         struct {
663                 u32 spte_low;
664                 u32 spte_high;
665         };
666         u64 spte;
667 };
668
669 static void count_spte_clear(u64 *sptep, u64 spte)
670 {
671         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
672
673         if (is_shadow_present_pte(spte))
674                 return;
675
676         /* Ensure the spte is completely set before we increase the count */
677         smp_wmb();
678         sp->clear_spte_count++;
679 }
680
681 static void __set_spte(u64 *sptep, u64 spte)
682 {
683         union split_spte *ssptep, sspte;
684
685         ssptep = (union split_spte *)sptep;
686         sspte = (union split_spte)spte;
687
688         ssptep->spte_high = sspte.spte_high;
689
690         /*
691          * If we map the spte from nonpresent to present, We should store
692          * the high bits firstly, then set present bit, so cpu can not
693          * fetch this spte while we are setting the spte.
694          */
695         smp_wmb();
696
697         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
698 }
699
700 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
701 {
702         union split_spte *ssptep, sspte;
703
704         ssptep = (union split_spte *)sptep;
705         sspte = (union split_spte)spte;
706
707         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
708
709         /*
710          * If we map the spte from present to nonpresent, we should clear
711          * present bit firstly to avoid vcpu fetch the old high bits.
712          */
713         smp_wmb();
714
715         ssptep->spte_high = sspte.spte_high;
716         count_spte_clear(sptep, spte);
717 }
718
719 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
720 {
721         union split_spte *ssptep, sspte, orig;
722
723         ssptep = (union split_spte *)sptep;
724         sspte = (union split_spte)spte;
725
726         /* xchg acts as a barrier before the setting of the high bits */
727         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
728         orig.spte_high = ssptep->spte_high;
729         ssptep->spte_high = sspte.spte_high;
730         count_spte_clear(sptep, spte);
731
732         return orig.spte;
733 }
734
735 /*
736  * The idea using the light way get the spte on x86_32 guest is from
737  * gup_get_pte (mm/gup.c).
738  *
739  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
740  * coalesces them and we are running out of the MMU lock.  Therefore
741  * we need to protect against in-progress updates of the spte.
742  *
743  * Reading the spte while an update is in progress may get the old value
744  * for the high part of the spte.  The race is fine for a present->non-present
745  * change (because the high part of the spte is ignored for non-present spte),
746  * but for a present->present change we must reread the spte.
747  *
748  * All such changes are done in two steps (present->non-present and
749  * non-present->present), hence it is enough to count the number of
750  * present->non-present updates: if it changed while reading the spte,
751  * we might have hit the race.  This is done using clear_spte_count.
752  */
753 static u64 __get_spte_lockless(u64 *sptep)
754 {
755         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
756         union split_spte spte, *orig = (union split_spte *)sptep;
757         int count;
758
759 retry:
760         count = sp->clear_spte_count;
761         smp_rmb();
762
763         spte.spte_low = orig->spte_low;
764         smp_rmb();
765
766         spte.spte_high = orig->spte_high;
767         smp_rmb();
768
769         if (unlikely(spte.spte_low != orig->spte_low ||
770               count != sp->clear_spte_count))
771                 goto retry;
772
773         return spte.spte;
774 }
775 #endif
776
777 static bool spte_can_locklessly_be_made_writable(u64 spte)
778 {
779         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
780                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
781 }
782
783 static bool spte_has_volatile_bits(u64 spte)
784 {
785         if (!is_shadow_present_pte(spte))
786                 return false;
787
788         /*
789          * Always atomically update spte if it can be updated
790          * out of mmu-lock, it can ensure dirty bit is not lost,
791          * also, it can help us to get a stable is_writable_pte()
792          * to ensure tlb flush is not missed.
793          */
794         if (spte_can_locklessly_be_made_writable(spte) ||
795             is_access_track_spte(spte))
796                 return true;
797
798         if (spte_ad_enabled(spte)) {
799                 if ((spte & shadow_accessed_mask) == 0 ||
800                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
801                         return true;
802         }
803
804         return false;
805 }
806
807 static bool is_accessed_spte(u64 spte)
808 {
809         u64 accessed_mask = spte_shadow_accessed_mask(spte);
810
811         return accessed_mask ? spte & accessed_mask
812                              : !is_access_track_spte(spte);
813 }
814
815 static bool is_dirty_spte(u64 spte)
816 {
817         u64 dirty_mask = spte_shadow_dirty_mask(spte);
818
819         return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
820 }
821
822 /* Rules for using mmu_spte_set:
823  * Set the sptep from nonpresent to present.
824  * Note: the sptep being assigned *must* be either not present
825  * or in a state where the hardware will not attempt to update
826  * the spte.
827  */
828 static void mmu_spte_set(u64 *sptep, u64 new_spte)
829 {
830         WARN_ON(is_shadow_present_pte(*sptep));
831         __set_spte(sptep, new_spte);
832 }
833
834 /*
835  * Update the SPTE (excluding the PFN), but do not track changes in its
836  * accessed/dirty status.
837  */
838 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
839 {
840         u64 old_spte = *sptep;
841
842         WARN_ON(!is_shadow_present_pte(new_spte));
843
844         if (!is_shadow_present_pte(old_spte)) {
845                 mmu_spte_set(sptep, new_spte);
846                 return old_spte;
847         }
848
849         if (!spte_has_volatile_bits(old_spte))
850                 __update_clear_spte_fast(sptep, new_spte);
851         else
852                 old_spte = __update_clear_spte_slow(sptep, new_spte);
853
854         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
855
856         return old_spte;
857 }
858
859 /* Rules for using mmu_spte_update:
860  * Update the state bits, it means the mapped pfn is not changed.
861  *
862  * Whenever we overwrite a writable spte with a read-only one we
863  * should flush remote TLBs. Otherwise rmap_write_protect
864  * will find a read-only spte, even though the writable spte
865  * might be cached on a CPU's TLB, the return value indicates this
866  * case.
867  *
868  * Returns true if the TLB needs to be flushed
869  */
870 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
871 {
872         bool flush = false;
873         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
874
875         if (!is_shadow_present_pte(old_spte))
876                 return false;
877
878         /*
879          * For the spte updated out of mmu-lock is safe, since
880          * we always atomically update it, see the comments in
881          * spte_has_volatile_bits().
882          */
883         if (spte_can_locklessly_be_made_writable(old_spte) &&
884               !is_writable_pte(new_spte))
885                 flush = true;
886
887         /*
888          * Flush TLB when accessed/dirty states are changed in the page tables,
889          * to guarantee consistency between TLB and page tables.
890          */
891
892         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
893                 flush = true;
894                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
895         }
896
897         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
898                 flush = true;
899                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
900         }
901
902         return flush;
903 }
904
905 /*
906  * Rules for using mmu_spte_clear_track_bits:
907  * It sets the sptep from present to nonpresent, and track the
908  * state bits, it is used to clear the last level sptep.
909  * Returns non-zero if the PTE was previously valid.
910  */
911 static int mmu_spte_clear_track_bits(u64 *sptep)
912 {
913         kvm_pfn_t pfn;
914         u64 old_spte = *sptep;
915
916         if (!spte_has_volatile_bits(old_spte))
917                 __update_clear_spte_fast(sptep, 0ull);
918         else
919                 old_spte = __update_clear_spte_slow(sptep, 0ull);
920
921         if (!is_shadow_present_pte(old_spte))
922                 return 0;
923
924         pfn = spte_to_pfn(old_spte);
925
926         /*
927          * KVM does not hold the refcount of the page used by
928          * kvm mmu, before reclaiming the page, we should
929          * unmap it from mmu first.
930          */
931         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
932
933         if (is_accessed_spte(old_spte))
934                 kvm_set_pfn_accessed(pfn);
935
936         if (is_dirty_spte(old_spte))
937                 kvm_set_pfn_dirty(pfn);
938
939         return 1;
940 }
941
942 /*
943  * Rules for using mmu_spte_clear_no_track:
944  * Directly clear spte without caring the state bits of sptep,
945  * it is used to set the upper level spte.
946  */
947 static void mmu_spte_clear_no_track(u64 *sptep)
948 {
949         __update_clear_spte_fast(sptep, 0ull);
950 }
951
952 static u64 mmu_spte_get_lockless(u64 *sptep)
953 {
954         return __get_spte_lockless(sptep);
955 }
956
957 static u64 mark_spte_for_access_track(u64 spte)
958 {
959         if (spte_ad_enabled(spte))
960                 return spte & ~shadow_accessed_mask;
961
962         if (is_access_track_spte(spte))
963                 return spte;
964
965         /*
966          * Making an Access Tracking PTE will result in removal of write access
967          * from the PTE. So, verify that we will be able to restore the write
968          * access in the fast page fault path later on.
969          */
970         WARN_ONCE((spte & PT_WRITABLE_MASK) &&
971                   !spte_can_locklessly_be_made_writable(spte),
972                   "kvm: Writable SPTE is not locklessly dirty-trackable\n");
973
974         WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
975                           shadow_acc_track_saved_bits_shift),
976                   "kvm: Access Tracking saved bit locations are not zero\n");
977
978         spte |= (spte & shadow_acc_track_saved_bits_mask) <<
979                 shadow_acc_track_saved_bits_shift;
980         spte &= ~shadow_acc_track_mask;
981
982         return spte;
983 }
984
985 /* Restore an acc-track PTE back to a regular PTE */
986 static u64 restore_acc_track_spte(u64 spte)
987 {
988         u64 new_spte = spte;
989         u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
990                          & shadow_acc_track_saved_bits_mask;
991
992         WARN_ON_ONCE(spte_ad_enabled(spte));
993         WARN_ON_ONCE(!is_access_track_spte(spte));
994
995         new_spte &= ~shadow_acc_track_mask;
996         new_spte &= ~(shadow_acc_track_saved_bits_mask <<
997                       shadow_acc_track_saved_bits_shift);
998         new_spte |= saved_bits;
999
1000         return new_spte;
1001 }
1002
1003 /* Returns the Accessed status of the PTE and resets it at the same time. */
1004 static bool mmu_spte_age(u64 *sptep)
1005 {
1006         u64 spte = mmu_spte_get_lockless(sptep);
1007
1008         if (!is_accessed_spte(spte))
1009                 return false;
1010
1011         if (spte_ad_enabled(spte)) {
1012                 clear_bit((ffs(shadow_accessed_mask) - 1),
1013                           (unsigned long *)sptep);
1014         } else {
1015                 /*
1016                  * Capture the dirty status of the page, so that it doesn't get
1017                  * lost when the SPTE is marked for access tracking.
1018                  */
1019                 if (is_writable_pte(spte))
1020                         kvm_set_pfn_dirty(spte_to_pfn(spte));
1021
1022                 spte = mark_spte_for_access_track(spte);
1023                 mmu_spte_update_no_track(sptep, spte);
1024         }
1025
1026         return true;
1027 }
1028
1029 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
1030 {
1031         /*
1032          * Prevent page table teardown by making any free-er wait during
1033          * kvm_flush_remote_tlbs() IPI to all active vcpus.
1034          */
1035         local_irq_disable();
1036
1037         /*
1038          * Make sure a following spte read is not reordered ahead of the write
1039          * to vcpu->mode.
1040          */
1041         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
1042 }
1043
1044 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
1045 {
1046         /*
1047          * Make sure the write to vcpu->mode is not reordered in front of
1048          * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
1049          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
1050          */
1051         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
1052         local_irq_enable();
1053 }
1054
1055 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
1056                                   struct kmem_cache *base_cache, int min)
1057 {
1058         void *obj;
1059
1060         if (cache->nobjs >= min)
1061                 return 0;
1062         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1063                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT);
1064                 if (!obj)
1065                         return cache->nobjs >= min ? 0 : -ENOMEM;
1066                 cache->objects[cache->nobjs++] = obj;
1067         }
1068         return 0;
1069 }
1070
1071 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
1072 {
1073         return cache->nobjs;
1074 }
1075
1076 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
1077                                   struct kmem_cache *cache)
1078 {
1079         while (mc->nobjs)
1080                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
1081 }
1082
1083 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
1084                                        int min)
1085 {
1086         void *page;
1087
1088         if (cache->nobjs >= min)
1089                 return 0;
1090         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1091                 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
1092                 if (!page)
1093                         return cache->nobjs >= min ? 0 : -ENOMEM;
1094                 cache->objects[cache->nobjs++] = page;
1095         }
1096         return 0;
1097 }
1098
1099 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
1100 {
1101         while (mc->nobjs)
1102                 free_page((unsigned long)mc->objects[--mc->nobjs]);
1103 }
1104
1105 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
1106 {
1107         int r;
1108
1109         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1110                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
1111         if (r)
1112                 goto out;
1113         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
1114         if (r)
1115                 goto out;
1116         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
1117                                    mmu_page_header_cache, 4);
1118 out:
1119         return r;
1120 }
1121
1122 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1123 {
1124         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1125                                 pte_list_desc_cache);
1126         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
1127         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
1128                                 mmu_page_header_cache);
1129 }
1130
1131 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
1132 {
1133         void *p;
1134
1135         BUG_ON(!mc->nobjs);
1136         p = mc->objects[--mc->nobjs];
1137         return p;
1138 }
1139
1140 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1141 {
1142         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1143 }
1144
1145 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1146 {
1147         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1148 }
1149
1150 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1151 {
1152         if (!sp->role.direct)
1153                 return sp->gfns[index];
1154
1155         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1156 }
1157
1158 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1159 {
1160         if (!sp->role.direct) {
1161                 sp->gfns[index] = gfn;
1162                 return;
1163         }
1164
1165         if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
1166                 pr_err_ratelimited("gfn mismatch under direct page %llx "
1167                                    "(expected %llx, got %llx)\n",
1168                                    sp->gfn,
1169                                    kvm_mmu_page_get_gfn(sp, index), gfn);
1170 }
1171
1172 /*
1173  * Return the pointer to the large page information for a given gfn,
1174  * handling slots that are not large page aligned.
1175  */
1176 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1177                                               struct kvm_memory_slot *slot,
1178                                               int level)
1179 {
1180         unsigned long idx;
1181
1182         idx = gfn_to_index(gfn, slot->base_gfn, level);
1183         return &slot->arch.lpage_info[level - 2][idx];
1184 }
1185
1186 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1187                                             gfn_t gfn, int count)
1188 {
1189         struct kvm_lpage_info *linfo;
1190         int i;
1191
1192         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1193                 linfo = lpage_info_slot(gfn, slot, i);
1194                 linfo->disallow_lpage += count;
1195                 WARN_ON(linfo->disallow_lpage < 0);
1196         }
1197 }
1198
1199 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1200 {
1201         update_gfn_disallow_lpage_count(slot, gfn, 1);
1202 }
1203
1204 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1205 {
1206         update_gfn_disallow_lpage_count(slot, gfn, -1);
1207 }
1208
1209 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1210 {
1211         struct kvm_memslots *slots;
1212         struct kvm_memory_slot *slot;
1213         gfn_t gfn;
1214
1215         kvm->arch.indirect_shadow_pages++;
1216         gfn = sp->gfn;
1217         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1218         slot = __gfn_to_memslot(slots, gfn);
1219
1220         /* the non-leaf shadow pages are keeping readonly. */
1221         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1222                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1223                                                     KVM_PAGE_TRACK_WRITE);
1224
1225         kvm_mmu_gfn_disallow_lpage(slot, gfn);
1226 }
1227
1228 static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1229 {
1230         if (sp->lpage_disallowed)
1231                 return;
1232
1233         ++kvm->stat.nx_lpage_splits;
1234         list_add_tail(&sp->lpage_disallowed_link,
1235                       &kvm->arch.lpage_disallowed_mmu_pages);
1236         sp->lpage_disallowed = true;
1237 }
1238
1239 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1240 {
1241         struct kvm_memslots *slots;
1242         struct kvm_memory_slot *slot;
1243         gfn_t gfn;
1244
1245         kvm->arch.indirect_shadow_pages--;
1246         gfn = sp->gfn;
1247         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1248         slot = __gfn_to_memslot(slots, gfn);
1249         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1250                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1251                                                        KVM_PAGE_TRACK_WRITE);
1252
1253         kvm_mmu_gfn_allow_lpage(slot, gfn);
1254 }
1255
1256 static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1257 {
1258         --kvm->stat.nx_lpage_splits;
1259         sp->lpage_disallowed = false;
1260         list_del(&sp->lpage_disallowed_link);
1261 }
1262
1263 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1264                                           struct kvm_memory_slot *slot)
1265 {
1266         struct kvm_lpage_info *linfo;
1267
1268         if (slot) {
1269                 linfo = lpage_info_slot(gfn, slot, level);
1270                 return !!linfo->disallow_lpage;
1271         }
1272
1273         return true;
1274 }
1275
1276 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1277                                         int level)
1278 {
1279         struct kvm_memory_slot *slot;
1280
1281         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1282         return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1283 }
1284
1285 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
1286 {
1287         unsigned long page_size;
1288         int i, ret = 0;
1289
1290         page_size = kvm_host_page_size(kvm, gfn);
1291
1292         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1293                 if (page_size >= KVM_HPAGE_SIZE(i))
1294                         ret = i;
1295                 else
1296                         break;
1297         }
1298
1299         return ret;
1300 }
1301
1302 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1303                                           bool no_dirty_log)
1304 {
1305         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1306                 return false;
1307         if (no_dirty_log && slot->dirty_bitmap)
1308                 return false;
1309
1310         return true;
1311 }
1312
1313 static struct kvm_memory_slot *
1314 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1315                             bool no_dirty_log)
1316 {
1317         struct kvm_memory_slot *slot;
1318
1319         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1320         if (!memslot_valid_for_gpte(slot, no_dirty_log))
1321                 slot = NULL;
1322
1323         return slot;
1324 }
1325
1326 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1327                          bool *force_pt_level)
1328 {
1329         int host_level, level, max_level;
1330         struct kvm_memory_slot *slot;
1331
1332         if (unlikely(*force_pt_level))
1333                 return PT_PAGE_TABLE_LEVEL;
1334
1335         slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1336         *force_pt_level = !memslot_valid_for_gpte(slot, true);
1337         if (unlikely(*force_pt_level))
1338                 return PT_PAGE_TABLE_LEVEL;
1339
1340         host_level = host_mapping_level(vcpu->kvm, large_gfn);
1341
1342         if (host_level == PT_PAGE_TABLE_LEVEL)
1343                 return host_level;
1344
1345         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1346
1347         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1348                 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1349                         break;
1350
1351         return level - 1;
1352 }
1353
1354 /*
1355  * About rmap_head encoding:
1356  *
1357  * If the bit zero of rmap_head->val is clear, then it points to the only spte
1358  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1359  * pte_list_desc containing more mappings.
1360  */
1361
1362 /*
1363  * Returns the number of pointers in the rmap chain, not counting the new one.
1364  */
1365 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1366                         struct kvm_rmap_head *rmap_head)
1367 {
1368         struct pte_list_desc *desc;
1369         int i, count = 0;
1370
1371         if (!rmap_head->val) {
1372                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1373                 rmap_head->val = (unsigned long)spte;
1374         } else if (!(rmap_head->val & 1)) {
1375                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1376                 desc = mmu_alloc_pte_list_desc(vcpu);
1377                 desc->sptes[0] = (u64 *)rmap_head->val;
1378                 desc->sptes[1] = spte;
1379                 rmap_head->val = (unsigned long)desc | 1;
1380                 ++count;
1381         } else {
1382                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1383                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1384                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1385                         desc = desc->more;
1386                         count += PTE_LIST_EXT;
1387                 }
1388                 if (desc->sptes[PTE_LIST_EXT-1]) {
1389                         desc->more = mmu_alloc_pte_list_desc(vcpu);
1390                         desc = desc->more;
1391                 }
1392                 for (i = 0; desc->sptes[i]; ++i)
1393                         ++count;
1394                 desc->sptes[i] = spte;
1395         }
1396         return count;
1397 }
1398
1399 static void
1400 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1401                            struct pte_list_desc *desc, int i,
1402                            struct pte_list_desc *prev_desc)
1403 {
1404         int j;
1405
1406         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1407                 ;
1408         desc->sptes[i] = desc->sptes[j];
1409         desc->sptes[j] = NULL;
1410         if (j != 0)
1411                 return;
1412         if (!prev_desc && !desc->more)
1413                 rmap_head->val = (unsigned long)desc->sptes[0];
1414         else
1415                 if (prev_desc)
1416                         prev_desc->more = desc->more;
1417                 else
1418                         rmap_head->val = (unsigned long)desc->more | 1;
1419         mmu_free_pte_list_desc(desc);
1420 }
1421
1422 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1423 {
1424         struct pte_list_desc *desc;
1425         struct pte_list_desc *prev_desc;
1426         int i;
1427
1428         if (!rmap_head->val) {
1429                 pr_err("%s: %p 0->BUG\n", __func__, spte);
1430                 BUG();
1431         } else if (!(rmap_head->val & 1)) {
1432                 rmap_printk("%s:  %p 1->0\n", __func__, spte);
1433                 if ((u64 *)rmap_head->val != spte) {
1434                         pr_err("%s:  %p 1->BUG\n", __func__, spte);
1435                         BUG();
1436                 }
1437                 rmap_head->val = 0;
1438         } else {
1439                 rmap_printk("%s:  %p many->many\n", __func__, spte);
1440                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1441                 prev_desc = NULL;
1442                 while (desc) {
1443                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1444                                 if (desc->sptes[i] == spte) {
1445                                         pte_list_desc_remove_entry(rmap_head,
1446                                                         desc, i, prev_desc);
1447                                         return;
1448                                 }
1449                         }
1450                         prev_desc = desc;
1451                         desc = desc->more;
1452                 }
1453                 pr_err("%s: %p many->many\n", __func__, spte);
1454                 BUG();
1455         }
1456 }
1457
1458 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1459 {
1460         mmu_spte_clear_track_bits(sptep);
1461         __pte_list_remove(sptep, rmap_head);
1462 }
1463
1464 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1465                                            struct kvm_memory_slot *slot)
1466 {
1467         unsigned long idx;
1468
1469         idx = gfn_to_index(gfn, slot->base_gfn, level);
1470         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1471 }
1472
1473 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1474                                          struct kvm_mmu_page *sp)
1475 {
1476         struct kvm_memslots *slots;
1477         struct kvm_memory_slot *slot;
1478
1479         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1480         slot = __gfn_to_memslot(slots, gfn);
1481         return __gfn_to_rmap(gfn, sp->role.level, slot);
1482 }
1483
1484 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1485 {
1486         struct kvm_mmu_memory_cache *cache;
1487
1488         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1489         return mmu_memory_cache_free_objects(cache);
1490 }
1491
1492 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1493 {
1494         struct kvm_mmu_page *sp;
1495         struct kvm_rmap_head *rmap_head;
1496
1497         sp = page_header(__pa(spte));
1498         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1499         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1500         return pte_list_add(vcpu, spte, rmap_head);
1501 }
1502
1503 static void rmap_remove(struct kvm *kvm, u64 *spte)
1504 {
1505         struct kvm_mmu_page *sp;
1506         gfn_t gfn;
1507         struct kvm_rmap_head *rmap_head;
1508
1509         sp = page_header(__pa(spte));
1510         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1511         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1512         __pte_list_remove(spte, rmap_head);
1513 }
1514
1515 /*
1516  * Used by the following functions to iterate through the sptes linked by a
1517  * rmap.  All fields are private and not assumed to be used outside.
1518  */
1519 struct rmap_iterator {
1520         /* private fields */
1521         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1522         int pos;                        /* index of the sptep */
1523 };
1524
1525 /*
1526  * Iteration must be started by this function.  This should also be used after
1527  * removing/dropping sptes from the rmap link because in such cases the
1528  * information in the itererator may not be valid.
1529  *
1530  * Returns sptep if found, NULL otherwise.
1531  */
1532 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1533                            struct rmap_iterator *iter)
1534 {
1535         u64 *sptep;
1536
1537         if (!rmap_head->val)
1538                 return NULL;
1539
1540         if (!(rmap_head->val & 1)) {
1541                 iter->desc = NULL;
1542                 sptep = (u64 *)rmap_head->val;
1543                 goto out;
1544         }
1545
1546         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1547         iter->pos = 0;
1548         sptep = iter->desc->sptes[iter->pos];
1549 out:
1550         BUG_ON(!is_shadow_present_pte(*sptep));
1551         return sptep;
1552 }
1553
1554 /*
1555  * Must be used with a valid iterator: e.g. after rmap_get_first().
1556  *
1557  * Returns sptep if found, NULL otherwise.
1558  */
1559 static u64 *rmap_get_next(struct rmap_iterator *iter)
1560 {
1561         u64 *sptep;
1562
1563         if (iter->desc) {
1564                 if (iter->pos < PTE_LIST_EXT - 1) {
1565                         ++iter->pos;
1566                         sptep = iter->desc->sptes[iter->pos];
1567                         if (sptep)
1568                                 goto out;
1569                 }
1570
1571                 iter->desc = iter->desc->more;
1572
1573                 if (iter->desc) {
1574                         iter->pos = 0;
1575                         /* desc->sptes[0] cannot be NULL */
1576                         sptep = iter->desc->sptes[iter->pos];
1577                         goto out;
1578                 }
1579         }
1580
1581         return NULL;
1582 out:
1583         BUG_ON(!is_shadow_present_pte(*sptep));
1584         return sptep;
1585 }
1586
1587 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1588         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1589              _spte_; _spte_ = rmap_get_next(_iter_))
1590
1591 static void drop_spte(struct kvm *kvm, u64 *sptep)
1592 {
1593         if (mmu_spte_clear_track_bits(sptep))
1594                 rmap_remove(kvm, sptep);
1595 }
1596
1597
1598 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1599 {
1600         if (is_large_pte(*sptep)) {
1601                 WARN_ON(page_header(__pa(sptep))->role.level ==
1602                         PT_PAGE_TABLE_LEVEL);
1603                 drop_spte(kvm, sptep);
1604                 --kvm->stat.lpages;
1605                 return true;
1606         }
1607
1608         return false;
1609 }
1610
1611 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1612 {
1613         if (__drop_large_spte(vcpu->kvm, sptep)) {
1614                 struct kvm_mmu_page *sp = page_header(__pa(sptep));
1615
1616                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1617                         KVM_PAGES_PER_HPAGE(sp->role.level));
1618         }
1619 }
1620
1621 /*
1622  * Write-protect on the specified @sptep, @pt_protect indicates whether
1623  * spte write-protection is caused by protecting shadow page table.
1624  *
1625  * Note: write protection is difference between dirty logging and spte
1626  * protection:
1627  * - for dirty logging, the spte can be set to writable at anytime if
1628  *   its dirty bitmap is properly set.
1629  * - for spte protection, the spte can be writable only after unsync-ing
1630  *   shadow page.
1631  *
1632  * Return true if tlb need be flushed.
1633  */
1634 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1635 {
1636         u64 spte = *sptep;
1637
1638         if (!is_writable_pte(spte) &&
1639               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1640                 return false;
1641
1642         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1643
1644         if (pt_protect)
1645                 spte &= ~SPTE_MMU_WRITEABLE;
1646         spte = spte & ~PT_WRITABLE_MASK;
1647
1648         return mmu_spte_update(sptep, spte);
1649 }
1650
1651 static bool __rmap_write_protect(struct kvm *kvm,
1652                                  struct kvm_rmap_head *rmap_head,
1653                                  bool pt_protect)
1654 {
1655         u64 *sptep;
1656         struct rmap_iterator iter;
1657         bool flush = false;
1658
1659         for_each_rmap_spte(rmap_head, &iter, sptep)
1660                 flush |= spte_write_protect(sptep, pt_protect);
1661
1662         return flush;
1663 }
1664
1665 static bool spte_clear_dirty(u64 *sptep)
1666 {
1667         u64 spte = *sptep;
1668
1669         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1670
1671         MMU_WARN_ON(!spte_ad_enabled(spte));
1672         spte &= ~shadow_dirty_mask;
1673         return mmu_spte_update(sptep, spte);
1674 }
1675
1676 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1677 {
1678         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1679                                                (unsigned long *)sptep);
1680         if (was_writable && !spte_ad_enabled(*sptep))
1681                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1682
1683         return was_writable;
1684 }
1685
1686 /*
1687  * Gets the GFN ready for another round of dirty logging by clearing the
1688  *      - D bit on ad-enabled SPTEs, and
1689  *      - W bit on ad-disabled SPTEs.
1690  * Returns true iff any D or W bits were cleared.
1691  */
1692 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1693 {
1694         u64 *sptep;
1695         struct rmap_iterator iter;
1696         bool flush = false;
1697
1698         for_each_rmap_spte(rmap_head, &iter, sptep)
1699                 if (spte_ad_need_write_protect(*sptep))
1700                         flush |= spte_wrprot_for_clear_dirty(sptep);
1701                 else
1702                         flush |= spte_clear_dirty(sptep);
1703
1704         return flush;
1705 }
1706
1707 static bool spte_set_dirty(u64 *sptep)
1708 {
1709         u64 spte = *sptep;
1710
1711         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1712
1713         /*
1714          * Similar to the !kvm_x86_ops->slot_disable_log_dirty case,
1715          * do not bother adding back write access to pages marked
1716          * SPTE_AD_WRPROT_ONLY_MASK.
1717          */
1718         spte |= shadow_dirty_mask;
1719
1720         return mmu_spte_update(sptep, spte);
1721 }
1722
1723 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1724 {
1725         u64 *sptep;
1726         struct rmap_iterator iter;
1727         bool flush = false;
1728
1729         for_each_rmap_spte(rmap_head, &iter, sptep)
1730                 if (spte_ad_enabled(*sptep))
1731                         flush |= spte_set_dirty(sptep);
1732
1733         return flush;
1734 }
1735
1736 /**
1737  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1738  * @kvm: kvm instance
1739  * @slot: slot to protect
1740  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1741  * @mask: indicates which pages we should protect
1742  *
1743  * Used when we do not need to care about huge page mappings: e.g. during dirty
1744  * logging we do not have any such mappings.
1745  */
1746 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1747                                      struct kvm_memory_slot *slot,
1748                                      gfn_t gfn_offset, unsigned long mask)
1749 {
1750         struct kvm_rmap_head *rmap_head;
1751
1752         while (mask) {
1753                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1754                                           PT_PAGE_TABLE_LEVEL, slot);
1755                 __rmap_write_protect(kvm, rmap_head, false);
1756
1757                 /* clear the first set bit */
1758                 mask &= mask - 1;
1759         }
1760 }
1761
1762 /**
1763  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1764  * protect the page if the D-bit isn't supported.
1765  * @kvm: kvm instance
1766  * @slot: slot to clear D-bit
1767  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1768  * @mask: indicates which pages we should clear D-bit
1769  *
1770  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1771  */
1772 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1773                                      struct kvm_memory_slot *slot,
1774                                      gfn_t gfn_offset, unsigned long mask)
1775 {
1776         struct kvm_rmap_head *rmap_head;
1777
1778         while (mask) {
1779                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1780                                           PT_PAGE_TABLE_LEVEL, slot);
1781                 __rmap_clear_dirty(kvm, rmap_head);
1782
1783                 /* clear the first set bit */
1784                 mask &= mask - 1;
1785         }
1786 }
1787 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1788
1789 /**
1790  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1791  * PT level pages.
1792  *
1793  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1794  * enable dirty logging for them.
1795  *
1796  * Used when we do not need to care about huge page mappings: e.g. during dirty
1797  * logging we do not have any such mappings.
1798  */
1799 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1800                                 struct kvm_memory_slot *slot,
1801                                 gfn_t gfn_offset, unsigned long mask)
1802 {
1803         if (kvm_x86_ops->enable_log_dirty_pt_masked)
1804                 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1805                                 mask);
1806         else
1807                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1808 }
1809
1810 /**
1811  * kvm_arch_write_log_dirty - emulate dirty page logging
1812  * @vcpu: Guest mode vcpu
1813  *
1814  * Emulate arch specific page modification logging for the
1815  * nested hypervisor
1816  */
1817 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1818 {
1819         if (kvm_x86_ops->write_log_dirty)
1820                 return kvm_x86_ops->write_log_dirty(vcpu);
1821
1822         return 0;
1823 }
1824
1825 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1826                                     struct kvm_memory_slot *slot, u64 gfn)
1827 {
1828         struct kvm_rmap_head *rmap_head;
1829         int i;
1830         bool write_protected = false;
1831
1832         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1833                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1834                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1835         }
1836
1837         return write_protected;
1838 }
1839
1840 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1841 {
1842         struct kvm_memory_slot *slot;
1843
1844         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1845         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1846 }
1847
1848 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1849 {
1850         u64 *sptep;
1851         struct rmap_iterator iter;
1852         bool flush = false;
1853
1854         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1855                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1856
1857                 pte_list_remove(rmap_head, sptep);
1858                 flush = true;
1859         }
1860
1861         return flush;
1862 }
1863
1864 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1865                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1866                            unsigned long data)
1867 {
1868         return kvm_zap_rmapp(kvm, rmap_head);
1869 }
1870
1871 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1872                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1873                              unsigned long data)
1874 {
1875         u64 *sptep;
1876         struct rmap_iterator iter;
1877         int need_flush = 0;
1878         u64 new_spte;
1879         pte_t *ptep = (pte_t *)data;
1880         kvm_pfn_t new_pfn;
1881
1882         WARN_ON(pte_huge(*ptep));
1883         new_pfn = pte_pfn(*ptep);
1884
1885 restart:
1886         for_each_rmap_spte(rmap_head, &iter, sptep) {
1887                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1888                             sptep, *sptep, gfn, level);
1889
1890                 need_flush = 1;
1891
1892                 if (pte_write(*ptep)) {
1893                         pte_list_remove(rmap_head, sptep);
1894                         goto restart;
1895                 } else {
1896                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1897                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1898
1899                         new_spte &= ~PT_WRITABLE_MASK;
1900                         new_spte &= ~SPTE_HOST_WRITEABLE;
1901
1902                         new_spte = mark_spte_for_access_track(new_spte);
1903
1904                         mmu_spte_clear_track_bits(sptep);
1905                         mmu_spte_set(sptep, new_spte);
1906                 }
1907         }
1908
1909         if (need_flush && kvm_available_flush_tlb_with_range()) {
1910                 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1911                 return 0;
1912         }
1913
1914         return need_flush;
1915 }
1916
1917 struct slot_rmap_walk_iterator {
1918         /* input fields. */
1919         struct kvm_memory_slot *slot;
1920         gfn_t start_gfn;
1921         gfn_t end_gfn;
1922         int start_level;
1923         int end_level;
1924
1925         /* output fields. */
1926         gfn_t gfn;
1927         struct kvm_rmap_head *rmap;
1928         int level;
1929
1930         /* private field. */
1931         struct kvm_rmap_head *end_rmap;
1932 };
1933
1934 static void
1935 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1936 {
1937         iterator->level = level;
1938         iterator->gfn = iterator->start_gfn;
1939         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1940         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1941                                            iterator->slot);
1942 }
1943
1944 static void
1945 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1946                     struct kvm_memory_slot *slot, int start_level,
1947                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1948 {
1949         iterator->slot = slot;
1950         iterator->start_level = start_level;
1951         iterator->end_level = end_level;
1952         iterator->start_gfn = start_gfn;
1953         iterator->end_gfn = end_gfn;
1954
1955         rmap_walk_init_level(iterator, iterator->start_level);
1956 }
1957
1958 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1959 {
1960         return !!iterator->rmap;
1961 }
1962
1963 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1964 {
1965         if (++iterator->rmap <= iterator->end_rmap) {
1966                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1967                 return;
1968         }
1969
1970         if (++iterator->level > iterator->end_level) {
1971                 iterator->rmap = NULL;
1972                 return;
1973         }
1974
1975         rmap_walk_init_level(iterator, iterator->level);
1976 }
1977
1978 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1979            _start_gfn, _end_gfn, _iter_)                                \
1980         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1981                                  _end_level_, _start_gfn, _end_gfn);    \
1982              slot_rmap_walk_okay(_iter_);                               \
1983              slot_rmap_walk_next(_iter_))
1984
1985 static int kvm_handle_hva_range(struct kvm *kvm,
1986                                 unsigned long start,
1987                                 unsigned long end,
1988                                 unsigned long data,
1989                                 int (*handler)(struct kvm *kvm,
1990                                                struct kvm_rmap_head *rmap_head,
1991                                                struct kvm_memory_slot *slot,
1992                                                gfn_t gfn,
1993                                                int level,
1994                                                unsigned long data))
1995 {
1996         struct kvm_memslots *slots;
1997         struct kvm_memory_slot *memslot;
1998         struct slot_rmap_walk_iterator iterator;
1999         int ret = 0;
2000         int i;
2001
2002         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
2003                 slots = __kvm_memslots(kvm, i);
2004                 kvm_for_each_memslot(memslot, slots) {
2005                         unsigned long hva_start, hva_end;
2006                         gfn_t gfn_start, gfn_end;
2007
2008                         hva_start = max(start, memslot->userspace_addr);
2009                         hva_end = min(end, memslot->userspace_addr +
2010                                       (memslot->npages << PAGE_SHIFT));
2011                         if (hva_start >= hva_end)
2012                                 continue;
2013                         /*
2014                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
2015                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
2016                          */
2017                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
2018                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
2019
2020                         for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
2021                                                  PT_MAX_HUGEPAGE_LEVEL,
2022                                                  gfn_start, gfn_end - 1,
2023                                                  &iterator)
2024                                 ret |= handler(kvm, iterator.rmap, memslot,
2025                                                iterator.gfn, iterator.level, data);
2026                 }
2027         }
2028
2029         return ret;
2030 }
2031
2032 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
2033                           unsigned long data,
2034                           int (*handler)(struct kvm *kvm,
2035                                          struct kvm_rmap_head *rmap_head,
2036                                          struct kvm_memory_slot *slot,
2037                                          gfn_t gfn, int level,
2038                                          unsigned long data))
2039 {
2040         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
2041 }
2042
2043 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
2044 {
2045         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
2046 }
2047
2048 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
2049 {
2050         return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
2051 }
2052
2053 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
2054                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
2055                          unsigned long data)
2056 {
2057         u64 *sptep;
2058         struct rmap_iterator uninitialized_var(iter);
2059         int young = 0;
2060
2061         for_each_rmap_spte(rmap_head, &iter, sptep)
2062                 young |= mmu_spte_age(sptep);
2063
2064         trace_kvm_age_page(gfn, level, slot, young);
2065         return young;
2066 }
2067
2068 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
2069                               struct kvm_memory_slot *slot, gfn_t gfn,
2070                               int level, unsigned long data)
2071 {
2072         u64 *sptep;
2073         struct rmap_iterator iter;
2074
2075         for_each_rmap_spte(rmap_head, &iter, sptep)
2076                 if (is_accessed_spte(*sptep))
2077                         return 1;
2078         return 0;
2079 }
2080
2081 #define RMAP_RECYCLE_THRESHOLD 1000
2082
2083 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
2084 {
2085         struct kvm_rmap_head *rmap_head;
2086         struct kvm_mmu_page *sp;
2087
2088         sp = page_header(__pa(spte));
2089
2090         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
2091
2092         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
2093         kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
2094                         KVM_PAGES_PER_HPAGE(sp->role.level));
2095 }
2096
2097 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
2098 {
2099         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
2100 }
2101
2102 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2103 {
2104         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
2105 }
2106
2107 #ifdef MMU_DEBUG
2108 static int is_empty_shadow_page(u64 *spt)
2109 {
2110         u64 *pos;
2111         u64 *end;
2112
2113         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
2114                 if (is_shadow_present_pte(*pos)) {
2115                         printk(KERN_ERR "%s: %p %llx\n", __func__,
2116                                pos, *pos);
2117                         return 0;
2118                 }
2119         return 1;
2120 }
2121 #endif
2122
2123 /*
2124  * This value is the sum of all of the kvm instances's
2125  * kvm->arch.n_used_mmu_pages values.  We need a global,
2126  * aggregate version in order to make the slab shrinker
2127  * faster
2128  */
2129 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
2130 {
2131         kvm->arch.n_used_mmu_pages += nr;
2132         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2133 }
2134
2135 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
2136 {
2137         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
2138         hlist_del(&sp->hash_link);
2139         list_del(&sp->link);
2140         free_page((unsigned long)sp->spt);
2141         if (!sp->role.direct)
2142                 free_page((unsigned long)sp->gfns);
2143         kmem_cache_free(mmu_page_header_cache, sp);
2144 }
2145
2146 static unsigned kvm_page_table_hashfn(gfn_t gfn)
2147 {
2148         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
2149 }
2150
2151 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
2152                                     struct kvm_mmu_page *sp, u64 *parent_pte)
2153 {
2154         if (!parent_pte)
2155                 return;
2156
2157         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
2158 }
2159
2160 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
2161                                        u64 *parent_pte)
2162 {
2163         __pte_list_remove(parent_pte, &sp->parent_ptes);
2164 }
2165
2166 static void drop_parent_pte(struct kvm_mmu_page *sp,
2167                             u64 *parent_pte)
2168 {
2169         mmu_page_remove_parent_pte(sp, parent_pte);
2170         mmu_spte_clear_no_track(parent_pte);
2171 }
2172
2173 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
2174 {
2175         struct kvm_mmu_page *sp;
2176
2177         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2178         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2179         if (!direct)
2180                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2181         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2182
2183         /*
2184          * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2185          * depends on valid pages being added to the head of the list.  See
2186          * comments in kvm_zap_obsolete_pages().
2187          */
2188         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2189         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
2190         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2191         return sp;
2192 }
2193
2194 static void mark_unsync(u64 *spte);
2195 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2196 {
2197         u64 *sptep;
2198         struct rmap_iterator iter;
2199
2200         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2201                 mark_unsync(sptep);
2202         }
2203 }
2204
2205 static void mark_unsync(u64 *spte)
2206 {
2207         struct kvm_mmu_page *sp;
2208         unsigned int index;
2209
2210         sp = page_header(__pa(spte));
2211         index = spte - sp->spt;
2212         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2213                 return;
2214         if (sp->unsync_children++)
2215                 return;
2216         kvm_mmu_mark_parents_unsync(sp);
2217 }
2218
2219 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2220                                struct kvm_mmu_page *sp)
2221 {
2222         return 0;
2223 }
2224
2225 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
2226 {
2227 }
2228
2229 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2230                                  struct kvm_mmu_page *sp, u64 *spte,
2231                                  const void *pte)
2232 {
2233         WARN_ON(1);
2234 }
2235
2236 #define KVM_PAGE_ARRAY_NR 16
2237
2238 struct kvm_mmu_pages {
2239         struct mmu_page_and_offset {
2240                 struct kvm_mmu_page *sp;
2241                 unsigned int idx;
2242         } page[KVM_PAGE_ARRAY_NR];
2243         unsigned int nr;
2244 };
2245
2246 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2247                          int idx)
2248 {
2249         int i;
2250
2251         if (sp->unsync)
2252                 for (i=0; i < pvec->nr; i++)
2253                         if (pvec->page[i].sp == sp)
2254                                 return 0;
2255
2256         pvec->page[pvec->nr].sp = sp;
2257         pvec->page[pvec->nr].idx = idx;
2258         pvec->nr++;
2259         return (pvec->nr == KVM_PAGE_ARRAY_NR);
2260 }
2261
2262 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2263 {
2264         --sp->unsync_children;
2265         WARN_ON((int)sp->unsync_children < 0);
2266         __clear_bit(idx, sp->unsync_child_bitmap);
2267 }
2268
2269 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2270                            struct kvm_mmu_pages *pvec)
2271 {
2272         int i, ret, nr_unsync_leaf = 0;
2273
2274         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2275                 struct kvm_mmu_page *child;
2276                 u64 ent = sp->spt[i];
2277
2278                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2279                         clear_unsync_child_bit(sp, i);
2280                         continue;
2281                 }
2282
2283                 child = page_header(ent & PT64_BASE_ADDR_MASK);
2284
2285                 if (child->unsync_children) {
2286                         if (mmu_pages_add(pvec, child, i))
2287                                 return -ENOSPC;
2288
2289                         ret = __mmu_unsync_walk(child, pvec);
2290                         if (!ret) {
2291                                 clear_unsync_child_bit(sp, i);
2292                                 continue;
2293                         } else if (ret > 0) {
2294                                 nr_unsync_leaf += ret;
2295                         } else
2296                                 return ret;
2297                 } else if (child->unsync) {
2298                         nr_unsync_leaf++;
2299                         if (mmu_pages_add(pvec, child, i))
2300                                 return -ENOSPC;
2301                 } else
2302                         clear_unsync_child_bit(sp, i);
2303         }
2304
2305         return nr_unsync_leaf;
2306 }
2307
2308 #define INVALID_INDEX (-1)
2309
2310 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2311                            struct kvm_mmu_pages *pvec)
2312 {
2313         pvec->nr = 0;
2314         if (!sp->unsync_children)
2315                 return 0;
2316
2317         mmu_pages_add(pvec, sp, INVALID_INDEX);
2318         return __mmu_unsync_walk(sp, pvec);
2319 }
2320
2321 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2322 {
2323         WARN_ON(!sp->unsync);
2324         trace_kvm_mmu_sync_page(sp);
2325         sp->unsync = 0;
2326         --kvm->stat.mmu_unsync;
2327 }
2328
2329 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2330                                      struct list_head *invalid_list);
2331 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2332                                     struct list_head *invalid_list);
2333
2334
2335 #define for_each_valid_sp(_kvm, _sp, _gfn)                              \
2336         hlist_for_each_entry(_sp,                                       \
2337           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2338                 if (is_obsolete_sp((_kvm), (_sp))) {                    \
2339                 } else
2340
2341 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
2342         for_each_valid_sp(_kvm, _sp, _gfn)                              \
2343                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2344
2345 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
2346 {
2347         return sp->role.cr0_wp && sp->role.smap_andnot_wp;
2348 }
2349
2350 /* @sp->gfn should be write-protected at the call site */
2351 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2352                             struct list_head *invalid_list)
2353 {
2354         if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
2355             vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
2356                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2357                 return false;
2358         }
2359
2360         return true;
2361 }
2362
2363 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
2364                                         struct list_head *invalid_list,
2365                                         bool remote_flush)
2366 {
2367         if (!remote_flush && list_empty(invalid_list))
2368                 return false;
2369
2370         if (!list_empty(invalid_list))
2371                 kvm_mmu_commit_zap_page(kvm, invalid_list);
2372         else
2373                 kvm_flush_remote_tlbs(kvm);
2374         return true;
2375 }
2376
2377 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2378                                  struct list_head *invalid_list,
2379                                  bool remote_flush, bool local_flush)
2380 {
2381         if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
2382                 return;
2383
2384         if (local_flush)
2385                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2386 }
2387
2388 #ifdef CONFIG_KVM_MMU_AUDIT
2389 #include "mmu_audit.c"
2390 #else
2391 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2392 static void mmu_audit_disable(void) { }
2393 #endif
2394
2395 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2396 {
2397         return sp->role.invalid ||
2398                unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2399 }
2400
2401 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2402                          struct list_head *invalid_list)
2403 {
2404         kvm_unlink_unsync_page(vcpu->kvm, sp);
2405         return __kvm_sync_page(vcpu, sp, invalid_list);
2406 }
2407
2408 /* @gfn should be write-protected at the call site */
2409 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2410                            struct list_head *invalid_list)
2411 {
2412         struct kvm_mmu_page *s;
2413         bool ret = false;
2414
2415         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2416                 if (!s->unsync)
2417                         continue;
2418
2419                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2420                 ret |= kvm_sync_page(vcpu, s, invalid_list);
2421         }
2422
2423         return ret;
2424 }
2425
2426 struct mmu_page_path {
2427         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2428         unsigned int idx[PT64_ROOT_MAX_LEVEL];
2429 };
2430
2431 #define for_each_sp(pvec, sp, parents, i)                       \
2432                 for (i = mmu_pages_first(&pvec, &parents);      \
2433                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
2434                         i = mmu_pages_next(&pvec, &parents, i))
2435
2436 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2437                           struct mmu_page_path *parents,
2438                           int i)
2439 {
2440         int n;
2441
2442         for (n = i+1; n < pvec->nr; n++) {
2443                 struct kvm_mmu_page *sp = pvec->page[n].sp;
2444                 unsigned idx = pvec->page[n].idx;
2445                 int level = sp->role.level;
2446
2447                 parents->idx[level-1] = idx;
2448                 if (level == PT_PAGE_TABLE_LEVEL)
2449                         break;
2450
2451                 parents->parent[level-2] = sp;
2452         }
2453
2454         return n;
2455 }
2456
2457 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2458                            struct mmu_page_path *parents)
2459 {
2460         struct kvm_mmu_page *sp;
2461         int level;
2462
2463         if (pvec->nr == 0)
2464                 return 0;
2465
2466         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2467
2468         sp = pvec->page[0].sp;
2469         level = sp->role.level;
2470         WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2471
2472         parents->parent[level-2] = sp;
2473
2474         /* Also set up a sentinel.  Further entries in pvec are all
2475          * children of sp, so this element is never overwritten.
2476          */
2477         parents->parent[level-1] = NULL;
2478         return mmu_pages_next(pvec, parents, 0);
2479 }
2480
2481 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2482 {
2483         struct kvm_mmu_page *sp;
2484         unsigned int level = 0;
2485
2486         do {
2487                 unsigned int idx = parents->idx[level];
2488                 sp = parents->parent[level];
2489                 if (!sp)
2490                         return;
2491
2492                 WARN_ON(idx == INVALID_INDEX);
2493                 clear_unsync_child_bit(sp, idx);
2494                 level++;
2495         } while (!sp->unsync_children);
2496 }
2497
2498 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2499                               struct kvm_mmu_page *parent)
2500 {
2501         int i;
2502         struct kvm_mmu_page *sp;
2503         struct mmu_page_path parents;
2504         struct kvm_mmu_pages pages;
2505         LIST_HEAD(invalid_list);
2506         bool flush = false;
2507
2508         while (mmu_unsync_walk(parent, &pages)) {
2509                 bool protected = false;
2510
2511                 for_each_sp(pages, sp, parents, i)
2512                         protected |= rmap_write_protect(vcpu, sp->gfn);
2513
2514                 if (protected) {
2515                         kvm_flush_remote_tlbs(vcpu->kvm);
2516                         flush = false;
2517                 }
2518
2519                 for_each_sp(pages, sp, parents, i) {
2520                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2521                         mmu_pages_clear_parents(&parents);
2522                 }
2523                 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2524                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2525                         cond_resched_lock(&vcpu->kvm->mmu_lock);
2526                         flush = false;
2527                 }
2528         }
2529
2530         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2531 }
2532
2533 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2534 {
2535         atomic_set(&sp->write_flooding_count,  0);
2536 }
2537
2538 static void clear_sp_write_flooding_count(u64 *spte)
2539 {
2540         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2541
2542         __clear_sp_write_flooding_count(sp);
2543 }
2544
2545 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2546                                              gfn_t gfn,
2547                                              gva_t gaddr,
2548                                              unsigned level,
2549                                              int direct,
2550                                              unsigned access)
2551 {
2552         union kvm_mmu_page_role role;
2553         unsigned quadrant;
2554         struct kvm_mmu_page *sp;
2555         bool need_sync = false;
2556         bool flush = false;
2557         int collisions = 0;
2558         LIST_HEAD(invalid_list);
2559
2560         role = vcpu->arch.mmu->mmu_role.base;
2561         role.level = level;
2562         role.direct = direct;
2563         if (role.direct)
2564                 role.gpte_is_8_bytes = true;
2565         role.access = access;
2566         if (!vcpu->arch.mmu->direct_map
2567             && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2568                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2569                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2570                 role.quadrant = quadrant;
2571         }
2572         for_each_valid_sp(vcpu->kvm, sp, gfn) {
2573                 if (sp->gfn != gfn) {
2574                         collisions++;
2575                         continue;
2576                 }
2577
2578                 if (!need_sync && sp->unsync)
2579                         need_sync = true;
2580
2581                 if (sp->role.word != role.word)
2582                         continue;
2583
2584                 if (sp->unsync) {
2585                         /* The page is good, but __kvm_sync_page might still end
2586                          * up zapping it.  If so, break in order to rebuild it.
2587                          */
2588                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2589                                 break;
2590
2591                         WARN_ON(!list_empty(&invalid_list));
2592                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2593                 }
2594
2595                 if (sp->unsync_children)
2596                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2597
2598                 __clear_sp_write_flooding_count(sp);
2599                 trace_kvm_mmu_get_page(sp, false);
2600                 goto out;
2601         }
2602
2603         ++vcpu->kvm->stat.mmu_cache_miss;
2604
2605         sp = kvm_mmu_alloc_page(vcpu, direct);
2606
2607         sp->gfn = gfn;
2608         sp->role = role;
2609         hlist_add_head(&sp->hash_link,
2610                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2611         if (!direct) {
2612                 /*
2613                  * we should do write protection before syncing pages
2614                  * otherwise the content of the synced shadow page may
2615                  * be inconsistent with guest page table.
2616                  */
2617                 account_shadowed(vcpu->kvm, sp);
2618                 if (level == PT_PAGE_TABLE_LEVEL &&
2619                       rmap_write_protect(vcpu, gfn))
2620                         kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2621
2622                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2623                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2624         }
2625         clear_page(sp->spt);
2626         trace_kvm_mmu_get_page(sp, true);
2627
2628         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2629 out:
2630         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2631                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2632         return sp;
2633 }
2634
2635 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2636                                         struct kvm_vcpu *vcpu, hpa_t root,
2637                                         u64 addr)
2638 {
2639         iterator->addr = addr;
2640         iterator->shadow_addr = root;
2641         iterator->level = vcpu->arch.mmu->shadow_root_level;
2642
2643         if (iterator->level == PT64_ROOT_4LEVEL &&
2644             vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2645             !vcpu->arch.mmu->direct_map)
2646                 --iterator->level;
2647
2648         if (iterator->level == PT32E_ROOT_LEVEL) {
2649                 /*
2650                  * prev_root is currently only used for 64-bit hosts. So only
2651                  * the active root_hpa is valid here.
2652                  */
2653                 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2654
2655                 iterator->shadow_addr
2656                         = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2657                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2658                 --iterator->level;
2659                 if (!iterator->shadow_addr)
2660                         iterator->level = 0;
2661         }
2662 }
2663
2664 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2665                              struct kvm_vcpu *vcpu, u64 addr)
2666 {
2667         shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2668                                     addr);
2669 }
2670
2671 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2672 {
2673         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2674                 return false;
2675
2676         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2677         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2678         return true;
2679 }
2680
2681 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2682                                u64 spte)
2683 {
2684         if (is_last_spte(spte, iterator->level)) {
2685                 iterator->level = 0;
2686                 return;
2687         }
2688
2689         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2690         --iterator->level;
2691 }
2692
2693 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2694 {
2695         __shadow_walk_next(iterator, *iterator->sptep);
2696 }
2697
2698 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2699                              struct kvm_mmu_page *sp)
2700 {
2701         u64 spte;
2702
2703         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2704
2705         spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2706                shadow_user_mask | shadow_x_mask | shadow_me_mask;
2707
2708         if (sp_ad_disabled(sp))
2709                 spte |= SPTE_AD_DISABLED_MASK;
2710         else
2711                 spte |= shadow_accessed_mask;
2712
2713         mmu_spte_set(sptep, spte);
2714
2715         mmu_page_add_parent_pte(vcpu, sp, sptep);
2716
2717         if (sp->unsync_children || sp->unsync)
2718                 mark_unsync(sptep);
2719 }
2720
2721 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2722                                    unsigned direct_access)
2723 {
2724         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2725                 struct kvm_mmu_page *child;
2726
2727                 /*
2728                  * For the direct sp, if the guest pte's dirty bit
2729                  * changed form clean to dirty, it will corrupt the
2730                  * sp's access: allow writable in the read-only sp,
2731                  * so we should update the spte at this point to get
2732                  * a new sp with the correct access.
2733                  */
2734                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2735                 if (child->role.access == direct_access)
2736                         return;
2737
2738                 drop_parent_pte(child, sptep);
2739                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2740         }
2741 }
2742
2743 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2744                              u64 *spte)
2745 {
2746         u64 pte;
2747         struct kvm_mmu_page *child;
2748
2749         pte = *spte;
2750         if (is_shadow_present_pte(pte)) {
2751                 if (is_last_spte(pte, sp->role.level)) {
2752                         drop_spte(kvm, spte);
2753                         if (is_large_pte(pte))
2754                                 --kvm->stat.lpages;
2755                 } else {
2756                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2757                         drop_parent_pte(child, spte);
2758                 }
2759                 return true;
2760         }
2761
2762         if (is_mmio_spte(pte))
2763                 mmu_spte_clear_no_track(spte);
2764
2765         return false;
2766 }
2767
2768 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2769                                          struct kvm_mmu_page *sp)
2770 {
2771         unsigned i;
2772
2773         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2774                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2775 }
2776
2777 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2778 {
2779         u64 *sptep;
2780         struct rmap_iterator iter;
2781
2782         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2783                 drop_parent_pte(sp, sptep);
2784 }
2785
2786 static int mmu_zap_unsync_children(struct kvm *kvm,
2787                                    struct kvm_mmu_page *parent,
2788                                    struct list_head *invalid_list)
2789 {
2790         int i, zapped = 0;
2791         struct mmu_page_path parents;
2792         struct kvm_mmu_pages pages;
2793
2794         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2795                 return 0;
2796
2797         while (mmu_unsync_walk(parent, &pages)) {
2798                 struct kvm_mmu_page *sp;
2799
2800                 for_each_sp(pages, sp, parents, i) {
2801                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2802                         mmu_pages_clear_parents(&parents);
2803                         zapped++;
2804                 }
2805         }
2806
2807         return zapped;
2808 }
2809
2810 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2811                                        struct kvm_mmu_page *sp,
2812                                        struct list_head *invalid_list,
2813                                        int *nr_zapped)
2814 {
2815         bool list_unstable;
2816
2817         trace_kvm_mmu_prepare_zap_page(sp);
2818         ++kvm->stat.mmu_shadow_zapped;
2819         *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2820         kvm_mmu_page_unlink_children(kvm, sp);
2821         kvm_mmu_unlink_parents(kvm, sp);
2822
2823         /* Zapping children means active_mmu_pages has become unstable. */
2824         list_unstable = *nr_zapped;
2825
2826         if (!sp->role.invalid && !sp->role.direct)
2827                 unaccount_shadowed(kvm, sp);
2828
2829         if (sp->unsync)
2830                 kvm_unlink_unsync_page(kvm, sp);
2831         if (!sp->root_count) {
2832                 /* Count self */
2833                 (*nr_zapped)++;
2834                 list_move(&sp->link, invalid_list);
2835                 kvm_mod_used_mmu_pages(kvm, -1);
2836         } else {
2837                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2838
2839                 /*
2840                  * Obsolete pages cannot be used on any vCPUs, see the comment
2841                  * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2842                  * treats invalid shadow pages as being obsolete.
2843                  */
2844                 if (!is_obsolete_sp(kvm, sp))
2845                         kvm_reload_remote_mmus(kvm);
2846         }
2847
2848         if (sp->lpage_disallowed)
2849                 unaccount_huge_nx_page(kvm, sp);
2850
2851         sp->role.invalid = 1;
2852         return list_unstable;
2853 }
2854
2855 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2856                                      struct list_head *invalid_list)
2857 {
2858         int nr_zapped;
2859
2860         __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2861         return nr_zapped;
2862 }
2863
2864 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2865                                     struct list_head *invalid_list)
2866 {
2867         struct kvm_mmu_page *sp, *nsp;
2868
2869         if (list_empty(invalid_list))
2870                 return;
2871
2872         /*
2873          * We need to make sure everyone sees our modifications to
2874          * the page tables and see changes to vcpu->mode here. The barrier
2875          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2876          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2877          *
2878          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2879          * guest mode and/or lockless shadow page table walks.
2880          */
2881         kvm_flush_remote_tlbs(kvm);
2882
2883         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2884                 WARN_ON(!sp->role.invalid || sp->root_count);
2885                 kvm_mmu_free_page(sp);
2886         }
2887 }
2888
2889 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2890                                         struct list_head *invalid_list)
2891 {
2892         struct kvm_mmu_page *sp;
2893
2894         if (list_empty(&kvm->arch.active_mmu_pages))
2895                 return false;
2896
2897         sp = list_last_entry(&kvm->arch.active_mmu_pages,
2898                              struct kvm_mmu_page, link);
2899         return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2900 }
2901
2902 /*
2903  * Changing the number of mmu pages allocated to the vm
2904  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2905  */
2906 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2907 {
2908         LIST_HEAD(invalid_list);
2909
2910         spin_lock(&kvm->mmu_lock);
2911
2912         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2913                 /* Need to free some mmu pages to achieve the goal. */
2914                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2915                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2916                                 break;
2917
2918                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2919                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2920         }
2921
2922         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2923
2924         spin_unlock(&kvm->mmu_lock);
2925 }
2926
2927 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2928 {
2929         struct kvm_mmu_page *sp;
2930         LIST_HEAD(invalid_list);
2931         int r;
2932
2933         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2934         r = 0;
2935         spin_lock(&kvm->mmu_lock);
2936         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2937                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2938                          sp->role.word);
2939                 r = 1;
2940                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2941         }
2942         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2943         spin_unlock(&kvm->mmu_lock);
2944
2945         return r;
2946 }
2947 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2948
2949 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2950 {
2951         trace_kvm_mmu_unsync_page(sp);
2952         ++vcpu->kvm->stat.mmu_unsync;
2953         sp->unsync = 1;
2954
2955         kvm_mmu_mark_parents_unsync(sp);
2956 }
2957
2958 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2959                                    bool can_unsync)
2960 {
2961         struct kvm_mmu_page *sp;
2962
2963         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2964                 return true;
2965
2966         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2967                 if (!can_unsync)
2968                         return true;
2969
2970                 if (sp->unsync)
2971                         continue;
2972
2973                 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2974                 kvm_unsync_page(vcpu, sp);
2975         }
2976
2977         /*
2978          * We need to ensure that the marking of unsync pages is visible
2979          * before the SPTE is updated to allow writes because
2980          * kvm_mmu_sync_roots() checks the unsync flags without holding
2981          * the MMU lock and so can race with this. If the SPTE was updated
2982          * before the page had been marked as unsync-ed, something like the
2983          * following could happen:
2984          *
2985          * CPU 1                    CPU 2
2986          * ---------------------------------------------------------------------
2987          * 1.2 Host updates SPTE
2988          *     to be writable
2989          *                      2.1 Guest writes a GPTE for GVA X.
2990          *                          (GPTE being in the guest page table shadowed
2991          *                           by the SP from CPU 1.)
2992          *                          This reads SPTE during the page table walk.
2993          *                          Since SPTE.W is read as 1, there is no
2994          *                          fault.
2995          *
2996          *                      2.2 Guest issues TLB flush.
2997          *                          That causes a VM Exit.
2998          *
2999          *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
3000          *                          Since it is false, so it just returns.
3001          *
3002          *                      2.4 Guest accesses GVA X.
3003          *                          Since the mapping in the SP was not updated,
3004          *                          so the old mapping for GVA X incorrectly
3005          *                          gets used.
3006          * 1.1 Host marks SP
3007          *     as unsync
3008          *     (sp->unsync = true)
3009          *
3010          * The write barrier below ensures that 1.1 happens before 1.2 and thus
3011          * the situation in 2.4 does not arise. The implicit barrier in 2.2
3012          * pairs with this write barrier.
3013          */
3014         smp_wmb();
3015
3016         return false;
3017 }
3018
3019 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
3020 {
3021         if (pfn_valid(pfn))
3022                 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
3023                         /*
3024                          * Some reserved pages, such as those from NVDIMM
3025                          * DAX devices, are not for MMIO, and can be mapped
3026                          * with cached memory type for better performance.
3027                          * However, the above check misconceives those pages
3028                          * as MMIO, and results in KVM mapping them with UC
3029                          * memory type, which would hurt the performance.
3030                          * Therefore, we check the host memory type in addition
3031                          * and only treat UC/UC-/WC pages as MMIO.
3032                          */
3033                         (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
3034
3035         return !e820__mapped_raw_any(pfn_to_hpa(pfn),
3036                                      pfn_to_hpa(pfn + 1) - 1,
3037                                      E820_TYPE_RAM);
3038 }
3039
3040 /* Bits which may be returned by set_spte() */
3041 #define SET_SPTE_WRITE_PROTECTED_PT     BIT(0)
3042 #define SET_SPTE_NEED_REMOTE_TLB_FLUSH  BIT(1)
3043
3044 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
3045                     unsigned pte_access, int level,
3046                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
3047                     bool can_unsync, bool host_writable)
3048 {
3049         u64 spte = 0;
3050         int ret = 0;
3051         struct kvm_mmu_page *sp;
3052
3053         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
3054                 return 0;
3055
3056         sp = page_header(__pa(sptep));
3057         if (sp_ad_disabled(sp))
3058                 spte |= SPTE_AD_DISABLED_MASK;
3059         else if (kvm_vcpu_ad_need_write_protect(vcpu))
3060                 spte |= SPTE_AD_WRPROT_ONLY_MASK;
3061
3062         /*
3063          * For the EPT case, shadow_present_mask is 0 if hardware
3064          * supports exec-only page table entries.  In that case,
3065          * ACC_USER_MASK and shadow_user_mask are used to represent
3066          * read access.  See FNAME(gpte_access) in paging_tmpl.h.
3067          */
3068         spte |= shadow_present_mask;
3069         if (!speculative)
3070                 spte |= spte_shadow_accessed_mask(spte);
3071
3072         if (level > PT_PAGE_TABLE_LEVEL && (pte_access & ACC_EXEC_MASK) &&
3073             is_nx_huge_page_enabled()) {
3074                 pte_access &= ~ACC_EXEC_MASK;
3075         }
3076
3077         if (pte_access & ACC_EXEC_MASK)
3078                 spte |= shadow_x_mask;
3079         else
3080                 spte |= shadow_nx_mask;
3081
3082         if (pte_access & ACC_USER_MASK)
3083                 spte |= shadow_user_mask;
3084
3085         if (level > PT_PAGE_TABLE_LEVEL)
3086                 spte |= PT_PAGE_SIZE_MASK;
3087         if (tdp_enabled)
3088                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
3089                         kvm_is_mmio_pfn(pfn));
3090
3091         if (host_writable)
3092                 spte |= SPTE_HOST_WRITEABLE;
3093         else
3094                 pte_access &= ~ACC_WRITE_MASK;
3095
3096         if (!kvm_is_mmio_pfn(pfn))
3097                 spte |= shadow_me_mask;
3098
3099         spte |= (u64)pfn << PAGE_SHIFT;
3100
3101         if (pte_access & ACC_WRITE_MASK) {
3102
3103                 /*
3104                  * Other vcpu creates new sp in the window between
3105                  * mapping_level() and acquiring mmu-lock. We can
3106                  * allow guest to retry the access, the mapping can
3107                  * be fixed if guest refault.
3108                  */
3109                 if (level > PT_PAGE_TABLE_LEVEL &&
3110                     mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
3111                         goto done;
3112
3113                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
3114
3115                 /*
3116                  * Optimization: for pte sync, if spte was writable the hash
3117                  * lookup is unnecessary (and expensive). Write protection
3118                  * is responsibility of mmu_get_page / kvm_sync_page.
3119                  * Same reasoning can be applied to dirty page accounting.
3120                  */
3121                 if (!can_unsync && is_writable_pte(*sptep))
3122                         goto set_pte;
3123
3124                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
3125                         pgprintk("%s: found shadow page for %llx, marking ro\n",
3126                                  __func__, gfn);
3127                         ret |= SET_SPTE_WRITE_PROTECTED_PT;
3128                         pte_access &= ~ACC_WRITE_MASK;
3129                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
3130                 }
3131         }
3132
3133         if (pte_access & ACC_WRITE_MASK) {
3134                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3135                 spte |= spte_shadow_dirty_mask(spte);
3136         }
3137
3138         if (speculative)
3139                 spte = mark_spte_for_access_track(spte);
3140
3141 set_pte:
3142         if (mmu_spte_update(sptep, spte))
3143                 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
3144 done:
3145         return ret;
3146 }
3147
3148 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
3149                         int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
3150                         bool speculative, bool host_writable)
3151 {
3152         int was_rmapped = 0;
3153         int rmap_count;
3154         int set_spte_ret;
3155         int ret = RET_PF_RETRY;
3156         bool flush = false;
3157
3158         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
3159                  *sptep, write_fault, gfn);
3160
3161         if (is_shadow_present_pte(*sptep)) {
3162                 /*
3163                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3164                  * the parent of the now unreachable PTE.
3165                  */
3166                 if (level > PT_PAGE_TABLE_LEVEL &&
3167                     !is_large_pte(*sptep)) {
3168                         struct kvm_mmu_page *child;
3169                         u64 pte = *sptep;
3170
3171                         child = page_header(pte & PT64_BASE_ADDR_MASK);
3172                         drop_parent_pte(child, sptep);
3173                         flush = true;
3174                 } else if (pfn != spte_to_pfn(*sptep)) {
3175                         pgprintk("hfn old %llx new %llx\n",
3176                                  spte_to_pfn(*sptep), pfn);
3177                         drop_spte(vcpu->kvm, sptep);
3178                         flush = true;
3179                 } else
3180                         was_rmapped = 1;
3181         }
3182
3183         set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
3184                                 speculative, true, host_writable);
3185         if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
3186                 if (write_fault)
3187                         ret = RET_PF_EMULATE;
3188                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3189         }
3190
3191         if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
3192                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
3193                                 KVM_PAGES_PER_HPAGE(level));
3194
3195         if (unlikely(is_mmio_spte(*sptep)))
3196                 ret = RET_PF_EMULATE;
3197
3198         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
3199         trace_kvm_mmu_set_spte(level, gfn, sptep);
3200         if (!was_rmapped && is_large_pte(*sptep))
3201                 ++vcpu->kvm->stat.lpages;
3202
3203         if (is_shadow_present_pte(*sptep)) {
3204                 if (!was_rmapped) {
3205                         rmap_count = rmap_add(vcpu, sptep, gfn);
3206                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3207                                 rmap_recycle(vcpu, sptep, gfn);
3208                 }
3209         }
3210
3211         return ret;
3212 }
3213
3214 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
3215                                      bool no_dirty_log)
3216 {
3217         struct kvm_memory_slot *slot;
3218
3219         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3220         if (!slot)
3221                 return KVM_PFN_ERR_FAULT;
3222
3223         return gfn_to_pfn_memslot_atomic(slot, gfn);
3224 }
3225
3226 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3227                                     struct kvm_mmu_page *sp,
3228                                     u64 *start, u64 *end)
3229 {
3230         struct page *pages[PTE_PREFETCH_NUM];
3231         struct kvm_memory_slot *slot;
3232         unsigned access = sp->role.access;
3233         int i, ret;
3234         gfn_t gfn;
3235
3236         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3237         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3238         if (!slot)
3239                 return -1;
3240
3241         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3242         if (ret <= 0)
3243                 return -1;
3244
3245         for (i = 0; i < ret; i++, gfn++, start++) {
3246                 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3247                              page_to_pfn(pages[i]), true, true);
3248                 put_page(pages[i]);
3249         }
3250
3251         return 0;
3252 }
3253
3254 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3255                                   struct kvm_mmu_page *sp, u64 *sptep)
3256 {
3257         u64 *spte, *start = NULL;
3258         int i;
3259
3260         WARN_ON(!sp->role.direct);
3261
3262         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3263         spte = sp->spt + i;
3264
3265         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3266                 if (is_shadow_present_pte(*spte) || spte == sptep) {
3267                         if (!start)
3268                                 continue;
3269                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3270                                 break;
3271                         start = NULL;
3272                 } else if (!start)
3273                         start = spte;
3274         }
3275 }
3276
3277 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3278 {
3279         struct kvm_mmu_page *sp;
3280
3281         sp = page_header(__pa(sptep));
3282
3283         /*
3284          * Without accessed bits, there's no way to distinguish between
3285          * actually accessed translations and prefetched, so disable pte
3286          * prefetch if accessed bits aren't available.
3287          */
3288         if (sp_ad_disabled(sp))
3289                 return;
3290
3291         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3292                 return;
3293
3294         __direct_pte_prefetch(vcpu, sp, sptep);
3295 }
3296
3297 static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
3298                                        gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
3299 {
3300         int level = *levelp;
3301         u64 spte = *it.sptep;
3302
3303         if (it.level == level && level > PT_PAGE_TABLE_LEVEL &&
3304             is_nx_huge_page_enabled() &&
3305             is_shadow_present_pte(spte) &&
3306             !is_large_pte(spte)) {
3307                 /*
3308                  * A small SPTE exists for this pfn, but FNAME(fetch)
3309                  * and __direct_map would like to create a large PTE
3310                  * instead: just force them to go down another level,
3311                  * patching back for them into pfn the next 9 bits of
3312                  * the address.
3313                  */
3314                 u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
3315                 *pfnp |= gfn & page_mask;
3316                 (*levelp)--;
3317         }
3318 }
3319
3320 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
3321                         int map_writable, int level, kvm_pfn_t pfn,
3322                         bool prefault, bool lpage_disallowed)
3323 {
3324         struct kvm_shadow_walk_iterator it;
3325         struct kvm_mmu_page *sp;
3326         int ret;
3327         gfn_t gfn = gpa >> PAGE_SHIFT;
3328         gfn_t base_gfn = gfn;
3329
3330         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3331                 return RET_PF_RETRY;
3332
3333         trace_kvm_mmu_spte_requested(gpa, level, pfn);
3334         for_each_shadow_entry(vcpu, gpa, it) {
3335                 /*
3336                  * We cannot overwrite existing page tables with an NX
3337                  * large page, as the leaf could be executable.
3338                  */
3339                 disallowed_hugepage_adjust(it, gfn, &pfn, &level);
3340
3341                 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3342                 if (it.level == level)
3343                         break;
3344
3345                 drop_large_spte(vcpu, it.sptep);
3346                 if (!is_shadow_present_pte(*it.sptep)) {
3347                         sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
3348                                               it.level - 1, true, ACC_ALL);
3349
3350                         link_shadow_page(vcpu, it.sptep, sp);
3351                         if (lpage_disallowed)
3352                                 account_huge_nx_page(vcpu->kvm, sp);
3353                 }
3354         }
3355
3356         ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3357                            write, level, base_gfn, pfn, prefault,
3358                            map_writable);
3359         direct_pte_prefetch(vcpu, it.sptep);
3360         ++vcpu->stat.pf_fixed;
3361         return ret;
3362 }
3363
3364 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3365 {
3366         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3367 }
3368
3369 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3370 {
3371         /*
3372          * Do not cache the mmio info caused by writing the readonly gfn
3373          * into the spte otherwise read access on readonly gfn also can
3374          * caused mmio page fault and treat it as mmio access.
3375          */
3376         if (pfn == KVM_PFN_ERR_RO_FAULT)
3377                 return RET_PF_EMULATE;
3378
3379         if (pfn == KVM_PFN_ERR_HWPOISON) {
3380                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3381                 return RET_PF_RETRY;
3382         }
3383
3384         return -EFAULT;
3385 }
3386
3387 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
3388                                         gfn_t gfn, kvm_pfn_t *pfnp,
3389                                         int *levelp)
3390 {
3391         kvm_pfn_t pfn = *pfnp;
3392         int level = *levelp;
3393
3394         /*
3395          * Check if it's a transparent hugepage. If this would be an
3396          * hugetlbfs page, level wouldn't be set to
3397          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3398          * here.
3399          */
3400         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3401             !kvm_is_zone_device_pfn(pfn) && level == PT_PAGE_TABLE_LEVEL &&
3402             PageTransCompoundMap(pfn_to_page(pfn)) &&
3403             !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
3404                 unsigned long mask;
3405                 /*
3406                  * mmu_notifier_retry was successful and we hold the
3407                  * mmu_lock here, so the pmd can't become splitting
3408                  * from under us, and in turn
3409                  * __split_huge_page_refcount() can't run from under
3410                  * us and we can safely transfer the refcount from
3411                  * PG_tail to PG_head as we switch the pfn to tail to
3412                  * head.
3413                  */
3414                 *levelp = level = PT_DIRECTORY_LEVEL;
3415                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3416                 VM_BUG_ON((gfn & mask) != (pfn & mask));
3417                 if (pfn & mask) {
3418                         kvm_release_pfn_clean(pfn);
3419                         pfn &= ~mask;
3420                         kvm_get_pfn(pfn);
3421                         *pfnp = pfn;
3422                 }
3423         }
3424 }
3425
3426 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3427                                 kvm_pfn_t pfn, unsigned access, int *ret_val)
3428 {
3429         /* The pfn is invalid, report the error! */
3430         if (unlikely(is_error_pfn(pfn))) {
3431                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3432                 return true;
3433         }
3434
3435         if (unlikely(is_noslot_pfn(pfn)))
3436                 vcpu_cache_mmio_info(vcpu, gva, gfn,
3437                                      access & shadow_mmio_access_mask);
3438
3439         return false;
3440 }
3441
3442 static bool page_fault_can_be_fast(u32 error_code)
3443 {
3444         /*
3445          * Do not fix the mmio spte with invalid generation number which
3446          * need to be updated by slow page fault path.
3447          */
3448         if (unlikely(error_code & PFERR_RSVD_MASK))
3449                 return false;
3450
3451         /* See if the page fault is due to an NX violation */
3452         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3453                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3454                 return false;
3455
3456         /*
3457          * #PF can be fast if:
3458          * 1. The shadow page table entry is not present, which could mean that
3459          *    the fault is potentially caused by access tracking (if enabled).
3460          * 2. The shadow page table entry is present and the fault
3461          *    is caused by write-protect, that means we just need change the W
3462          *    bit of the spte which can be done out of mmu-lock.
3463          *
3464          * However, if access tracking is disabled we know that a non-present
3465          * page must be a genuine page fault where we have to create a new SPTE.
3466          * So, if access tracking is disabled, we return true only for write
3467          * accesses to a present page.
3468          */
3469
3470         return shadow_acc_track_mask != 0 ||
3471                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3472                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3473 }
3474
3475 /*
3476  * Returns true if the SPTE was fixed successfully. Otherwise,
3477  * someone else modified the SPTE from its original value.
3478  */
3479 static bool
3480 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3481                         u64 *sptep, u64 old_spte, u64 new_spte)
3482 {
3483         gfn_t gfn;
3484
3485         WARN_ON(!sp->role.direct);
3486
3487         /*
3488          * Theoretically we could also set dirty bit (and flush TLB) here in
3489          * order to eliminate unnecessary PML logging. See comments in
3490          * set_spte. But fast_page_fault is very unlikely to happen with PML
3491          * enabled, so we do not do this. This might result in the same GPA
3492          * to be logged in PML buffer again when the write really happens, and
3493          * eventually to be called by mark_page_dirty twice. But it's also no
3494          * harm. This also avoids the TLB flush needed after setting dirty bit
3495          * so non-PML cases won't be impacted.
3496          *
3497          * Compare with set_spte where instead shadow_dirty_mask is set.
3498          */
3499         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3500                 return false;
3501
3502         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3503                 /*
3504                  * The gfn of direct spte is stable since it is
3505                  * calculated by sp->gfn.
3506                  */
3507                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3508                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3509         }
3510
3511         return true;
3512 }
3513
3514 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3515 {
3516         if (fault_err_code & PFERR_FETCH_MASK)
3517                 return is_executable_pte(spte);
3518
3519         if (fault_err_code & PFERR_WRITE_MASK)
3520                 return is_writable_pte(spte);
3521
3522         /* Fault was on Read access */
3523         return spte & PT_PRESENT_MASK;
3524 }
3525
3526 /*
3527  * Return value:
3528  * - true: let the vcpu to access on the same address again.
3529  * - false: let the real page fault path to fix it.
3530  */
3531 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3532                             u32 error_code)
3533 {
3534         struct kvm_shadow_walk_iterator iterator;
3535         struct kvm_mmu_page *sp;
3536         bool fault_handled = false;
3537         u64 spte = 0ull;
3538         uint retry_count = 0;
3539
3540         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3541                 return false;
3542
3543         if (!page_fault_can_be_fast(error_code))
3544                 return false;
3545
3546         walk_shadow_page_lockless_begin(vcpu);
3547
3548         do {
3549                 u64 new_spte;
3550
3551                 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3552                         if (!is_shadow_present_pte(spte) ||
3553                             iterator.level < level)
3554                                 break;
3555
3556                 sp = page_header(__pa(iterator.sptep));
3557                 if (!is_last_spte(spte, sp->role.level))
3558                         break;
3559
3560                 /*
3561                  * Check whether the memory access that caused the fault would
3562                  * still cause it if it were to be performed right now. If not,
3563                  * then this is a spurious fault caused by TLB lazily flushed,
3564                  * or some other CPU has already fixed the PTE after the
3565                  * current CPU took the fault.
3566                  *
3567                  * Need not check the access of upper level table entries since
3568                  * they are always ACC_ALL.
3569                  */
3570                 if (is_access_allowed(error_code, spte)) {
3571                         fault_handled = true;
3572                         break;
3573                 }
3574
3575                 new_spte = spte;
3576
3577                 if (is_access_track_spte(spte))
3578                         new_spte = restore_acc_track_spte(new_spte);
3579
3580                 /*
3581                  * Currently, to simplify the code, write-protection can
3582                  * be removed in the fast path only if the SPTE was
3583                  * write-protected for dirty-logging or access tracking.
3584                  */
3585                 if ((error_code & PFERR_WRITE_MASK) &&
3586                     spte_can_locklessly_be_made_writable(spte))
3587                 {
3588                         new_spte |= PT_WRITABLE_MASK;
3589
3590                         /*
3591                          * Do not fix write-permission on the large spte.  Since
3592                          * we only dirty the first page into the dirty-bitmap in
3593                          * fast_pf_fix_direct_spte(), other pages are missed
3594                          * if its slot has dirty logging enabled.
3595                          *
3596                          * Instead, we let the slow page fault path create a
3597                          * normal spte to fix the access.
3598                          *
3599                          * See the comments in kvm_arch_commit_memory_region().
3600                          */
3601                         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3602                                 break;
3603                 }
3604
3605                 /* Verify that the fault can be handled in the fast path */
3606                 if (new_spte == spte ||
3607                     !is_access_allowed(error_code, new_spte))
3608                         break;
3609
3610                 /*
3611                  * Currently, fast page fault only works for direct mapping
3612                  * since the gfn is not stable for indirect shadow page. See
3613                  * Documentation/virt/kvm/locking.txt to get more detail.
3614                  */
3615                 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3616                                                         iterator.sptep, spte,
3617                                                         new_spte);
3618                 if (fault_handled)
3619                         break;
3620
3621                 if (++retry_count > 4) {
3622                         printk_once(KERN_WARNING
3623                                 "kvm: Fast #PF retrying more than 4 times.\n");
3624                         break;
3625                 }
3626
3627         } while (true);
3628
3629         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3630                               spte, fault_handled);
3631         walk_shadow_page_lockless_end(vcpu);
3632
3633         return fault_handled;
3634 }
3635
3636 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3637                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3638 static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
3639
3640 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3641                          gfn_t gfn, bool prefault)
3642 {
3643         int r;
3644         int level;
3645         bool force_pt_level;
3646         kvm_pfn_t pfn;
3647         unsigned long mmu_seq;
3648         bool map_writable, write = error_code & PFERR_WRITE_MASK;
3649         bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
3650                                 is_nx_huge_page_enabled();
3651
3652         force_pt_level = lpage_disallowed;
3653         level = mapping_level(vcpu, gfn, &force_pt_level);
3654         if (likely(!force_pt_level)) {
3655                 /*
3656                  * This path builds a PAE pagetable - so we can map
3657                  * 2mb pages at maximum. Therefore check if the level
3658                  * is larger than that.
3659                  */
3660                 if (level > PT_DIRECTORY_LEVEL)
3661                         level = PT_DIRECTORY_LEVEL;
3662
3663                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3664         }
3665
3666         if (fast_page_fault(vcpu, v, level, error_code))
3667                 return RET_PF_RETRY;
3668
3669         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3670         smp_rmb();
3671
3672         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3673                 return RET_PF_RETRY;
3674
3675         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3676                 return r;
3677
3678         r = RET_PF_RETRY;
3679         spin_lock(&vcpu->kvm->mmu_lock);
3680         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3681                 goto out_unlock;
3682         if (make_mmu_pages_available(vcpu) < 0)
3683                 goto out_unlock;
3684         if (likely(!force_pt_level))
3685                 transparent_hugepage_adjust(vcpu, gfn, &pfn, &level);
3686         r = __direct_map(vcpu, v, write, map_writable, level, pfn,
3687                          prefault, false);
3688 out_unlock:
3689         spin_unlock(&vcpu->kvm->mmu_lock);
3690         kvm_release_pfn_clean(pfn);
3691         return r;
3692 }
3693
3694 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3695                                struct list_head *invalid_list)
3696 {
3697         struct kvm_mmu_page *sp;
3698
3699         if (!VALID_PAGE(*root_hpa))
3700                 return;
3701
3702         sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3703         --sp->root_count;
3704         if (!sp->root_count && sp->role.invalid)
3705                 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3706
3707         *root_hpa = INVALID_PAGE;
3708 }
3709
3710 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3711 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3712                         ulong roots_to_free)
3713 {
3714         int i;
3715         LIST_HEAD(invalid_list);
3716         bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3717
3718         BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3719
3720         /* Before acquiring the MMU lock, see if we need to do any real work. */
3721         if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3722                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3723                         if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3724                             VALID_PAGE(mmu->prev_roots[i].hpa))
3725                                 break;
3726
3727                 if (i == KVM_MMU_NUM_PREV_ROOTS)
3728                         return;
3729         }
3730
3731         spin_lock(&vcpu->kvm->mmu_lock);
3732
3733         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3734                 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3735                         mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3736                                            &invalid_list);
3737
3738         if (free_active_root) {
3739                 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3740                     (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3741                         mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3742                                            &invalid_list);
3743                 } else {
3744                         for (i = 0; i < 4; ++i)
3745                                 if (mmu->pae_root[i] != 0)
3746                                         mmu_free_root_page(vcpu->kvm,
3747                                                            &mmu->pae_root[i],
3748                                                            &invalid_list);
3749                         mmu->root_hpa = INVALID_PAGE;
3750                 }
3751                 mmu->root_cr3 = 0;
3752         }
3753
3754         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3755         spin_unlock(&vcpu->kvm->mmu_lock);
3756 }
3757 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3758
3759 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3760 {
3761         int ret = 0;
3762
3763         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3764                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3765                 ret = 1;
3766         }
3767
3768         return ret;
3769 }
3770
3771 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3772 {
3773         struct kvm_mmu_page *sp;
3774         unsigned i;
3775
3776         if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3777                 spin_lock(&vcpu->kvm->mmu_lock);
3778                 if(make_mmu_pages_available(vcpu) < 0) {
3779                         spin_unlock(&vcpu->kvm->mmu_lock);
3780                         return -ENOSPC;
3781                 }
3782                 sp = kvm_mmu_get_page(vcpu, 0, 0,
3783                                 vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
3784                 ++sp->root_count;
3785                 spin_unlock(&vcpu->kvm->mmu_lock);
3786                 vcpu->arch.mmu->root_hpa = __pa(sp->spt);
3787         } else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
3788                 for (i = 0; i < 4; ++i) {
3789                         hpa_t root = vcpu->arch.mmu->pae_root[i];
3790
3791                         MMU_WARN_ON(VALID_PAGE(root));
3792                         spin_lock(&vcpu->kvm->mmu_lock);
3793                         if (make_mmu_pages_available(vcpu) < 0) {
3794                                 spin_unlock(&vcpu->kvm->mmu_lock);
3795                                 return -ENOSPC;
3796                         }
3797                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3798                                         i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3799                         root = __pa(sp->spt);
3800                         ++sp->root_count;
3801                         spin_unlock(&vcpu->kvm->mmu_lock);
3802                         vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3803                 }
3804                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3805         } else
3806                 BUG();
3807         vcpu->arch.mmu->root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
3808
3809         return 0;
3810 }
3811
3812 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3813 {
3814         struct kvm_mmu_page *sp;
3815         u64 pdptr, pm_mask;
3816         gfn_t root_gfn, root_cr3;
3817         int i;
3818
3819         root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
3820         root_gfn = root_cr3 >> PAGE_SHIFT;
3821
3822         if (mmu_check_root(vcpu, root_gfn))
3823                 return 1;
3824
3825         /*
3826          * Do we shadow a long mode page table? If so we need to
3827          * write-protect the guests page table root.
3828          */
3829         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3830                 hpa_t root = vcpu->arch.mmu->root_hpa;
3831
3832                 MMU_WARN_ON(VALID_PAGE(root));
3833
3834                 spin_lock(&vcpu->kvm->mmu_lock);
3835                 if (make_mmu_pages_available(vcpu) < 0) {
3836                         spin_unlock(&vcpu->kvm->mmu_lock);
3837                         return -ENOSPC;
3838                 }
3839                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3840                                 vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
3841                 root = __pa(sp->spt);
3842                 ++sp->root_count;
3843                 spin_unlock(&vcpu->kvm->mmu_lock);
3844                 vcpu->arch.mmu->root_hpa = root;
3845                 goto set_root_cr3;
3846         }
3847
3848         /*
3849          * We shadow a 32 bit page table. This may be a legacy 2-level
3850          * or a PAE 3-level page table. In either case we need to be aware that
3851          * the shadow page table may be a PAE or a long mode page table.
3852          */
3853         pm_mask = PT_PRESENT_MASK;
3854         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3855                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3856
3857         for (i = 0; i < 4; ++i) {
3858                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3859
3860                 MMU_WARN_ON(VALID_PAGE(root));
3861                 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3862                         pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3863                         if (!(pdptr & PT_PRESENT_MASK)) {
3864                                 vcpu->arch.mmu->pae_root[i] = 0;
3865                                 continue;
3866                         }
3867                         root_gfn = pdptr >> PAGE_SHIFT;
3868                         if (mmu_check_root(vcpu, root_gfn))
3869                                 return 1;
3870                 }
3871                 spin_lock(&vcpu->kvm->mmu_lock);
3872                 if (make_mmu_pages_available(vcpu) < 0) {
3873                         spin_unlock(&vcpu->kvm->mmu_lock);
3874                         return -ENOSPC;
3875                 }
3876                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3877                                       0, ACC_ALL);
3878                 root = __pa(sp->spt);
3879                 ++sp->root_count;
3880                 spin_unlock(&vcpu->kvm->mmu_lock);
3881
3882                 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3883         }
3884         vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3885
3886         /*
3887          * If we shadow a 32 bit page table with a long mode page
3888          * table we enter this path.
3889          */
3890         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3891                 if (vcpu->arch.mmu->lm_root == NULL) {
3892                         /*
3893                          * The additional page necessary for this is only
3894                          * allocated on demand.
3895                          */
3896
3897                         u64 *lm_root;
3898
3899                         lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3900                         if (lm_root == NULL)
3901                                 return 1;
3902
3903                         lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3904
3905                         vcpu->arch.mmu->lm_root = lm_root;
3906                 }
3907
3908                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3909         }
3910
3911 set_root_cr3:
3912         vcpu->arch.mmu->root_cr3 = root_cr3;
3913
3914         return 0;
3915 }
3916
3917 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3918 {
3919         if (vcpu->arch.mmu->direct_map)
3920                 return mmu_alloc_direct_roots(vcpu);
3921         else
3922                 return mmu_alloc_shadow_roots(vcpu);
3923 }
3924
3925 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3926 {
3927         int i;
3928         struct kvm_mmu_page *sp;
3929
3930         if (vcpu->arch.mmu->direct_map)
3931                 return;
3932
3933         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3934                 return;
3935
3936         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3937
3938         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3939                 hpa_t root = vcpu->arch.mmu->root_hpa;
3940                 sp = page_header(root);
3941
3942                 /*
3943                  * Even if another CPU was marking the SP as unsync-ed
3944                  * simultaneously, any guest page table changes are not
3945                  * guaranteed to be visible anyway until this VCPU issues a TLB
3946                  * flush strictly after those changes are made. We only need to
3947                  * ensure that the other CPU sets these flags before any actual
3948                  * changes to the page tables are made. The comments in
3949                  * mmu_need_write_protect() describe what could go wrong if this
3950                  * requirement isn't satisfied.
3951                  */
3952                 if (!smp_load_acquire(&sp->unsync) &&
3953                     !smp_load_acquire(&sp->unsync_children))
3954                         return;
3955
3956                 spin_lock(&vcpu->kvm->mmu_lock);
3957                 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3958
3959                 mmu_sync_children(vcpu, sp);
3960
3961                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3962                 spin_unlock(&vcpu->kvm->mmu_lock);
3963                 return;
3964         }
3965
3966         spin_lock(&vcpu->kvm->mmu_lock);
3967         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3968
3969         for (i = 0; i < 4; ++i) {
3970                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3971
3972                 if (root && VALID_PAGE(root)) {
3973                         root &= PT64_BASE_ADDR_MASK;
3974                         sp = page_header(root);
3975                         mmu_sync_children(vcpu, sp);
3976                 }
3977         }
3978
3979         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3980         spin_unlock(&vcpu->kvm->mmu_lock);
3981 }
3982 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3983
3984 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3985                                   u32 access, struct x86_exception *exception)
3986 {
3987         if (exception)
3988                 exception->error_code = 0;
3989         return vaddr;
3990 }
3991
3992 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3993                                          u32 access,
3994                                          struct x86_exception *exception)
3995 {
3996         if (exception)
3997                 exception->error_code = 0;
3998         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3999 }
4000
4001 static bool
4002 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
4003 {
4004         int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
4005
4006         return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
4007                 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
4008 }
4009
4010 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
4011 {
4012         return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
4013 }
4014
4015 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
4016 {
4017         return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
4018 }
4019
4020 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4021 {
4022         /*
4023          * A nested guest cannot use the MMIO cache if it is using nested
4024          * page tables, because cr2 is a nGPA while the cache stores GPAs.
4025          */
4026         if (mmu_is_nested(vcpu))
4027                 return false;
4028
4029         if (direct)
4030                 return vcpu_match_mmio_gpa(vcpu, addr);
4031
4032         return vcpu_match_mmio_gva(vcpu, addr);
4033 }
4034
4035 /* return true if reserved bit is detected on spte. */
4036 static bool
4037 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
4038 {
4039         struct kvm_shadow_walk_iterator iterator;
4040         u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
4041         int root, leaf;
4042         bool reserved = false;
4043
4044         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
4045                 goto exit;
4046
4047         walk_shadow_page_lockless_begin(vcpu);
4048
4049         for (shadow_walk_init(&iterator, vcpu, addr),
4050                  leaf = root = iterator.level;
4051              shadow_walk_okay(&iterator);
4052              __shadow_walk_next(&iterator, spte)) {
4053                 spte = mmu_spte_get_lockless(iterator.sptep);
4054
4055                 sptes[leaf - 1] = spte;
4056                 leaf--;
4057
4058                 if (!is_shadow_present_pte(spte))
4059                         break;
4060
4061                 reserved |= is_shadow_zero_bits_set(vcpu->arch.mmu, spte,
4062                                                     iterator.level);
4063         }
4064
4065         walk_shadow_page_lockless_end(vcpu);
4066
4067         if (reserved) {
4068                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
4069                        __func__, addr);
4070                 while (root > leaf) {
4071                         pr_err("------ spte 0x%llx level %d.\n",
4072                                sptes[root - 1], root);
4073                         root--;
4074                 }
4075         }
4076 exit:
4077         *sptep = spte;
4078         return reserved;
4079 }
4080
4081 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4082 {
4083         u64 spte;
4084         bool reserved;
4085
4086         if (mmio_info_in_cache(vcpu, addr, direct))
4087                 return RET_PF_EMULATE;
4088
4089         reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
4090         if (WARN_ON(reserved))
4091                 return -EINVAL;
4092
4093         if (is_mmio_spte(spte)) {
4094                 gfn_t gfn = get_mmio_spte_gfn(spte);
4095                 unsigned access = get_mmio_spte_access(spte);
4096
4097                 if (!check_mmio_spte(vcpu, spte))
4098                         return RET_PF_INVALID;
4099
4100                 if (direct)
4101                         addr = 0;
4102
4103                 trace_handle_mmio_page_fault(addr, gfn, access);
4104                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
4105                 return RET_PF_EMULATE;
4106         }
4107
4108         /*
4109          * If the page table is zapped by other cpus, let CPU fault again on
4110          * the address.
4111          */
4112         return RET_PF_RETRY;
4113 }
4114
4115 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
4116                                          u32 error_code, gfn_t gfn)
4117 {
4118         if (unlikely(error_code & PFERR_RSVD_MASK))
4119                 return false;
4120
4121         if (!(error_code & PFERR_PRESENT_MASK) ||
4122               !(error_code & PFERR_WRITE_MASK))
4123                 return false;
4124
4125         /*
4126          * guest is writing the page which is write tracked which can
4127          * not be fixed by page fault handler.
4128          */
4129         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
4130                 return true;
4131
4132         return false;
4133 }
4134
4135 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4136 {
4137         struct kvm_shadow_walk_iterator iterator;
4138         u64 spte;
4139
4140         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
4141                 return;
4142
4143         walk_shadow_page_lockless_begin(vcpu);
4144         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4145                 clear_sp_write_flooding_count(iterator.sptep);
4146                 if (!is_shadow_present_pte(spte))
4147                         break;
4148         }
4149         walk_shadow_page_lockless_end(vcpu);
4150 }
4151
4152 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
4153                                 u32 error_code, bool prefault)
4154 {
4155         gfn_t gfn = gva >> PAGE_SHIFT;
4156         int r;
4157
4158         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
4159
4160         if (page_fault_handle_page_track(vcpu, error_code, gfn))
4161                 return RET_PF_EMULATE;
4162
4163         r = mmu_topup_memory_caches(vcpu);
4164         if (r)
4165                 return r;
4166
4167         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
4168
4169
4170         return nonpaging_map(vcpu, gva & PAGE_MASK,
4171                              error_code, gfn, prefault);
4172 }
4173
4174 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
4175 {
4176         struct kvm_arch_async_pf arch;
4177
4178         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4179         arch.gfn = gfn;
4180         arch.direct_map = vcpu->arch.mmu->direct_map;
4181         arch.cr3 = vcpu->arch.mmu->get_cr3(vcpu);
4182
4183         return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4184 }
4185
4186 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
4187                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
4188 {
4189         struct kvm_memory_slot *slot;
4190         bool async;
4191
4192         /*
4193          * Don't expose private memslots to L2.
4194          */
4195         if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
4196                 *pfn = KVM_PFN_NOSLOT;
4197                 return false;
4198         }
4199
4200         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
4201         async = false;
4202         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
4203         if (!async)
4204                 return false; /* *pfn has correct page already */
4205
4206         if (!prefault && kvm_can_do_async_pf(vcpu)) {
4207                 trace_kvm_try_async_get_page(gva, gfn);
4208                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4209                         trace_kvm_async_pf_doublefault(gva, gfn);
4210                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4211                         return true;
4212                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
4213                         return true;
4214         }
4215
4216         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
4217         return false;
4218 }
4219
4220 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4221                                 u64 fault_address, char *insn, int insn_len)
4222 {
4223         int r = 1;
4224
4225         vcpu->arch.l1tf_flush_l1d = true;
4226         switch (vcpu->arch.apf.host_apf_reason) {
4227         default:
4228                 trace_kvm_page_fault(fault_address, error_code);
4229
4230                 if (kvm_event_needs_reinjection(vcpu))
4231                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4232                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4233                                 insn_len);
4234                 break;
4235         case KVM_PV_REASON_PAGE_NOT_PRESENT:
4236                 vcpu->arch.apf.host_apf_reason = 0;
4237                 local_irq_disable();
4238                 kvm_async_pf_task_wait(fault_address, 0);
4239                 local_irq_enable();
4240                 break;
4241         case KVM_PV_REASON_PAGE_READY:
4242                 vcpu->arch.apf.host_apf_reason = 0;
4243                 local_irq_disable();
4244                 kvm_async_pf_task_wake(fault_address);
4245                 local_irq_enable();
4246                 break;
4247         }
4248         return r;
4249 }
4250 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4251
4252 static bool
4253 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
4254 {
4255         int page_num = KVM_PAGES_PER_HPAGE(level);
4256
4257         gfn &= ~(page_num - 1);
4258
4259         return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
4260 }
4261
4262 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
4263                           bool prefault)
4264 {
4265         kvm_pfn_t pfn;
4266         int r;
4267         int level;
4268         bool force_pt_level;
4269         gfn_t gfn = gpa >> PAGE_SHIFT;
4270         unsigned long mmu_seq;
4271         int write = error_code & PFERR_WRITE_MASK;
4272         bool map_writable;
4273         bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
4274                                 is_nx_huge_page_enabled();
4275
4276         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
4277
4278         if (page_fault_handle_page_track(vcpu, error_code, gfn))
4279                 return RET_PF_EMULATE;
4280
4281         r = mmu_topup_memory_caches(vcpu);
4282         if (r)
4283                 return r;
4284
4285         force_pt_level =
4286                 lpage_disallowed ||
4287                 !check_hugepage_cache_consistency(vcpu, gfn, PT_DIRECTORY_LEVEL);
4288         level = mapping_level(vcpu, gfn, &force_pt_level);
4289         if (likely(!force_pt_level)) {
4290                 if (level > PT_DIRECTORY_LEVEL &&
4291                     !check_hugepage_cache_consistency(vcpu, gfn, level))
4292                         level = PT_DIRECTORY_LEVEL;
4293                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
4294         }
4295
4296         if (fast_page_fault(vcpu, gpa, level, error_code))
4297                 return RET_PF_RETRY;
4298
4299         mmu_seq = vcpu->kvm->mmu_notifier_seq;
4300         smp_rmb();
4301
4302         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4303                 return RET_PF_RETRY;
4304
4305         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
4306                 return r;
4307
4308         r = RET_PF_RETRY;
4309         spin_lock(&vcpu->kvm->mmu_lock);
4310         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4311                 goto out_unlock;
4312         if (make_mmu_pages_available(vcpu) < 0)
4313                 goto out_unlock;
4314         if (likely(!force_pt_level))
4315                 transparent_hugepage_adjust(vcpu, gfn, &pfn, &level);
4316         r = __direct_map(vcpu, gpa, write, map_writable, level, pfn,
4317                          prefault, lpage_disallowed);
4318 out_unlock:
4319         spin_unlock(&vcpu->kvm->mmu_lock);
4320         kvm_release_pfn_clean(pfn);
4321         return r;
4322 }
4323
4324 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4325                                    struct kvm_mmu *context)
4326 {
4327         context->page_fault = nonpaging_page_fault;
4328         context->gva_to_gpa = nonpaging_gva_to_gpa;
4329         context->sync_page = nonpaging_sync_page;
4330         context->invlpg = nonpaging_invlpg;
4331         context->update_pte = nonpaging_update_pte;
4332         context->root_level = 0;
4333         context->shadow_root_level = PT32E_ROOT_LEVEL;
4334         context->direct_map = true;
4335         context->nx = false;
4336 }
4337
4338 /*
4339  * Find out if a previously cached root matching the new CR3/role is available.
4340  * The current root is also inserted into the cache.
4341  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4342  * returned.
4343  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4344  * false is returned. This root should now be freed by the caller.
4345  */
4346 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4347                                   union kvm_mmu_page_role new_role)
4348 {
4349         uint i;
4350         struct kvm_mmu_root_info root;
4351         struct kvm_mmu *mmu = vcpu->arch.mmu;
4352
4353         root.cr3 = mmu->root_cr3;
4354         root.hpa = mmu->root_hpa;
4355
4356         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4357                 swap(root, mmu->prev_roots[i]);
4358
4359                 if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) &&
4360                     page_header(root.hpa) != NULL &&
4361                     new_role.word == page_header(root.hpa)->role.word)
4362                         break;
4363         }
4364
4365         mmu->root_hpa = root.hpa;
4366         mmu->root_cr3 = root.cr3;
4367
4368         return i < KVM_MMU_NUM_PREV_ROOTS;
4369 }
4370
4371 static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4372                             union kvm_mmu_page_role new_role,
4373                             bool skip_tlb_flush)
4374 {
4375         struct kvm_mmu *mmu = vcpu->arch.mmu;
4376
4377         /*
4378          * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4379          * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4380          * later if necessary.
4381          */
4382         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4383             mmu->root_level >= PT64_ROOT_4LEVEL) {
4384                 if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
4385                         return false;
4386
4387                 if (cached_root_available(vcpu, new_cr3, new_role)) {
4388                         /*
4389                          * It is possible that the cached previous root page is
4390                          * obsolete because of a change in the MMU generation
4391                          * number. However, changing the generation number is
4392                          * accompanied by KVM_REQ_MMU_RELOAD, which will free
4393                          * the root set here and allocate a new one.
4394                          */
4395                         kvm_make_request(KVM_REQ_LOAD_CR3, vcpu);
4396                         if (!skip_tlb_flush) {
4397                                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4398                                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4399                         }
4400
4401                         /*
4402                          * The last MMIO access's GVA and GPA are cached in the
4403                          * VCPU. When switching to a new CR3, that GVA->GPA
4404                          * mapping may no longer be valid. So clear any cached
4405                          * MMIO info even when we don't need to sync the shadow
4406                          * page tables.
4407                          */
4408                         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4409
4410                         __clear_sp_write_flooding_count(
4411                                 page_header(mmu->root_hpa));
4412
4413                         return true;
4414                 }
4415         }
4416
4417         return false;
4418 }
4419
4420 static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4421                               union kvm_mmu_page_role new_role,
4422                               bool skip_tlb_flush)
4423 {
4424         if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
4425                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu,
4426                                    KVM_MMU_ROOT_CURRENT);
4427 }
4428
4429 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
4430 {
4431         __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
4432                           skip_tlb_flush);
4433 }
4434 EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
4435
4436 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4437 {
4438         return kvm_read_cr3(vcpu);
4439 }
4440
4441 static void inject_page_fault(struct kvm_vcpu *vcpu,
4442                               struct x86_exception *fault)
4443 {
4444         vcpu->arch.mmu->inject_page_fault(vcpu, fault);
4445 }
4446
4447 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4448                            unsigned access, int *nr_present)
4449 {
4450         if (unlikely(is_mmio_spte(*sptep))) {
4451                 if (gfn != get_mmio_spte_gfn(*sptep)) {
4452                         mmu_spte_clear_no_track(sptep);
4453                         return true;
4454                 }
4455
4456                 (*nr_present)++;
4457                 mark_mmio_spte(vcpu, sptep, gfn, access);
4458                 return true;
4459         }
4460
4461         return false;
4462 }
4463
4464 static inline bool is_last_gpte(struct kvm_mmu *mmu,
4465                                 unsigned level, unsigned gpte)
4466 {
4467         /*
4468          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4469          * If it is clear, there are no large pages at this level, so clear
4470          * PT_PAGE_SIZE_MASK in gpte if that is the case.
4471          */
4472         gpte &= level - mmu->last_nonleaf_level;
4473
4474         /*
4475          * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
4476          * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4477          * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4478          */
4479         gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4480
4481         return gpte & PT_PAGE_SIZE_MASK;
4482 }
4483
4484 #define PTTYPE_EPT 18 /* arbitrary */
4485 #define PTTYPE PTTYPE_EPT
4486 #include "paging_tmpl.h"
4487 #undef PTTYPE
4488
4489 #define PTTYPE 64
4490 #include "paging_tmpl.h"
4491 #undef PTTYPE
4492
4493 #define PTTYPE 32
4494 #include "paging_tmpl.h"
4495 #undef PTTYPE
4496
4497 static void
4498 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4499                         struct rsvd_bits_validate *rsvd_check,
4500                         int maxphyaddr, int level, bool nx, bool gbpages,
4501                         bool pse, bool amd)
4502 {
4503         u64 exb_bit_rsvd = 0;
4504         u64 gbpages_bit_rsvd = 0;
4505         u64 nonleaf_bit8_rsvd = 0;
4506
4507         rsvd_check->bad_mt_xwr = 0;
4508
4509         if (!nx)
4510                 exb_bit_rsvd = rsvd_bits(63, 63);
4511         if (!gbpages)
4512                 gbpages_bit_rsvd = rsvd_bits(7, 7);
4513
4514         /*
4515          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4516          * leaf entries) on AMD CPUs only.
4517          */
4518         if (amd)
4519                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4520
4521         switch (level) {
4522         case PT32_ROOT_LEVEL:
4523                 /* no rsvd bits for 2 level 4K page table entries */
4524                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4525                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4526                 rsvd_check->rsvd_bits_mask[1][0] =
4527                         rsvd_check->rsvd_bits_mask[0][0];
4528
4529                 if (!pse) {
4530                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4531                         break;
4532                 }
4533
4534                 if (is_cpuid_PSE36())
4535                         /* 36bits PSE 4MB page */
4536                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4537                 else
4538                         /* 32 bits PSE 4MB page */
4539                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4540                 break;
4541         case PT32E_ROOT_LEVEL:
4542                 rsvd_check->rsvd_bits_mask[0][2] =
4543                         rsvd_bits(maxphyaddr, 63) |
4544                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
4545                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4546                         rsvd_bits(maxphyaddr, 62);      /* PDE */
4547                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4548                         rsvd_bits(maxphyaddr, 62);      /* PTE */
4549                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4550                         rsvd_bits(maxphyaddr, 62) |
4551                         rsvd_bits(13, 20);              /* large page */
4552                 rsvd_check->rsvd_bits_mask[1][0] =
4553                         rsvd_check->rsvd_bits_mask[0][0];
4554                 break;
4555         case PT64_ROOT_5LEVEL:
4556                 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4557                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4558                         rsvd_bits(maxphyaddr, 51);
4559                 rsvd_check->rsvd_bits_mask[1][4] =
4560                         rsvd_check->rsvd_bits_mask[0][4];
4561                 /* fall through */
4562         case PT64_ROOT_4LEVEL:
4563                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4564                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4565                         rsvd_bits(maxphyaddr, 51);
4566                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4567                         nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4568                         rsvd_bits(maxphyaddr, 51);
4569                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4570                         rsvd_bits(maxphyaddr, 51);
4571                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4572                         rsvd_bits(maxphyaddr, 51);
4573                 rsvd_check->rsvd_bits_mask[1][3] =
4574                         rsvd_check->rsvd_bits_mask[0][3];
4575                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4576                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4577                         rsvd_bits(13, 29);
4578                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4579                         rsvd_bits(maxphyaddr, 51) |
4580                         rsvd_bits(13, 20);              /* large page */
4581                 rsvd_check->rsvd_bits_mask[1][0] =
4582                         rsvd_check->rsvd_bits_mask[0][0];
4583                 break;
4584         }
4585 }
4586
4587 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4588                                   struct kvm_mmu *context)
4589 {
4590         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4591                                 cpuid_maxphyaddr(vcpu), context->root_level,
4592                                 context->nx,
4593                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4594                                 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4595 }
4596
4597 static void
4598 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4599                             int maxphyaddr, bool execonly)
4600 {
4601         u64 bad_mt_xwr;
4602
4603         rsvd_check->rsvd_bits_mask[0][4] =
4604                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4605         rsvd_check->rsvd_bits_mask[0][3] =
4606                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4607         rsvd_check->rsvd_bits_mask[0][2] =
4608                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4609         rsvd_check->rsvd_bits_mask[0][1] =
4610                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4611         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4612
4613         /* large page */
4614         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4615         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4616         rsvd_check->rsvd_bits_mask[1][2] =
4617                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4618         rsvd_check->rsvd_bits_mask[1][1] =
4619                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4620         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4621
4622         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4623         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4624         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4625         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4626         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4627         if (!execonly) {
4628                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4629                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4630         }
4631         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4632 }
4633
4634 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4635                 struct kvm_mmu *context, bool execonly)
4636 {
4637         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4638                                     cpuid_maxphyaddr(vcpu), execonly);
4639 }
4640
4641 /*
4642  * the page table on host is the shadow page table for the page
4643  * table in guest or amd nested guest, its mmu features completely
4644  * follow the features in guest.
4645  */
4646 void
4647 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4648 {
4649         bool uses_nx = context->nx ||
4650                 context->mmu_role.base.smep_andnot_wp;
4651         struct rsvd_bits_validate *shadow_zero_check;
4652         int i;
4653
4654         /*
4655          * Passing "true" to the last argument is okay; it adds a check
4656          * on bit 8 of the SPTEs which KVM doesn't use anyway.
4657          */
4658         shadow_zero_check = &context->shadow_zero_check;
4659         __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4660                                 shadow_phys_bits,
4661                                 context->shadow_root_level, uses_nx,
4662                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4663                                 is_pse(vcpu), true);
4664
4665         if (!shadow_me_mask)
4666                 return;
4667
4668         for (i = context->shadow_root_level; --i >= 0;) {
4669                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4670                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4671         }
4672
4673 }
4674 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4675
4676 static inline bool boot_cpu_is_amd(void)
4677 {
4678         WARN_ON_ONCE(!tdp_enabled);
4679         return shadow_x_mask == 0;
4680 }
4681
4682 /*
4683  * the direct page table on host, use as much mmu features as
4684  * possible, however, kvm currently does not do execution-protection.
4685  */
4686 static void
4687 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4688                                 struct kvm_mmu *context)
4689 {
4690         struct rsvd_bits_validate *shadow_zero_check;
4691         int i;
4692
4693         shadow_zero_check = &context->shadow_zero_check;
4694
4695         if (boot_cpu_is_amd())
4696                 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4697                                         shadow_phys_bits,
4698                                         context->shadow_root_level, false,
4699                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4700                                         true, true);
4701         else
4702                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4703                                             shadow_phys_bits,
4704                                             false);
4705
4706         if (!shadow_me_mask)
4707                 return;
4708
4709         for (i = context->shadow_root_level; --i >= 0;) {
4710                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4711                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4712         }
4713 }
4714
4715 /*
4716  * as the comments in reset_shadow_zero_bits_mask() except it
4717  * is the shadow page table for intel nested guest.
4718  */
4719 static void
4720 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4721                                 struct kvm_mmu *context, bool execonly)
4722 {
4723         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4724                                     shadow_phys_bits, execonly);
4725 }
4726
4727 #define BYTE_MASK(access) \
4728         ((1 & (access) ? 2 : 0) | \
4729          (2 & (access) ? 4 : 0) | \
4730          (3 & (access) ? 8 : 0) | \
4731          (4 & (access) ? 16 : 0) | \
4732          (5 & (access) ? 32 : 0) | \
4733          (6 & (access) ? 64 : 0) | \
4734          (7 & (access) ? 128 : 0))
4735
4736
4737 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4738                                       struct kvm_mmu *mmu, bool ept)
4739 {
4740         unsigned byte;
4741
4742         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4743         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4744         const u8 u = BYTE_MASK(ACC_USER_MASK);
4745
4746         bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4747         bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4748         bool cr0_wp = is_write_protection(vcpu);
4749
4750         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4751                 unsigned pfec = byte << 1;
4752
4753                 /*
4754                  * Each "*f" variable has a 1 bit for each UWX value
4755                  * that causes a fault with the given PFEC.
4756                  */
4757
4758                 /* Faults from writes to non-writable pages */
4759                 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4760                 /* Faults from user mode accesses to supervisor pages */
4761                 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4762                 /* Faults from fetches of non-executable pages*/
4763                 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4764                 /* Faults from kernel mode fetches of user pages */
4765                 u8 smepf = 0;
4766                 /* Faults from kernel mode accesses of user pages */
4767                 u8 smapf = 0;
4768
4769                 if (!ept) {
4770                         /* Faults from kernel mode accesses to user pages */
4771                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4772
4773                         /* Not really needed: !nx will cause pte.nx to fault */
4774                         if (!mmu->nx)
4775                                 ff = 0;
4776
4777                         /* Allow supervisor writes if !cr0.wp */
4778                         if (!cr0_wp)
4779                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4780
4781                         /* Disallow supervisor fetches of user code if cr4.smep */
4782                         if (cr4_smep)
4783                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4784
4785                         /*
4786                          * SMAP:kernel-mode data accesses from user-mode
4787                          * mappings should fault. A fault is considered
4788                          * as a SMAP violation if all of the following
4789                          * conditions are true:
4790                          *   - X86_CR4_SMAP is set in CR4
4791                          *   - A user page is accessed
4792                          *   - The access is not a fetch
4793                          *   - Page fault in kernel mode
4794                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4795                          *
4796                          * Here, we cover the first three conditions.
4797                          * The fourth is computed dynamically in permission_fault();
4798                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4799                          * *not* subject to SMAP restrictions.
4800                          */
4801                         if (cr4_smap)
4802                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4803                 }
4804
4805                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4806         }
4807 }
4808
4809 /*
4810 * PKU is an additional mechanism by which the paging controls access to
4811 * user-mode addresses based on the value in the PKRU register.  Protection
4812 * key violations are reported through a bit in the page fault error code.
4813 * Unlike other bits of the error code, the PK bit is not known at the
4814 * call site of e.g. gva_to_gpa; it must be computed directly in
4815 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4816 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4817 *
4818 * In particular the following conditions come from the error code, the
4819 * page tables and the machine state:
4820 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4821 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4822 * - PK is always zero if U=0 in the page tables
4823 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4824 *
4825 * The PKRU bitmask caches the result of these four conditions.  The error
4826 * code (minus the P bit) and the page table's U bit form an index into the
4827 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4828 * with the two bits of the PKRU register corresponding to the protection key.
4829 * For the first three conditions above the bits will be 00, thus masking
4830 * away both AD and WD.  For all reads or if the last condition holds, WD
4831 * only will be masked away.
4832 */
4833 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4834                                 bool ept)
4835 {
4836         unsigned bit;
4837         bool wp;
4838
4839         if (ept) {
4840                 mmu->pkru_mask = 0;
4841                 return;
4842         }
4843
4844         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4845         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4846                 mmu->pkru_mask = 0;
4847                 return;
4848         }
4849
4850         wp = is_write_protection(vcpu);
4851
4852         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4853                 unsigned pfec, pkey_bits;
4854                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4855
4856                 pfec = bit << 1;
4857                 ff = pfec & PFERR_FETCH_MASK;
4858                 uf = pfec & PFERR_USER_MASK;
4859                 wf = pfec & PFERR_WRITE_MASK;
4860
4861                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4862                 pte_user = pfec & PFERR_RSVD_MASK;
4863
4864                 /*
4865                  * Only need to check the access which is not an
4866                  * instruction fetch and is to a user page.
4867                  */
4868                 check_pkey = (!ff && pte_user);
4869                 /*
4870                  * write access is controlled by PKRU if it is a
4871                  * user access or CR0.WP = 1.
4872                  */
4873                 check_write = check_pkey && wf && (uf || wp);
4874
4875                 /* PKRU.AD stops both read and write access. */
4876                 pkey_bits = !!check_pkey;
4877                 /* PKRU.WD stops write access. */
4878                 pkey_bits |= (!!check_write) << 1;
4879
4880                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4881         }
4882 }
4883
4884 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4885 {
4886         unsigned root_level = mmu->root_level;
4887
4888         mmu->last_nonleaf_level = root_level;
4889         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4890                 mmu->last_nonleaf_level++;
4891 }
4892
4893 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4894                                          struct kvm_mmu *context,
4895                                          int level)
4896 {
4897         context->nx = is_nx(vcpu);
4898         context->root_level = level;
4899
4900         reset_rsvds_bits_mask(vcpu, context);
4901         update_permission_bitmask(vcpu, context, false);
4902         update_pkru_bitmask(vcpu, context, false);
4903         update_last_nonleaf_level(vcpu, context);
4904
4905         MMU_WARN_ON(!is_pae(vcpu));
4906         context->page_fault = paging64_page_fault;
4907         context->gva_to_gpa = paging64_gva_to_gpa;
4908         context->sync_page = paging64_sync_page;
4909         context->invlpg = paging64_invlpg;
4910         context->update_pte = paging64_update_pte;
4911         context->shadow_root_level = level;
4912         context->direct_map = false;
4913 }
4914
4915 static void paging64_init_context(struct kvm_vcpu *vcpu,
4916                                   struct kvm_mmu *context)
4917 {
4918         int root_level = is_la57_mode(vcpu) ?
4919                          PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4920
4921         paging64_init_context_common(vcpu, context, root_level);
4922 }
4923
4924 static void paging32_init_context(struct kvm_vcpu *vcpu,
4925                                   struct kvm_mmu *context)
4926 {
4927         context->nx = false;
4928         context->root_level = PT32_ROOT_LEVEL;
4929
4930         reset_rsvds_bits_mask(vcpu, context);
4931         update_permission_bitmask(vcpu, context, false);
4932         update_pkru_bitmask(vcpu, context, false);
4933         update_last_nonleaf_level(vcpu, context);
4934
4935         context->page_fault = paging32_page_fault;
4936         context->gva_to_gpa = paging32_gva_to_gpa;
4937         context->sync_page = paging32_sync_page;
4938         context->invlpg = paging32_invlpg;
4939         context->update_pte = paging32_update_pte;
4940         context->shadow_root_level = PT32E_ROOT_LEVEL;
4941         context->direct_map = false;
4942 }
4943
4944 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4945                                    struct kvm_mmu *context)
4946 {
4947         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4948 }
4949
4950 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4951 {
4952         union kvm_mmu_extended_role ext = {0};
4953
4954         ext.cr0_pg = !!is_paging(vcpu);
4955         ext.cr4_pae = !!is_pae(vcpu);
4956         ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4957         ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4958         ext.cr4_pse = !!is_pse(vcpu);
4959         ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4960         ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
4961         ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4962
4963         ext.valid = 1;
4964
4965         return ext;
4966 }
4967
4968 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4969                                                    bool base_only)
4970 {
4971         union kvm_mmu_role role = {0};
4972
4973         role.base.access = ACC_ALL;
4974         role.base.nxe = !!is_nx(vcpu);
4975         role.base.cr0_wp = is_write_protection(vcpu);
4976         role.base.smm = is_smm(vcpu);
4977         role.base.guest_mode = is_guest_mode(vcpu);
4978
4979         if (base_only)
4980                 return role;
4981
4982         role.ext = kvm_calc_mmu_role_ext(vcpu);
4983
4984         return role;
4985 }
4986
4987 static union kvm_mmu_role
4988 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4989 {
4990         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4991
4992         role.base.ad_disabled = (shadow_accessed_mask == 0);
4993         role.base.level = kvm_x86_ops->get_tdp_level(vcpu);
4994         role.base.direct = true;
4995         role.base.gpte_is_8_bytes = true;
4996
4997         return role;
4998 }
4999
5000 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
5001 {
5002         struct kvm_mmu *context = vcpu->arch.mmu;
5003         union kvm_mmu_role new_role =
5004                 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
5005
5006         new_role.base.word &= mmu_base_role_mask.word;
5007         if (new_role.as_u64 == context->mmu_role.as_u64)
5008                 return;
5009
5010         context->mmu_role.as_u64 = new_role.as_u64;
5011         context->page_fault = tdp_page_fault;
5012         context->sync_page = nonpaging_sync_page;
5013         context->invlpg = nonpaging_invlpg;
5014         context->update_pte = nonpaging_update_pte;
5015         context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
5016         context->direct_map = true;
5017         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5018         context->get_cr3 = get_cr3;
5019         context->get_pdptr = kvm_pdptr_read;
5020         context->inject_page_fault = kvm_inject_page_fault;
5021
5022         if (!is_paging(vcpu)) {
5023                 context->nx = false;
5024                 context->gva_to_gpa = nonpaging_gva_to_gpa;
5025                 context->root_level = 0;
5026         } else if (is_long_mode(vcpu)) {
5027                 context->nx = is_nx(vcpu);
5028                 context->root_level = is_la57_mode(vcpu) ?
5029                                 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5030                 reset_rsvds_bits_mask(vcpu, context);
5031                 context->gva_to_gpa = paging64_gva_to_gpa;
5032         } else if (is_pae(vcpu)) {
5033                 context->nx = is_nx(vcpu);
5034                 context->root_level = PT32E_ROOT_LEVEL;
5035                 reset_rsvds_bits_mask(vcpu, context);
5036                 context->gva_to_gpa = paging64_gva_to_gpa;
5037         } else {
5038                 context->nx = false;
5039                 context->root_level = PT32_ROOT_LEVEL;
5040                 reset_rsvds_bits_mask(vcpu, context);
5041                 context->gva_to_gpa = paging32_gva_to_gpa;
5042         }
5043
5044         update_permission_bitmask(vcpu, context, false);
5045         update_pkru_bitmask(vcpu, context, false);
5046         update_last_nonleaf_level(vcpu, context);
5047         reset_tdp_shadow_zero_bits_mask(vcpu, context);
5048 }
5049
5050 static union kvm_mmu_role
5051 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
5052 {
5053         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
5054
5055         role.base.smep_andnot_wp = role.ext.cr4_smep &&
5056                 !is_write_protection(vcpu);
5057         role.base.smap_andnot_wp = role.ext.cr4_smap &&
5058                 !is_write_protection(vcpu);
5059         role.base.direct = !is_paging(vcpu);
5060         role.base.gpte_is_8_bytes = !!is_pae(vcpu);
5061
5062         if (!is_long_mode(vcpu))
5063                 role.base.level = PT32E_ROOT_LEVEL;
5064         else if (is_la57_mode(vcpu))
5065                 role.base.level = PT64_ROOT_5LEVEL;
5066         else
5067                 role.base.level = PT64_ROOT_4LEVEL;
5068
5069         return role;
5070 }
5071
5072 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
5073 {
5074         struct kvm_mmu *context = vcpu->arch.mmu;
5075         union kvm_mmu_role new_role =
5076                 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
5077
5078         new_role.base.word &= mmu_base_role_mask.word;
5079         if (new_role.as_u64 == context->mmu_role.as_u64)
5080                 return;
5081
5082         if (!is_paging(vcpu))
5083                 nonpaging_init_context(vcpu, context);
5084         else if (is_long_mode(vcpu))
5085                 paging64_init_context(vcpu, context);
5086         else if (is_pae(vcpu))
5087                 paging32E_init_context(vcpu, context);
5088         else
5089                 paging32_init_context(vcpu, context);
5090
5091         context->mmu_role.as_u64 = new_role.as_u64;
5092         reset_shadow_zero_bits_mask(vcpu, context);
5093 }
5094 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
5095
5096 static union kvm_mmu_role
5097 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
5098                                    bool execonly)
5099 {
5100         union kvm_mmu_role role = {0};
5101
5102         /* SMM flag is inherited from root_mmu */
5103         role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
5104
5105         role.base.level = PT64_ROOT_4LEVEL;
5106         role.base.gpte_is_8_bytes = true;
5107         role.base.direct = false;
5108         role.base.ad_disabled = !accessed_dirty;
5109         role.base.guest_mode = true;
5110         role.base.access = ACC_ALL;
5111
5112         /*
5113          * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
5114          * SMAP variation to denote shadow EPT entries.
5115          */
5116         role.base.cr0_wp = true;
5117         role.base.smap_andnot_wp = true;
5118
5119         role.ext = kvm_calc_mmu_role_ext(vcpu);
5120         role.ext.execonly = execonly;
5121
5122         return role;
5123 }
5124
5125 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5126                              bool accessed_dirty, gpa_t new_eptp)
5127 {
5128         struct kvm_mmu *context = vcpu->arch.mmu;
5129         union kvm_mmu_role new_role =
5130                 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5131                                                    execonly);
5132
5133         __kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false);
5134
5135         new_role.base.word &= mmu_base_role_mask.word;
5136         if (new_role.as_u64 == context->mmu_role.as_u64)
5137                 return;
5138
5139         context->shadow_root_level = PT64_ROOT_4LEVEL;
5140
5141         context->nx = true;
5142         context->ept_ad = accessed_dirty;
5143         context->page_fault = ept_page_fault;
5144         context->gva_to_gpa = ept_gva_to_gpa;
5145         context->sync_page = ept_sync_page;
5146         context->invlpg = ept_invlpg;
5147         context->update_pte = ept_update_pte;
5148         context->root_level = PT64_ROOT_4LEVEL;
5149         context->direct_map = false;
5150         context->mmu_role.as_u64 = new_role.as_u64;
5151
5152         update_permission_bitmask(vcpu, context, true);
5153         update_pkru_bitmask(vcpu, context, true);
5154         update_last_nonleaf_level(vcpu, context);
5155         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
5156         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
5157 }
5158 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5159
5160 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
5161 {
5162         struct kvm_mmu *context = vcpu->arch.mmu;
5163
5164         kvm_init_shadow_mmu(vcpu);
5165         context->set_cr3           = kvm_x86_ops->set_cr3;
5166         context->get_cr3           = get_cr3;
5167         context->get_pdptr         = kvm_pdptr_read;
5168         context->inject_page_fault = kvm_inject_page_fault;
5169 }
5170
5171 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
5172 {
5173         union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
5174         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5175
5176         new_role.base.word &= mmu_base_role_mask.word;
5177         if (new_role.as_u64 == g_context->mmu_role.as_u64)
5178                 return;
5179
5180         g_context->mmu_role.as_u64 = new_role.as_u64;
5181         g_context->get_cr3           = get_cr3;
5182         g_context->get_pdptr         = kvm_pdptr_read;
5183         g_context->inject_page_fault = kvm_inject_page_fault;
5184
5185         /*
5186          * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5187          * L1's nested page tables (e.g. EPT12). The nested translation
5188          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5189          * L2's page tables as the first level of translation and L1's
5190          * nested page tables as the second level of translation. Basically
5191          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5192          */
5193         if (!is_paging(vcpu)) {
5194                 g_context->nx = false;
5195                 g_context->root_level = 0;
5196                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5197         } else if (is_long_mode(vcpu)) {
5198                 g_context->nx = is_nx(vcpu);
5199                 g_context->root_level = is_la57_mode(vcpu) ?
5200                                         PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5201                 reset_rsvds_bits_mask(vcpu, g_context);
5202                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5203         } else if (is_pae(vcpu)) {
5204                 g_context->nx = is_nx(vcpu);
5205                 g_context->root_level = PT32E_ROOT_LEVEL;
5206                 reset_rsvds_bits_mask(vcpu, g_context);
5207                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5208         } else {
5209                 g_context->nx = false;
5210                 g_context->root_level = PT32_ROOT_LEVEL;
5211                 reset_rsvds_bits_mask(vcpu, g_context);
5212                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5213         }
5214
5215         update_permission_bitmask(vcpu, g_context, false);
5216         update_pkru_bitmask(vcpu, g_context, false);
5217         update_last_nonleaf_level(vcpu, g_context);
5218 }
5219
5220 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
5221 {
5222         if (reset_roots) {
5223                 uint i;
5224
5225                 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
5226
5227                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5228                         vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5229         }
5230
5231         if (mmu_is_nested(vcpu))
5232                 init_kvm_nested_mmu(vcpu);
5233         else if (tdp_enabled)
5234                 init_kvm_tdp_mmu(vcpu);
5235         else
5236                 init_kvm_softmmu(vcpu);
5237 }
5238 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5239
5240 static union kvm_mmu_page_role
5241 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5242 {
5243         union kvm_mmu_role role;
5244
5245         if (tdp_enabled)
5246                 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
5247         else
5248                 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5249
5250         return role.base;
5251 }
5252
5253 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5254 {
5255         kvm_mmu_unload(vcpu);
5256         kvm_init_mmu(vcpu, true);
5257 }
5258 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5259
5260 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5261 {
5262         int r;
5263
5264         r = mmu_topup_memory_caches(vcpu);
5265         if (r)
5266                 goto out;
5267         r = mmu_alloc_roots(vcpu);
5268         kvm_mmu_sync_roots(vcpu);
5269         if (r)
5270                 goto out;
5271         kvm_mmu_load_cr3(vcpu);
5272         kvm_x86_ops->tlb_flush(vcpu, true);
5273 out:
5274         return r;
5275 }
5276 EXPORT_SYMBOL_GPL(kvm_mmu_load);
5277
5278 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5279 {
5280         kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5281         WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5282         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5283         WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
5284 }
5285 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
5286
5287 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
5288                                   struct kvm_mmu_page *sp, u64 *spte,
5289                                   const void *new)
5290 {
5291         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
5292                 ++vcpu->kvm->stat.mmu_pde_zapped;
5293                 return;
5294         }
5295
5296         ++vcpu->kvm->stat.mmu_pte_updated;
5297         vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
5298 }
5299
5300 static bool need_remote_flush(u64 old, u64 new)
5301 {
5302         if (!is_shadow_present_pte(old))
5303                 return false;
5304         if (!is_shadow_present_pte(new))
5305                 return true;
5306         if ((old ^ new) & PT64_BASE_ADDR_MASK)
5307                 return true;
5308         old ^= shadow_nx_mask;
5309         new ^= shadow_nx_mask;
5310         return (old & ~new & PT64_PERM_MASK) != 0;
5311 }
5312
5313 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5314                                     int *bytes)
5315 {
5316         u64 gentry = 0;
5317         int r;
5318
5319         /*
5320          * Assume that the pte write on a page table of the same type
5321          * as the current vcpu paging mode since we update the sptes only
5322          * when they have the same mode.
5323          */
5324         if (is_pae(vcpu) && *bytes == 4) {
5325                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5326                 *gpa &= ~(gpa_t)7;
5327                 *bytes = 8;
5328         }
5329
5330         if (*bytes == 4 || *bytes == 8) {
5331                 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5332                 if (r)
5333                         gentry = 0;
5334         }
5335
5336         return gentry;
5337 }
5338
5339 /*
5340  * If we're seeing too many writes to a page, it may no longer be a page table,
5341  * or we may be forking, in which case it is better to unmap the page.
5342  */
5343 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5344 {
5345         /*
5346          * Skip write-flooding detected for the sp whose level is 1, because
5347          * it can become unsync, then the guest page is not write-protected.
5348          */
5349         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
5350                 return false;
5351
5352         atomic_inc(&sp->write_flooding_count);
5353         return atomic_read(&sp->write_flooding_count) >= 3;
5354 }
5355
5356 /*
5357  * Misaligned accesses are too much trouble to fix up; also, they usually
5358  * indicate a page is not used as a page table.
5359  */
5360 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5361                                     int bytes)
5362 {
5363         unsigned offset, pte_size, misaligned;
5364
5365         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5366                  gpa, bytes, sp->role.word);
5367
5368         offset = offset_in_page(gpa);
5369         pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5370
5371         /*
5372          * Sometimes, the OS only writes the last one bytes to update status
5373          * bits, for example, in linux, andb instruction is used in clear_bit().
5374          */
5375         if (!(offset & (pte_size - 1)) && bytes == 1)
5376                 return false;
5377
5378         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5379         misaligned |= bytes < 4;
5380
5381         return misaligned;
5382 }
5383
5384 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5385 {
5386         unsigned page_offset, quadrant;
5387         u64 *spte;
5388         int level;
5389
5390         page_offset = offset_in_page(gpa);
5391         level = sp->role.level;
5392         *nspte = 1;
5393         if (!sp->role.gpte_is_8_bytes) {
5394                 page_offset <<= 1;      /* 32->64 */
5395                 /*
5396                  * A 32-bit pde maps 4MB while the shadow pdes map
5397                  * only 2MB.  So we need to double the offset again
5398                  * and zap two pdes instead of one.
5399                  */
5400                 if (level == PT32_ROOT_LEVEL) {
5401                         page_offset &= ~7; /* kill rounding error */
5402                         page_offset <<= 1;
5403                         *nspte = 2;
5404                 }
5405                 quadrant = page_offset >> PAGE_SHIFT;
5406                 page_offset &= ~PAGE_MASK;
5407                 if (quadrant != sp->role.quadrant)
5408                         return NULL;
5409         }
5410
5411         spte = &sp->spt[page_offset / sizeof(*spte)];
5412         return spte;
5413 }
5414
5415 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5416                               const u8 *new, int bytes,
5417                               struct kvm_page_track_notifier_node *node)
5418 {
5419         gfn_t gfn = gpa >> PAGE_SHIFT;
5420         struct kvm_mmu_page *sp;
5421         LIST_HEAD(invalid_list);
5422         u64 entry, gentry, *spte;
5423         int npte;
5424         bool remote_flush, local_flush;
5425
5426         /*
5427          * If we don't have indirect shadow pages, it means no page is
5428          * write-protected, so we can exit simply.
5429          */
5430         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5431                 return;
5432
5433         remote_flush = local_flush = false;
5434
5435         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5436
5437         /*
5438          * No need to care whether allocation memory is successful
5439          * or not since pte prefetch is skiped if it does not have
5440          * enough objects in the cache.
5441          */
5442         mmu_topup_memory_caches(vcpu);
5443
5444         spin_lock(&vcpu->kvm->mmu_lock);
5445
5446         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5447
5448         ++vcpu->kvm->stat.mmu_pte_write;
5449         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5450
5451         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5452                 if (detect_write_misaligned(sp, gpa, bytes) ||
5453                       detect_write_flooding(sp)) {
5454                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5455                         ++vcpu->kvm->stat.mmu_flooded;
5456                         continue;
5457                 }
5458
5459                 spte = get_written_sptes(sp, gpa, &npte);
5460                 if (!spte)
5461                         continue;
5462
5463                 local_flush = true;
5464                 while (npte--) {
5465                         u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5466
5467                         entry = *spte;
5468                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
5469                         if (gentry &&
5470                               !((sp->role.word ^ base_role)
5471                               & mmu_base_role_mask.word) && rmap_can_add(vcpu))
5472                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5473                         if (need_remote_flush(entry, *spte))
5474                                 remote_flush = true;
5475                         ++spte;
5476                 }
5477         }
5478         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5479         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5480         spin_unlock(&vcpu->kvm->mmu_lock);
5481 }
5482
5483 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5484 {
5485         gpa_t gpa;
5486         int r;
5487
5488         if (vcpu->arch.mmu->direct_map)
5489                 return 0;
5490
5491         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5492
5493         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5494
5495         return r;
5496 }
5497 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5498
5499 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
5500 {
5501         LIST_HEAD(invalid_list);
5502
5503         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
5504                 return 0;
5505
5506         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
5507                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
5508                         break;
5509
5510                 ++vcpu->kvm->stat.mmu_recycled;
5511         }
5512         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
5513
5514         if (!kvm_mmu_available_pages(vcpu->kvm))
5515                 return -ENOSPC;
5516         return 0;
5517 }
5518
5519 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
5520                        void *insn, int insn_len)
5521 {
5522         int r, emulation_type = 0;
5523         bool direct = vcpu->arch.mmu->direct_map;
5524
5525         /* With shadow page tables, fault_address contains a GVA or nGPA.  */
5526         if (vcpu->arch.mmu->direct_map) {
5527                 vcpu->arch.gpa_available = true;
5528                 vcpu->arch.gpa_val = cr2;
5529         }
5530
5531         r = RET_PF_INVALID;
5532         if (unlikely(error_code & PFERR_RSVD_MASK)) {
5533                 r = handle_mmio_page_fault(vcpu, cr2, direct);
5534                 if (r == RET_PF_EMULATE)
5535                         goto emulate;
5536         }
5537
5538         if (r == RET_PF_INVALID) {
5539                 r = vcpu->arch.mmu->page_fault(vcpu, cr2,
5540                                                lower_32_bits(error_code),
5541                                                false);
5542                 WARN_ON(r == RET_PF_INVALID);
5543         }
5544
5545         if (r == RET_PF_RETRY)
5546                 return 1;
5547         if (r < 0)
5548                 return r;
5549
5550         /*
5551          * Before emulating the instruction, check if the error code
5552          * was due to a RO violation while translating the guest page.
5553          * This can occur when using nested virtualization with nested
5554          * paging in both guests. If true, we simply unprotect the page
5555          * and resume the guest.
5556          */
5557         if (vcpu->arch.mmu->direct_map &&
5558             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5559                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
5560                 return 1;
5561         }
5562
5563         /*
5564          * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5565          * optimistically try to just unprotect the page and let the processor
5566          * re-execute the instruction that caused the page fault.  Do not allow
5567          * retrying MMIO emulation, as it's not only pointless but could also
5568          * cause us to enter an infinite loop because the processor will keep
5569          * faulting on the non-existent MMIO address.  Retrying an instruction
5570          * from a nested guest is also pointless and dangerous as we are only
5571          * explicitly shadowing L1's page tables, i.e. unprotecting something
5572          * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5573          */
5574         if (!mmio_info_in_cache(vcpu, cr2, direct) && !is_guest_mode(vcpu))
5575                 emulation_type = EMULTYPE_ALLOW_RETRY;
5576 emulate:
5577         /*
5578          * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5579          * This can happen if a guest gets a page-fault on data access but the HW
5580          * table walker is not able to read the instruction page (e.g instruction
5581          * page is not present in memory). In those cases we simply restart the
5582          * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
5583          */
5584         if (unlikely(insn && !insn_len)) {
5585                 if (!kvm_x86_ops->need_emulation_on_page_fault(vcpu))
5586                         return 1;
5587         }
5588
5589         return x86_emulate_instruction(vcpu, cr2, emulation_type, insn,
5590                                        insn_len);
5591 }
5592 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5593
5594 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5595 {
5596         struct kvm_mmu *mmu = vcpu->arch.mmu;
5597         int i;
5598
5599         /* INVLPG on a * non-canonical address is a NOP according to the SDM.  */
5600         if (is_noncanonical_address(gva, vcpu))
5601                 return;
5602
5603         mmu->invlpg(vcpu, gva, mmu->root_hpa);
5604
5605         /*
5606          * INVLPG is required to invalidate any global mappings for the VA,
5607          * irrespective of PCID. Since it would take us roughly similar amount
5608          * of work to determine whether any of the prev_root mappings of the VA
5609          * is marked global, or to just sync it blindly, so we might as well
5610          * just always sync it.
5611          *
5612          * Mappings not reachable via the current cr3 or the prev_roots will be
5613          * synced when switching to that cr3, so nothing needs to be done here
5614          * for them.
5615          */
5616         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5617                 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5618                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5619
5620         kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5621         ++vcpu->stat.invlpg;
5622 }
5623 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5624
5625 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5626 {
5627         struct kvm_mmu *mmu = vcpu->arch.mmu;
5628         bool tlb_flush = false;
5629         uint i;
5630
5631         if (pcid == kvm_get_active_pcid(vcpu)) {
5632                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5633                 tlb_flush = true;
5634         }
5635
5636         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5637                 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5638                     pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
5639                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5640                         tlb_flush = true;
5641                 }
5642         }
5643
5644         if (tlb_flush)
5645                 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5646
5647         ++vcpu->stat.invlpg;
5648
5649         /*
5650          * Mappings not reachable via the current cr3 or the prev_roots will be
5651          * synced when switching to that cr3, so nothing needs to be done here
5652          * for them.
5653          */
5654 }
5655 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5656
5657 void kvm_enable_tdp(void)
5658 {
5659         tdp_enabled = true;
5660 }
5661 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5662
5663 void kvm_disable_tdp(void)
5664 {
5665         tdp_enabled = false;
5666 }
5667 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5668
5669
5670 /* The return value indicates if tlb flush on all vcpus is needed. */
5671 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5672
5673 /* The caller should hold mmu-lock before calling this function. */
5674 static __always_inline bool
5675 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5676                         slot_level_handler fn, int start_level, int end_level,
5677                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5678 {
5679         struct slot_rmap_walk_iterator iterator;
5680         bool flush = false;
5681
5682         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5683                         end_gfn, &iterator) {
5684                 if (iterator.rmap)
5685                         flush |= fn(kvm, iterator.rmap);
5686
5687                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5688                         if (flush && lock_flush_tlb) {
5689                                 kvm_flush_remote_tlbs_with_address(kvm,
5690                                                 start_gfn,
5691                                                 iterator.gfn - start_gfn + 1);
5692                                 flush = false;
5693                         }
5694                         cond_resched_lock(&kvm->mmu_lock);
5695                 }
5696         }
5697
5698         if (flush && lock_flush_tlb) {
5699                 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5700                                                    end_gfn - start_gfn + 1);
5701                 flush = false;
5702         }
5703
5704         return flush;
5705 }
5706
5707 static __always_inline bool
5708 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5709                   slot_level_handler fn, int start_level, int end_level,
5710                   bool lock_flush_tlb)
5711 {
5712         return slot_handle_level_range(kvm, memslot, fn, start_level,
5713                         end_level, memslot->base_gfn,
5714                         memslot->base_gfn + memslot->npages - 1,
5715                         lock_flush_tlb);
5716 }
5717
5718 static __always_inline bool
5719 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5720                       slot_level_handler fn, bool lock_flush_tlb)
5721 {
5722         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5723                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5724 }
5725
5726 static __always_inline bool
5727 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5728                         slot_level_handler fn, bool lock_flush_tlb)
5729 {
5730         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5731                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5732 }
5733
5734 static __always_inline bool
5735 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5736                  slot_level_handler fn, bool lock_flush_tlb)
5737 {
5738         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5739                                  PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5740 }
5741
5742 static void free_mmu_pages(struct kvm_mmu *mmu)
5743 {
5744         free_page((unsigned long)mmu->pae_root);
5745         free_page((unsigned long)mmu->lm_root);
5746 }
5747
5748 static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5749 {
5750         struct page *page;
5751         int i;
5752
5753         /*
5754          * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5755          * while the PDP table is a per-vCPU construct that's allocated at MMU
5756          * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5757          * x86_64.  Therefore we need to allocate the PDP table in the first
5758          * 4GB of memory, which happens to fit the DMA32 zone.  Except for
5759          * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5760          * skip allocating the PDP table.
5761          */
5762         if (tdp_enabled && kvm_x86_ops->get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5763                 return 0;
5764
5765         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5766         if (!page)
5767                 return -ENOMEM;
5768
5769         mmu->pae_root = page_address(page);
5770         for (i = 0; i < 4; ++i)
5771                 mmu->pae_root[i] = INVALID_PAGE;
5772
5773         return 0;
5774 }
5775
5776 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5777 {
5778         uint i;
5779         int ret;
5780
5781         vcpu->arch.mmu = &vcpu->arch.root_mmu;
5782         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5783
5784         vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
5785         vcpu->arch.root_mmu.root_cr3 = 0;
5786         vcpu->arch.root_mmu.translate_gpa = translate_gpa;
5787         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5788                 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5789
5790         vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
5791         vcpu->arch.guest_mmu.root_cr3 = 0;
5792         vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5793         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5794                 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5795
5796         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5797
5798         ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu);
5799         if (ret)
5800                 return ret;
5801
5802         ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu);
5803         if (ret)
5804                 goto fail_allocate_root;
5805
5806         return ret;
5807  fail_allocate_root:
5808         free_mmu_pages(&vcpu->arch.guest_mmu);
5809         return ret;
5810 }
5811
5812 #define BATCH_ZAP_PAGES 10
5813 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5814 {
5815         struct kvm_mmu_page *sp, *node;
5816         int nr_zapped, batch = 0;
5817
5818 restart:
5819         list_for_each_entry_safe_reverse(sp, node,
5820               &kvm->arch.active_mmu_pages, link) {
5821                 /*
5822                  * No obsolete valid page exists before a newly created page
5823                  * since active_mmu_pages is a FIFO list.
5824                  */
5825                 if (!is_obsolete_sp(kvm, sp))
5826                         break;
5827
5828                 /*
5829                  * Skip invalid pages with a non-zero root count, zapping pages
5830                  * with a non-zero root count will never succeed, i.e. the page
5831                  * will get thrown back on active_mmu_pages and we'll get stuck
5832                  * in an infinite loop.
5833                  */
5834                 if (sp->role.invalid && sp->root_count)
5835                         continue;
5836
5837                 /*
5838                  * No need to flush the TLB since we're only zapping shadow
5839                  * pages with an obsolete generation number and all vCPUS have
5840                  * loaded a new root, i.e. the shadow pages being zapped cannot
5841                  * be in active use by the guest.
5842                  */
5843                 if (batch >= BATCH_ZAP_PAGES &&
5844                     cond_resched_lock(&kvm->mmu_lock)) {
5845                         batch = 0;
5846                         goto restart;
5847                 }
5848
5849                 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5850                                 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5851                         batch += nr_zapped;
5852                         goto restart;
5853                 }
5854         }
5855
5856         /*
5857          * Trigger a remote TLB flush before freeing the page tables to ensure
5858          * KVM is not in the middle of a lockless shadow page table walk, which
5859          * may reference the pages.
5860          */
5861         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5862 }
5863
5864 /*
5865  * Fast invalidate all shadow pages and use lock-break technique
5866  * to zap obsolete pages.
5867  *
5868  * It's required when memslot is being deleted or VM is being
5869  * destroyed, in these cases, we should ensure that KVM MMU does
5870  * not use any resource of the being-deleted slot or all slots
5871  * after calling the function.
5872  */
5873 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5874 {
5875         lockdep_assert_held(&kvm->slots_lock);
5876
5877         spin_lock(&kvm->mmu_lock);
5878         trace_kvm_mmu_zap_all_fast(kvm);
5879
5880         /*
5881          * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5882          * held for the entire duration of zapping obsolete pages, it's
5883          * impossible for there to be multiple invalid generations associated
5884          * with *valid* shadow pages at any given time, i.e. there is exactly
5885          * one valid generation and (at most) one invalid generation.
5886          */
5887         kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5888
5889         /*
5890          * Notify all vcpus to reload its shadow page table and flush TLB.
5891          * Then all vcpus will switch to new shadow page table with the new
5892          * mmu_valid_gen.
5893          *
5894          * Note: we need to do this under the protection of mmu_lock,
5895          * otherwise, vcpu would purge shadow page but miss tlb flush.
5896          */
5897         kvm_reload_remote_mmus(kvm);
5898
5899         kvm_zap_obsolete_pages(kvm);
5900         spin_unlock(&kvm->mmu_lock);
5901 }
5902
5903 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5904 {
5905         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5906 }
5907
5908 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5909                         struct kvm_memory_slot *slot,
5910                         struct kvm_page_track_notifier_node *node)
5911 {
5912         kvm_mmu_zap_all_fast(kvm);
5913 }
5914
5915 void kvm_mmu_init_vm(struct kvm *kvm)
5916 {
5917         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5918
5919         node->track_write = kvm_mmu_pte_write;
5920         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5921         kvm_page_track_register_notifier(kvm, node);
5922 }
5923
5924 void kvm_mmu_uninit_vm(struct kvm *kvm)
5925 {
5926         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5927
5928         kvm_page_track_unregister_notifier(kvm, node);
5929 }
5930
5931 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5932 {
5933         struct kvm_memslots *slots;
5934         struct kvm_memory_slot *memslot;
5935         int i;
5936
5937         spin_lock(&kvm->mmu_lock);
5938         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5939                 slots = __kvm_memslots(kvm, i);
5940                 kvm_for_each_memslot(memslot, slots) {
5941                         gfn_t start, end;
5942
5943                         start = max(gfn_start, memslot->base_gfn);
5944                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
5945                         if (start >= end)
5946                                 continue;
5947
5948                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5949                                                 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5950                                                 start, end - 1, true);
5951                 }
5952         }
5953
5954         spin_unlock(&kvm->mmu_lock);
5955 }
5956
5957 static bool slot_rmap_write_protect(struct kvm *kvm,
5958                                     struct kvm_rmap_head *rmap_head)
5959 {
5960         return __rmap_write_protect(kvm, rmap_head, false);
5961 }
5962
5963 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5964                                       struct kvm_memory_slot *memslot)
5965 {
5966         bool flush;
5967
5968         spin_lock(&kvm->mmu_lock);
5969         flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5970                                       false);
5971         spin_unlock(&kvm->mmu_lock);
5972
5973         /*
5974          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5975          * which do tlb flush out of mmu-lock should be serialized by
5976          * kvm->slots_lock otherwise tlb flush would be missed.
5977          */
5978         lockdep_assert_held(&kvm->slots_lock);
5979
5980         /*
5981          * We can flush all the TLBs out of the mmu lock without TLB
5982          * corruption since we just change the spte from writable to
5983          * readonly so that we only need to care the case of changing
5984          * spte from present to present (changing the spte from present
5985          * to nonpresent will flush all the TLBs immediately), in other
5986          * words, the only case we care is mmu_spte_update() where we
5987          * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5988          * instead of PT_WRITABLE_MASK, that means it does not depend
5989          * on PT_WRITABLE_MASK anymore.
5990          */
5991         if (flush)
5992                 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5993                         memslot->npages);
5994 }
5995
5996 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5997                                          struct kvm_rmap_head *rmap_head)
5998 {
5999         u64 *sptep;
6000         struct rmap_iterator iter;
6001         int need_tlb_flush = 0;
6002         kvm_pfn_t pfn;
6003         struct kvm_mmu_page *sp;
6004
6005 restart:
6006         for_each_rmap_spte(rmap_head, &iter, sptep) {
6007                 sp = page_header(__pa(sptep));
6008                 pfn = spte_to_pfn(*sptep);
6009
6010                 /*
6011                  * We cannot do huge page mapping for indirect shadow pages,
6012                  * which are found on the last rmap (level = 1) when not using
6013                  * tdp; such shadow pages are synced with the page table in
6014                  * the guest, and the guest page table is using 4K page size
6015                  * mapping if the indirect sp has level = 1.
6016                  */
6017                 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
6018                     !kvm_is_zone_device_pfn(pfn) &&
6019                     PageTransCompoundMap(pfn_to_page(pfn))) {
6020                         pte_list_remove(rmap_head, sptep);
6021
6022                         if (kvm_available_flush_tlb_with_range())
6023                                 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
6024                                         KVM_PAGES_PER_HPAGE(sp->role.level));
6025                         else
6026                                 need_tlb_flush = 1;
6027
6028                         goto restart;
6029                 }
6030         }
6031
6032         return need_tlb_flush;
6033 }
6034
6035 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
6036                                    const struct kvm_memory_slot *memslot)
6037 {
6038         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
6039         spin_lock(&kvm->mmu_lock);
6040         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
6041                          kvm_mmu_zap_collapsible_spte, true);
6042         spin_unlock(&kvm->mmu_lock);
6043 }
6044
6045 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
6046                                    struct kvm_memory_slot *memslot)
6047 {
6048         bool flush;
6049
6050         spin_lock(&kvm->mmu_lock);
6051         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
6052         spin_unlock(&kvm->mmu_lock);
6053
6054         lockdep_assert_held(&kvm->slots_lock);
6055
6056         /*
6057          * It's also safe to flush TLBs out of mmu lock here as currently this
6058          * function is only used for dirty logging, in which case flushing TLB
6059          * out of mmu lock also guarantees no dirty pages will be lost in
6060          * dirty_bitmap.
6061          */
6062         if (flush)
6063                 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
6064                                 memslot->npages);
6065 }
6066 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
6067
6068 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
6069                                         struct kvm_memory_slot *memslot)
6070 {
6071         bool flush;
6072
6073         spin_lock(&kvm->mmu_lock);
6074         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
6075                                         false);
6076         spin_unlock(&kvm->mmu_lock);
6077
6078         /* see kvm_mmu_slot_remove_write_access */
6079         lockdep_assert_held(&kvm->slots_lock);
6080
6081         if (flush)
6082                 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
6083                                 memslot->npages);
6084 }
6085 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
6086
6087 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
6088                             struct kvm_memory_slot *memslot)
6089 {
6090         bool flush;
6091
6092         spin_lock(&kvm->mmu_lock);
6093         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
6094         spin_unlock(&kvm->mmu_lock);
6095
6096         lockdep_assert_held(&kvm->slots_lock);
6097
6098         /* see kvm_mmu_slot_leaf_clear_dirty */
6099         if (flush)
6100                 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
6101                                 memslot->npages);
6102 }
6103 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
6104
6105 void kvm_mmu_zap_all(struct kvm *kvm)
6106 {
6107         struct kvm_mmu_page *sp, *node;
6108         LIST_HEAD(invalid_list);
6109         int ign;
6110
6111         spin_lock(&kvm->mmu_lock);
6112 restart:
6113         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6114                 if (sp->role.invalid && sp->root_count)
6115                         continue;
6116                 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6117                         goto restart;
6118                 if (cond_resched_lock(&kvm->mmu_lock))
6119                         goto restart;
6120         }
6121
6122         kvm_mmu_commit_zap_page(kvm, &invalid_list);
6123         spin_unlock(&kvm->mmu_lock);
6124 }
6125
6126 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6127 {
6128         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6129
6130         gen &= MMIO_SPTE_GEN_MASK;
6131
6132         /*
6133          * Generation numbers are incremented in multiples of the number of
6134          * address spaces in order to provide unique generations across all
6135          * address spaces.  Strip what is effectively the address space
6136          * modifier prior to checking for a wrap of the MMIO generation so
6137          * that a wrap in any address space is detected.
6138          */
6139         gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
6140
6141         /*
6142          * The very rare case: if the MMIO generation number has wrapped,
6143          * zap all shadow pages.
6144          */
6145         if (unlikely(gen == 0)) {
6146                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
6147                 kvm_mmu_zap_all_fast(kvm);
6148         }
6149 }
6150
6151 static unsigned long
6152 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6153 {
6154         struct kvm *kvm;
6155         int nr_to_scan = sc->nr_to_scan;
6156         unsigned long freed = 0;
6157
6158         mutex_lock(&kvm_lock);
6159
6160         list_for_each_entry(kvm, &vm_list, vm_list) {
6161                 int idx;
6162                 LIST_HEAD(invalid_list);
6163
6164                 /*
6165                  * Never scan more than sc->nr_to_scan VM instances.
6166                  * Will not hit this condition practically since we do not try
6167                  * to shrink more than one VM and it is very unlikely to see
6168                  * !n_used_mmu_pages so many times.
6169                  */
6170                 if (!nr_to_scan--)
6171                         break;
6172                 /*
6173                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6174                  * here. We may skip a VM instance errorneosly, but we do not
6175                  * want to shrink a VM that only started to populate its MMU
6176                  * anyway.
6177                  */
6178                 if (!kvm->arch.n_used_mmu_pages &&
6179                     !kvm_has_zapped_obsolete_pages(kvm))
6180                         continue;
6181
6182                 idx = srcu_read_lock(&kvm->srcu);
6183                 spin_lock(&kvm->mmu_lock);
6184
6185                 if (kvm_has_zapped_obsolete_pages(kvm)) {
6186                         kvm_mmu_commit_zap_page(kvm,
6187                               &kvm->arch.zapped_obsolete_pages);
6188                         goto unlock;
6189                 }
6190
6191                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
6192                         freed++;
6193                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6194
6195 unlock:
6196                 spin_unlock(&kvm->mmu_lock);
6197                 srcu_read_unlock(&kvm->srcu, idx);
6198
6199                 /*
6200                  * unfair on small ones
6201                  * per-vm shrinkers cry out
6202                  * sadness comes quickly
6203                  */
6204                 list_move_tail(&kvm->vm_list, &vm_list);
6205                 break;
6206         }
6207
6208         mutex_unlock(&kvm_lock);
6209         return freed;
6210 }
6211
6212 static unsigned long
6213 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6214 {
6215         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6216 }
6217
6218 static struct shrinker mmu_shrinker = {
6219         .count_objects = mmu_shrink_count,
6220         .scan_objects = mmu_shrink_scan,
6221         .seeks = DEFAULT_SEEKS * 10,
6222 };
6223
6224 static void mmu_destroy_caches(void)
6225 {
6226         kmem_cache_destroy(pte_list_desc_cache);
6227         kmem_cache_destroy(mmu_page_header_cache);
6228 }
6229
6230 static void kvm_set_mmio_spte_mask(void)
6231 {
6232         u64 mask;
6233
6234         /*
6235          * Set the reserved bits and the present bit of an paging-structure
6236          * entry to generate page fault with PFER.RSV = 1.
6237          */
6238
6239         /*
6240          * Mask the uppermost physical address bit, which would be reserved as
6241          * long as the supported physical address width is less than 52.
6242          */
6243         mask = 1ull << 51;
6244
6245         /* Set the present bit. */
6246         mask |= 1ull;
6247
6248         /*
6249          * If reserved bit is not supported, clear the present bit to disable
6250          * mmio page fault.
6251          */
6252         if (IS_ENABLED(CONFIG_X86_64) && shadow_phys_bits == 52)
6253                 mask &= ~1ull;
6254
6255         kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
6256 }
6257
6258 static bool get_nx_auto_mode(void)
6259 {
6260         /* Return true when CPU has the bug, and mitigations are ON */
6261         return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6262 }
6263
6264 static void __set_nx_huge_pages(bool val)
6265 {
6266         nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6267 }
6268
6269 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6270 {
6271         bool old_val = nx_huge_pages;
6272         bool new_val;
6273
6274         /* In "auto" mode deploy workaround only if CPU has the bug. */
6275         if (sysfs_streq(val, "off"))
6276                 new_val = 0;
6277         else if (sysfs_streq(val, "force"))
6278                 new_val = 1;
6279         else if (sysfs_streq(val, "auto"))
6280                 new_val = get_nx_auto_mode();
6281         else if (strtobool(val, &new_val) < 0)
6282                 return -EINVAL;
6283
6284         __set_nx_huge_pages(new_val);
6285
6286         if (new_val != old_val) {
6287                 struct kvm *kvm;
6288
6289                 mutex_lock(&kvm_lock);
6290
6291                 list_for_each_entry(kvm, &vm_list, vm_list) {
6292                         mutex_lock(&kvm->slots_lock);
6293                         kvm_mmu_zap_all_fast(kvm);
6294                         mutex_unlock(&kvm->slots_lock);
6295
6296                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6297                 }
6298                 mutex_unlock(&kvm_lock);
6299         }
6300
6301         return 0;
6302 }
6303
6304 int kvm_mmu_module_init(void)
6305 {
6306         int ret = -ENOMEM;
6307
6308         if (nx_huge_pages == -1)
6309                 __set_nx_huge_pages(get_nx_auto_mode());
6310
6311         /*
6312          * MMU roles use union aliasing which is, generally speaking, an
6313          * undefined behavior. However, we supposedly know how compilers behave
6314          * and the current status quo is unlikely to change. Guardians below are
6315          * supposed to let us know if the assumption becomes false.
6316          */
6317         BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6318         BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6319         BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6320
6321         kvm_mmu_reset_all_pte_masks();
6322
6323         kvm_set_mmio_spte_mask();
6324
6325         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6326                                             sizeof(struct pte_list_desc),
6327                                             0, SLAB_ACCOUNT, NULL);
6328         if (!pte_list_desc_cache)
6329                 goto out;
6330
6331         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6332                                                   sizeof(struct kvm_mmu_page),
6333                                                   0, SLAB_ACCOUNT, NULL);
6334         if (!mmu_page_header_cache)
6335                 goto out;
6336
6337         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6338                 goto out;
6339
6340         ret = register_shrinker(&mmu_shrinker);
6341         if (ret)
6342                 goto out;
6343
6344         return 0;
6345
6346 out:
6347         mmu_destroy_caches();
6348         return ret;
6349 }
6350
6351 /*
6352  * Calculate mmu pages needed for kvm.
6353  */
6354 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6355 {
6356         unsigned long nr_mmu_pages;
6357         unsigned long nr_pages = 0;
6358         struct kvm_memslots *slots;
6359         struct kvm_memory_slot *memslot;
6360         int i;
6361
6362         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6363                 slots = __kvm_memslots(kvm, i);
6364
6365                 kvm_for_each_memslot(memslot, slots)
6366                         nr_pages += memslot->npages;
6367         }
6368
6369         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6370         nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6371
6372         return nr_mmu_pages;
6373 }
6374
6375 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6376 {
6377         kvm_mmu_unload(vcpu);
6378         free_mmu_pages(&vcpu->arch.root_mmu);
6379         free_mmu_pages(&vcpu->arch.guest_mmu);
6380         mmu_free_memory_caches(vcpu);
6381 }
6382
6383 void kvm_mmu_module_exit(void)
6384 {
6385         mmu_destroy_caches();
6386         percpu_counter_destroy(&kvm_total_used_mmu_pages);
6387         unregister_shrinker(&mmu_shrinker);
6388         mmu_audit_disable();
6389 }
6390
6391 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6392 {
6393         unsigned int old_val;
6394         int err;
6395
6396         old_val = nx_huge_pages_recovery_ratio;
6397         err = param_set_uint(val, kp);
6398         if (err)
6399                 return err;
6400
6401         if (READ_ONCE(nx_huge_pages) &&
6402             !old_val && nx_huge_pages_recovery_ratio) {
6403                 struct kvm *kvm;
6404
6405                 mutex_lock(&kvm_lock);
6406
6407                 list_for_each_entry(kvm, &vm_list, vm_list)
6408                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6409
6410                 mutex_unlock(&kvm_lock);
6411         }
6412
6413         return err;
6414 }
6415
6416 static void kvm_recover_nx_lpages(struct kvm *kvm)
6417 {
6418         int rcu_idx;
6419         struct kvm_mmu_page *sp;
6420         unsigned int ratio;
6421         LIST_HEAD(invalid_list);
6422         ulong to_zap;
6423
6424         rcu_idx = srcu_read_lock(&kvm->srcu);
6425         spin_lock(&kvm->mmu_lock);
6426
6427         ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6428         to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
6429         while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
6430                 /*
6431                  * We use a separate list instead of just using active_mmu_pages
6432                  * because the number of lpage_disallowed pages is expected to
6433                  * be relatively small compared to the total.
6434                  */
6435                 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6436                                       struct kvm_mmu_page,
6437                                       lpage_disallowed_link);
6438                 WARN_ON_ONCE(!sp->lpage_disallowed);
6439                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6440                 WARN_ON_ONCE(sp->lpage_disallowed);
6441
6442                 if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6443                         kvm_mmu_commit_zap_page(kvm, &invalid_list);
6444                         if (to_zap)
6445                                 cond_resched_lock(&kvm->mmu_lock);
6446                 }
6447         }
6448
6449         spin_unlock(&kvm->mmu_lock);
6450         srcu_read_unlock(&kvm->srcu, rcu_idx);
6451 }
6452
6453 static long get_nx_lpage_recovery_timeout(u64 start_time)
6454 {
6455         return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6456                 ? start_time + 60 * HZ - get_jiffies_64()
6457                 : MAX_SCHEDULE_TIMEOUT;
6458 }
6459
6460 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6461 {
6462         u64 start_time;
6463         long remaining_time;
6464
6465         while (true) {
6466                 start_time = get_jiffies_64();
6467                 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6468
6469                 set_current_state(TASK_INTERRUPTIBLE);
6470                 while (!kthread_should_stop() && remaining_time > 0) {
6471                         schedule_timeout(remaining_time);
6472                         remaining_time = get_nx_lpage_recovery_timeout(start_time);
6473                         set_current_state(TASK_INTERRUPTIBLE);
6474                 }
6475
6476                 set_current_state(TASK_RUNNING);
6477
6478                 if (kthread_should_stop())
6479                         return 0;
6480
6481                 kvm_recover_nx_lpages(kvm);
6482         }
6483 }
6484
6485 int kvm_mmu_post_init_vm(struct kvm *kvm)
6486 {
6487         int err;
6488
6489         err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6490                                           "kvm-nx-lpage-recovery",
6491                                           &kvm->arch.nx_lpage_recovery_thread);
6492         if (!err)
6493                 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6494
6495         return err;
6496 }
6497
6498 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6499 {
6500         if (kvm->arch.nx_lpage_recovery_thread)
6501                 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6502 }