]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/mmu/mmu.c
KVM: x86: Use gpa_t for cr2/gpa to fix TDP support on 32-bit KVM
[linux.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17
18 #include "irq.h"
19 #include "mmu.h"
20 #include "x86.h"
21 #include "kvm_cache_regs.h"
22 #include "cpuid.h"
23
24 #include <linux/kvm_host.h>
25 #include <linux/types.h>
26 #include <linux/string.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/moduleparam.h>
30 #include <linux/export.h>
31 #include <linux/swap.h>
32 #include <linux/hugetlb.h>
33 #include <linux/compiler.h>
34 #include <linux/srcu.h>
35 #include <linux/slab.h>
36 #include <linux/sched/signal.h>
37 #include <linux/uaccess.h>
38 #include <linux/hash.h>
39 #include <linux/kern_levels.h>
40 #include <linux/kthread.h>
41
42 #include <asm/page.h>
43 #include <asm/pat.h>
44 #include <asm/cmpxchg.h>
45 #include <asm/e820/api.h>
46 #include <asm/io.h>
47 #include <asm/vmx.h>
48 #include <asm/kvm_page_track.h>
49 #include "trace.h"
50
51 extern bool itlb_multihit_kvm_mitigation;
52
53 static int __read_mostly nx_huge_pages = -1;
54 #ifdef CONFIG_PREEMPT_RT
55 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
56 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
57 #else
58 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
59 #endif
60
61 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
62 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
63
64 static struct kernel_param_ops nx_huge_pages_ops = {
65         .set = set_nx_huge_pages,
66         .get = param_get_bool,
67 };
68
69 static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
70         .set = set_nx_huge_pages_recovery_ratio,
71         .get = param_get_uint,
72 };
73
74 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
75 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
76 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
77                 &nx_huge_pages_recovery_ratio, 0644);
78 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
79
80 /*
81  * When setting this variable to true it enables Two-Dimensional-Paging
82  * where the hardware walks 2 page tables:
83  * 1. the guest-virtual to guest-physical
84  * 2. while doing 1. it walks guest-physical to host-physical
85  * If the hardware supports that we don't need to do shadow paging.
86  */
87 bool tdp_enabled = false;
88
89 enum {
90         AUDIT_PRE_PAGE_FAULT,
91         AUDIT_POST_PAGE_FAULT,
92         AUDIT_PRE_PTE_WRITE,
93         AUDIT_POST_PTE_WRITE,
94         AUDIT_PRE_SYNC,
95         AUDIT_POST_SYNC
96 };
97
98 #undef MMU_DEBUG
99
100 #ifdef MMU_DEBUG
101 static bool dbg = 0;
102 module_param(dbg, bool, 0644);
103
104 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
105 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
106 #define MMU_WARN_ON(x) WARN_ON(x)
107 #else
108 #define pgprintk(x...) do { } while (0)
109 #define rmap_printk(x...) do { } while (0)
110 #define MMU_WARN_ON(x) do { } while (0)
111 #endif
112
113 #define PTE_PREFETCH_NUM                8
114
115 #define PT_FIRST_AVAIL_BITS_SHIFT 10
116 #define PT64_SECOND_AVAIL_BITS_SHIFT 54
117
118 /*
119  * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
120  * Access Tracking SPTEs.
121  */
122 #define SPTE_SPECIAL_MASK (3ULL << 52)
123 #define SPTE_AD_ENABLED_MASK (0ULL << 52)
124 #define SPTE_AD_DISABLED_MASK (1ULL << 52)
125 #define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52)
126 #define SPTE_MMIO_MASK (3ULL << 52)
127
128 #define PT64_LEVEL_BITS 9
129
130 #define PT64_LEVEL_SHIFT(level) \
131                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
132
133 #define PT64_INDEX(address, level)\
134         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
135
136
137 #define PT32_LEVEL_BITS 10
138
139 #define PT32_LEVEL_SHIFT(level) \
140                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
141
142 #define PT32_LVL_OFFSET_MASK(level) \
143         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
144                                                 * PT32_LEVEL_BITS))) - 1))
145
146 #define PT32_INDEX(address, level)\
147         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
148
149
150 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
151 #define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
152 #else
153 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
154 #endif
155 #define PT64_LVL_ADDR_MASK(level) \
156         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
157                                                 * PT64_LEVEL_BITS))) - 1))
158 #define PT64_LVL_OFFSET_MASK(level) \
159         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
160                                                 * PT64_LEVEL_BITS))) - 1))
161
162 #define PT32_BASE_ADDR_MASK PAGE_MASK
163 #define PT32_DIR_BASE_ADDR_MASK \
164         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
165 #define PT32_LVL_ADDR_MASK(level) \
166         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
167                                             * PT32_LEVEL_BITS))) - 1))
168
169 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
170                         | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
171
172 #define ACC_EXEC_MASK    1
173 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
174 #define ACC_USER_MASK    PT_USER_MASK
175 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
176
177 /* The mask for the R/X bits in EPT PTEs */
178 #define PT64_EPT_READABLE_MASK                  0x1ull
179 #define PT64_EPT_EXECUTABLE_MASK                0x4ull
180
181 #include <trace/events/kvm.h>
182
183 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
184 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
185
186 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
187
188 /* make pte_list_desc fit well in cache line */
189 #define PTE_LIST_EXT 3
190
191 /*
192  * Return values of handle_mmio_page_fault and mmu.page_fault:
193  * RET_PF_RETRY: let CPU fault again on the address.
194  * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
195  *
196  * For handle_mmio_page_fault only:
197  * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
198  */
199 enum {
200         RET_PF_RETRY = 0,
201         RET_PF_EMULATE = 1,
202         RET_PF_INVALID = 2,
203 };
204
205 struct pte_list_desc {
206         u64 *sptes[PTE_LIST_EXT];
207         struct pte_list_desc *more;
208 };
209
210 struct kvm_shadow_walk_iterator {
211         u64 addr;
212         hpa_t shadow_addr;
213         u64 *sptep;
214         int level;
215         unsigned index;
216 };
217
218 static const union kvm_mmu_page_role mmu_base_role_mask = {
219         .cr0_wp = 1,
220         .gpte_is_8_bytes = 1,
221         .nxe = 1,
222         .smep_andnot_wp = 1,
223         .smap_andnot_wp = 1,
224         .smm = 1,
225         .guest_mode = 1,
226         .ad_disabled = 1,
227 };
228
229 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
230         for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
231                                          (_root), (_addr));                \
232              shadow_walk_okay(&(_walker));                                 \
233              shadow_walk_next(&(_walker)))
234
235 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
236         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
237              shadow_walk_okay(&(_walker));                      \
238              shadow_walk_next(&(_walker)))
239
240 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
241         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
242              shadow_walk_okay(&(_walker)) &&                            \
243                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
244              __shadow_walk_next(&(_walker), spte))
245
246 static struct kmem_cache *pte_list_desc_cache;
247 static struct kmem_cache *mmu_page_header_cache;
248 static struct percpu_counter kvm_total_used_mmu_pages;
249
250 static u64 __read_mostly shadow_nx_mask;
251 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
252 static u64 __read_mostly shadow_user_mask;
253 static u64 __read_mostly shadow_accessed_mask;
254 static u64 __read_mostly shadow_dirty_mask;
255 static u64 __read_mostly shadow_mmio_mask;
256 static u64 __read_mostly shadow_mmio_value;
257 static u64 __read_mostly shadow_mmio_access_mask;
258 static u64 __read_mostly shadow_present_mask;
259 static u64 __read_mostly shadow_me_mask;
260
261 /*
262  * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK;
263  * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
264  * pages.
265  */
266 static u64 __read_mostly shadow_acc_track_mask;
267
268 /*
269  * The mask/shift to use for saving the original R/X bits when marking the PTE
270  * as not-present for access tracking purposes. We do not save the W bit as the
271  * PTEs being access tracked also need to be dirty tracked, so the W bit will be
272  * restored only when a write is attempted to the page.
273  */
274 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
275                                                     PT64_EPT_EXECUTABLE_MASK;
276 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
277
278 /*
279  * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
280  * to guard against L1TF attacks.
281  */
282 static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
283
284 /*
285  * The number of high-order 1 bits to use in the mask above.
286  */
287 static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
288
289 /*
290  * In some cases, we need to preserve the GFN of a non-present or reserved
291  * SPTE when we usurp the upper five bits of the physical address space to
292  * defend against L1TF, e.g. for MMIO SPTEs.  To preserve the GFN, we'll
293  * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
294  * left into the reserved bits, i.e. the GFN in the SPTE will be split into
295  * high and low parts.  This mask covers the lower bits of the GFN.
296  */
297 static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
298
299 /*
300  * The number of non-reserved physical address bits irrespective of features
301  * that repurpose legal bits, e.g. MKTME.
302  */
303 static u8 __read_mostly shadow_phys_bits;
304
305 static void mmu_spte_set(u64 *sptep, u64 spte);
306 static bool is_executable_pte(u64 spte);
307 static union kvm_mmu_page_role
308 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
309
310 #define CREATE_TRACE_POINTS
311 #include "mmutrace.h"
312
313
314 static inline bool kvm_available_flush_tlb_with_range(void)
315 {
316         return kvm_x86_ops->tlb_remote_flush_with_range;
317 }
318
319 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
320                 struct kvm_tlb_range *range)
321 {
322         int ret = -ENOTSUPP;
323
324         if (range && kvm_x86_ops->tlb_remote_flush_with_range)
325                 ret = kvm_x86_ops->tlb_remote_flush_with_range(kvm, range);
326
327         if (ret)
328                 kvm_flush_remote_tlbs(kvm);
329 }
330
331 static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
332                 u64 start_gfn, u64 pages)
333 {
334         struct kvm_tlb_range range;
335
336         range.start_gfn = start_gfn;
337         range.pages = pages;
338
339         kvm_flush_remote_tlbs_with_range(kvm, &range);
340 }
341
342 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value, u64 access_mask)
343 {
344         BUG_ON((u64)(unsigned)access_mask != access_mask);
345         BUG_ON((mmio_mask & mmio_value) != mmio_value);
346         shadow_mmio_value = mmio_value | SPTE_MMIO_MASK;
347         shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
348         shadow_mmio_access_mask = access_mask;
349 }
350 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
351
352 static bool is_mmio_spte(u64 spte)
353 {
354         return (spte & shadow_mmio_mask) == shadow_mmio_value;
355 }
356
357 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
358 {
359         return sp->role.ad_disabled;
360 }
361
362 static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu)
363 {
364         /*
365          * When using the EPT page-modification log, the GPAs in the log
366          * would come from L2 rather than L1.  Therefore, we need to rely
367          * on write protection to record dirty pages.  This also bypasses
368          * PML, since writes now result in a vmexit.
369          */
370         return vcpu->arch.mmu == &vcpu->arch.guest_mmu;
371 }
372
373 static inline bool spte_ad_enabled(u64 spte)
374 {
375         MMU_WARN_ON(is_mmio_spte(spte));
376         return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK;
377 }
378
379 static inline bool spte_ad_need_write_protect(u64 spte)
380 {
381         MMU_WARN_ON(is_mmio_spte(spte));
382         return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK;
383 }
384
385 static bool is_nx_huge_page_enabled(void)
386 {
387         return READ_ONCE(nx_huge_pages);
388 }
389
390 static inline u64 spte_shadow_accessed_mask(u64 spte)
391 {
392         MMU_WARN_ON(is_mmio_spte(spte));
393         return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
394 }
395
396 static inline u64 spte_shadow_dirty_mask(u64 spte)
397 {
398         MMU_WARN_ON(is_mmio_spte(spte));
399         return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
400 }
401
402 static inline bool is_access_track_spte(u64 spte)
403 {
404         return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
405 }
406
407 /*
408  * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
409  * the memslots generation and is derived as follows:
410  *
411  * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
412  * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
413  *
414  * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
415  * the MMIO generation number, as doing so would require stealing a bit from
416  * the "real" generation number and thus effectively halve the maximum number
417  * of MMIO generations that can be handled before encountering a wrap (which
418  * requires a full MMU zap).  The flag is instead explicitly queried when
419  * checking for MMIO spte cache hits.
420  */
421 #define MMIO_SPTE_GEN_MASK              GENMASK_ULL(18, 0)
422
423 #define MMIO_SPTE_GEN_LOW_START         3
424 #define MMIO_SPTE_GEN_LOW_END           11
425 #define MMIO_SPTE_GEN_LOW_MASK          GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
426                                                     MMIO_SPTE_GEN_LOW_START)
427
428 #define MMIO_SPTE_GEN_HIGH_START        52
429 #define MMIO_SPTE_GEN_HIGH_END          61
430 #define MMIO_SPTE_GEN_HIGH_MASK         GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
431                                                     MMIO_SPTE_GEN_HIGH_START)
432 static u64 generation_mmio_spte_mask(u64 gen)
433 {
434         u64 mask;
435
436         WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
437
438         mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
439         mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
440         return mask;
441 }
442
443 static u64 get_mmio_spte_generation(u64 spte)
444 {
445         u64 gen;
446
447         spte &= ~shadow_mmio_mask;
448
449         gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
450         gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
451         return gen;
452 }
453
454 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
455                            unsigned access)
456 {
457         u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
458         u64 mask = generation_mmio_spte_mask(gen);
459         u64 gpa = gfn << PAGE_SHIFT;
460
461         access &= shadow_mmio_access_mask;
462         mask |= shadow_mmio_value | access;
463         mask |= gpa | shadow_nonpresent_or_rsvd_mask;
464         mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
465                 << shadow_nonpresent_or_rsvd_mask_len;
466
467         trace_mark_mmio_spte(sptep, gfn, access, gen);
468         mmu_spte_set(sptep, mask);
469 }
470
471 static gfn_t get_mmio_spte_gfn(u64 spte)
472 {
473         u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
474
475         gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
476                & shadow_nonpresent_or_rsvd_mask;
477
478         return gpa >> PAGE_SHIFT;
479 }
480
481 static unsigned get_mmio_spte_access(u64 spte)
482 {
483         return spte & shadow_mmio_access_mask;
484 }
485
486 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
487                           kvm_pfn_t pfn, unsigned access)
488 {
489         if (unlikely(is_noslot_pfn(pfn))) {
490                 mark_mmio_spte(vcpu, sptep, gfn, access);
491                 return true;
492         }
493
494         return false;
495 }
496
497 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
498 {
499         u64 kvm_gen, spte_gen, gen;
500
501         gen = kvm_vcpu_memslots(vcpu)->generation;
502         if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
503                 return false;
504
505         kvm_gen = gen & MMIO_SPTE_GEN_MASK;
506         spte_gen = get_mmio_spte_generation(spte);
507
508         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
509         return likely(kvm_gen == spte_gen);
510 }
511
512 /*
513  * Sets the shadow PTE masks used by the MMU.
514  *
515  * Assumptions:
516  *  - Setting either @accessed_mask or @dirty_mask requires setting both
517  *  - At least one of @accessed_mask or @acc_track_mask must be set
518  */
519 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
520                 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
521                 u64 acc_track_mask, u64 me_mask)
522 {
523         BUG_ON(!dirty_mask != !accessed_mask);
524         BUG_ON(!accessed_mask && !acc_track_mask);
525         BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK);
526
527         shadow_user_mask = user_mask;
528         shadow_accessed_mask = accessed_mask;
529         shadow_dirty_mask = dirty_mask;
530         shadow_nx_mask = nx_mask;
531         shadow_x_mask = x_mask;
532         shadow_present_mask = p_mask;
533         shadow_acc_track_mask = acc_track_mask;
534         shadow_me_mask = me_mask;
535 }
536 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
537
538 static u8 kvm_get_shadow_phys_bits(void)
539 {
540         /*
541          * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
542          * in CPU detection code, but the processor treats those reduced bits as
543          * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
544          * the physical address bits reported by CPUID.
545          */
546         if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
547                 return cpuid_eax(0x80000008) & 0xff;
548
549         /*
550          * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
551          * custom CPUID.  Proceed with whatever the kernel found since these features
552          * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
553          */
554         return boot_cpu_data.x86_phys_bits;
555 }
556
557 static void kvm_mmu_reset_all_pte_masks(void)
558 {
559         u8 low_phys_bits;
560
561         shadow_user_mask = 0;
562         shadow_accessed_mask = 0;
563         shadow_dirty_mask = 0;
564         shadow_nx_mask = 0;
565         shadow_x_mask = 0;
566         shadow_mmio_mask = 0;
567         shadow_present_mask = 0;
568         shadow_acc_track_mask = 0;
569
570         shadow_phys_bits = kvm_get_shadow_phys_bits();
571
572         /*
573          * If the CPU has 46 or less physical address bits, then set an
574          * appropriate mask to guard against L1TF attacks. Otherwise, it is
575          * assumed that the CPU is not vulnerable to L1TF.
576          *
577          * Some Intel CPUs address the L1 cache using more PA bits than are
578          * reported by CPUID. Use the PA width of the L1 cache when possible
579          * to achieve more effective mitigation, e.g. if system RAM overlaps
580          * the most significant bits of legal physical address space.
581          */
582         shadow_nonpresent_or_rsvd_mask = 0;
583         low_phys_bits = boot_cpu_data.x86_cache_bits;
584         if (boot_cpu_data.x86_cache_bits <
585             52 - shadow_nonpresent_or_rsvd_mask_len) {
586                 shadow_nonpresent_or_rsvd_mask =
587                         rsvd_bits(boot_cpu_data.x86_cache_bits -
588                                   shadow_nonpresent_or_rsvd_mask_len,
589                                   boot_cpu_data.x86_cache_bits - 1);
590                 low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
591         } else
592                 WARN_ON_ONCE(boot_cpu_has_bug(X86_BUG_L1TF));
593
594         shadow_nonpresent_or_rsvd_lower_gfn_mask =
595                 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
596 }
597
598 static int is_cpuid_PSE36(void)
599 {
600         return 1;
601 }
602
603 static int is_nx(struct kvm_vcpu *vcpu)
604 {
605         return vcpu->arch.efer & EFER_NX;
606 }
607
608 static int is_shadow_present_pte(u64 pte)
609 {
610         return (pte != 0) && !is_mmio_spte(pte);
611 }
612
613 static int is_large_pte(u64 pte)
614 {
615         return pte & PT_PAGE_SIZE_MASK;
616 }
617
618 static int is_last_spte(u64 pte, int level)
619 {
620         if (level == PT_PAGE_TABLE_LEVEL)
621                 return 1;
622         if (is_large_pte(pte))
623                 return 1;
624         return 0;
625 }
626
627 static bool is_executable_pte(u64 spte)
628 {
629         return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
630 }
631
632 static kvm_pfn_t spte_to_pfn(u64 pte)
633 {
634         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
635 }
636
637 static gfn_t pse36_gfn_delta(u32 gpte)
638 {
639         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
640
641         return (gpte & PT32_DIR_PSE36_MASK) << shift;
642 }
643
644 #ifdef CONFIG_X86_64
645 static void __set_spte(u64 *sptep, u64 spte)
646 {
647         WRITE_ONCE(*sptep, spte);
648 }
649
650 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
651 {
652         WRITE_ONCE(*sptep, spte);
653 }
654
655 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
656 {
657         return xchg(sptep, spte);
658 }
659
660 static u64 __get_spte_lockless(u64 *sptep)
661 {
662         return READ_ONCE(*sptep);
663 }
664 #else
665 union split_spte {
666         struct {
667                 u32 spte_low;
668                 u32 spte_high;
669         };
670         u64 spte;
671 };
672
673 static void count_spte_clear(u64 *sptep, u64 spte)
674 {
675         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
676
677         if (is_shadow_present_pte(spte))
678                 return;
679
680         /* Ensure the spte is completely set before we increase the count */
681         smp_wmb();
682         sp->clear_spte_count++;
683 }
684
685 static void __set_spte(u64 *sptep, u64 spte)
686 {
687         union split_spte *ssptep, sspte;
688
689         ssptep = (union split_spte *)sptep;
690         sspte = (union split_spte)spte;
691
692         ssptep->spte_high = sspte.spte_high;
693
694         /*
695          * If we map the spte from nonpresent to present, We should store
696          * the high bits firstly, then set present bit, so cpu can not
697          * fetch this spte while we are setting the spte.
698          */
699         smp_wmb();
700
701         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
702 }
703
704 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
705 {
706         union split_spte *ssptep, sspte;
707
708         ssptep = (union split_spte *)sptep;
709         sspte = (union split_spte)spte;
710
711         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
712
713         /*
714          * If we map the spte from present to nonpresent, we should clear
715          * present bit firstly to avoid vcpu fetch the old high bits.
716          */
717         smp_wmb();
718
719         ssptep->spte_high = sspte.spte_high;
720         count_spte_clear(sptep, spte);
721 }
722
723 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
724 {
725         union split_spte *ssptep, sspte, orig;
726
727         ssptep = (union split_spte *)sptep;
728         sspte = (union split_spte)spte;
729
730         /* xchg acts as a barrier before the setting of the high bits */
731         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
732         orig.spte_high = ssptep->spte_high;
733         ssptep->spte_high = sspte.spte_high;
734         count_spte_clear(sptep, spte);
735
736         return orig.spte;
737 }
738
739 /*
740  * The idea using the light way get the spte on x86_32 guest is from
741  * gup_get_pte (mm/gup.c).
742  *
743  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
744  * coalesces them and we are running out of the MMU lock.  Therefore
745  * we need to protect against in-progress updates of the spte.
746  *
747  * Reading the spte while an update is in progress may get the old value
748  * for the high part of the spte.  The race is fine for a present->non-present
749  * change (because the high part of the spte is ignored for non-present spte),
750  * but for a present->present change we must reread the spte.
751  *
752  * All such changes are done in two steps (present->non-present and
753  * non-present->present), hence it is enough to count the number of
754  * present->non-present updates: if it changed while reading the spte,
755  * we might have hit the race.  This is done using clear_spte_count.
756  */
757 static u64 __get_spte_lockless(u64 *sptep)
758 {
759         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
760         union split_spte spte, *orig = (union split_spte *)sptep;
761         int count;
762
763 retry:
764         count = sp->clear_spte_count;
765         smp_rmb();
766
767         spte.spte_low = orig->spte_low;
768         smp_rmb();
769
770         spte.spte_high = orig->spte_high;
771         smp_rmb();
772
773         if (unlikely(spte.spte_low != orig->spte_low ||
774               count != sp->clear_spte_count))
775                 goto retry;
776
777         return spte.spte;
778 }
779 #endif
780
781 static bool spte_can_locklessly_be_made_writable(u64 spte)
782 {
783         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
784                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
785 }
786
787 static bool spte_has_volatile_bits(u64 spte)
788 {
789         if (!is_shadow_present_pte(spte))
790                 return false;
791
792         /*
793          * Always atomically update spte if it can be updated
794          * out of mmu-lock, it can ensure dirty bit is not lost,
795          * also, it can help us to get a stable is_writable_pte()
796          * to ensure tlb flush is not missed.
797          */
798         if (spte_can_locklessly_be_made_writable(spte) ||
799             is_access_track_spte(spte))
800                 return true;
801
802         if (spte_ad_enabled(spte)) {
803                 if ((spte & shadow_accessed_mask) == 0 ||
804                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
805                         return true;
806         }
807
808         return false;
809 }
810
811 static bool is_accessed_spte(u64 spte)
812 {
813         u64 accessed_mask = spte_shadow_accessed_mask(spte);
814
815         return accessed_mask ? spte & accessed_mask
816                              : !is_access_track_spte(spte);
817 }
818
819 static bool is_dirty_spte(u64 spte)
820 {
821         u64 dirty_mask = spte_shadow_dirty_mask(spte);
822
823         return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
824 }
825
826 /* Rules for using mmu_spte_set:
827  * Set the sptep from nonpresent to present.
828  * Note: the sptep being assigned *must* be either not present
829  * or in a state where the hardware will not attempt to update
830  * the spte.
831  */
832 static void mmu_spte_set(u64 *sptep, u64 new_spte)
833 {
834         WARN_ON(is_shadow_present_pte(*sptep));
835         __set_spte(sptep, new_spte);
836 }
837
838 /*
839  * Update the SPTE (excluding the PFN), but do not track changes in its
840  * accessed/dirty status.
841  */
842 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
843 {
844         u64 old_spte = *sptep;
845
846         WARN_ON(!is_shadow_present_pte(new_spte));
847
848         if (!is_shadow_present_pte(old_spte)) {
849                 mmu_spte_set(sptep, new_spte);
850                 return old_spte;
851         }
852
853         if (!spte_has_volatile_bits(old_spte))
854                 __update_clear_spte_fast(sptep, new_spte);
855         else
856                 old_spte = __update_clear_spte_slow(sptep, new_spte);
857
858         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
859
860         return old_spte;
861 }
862
863 /* Rules for using mmu_spte_update:
864  * Update the state bits, it means the mapped pfn is not changed.
865  *
866  * Whenever we overwrite a writable spte with a read-only one we
867  * should flush remote TLBs. Otherwise rmap_write_protect
868  * will find a read-only spte, even though the writable spte
869  * might be cached on a CPU's TLB, the return value indicates this
870  * case.
871  *
872  * Returns true if the TLB needs to be flushed
873  */
874 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
875 {
876         bool flush = false;
877         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
878
879         if (!is_shadow_present_pte(old_spte))
880                 return false;
881
882         /*
883          * For the spte updated out of mmu-lock is safe, since
884          * we always atomically update it, see the comments in
885          * spte_has_volatile_bits().
886          */
887         if (spte_can_locklessly_be_made_writable(old_spte) &&
888               !is_writable_pte(new_spte))
889                 flush = true;
890
891         /*
892          * Flush TLB when accessed/dirty states are changed in the page tables,
893          * to guarantee consistency between TLB and page tables.
894          */
895
896         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
897                 flush = true;
898                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
899         }
900
901         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
902                 flush = true;
903                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
904         }
905
906         return flush;
907 }
908
909 /*
910  * Rules for using mmu_spte_clear_track_bits:
911  * It sets the sptep from present to nonpresent, and track the
912  * state bits, it is used to clear the last level sptep.
913  * Returns non-zero if the PTE was previously valid.
914  */
915 static int mmu_spte_clear_track_bits(u64 *sptep)
916 {
917         kvm_pfn_t pfn;
918         u64 old_spte = *sptep;
919
920         if (!spte_has_volatile_bits(old_spte))
921                 __update_clear_spte_fast(sptep, 0ull);
922         else
923                 old_spte = __update_clear_spte_slow(sptep, 0ull);
924
925         if (!is_shadow_present_pte(old_spte))
926                 return 0;
927
928         pfn = spte_to_pfn(old_spte);
929
930         /*
931          * KVM does not hold the refcount of the page used by
932          * kvm mmu, before reclaiming the page, we should
933          * unmap it from mmu first.
934          */
935         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
936
937         if (is_accessed_spte(old_spte))
938                 kvm_set_pfn_accessed(pfn);
939
940         if (is_dirty_spte(old_spte))
941                 kvm_set_pfn_dirty(pfn);
942
943         return 1;
944 }
945
946 /*
947  * Rules for using mmu_spte_clear_no_track:
948  * Directly clear spte without caring the state bits of sptep,
949  * it is used to set the upper level spte.
950  */
951 static void mmu_spte_clear_no_track(u64 *sptep)
952 {
953         __update_clear_spte_fast(sptep, 0ull);
954 }
955
956 static u64 mmu_spte_get_lockless(u64 *sptep)
957 {
958         return __get_spte_lockless(sptep);
959 }
960
961 static u64 mark_spte_for_access_track(u64 spte)
962 {
963         if (spte_ad_enabled(spte))
964                 return spte & ~shadow_accessed_mask;
965
966         if (is_access_track_spte(spte))
967                 return spte;
968
969         /*
970          * Making an Access Tracking PTE will result in removal of write access
971          * from the PTE. So, verify that we will be able to restore the write
972          * access in the fast page fault path later on.
973          */
974         WARN_ONCE((spte & PT_WRITABLE_MASK) &&
975                   !spte_can_locklessly_be_made_writable(spte),
976                   "kvm: Writable SPTE is not locklessly dirty-trackable\n");
977
978         WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
979                           shadow_acc_track_saved_bits_shift),
980                   "kvm: Access Tracking saved bit locations are not zero\n");
981
982         spte |= (spte & shadow_acc_track_saved_bits_mask) <<
983                 shadow_acc_track_saved_bits_shift;
984         spte &= ~shadow_acc_track_mask;
985
986         return spte;
987 }
988
989 /* Restore an acc-track PTE back to a regular PTE */
990 static u64 restore_acc_track_spte(u64 spte)
991 {
992         u64 new_spte = spte;
993         u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
994                          & shadow_acc_track_saved_bits_mask;
995
996         WARN_ON_ONCE(spte_ad_enabled(spte));
997         WARN_ON_ONCE(!is_access_track_spte(spte));
998
999         new_spte &= ~shadow_acc_track_mask;
1000         new_spte &= ~(shadow_acc_track_saved_bits_mask <<
1001                       shadow_acc_track_saved_bits_shift);
1002         new_spte |= saved_bits;
1003
1004         return new_spte;
1005 }
1006
1007 /* Returns the Accessed status of the PTE and resets it at the same time. */
1008 static bool mmu_spte_age(u64 *sptep)
1009 {
1010         u64 spte = mmu_spte_get_lockless(sptep);
1011
1012         if (!is_accessed_spte(spte))
1013                 return false;
1014
1015         if (spte_ad_enabled(spte)) {
1016                 clear_bit((ffs(shadow_accessed_mask) - 1),
1017                           (unsigned long *)sptep);
1018         } else {
1019                 /*
1020                  * Capture the dirty status of the page, so that it doesn't get
1021                  * lost when the SPTE is marked for access tracking.
1022                  */
1023                 if (is_writable_pte(spte))
1024                         kvm_set_pfn_dirty(spte_to_pfn(spte));
1025
1026                 spte = mark_spte_for_access_track(spte);
1027                 mmu_spte_update_no_track(sptep, spte);
1028         }
1029
1030         return true;
1031 }
1032
1033 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
1034 {
1035         /*
1036          * Prevent page table teardown by making any free-er wait during
1037          * kvm_flush_remote_tlbs() IPI to all active vcpus.
1038          */
1039         local_irq_disable();
1040
1041         /*
1042          * Make sure a following spte read is not reordered ahead of the write
1043          * to vcpu->mode.
1044          */
1045         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
1046 }
1047
1048 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
1049 {
1050         /*
1051          * Make sure the write to vcpu->mode is not reordered in front of
1052          * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
1053          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
1054          */
1055         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
1056         local_irq_enable();
1057 }
1058
1059 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
1060                                   struct kmem_cache *base_cache, int min)
1061 {
1062         void *obj;
1063
1064         if (cache->nobjs >= min)
1065                 return 0;
1066         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1067                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT);
1068                 if (!obj)
1069                         return cache->nobjs >= min ? 0 : -ENOMEM;
1070                 cache->objects[cache->nobjs++] = obj;
1071         }
1072         return 0;
1073 }
1074
1075 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
1076 {
1077         return cache->nobjs;
1078 }
1079
1080 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
1081                                   struct kmem_cache *cache)
1082 {
1083         while (mc->nobjs)
1084                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
1085 }
1086
1087 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
1088                                        int min)
1089 {
1090         void *page;
1091
1092         if (cache->nobjs >= min)
1093                 return 0;
1094         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1095                 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
1096                 if (!page)
1097                         return cache->nobjs >= min ? 0 : -ENOMEM;
1098                 cache->objects[cache->nobjs++] = page;
1099         }
1100         return 0;
1101 }
1102
1103 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
1104 {
1105         while (mc->nobjs)
1106                 free_page((unsigned long)mc->objects[--mc->nobjs]);
1107 }
1108
1109 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
1110 {
1111         int r;
1112
1113         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1114                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
1115         if (r)
1116                 goto out;
1117         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
1118         if (r)
1119                 goto out;
1120         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
1121                                    mmu_page_header_cache, 4);
1122 out:
1123         return r;
1124 }
1125
1126 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1127 {
1128         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1129                                 pte_list_desc_cache);
1130         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
1131         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
1132                                 mmu_page_header_cache);
1133 }
1134
1135 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
1136 {
1137         void *p;
1138
1139         BUG_ON(!mc->nobjs);
1140         p = mc->objects[--mc->nobjs];
1141         return p;
1142 }
1143
1144 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1145 {
1146         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1147 }
1148
1149 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1150 {
1151         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1152 }
1153
1154 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1155 {
1156         if (!sp->role.direct)
1157                 return sp->gfns[index];
1158
1159         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1160 }
1161
1162 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1163 {
1164         if (!sp->role.direct) {
1165                 sp->gfns[index] = gfn;
1166                 return;
1167         }
1168
1169         if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
1170                 pr_err_ratelimited("gfn mismatch under direct page %llx "
1171                                    "(expected %llx, got %llx)\n",
1172                                    sp->gfn,
1173                                    kvm_mmu_page_get_gfn(sp, index), gfn);
1174 }
1175
1176 /*
1177  * Return the pointer to the large page information for a given gfn,
1178  * handling slots that are not large page aligned.
1179  */
1180 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1181                                               struct kvm_memory_slot *slot,
1182                                               int level)
1183 {
1184         unsigned long idx;
1185
1186         idx = gfn_to_index(gfn, slot->base_gfn, level);
1187         return &slot->arch.lpage_info[level - 2][idx];
1188 }
1189
1190 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1191                                             gfn_t gfn, int count)
1192 {
1193         struct kvm_lpage_info *linfo;
1194         int i;
1195
1196         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1197                 linfo = lpage_info_slot(gfn, slot, i);
1198                 linfo->disallow_lpage += count;
1199                 WARN_ON(linfo->disallow_lpage < 0);
1200         }
1201 }
1202
1203 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1204 {
1205         update_gfn_disallow_lpage_count(slot, gfn, 1);
1206 }
1207
1208 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1209 {
1210         update_gfn_disallow_lpage_count(slot, gfn, -1);
1211 }
1212
1213 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1214 {
1215         struct kvm_memslots *slots;
1216         struct kvm_memory_slot *slot;
1217         gfn_t gfn;
1218
1219         kvm->arch.indirect_shadow_pages++;
1220         gfn = sp->gfn;
1221         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1222         slot = __gfn_to_memslot(slots, gfn);
1223
1224         /* the non-leaf shadow pages are keeping readonly. */
1225         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1226                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1227                                                     KVM_PAGE_TRACK_WRITE);
1228
1229         kvm_mmu_gfn_disallow_lpage(slot, gfn);
1230 }
1231
1232 static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1233 {
1234         if (sp->lpage_disallowed)
1235                 return;
1236
1237         ++kvm->stat.nx_lpage_splits;
1238         list_add_tail(&sp->lpage_disallowed_link,
1239                       &kvm->arch.lpage_disallowed_mmu_pages);
1240         sp->lpage_disallowed = true;
1241 }
1242
1243 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1244 {
1245         struct kvm_memslots *slots;
1246         struct kvm_memory_slot *slot;
1247         gfn_t gfn;
1248
1249         kvm->arch.indirect_shadow_pages--;
1250         gfn = sp->gfn;
1251         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1252         slot = __gfn_to_memslot(slots, gfn);
1253         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1254                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1255                                                        KVM_PAGE_TRACK_WRITE);
1256
1257         kvm_mmu_gfn_allow_lpage(slot, gfn);
1258 }
1259
1260 static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1261 {
1262         --kvm->stat.nx_lpage_splits;
1263         sp->lpage_disallowed = false;
1264         list_del(&sp->lpage_disallowed_link);
1265 }
1266
1267 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1268                                           struct kvm_memory_slot *slot)
1269 {
1270         struct kvm_lpage_info *linfo;
1271
1272         if (slot) {
1273                 linfo = lpage_info_slot(gfn, slot, level);
1274                 return !!linfo->disallow_lpage;
1275         }
1276
1277         return true;
1278 }
1279
1280 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1281                                         int level)
1282 {
1283         struct kvm_memory_slot *slot;
1284
1285         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1286         return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1287 }
1288
1289 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
1290 {
1291         unsigned long page_size;
1292         int i, ret = 0;
1293
1294         page_size = kvm_host_page_size(kvm, gfn);
1295
1296         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1297                 if (page_size >= KVM_HPAGE_SIZE(i))
1298                         ret = i;
1299                 else
1300                         break;
1301         }
1302
1303         return ret;
1304 }
1305
1306 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1307                                           bool no_dirty_log)
1308 {
1309         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1310                 return false;
1311         if (no_dirty_log && slot->dirty_bitmap)
1312                 return false;
1313
1314         return true;
1315 }
1316
1317 static struct kvm_memory_slot *
1318 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1319                             bool no_dirty_log)
1320 {
1321         struct kvm_memory_slot *slot;
1322
1323         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1324         if (!memslot_valid_for_gpte(slot, no_dirty_log))
1325                 slot = NULL;
1326
1327         return slot;
1328 }
1329
1330 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1331                          bool *force_pt_level)
1332 {
1333         int host_level, level, max_level;
1334         struct kvm_memory_slot *slot;
1335
1336         if (unlikely(*force_pt_level))
1337                 return PT_PAGE_TABLE_LEVEL;
1338
1339         slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1340         *force_pt_level = !memslot_valid_for_gpte(slot, true);
1341         if (unlikely(*force_pt_level))
1342                 return PT_PAGE_TABLE_LEVEL;
1343
1344         host_level = host_mapping_level(vcpu->kvm, large_gfn);
1345
1346         if (host_level == PT_PAGE_TABLE_LEVEL)
1347                 return host_level;
1348
1349         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1350
1351         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1352                 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1353                         break;
1354
1355         return level - 1;
1356 }
1357
1358 /*
1359  * About rmap_head encoding:
1360  *
1361  * If the bit zero of rmap_head->val is clear, then it points to the only spte
1362  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1363  * pte_list_desc containing more mappings.
1364  */
1365
1366 /*
1367  * Returns the number of pointers in the rmap chain, not counting the new one.
1368  */
1369 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1370                         struct kvm_rmap_head *rmap_head)
1371 {
1372         struct pte_list_desc *desc;
1373         int i, count = 0;
1374
1375         if (!rmap_head->val) {
1376                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1377                 rmap_head->val = (unsigned long)spte;
1378         } else if (!(rmap_head->val & 1)) {
1379                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1380                 desc = mmu_alloc_pte_list_desc(vcpu);
1381                 desc->sptes[0] = (u64 *)rmap_head->val;
1382                 desc->sptes[1] = spte;
1383                 rmap_head->val = (unsigned long)desc | 1;
1384                 ++count;
1385         } else {
1386                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1387                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1388                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1389                         desc = desc->more;
1390                         count += PTE_LIST_EXT;
1391                 }
1392                 if (desc->sptes[PTE_LIST_EXT-1]) {
1393                         desc->more = mmu_alloc_pte_list_desc(vcpu);
1394                         desc = desc->more;
1395                 }
1396                 for (i = 0; desc->sptes[i]; ++i)
1397                         ++count;
1398                 desc->sptes[i] = spte;
1399         }
1400         return count;
1401 }
1402
1403 static void
1404 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1405                            struct pte_list_desc *desc, int i,
1406                            struct pte_list_desc *prev_desc)
1407 {
1408         int j;
1409
1410         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1411                 ;
1412         desc->sptes[i] = desc->sptes[j];
1413         desc->sptes[j] = NULL;
1414         if (j != 0)
1415                 return;
1416         if (!prev_desc && !desc->more)
1417                 rmap_head->val = 0;
1418         else
1419                 if (prev_desc)
1420                         prev_desc->more = desc->more;
1421                 else
1422                         rmap_head->val = (unsigned long)desc->more | 1;
1423         mmu_free_pte_list_desc(desc);
1424 }
1425
1426 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1427 {
1428         struct pte_list_desc *desc;
1429         struct pte_list_desc *prev_desc;
1430         int i;
1431
1432         if (!rmap_head->val) {
1433                 pr_err("%s: %p 0->BUG\n", __func__, spte);
1434                 BUG();
1435         } else if (!(rmap_head->val & 1)) {
1436                 rmap_printk("%s:  %p 1->0\n", __func__, spte);
1437                 if ((u64 *)rmap_head->val != spte) {
1438                         pr_err("%s:  %p 1->BUG\n", __func__, spte);
1439                         BUG();
1440                 }
1441                 rmap_head->val = 0;
1442         } else {
1443                 rmap_printk("%s:  %p many->many\n", __func__, spte);
1444                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1445                 prev_desc = NULL;
1446                 while (desc) {
1447                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1448                                 if (desc->sptes[i] == spte) {
1449                                         pte_list_desc_remove_entry(rmap_head,
1450                                                         desc, i, prev_desc);
1451                                         return;
1452                                 }
1453                         }
1454                         prev_desc = desc;
1455                         desc = desc->more;
1456                 }
1457                 pr_err("%s: %p many->many\n", __func__, spte);
1458                 BUG();
1459         }
1460 }
1461
1462 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1463 {
1464         mmu_spte_clear_track_bits(sptep);
1465         __pte_list_remove(sptep, rmap_head);
1466 }
1467
1468 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1469                                            struct kvm_memory_slot *slot)
1470 {
1471         unsigned long idx;
1472
1473         idx = gfn_to_index(gfn, slot->base_gfn, level);
1474         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1475 }
1476
1477 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1478                                          struct kvm_mmu_page *sp)
1479 {
1480         struct kvm_memslots *slots;
1481         struct kvm_memory_slot *slot;
1482
1483         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1484         slot = __gfn_to_memslot(slots, gfn);
1485         return __gfn_to_rmap(gfn, sp->role.level, slot);
1486 }
1487
1488 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1489 {
1490         struct kvm_mmu_memory_cache *cache;
1491
1492         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1493         return mmu_memory_cache_free_objects(cache);
1494 }
1495
1496 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1497 {
1498         struct kvm_mmu_page *sp;
1499         struct kvm_rmap_head *rmap_head;
1500
1501         sp = page_header(__pa(spte));
1502         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1503         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1504         return pte_list_add(vcpu, spte, rmap_head);
1505 }
1506
1507 static void rmap_remove(struct kvm *kvm, u64 *spte)
1508 {
1509         struct kvm_mmu_page *sp;
1510         gfn_t gfn;
1511         struct kvm_rmap_head *rmap_head;
1512
1513         sp = page_header(__pa(spte));
1514         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1515         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1516         __pte_list_remove(spte, rmap_head);
1517 }
1518
1519 /*
1520  * Used by the following functions to iterate through the sptes linked by a
1521  * rmap.  All fields are private and not assumed to be used outside.
1522  */
1523 struct rmap_iterator {
1524         /* private fields */
1525         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1526         int pos;                        /* index of the sptep */
1527 };
1528
1529 /*
1530  * Iteration must be started by this function.  This should also be used after
1531  * removing/dropping sptes from the rmap link because in such cases the
1532  * information in the iterator may not be valid.
1533  *
1534  * Returns sptep if found, NULL otherwise.
1535  */
1536 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1537                            struct rmap_iterator *iter)
1538 {
1539         u64 *sptep;
1540
1541         if (!rmap_head->val)
1542                 return NULL;
1543
1544         if (!(rmap_head->val & 1)) {
1545                 iter->desc = NULL;
1546                 sptep = (u64 *)rmap_head->val;
1547                 goto out;
1548         }
1549
1550         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1551         iter->pos = 0;
1552         sptep = iter->desc->sptes[iter->pos];
1553 out:
1554         BUG_ON(!is_shadow_present_pte(*sptep));
1555         return sptep;
1556 }
1557
1558 /*
1559  * Must be used with a valid iterator: e.g. after rmap_get_first().
1560  *
1561  * Returns sptep if found, NULL otherwise.
1562  */
1563 static u64 *rmap_get_next(struct rmap_iterator *iter)
1564 {
1565         u64 *sptep;
1566
1567         if (iter->desc) {
1568                 if (iter->pos < PTE_LIST_EXT - 1) {
1569                         ++iter->pos;
1570                         sptep = iter->desc->sptes[iter->pos];
1571                         if (sptep)
1572                                 goto out;
1573                 }
1574
1575                 iter->desc = iter->desc->more;
1576
1577                 if (iter->desc) {
1578                         iter->pos = 0;
1579                         /* desc->sptes[0] cannot be NULL */
1580                         sptep = iter->desc->sptes[iter->pos];
1581                         goto out;
1582                 }
1583         }
1584
1585         return NULL;
1586 out:
1587         BUG_ON(!is_shadow_present_pte(*sptep));
1588         return sptep;
1589 }
1590
1591 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1592         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1593              _spte_; _spte_ = rmap_get_next(_iter_))
1594
1595 static void drop_spte(struct kvm *kvm, u64 *sptep)
1596 {
1597         if (mmu_spte_clear_track_bits(sptep))
1598                 rmap_remove(kvm, sptep);
1599 }
1600
1601
1602 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1603 {
1604         if (is_large_pte(*sptep)) {
1605                 WARN_ON(page_header(__pa(sptep))->role.level ==
1606                         PT_PAGE_TABLE_LEVEL);
1607                 drop_spte(kvm, sptep);
1608                 --kvm->stat.lpages;
1609                 return true;
1610         }
1611
1612         return false;
1613 }
1614
1615 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1616 {
1617         if (__drop_large_spte(vcpu->kvm, sptep)) {
1618                 struct kvm_mmu_page *sp = page_header(__pa(sptep));
1619
1620                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1621                         KVM_PAGES_PER_HPAGE(sp->role.level));
1622         }
1623 }
1624
1625 /*
1626  * Write-protect on the specified @sptep, @pt_protect indicates whether
1627  * spte write-protection is caused by protecting shadow page table.
1628  *
1629  * Note: write protection is difference between dirty logging and spte
1630  * protection:
1631  * - for dirty logging, the spte can be set to writable at anytime if
1632  *   its dirty bitmap is properly set.
1633  * - for spte protection, the spte can be writable only after unsync-ing
1634  *   shadow page.
1635  *
1636  * Return true if tlb need be flushed.
1637  */
1638 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1639 {
1640         u64 spte = *sptep;
1641
1642         if (!is_writable_pte(spte) &&
1643               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1644                 return false;
1645
1646         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1647
1648         if (pt_protect)
1649                 spte &= ~SPTE_MMU_WRITEABLE;
1650         spte = spte & ~PT_WRITABLE_MASK;
1651
1652         return mmu_spte_update(sptep, spte);
1653 }
1654
1655 static bool __rmap_write_protect(struct kvm *kvm,
1656                                  struct kvm_rmap_head *rmap_head,
1657                                  bool pt_protect)
1658 {
1659         u64 *sptep;
1660         struct rmap_iterator iter;
1661         bool flush = false;
1662
1663         for_each_rmap_spte(rmap_head, &iter, sptep)
1664                 flush |= spte_write_protect(sptep, pt_protect);
1665
1666         return flush;
1667 }
1668
1669 static bool spte_clear_dirty(u64 *sptep)
1670 {
1671         u64 spte = *sptep;
1672
1673         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1674
1675         MMU_WARN_ON(!spte_ad_enabled(spte));
1676         spte &= ~shadow_dirty_mask;
1677         return mmu_spte_update(sptep, spte);
1678 }
1679
1680 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1681 {
1682         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1683                                                (unsigned long *)sptep);
1684         if (was_writable && !spte_ad_enabled(*sptep))
1685                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1686
1687         return was_writable;
1688 }
1689
1690 /*
1691  * Gets the GFN ready for another round of dirty logging by clearing the
1692  *      - D bit on ad-enabled SPTEs, and
1693  *      - W bit on ad-disabled SPTEs.
1694  * Returns true iff any D or W bits were cleared.
1695  */
1696 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1697 {
1698         u64 *sptep;
1699         struct rmap_iterator iter;
1700         bool flush = false;
1701
1702         for_each_rmap_spte(rmap_head, &iter, sptep)
1703                 if (spte_ad_need_write_protect(*sptep))
1704                         flush |= spte_wrprot_for_clear_dirty(sptep);
1705                 else
1706                         flush |= spte_clear_dirty(sptep);
1707
1708         return flush;
1709 }
1710
1711 static bool spte_set_dirty(u64 *sptep)
1712 {
1713         u64 spte = *sptep;
1714
1715         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1716
1717         /*
1718          * Similar to the !kvm_x86_ops->slot_disable_log_dirty case,
1719          * do not bother adding back write access to pages marked
1720          * SPTE_AD_WRPROT_ONLY_MASK.
1721          */
1722         spte |= shadow_dirty_mask;
1723
1724         return mmu_spte_update(sptep, spte);
1725 }
1726
1727 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1728 {
1729         u64 *sptep;
1730         struct rmap_iterator iter;
1731         bool flush = false;
1732
1733         for_each_rmap_spte(rmap_head, &iter, sptep)
1734                 if (spte_ad_enabled(*sptep))
1735                         flush |= spte_set_dirty(sptep);
1736
1737         return flush;
1738 }
1739
1740 /**
1741  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1742  * @kvm: kvm instance
1743  * @slot: slot to protect
1744  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1745  * @mask: indicates which pages we should protect
1746  *
1747  * Used when we do not need to care about huge page mappings: e.g. during dirty
1748  * logging we do not have any such mappings.
1749  */
1750 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1751                                      struct kvm_memory_slot *slot,
1752                                      gfn_t gfn_offset, unsigned long mask)
1753 {
1754         struct kvm_rmap_head *rmap_head;
1755
1756         while (mask) {
1757                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1758                                           PT_PAGE_TABLE_LEVEL, slot);
1759                 __rmap_write_protect(kvm, rmap_head, false);
1760
1761                 /* clear the first set bit */
1762                 mask &= mask - 1;
1763         }
1764 }
1765
1766 /**
1767  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1768  * protect the page if the D-bit isn't supported.
1769  * @kvm: kvm instance
1770  * @slot: slot to clear D-bit
1771  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1772  * @mask: indicates which pages we should clear D-bit
1773  *
1774  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1775  */
1776 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1777                                      struct kvm_memory_slot *slot,
1778                                      gfn_t gfn_offset, unsigned long mask)
1779 {
1780         struct kvm_rmap_head *rmap_head;
1781
1782         while (mask) {
1783                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1784                                           PT_PAGE_TABLE_LEVEL, slot);
1785                 __rmap_clear_dirty(kvm, rmap_head);
1786
1787                 /* clear the first set bit */
1788                 mask &= mask - 1;
1789         }
1790 }
1791 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1792
1793 /**
1794  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1795  * PT level pages.
1796  *
1797  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1798  * enable dirty logging for them.
1799  *
1800  * Used when we do not need to care about huge page mappings: e.g. during dirty
1801  * logging we do not have any such mappings.
1802  */
1803 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1804                                 struct kvm_memory_slot *slot,
1805                                 gfn_t gfn_offset, unsigned long mask)
1806 {
1807         if (kvm_x86_ops->enable_log_dirty_pt_masked)
1808                 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1809                                 mask);
1810         else
1811                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1812 }
1813
1814 /**
1815  * kvm_arch_write_log_dirty - emulate dirty page logging
1816  * @vcpu: Guest mode vcpu
1817  *
1818  * Emulate arch specific page modification logging for the
1819  * nested hypervisor
1820  */
1821 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1822 {
1823         if (kvm_x86_ops->write_log_dirty)
1824                 return kvm_x86_ops->write_log_dirty(vcpu);
1825
1826         return 0;
1827 }
1828
1829 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1830                                     struct kvm_memory_slot *slot, u64 gfn)
1831 {
1832         struct kvm_rmap_head *rmap_head;
1833         int i;
1834         bool write_protected = false;
1835
1836         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1837                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1838                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1839         }
1840
1841         return write_protected;
1842 }
1843
1844 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1845 {
1846         struct kvm_memory_slot *slot;
1847
1848         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1849         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1850 }
1851
1852 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1853 {
1854         u64 *sptep;
1855         struct rmap_iterator iter;
1856         bool flush = false;
1857
1858         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1859                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1860
1861                 pte_list_remove(rmap_head, sptep);
1862                 flush = true;
1863         }
1864
1865         return flush;
1866 }
1867
1868 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1869                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1870                            unsigned long data)
1871 {
1872         return kvm_zap_rmapp(kvm, rmap_head);
1873 }
1874
1875 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1876                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1877                              unsigned long data)
1878 {
1879         u64 *sptep;
1880         struct rmap_iterator iter;
1881         int need_flush = 0;
1882         u64 new_spte;
1883         pte_t *ptep = (pte_t *)data;
1884         kvm_pfn_t new_pfn;
1885
1886         WARN_ON(pte_huge(*ptep));
1887         new_pfn = pte_pfn(*ptep);
1888
1889 restart:
1890         for_each_rmap_spte(rmap_head, &iter, sptep) {
1891                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1892                             sptep, *sptep, gfn, level);
1893
1894                 need_flush = 1;
1895
1896                 if (pte_write(*ptep)) {
1897                         pte_list_remove(rmap_head, sptep);
1898                         goto restart;
1899                 } else {
1900                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1901                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1902
1903                         new_spte &= ~PT_WRITABLE_MASK;
1904                         new_spte &= ~SPTE_HOST_WRITEABLE;
1905
1906                         new_spte = mark_spte_for_access_track(new_spte);
1907
1908                         mmu_spte_clear_track_bits(sptep);
1909                         mmu_spte_set(sptep, new_spte);
1910                 }
1911         }
1912
1913         if (need_flush && kvm_available_flush_tlb_with_range()) {
1914                 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1915                 return 0;
1916         }
1917
1918         return need_flush;
1919 }
1920
1921 struct slot_rmap_walk_iterator {
1922         /* input fields. */
1923         struct kvm_memory_slot *slot;
1924         gfn_t start_gfn;
1925         gfn_t end_gfn;
1926         int start_level;
1927         int end_level;
1928
1929         /* output fields. */
1930         gfn_t gfn;
1931         struct kvm_rmap_head *rmap;
1932         int level;
1933
1934         /* private field. */
1935         struct kvm_rmap_head *end_rmap;
1936 };
1937
1938 static void
1939 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1940 {
1941         iterator->level = level;
1942         iterator->gfn = iterator->start_gfn;
1943         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1944         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1945                                            iterator->slot);
1946 }
1947
1948 static void
1949 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1950                     struct kvm_memory_slot *slot, int start_level,
1951                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1952 {
1953         iterator->slot = slot;
1954         iterator->start_level = start_level;
1955         iterator->end_level = end_level;
1956         iterator->start_gfn = start_gfn;
1957         iterator->end_gfn = end_gfn;
1958
1959         rmap_walk_init_level(iterator, iterator->start_level);
1960 }
1961
1962 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1963 {
1964         return !!iterator->rmap;
1965 }
1966
1967 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1968 {
1969         if (++iterator->rmap <= iterator->end_rmap) {
1970                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1971                 return;
1972         }
1973
1974         if (++iterator->level > iterator->end_level) {
1975                 iterator->rmap = NULL;
1976                 return;
1977         }
1978
1979         rmap_walk_init_level(iterator, iterator->level);
1980 }
1981
1982 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1983            _start_gfn, _end_gfn, _iter_)                                \
1984         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1985                                  _end_level_, _start_gfn, _end_gfn);    \
1986              slot_rmap_walk_okay(_iter_);                               \
1987              slot_rmap_walk_next(_iter_))
1988
1989 static int kvm_handle_hva_range(struct kvm *kvm,
1990                                 unsigned long start,
1991                                 unsigned long end,
1992                                 unsigned long data,
1993                                 int (*handler)(struct kvm *kvm,
1994                                                struct kvm_rmap_head *rmap_head,
1995                                                struct kvm_memory_slot *slot,
1996                                                gfn_t gfn,
1997                                                int level,
1998                                                unsigned long data))
1999 {
2000         struct kvm_memslots *slots;
2001         struct kvm_memory_slot *memslot;
2002         struct slot_rmap_walk_iterator iterator;
2003         int ret = 0;
2004         int i;
2005
2006         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
2007                 slots = __kvm_memslots(kvm, i);
2008                 kvm_for_each_memslot(memslot, slots) {
2009                         unsigned long hva_start, hva_end;
2010                         gfn_t gfn_start, gfn_end;
2011
2012                         hva_start = max(start, memslot->userspace_addr);
2013                         hva_end = min(end, memslot->userspace_addr +
2014                                       (memslot->npages << PAGE_SHIFT));
2015                         if (hva_start >= hva_end)
2016                                 continue;
2017                         /*
2018                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
2019                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
2020                          */
2021                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
2022                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
2023
2024                         for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
2025                                                  PT_MAX_HUGEPAGE_LEVEL,
2026                                                  gfn_start, gfn_end - 1,
2027                                                  &iterator)
2028                                 ret |= handler(kvm, iterator.rmap, memslot,
2029                                                iterator.gfn, iterator.level, data);
2030                 }
2031         }
2032
2033         return ret;
2034 }
2035
2036 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
2037                           unsigned long data,
2038                           int (*handler)(struct kvm *kvm,
2039                                          struct kvm_rmap_head *rmap_head,
2040                                          struct kvm_memory_slot *slot,
2041                                          gfn_t gfn, int level,
2042                                          unsigned long data))
2043 {
2044         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
2045 }
2046
2047 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
2048 {
2049         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
2050 }
2051
2052 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
2053 {
2054         return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
2055 }
2056
2057 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
2058                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
2059                          unsigned long data)
2060 {
2061         u64 *sptep;
2062         struct rmap_iterator uninitialized_var(iter);
2063         int young = 0;
2064
2065         for_each_rmap_spte(rmap_head, &iter, sptep)
2066                 young |= mmu_spte_age(sptep);
2067
2068         trace_kvm_age_page(gfn, level, slot, young);
2069         return young;
2070 }
2071
2072 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
2073                               struct kvm_memory_slot *slot, gfn_t gfn,
2074                               int level, unsigned long data)
2075 {
2076         u64 *sptep;
2077         struct rmap_iterator iter;
2078
2079         for_each_rmap_spte(rmap_head, &iter, sptep)
2080                 if (is_accessed_spte(*sptep))
2081                         return 1;
2082         return 0;
2083 }
2084
2085 #define RMAP_RECYCLE_THRESHOLD 1000
2086
2087 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
2088 {
2089         struct kvm_rmap_head *rmap_head;
2090         struct kvm_mmu_page *sp;
2091
2092         sp = page_header(__pa(spte));
2093
2094         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
2095
2096         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
2097         kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
2098                         KVM_PAGES_PER_HPAGE(sp->role.level));
2099 }
2100
2101 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
2102 {
2103         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
2104 }
2105
2106 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2107 {
2108         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
2109 }
2110
2111 #ifdef MMU_DEBUG
2112 static int is_empty_shadow_page(u64 *spt)
2113 {
2114         u64 *pos;
2115         u64 *end;
2116
2117         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
2118                 if (is_shadow_present_pte(*pos)) {
2119                         printk(KERN_ERR "%s: %p %llx\n", __func__,
2120                                pos, *pos);
2121                         return 0;
2122                 }
2123         return 1;
2124 }
2125 #endif
2126
2127 /*
2128  * This value is the sum of all of the kvm instances's
2129  * kvm->arch.n_used_mmu_pages values.  We need a global,
2130  * aggregate version in order to make the slab shrinker
2131  * faster
2132  */
2133 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
2134 {
2135         kvm->arch.n_used_mmu_pages += nr;
2136         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2137 }
2138
2139 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
2140 {
2141         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
2142         hlist_del(&sp->hash_link);
2143         list_del(&sp->link);
2144         free_page((unsigned long)sp->spt);
2145         if (!sp->role.direct)
2146                 free_page((unsigned long)sp->gfns);
2147         kmem_cache_free(mmu_page_header_cache, sp);
2148 }
2149
2150 static unsigned kvm_page_table_hashfn(gfn_t gfn)
2151 {
2152         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
2153 }
2154
2155 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
2156                                     struct kvm_mmu_page *sp, u64 *parent_pte)
2157 {
2158         if (!parent_pte)
2159                 return;
2160
2161         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
2162 }
2163
2164 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
2165                                        u64 *parent_pte)
2166 {
2167         __pte_list_remove(parent_pte, &sp->parent_ptes);
2168 }
2169
2170 static void drop_parent_pte(struct kvm_mmu_page *sp,
2171                             u64 *parent_pte)
2172 {
2173         mmu_page_remove_parent_pte(sp, parent_pte);
2174         mmu_spte_clear_no_track(parent_pte);
2175 }
2176
2177 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
2178 {
2179         struct kvm_mmu_page *sp;
2180
2181         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2182         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2183         if (!direct)
2184                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2185         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2186
2187         /*
2188          * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2189          * depends on valid pages being added to the head of the list.  See
2190          * comments in kvm_zap_obsolete_pages().
2191          */
2192         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2193         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
2194         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2195         return sp;
2196 }
2197
2198 static void mark_unsync(u64 *spte);
2199 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2200 {
2201         u64 *sptep;
2202         struct rmap_iterator iter;
2203
2204         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2205                 mark_unsync(sptep);
2206         }
2207 }
2208
2209 static void mark_unsync(u64 *spte)
2210 {
2211         struct kvm_mmu_page *sp;
2212         unsigned int index;
2213
2214         sp = page_header(__pa(spte));
2215         index = spte - sp->spt;
2216         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2217                 return;
2218         if (sp->unsync_children++)
2219                 return;
2220         kvm_mmu_mark_parents_unsync(sp);
2221 }
2222
2223 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2224                                struct kvm_mmu_page *sp)
2225 {
2226         return 0;
2227 }
2228
2229 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
2230 {
2231 }
2232
2233 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2234                                  struct kvm_mmu_page *sp, u64 *spte,
2235                                  const void *pte)
2236 {
2237         WARN_ON(1);
2238 }
2239
2240 #define KVM_PAGE_ARRAY_NR 16
2241
2242 struct kvm_mmu_pages {
2243         struct mmu_page_and_offset {
2244                 struct kvm_mmu_page *sp;
2245                 unsigned int idx;
2246         } page[KVM_PAGE_ARRAY_NR];
2247         unsigned int nr;
2248 };
2249
2250 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2251                          int idx)
2252 {
2253         int i;
2254
2255         if (sp->unsync)
2256                 for (i=0; i < pvec->nr; i++)
2257                         if (pvec->page[i].sp == sp)
2258                                 return 0;
2259
2260         pvec->page[pvec->nr].sp = sp;
2261         pvec->page[pvec->nr].idx = idx;
2262         pvec->nr++;
2263         return (pvec->nr == KVM_PAGE_ARRAY_NR);
2264 }
2265
2266 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2267 {
2268         --sp->unsync_children;
2269         WARN_ON((int)sp->unsync_children < 0);
2270         __clear_bit(idx, sp->unsync_child_bitmap);
2271 }
2272
2273 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2274                            struct kvm_mmu_pages *pvec)
2275 {
2276         int i, ret, nr_unsync_leaf = 0;
2277
2278         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2279                 struct kvm_mmu_page *child;
2280                 u64 ent = sp->spt[i];
2281
2282                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2283                         clear_unsync_child_bit(sp, i);
2284                         continue;
2285                 }
2286
2287                 child = page_header(ent & PT64_BASE_ADDR_MASK);
2288
2289                 if (child->unsync_children) {
2290                         if (mmu_pages_add(pvec, child, i))
2291                                 return -ENOSPC;
2292
2293                         ret = __mmu_unsync_walk(child, pvec);
2294                         if (!ret) {
2295                                 clear_unsync_child_bit(sp, i);
2296                                 continue;
2297                         } else if (ret > 0) {
2298                                 nr_unsync_leaf += ret;
2299                         } else
2300                                 return ret;
2301                 } else if (child->unsync) {
2302                         nr_unsync_leaf++;
2303                         if (mmu_pages_add(pvec, child, i))
2304                                 return -ENOSPC;
2305                 } else
2306                         clear_unsync_child_bit(sp, i);
2307         }
2308
2309         return nr_unsync_leaf;
2310 }
2311
2312 #define INVALID_INDEX (-1)
2313
2314 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2315                            struct kvm_mmu_pages *pvec)
2316 {
2317         pvec->nr = 0;
2318         if (!sp->unsync_children)
2319                 return 0;
2320
2321         mmu_pages_add(pvec, sp, INVALID_INDEX);
2322         return __mmu_unsync_walk(sp, pvec);
2323 }
2324
2325 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2326 {
2327         WARN_ON(!sp->unsync);
2328         trace_kvm_mmu_sync_page(sp);
2329         sp->unsync = 0;
2330         --kvm->stat.mmu_unsync;
2331 }
2332
2333 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2334                                      struct list_head *invalid_list);
2335 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2336                                     struct list_head *invalid_list);
2337
2338
2339 #define for_each_valid_sp(_kvm, _sp, _gfn)                              \
2340         hlist_for_each_entry(_sp,                                       \
2341           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2342                 if (is_obsolete_sp((_kvm), (_sp))) {                    \
2343                 } else
2344
2345 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
2346         for_each_valid_sp(_kvm, _sp, _gfn)                              \
2347                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2348
2349 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
2350 {
2351         return sp->role.cr0_wp && sp->role.smap_andnot_wp;
2352 }
2353
2354 /* @sp->gfn should be write-protected at the call site */
2355 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2356                             struct list_head *invalid_list)
2357 {
2358         if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
2359             vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
2360                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2361                 return false;
2362         }
2363
2364         return true;
2365 }
2366
2367 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
2368                                         struct list_head *invalid_list,
2369                                         bool remote_flush)
2370 {
2371         if (!remote_flush && list_empty(invalid_list))
2372                 return false;
2373
2374         if (!list_empty(invalid_list))
2375                 kvm_mmu_commit_zap_page(kvm, invalid_list);
2376         else
2377                 kvm_flush_remote_tlbs(kvm);
2378         return true;
2379 }
2380
2381 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2382                                  struct list_head *invalid_list,
2383                                  bool remote_flush, bool local_flush)
2384 {
2385         if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
2386                 return;
2387
2388         if (local_flush)
2389                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2390 }
2391
2392 #ifdef CONFIG_KVM_MMU_AUDIT
2393 #include "mmu_audit.c"
2394 #else
2395 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2396 static void mmu_audit_disable(void) { }
2397 #endif
2398
2399 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2400 {
2401         return sp->role.invalid ||
2402                unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2403 }
2404
2405 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2406                          struct list_head *invalid_list)
2407 {
2408         kvm_unlink_unsync_page(vcpu->kvm, sp);
2409         return __kvm_sync_page(vcpu, sp, invalid_list);
2410 }
2411
2412 /* @gfn should be write-protected at the call site */
2413 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2414                            struct list_head *invalid_list)
2415 {
2416         struct kvm_mmu_page *s;
2417         bool ret = false;
2418
2419         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2420                 if (!s->unsync)
2421                         continue;
2422
2423                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2424                 ret |= kvm_sync_page(vcpu, s, invalid_list);
2425         }
2426
2427         return ret;
2428 }
2429
2430 struct mmu_page_path {
2431         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2432         unsigned int idx[PT64_ROOT_MAX_LEVEL];
2433 };
2434
2435 #define for_each_sp(pvec, sp, parents, i)                       \
2436                 for (i = mmu_pages_first(&pvec, &parents);      \
2437                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
2438                         i = mmu_pages_next(&pvec, &parents, i))
2439
2440 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2441                           struct mmu_page_path *parents,
2442                           int i)
2443 {
2444         int n;
2445
2446         for (n = i+1; n < pvec->nr; n++) {
2447                 struct kvm_mmu_page *sp = pvec->page[n].sp;
2448                 unsigned idx = pvec->page[n].idx;
2449                 int level = sp->role.level;
2450
2451                 parents->idx[level-1] = idx;
2452                 if (level == PT_PAGE_TABLE_LEVEL)
2453                         break;
2454
2455                 parents->parent[level-2] = sp;
2456         }
2457
2458         return n;
2459 }
2460
2461 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2462                            struct mmu_page_path *parents)
2463 {
2464         struct kvm_mmu_page *sp;
2465         int level;
2466
2467         if (pvec->nr == 0)
2468                 return 0;
2469
2470         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2471
2472         sp = pvec->page[0].sp;
2473         level = sp->role.level;
2474         WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2475
2476         parents->parent[level-2] = sp;
2477
2478         /* Also set up a sentinel.  Further entries in pvec are all
2479          * children of sp, so this element is never overwritten.
2480          */
2481         parents->parent[level-1] = NULL;
2482         return mmu_pages_next(pvec, parents, 0);
2483 }
2484
2485 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2486 {
2487         struct kvm_mmu_page *sp;
2488         unsigned int level = 0;
2489
2490         do {
2491                 unsigned int idx = parents->idx[level];
2492                 sp = parents->parent[level];
2493                 if (!sp)
2494                         return;
2495
2496                 WARN_ON(idx == INVALID_INDEX);
2497                 clear_unsync_child_bit(sp, idx);
2498                 level++;
2499         } while (!sp->unsync_children);
2500 }
2501
2502 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2503                               struct kvm_mmu_page *parent)
2504 {
2505         int i;
2506         struct kvm_mmu_page *sp;
2507         struct mmu_page_path parents;
2508         struct kvm_mmu_pages pages;
2509         LIST_HEAD(invalid_list);
2510         bool flush = false;
2511
2512         while (mmu_unsync_walk(parent, &pages)) {
2513                 bool protected = false;
2514
2515                 for_each_sp(pages, sp, parents, i)
2516                         protected |= rmap_write_protect(vcpu, sp->gfn);
2517
2518                 if (protected) {
2519                         kvm_flush_remote_tlbs(vcpu->kvm);
2520                         flush = false;
2521                 }
2522
2523                 for_each_sp(pages, sp, parents, i) {
2524                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2525                         mmu_pages_clear_parents(&parents);
2526                 }
2527                 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2528                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2529                         cond_resched_lock(&vcpu->kvm->mmu_lock);
2530                         flush = false;
2531                 }
2532         }
2533
2534         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2535 }
2536
2537 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2538 {
2539         atomic_set(&sp->write_flooding_count,  0);
2540 }
2541
2542 static void clear_sp_write_flooding_count(u64 *spte)
2543 {
2544         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2545
2546         __clear_sp_write_flooding_count(sp);
2547 }
2548
2549 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2550                                              gfn_t gfn,
2551                                              gva_t gaddr,
2552                                              unsigned level,
2553                                              int direct,
2554                                              unsigned access)
2555 {
2556         union kvm_mmu_page_role role;
2557         unsigned quadrant;
2558         struct kvm_mmu_page *sp;
2559         bool need_sync = false;
2560         bool flush = false;
2561         int collisions = 0;
2562         LIST_HEAD(invalid_list);
2563
2564         role = vcpu->arch.mmu->mmu_role.base;
2565         role.level = level;
2566         role.direct = direct;
2567         if (role.direct)
2568                 role.gpte_is_8_bytes = true;
2569         role.access = access;
2570         if (!vcpu->arch.mmu->direct_map
2571             && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2572                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2573                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2574                 role.quadrant = quadrant;
2575         }
2576         for_each_valid_sp(vcpu->kvm, sp, gfn) {
2577                 if (sp->gfn != gfn) {
2578                         collisions++;
2579                         continue;
2580                 }
2581
2582                 if (!need_sync && sp->unsync)
2583                         need_sync = true;
2584
2585                 if (sp->role.word != role.word)
2586                         continue;
2587
2588                 if (sp->unsync) {
2589                         /* The page is good, but __kvm_sync_page might still end
2590                          * up zapping it.  If so, break in order to rebuild it.
2591                          */
2592                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2593                                 break;
2594
2595                         WARN_ON(!list_empty(&invalid_list));
2596                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2597                 }
2598
2599                 if (sp->unsync_children)
2600                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2601
2602                 __clear_sp_write_flooding_count(sp);
2603                 trace_kvm_mmu_get_page(sp, false);
2604                 goto out;
2605         }
2606
2607         ++vcpu->kvm->stat.mmu_cache_miss;
2608
2609         sp = kvm_mmu_alloc_page(vcpu, direct);
2610
2611         sp->gfn = gfn;
2612         sp->role = role;
2613         hlist_add_head(&sp->hash_link,
2614                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2615         if (!direct) {
2616                 /*
2617                  * we should do write protection before syncing pages
2618                  * otherwise the content of the synced shadow page may
2619                  * be inconsistent with guest page table.
2620                  */
2621                 account_shadowed(vcpu->kvm, sp);
2622                 if (level == PT_PAGE_TABLE_LEVEL &&
2623                       rmap_write_protect(vcpu, gfn))
2624                         kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2625
2626                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2627                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2628         }
2629         clear_page(sp->spt);
2630         trace_kvm_mmu_get_page(sp, true);
2631
2632         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2633 out:
2634         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2635                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2636         return sp;
2637 }
2638
2639 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2640                                         struct kvm_vcpu *vcpu, hpa_t root,
2641                                         u64 addr)
2642 {
2643         iterator->addr = addr;
2644         iterator->shadow_addr = root;
2645         iterator->level = vcpu->arch.mmu->shadow_root_level;
2646
2647         if (iterator->level == PT64_ROOT_4LEVEL &&
2648             vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2649             !vcpu->arch.mmu->direct_map)
2650                 --iterator->level;
2651
2652         if (iterator->level == PT32E_ROOT_LEVEL) {
2653                 /*
2654                  * prev_root is currently only used for 64-bit hosts. So only
2655                  * the active root_hpa is valid here.
2656                  */
2657                 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2658
2659                 iterator->shadow_addr
2660                         = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2661                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2662                 --iterator->level;
2663                 if (!iterator->shadow_addr)
2664                         iterator->level = 0;
2665         }
2666 }
2667
2668 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2669                              struct kvm_vcpu *vcpu, u64 addr)
2670 {
2671         shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2672                                     addr);
2673 }
2674
2675 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2676 {
2677         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2678                 return false;
2679
2680         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2681         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2682         return true;
2683 }
2684
2685 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2686                                u64 spte)
2687 {
2688         if (is_last_spte(spte, iterator->level)) {
2689                 iterator->level = 0;
2690                 return;
2691         }
2692
2693         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2694         --iterator->level;
2695 }
2696
2697 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2698 {
2699         __shadow_walk_next(iterator, *iterator->sptep);
2700 }
2701
2702 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2703                              struct kvm_mmu_page *sp)
2704 {
2705         u64 spte;
2706
2707         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2708
2709         spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2710                shadow_user_mask | shadow_x_mask | shadow_me_mask;
2711
2712         if (sp_ad_disabled(sp))
2713                 spte |= SPTE_AD_DISABLED_MASK;
2714         else
2715                 spte |= shadow_accessed_mask;
2716
2717         mmu_spte_set(sptep, spte);
2718
2719         mmu_page_add_parent_pte(vcpu, sp, sptep);
2720
2721         if (sp->unsync_children || sp->unsync)
2722                 mark_unsync(sptep);
2723 }
2724
2725 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2726                                    unsigned direct_access)
2727 {
2728         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2729                 struct kvm_mmu_page *child;
2730
2731                 /*
2732                  * For the direct sp, if the guest pte's dirty bit
2733                  * changed form clean to dirty, it will corrupt the
2734                  * sp's access: allow writable in the read-only sp,
2735                  * so we should update the spte at this point to get
2736                  * a new sp with the correct access.
2737                  */
2738                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2739                 if (child->role.access == direct_access)
2740                         return;
2741
2742                 drop_parent_pte(child, sptep);
2743                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2744         }
2745 }
2746
2747 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2748                              u64 *spte)
2749 {
2750         u64 pte;
2751         struct kvm_mmu_page *child;
2752
2753         pte = *spte;
2754         if (is_shadow_present_pte(pte)) {
2755                 if (is_last_spte(pte, sp->role.level)) {
2756                         drop_spte(kvm, spte);
2757                         if (is_large_pte(pte))
2758                                 --kvm->stat.lpages;
2759                 } else {
2760                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2761                         drop_parent_pte(child, spte);
2762                 }
2763                 return true;
2764         }
2765
2766         if (is_mmio_spte(pte))
2767                 mmu_spte_clear_no_track(spte);
2768
2769         return false;
2770 }
2771
2772 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2773                                          struct kvm_mmu_page *sp)
2774 {
2775         unsigned i;
2776
2777         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2778                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2779 }
2780
2781 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2782 {
2783         u64 *sptep;
2784         struct rmap_iterator iter;
2785
2786         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2787                 drop_parent_pte(sp, sptep);
2788 }
2789
2790 static int mmu_zap_unsync_children(struct kvm *kvm,
2791                                    struct kvm_mmu_page *parent,
2792                                    struct list_head *invalid_list)
2793 {
2794         int i, zapped = 0;
2795         struct mmu_page_path parents;
2796         struct kvm_mmu_pages pages;
2797
2798         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2799                 return 0;
2800
2801         while (mmu_unsync_walk(parent, &pages)) {
2802                 struct kvm_mmu_page *sp;
2803
2804                 for_each_sp(pages, sp, parents, i) {
2805                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2806                         mmu_pages_clear_parents(&parents);
2807                         zapped++;
2808                 }
2809         }
2810
2811         return zapped;
2812 }
2813
2814 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2815                                        struct kvm_mmu_page *sp,
2816                                        struct list_head *invalid_list,
2817                                        int *nr_zapped)
2818 {
2819         bool list_unstable;
2820
2821         trace_kvm_mmu_prepare_zap_page(sp);
2822         ++kvm->stat.mmu_shadow_zapped;
2823         *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2824         kvm_mmu_page_unlink_children(kvm, sp);
2825         kvm_mmu_unlink_parents(kvm, sp);
2826
2827         /* Zapping children means active_mmu_pages has become unstable. */
2828         list_unstable = *nr_zapped;
2829
2830         if (!sp->role.invalid && !sp->role.direct)
2831                 unaccount_shadowed(kvm, sp);
2832
2833         if (sp->unsync)
2834                 kvm_unlink_unsync_page(kvm, sp);
2835         if (!sp->root_count) {
2836                 /* Count self */
2837                 (*nr_zapped)++;
2838                 list_move(&sp->link, invalid_list);
2839                 kvm_mod_used_mmu_pages(kvm, -1);
2840         } else {
2841                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2842
2843                 /*
2844                  * Obsolete pages cannot be used on any vCPUs, see the comment
2845                  * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2846                  * treats invalid shadow pages as being obsolete.
2847                  */
2848                 if (!is_obsolete_sp(kvm, sp))
2849                         kvm_reload_remote_mmus(kvm);
2850         }
2851
2852         if (sp->lpage_disallowed)
2853                 unaccount_huge_nx_page(kvm, sp);
2854
2855         sp->role.invalid = 1;
2856         return list_unstable;
2857 }
2858
2859 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2860                                      struct list_head *invalid_list)
2861 {
2862         int nr_zapped;
2863
2864         __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2865         return nr_zapped;
2866 }
2867
2868 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2869                                     struct list_head *invalid_list)
2870 {
2871         struct kvm_mmu_page *sp, *nsp;
2872
2873         if (list_empty(invalid_list))
2874                 return;
2875
2876         /*
2877          * We need to make sure everyone sees our modifications to
2878          * the page tables and see changes to vcpu->mode here. The barrier
2879          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2880          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2881          *
2882          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2883          * guest mode and/or lockless shadow page table walks.
2884          */
2885         kvm_flush_remote_tlbs(kvm);
2886
2887         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2888                 WARN_ON(!sp->role.invalid || sp->root_count);
2889                 kvm_mmu_free_page(sp);
2890         }
2891 }
2892
2893 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2894                                         struct list_head *invalid_list)
2895 {
2896         struct kvm_mmu_page *sp;
2897
2898         if (list_empty(&kvm->arch.active_mmu_pages))
2899                 return false;
2900
2901         sp = list_last_entry(&kvm->arch.active_mmu_pages,
2902                              struct kvm_mmu_page, link);
2903         return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2904 }
2905
2906 /*
2907  * Changing the number of mmu pages allocated to the vm
2908  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2909  */
2910 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2911 {
2912         LIST_HEAD(invalid_list);
2913
2914         spin_lock(&kvm->mmu_lock);
2915
2916         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2917                 /* Need to free some mmu pages to achieve the goal. */
2918                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2919                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2920                                 break;
2921
2922                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2923                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2924         }
2925
2926         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2927
2928         spin_unlock(&kvm->mmu_lock);
2929 }
2930
2931 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2932 {
2933         struct kvm_mmu_page *sp;
2934         LIST_HEAD(invalid_list);
2935         int r;
2936
2937         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2938         r = 0;
2939         spin_lock(&kvm->mmu_lock);
2940         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2941                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2942                          sp->role.word);
2943                 r = 1;
2944                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2945         }
2946         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2947         spin_unlock(&kvm->mmu_lock);
2948
2949         return r;
2950 }
2951 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2952
2953 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2954 {
2955         trace_kvm_mmu_unsync_page(sp);
2956         ++vcpu->kvm->stat.mmu_unsync;
2957         sp->unsync = 1;
2958
2959         kvm_mmu_mark_parents_unsync(sp);
2960 }
2961
2962 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2963                                    bool can_unsync)
2964 {
2965         struct kvm_mmu_page *sp;
2966
2967         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2968                 return true;
2969
2970         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2971                 if (!can_unsync)
2972                         return true;
2973
2974                 if (sp->unsync)
2975                         continue;
2976
2977                 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2978                 kvm_unsync_page(vcpu, sp);
2979         }
2980
2981         /*
2982          * We need to ensure that the marking of unsync pages is visible
2983          * before the SPTE is updated to allow writes because
2984          * kvm_mmu_sync_roots() checks the unsync flags without holding
2985          * the MMU lock and so can race with this. If the SPTE was updated
2986          * before the page had been marked as unsync-ed, something like the
2987          * following could happen:
2988          *
2989          * CPU 1                    CPU 2
2990          * ---------------------------------------------------------------------
2991          * 1.2 Host updates SPTE
2992          *     to be writable
2993          *                      2.1 Guest writes a GPTE for GVA X.
2994          *                          (GPTE being in the guest page table shadowed
2995          *                           by the SP from CPU 1.)
2996          *                          This reads SPTE during the page table walk.
2997          *                          Since SPTE.W is read as 1, there is no
2998          *                          fault.
2999          *
3000          *                      2.2 Guest issues TLB flush.
3001          *                          That causes a VM Exit.
3002          *
3003          *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
3004          *                          Since it is false, so it just returns.
3005          *
3006          *                      2.4 Guest accesses GVA X.
3007          *                          Since the mapping in the SP was not updated,
3008          *                          so the old mapping for GVA X incorrectly
3009          *                          gets used.
3010          * 1.1 Host marks SP
3011          *     as unsync
3012          *     (sp->unsync = true)
3013          *
3014          * The write barrier below ensures that 1.1 happens before 1.2 and thus
3015          * the situation in 2.4 does not arise. The implicit barrier in 2.2
3016          * pairs with this write barrier.
3017          */
3018         smp_wmb();
3019
3020         return false;
3021 }
3022
3023 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
3024 {
3025         if (pfn_valid(pfn))
3026                 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
3027                         /*
3028                          * Some reserved pages, such as those from NVDIMM
3029                          * DAX devices, are not for MMIO, and can be mapped
3030                          * with cached memory type for better performance.
3031                          * However, the above check misconceives those pages
3032                          * as MMIO, and results in KVM mapping them with UC
3033                          * memory type, which would hurt the performance.
3034                          * Therefore, we check the host memory type in addition
3035                          * and only treat UC/UC-/WC pages as MMIO.
3036                          */
3037                         (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
3038
3039         return !e820__mapped_raw_any(pfn_to_hpa(pfn),
3040                                      pfn_to_hpa(pfn + 1) - 1,
3041                                      E820_TYPE_RAM);
3042 }
3043
3044 /* Bits which may be returned by set_spte() */
3045 #define SET_SPTE_WRITE_PROTECTED_PT     BIT(0)
3046 #define SET_SPTE_NEED_REMOTE_TLB_FLUSH  BIT(1)
3047
3048 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
3049                     unsigned pte_access, int level,
3050                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
3051                     bool can_unsync, bool host_writable)
3052 {
3053         u64 spte = 0;
3054         int ret = 0;
3055         struct kvm_mmu_page *sp;
3056
3057         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
3058                 return 0;
3059
3060         sp = page_header(__pa(sptep));
3061         if (sp_ad_disabled(sp))
3062                 spte |= SPTE_AD_DISABLED_MASK;
3063         else if (kvm_vcpu_ad_need_write_protect(vcpu))
3064                 spte |= SPTE_AD_WRPROT_ONLY_MASK;
3065
3066         /*
3067          * For the EPT case, shadow_present_mask is 0 if hardware
3068          * supports exec-only page table entries.  In that case,
3069          * ACC_USER_MASK and shadow_user_mask are used to represent
3070          * read access.  See FNAME(gpte_access) in paging_tmpl.h.
3071          */
3072         spte |= shadow_present_mask;
3073         if (!speculative)
3074                 spte |= spte_shadow_accessed_mask(spte);
3075
3076         if (level > PT_PAGE_TABLE_LEVEL && (pte_access & ACC_EXEC_MASK) &&
3077             is_nx_huge_page_enabled()) {
3078                 pte_access &= ~ACC_EXEC_MASK;
3079         }
3080
3081         if (pte_access & ACC_EXEC_MASK)
3082                 spte |= shadow_x_mask;
3083         else
3084                 spte |= shadow_nx_mask;
3085
3086         if (pte_access & ACC_USER_MASK)
3087                 spte |= shadow_user_mask;
3088
3089         if (level > PT_PAGE_TABLE_LEVEL)
3090                 spte |= PT_PAGE_SIZE_MASK;
3091         if (tdp_enabled)
3092                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
3093                         kvm_is_mmio_pfn(pfn));
3094
3095         if (host_writable)
3096                 spte |= SPTE_HOST_WRITEABLE;
3097         else
3098                 pte_access &= ~ACC_WRITE_MASK;
3099
3100         if (!kvm_is_mmio_pfn(pfn))
3101                 spte |= shadow_me_mask;
3102
3103         spte |= (u64)pfn << PAGE_SHIFT;
3104
3105         if (pte_access & ACC_WRITE_MASK) {
3106
3107                 /*
3108                  * Other vcpu creates new sp in the window between
3109                  * mapping_level() and acquiring mmu-lock. We can
3110                  * allow guest to retry the access, the mapping can
3111                  * be fixed if guest refault.
3112                  */
3113                 if (level > PT_PAGE_TABLE_LEVEL &&
3114                     mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
3115                         goto done;
3116
3117                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
3118
3119                 /*
3120                  * Optimization: for pte sync, if spte was writable the hash
3121                  * lookup is unnecessary (and expensive). Write protection
3122                  * is responsibility of mmu_get_page / kvm_sync_page.
3123                  * Same reasoning can be applied to dirty page accounting.
3124                  */
3125                 if (!can_unsync && is_writable_pte(*sptep))
3126                         goto set_pte;
3127
3128                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
3129                         pgprintk("%s: found shadow page for %llx, marking ro\n",
3130                                  __func__, gfn);
3131                         ret |= SET_SPTE_WRITE_PROTECTED_PT;
3132                         pte_access &= ~ACC_WRITE_MASK;
3133                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
3134                 }
3135         }
3136
3137         if (pte_access & ACC_WRITE_MASK) {
3138                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3139                 spte |= spte_shadow_dirty_mask(spte);
3140         }
3141
3142         if (speculative)
3143                 spte = mark_spte_for_access_track(spte);
3144
3145 set_pte:
3146         if (mmu_spte_update(sptep, spte))
3147                 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
3148 done:
3149         return ret;
3150 }
3151
3152 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
3153                         int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
3154                         bool speculative, bool host_writable)
3155 {
3156         int was_rmapped = 0;
3157         int rmap_count;
3158         int set_spte_ret;
3159         int ret = RET_PF_RETRY;
3160         bool flush = false;
3161
3162         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
3163                  *sptep, write_fault, gfn);
3164
3165         if (is_shadow_present_pte(*sptep)) {
3166                 /*
3167                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3168                  * the parent of the now unreachable PTE.
3169                  */
3170                 if (level > PT_PAGE_TABLE_LEVEL &&
3171                     !is_large_pte(*sptep)) {
3172                         struct kvm_mmu_page *child;
3173                         u64 pte = *sptep;
3174
3175                         child = page_header(pte & PT64_BASE_ADDR_MASK);
3176                         drop_parent_pte(child, sptep);
3177                         flush = true;
3178                 } else if (pfn != spte_to_pfn(*sptep)) {
3179                         pgprintk("hfn old %llx new %llx\n",
3180                                  spte_to_pfn(*sptep), pfn);
3181                         drop_spte(vcpu->kvm, sptep);
3182                         flush = true;
3183                 } else
3184                         was_rmapped = 1;
3185         }
3186
3187         set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
3188                                 speculative, true, host_writable);
3189         if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
3190                 if (write_fault)
3191                         ret = RET_PF_EMULATE;
3192                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3193         }
3194
3195         if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
3196                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
3197                                 KVM_PAGES_PER_HPAGE(level));
3198
3199         if (unlikely(is_mmio_spte(*sptep)))
3200                 ret = RET_PF_EMULATE;
3201
3202         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
3203         trace_kvm_mmu_set_spte(level, gfn, sptep);
3204         if (!was_rmapped && is_large_pte(*sptep))
3205                 ++vcpu->kvm->stat.lpages;
3206
3207         if (is_shadow_present_pte(*sptep)) {
3208                 if (!was_rmapped) {
3209                         rmap_count = rmap_add(vcpu, sptep, gfn);
3210                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3211                                 rmap_recycle(vcpu, sptep, gfn);
3212                 }
3213         }
3214
3215         return ret;
3216 }
3217
3218 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
3219                                      bool no_dirty_log)
3220 {
3221         struct kvm_memory_slot *slot;
3222
3223         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3224         if (!slot)
3225                 return KVM_PFN_ERR_FAULT;
3226
3227         return gfn_to_pfn_memslot_atomic(slot, gfn);
3228 }
3229
3230 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3231                                     struct kvm_mmu_page *sp,
3232                                     u64 *start, u64 *end)
3233 {
3234         struct page *pages[PTE_PREFETCH_NUM];
3235         struct kvm_memory_slot *slot;
3236         unsigned access = sp->role.access;
3237         int i, ret;
3238         gfn_t gfn;
3239
3240         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3241         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3242         if (!slot)
3243                 return -1;
3244
3245         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3246         if (ret <= 0)
3247                 return -1;
3248
3249         for (i = 0; i < ret; i++, gfn++, start++) {
3250                 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3251                              page_to_pfn(pages[i]), true, true);
3252                 put_page(pages[i]);
3253         }
3254
3255         return 0;
3256 }
3257
3258 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3259                                   struct kvm_mmu_page *sp, u64 *sptep)
3260 {
3261         u64 *spte, *start = NULL;
3262         int i;
3263
3264         WARN_ON(!sp->role.direct);
3265
3266         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3267         spte = sp->spt + i;
3268
3269         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3270                 if (is_shadow_present_pte(*spte) || spte == sptep) {
3271                         if (!start)
3272                                 continue;
3273                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3274                                 break;
3275                         start = NULL;
3276                 } else if (!start)
3277                         start = spte;
3278         }
3279 }
3280
3281 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3282 {
3283         struct kvm_mmu_page *sp;
3284
3285         sp = page_header(__pa(sptep));
3286
3287         /*
3288          * Without accessed bits, there's no way to distinguish between
3289          * actually accessed translations and prefetched, so disable pte
3290          * prefetch if accessed bits aren't available.
3291          */
3292         if (sp_ad_disabled(sp))
3293                 return;
3294
3295         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3296                 return;
3297
3298         __direct_pte_prefetch(vcpu, sp, sptep);
3299 }
3300
3301 static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
3302                                        gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
3303 {
3304         int level = *levelp;
3305         u64 spte = *it.sptep;
3306
3307         if (it.level == level && level > PT_PAGE_TABLE_LEVEL &&
3308             is_nx_huge_page_enabled() &&
3309             is_shadow_present_pte(spte) &&
3310             !is_large_pte(spte)) {
3311                 /*
3312                  * A small SPTE exists for this pfn, but FNAME(fetch)
3313                  * and __direct_map would like to create a large PTE
3314                  * instead: just force them to go down another level,
3315                  * patching back for them into pfn the next 9 bits of
3316                  * the address.
3317                  */
3318                 u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
3319                 *pfnp |= gfn & page_mask;
3320                 (*levelp)--;
3321         }
3322 }
3323
3324 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
3325                         int map_writable, int level, kvm_pfn_t pfn,
3326                         bool prefault, bool lpage_disallowed)
3327 {
3328         struct kvm_shadow_walk_iterator it;
3329         struct kvm_mmu_page *sp;
3330         int ret;
3331         gfn_t gfn = gpa >> PAGE_SHIFT;
3332         gfn_t base_gfn = gfn;
3333
3334         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3335                 return RET_PF_RETRY;
3336
3337         trace_kvm_mmu_spte_requested(gpa, level, pfn);
3338         for_each_shadow_entry(vcpu, gpa, it) {
3339                 /*
3340                  * We cannot overwrite existing page tables with an NX
3341                  * large page, as the leaf could be executable.
3342                  */
3343                 disallowed_hugepage_adjust(it, gfn, &pfn, &level);
3344
3345                 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3346                 if (it.level == level)
3347                         break;
3348
3349                 drop_large_spte(vcpu, it.sptep);
3350                 if (!is_shadow_present_pte(*it.sptep)) {
3351                         sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
3352                                               it.level - 1, true, ACC_ALL);
3353
3354                         link_shadow_page(vcpu, it.sptep, sp);
3355                         if (lpage_disallowed)
3356                                 account_huge_nx_page(vcpu->kvm, sp);
3357                 }
3358         }
3359
3360         ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3361                            write, level, base_gfn, pfn, prefault,
3362                            map_writable);
3363         direct_pte_prefetch(vcpu, it.sptep);
3364         ++vcpu->stat.pf_fixed;
3365         return ret;
3366 }
3367
3368 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3369 {
3370         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3371 }
3372
3373 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3374 {
3375         /*
3376          * Do not cache the mmio info caused by writing the readonly gfn
3377          * into the spte otherwise read access on readonly gfn also can
3378          * caused mmio page fault and treat it as mmio access.
3379          */
3380         if (pfn == KVM_PFN_ERR_RO_FAULT)
3381                 return RET_PF_EMULATE;
3382
3383         if (pfn == KVM_PFN_ERR_HWPOISON) {
3384                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3385                 return RET_PF_RETRY;
3386         }
3387
3388         return -EFAULT;
3389 }
3390
3391 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
3392                                         gfn_t gfn, kvm_pfn_t *pfnp,
3393                                         int *levelp)
3394 {
3395         kvm_pfn_t pfn = *pfnp;
3396         int level = *levelp;
3397
3398         /*
3399          * Check if it's a transparent hugepage. If this would be an
3400          * hugetlbfs page, level wouldn't be set to
3401          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3402          * here.
3403          */
3404         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3405             !kvm_is_zone_device_pfn(pfn) && level == PT_PAGE_TABLE_LEVEL &&
3406             PageTransCompoundMap(pfn_to_page(pfn)) &&
3407             !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
3408                 unsigned long mask;
3409                 /*
3410                  * mmu_notifier_retry was successful and we hold the
3411                  * mmu_lock here, so the pmd can't become splitting
3412                  * from under us, and in turn
3413                  * __split_huge_page_refcount() can't run from under
3414                  * us and we can safely transfer the refcount from
3415                  * PG_tail to PG_head as we switch the pfn to tail to
3416                  * head.
3417                  */
3418                 *levelp = level = PT_DIRECTORY_LEVEL;
3419                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3420                 VM_BUG_ON((gfn & mask) != (pfn & mask));
3421                 if (pfn & mask) {
3422                         kvm_release_pfn_clean(pfn);
3423                         pfn &= ~mask;
3424                         kvm_get_pfn(pfn);
3425                         *pfnp = pfn;
3426                 }
3427         }
3428 }
3429
3430 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3431                                 kvm_pfn_t pfn, unsigned access, int *ret_val)
3432 {
3433         /* The pfn is invalid, report the error! */
3434         if (unlikely(is_error_pfn(pfn))) {
3435                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3436                 return true;
3437         }
3438
3439         if (unlikely(is_noslot_pfn(pfn)))
3440                 vcpu_cache_mmio_info(vcpu, gva, gfn,
3441                                      access & shadow_mmio_access_mask);
3442
3443         return false;
3444 }
3445
3446 static bool page_fault_can_be_fast(u32 error_code)
3447 {
3448         /*
3449          * Do not fix the mmio spte with invalid generation number which
3450          * need to be updated by slow page fault path.
3451          */
3452         if (unlikely(error_code & PFERR_RSVD_MASK))
3453                 return false;
3454
3455         /* See if the page fault is due to an NX violation */
3456         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3457                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3458                 return false;
3459
3460         /*
3461          * #PF can be fast if:
3462          * 1. The shadow page table entry is not present, which could mean that
3463          *    the fault is potentially caused by access tracking (if enabled).
3464          * 2. The shadow page table entry is present and the fault
3465          *    is caused by write-protect, that means we just need change the W
3466          *    bit of the spte which can be done out of mmu-lock.
3467          *
3468          * However, if access tracking is disabled we know that a non-present
3469          * page must be a genuine page fault where we have to create a new SPTE.
3470          * So, if access tracking is disabled, we return true only for write
3471          * accesses to a present page.
3472          */
3473
3474         return shadow_acc_track_mask != 0 ||
3475                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3476                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3477 }
3478
3479 /*
3480  * Returns true if the SPTE was fixed successfully. Otherwise,
3481  * someone else modified the SPTE from its original value.
3482  */
3483 static bool
3484 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3485                         u64 *sptep, u64 old_spte, u64 new_spte)
3486 {
3487         gfn_t gfn;
3488
3489         WARN_ON(!sp->role.direct);
3490
3491         /*
3492          * Theoretically we could also set dirty bit (and flush TLB) here in
3493          * order to eliminate unnecessary PML logging. See comments in
3494          * set_spte. But fast_page_fault is very unlikely to happen with PML
3495          * enabled, so we do not do this. This might result in the same GPA
3496          * to be logged in PML buffer again when the write really happens, and
3497          * eventually to be called by mark_page_dirty twice. But it's also no
3498          * harm. This also avoids the TLB flush needed after setting dirty bit
3499          * so non-PML cases won't be impacted.
3500          *
3501          * Compare with set_spte where instead shadow_dirty_mask is set.
3502          */
3503         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3504                 return false;
3505
3506         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3507                 /*
3508                  * The gfn of direct spte is stable since it is
3509                  * calculated by sp->gfn.
3510                  */
3511                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3512                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3513         }
3514
3515         return true;
3516 }
3517
3518 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3519 {
3520         if (fault_err_code & PFERR_FETCH_MASK)
3521                 return is_executable_pte(spte);
3522
3523         if (fault_err_code & PFERR_WRITE_MASK)
3524                 return is_writable_pte(spte);
3525
3526         /* Fault was on Read access */
3527         return spte & PT_PRESENT_MASK;
3528 }
3529
3530 /*
3531  * Return value:
3532  * - true: let the vcpu to access on the same address again.
3533  * - false: let the real page fault path to fix it.
3534  */
3535 static bool fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, int level,
3536                             u32 error_code)
3537 {
3538         struct kvm_shadow_walk_iterator iterator;
3539         struct kvm_mmu_page *sp;
3540         bool fault_handled = false;
3541         u64 spte = 0ull;
3542         uint retry_count = 0;
3543
3544         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3545                 return false;
3546
3547         if (!page_fault_can_be_fast(error_code))
3548                 return false;
3549
3550         walk_shadow_page_lockless_begin(vcpu);
3551
3552         do {
3553                 u64 new_spte;
3554
3555                 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3556                         if (!is_shadow_present_pte(spte) ||
3557                             iterator.level < level)
3558                                 break;
3559
3560                 sp = page_header(__pa(iterator.sptep));
3561                 if (!is_last_spte(spte, sp->role.level))
3562                         break;
3563
3564                 /*
3565                  * Check whether the memory access that caused the fault would
3566                  * still cause it if it were to be performed right now. If not,
3567                  * then this is a spurious fault caused by TLB lazily flushed,
3568                  * or some other CPU has already fixed the PTE after the
3569                  * current CPU took the fault.
3570                  *
3571                  * Need not check the access of upper level table entries since
3572                  * they are always ACC_ALL.
3573                  */
3574                 if (is_access_allowed(error_code, spte)) {
3575                         fault_handled = true;
3576                         break;
3577                 }
3578
3579                 new_spte = spte;
3580
3581                 if (is_access_track_spte(spte))
3582                         new_spte = restore_acc_track_spte(new_spte);
3583
3584                 /*
3585                  * Currently, to simplify the code, write-protection can
3586                  * be removed in the fast path only if the SPTE was
3587                  * write-protected for dirty-logging or access tracking.
3588                  */
3589                 if ((error_code & PFERR_WRITE_MASK) &&
3590                     spte_can_locklessly_be_made_writable(spte))
3591                 {
3592                         new_spte |= PT_WRITABLE_MASK;
3593
3594                         /*
3595                          * Do not fix write-permission on the large spte.  Since
3596                          * we only dirty the first page into the dirty-bitmap in
3597                          * fast_pf_fix_direct_spte(), other pages are missed
3598                          * if its slot has dirty logging enabled.
3599                          *
3600                          * Instead, we let the slow page fault path create a
3601                          * normal spte to fix the access.
3602                          *
3603                          * See the comments in kvm_arch_commit_memory_region().
3604                          */
3605                         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3606                                 break;
3607                 }
3608
3609                 /* Verify that the fault can be handled in the fast path */
3610                 if (new_spte == spte ||
3611                     !is_access_allowed(error_code, new_spte))
3612                         break;
3613
3614                 /*
3615                  * Currently, fast page fault only works for direct mapping
3616                  * since the gfn is not stable for indirect shadow page. See
3617                  * Documentation/virt/kvm/locking.txt to get more detail.
3618                  */
3619                 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3620                                                         iterator.sptep, spte,
3621                                                         new_spte);
3622                 if (fault_handled)
3623                         break;
3624
3625                 if (++retry_count > 4) {
3626                         printk_once(KERN_WARNING
3627                                 "kvm: Fast #PF retrying more than 4 times.\n");
3628                         break;
3629                 }
3630
3631         } while (true);
3632
3633         trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3634                               spte, fault_handled);
3635         walk_shadow_page_lockless_end(vcpu);
3636
3637         return fault_handled;
3638 }
3639
3640 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3641                          gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
3642                          bool *writable);
3643 static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
3644
3645 static int nonpaging_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3646                          gfn_t gfn, bool prefault)
3647 {
3648         int r;
3649         int level;
3650         bool force_pt_level;
3651         kvm_pfn_t pfn;
3652         unsigned long mmu_seq;
3653         bool map_writable, write = error_code & PFERR_WRITE_MASK;
3654         bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
3655                                 is_nx_huge_page_enabled();
3656
3657         force_pt_level = lpage_disallowed;
3658         level = mapping_level(vcpu, gfn, &force_pt_level);
3659         if (likely(!force_pt_level)) {
3660                 /*
3661                  * This path builds a PAE pagetable - so we can map
3662                  * 2mb pages at maximum. Therefore check if the level
3663                  * is larger than that.
3664                  */
3665                 if (level > PT_DIRECTORY_LEVEL)
3666                         level = PT_DIRECTORY_LEVEL;
3667
3668                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3669         }
3670
3671         if (fast_page_fault(vcpu, gpa, level, error_code))
3672                 return RET_PF_RETRY;
3673
3674         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3675         smp_rmb();
3676
3677         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3678                 return RET_PF_RETRY;
3679
3680         if (handle_abnormal_pfn(vcpu, gpa, gfn, pfn, ACC_ALL, &r))
3681                 return r;
3682
3683         r = RET_PF_RETRY;
3684         spin_lock(&vcpu->kvm->mmu_lock);
3685         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3686                 goto out_unlock;
3687         if (make_mmu_pages_available(vcpu) < 0)
3688                 goto out_unlock;
3689         if (likely(!force_pt_level))
3690                 transparent_hugepage_adjust(vcpu, gfn, &pfn, &level);
3691         r = __direct_map(vcpu, gpa, write, map_writable, level, pfn,
3692                          prefault, false);
3693 out_unlock:
3694         spin_unlock(&vcpu->kvm->mmu_lock);
3695         kvm_release_pfn_clean(pfn);
3696         return r;
3697 }
3698
3699 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3700                                struct list_head *invalid_list)
3701 {
3702         struct kvm_mmu_page *sp;
3703
3704         if (!VALID_PAGE(*root_hpa))
3705                 return;
3706
3707         sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3708         --sp->root_count;
3709         if (!sp->root_count && sp->role.invalid)
3710                 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3711
3712         *root_hpa = INVALID_PAGE;
3713 }
3714
3715 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3716 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3717                         ulong roots_to_free)
3718 {
3719         int i;
3720         LIST_HEAD(invalid_list);
3721         bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3722
3723         BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3724
3725         /* Before acquiring the MMU lock, see if we need to do any real work. */
3726         if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3727                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3728                         if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3729                             VALID_PAGE(mmu->prev_roots[i].hpa))
3730                                 break;
3731
3732                 if (i == KVM_MMU_NUM_PREV_ROOTS)
3733                         return;
3734         }
3735
3736         spin_lock(&vcpu->kvm->mmu_lock);
3737
3738         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3739                 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3740                         mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3741                                            &invalid_list);
3742
3743         if (free_active_root) {
3744                 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3745                     (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3746                         mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3747                                            &invalid_list);
3748                 } else {
3749                         for (i = 0; i < 4; ++i)
3750                                 if (mmu->pae_root[i] != 0)
3751                                         mmu_free_root_page(vcpu->kvm,
3752                                                            &mmu->pae_root[i],
3753                                                            &invalid_list);
3754                         mmu->root_hpa = INVALID_PAGE;
3755                 }
3756                 mmu->root_cr3 = 0;
3757         }
3758
3759         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3760         spin_unlock(&vcpu->kvm->mmu_lock);
3761 }
3762 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3763
3764 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3765 {
3766         int ret = 0;
3767
3768         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3769                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3770                 ret = 1;
3771         }
3772
3773         return ret;
3774 }
3775
3776 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3777 {
3778         struct kvm_mmu_page *sp;
3779         unsigned i;
3780
3781         if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3782                 spin_lock(&vcpu->kvm->mmu_lock);
3783                 if(make_mmu_pages_available(vcpu) < 0) {
3784                         spin_unlock(&vcpu->kvm->mmu_lock);
3785                         return -ENOSPC;
3786                 }
3787                 sp = kvm_mmu_get_page(vcpu, 0, 0,
3788                                 vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
3789                 ++sp->root_count;
3790                 spin_unlock(&vcpu->kvm->mmu_lock);
3791                 vcpu->arch.mmu->root_hpa = __pa(sp->spt);
3792         } else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
3793                 for (i = 0; i < 4; ++i) {
3794                         hpa_t root = vcpu->arch.mmu->pae_root[i];
3795
3796                         MMU_WARN_ON(VALID_PAGE(root));
3797                         spin_lock(&vcpu->kvm->mmu_lock);
3798                         if (make_mmu_pages_available(vcpu) < 0) {
3799                                 spin_unlock(&vcpu->kvm->mmu_lock);
3800                                 return -ENOSPC;
3801                         }
3802                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3803                                         i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3804                         root = __pa(sp->spt);
3805                         ++sp->root_count;
3806                         spin_unlock(&vcpu->kvm->mmu_lock);
3807                         vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3808                 }
3809                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3810         } else
3811                 BUG();
3812         vcpu->arch.mmu->root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
3813
3814         return 0;
3815 }
3816
3817 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3818 {
3819         struct kvm_mmu_page *sp;
3820         u64 pdptr, pm_mask;
3821         gfn_t root_gfn, root_cr3;
3822         int i;
3823
3824         root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
3825         root_gfn = root_cr3 >> PAGE_SHIFT;
3826
3827         if (mmu_check_root(vcpu, root_gfn))
3828                 return 1;
3829
3830         /*
3831          * Do we shadow a long mode page table? If so we need to
3832          * write-protect the guests page table root.
3833          */
3834         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3835                 hpa_t root = vcpu->arch.mmu->root_hpa;
3836
3837                 MMU_WARN_ON(VALID_PAGE(root));
3838
3839                 spin_lock(&vcpu->kvm->mmu_lock);
3840                 if (make_mmu_pages_available(vcpu) < 0) {
3841                         spin_unlock(&vcpu->kvm->mmu_lock);
3842                         return -ENOSPC;
3843                 }
3844                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3845                                 vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
3846                 root = __pa(sp->spt);
3847                 ++sp->root_count;
3848                 spin_unlock(&vcpu->kvm->mmu_lock);
3849                 vcpu->arch.mmu->root_hpa = root;
3850                 goto set_root_cr3;
3851         }
3852
3853         /*
3854          * We shadow a 32 bit page table. This may be a legacy 2-level
3855          * or a PAE 3-level page table. In either case we need to be aware that
3856          * the shadow page table may be a PAE or a long mode page table.
3857          */
3858         pm_mask = PT_PRESENT_MASK;
3859         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3860                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3861
3862         for (i = 0; i < 4; ++i) {
3863                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3864
3865                 MMU_WARN_ON(VALID_PAGE(root));
3866                 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3867                         pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3868                         if (!(pdptr & PT_PRESENT_MASK)) {
3869                                 vcpu->arch.mmu->pae_root[i] = 0;
3870                                 continue;
3871                         }
3872                         root_gfn = pdptr >> PAGE_SHIFT;
3873                         if (mmu_check_root(vcpu, root_gfn))
3874                                 return 1;
3875                 }
3876                 spin_lock(&vcpu->kvm->mmu_lock);
3877                 if (make_mmu_pages_available(vcpu) < 0) {
3878                         spin_unlock(&vcpu->kvm->mmu_lock);
3879                         return -ENOSPC;
3880                 }
3881                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3882                                       0, ACC_ALL);
3883                 root = __pa(sp->spt);
3884                 ++sp->root_count;
3885                 spin_unlock(&vcpu->kvm->mmu_lock);
3886
3887                 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3888         }
3889         vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3890
3891         /*
3892          * If we shadow a 32 bit page table with a long mode page
3893          * table we enter this path.
3894          */
3895         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3896                 if (vcpu->arch.mmu->lm_root == NULL) {
3897                         /*
3898                          * The additional page necessary for this is only
3899                          * allocated on demand.
3900                          */
3901
3902                         u64 *lm_root;
3903
3904                         lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3905                         if (lm_root == NULL)
3906                                 return 1;
3907
3908                         lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3909
3910                         vcpu->arch.mmu->lm_root = lm_root;
3911                 }
3912
3913                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3914         }
3915
3916 set_root_cr3:
3917         vcpu->arch.mmu->root_cr3 = root_cr3;
3918
3919         return 0;
3920 }
3921
3922 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3923 {
3924         if (vcpu->arch.mmu->direct_map)
3925                 return mmu_alloc_direct_roots(vcpu);
3926         else
3927                 return mmu_alloc_shadow_roots(vcpu);
3928 }
3929
3930 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3931 {
3932         int i;
3933         struct kvm_mmu_page *sp;
3934
3935         if (vcpu->arch.mmu->direct_map)
3936                 return;
3937
3938         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3939                 return;
3940
3941         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3942
3943         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3944                 hpa_t root = vcpu->arch.mmu->root_hpa;
3945                 sp = page_header(root);
3946
3947                 /*
3948                  * Even if another CPU was marking the SP as unsync-ed
3949                  * simultaneously, any guest page table changes are not
3950                  * guaranteed to be visible anyway until this VCPU issues a TLB
3951                  * flush strictly after those changes are made. We only need to
3952                  * ensure that the other CPU sets these flags before any actual
3953                  * changes to the page tables are made. The comments in
3954                  * mmu_need_write_protect() describe what could go wrong if this
3955                  * requirement isn't satisfied.
3956                  */
3957                 if (!smp_load_acquire(&sp->unsync) &&
3958                     !smp_load_acquire(&sp->unsync_children))
3959                         return;
3960
3961                 spin_lock(&vcpu->kvm->mmu_lock);
3962                 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3963
3964                 mmu_sync_children(vcpu, sp);
3965
3966                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3967                 spin_unlock(&vcpu->kvm->mmu_lock);
3968                 return;
3969         }
3970
3971         spin_lock(&vcpu->kvm->mmu_lock);
3972         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3973
3974         for (i = 0; i < 4; ++i) {
3975                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3976
3977                 if (root && VALID_PAGE(root)) {
3978                         root &= PT64_BASE_ADDR_MASK;
3979                         sp = page_header(root);
3980                         mmu_sync_children(vcpu, sp);
3981                 }
3982         }
3983
3984         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3985         spin_unlock(&vcpu->kvm->mmu_lock);
3986 }
3987 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3988
3989 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3990                                   u32 access, struct x86_exception *exception)
3991 {
3992         if (exception)
3993                 exception->error_code = 0;
3994         return vaddr;
3995 }
3996
3997 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3998                                          u32 access,
3999                                          struct x86_exception *exception)
4000 {
4001         if (exception)
4002                 exception->error_code = 0;
4003         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
4004 }
4005
4006 static bool
4007 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
4008 {
4009         int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
4010
4011         return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
4012                 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
4013 }
4014
4015 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
4016 {
4017         return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
4018 }
4019
4020 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
4021 {
4022         return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
4023 }
4024
4025 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4026 {
4027         /*
4028          * A nested guest cannot use the MMIO cache if it is using nested
4029          * page tables, because cr2 is a nGPA while the cache stores GPAs.
4030          */
4031         if (mmu_is_nested(vcpu))
4032                 return false;
4033
4034         if (direct)
4035                 return vcpu_match_mmio_gpa(vcpu, addr);
4036
4037         return vcpu_match_mmio_gva(vcpu, addr);
4038 }
4039
4040 /* return true if reserved bit is detected on spte. */
4041 static bool
4042 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
4043 {
4044         struct kvm_shadow_walk_iterator iterator;
4045         u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
4046         int root, leaf;
4047         bool reserved = false;
4048
4049         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
4050                 goto exit;
4051
4052         walk_shadow_page_lockless_begin(vcpu);
4053
4054         for (shadow_walk_init(&iterator, vcpu, addr),
4055                  leaf = root = iterator.level;
4056              shadow_walk_okay(&iterator);
4057              __shadow_walk_next(&iterator, spte)) {
4058                 spte = mmu_spte_get_lockless(iterator.sptep);
4059
4060                 sptes[leaf - 1] = spte;
4061                 leaf--;
4062
4063                 if (!is_shadow_present_pte(spte))
4064                         break;
4065
4066                 reserved |= is_shadow_zero_bits_set(vcpu->arch.mmu, spte,
4067                                                     iterator.level);
4068         }
4069
4070         walk_shadow_page_lockless_end(vcpu);
4071
4072         if (reserved) {
4073                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
4074                        __func__, addr);
4075                 while (root > leaf) {
4076                         pr_err("------ spte 0x%llx level %d.\n",
4077                                sptes[root - 1], root);
4078                         root--;
4079                 }
4080         }
4081 exit:
4082         *sptep = spte;
4083         return reserved;
4084 }
4085
4086 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4087 {
4088         u64 spte;
4089         bool reserved;
4090
4091         if (mmio_info_in_cache(vcpu, addr, direct))
4092                 return RET_PF_EMULATE;
4093
4094         reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
4095         if (WARN_ON(reserved))
4096                 return -EINVAL;
4097
4098         if (is_mmio_spte(spte)) {
4099                 gfn_t gfn = get_mmio_spte_gfn(spte);
4100                 unsigned access = get_mmio_spte_access(spte);
4101
4102                 if (!check_mmio_spte(vcpu, spte))
4103                         return RET_PF_INVALID;
4104
4105                 if (direct)
4106                         addr = 0;
4107
4108                 trace_handle_mmio_page_fault(addr, gfn, access);
4109                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
4110                 return RET_PF_EMULATE;
4111         }
4112
4113         /*
4114          * If the page table is zapped by other cpus, let CPU fault again on
4115          * the address.
4116          */
4117         return RET_PF_RETRY;
4118 }
4119
4120 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
4121                                          u32 error_code, gfn_t gfn)
4122 {
4123         if (unlikely(error_code & PFERR_RSVD_MASK))
4124                 return false;
4125
4126         if (!(error_code & PFERR_PRESENT_MASK) ||
4127               !(error_code & PFERR_WRITE_MASK))
4128                 return false;
4129
4130         /*
4131          * guest is writing the page which is write tracked which can
4132          * not be fixed by page fault handler.
4133          */
4134         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
4135                 return true;
4136
4137         return false;
4138 }
4139
4140 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4141 {
4142         struct kvm_shadow_walk_iterator iterator;
4143         u64 spte;
4144
4145         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
4146                 return;
4147
4148         walk_shadow_page_lockless_begin(vcpu);
4149         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4150                 clear_sp_write_flooding_count(iterator.sptep);
4151                 if (!is_shadow_present_pte(spte))
4152                         break;
4153         }
4154         walk_shadow_page_lockless_end(vcpu);
4155 }
4156
4157 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
4158                                 u32 error_code, bool prefault)
4159 {
4160         gfn_t gfn = gpa >> PAGE_SHIFT;
4161         int r;
4162
4163         /* Note, paging is disabled, ergo gva == gpa. */
4164         pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
4165
4166         if (page_fault_handle_page_track(vcpu, error_code, gfn))
4167                 return RET_PF_EMULATE;
4168
4169         r = mmu_topup_memory_caches(vcpu);
4170         if (r)
4171                 return r;
4172
4173         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
4174
4175
4176         return nonpaging_map(vcpu, gpa & PAGE_MASK,
4177                              error_code, gfn, prefault);
4178 }
4179
4180 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
4181                                    gfn_t gfn)
4182 {
4183         struct kvm_arch_async_pf arch;
4184
4185         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4186         arch.gfn = gfn;
4187         arch.direct_map = vcpu->arch.mmu->direct_map;
4188         arch.cr3 = vcpu->arch.mmu->get_cr3(vcpu);
4189
4190         return kvm_setup_async_pf(vcpu, cr2_or_gpa,
4191                                   kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4192 }
4193
4194 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
4195                          gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
4196                          bool *writable)
4197 {
4198         struct kvm_memory_slot *slot;
4199         bool async;
4200
4201         /*
4202          * Don't expose private memslots to L2.
4203          */
4204         if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
4205                 *pfn = KVM_PFN_NOSLOT;
4206                 return false;
4207         }
4208
4209         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
4210         async = false;
4211         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
4212         if (!async)
4213                 return false; /* *pfn has correct page already */
4214
4215         if (!prefault && kvm_can_do_async_pf(vcpu)) {
4216                 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
4217                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4218                         trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
4219                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4220                         return true;
4221                 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
4222                         return true;
4223         }
4224
4225         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
4226         return false;
4227 }
4228
4229 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4230                                 u64 fault_address, char *insn, int insn_len)
4231 {
4232         int r = 1;
4233
4234 #ifndef CONFIG_X86_64
4235         /* A 64-bit CR2 should be impossible on 32-bit KVM. */
4236         if (WARN_ON_ONCE(fault_address >> 32))
4237                 return -EFAULT;
4238 #endif
4239
4240         vcpu->arch.l1tf_flush_l1d = true;
4241         switch (vcpu->arch.apf.host_apf_reason) {
4242         default:
4243                 trace_kvm_page_fault(fault_address, error_code);
4244
4245                 if (kvm_event_needs_reinjection(vcpu))
4246                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4247                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4248                                 insn_len);
4249                 break;
4250         case KVM_PV_REASON_PAGE_NOT_PRESENT:
4251                 vcpu->arch.apf.host_apf_reason = 0;
4252                 local_irq_disable();
4253                 kvm_async_pf_task_wait(fault_address, 0);
4254                 local_irq_enable();
4255                 break;
4256         case KVM_PV_REASON_PAGE_READY:
4257                 vcpu->arch.apf.host_apf_reason = 0;
4258                 local_irq_disable();
4259                 kvm_async_pf_task_wake(fault_address);
4260                 local_irq_enable();
4261                 break;
4262         }
4263         return r;
4264 }
4265 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4266
4267 static bool
4268 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
4269 {
4270         int page_num = KVM_PAGES_PER_HPAGE(level);
4271
4272         gfn &= ~(page_num - 1);
4273
4274         return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
4275 }
4276
4277 static int tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4278                           bool prefault)
4279 {
4280         kvm_pfn_t pfn;
4281         int r;
4282         int level;
4283         bool force_pt_level;
4284         gfn_t gfn = gpa >> PAGE_SHIFT;
4285         unsigned long mmu_seq;
4286         int write = error_code & PFERR_WRITE_MASK;
4287         bool map_writable;
4288         bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
4289                                 is_nx_huge_page_enabled();
4290
4291         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
4292
4293         if (page_fault_handle_page_track(vcpu, error_code, gfn))
4294                 return RET_PF_EMULATE;
4295
4296         r = mmu_topup_memory_caches(vcpu);
4297         if (r)
4298                 return r;
4299
4300         force_pt_level =
4301                 lpage_disallowed ||
4302                 !check_hugepage_cache_consistency(vcpu, gfn, PT_DIRECTORY_LEVEL);
4303         level = mapping_level(vcpu, gfn, &force_pt_level);
4304         if (likely(!force_pt_level)) {
4305                 if (level > PT_DIRECTORY_LEVEL &&
4306                     !check_hugepage_cache_consistency(vcpu, gfn, level))
4307                         level = PT_DIRECTORY_LEVEL;
4308                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
4309         }
4310
4311         if (fast_page_fault(vcpu, gpa, level, error_code))
4312                 return RET_PF_RETRY;
4313
4314         mmu_seq = vcpu->kvm->mmu_notifier_seq;
4315         smp_rmb();
4316
4317         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4318                 return RET_PF_RETRY;
4319
4320         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
4321                 return r;
4322
4323         r = RET_PF_RETRY;
4324         spin_lock(&vcpu->kvm->mmu_lock);
4325         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4326                 goto out_unlock;
4327         if (make_mmu_pages_available(vcpu) < 0)
4328                 goto out_unlock;
4329         if (likely(!force_pt_level))
4330                 transparent_hugepage_adjust(vcpu, gfn, &pfn, &level);
4331         r = __direct_map(vcpu, gpa, write, map_writable, level, pfn,
4332                          prefault, lpage_disallowed);
4333 out_unlock:
4334         spin_unlock(&vcpu->kvm->mmu_lock);
4335         kvm_release_pfn_clean(pfn);
4336         return r;
4337 }
4338
4339 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4340                                    struct kvm_mmu *context)
4341 {
4342         context->page_fault = nonpaging_page_fault;
4343         context->gva_to_gpa = nonpaging_gva_to_gpa;
4344         context->sync_page = nonpaging_sync_page;
4345         context->invlpg = nonpaging_invlpg;
4346         context->update_pte = nonpaging_update_pte;
4347         context->root_level = 0;
4348         context->shadow_root_level = PT32E_ROOT_LEVEL;
4349         context->direct_map = true;
4350         context->nx = false;
4351 }
4352
4353 /*
4354  * Find out if a previously cached root matching the new CR3/role is available.
4355  * The current root is also inserted into the cache.
4356  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4357  * returned.
4358  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4359  * false is returned. This root should now be freed by the caller.
4360  */
4361 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4362                                   union kvm_mmu_page_role new_role)
4363 {
4364         uint i;
4365         struct kvm_mmu_root_info root;
4366         struct kvm_mmu *mmu = vcpu->arch.mmu;
4367
4368         root.cr3 = mmu->root_cr3;
4369         root.hpa = mmu->root_hpa;
4370
4371         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4372                 swap(root, mmu->prev_roots[i]);
4373
4374                 if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) &&
4375                     page_header(root.hpa) != NULL &&
4376                     new_role.word == page_header(root.hpa)->role.word)
4377                         break;
4378         }
4379
4380         mmu->root_hpa = root.hpa;
4381         mmu->root_cr3 = root.cr3;
4382
4383         return i < KVM_MMU_NUM_PREV_ROOTS;
4384 }
4385
4386 static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4387                             union kvm_mmu_page_role new_role,
4388                             bool skip_tlb_flush)
4389 {
4390         struct kvm_mmu *mmu = vcpu->arch.mmu;
4391
4392         /*
4393          * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4394          * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4395          * later if necessary.
4396          */
4397         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4398             mmu->root_level >= PT64_ROOT_4LEVEL) {
4399                 if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
4400                         return false;
4401
4402                 if (cached_root_available(vcpu, new_cr3, new_role)) {
4403                         /*
4404                          * It is possible that the cached previous root page is
4405                          * obsolete because of a change in the MMU generation
4406                          * number. However, changing the generation number is
4407                          * accompanied by KVM_REQ_MMU_RELOAD, which will free
4408                          * the root set here and allocate a new one.
4409                          */
4410                         kvm_make_request(KVM_REQ_LOAD_CR3, vcpu);
4411                         if (!skip_tlb_flush) {
4412                                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4413                                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4414                         }
4415
4416                         /*
4417                          * The last MMIO access's GVA and GPA are cached in the
4418                          * VCPU. When switching to a new CR3, that GVA->GPA
4419                          * mapping may no longer be valid. So clear any cached
4420                          * MMIO info even when we don't need to sync the shadow
4421                          * page tables.
4422                          */
4423                         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4424
4425                         __clear_sp_write_flooding_count(
4426                                 page_header(mmu->root_hpa));
4427
4428                         return true;
4429                 }
4430         }
4431
4432         return false;
4433 }
4434
4435 static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4436                               union kvm_mmu_page_role new_role,
4437                               bool skip_tlb_flush)
4438 {
4439         if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
4440                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu,
4441                                    KVM_MMU_ROOT_CURRENT);
4442 }
4443
4444 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
4445 {
4446         __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
4447                           skip_tlb_flush);
4448 }
4449 EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
4450
4451 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4452 {
4453         return kvm_read_cr3(vcpu);
4454 }
4455
4456 static void inject_page_fault(struct kvm_vcpu *vcpu,
4457                               struct x86_exception *fault)
4458 {
4459         vcpu->arch.mmu->inject_page_fault(vcpu, fault);
4460 }
4461
4462 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4463                            unsigned access, int *nr_present)
4464 {
4465         if (unlikely(is_mmio_spte(*sptep))) {
4466                 if (gfn != get_mmio_spte_gfn(*sptep)) {
4467                         mmu_spte_clear_no_track(sptep);
4468                         return true;
4469                 }
4470
4471                 (*nr_present)++;
4472                 mark_mmio_spte(vcpu, sptep, gfn, access);
4473                 return true;
4474         }
4475
4476         return false;
4477 }
4478
4479 static inline bool is_last_gpte(struct kvm_mmu *mmu,
4480                                 unsigned level, unsigned gpte)
4481 {
4482         /*
4483          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4484          * If it is clear, there are no large pages at this level, so clear
4485          * PT_PAGE_SIZE_MASK in gpte if that is the case.
4486          */
4487         gpte &= level - mmu->last_nonleaf_level;
4488
4489         /*
4490          * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
4491          * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4492          * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4493          */
4494         gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4495
4496         return gpte & PT_PAGE_SIZE_MASK;
4497 }
4498
4499 #define PTTYPE_EPT 18 /* arbitrary */
4500 #define PTTYPE PTTYPE_EPT
4501 #include "paging_tmpl.h"
4502 #undef PTTYPE
4503
4504 #define PTTYPE 64
4505 #include "paging_tmpl.h"
4506 #undef PTTYPE
4507
4508 #define PTTYPE 32
4509 #include "paging_tmpl.h"
4510 #undef PTTYPE
4511
4512 static void
4513 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4514                         struct rsvd_bits_validate *rsvd_check,
4515                         int maxphyaddr, int level, bool nx, bool gbpages,
4516                         bool pse, bool amd)
4517 {
4518         u64 exb_bit_rsvd = 0;
4519         u64 gbpages_bit_rsvd = 0;
4520         u64 nonleaf_bit8_rsvd = 0;
4521
4522         rsvd_check->bad_mt_xwr = 0;
4523
4524         if (!nx)
4525                 exb_bit_rsvd = rsvd_bits(63, 63);
4526         if (!gbpages)
4527                 gbpages_bit_rsvd = rsvd_bits(7, 7);
4528
4529         /*
4530          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4531          * leaf entries) on AMD CPUs only.
4532          */
4533         if (amd)
4534                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4535
4536         switch (level) {
4537         case PT32_ROOT_LEVEL:
4538                 /* no rsvd bits for 2 level 4K page table entries */
4539                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4540                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4541                 rsvd_check->rsvd_bits_mask[1][0] =
4542                         rsvd_check->rsvd_bits_mask[0][0];
4543
4544                 if (!pse) {
4545                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4546                         break;
4547                 }
4548
4549                 if (is_cpuid_PSE36())
4550                         /* 36bits PSE 4MB page */
4551                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4552                 else
4553                         /* 32 bits PSE 4MB page */
4554                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4555                 break;
4556         case PT32E_ROOT_LEVEL:
4557                 rsvd_check->rsvd_bits_mask[0][2] =
4558                         rsvd_bits(maxphyaddr, 63) |
4559                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
4560                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4561                         rsvd_bits(maxphyaddr, 62);      /* PDE */
4562                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4563                         rsvd_bits(maxphyaddr, 62);      /* PTE */
4564                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4565                         rsvd_bits(maxphyaddr, 62) |
4566                         rsvd_bits(13, 20);              /* large page */
4567                 rsvd_check->rsvd_bits_mask[1][0] =
4568                         rsvd_check->rsvd_bits_mask[0][0];
4569                 break;
4570         case PT64_ROOT_5LEVEL:
4571                 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4572                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4573                         rsvd_bits(maxphyaddr, 51);
4574                 rsvd_check->rsvd_bits_mask[1][4] =
4575                         rsvd_check->rsvd_bits_mask[0][4];
4576                 /* fall through */
4577         case PT64_ROOT_4LEVEL:
4578                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4579                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4580                         rsvd_bits(maxphyaddr, 51);
4581                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4582                         nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4583                         rsvd_bits(maxphyaddr, 51);
4584                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4585                         rsvd_bits(maxphyaddr, 51);
4586                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4587                         rsvd_bits(maxphyaddr, 51);
4588                 rsvd_check->rsvd_bits_mask[1][3] =
4589                         rsvd_check->rsvd_bits_mask[0][3];
4590                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4591                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4592                         rsvd_bits(13, 29);
4593                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4594                         rsvd_bits(maxphyaddr, 51) |
4595                         rsvd_bits(13, 20);              /* large page */
4596                 rsvd_check->rsvd_bits_mask[1][0] =
4597                         rsvd_check->rsvd_bits_mask[0][0];
4598                 break;
4599         }
4600 }
4601
4602 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4603                                   struct kvm_mmu *context)
4604 {
4605         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4606                                 cpuid_maxphyaddr(vcpu), context->root_level,
4607                                 context->nx,
4608                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4609                                 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4610 }
4611
4612 static void
4613 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4614                             int maxphyaddr, bool execonly)
4615 {
4616         u64 bad_mt_xwr;
4617
4618         rsvd_check->rsvd_bits_mask[0][4] =
4619                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4620         rsvd_check->rsvd_bits_mask[0][3] =
4621                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4622         rsvd_check->rsvd_bits_mask[0][2] =
4623                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4624         rsvd_check->rsvd_bits_mask[0][1] =
4625                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4626         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4627
4628         /* large page */
4629         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4630         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4631         rsvd_check->rsvd_bits_mask[1][2] =
4632                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4633         rsvd_check->rsvd_bits_mask[1][1] =
4634                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4635         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4636
4637         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4638         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4639         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4640         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4641         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4642         if (!execonly) {
4643                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4644                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4645         }
4646         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4647 }
4648
4649 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4650                 struct kvm_mmu *context, bool execonly)
4651 {
4652         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4653                                     cpuid_maxphyaddr(vcpu), execonly);
4654 }
4655
4656 /*
4657  * the page table on host is the shadow page table for the page
4658  * table in guest or amd nested guest, its mmu features completely
4659  * follow the features in guest.
4660  */
4661 void
4662 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4663 {
4664         bool uses_nx = context->nx ||
4665                 context->mmu_role.base.smep_andnot_wp;
4666         struct rsvd_bits_validate *shadow_zero_check;
4667         int i;
4668
4669         /*
4670          * Passing "true" to the last argument is okay; it adds a check
4671          * on bit 8 of the SPTEs which KVM doesn't use anyway.
4672          */
4673         shadow_zero_check = &context->shadow_zero_check;
4674         __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4675                                 shadow_phys_bits,
4676                                 context->shadow_root_level, uses_nx,
4677                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4678                                 is_pse(vcpu), true);
4679
4680         if (!shadow_me_mask)
4681                 return;
4682
4683         for (i = context->shadow_root_level; --i >= 0;) {
4684                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4685                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4686         }
4687
4688 }
4689 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4690
4691 static inline bool boot_cpu_is_amd(void)
4692 {
4693         WARN_ON_ONCE(!tdp_enabled);
4694         return shadow_x_mask == 0;
4695 }
4696
4697 /*
4698  * the direct page table on host, use as much mmu features as
4699  * possible, however, kvm currently does not do execution-protection.
4700  */
4701 static void
4702 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4703                                 struct kvm_mmu *context)
4704 {
4705         struct rsvd_bits_validate *shadow_zero_check;
4706         int i;
4707
4708         shadow_zero_check = &context->shadow_zero_check;
4709
4710         if (boot_cpu_is_amd())
4711                 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4712                                         shadow_phys_bits,
4713                                         context->shadow_root_level, false,
4714                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4715                                         true, true);
4716         else
4717                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4718                                             shadow_phys_bits,
4719                                             false);
4720
4721         if (!shadow_me_mask)
4722                 return;
4723
4724         for (i = context->shadow_root_level; --i >= 0;) {
4725                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4726                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4727         }
4728 }
4729
4730 /*
4731  * as the comments in reset_shadow_zero_bits_mask() except it
4732  * is the shadow page table for intel nested guest.
4733  */
4734 static void
4735 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4736                                 struct kvm_mmu *context, bool execonly)
4737 {
4738         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4739                                     shadow_phys_bits, execonly);
4740 }
4741
4742 #define BYTE_MASK(access) \
4743         ((1 & (access) ? 2 : 0) | \
4744          (2 & (access) ? 4 : 0) | \
4745          (3 & (access) ? 8 : 0) | \
4746          (4 & (access) ? 16 : 0) | \
4747          (5 & (access) ? 32 : 0) | \
4748          (6 & (access) ? 64 : 0) | \
4749          (7 & (access) ? 128 : 0))
4750
4751
4752 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4753                                       struct kvm_mmu *mmu, bool ept)
4754 {
4755         unsigned byte;
4756
4757         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4758         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4759         const u8 u = BYTE_MASK(ACC_USER_MASK);
4760
4761         bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4762         bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4763         bool cr0_wp = is_write_protection(vcpu);
4764
4765         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4766                 unsigned pfec = byte << 1;
4767
4768                 /*
4769                  * Each "*f" variable has a 1 bit for each UWX value
4770                  * that causes a fault with the given PFEC.
4771                  */
4772
4773                 /* Faults from writes to non-writable pages */
4774                 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4775                 /* Faults from user mode accesses to supervisor pages */
4776                 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4777                 /* Faults from fetches of non-executable pages*/
4778                 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4779                 /* Faults from kernel mode fetches of user pages */
4780                 u8 smepf = 0;
4781                 /* Faults from kernel mode accesses of user pages */
4782                 u8 smapf = 0;
4783
4784                 if (!ept) {
4785                         /* Faults from kernel mode accesses to user pages */
4786                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4787
4788                         /* Not really needed: !nx will cause pte.nx to fault */
4789                         if (!mmu->nx)
4790                                 ff = 0;
4791
4792                         /* Allow supervisor writes if !cr0.wp */
4793                         if (!cr0_wp)
4794                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4795
4796                         /* Disallow supervisor fetches of user code if cr4.smep */
4797                         if (cr4_smep)
4798                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4799
4800                         /*
4801                          * SMAP:kernel-mode data accesses from user-mode
4802                          * mappings should fault. A fault is considered
4803                          * as a SMAP violation if all of the following
4804                          * conditions are true:
4805                          *   - X86_CR4_SMAP is set in CR4
4806                          *   - A user page is accessed
4807                          *   - The access is not a fetch
4808                          *   - Page fault in kernel mode
4809                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4810                          *
4811                          * Here, we cover the first three conditions.
4812                          * The fourth is computed dynamically in permission_fault();
4813                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4814                          * *not* subject to SMAP restrictions.
4815                          */
4816                         if (cr4_smap)
4817                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4818                 }
4819
4820                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4821         }
4822 }
4823
4824 /*
4825 * PKU is an additional mechanism by which the paging controls access to
4826 * user-mode addresses based on the value in the PKRU register.  Protection
4827 * key violations are reported through a bit in the page fault error code.
4828 * Unlike other bits of the error code, the PK bit is not known at the
4829 * call site of e.g. gva_to_gpa; it must be computed directly in
4830 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4831 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4832 *
4833 * In particular the following conditions come from the error code, the
4834 * page tables and the machine state:
4835 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4836 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4837 * - PK is always zero if U=0 in the page tables
4838 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4839 *
4840 * The PKRU bitmask caches the result of these four conditions.  The error
4841 * code (minus the P bit) and the page table's U bit form an index into the
4842 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4843 * with the two bits of the PKRU register corresponding to the protection key.
4844 * For the first three conditions above the bits will be 00, thus masking
4845 * away both AD and WD.  For all reads or if the last condition holds, WD
4846 * only will be masked away.
4847 */
4848 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4849                                 bool ept)
4850 {
4851         unsigned bit;
4852         bool wp;
4853
4854         if (ept) {
4855                 mmu->pkru_mask = 0;
4856                 return;
4857         }
4858
4859         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4860         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4861                 mmu->pkru_mask = 0;
4862                 return;
4863         }
4864
4865         wp = is_write_protection(vcpu);
4866
4867         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4868                 unsigned pfec, pkey_bits;
4869                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4870
4871                 pfec = bit << 1;
4872                 ff = pfec & PFERR_FETCH_MASK;
4873                 uf = pfec & PFERR_USER_MASK;
4874                 wf = pfec & PFERR_WRITE_MASK;
4875
4876                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4877                 pte_user = pfec & PFERR_RSVD_MASK;
4878
4879                 /*
4880                  * Only need to check the access which is not an
4881                  * instruction fetch and is to a user page.
4882                  */
4883                 check_pkey = (!ff && pte_user);
4884                 /*
4885                  * write access is controlled by PKRU if it is a
4886                  * user access or CR0.WP = 1.
4887                  */
4888                 check_write = check_pkey && wf && (uf || wp);
4889
4890                 /* PKRU.AD stops both read and write access. */
4891                 pkey_bits = !!check_pkey;
4892                 /* PKRU.WD stops write access. */
4893                 pkey_bits |= (!!check_write) << 1;
4894
4895                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4896         }
4897 }
4898
4899 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4900 {
4901         unsigned root_level = mmu->root_level;
4902
4903         mmu->last_nonleaf_level = root_level;
4904         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4905                 mmu->last_nonleaf_level++;
4906 }
4907
4908 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4909                                          struct kvm_mmu *context,
4910                                          int level)
4911 {
4912         context->nx = is_nx(vcpu);
4913         context->root_level = level;
4914
4915         reset_rsvds_bits_mask(vcpu, context);
4916         update_permission_bitmask(vcpu, context, false);
4917         update_pkru_bitmask(vcpu, context, false);
4918         update_last_nonleaf_level(vcpu, context);
4919
4920         MMU_WARN_ON(!is_pae(vcpu));
4921         context->page_fault = paging64_page_fault;
4922         context->gva_to_gpa = paging64_gva_to_gpa;
4923         context->sync_page = paging64_sync_page;
4924         context->invlpg = paging64_invlpg;
4925         context->update_pte = paging64_update_pte;
4926         context->shadow_root_level = level;
4927         context->direct_map = false;
4928 }
4929
4930 static void paging64_init_context(struct kvm_vcpu *vcpu,
4931                                   struct kvm_mmu *context)
4932 {
4933         int root_level = is_la57_mode(vcpu) ?
4934                          PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4935
4936         paging64_init_context_common(vcpu, context, root_level);
4937 }
4938
4939 static void paging32_init_context(struct kvm_vcpu *vcpu,
4940                                   struct kvm_mmu *context)
4941 {
4942         context->nx = false;
4943         context->root_level = PT32_ROOT_LEVEL;
4944
4945         reset_rsvds_bits_mask(vcpu, context);
4946         update_permission_bitmask(vcpu, context, false);
4947         update_pkru_bitmask(vcpu, context, false);
4948         update_last_nonleaf_level(vcpu, context);
4949
4950         context->page_fault = paging32_page_fault;
4951         context->gva_to_gpa = paging32_gva_to_gpa;
4952         context->sync_page = paging32_sync_page;
4953         context->invlpg = paging32_invlpg;
4954         context->update_pte = paging32_update_pte;
4955         context->shadow_root_level = PT32E_ROOT_LEVEL;
4956         context->direct_map = false;
4957 }
4958
4959 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4960                                    struct kvm_mmu *context)
4961 {
4962         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4963 }
4964
4965 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4966 {
4967         union kvm_mmu_extended_role ext = {0};
4968
4969         ext.cr0_pg = !!is_paging(vcpu);
4970         ext.cr4_pae = !!is_pae(vcpu);
4971         ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4972         ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4973         ext.cr4_pse = !!is_pse(vcpu);
4974         ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4975         ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
4976         ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4977
4978         ext.valid = 1;
4979
4980         return ext;
4981 }
4982
4983 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4984                                                    bool base_only)
4985 {
4986         union kvm_mmu_role role = {0};
4987
4988         role.base.access = ACC_ALL;
4989         role.base.nxe = !!is_nx(vcpu);
4990         role.base.cr0_wp = is_write_protection(vcpu);
4991         role.base.smm = is_smm(vcpu);
4992         role.base.guest_mode = is_guest_mode(vcpu);
4993
4994         if (base_only)
4995                 return role;
4996
4997         role.ext = kvm_calc_mmu_role_ext(vcpu);
4998
4999         return role;
5000 }
5001
5002 static union kvm_mmu_role
5003 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
5004 {
5005         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
5006
5007         role.base.ad_disabled = (shadow_accessed_mask == 0);
5008         role.base.level = kvm_x86_ops->get_tdp_level(vcpu);
5009         role.base.direct = true;
5010         role.base.gpte_is_8_bytes = true;
5011
5012         return role;
5013 }
5014
5015 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
5016 {
5017         struct kvm_mmu *context = vcpu->arch.mmu;
5018         union kvm_mmu_role new_role =
5019                 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
5020
5021         new_role.base.word &= mmu_base_role_mask.word;
5022         if (new_role.as_u64 == context->mmu_role.as_u64)
5023                 return;
5024
5025         context->mmu_role.as_u64 = new_role.as_u64;
5026         context->page_fault = tdp_page_fault;
5027         context->sync_page = nonpaging_sync_page;
5028         context->invlpg = nonpaging_invlpg;
5029         context->update_pte = nonpaging_update_pte;
5030         context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
5031         context->direct_map = true;
5032         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5033         context->get_cr3 = get_cr3;
5034         context->get_pdptr = kvm_pdptr_read;
5035         context->inject_page_fault = kvm_inject_page_fault;
5036
5037         if (!is_paging(vcpu)) {
5038                 context->nx = false;
5039                 context->gva_to_gpa = nonpaging_gva_to_gpa;
5040                 context->root_level = 0;
5041         } else if (is_long_mode(vcpu)) {
5042                 context->nx = is_nx(vcpu);
5043                 context->root_level = is_la57_mode(vcpu) ?
5044                                 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5045                 reset_rsvds_bits_mask(vcpu, context);
5046                 context->gva_to_gpa = paging64_gva_to_gpa;
5047         } else if (is_pae(vcpu)) {
5048                 context->nx = is_nx(vcpu);
5049                 context->root_level = PT32E_ROOT_LEVEL;
5050                 reset_rsvds_bits_mask(vcpu, context);
5051                 context->gva_to_gpa = paging64_gva_to_gpa;
5052         } else {
5053                 context->nx = false;
5054                 context->root_level = PT32_ROOT_LEVEL;
5055                 reset_rsvds_bits_mask(vcpu, context);
5056                 context->gva_to_gpa = paging32_gva_to_gpa;
5057         }
5058
5059         update_permission_bitmask(vcpu, context, false);
5060         update_pkru_bitmask(vcpu, context, false);
5061         update_last_nonleaf_level(vcpu, context);
5062         reset_tdp_shadow_zero_bits_mask(vcpu, context);
5063 }
5064
5065 static union kvm_mmu_role
5066 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
5067 {
5068         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
5069
5070         role.base.smep_andnot_wp = role.ext.cr4_smep &&
5071                 !is_write_protection(vcpu);
5072         role.base.smap_andnot_wp = role.ext.cr4_smap &&
5073                 !is_write_protection(vcpu);
5074         role.base.direct = !is_paging(vcpu);
5075         role.base.gpte_is_8_bytes = !!is_pae(vcpu);
5076
5077         if (!is_long_mode(vcpu))
5078                 role.base.level = PT32E_ROOT_LEVEL;
5079         else if (is_la57_mode(vcpu))
5080                 role.base.level = PT64_ROOT_5LEVEL;
5081         else
5082                 role.base.level = PT64_ROOT_4LEVEL;
5083
5084         return role;
5085 }
5086
5087 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
5088 {
5089         struct kvm_mmu *context = vcpu->arch.mmu;
5090         union kvm_mmu_role new_role =
5091                 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
5092
5093         new_role.base.word &= mmu_base_role_mask.word;
5094         if (new_role.as_u64 == context->mmu_role.as_u64)
5095                 return;
5096
5097         if (!is_paging(vcpu))
5098                 nonpaging_init_context(vcpu, context);
5099         else if (is_long_mode(vcpu))
5100                 paging64_init_context(vcpu, context);
5101         else if (is_pae(vcpu))
5102                 paging32E_init_context(vcpu, context);
5103         else
5104                 paging32_init_context(vcpu, context);
5105
5106         context->mmu_role.as_u64 = new_role.as_u64;
5107         reset_shadow_zero_bits_mask(vcpu, context);
5108 }
5109 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
5110
5111 static union kvm_mmu_role
5112 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
5113                                    bool execonly)
5114 {
5115         union kvm_mmu_role role = {0};
5116
5117         /* SMM flag is inherited from root_mmu */
5118         role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
5119
5120         role.base.level = PT64_ROOT_4LEVEL;
5121         role.base.gpte_is_8_bytes = true;
5122         role.base.direct = false;
5123         role.base.ad_disabled = !accessed_dirty;
5124         role.base.guest_mode = true;
5125         role.base.access = ACC_ALL;
5126
5127         /*
5128          * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
5129          * SMAP variation to denote shadow EPT entries.
5130          */
5131         role.base.cr0_wp = true;
5132         role.base.smap_andnot_wp = true;
5133
5134         role.ext = kvm_calc_mmu_role_ext(vcpu);
5135         role.ext.execonly = execonly;
5136
5137         return role;
5138 }
5139
5140 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5141                              bool accessed_dirty, gpa_t new_eptp)
5142 {
5143         struct kvm_mmu *context = vcpu->arch.mmu;
5144         union kvm_mmu_role new_role =
5145                 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5146                                                    execonly);
5147
5148         __kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false);
5149
5150         new_role.base.word &= mmu_base_role_mask.word;
5151         if (new_role.as_u64 == context->mmu_role.as_u64)
5152                 return;
5153
5154         context->shadow_root_level = PT64_ROOT_4LEVEL;
5155
5156         context->nx = true;
5157         context->ept_ad = accessed_dirty;
5158         context->page_fault = ept_page_fault;
5159         context->gva_to_gpa = ept_gva_to_gpa;
5160         context->sync_page = ept_sync_page;
5161         context->invlpg = ept_invlpg;
5162         context->update_pte = ept_update_pte;
5163         context->root_level = PT64_ROOT_4LEVEL;
5164         context->direct_map = false;
5165         context->mmu_role.as_u64 = new_role.as_u64;
5166
5167         update_permission_bitmask(vcpu, context, true);
5168         update_pkru_bitmask(vcpu, context, true);
5169         update_last_nonleaf_level(vcpu, context);
5170         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
5171         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
5172 }
5173 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5174
5175 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
5176 {
5177         struct kvm_mmu *context = vcpu->arch.mmu;
5178
5179         kvm_init_shadow_mmu(vcpu);
5180         context->set_cr3           = kvm_x86_ops->set_cr3;
5181         context->get_cr3           = get_cr3;
5182         context->get_pdptr         = kvm_pdptr_read;
5183         context->inject_page_fault = kvm_inject_page_fault;
5184 }
5185
5186 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
5187 {
5188         union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
5189         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5190
5191         new_role.base.word &= mmu_base_role_mask.word;
5192         if (new_role.as_u64 == g_context->mmu_role.as_u64)
5193                 return;
5194
5195         g_context->mmu_role.as_u64 = new_role.as_u64;
5196         g_context->get_cr3           = get_cr3;
5197         g_context->get_pdptr         = kvm_pdptr_read;
5198         g_context->inject_page_fault = kvm_inject_page_fault;
5199
5200         /*
5201          * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5202          * L1's nested page tables (e.g. EPT12). The nested translation
5203          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5204          * L2's page tables as the first level of translation and L1's
5205          * nested page tables as the second level of translation. Basically
5206          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5207          */
5208         if (!is_paging(vcpu)) {
5209                 g_context->nx = false;
5210                 g_context->root_level = 0;
5211                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5212         } else if (is_long_mode(vcpu)) {
5213                 g_context->nx = is_nx(vcpu);
5214                 g_context->root_level = is_la57_mode(vcpu) ?
5215                                         PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5216                 reset_rsvds_bits_mask(vcpu, g_context);
5217                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5218         } else if (is_pae(vcpu)) {
5219                 g_context->nx = is_nx(vcpu);
5220                 g_context->root_level = PT32E_ROOT_LEVEL;
5221                 reset_rsvds_bits_mask(vcpu, g_context);
5222                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5223         } else {
5224                 g_context->nx = false;
5225                 g_context->root_level = PT32_ROOT_LEVEL;
5226                 reset_rsvds_bits_mask(vcpu, g_context);
5227                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5228         }
5229
5230         update_permission_bitmask(vcpu, g_context, false);
5231         update_pkru_bitmask(vcpu, g_context, false);
5232         update_last_nonleaf_level(vcpu, g_context);
5233 }
5234
5235 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
5236 {
5237         if (reset_roots) {
5238                 uint i;
5239
5240                 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
5241
5242                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5243                         vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5244         }
5245
5246         if (mmu_is_nested(vcpu))
5247                 init_kvm_nested_mmu(vcpu);
5248         else if (tdp_enabled)
5249                 init_kvm_tdp_mmu(vcpu);
5250         else
5251                 init_kvm_softmmu(vcpu);
5252 }
5253 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5254
5255 static union kvm_mmu_page_role
5256 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5257 {
5258         union kvm_mmu_role role;
5259
5260         if (tdp_enabled)
5261                 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
5262         else
5263                 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5264
5265         return role.base;
5266 }
5267
5268 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5269 {
5270         kvm_mmu_unload(vcpu);
5271         kvm_init_mmu(vcpu, true);
5272 }
5273 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5274
5275 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5276 {
5277         int r;
5278
5279         r = mmu_topup_memory_caches(vcpu);
5280         if (r)
5281                 goto out;
5282         r = mmu_alloc_roots(vcpu);
5283         kvm_mmu_sync_roots(vcpu);
5284         if (r)
5285                 goto out;
5286         kvm_mmu_load_cr3(vcpu);
5287         kvm_x86_ops->tlb_flush(vcpu, true);
5288 out:
5289         return r;
5290 }
5291 EXPORT_SYMBOL_GPL(kvm_mmu_load);
5292
5293 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5294 {
5295         kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5296         WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5297         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5298         WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
5299 }
5300 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
5301
5302 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
5303                                   struct kvm_mmu_page *sp, u64 *spte,
5304                                   const void *new)
5305 {
5306         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
5307                 ++vcpu->kvm->stat.mmu_pde_zapped;
5308                 return;
5309         }
5310
5311         ++vcpu->kvm->stat.mmu_pte_updated;
5312         vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
5313 }
5314
5315 static bool need_remote_flush(u64 old, u64 new)
5316 {
5317         if (!is_shadow_present_pte(old))
5318                 return false;
5319         if (!is_shadow_present_pte(new))
5320                 return true;
5321         if ((old ^ new) & PT64_BASE_ADDR_MASK)
5322                 return true;
5323         old ^= shadow_nx_mask;
5324         new ^= shadow_nx_mask;
5325         return (old & ~new & PT64_PERM_MASK) != 0;
5326 }
5327
5328 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5329                                     int *bytes)
5330 {
5331         u64 gentry = 0;
5332         int r;
5333
5334         /*
5335          * Assume that the pte write on a page table of the same type
5336          * as the current vcpu paging mode since we update the sptes only
5337          * when they have the same mode.
5338          */
5339         if (is_pae(vcpu) && *bytes == 4) {
5340                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5341                 *gpa &= ~(gpa_t)7;
5342                 *bytes = 8;
5343         }
5344
5345         if (*bytes == 4 || *bytes == 8) {
5346                 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5347                 if (r)
5348                         gentry = 0;
5349         }
5350
5351         return gentry;
5352 }
5353
5354 /*
5355  * If we're seeing too many writes to a page, it may no longer be a page table,
5356  * or we may be forking, in which case it is better to unmap the page.
5357  */
5358 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5359 {
5360         /*
5361          * Skip write-flooding detected for the sp whose level is 1, because
5362          * it can become unsync, then the guest page is not write-protected.
5363          */
5364         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
5365                 return false;
5366
5367         atomic_inc(&sp->write_flooding_count);
5368         return atomic_read(&sp->write_flooding_count) >= 3;
5369 }
5370
5371 /*
5372  * Misaligned accesses are too much trouble to fix up; also, they usually
5373  * indicate a page is not used as a page table.
5374  */
5375 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5376                                     int bytes)
5377 {
5378         unsigned offset, pte_size, misaligned;
5379
5380         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5381                  gpa, bytes, sp->role.word);
5382
5383         offset = offset_in_page(gpa);
5384         pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5385
5386         /*
5387          * Sometimes, the OS only writes the last one bytes to update status
5388          * bits, for example, in linux, andb instruction is used in clear_bit().
5389          */
5390         if (!(offset & (pte_size - 1)) && bytes == 1)
5391                 return false;
5392
5393         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5394         misaligned |= bytes < 4;
5395
5396         return misaligned;
5397 }
5398
5399 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5400 {
5401         unsigned page_offset, quadrant;
5402         u64 *spte;
5403         int level;
5404
5405         page_offset = offset_in_page(gpa);
5406         level = sp->role.level;
5407         *nspte = 1;
5408         if (!sp->role.gpte_is_8_bytes) {
5409                 page_offset <<= 1;      /* 32->64 */
5410                 /*
5411                  * A 32-bit pde maps 4MB while the shadow pdes map
5412                  * only 2MB.  So we need to double the offset again
5413                  * and zap two pdes instead of one.
5414                  */
5415                 if (level == PT32_ROOT_LEVEL) {
5416                         page_offset &= ~7; /* kill rounding error */
5417                         page_offset <<= 1;
5418                         *nspte = 2;
5419                 }
5420                 quadrant = page_offset >> PAGE_SHIFT;
5421                 page_offset &= ~PAGE_MASK;
5422                 if (quadrant != sp->role.quadrant)
5423                         return NULL;
5424         }
5425
5426         spte = &sp->spt[page_offset / sizeof(*spte)];
5427         return spte;
5428 }
5429
5430 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5431                               const u8 *new, int bytes,
5432                               struct kvm_page_track_notifier_node *node)
5433 {
5434         gfn_t gfn = gpa >> PAGE_SHIFT;
5435         struct kvm_mmu_page *sp;
5436         LIST_HEAD(invalid_list);
5437         u64 entry, gentry, *spte;
5438         int npte;
5439         bool remote_flush, local_flush;
5440
5441         /*
5442          * If we don't have indirect shadow pages, it means no page is
5443          * write-protected, so we can exit simply.
5444          */
5445         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5446                 return;
5447
5448         remote_flush = local_flush = false;
5449
5450         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5451
5452         /*
5453          * No need to care whether allocation memory is successful
5454          * or not since pte prefetch is skiped if it does not have
5455          * enough objects in the cache.
5456          */
5457         mmu_topup_memory_caches(vcpu);
5458
5459         spin_lock(&vcpu->kvm->mmu_lock);
5460
5461         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5462
5463         ++vcpu->kvm->stat.mmu_pte_write;
5464         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5465
5466         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5467                 if (detect_write_misaligned(sp, gpa, bytes) ||
5468                       detect_write_flooding(sp)) {
5469                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5470                         ++vcpu->kvm->stat.mmu_flooded;
5471                         continue;
5472                 }
5473
5474                 spte = get_written_sptes(sp, gpa, &npte);
5475                 if (!spte)
5476                         continue;
5477
5478                 local_flush = true;
5479                 while (npte--) {
5480                         u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5481
5482                         entry = *spte;
5483                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
5484                         if (gentry &&
5485                               !((sp->role.word ^ base_role)
5486                               & mmu_base_role_mask.word) && rmap_can_add(vcpu))
5487                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5488                         if (need_remote_flush(entry, *spte))
5489                                 remote_flush = true;
5490                         ++spte;
5491                 }
5492         }
5493         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5494         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5495         spin_unlock(&vcpu->kvm->mmu_lock);
5496 }
5497
5498 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5499 {
5500         gpa_t gpa;
5501         int r;
5502
5503         if (vcpu->arch.mmu->direct_map)
5504                 return 0;
5505
5506         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5507
5508         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5509
5510         return r;
5511 }
5512 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5513
5514 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
5515 {
5516         LIST_HEAD(invalid_list);
5517
5518         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
5519                 return 0;
5520
5521         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
5522                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
5523                         break;
5524
5525                 ++vcpu->kvm->stat.mmu_recycled;
5526         }
5527         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
5528
5529         if (!kvm_mmu_available_pages(vcpu->kvm))
5530                 return -ENOSPC;
5531         return 0;
5532 }
5533
5534 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5535                        void *insn, int insn_len)
5536 {
5537         int r, emulation_type = 0;
5538         bool direct = vcpu->arch.mmu->direct_map;
5539
5540         /* With shadow page tables, fault_address contains a GVA or nGPA.  */
5541         if (vcpu->arch.mmu->direct_map) {
5542                 vcpu->arch.gpa_available = true;
5543                 vcpu->arch.gpa_val = cr2_or_gpa;
5544         }
5545
5546         r = RET_PF_INVALID;
5547         if (unlikely(error_code & PFERR_RSVD_MASK)) {
5548                 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5549                 if (r == RET_PF_EMULATE)
5550                         goto emulate;
5551         }
5552
5553         if (r == RET_PF_INVALID) {
5554                 r = vcpu->arch.mmu->page_fault(vcpu, cr2_or_gpa,
5555                                                lower_32_bits(error_code),
5556                                                false);
5557                 WARN_ON(r == RET_PF_INVALID);
5558         }
5559
5560         if (r == RET_PF_RETRY)
5561                 return 1;
5562         if (r < 0)
5563                 return r;
5564
5565         /*
5566          * Before emulating the instruction, check if the error code
5567          * was due to a RO violation while translating the guest page.
5568          * This can occur when using nested virtualization with nested
5569          * paging in both guests. If true, we simply unprotect the page
5570          * and resume the guest.
5571          */
5572         if (vcpu->arch.mmu->direct_map &&
5573             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5574                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5575                 return 1;
5576         }
5577
5578         /*
5579          * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5580          * optimistically try to just unprotect the page and let the processor
5581          * re-execute the instruction that caused the page fault.  Do not allow
5582          * retrying MMIO emulation, as it's not only pointless but could also
5583          * cause us to enter an infinite loop because the processor will keep
5584          * faulting on the non-existent MMIO address.  Retrying an instruction
5585          * from a nested guest is also pointless and dangerous as we are only
5586          * explicitly shadowing L1's page tables, i.e. unprotecting something
5587          * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5588          */
5589         if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5590                 emulation_type = EMULTYPE_ALLOW_RETRY;
5591 emulate:
5592         /*
5593          * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5594          * This can happen if a guest gets a page-fault on data access but the HW
5595          * table walker is not able to read the instruction page (e.g instruction
5596          * page is not present in memory). In those cases we simply restart the
5597          * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
5598          */
5599         if (unlikely(insn && !insn_len)) {
5600                 if (!kvm_x86_ops->need_emulation_on_page_fault(vcpu))
5601                         return 1;
5602         }
5603
5604         return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5605                                        insn_len);
5606 }
5607 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5608
5609 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5610 {
5611         struct kvm_mmu *mmu = vcpu->arch.mmu;
5612         int i;
5613
5614         /* INVLPG on a * non-canonical address is a NOP according to the SDM.  */
5615         if (is_noncanonical_address(gva, vcpu))
5616                 return;
5617
5618         mmu->invlpg(vcpu, gva, mmu->root_hpa);
5619
5620         /*
5621          * INVLPG is required to invalidate any global mappings for the VA,
5622          * irrespective of PCID. Since it would take us roughly similar amount
5623          * of work to determine whether any of the prev_root mappings of the VA
5624          * is marked global, or to just sync it blindly, so we might as well
5625          * just always sync it.
5626          *
5627          * Mappings not reachable via the current cr3 or the prev_roots will be
5628          * synced when switching to that cr3, so nothing needs to be done here
5629          * for them.
5630          */
5631         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5632                 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5633                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5634
5635         kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5636         ++vcpu->stat.invlpg;
5637 }
5638 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5639
5640 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5641 {
5642         struct kvm_mmu *mmu = vcpu->arch.mmu;
5643         bool tlb_flush = false;
5644         uint i;
5645
5646         if (pcid == kvm_get_active_pcid(vcpu)) {
5647                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5648                 tlb_flush = true;
5649         }
5650
5651         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5652                 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5653                     pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
5654                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5655                         tlb_flush = true;
5656                 }
5657         }
5658
5659         if (tlb_flush)
5660                 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5661
5662         ++vcpu->stat.invlpg;
5663
5664         /*
5665          * Mappings not reachable via the current cr3 or the prev_roots will be
5666          * synced when switching to that cr3, so nothing needs to be done here
5667          * for them.
5668          */
5669 }
5670 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5671
5672 void kvm_enable_tdp(void)
5673 {
5674         tdp_enabled = true;
5675 }
5676 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5677
5678 void kvm_disable_tdp(void)
5679 {
5680         tdp_enabled = false;
5681 }
5682 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5683
5684
5685 /* The return value indicates if tlb flush on all vcpus is needed. */
5686 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5687
5688 /* The caller should hold mmu-lock before calling this function. */
5689 static __always_inline bool
5690 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5691                         slot_level_handler fn, int start_level, int end_level,
5692                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5693 {
5694         struct slot_rmap_walk_iterator iterator;
5695         bool flush = false;
5696
5697         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5698                         end_gfn, &iterator) {
5699                 if (iterator.rmap)
5700                         flush |= fn(kvm, iterator.rmap);
5701
5702                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5703                         if (flush && lock_flush_tlb) {
5704                                 kvm_flush_remote_tlbs_with_address(kvm,
5705                                                 start_gfn,
5706                                                 iterator.gfn - start_gfn + 1);
5707                                 flush = false;
5708                         }
5709                         cond_resched_lock(&kvm->mmu_lock);
5710                 }
5711         }
5712
5713         if (flush && lock_flush_tlb) {
5714                 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5715                                                    end_gfn - start_gfn + 1);
5716                 flush = false;
5717         }
5718
5719         return flush;
5720 }
5721
5722 static __always_inline bool
5723 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5724                   slot_level_handler fn, int start_level, int end_level,
5725                   bool lock_flush_tlb)
5726 {
5727         return slot_handle_level_range(kvm, memslot, fn, start_level,
5728                         end_level, memslot->base_gfn,
5729                         memslot->base_gfn + memslot->npages - 1,
5730                         lock_flush_tlb);
5731 }
5732
5733 static __always_inline bool
5734 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5735                       slot_level_handler fn, bool lock_flush_tlb)
5736 {
5737         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5738                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5739 }
5740
5741 static __always_inline bool
5742 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5743                         slot_level_handler fn, bool lock_flush_tlb)
5744 {
5745         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5746                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5747 }
5748
5749 static __always_inline bool
5750 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5751                  slot_level_handler fn, bool lock_flush_tlb)
5752 {
5753         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5754                                  PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5755 }
5756
5757 static void free_mmu_pages(struct kvm_mmu *mmu)
5758 {
5759         free_page((unsigned long)mmu->pae_root);
5760         free_page((unsigned long)mmu->lm_root);
5761 }
5762
5763 static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5764 {
5765         struct page *page;
5766         int i;
5767
5768         /*
5769          * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5770          * while the PDP table is a per-vCPU construct that's allocated at MMU
5771          * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5772          * x86_64.  Therefore we need to allocate the PDP table in the first
5773          * 4GB of memory, which happens to fit the DMA32 zone.  Except for
5774          * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5775          * skip allocating the PDP table.
5776          */
5777         if (tdp_enabled && kvm_x86_ops->get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5778                 return 0;
5779
5780         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5781         if (!page)
5782                 return -ENOMEM;
5783
5784         mmu->pae_root = page_address(page);
5785         for (i = 0; i < 4; ++i)
5786                 mmu->pae_root[i] = INVALID_PAGE;
5787
5788         return 0;
5789 }
5790
5791 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5792 {
5793         uint i;
5794         int ret;
5795
5796         vcpu->arch.mmu = &vcpu->arch.root_mmu;
5797         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5798
5799         vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
5800         vcpu->arch.root_mmu.root_cr3 = 0;
5801         vcpu->arch.root_mmu.translate_gpa = translate_gpa;
5802         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5803                 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5804
5805         vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
5806         vcpu->arch.guest_mmu.root_cr3 = 0;
5807         vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5808         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5809                 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5810
5811         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5812
5813         ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu);
5814         if (ret)
5815                 return ret;
5816
5817         ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu);
5818         if (ret)
5819                 goto fail_allocate_root;
5820
5821         return ret;
5822  fail_allocate_root:
5823         free_mmu_pages(&vcpu->arch.guest_mmu);
5824         return ret;
5825 }
5826
5827 #define BATCH_ZAP_PAGES 10
5828 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5829 {
5830         struct kvm_mmu_page *sp, *node;
5831         int nr_zapped, batch = 0;
5832
5833 restart:
5834         list_for_each_entry_safe_reverse(sp, node,
5835               &kvm->arch.active_mmu_pages, link) {
5836                 /*
5837                  * No obsolete valid page exists before a newly created page
5838                  * since active_mmu_pages is a FIFO list.
5839                  */
5840                 if (!is_obsolete_sp(kvm, sp))
5841                         break;
5842
5843                 /*
5844                  * Skip invalid pages with a non-zero root count, zapping pages
5845                  * with a non-zero root count will never succeed, i.e. the page
5846                  * will get thrown back on active_mmu_pages and we'll get stuck
5847                  * in an infinite loop.
5848                  */
5849                 if (sp->role.invalid && sp->root_count)
5850                         continue;
5851
5852                 /*
5853                  * No need to flush the TLB since we're only zapping shadow
5854                  * pages with an obsolete generation number and all vCPUS have
5855                  * loaded a new root, i.e. the shadow pages being zapped cannot
5856                  * be in active use by the guest.
5857                  */
5858                 if (batch >= BATCH_ZAP_PAGES &&
5859                     cond_resched_lock(&kvm->mmu_lock)) {
5860                         batch = 0;
5861                         goto restart;
5862                 }
5863
5864                 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5865                                 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5866                         batch += nr_zapped;
5867                         goto restart;
5868                 }
5869         }
5870
5871         /*
5872          * Trigger a remote TLB flush before freeing the page tables to ensure
5873          * KVM is not in the middle of a lockless shadow page table walk, which
5874          * may reference the pages.
5875          */
5876         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5877 }
5878
5879 /*
5880  * Fast invalidate all shadow pages and use lock-break technique
5881  * to zap obsolete pages.
5882  *
5883  * It's required when memslot is being deleted or VM is being
5884  * destroyed, in these cases, we should ensure that KVM MMU does
5885  * not use any resource of the being-deleted slot or all slots
5886  * after calling the function.
5887  */
5888 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5889 {
5890         lockdep_assert_held(&kvm->slots_lock);
5891
5892         spin_lock(&kvm->mmu_lock);
5893         trace_kvm_mmu_zap_all_fast(kvm);
5894
5895         /*
5896          * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5897          * held for the entire duration of zapping obsolete pages, it's
5898          * impossible for there to be multiple invalid generations associated
5899          * with *valid* shadow pages at any given time, i.e. there is exactly
5900          * one valid generation and (at most) one invalid generation.
5901          */
5902         kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5903
5904         /*
5905          * Notify all vcpus to reload its shadow page table and flush TLB.
5906          * Then all vcpus will switch to new shadow page table with the new
5907          * mmu_valid_gen.
5908          *
5909          * Note: we need to do this under the protection of mmu_lock,
5910          * otherwise, vcpu would purge shadow page but miss tlb flush.
5911          */
5912         kvm_reload_remote_mmus(kvm);
5913
5914         kvm_zap_obsolete_pages(kvm);
5915         spin_unlock(&kvm->mmu_lock);
5916 }
5917
5918 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5919 {
5920         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5921 }
5922
5923 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5924                         struct kvm_memory_slot *slot,
5925                         struct kvm_page_track_notifier_node *node)
5926 {
5927         kvm_mmu_zap_all_fast(kvm);
5928 }
5929
5930 void kvm_mmu_init_vm(struct kvm *kvm)
5931 {
5932         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5933
5934         node->track_write = kvm_mmu_pte_write;
5935         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5936         kvm_page_track_register_notifier(kvm, node);
5937 }
5938
5939 void kvm_mmu_uninit_vm(struct kvm *kvm)
5940 {
5941         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5942
5943         kvm_page_track_unregister_notifier(kvm, node);
5944 }
5945
5946 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5947 {
5948         struct kvm_memslots *slots;
5949         struct kvm_memory_slot *memslot;
5950         int i;
5951
5952         spin_lock(&kvm->mmu_lock);
5953         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5954                 slots = __kvm_memslots(kvm, i);
5955                 kvm_for_each_memslot(memslot, slots) {
5956                         gfn_t start, end;
5957
5958                         start = max(gfn_start, memslot->base_gfn);
5959                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
5960                         if (start >= end)
5961                                 continue;
5962
5963                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5964                                                 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5965                                                 start, end - 1, true);
5966                 }
5967         }
5968
5969         spin_unlock(&kvm->mmu_lock);
5970 }
5971
5972 static bool slot_rmap_write_protect(struct kvm *kvm,
5973                                     struct kvm_rmap_head *rmap_head)
5974 {
5975         return __rmap_write_protect(kvm, rmap_head, false);
5976 }
5977
5978 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5979                                       struct kvm_memory_slot *memslot)
5980 {
5981         bool flush;
5982
5983         spin_lock(&kvm->mmu_lock);
5984         flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5985                                       false);
5986         spin_unlock(&kvm->mmu_lock);
5987
5988         /*
5989          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5990          * which do tlb flush out of mmu-lock should be serialized by
5991          * kvm->slots_lock otherwise tlb flush would be missed.
5992          */
5993         lockdep_assert_held(&kvm->slots_lock);
5994
5995         /*
5996          * We can flush all the TLBs out of the mmu lock without TLB
5997          * corruption since we just change the spte from writable to
5998          * readonly so that we only need to care the case of changing
5999          * spte from present to present (changing the spte from present
6000          * to nonpresent will flush all the TLBs immediately), in other
6001          * words, the only case we care is mmu_spte_update() where we
6002          * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
6003          * instead of PT_WRITABLE_MASK, that means it does not depend
6004          * on PT_WRITABLE_MASK anymore.
6005          */
6006         if (flush)
6007                 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
6008                         memslot->npages);
6009 }
6010
6011 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
6012                                          struct kvm_rmap_head *rmap_head)
6013 {
6014         u64 *sptep;
6015         struct rmap_iterator iter;
6016         int need_tlb_flush = 0;
6017         kvm_pfn_t pfn;
6018         struct kvm_mmu_page *sp;
6019
6020 restart:
6021         for_each_rmap_spte(rmap_head, &iter, sptep) {
6022                 sp = page_header(__pa(sptep));
6023                 pfn = spte_to_pfn(*sptep);
6024
6025                 /*
6026                  * We cannot do huge page mapping for indirect shadow pages,
6027                  * which are found on the last rmap (level = 1) when not using
6028                  * tdp; such shadow pages are synced with the page table in
6029                  * the guest, and the guest page table is using 4K page size
6030                  * mapping if the indirect sp has level = 1.
6031                  */
6032                 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
6033                     !kvm_is_zone_device_pfn(pfn) &&
6034                     PageTransCompoundMap(pfn_to_page(pfn))) {
6035                         pte_list_remove(rmap_head, sptep);
6036
6037                         if (kvm_available_flush_tlb_with_range())
6038                                 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
6039                                         KVM_PAGES_PER_HPAGE(sp->role.level));
6040                         else
6041                                 need_tlb_flush = 1;
6042
6043                         goto restart;
6044                 }
6045         }
6046
6047         return need_tlb_flush;
6048 }
6049
6050 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
6051                                    const struct kvm_memory_slot *memslot)
6052 {
6053         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
6054         spin_lock(&kvm->mmu_lock);
6055         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
6056                          kvm_mmu_zap_collapsible_spte, true);
6057         spin_unlock(&kvm->mmu_lock);
6058 }
6059
6060 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
6061                                    struct kvm_memory_slot *memslot)
6062 {
6063         bool flush;
6064
6065         spin_lock(&kvm->mmu_lock);
6066         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
6067         spin_unlock(&kvm->mmu_lock);
6068
6069         lockdep_assert_held(&kvm->slots_lock);
6070
6071         /*
6072          * It's also safe to flush TLBs out of mmu lock here as currently this
6073          * function is only used for dirty logging, in which case flushing TLB
6074          * out of mmu lock also guarantees no dirty pages will be lost in
6075          * dirty_bitmap.
6076          */
6077         if (flush)
6078                 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
6079                                 memslot->npages);
6080 }
6081 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
6082
6083 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
6084                                         struct kvm_memory_slot *memslot)
6085 {
6086         bool flush;
6087
6088         spin_lock(&kvm->mmu_lock);
6089         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
6090                                         false);
6091         spin_unlock(&kvm->mmu_lock);
6092
6093         /* see kvm_mmu_slot_remove_write_access */
6094         lockdep_assert_held(&kvm->slots_lock);
6095
6096         if (flush)
6097                 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
6098                                 memslot->npages);
6099 }
6100 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
6101
6102 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
6103                             struct kvm_memory_slot *memslot)
6104 {
6105         bool flush;
6106
6107         spin_lock(&kvm->mmu_lock);
6108         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
6109         spin_unlock(&kvm->mmu_lock);
6110
6111         lockdep_assert_held(&kvm->slots_lock);
6112
6113         /* see kvm_mmu_slot_leaf_clear_dirty */
6114         if (flush)
6115                 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
6116                                 memslot->npages);
6117 }
6118 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
6119
6120 void kvm_mmu_zap_all(struct kvm *kvm)
6121 {
6122         struct kvm_mmu_page *sp, *node;
6123         LIST_HEAD(invalid_list);
6124         int ign;
6125
6126         spin_lock(&kvm->mmu_lock);
6127 restart:
6128         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6129                 if (sp->role.invalid && sp->root_count)
6130                         continue;
6131                 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6132                         goto restart;
6133                 if (cond_resched_lock(&kvm->mmu_lock))
6134                         goto restart;
6135         }
6136
6137         kvm_mmu_commit_zap_page(kvm, &invalid_list);
6138         spin_unlock(&kvm->mmu_lock);
6139 }
6140
6141 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6142 {
6143         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6144
6145         gen &= MMIO_SPTE_GEN_MASK;
6146
6147         /*
6148          * Generation numbers are incremented in multiples of the number of
6149          * address spaces in order to provide unique generations across all
6150          * address spaces.  Strip what is effectively the address space
6151          * modifier prior to checking for a wrap of the MMIO generation so
6152          * that a wrap in any address space is detected.
6153          */
6154         gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
6155
6156         /*
6157          * The very rare case: if the MMIO generation number has wrapped,
6158          * zap all shadow pages.
6159          */
6160         if (unlikely(gen == 0)) {
6161                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
6162                 kvm_mmu_zap_all_fast(kvm);
6163         }
6164 }
6165
6166 static unsigned long
6167 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6168 {
6169         struct kvm *kvm;
6170         int nr_to_scan = sc->nr_to_scan;
6171         unsigned long freed = 0;
6172
6173         mutex_lock(&kvm_lock);
6174
6175         list_for_each_entry(kvm, &vm_list, vm_list) {
6176                 int idx;
6177                 LIST_HEAD(invalid_list);
6178
6179                 /*
6180                  * Never scan more than sc->nr_to_scan VM instances.
6181                  * Will not hit this condition practically since we do not try
6182                  * to shrink more than one VM and it is very unlikely to see
6183                  * !n_used_mmu_pages so many times.
6184                  */
6185                 if (!nr_to_scan--)
6186                         break;
6187                 /*
6188                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6189                  * here. We may skip a VM instance errorneosly, but we do not
6190                  * want to shrink a VM that only started to populate its MMU
6191                  * anyway.
6192                  */
6193                 if (!kvm->arch.n_used_mmu_pages &&
6194                     !kvm_has_zapped_obsolete_pages(kvm))
6195                         continue;
6196
6197                 idx = srcu_read_lock(&kvm->srcu);
6198                 spin_lock(&kvm->mmu_lock);
6199
6200                 if (kvm_has_zapped_obsolete_pages(kvm)) {
6201                         kvm_mmu_commit_zap_page(kvm,
6202                               &kvm->arch.zapped_obsolete_pages);
6203                         goto unlock;
6204                 }
6205
6206                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
6207                         freed++;
6208                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6209
6210 unlock:
6211                 spin_unlock(&kvm->mmu_lock);
6212                 srcu_read_unlock(&kvm->srcu, idx);
6213
6214                 /*
6215                  * unfair on small ones
6216                  * per-vm shrinkers cry out
6217                  * sadness comes quickly
6218                  */
6219                 list_move_tail(&kvm->vm_list, &vm_list);
6220                 break;
6221         }
6222
6223         mutex_unlock(&kvm_lock);
6224         return freed;
6225 }
6226
6227 static unsigned long
6228 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6229 {
6230         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6231 }
6232
6233 static struct shrinker mmu_shrinker = {
6234         .count_objects = mmu_shrink_count,
6235         .scan_objects = mmu_shrink_scan,
6236         .seeks = DEFAULT_SEEKS * 10,
6237 };
6238
6239 static void mmu_destroy_caches(void)
6240 {
6241         kmem_cache_destroy(pte_list_desc_cache);
6242         kmem_cache_destroy(mmu_page_header_cache);
6243 }
6244
6245 static void kvm_set_mmio_spte_mask(void)
6246 {
6247         u64 mask;
6248
6249         /*
6250          * Set the reserved bits and the present bit of an paging-structure
6251          * entry to generate page fault with PFER.RSV = 1.
6252          */
6253
6254         /*
6255          * Mask the uppermost physical address bit, which would be reserved as
6256          * long as the supported physical address width is less than 52.
6257          */
6258         mask = 1ull << 51;
6259
6260         /* Set the present bit. */
6261         mask |= 1ull;
6262
6263         /*
6264          * If reserved bit is not supported, clear the present bit to disable
6265          * mmio page fault.
6266          */
6267         if (IS_ENABLED(CONFIG_X86_64) && shadow_phys_bits == 52)
6268                 mask &= ~1ull;
6269
6270         kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
6271 }
6272
6273 static bool get_nx_auto_mode(void)
6274 {
6275         /* Return true when CPU has the bug, and mitigations are ON */
6276         return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6277 }
6278
6279 static void __set_nx_huge_pages(bool val)
6280 {
6281         nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6282 }
6283
6284 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6285 {
6286         bool old_val = nx_huge_pages;
6287         bool new_val;
6288
6289         /* In "auto" mode deploy workaround only if CPU has the bug. */
6290         if (sysfs_streq(val, "off"))
6291                 new_val = 0;
6292         else if (sysfs_streq(val, "force"))
6293                 new_val = 1;
6294         else if (sysfs_streq(val, "auto"))
6295                 new_val = get_nx_auto_mode();
6296         else if (strtobool(val, &new_val) < 0)
6297                 return -EINVAL;
6298
6299         __set_nx_huge_pages(new_val);
6300
6301         if (new_val != old_val) {
6302                 struct kvm *kvm;
6303
6304                 mutex_lock(&kvm_lock);
6305
6306                 list_for_each_entry(kvm, &vm_list, vm_list) {
6307                         mutex_lock(&kvm->slots_lock);
6308                         kvm_mmu_zap_all_fast(kvm);
6309                         mutex_unlock(&kvm->slots_lock);
6310
6311                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6312                 }
6313                 mutex_unlock(&kvm_lock);
6314         }
6315
6316         return 0;
6317 }
6318
6319 int kvm_mmu_module_init(void)
6320 {
6321         int ret = -ENOMEM;
6322
6323         if (nx_huge_pages == -1)
6324                 __set_nx_huge_pages(get_nx_auto_mode());
6325
6326         /*
6327          * MMU roles use union aliasing which is, generally speaking, an
6328          * undefined behavior. However, we supposedly know how compilers behave
6329          * and the current status quo is unlikely to change. Guardians below are
6330          * supposed to let us know if the assumption becomes false.
6331          */
6332         BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6333         BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6334         BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6335
6336         kvm_mmu_reset_all_pte_masks();
6337
6338         kvm_set_mmio_spte_mask();
6339
6340         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6341                                             sizeof(struct pte_list_desc),
6342                                             0, SLAB_ACCOUNT, NULL);
6343         if (!pte_list_desc_cache)
6344                 goto out;
6345
6346         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6347                                                   sizeof(struct kvm_mmu_page),
6348                                                   0, SLAB_ACCOUNT, NULL);
6349         if (!mmu_page_header_cache)
6350                 goto out;
6351
6352         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6353                 goto out;
6354
6355         ret = register_shrinker(&mmu_shrinker);
6356         if (ret)
6357                 goto out;
6358
6359         return 0;
6360
6361 out:
6362         mmu_destroy_caches();
6363         return ret;
6364 }
6365
6366 /*
6367  * Calculate mmu pages needed for kvm.
6368  */
6369 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6370 {
6371         unsigned long nr_mmu_pages;
6372         unsigned long nr_pages = 0;
6373         struct kvm_memslots *slots;
6374         struct kvm_memory_slot *memslot;
6375         int i;
6376
6377         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6378                 slots = __kvm_memslots(kvm, i);
6379
6380                 kvm_for_each_memslot(memslot, slots)
6381                         nr_pages += memslot->npages;
6382         }
6383
6384         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6385         nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6386
6387         return nr_mmu_pages;
6388 }
6389
6390 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6391 {
6392         kvm_mmu_unload(vcpu);
6393         free_mmu_pages(&vcpu->arch.root_mmu);
6394         free_mmu_pages(&vcpu->arch.guest_mmu);
6395         mmu_free_memory_caches(vcpu);
6396 }
6397
6398 void kvm_mmu_module_exit(void)
6399 {
6400         mmu_destroy_caches();
6401         percpu_counter_destroy(&kvm_total_used_mmu_pages);
6402         unregister_shrinker(&mmu_shrinker);
6403         mmu_audit_disable();
6404 }
6405
6406 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6407 {
6408         unsigned int old_val;
6409         int err;
6410
6411         old_val = nx_huge_pages_recovery_ratio;
6412         err = param_set_uint(val, kp);
6413         if (err)
6414                 return err;
6415
6416         if (READ_ONCE(nx_huge_pages) &&
6417             !old_val && nx_huge_pages_recovery_ratio) {
6418                 struct kvm *kvm;
6419
6420                 mutex_lock(&kvm_lock);
6421
6422                 list_for_each_entry(kvm, &vm_list, vm_list)
6423                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6424
6425                 mutex_unlock(&kvm_lock);
6426         }
6427
6428         return err;
6429 }
6430
6431 static void kvm_recover_nx_lpages(struct kvm *kvm)
6432 {
6433         int rcu_idx;
6434         struct kvm_mmu_page *sp;
6435         unsigned int ratio;
6436         LIST_HEAD(invalid_list);
6437         ulong to_zap;
6438
6439         rcu_idx = srcu_read_lock(&kvm->srcu);
6440         spin_lock(&kvm->mmu_lock);
6441
6442         ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6443         to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
6444         while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
6445                 /*
6446                  * We use a separate list instead of just using active_mmu_pages
6447                  * because the number of lpage_disallowed pages is expected to
6448                  * be relatively small compared to the total.
6449                  */
6450                 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6451                                       struct kvm_mmu_page,
6452                                       lpage_disallowed_link);
6453                 WARN_ON_ONCE(!sp->lpage_disallowed);
6454                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6455                 WARN_ON_ONCE(sp->lpage_disallowed);
6456
6457                 if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6458                         kvm_mmu_commit_zap_page(kvm, &invalid_list);
6459                         if (to_zap)
6460                                 cond_resched_lock(&kvm->mmu_lock);
6461                 }
6462         }
6463
6464         spin_unlock(&kvm->mmu_lock);
6465         srcu_read_unlock(&kvm->srcu, rcu_idx);
6466 }
6467
6468 static long get_nx_lpage_recovery_timeout(u64 start_time)
6469 {
6470         return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6471                 ? start_time + 60 * HZ - get_jiffies_64()
6472                 : MAX_SCHEDULE_TIMEOUT;
6473 }
6474
6475 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6476 {
6477         u64 start_time;
6478         long remaining_time;
6479
6480         while (true) {
6481                 start_time = get_jiffies_64();
6482                 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6483
6484                 set_current_state(TASK_INTERRUPTIBLE);
6485                 while (!kthread_should_stop() && remaining_time > 0) {
6486                         schedule_timeout(remaining_time);
6487                         remaining_time = get_nx_lpage_recovery_timeout(start_time);
6488                         set_current_state(TASK_INTERRUPTIBLE);
6489                 }
6490
6491                 set_current_state(TASK_RUNNING);
6492
6493                 if (kthread_should_stop())
6494                         return 0;
6495
6496                 kvm_recover_nx_lpages(kvm);
6497         }
6498 }
6499
6500 int kvm_mmu_post_init_vm(struct kvm *kvm)
6501 {
6502         int err;
6503
6504         err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6505                                           "kvm-nx-lpage-recovery",
6506                                           &kvm->arch.nx_lpage_recovery_thread);
6507         if (!err)
6508                 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6509
6510         return err;
6511 }
6512
6513 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6514 {
6515         if (kvm->arch.nx_lpage_recovery_thread)
6516                 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6517 }