]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/mmu.c
KVM: x86/mmu: Use fast invalidate mechanism to zap MMIO sptes
[linux.git] / arch / x86 / kvm / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17
18 #include "irq.h"
19 #include "mmu.h"
20 #include "x86.h"
21 #include "kvm_cache_regs.h"
22 #include "cpuid.h"
23
24 #include <linux/kvm_host.h>
25 #include <linux/types.h>
26 #include <linux/string.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/moduleparam.h>
30 #include <linux/export.h>
31 #include <linux/swap.h>
32 #include <linux/hugetlb.h>
33 #include <linux/compiler.h>
34 #include <linux/srcu.h>
35 #include <linux/slab.h>
36 #include <linux/sched/signal.h>
37 #include <linux/uaccess.h>
38 #include <linux/hash.h>
39 #include <linux/kern_levels.h>
40
41 #include <asm/page.h>
42 #include <asm/pat.h>
43 #include <asm/cmpxchg.h>
44 #include <asm/e820/api.h>
45 #include <asm/io.h>
46 #include <asm/vmx.h>
47 #include <asm/kvm_page_track.h>
48 #include "trace.h"
49
50 /*
51  * When setting this variable to true it enables Two-Dimensional-Paging
52  * where the hardware walks 2 page tables:
53  * 1. the guest-virtual to guest-physical
54  * 2. while doing 1. it walks guest-physical to host-physical
55  * If the hardware supports that we don't need to do shadow paging.
56  */
57 bool tdp_enabled = false;
58
59 enum {
60         AUDIT_PRE_PAGE_FAULT,
61         AUDIT_POST_PAGE_FAULT,
62         AUDIT_PRE_PTE_WRITE,
63         AUDIT_POST_PTE_WRITE,
64         AUDIT_PRE_SYNC,
65         AUDIT_POST_SYNC
66 };
67
68 #undef MMU_DEBUG
69
70 #ifdef MMU_DEBUG
71 static bool dbg = 0;
72 module_param(dbg, bool, 0644);
73
74 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
75 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
76 #define MMU_WARN_ON(x) WARN_ON(x)
77 #else
78 #define pgprintk(x...) do { } while (0)
79 #define rmap_printk(x...) do { } while (0)
80 #define MMU_WARN_ON(x) do { } while (0)
81 #endif
82
83 #define PTE_PREFETCH_NUM                8
84
85 #define PT_FIRST_AVAIL_BITS_SHIFT 10
86 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
87
88 #define PT64_LEVEL_BITS 9
89
90 #define PT64_LEVEL_SHIFT(level) \
91                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
92
93 #define PT64_INDEX(address, level)\
94         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
95
96
97 #define PT32_LEVEL_BITS 10
98
99 #define PT32_LEVEL_SHIFT(level) \
100                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
101
102 #define PT32_LVL_OFFSET_MASK(level) \
103         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
104                                                 * PT32_LEVEL_BITS))) - 1))
105
106 #define PT32_INDEX(address, level)\
107         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
108
109
110 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
111 #define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
112 #else
113 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
114 #endif
115 #define PT64_LVL_ADDR_MASK(level) \
116         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
117                                                 * PT64_LEVEL_BITS))) - 1))
118 #define PT64_LVL_OFFSET_MASK(level) \
119         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
120                                                 * PT64_LEVEL_BITS))) - 1))
121
122 #define PT32_BASE_ADDR_MASK PAGE_MASK
123 #define PT32_DIR_BASE_ADDR_MASK \
124         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
125 #define PT32_LVL_ADDR_MASK(level) \
126         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
127                                             * PT32_LEVEL_BITS))) - 1))
128
129 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
130                         | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
131
132 #define ACC_EXEC_MASK    1
133 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
134 #define ACC_USER_MASK    PT_USER_MASK
135 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
136
137 /* The mask for the R/X bits in EPT PTEs */
138 #define PT64_EPT_READABLE_MASK                  0x1ull
139 #define PT64_EPT_EXECUTABLE_MASK                0x4ull
140
141 #include <trace/events/kvm.h>
142
143 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
144 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
145
146 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
147
148 /* make pte_list_desc fit well in cache line */
149 #define PTE_LIST_EXT 3
150
151 /*
152  * Return values of handle_mmio_page_fault and mmu.page_fault:
153  * RET_PF_RETRY: let CPU fault again on the address.
154  * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
155  *
156  * For handle_mmio_page_fault only:
157  * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
158  */
159 enum {
160         RET_PF_RETRY = 0,
161         RET_PF_EMULATE = 1,
162         RET_PF_INVALID = 2,
163 };
164
165 struct pte_list_desc {
166         u64 *sptes[PTE_LIST_EXT];
167         struct pte_list_desc *more;
168 };
169
170 struct kvm_shadow_walk_iterator {
171         u64 addr;
172         hpa_t shadow_addr;
173         u64 *sptep;
174         int level;
175         unsigned index;
176 };
177
178 static const union kvm_mmu_page_role mmu_base_role_mask = {
179         .cr0_wp = 1,
180         .gpte_is_8_bytes = 1,
181         .nxe = 1,
182         .smep_andnot_wp = 1,
183         .smap_andnot_wp = 1,
184         .smm = 1,
185         .guest_mode = 1,
186         .ad_disabled = 1,
187 };
188
189 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
190         for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
191                                          (_root), (_addr));                \
192              shadow_walk_okay(&(_walker));                                 \
193              shadow_walk_next(&(_walker)))
194
195 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
196         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
197              shadow_walk_okay(&(_walker));                      \
198              shadow_walk_next(&(_walker)))
199
200 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
201         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
202              shadow_walk_okay(&(_walker)) &&                            \
203                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
204              __shadow_walk_next(&(_walker), spte))
205
206 static struct kmem_cache *pte_list_desc_cache;
207 static struct kmem_cache *mmu_page_header_cache;
208 static struct percpu_counter kvm_total_used_mmu_pages;
209
210 static u64 __read_mostly shadow_nx_mask;
211 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
212 static u64 __read_mostly shadow_user_mask;
213 static u64 __read_mostly shadow_accessed_mask;
214 static u64 __read_mostly shadow_dirty_mask;
215 static u64 __read_mostly shadow_mmio_mask;
216 static u64 __read_mostly shadow_mmio_value;
217 static u64 __read_mostly shadow_mmio_access_mask;
218 static u64 __read_mostly shadow_present_mask;
219 static u64 __read_mostly shadow_me_mask;
220
221 /*
222  * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
223  * Non-present SPTEs with shadow_acc_track_value set are in place for access
224  * tracking.
225  */
226 static u64 __read_mostly shadow_acc_track_mask;
227 static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
228
229 /*
230  * The mask/shift to use for saving the original R/X bits when marking the PTE
231  * as not-present for access tracking purposes. We do not save the W bit as the
232  * PTEs being access tracked also need to be dirty tracked, so the W bit will be
233  * restored only when a write is attempted to the page.
234  */
235 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
236                                                     PT64_EPT_EXECUTABLE_MASK;
237 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
238
239 /*
240  * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
241  * to guard against L1TF attacks.
242  */
243 static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
244
245 /*
246  * The number of high-order 1 bits to use in the mask above.
247  */
248 static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
249
250 /*
251  * In some cases, we need to preserve the GFN of a non-present or reserved
252  * SPTE when we usurp the upper five bits of the physical address space to
253  * defend against L1TF, e.g. for MMIO SPTEs.  To preserve the GFN, we'll
254  * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
255  * left into the reserved bits, i.e. the GFN in the SPTE will be split into
256  * high and low parts.  This mask covers the lower bits of the GFN.
257  */
258 static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
259
260 /*
261  * The number of non-reserved physical address bits irrespective of features
262  * that repurpose legal bits, e.g. MKTME.
263  */
264 static u8 __read_mostly shadow_phys_bits;
265
266 static void mmu_spte_set(u64 *sptep, u64 spte);
267 static bool is_executable_pte(u64 spte);
268 static union kvm_mmu_page_role
269 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
270
271 #define CREATE_TRACE_POINTS
272 #include "mmutrace.h"
273
274
275 static inline bool kvm_available_flush_tlb_with_range(void)
276 {
277         return kvm_x86_ops->tlb_remote_flush_with_range;
278 }
279
280 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
281                 struct kvm_tlb_range *range)
282 {
283         int ret = -ENOTSUPP;
284
285         if (range && kvm_x86_ops->tlb_remote_flush_with_range)
286                 ret = kvm_x86_ops->tlb_remote_flush_with_range(kvm, range);
287
288         if (ret)
289                 kvm_flush_remote_tlbs(kvm);
290 }
291
292 static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
293                 u64 start_gfn, u64 pages)
294 {
295         struct kvm_tlb_range range;
296
297         range.start_gfn = start_gfn;
298         range.pages = pages;
299
300         kvm_flush_remote_tlbs_with_range(kvm, &range);
301 }
302
303 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value, u64 access_mask)
304 {
305         BUG_ON((u64)(unsigned)access_mask != access_mask);
306         BUG_ON((mmio_mask & mmio_value) != mmio_value);
307         shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
308         shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
309         shadow_mmio_access_mask = access_mask;
310 }
311 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
312
313 static bool is_mmio_spte(u64 spte)
314 {
315         return (spte & shadow_mmio_mask) == shadow_mmio_value;
316 }
317
318 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
319 {
320         return sp->role.ad_disabled;
321 }
322
323 static inline bool spte_ad_enabled(u64 spte)
324 {
325         MMU_WARN_ON(is_mmio_spte(spte));
326         return !(spte & shadow_acc_track_value);
327 }
328
329 static inline u64 spte_shadow_accessed_mask(u64 spte)
330 {
331         MMU_WARN_ON(is_mmio_spte(spte));
332         return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
333 }
334
335 static inline u64 spte_shadow_dirty_mask(u64 spte)
336 {
337         MMU_WARN_ON(is_mmio_spte(spte));
338         return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
339 }
340
341 static inline bool is_access_track_spte(u64 spte)
342 {
343         return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
344 }
345
346 /*
347  * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
348  * the memslots generation and is derived as follows:
349  *
350  * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
351  * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
352  *
353  * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
354  * the MMIO generation number, as doing so would require stealing a bit from
355  * the "real" generation number and thus effectively halve the maximum number
356  * of MMIO generations that can be handled before encountering a wrap (which
357  * requires a full MMU zap).  The flag is instead explicitly queried when
358  * checking for MMIO spte cache hits.
359  */
360 #define MMIO_SPTE_GEN_MASK              GENMASK_ULL(18, 0)
361
362 #define MMIO_SPTE_GEN_LOW_START         3
363 #define MMIO_SPTE_GEN_LOW_END           11
364 #define MMIO_SPTE_GEN_LOW_MASK          GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
365                                                     MMIO_SPTE_GEN_LOW_START)
366
367 #define MMIO_SPTE_GEN_HIGH_START        52
368 #define MMIO_SPTE_GEN_HIGH_END          61
369 #define MMIO_SPTE_GEN_HIGH_MASK         GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
370                                                     MMIO_SPTE_GEN_HIGH_START)
371 static u64 generation_mmio_spte_mask(u64 gen)
372 {
373         u64 mask;
374
375         WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
376
377         mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
378         mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
379         return mask;
380 }
381
382 static u64 get_mmio_spte_generation(u64 spte)
383 {
384         u64 gen;
385
386         spte &= ~shadow_mmio_mask;
387
388         gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
389         gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
390         return gen;
391 }
392
393 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
394                            unsigned access)
395 {
396         u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
397         u64 mask = generation_mmio_spte_mask(gen);
398         u64 gpa = gfn << PAGE_SHIFT;
399
400         access &= shadow_mmio_access_mask;
401         mask |= shadow_mmio_value | access;
402         mask |= gpa | shadow_nonpresent_or_rsvd_mask;
403         mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
404                 << shadow_nonpresent_or_rsvd_mask_len;
405
406         trace_mark_mmio_spte(sptep, gfn, access, gen);
407         mmu_spte_set(sptep, mask);
408 }
409
410 static gfn_t get_mmio_spte_gfn(u64 spte)
411 {
412         u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
413
414         gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
415                & shadow_nonpresent_or_rsvd_mask;
416
417         return gpa >> PAGE_SHIFT;
418 }
419
420 static unsigned get_mmio_spte_access(u64 spte)
421 {
422         return spte & shadow_mmio_access_mask;
423 }
424
425 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
426                           kvm_pfn_t pfn, unsigned access)
427 {
428         if (unlikely(is_noslot_pfn(pfn))) {
429                 mark_mmio_spte(vcpu, sptep, gfn, access);
430                 return true;
431         }
432
433         return false;
434 }
435
436 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
437 {
438         u64 kvm_gen, spte_gen, gen;
439
440         gen = kvm_vcpu_memslots(vcpu)->generation;
441         if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
442                 return false;
443
444         kvm_gen = gen & MMIO_SPTE_GEN_MASK;
445         spte_gen = get_mmio_spte_generation(spte);
446
447         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
448         return likely(kvm_gen == spte_gen);
449 }
450
451 /*
452  * Sets the shadow PTE masks used by the MMU.
453  *
454  * Assumptions:
455  *  - Setting either @accessed_mask or @dirty_mask requires setting both
456  *  - At least one of @accessed_mask or @acc_track_mask must be set
457  */
458 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
459                 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
460                 u64 acc_track_mask, u64 me_mask)
461 {
462         BUG_ON(!dirty_mask != !accessed_mask);
463         BUG_ON(!accessed_mask && !acc_track_mask);
464         BUG_ON(acc_track_mask & shadow_acc_track_value);
465
466         shadow_user_mask = user_mask;
467         shadow_accessed_mask = accessed_mask;
468         shadow_dirty_mask = dirty_mask;
469         shadow_nx_mask = nx_mask;
470         shadow_x_mask = x_mask;
471         shadow_present_mask = p_mask;
472         shadow_acc_track_mask = acc_track_mask;
473         shadow_me_mask = me_mask;
474 }
475 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
476
477 static u8 kvm_get_shadow_phys_bits(void)
478 {
479         /*
480          * boot_cpu_data.x86_phys_bits is reduced when MKTME is detected
481          * in CPU detection code, but MKTME treats those reduced bits as
482          * 'keyID' thus they are not reserved bits. Therefore for MKTME
483          * we should still return physical address bits reported by CPUID.
484          */
485         if (!boot_cpu_has(X86_FEATURE_TME) ||
486             WARN_ON_ONCE(boot_cpu_data.extended_cpuid_level < 0x80000008))
487                 return boot_cpu_data.x86_phys_bits;
488
489         return cpuid_eax(0x80000008) & 0xff;
490 }
491
492 static void kvm_mmu_reset_all_pte_masks(void)
493 {
494         u8 low_phys_bits;
495
496         shadow_user_mask = 0;
497         shadow_accessed_mask = 0;
498         shadow_dirty_mask = 0;
499         shadow_nx_mask = 0;
500         shadow_x_mask = 0;
501         shadow_mmio_mask = 0;
502         shadow_present_mask = 0;
503         shadow_acc_track_mask = 0;
504
505         shadow_phys_bits = kvm_get_shadow_phys_bits();
506
507         /*
508          * If the CPU has 46 or less physical address bits, then set an
509          * appropriate mask to guard against L1TF attacks. Otherwise, it is
510          * assumed that the CPU is not vulnerable to L1TF.
511          *
512          * Some Intel CPUs address the L1 cache using more PA bits than are
513          * reported by CPUID. Use the PA width of the L1 cache when possible
514          * to achieve more effective mitigation, e.g. if system RAM overlaps
515          * the most significant bits of legal physical address space.
516          */
517         shadow_nonpresent_or_rsvd_mask = 0;
518         low_phys_bits = boot_cpu_data.x86_cache_bits;
519         if (boot_cpu_data.x86_cache_bits <
520             52 - shadow_nonpresent_or_rsvd_mask_len) {
521                 shadow_nonpresent_or_rsvd_mask =
522                         rsvd_bits(boot_cpu_data.x86_cache_bits -
523                                   shadow_nonpresent_or_rsvd_mask_len,
524                                   boot_cpu_data.x86_cache_bits - 1);
525                 low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
526         } else
527                 WARN_ON_ONCE(boot_cpu_has_bug(X86_BUG_L1TF));
528
529         shadow_nonpresent_or_rsvd_lower_gfn_mask =
530                 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
531 }
532
533 static int is_cpuid_PSE36(void)
534 {
535         return 1;
536 }
537
538 static int is_nx(struct kvm_vcpu *vcpu)
539 {
540         return vcpu->arch.efer & EFER_NX;
541 }
542
543 static int is_shadow_present_pte(u64 pte)
544 {
545         return (pte != 0) && !is_mmio_spte(pte);
546 }
547
548 static int is_large_pte(u64 pte)
549 {
550         return pte & PT_PAGE_SIZE_MASK;
551 }
552
553 static int is_last_spte(u64 pte, int level)
554 {
555         if (level == PT_PAGE_TABLE_LEVEL)
556                 return 1;
557         if (is_large_pte(pte))
558                 return 1;
559         return 0;
560 }
561
562 static bool is_executable_pte(u64 spte)
563 {
564         return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
565 }
566
567 static kvm_pfn_t spte_to_pfn(u64 pte)
568 {
569         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
570 }
571
572 static gfn_t pse36_gfn_delta(u32 gpte)
573 {
574         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
575
576         return (gpte & PT32_DIR_PSE36_MASK) << shift;
577 }
578
579 #ifdef CONFIG_X86_64
580 static void __set_spte(u64 *sptep, u64 spte)
581 {
582         WRITE_ONCE(*sptep, spte);
583 }
584
585 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
586 {
587         WRITE_ONCE(*sptep, spte);
588 }
589
590 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
591 {
592         return xchg(sptep, spte);
593 }
594
595 static u64 __get_spte_lockless(u64 *sptep)
596 {
597         return READ_ONCE(*sptep);
598 }
599 #else
600 union split_spte {
601         struct {
602                 u32 spte_low;
603                 u32 spte_high;
604         };
605         u64 spte;
606 };
607
608 static void count_spte_clear(u64 *sptep, u64 spte)
609 {
610         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
611
612         if (is_shadow_present_pte(spte))
613                 return;
614
615         /* Ensure the spte is completely set before we increase the count */
616         smp_wmb();
617         sp->clear_spte_count++;
618 }
619
620 static void __set_spte(u64 *sptep, u64 spte)
621 {
622         union split_spte *ssptep, sspte;
623
624         ssptep = (union split_spte *)sptep;
625         sspte = (union split_spte)spte;
626
627         ssptep->spte_high = sspte.spte_high;
628
629         /*
630          * If we map the spte from nonpresent to present, We should store
631          * the high bits firstly, then set present bit, so cpu can not
632          * fetch this spte while we are setting the spte.
633          */
634         smp_wmb();
635
636         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
637 }
638
639 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
640 {
641         union split_spte *ssptep, sspte;
642
643         ssptep = (union split_spte *)sptep;
644         sspte = (union split_spte)spte;
645
646         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
647
648         /*
649          * If we map the spte from present to nonpresent, we should clear
650          * present bit firstly to avoid vcpu fetch the old high bits.
651          */
652         smp_wmb();
653
654         ssptep->spte_high = sspte.spte_high;
655         count_spte_clear(sptep, spte);
656 }
657
658 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
659 {
660         union split_spte *ssptep, sspte, orig;
661
662         ssptep = (union split_spte *)sptep;
663         sspte = (union split_spte)spte;
664
665         /* xchg acts as a barrier before the setting of the high bits */
666         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
667         orig.spte_high = ssptep->spte_high;
668         ssptep->spte_high = sspte.spte_high;
669         count_spte_clear(sptep, spte);
670
671         return orig.spte;
672 }
673
674 /*
675  * The idea using the light way get the spte on x86_32 guest is from
676  * gup_get_pte (mm/gup.c).
677  *
678  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
679  * coalesces them and we are running out of the MMU lock.  Therefore
680  * we need to protect against in-progress updates of the spte.
681  *
682  * Reading the spte while an update is in progress may get the old value
683  * for the high part of the spte.  The race is fine for a present->non-present
684  * change (because the high part of the spte is ignored for non-present spte),
685  * but for a present->present change we must reread the spte.
686  *
687  * All such changes are done in two steps (present->non-present and
688  * non-present->present), hence it is enough to count the number of
689  * present->non-present updates: if it changed while reading the spte,
690  * we might have hit the race.  This is done using clear_spte_count.
691  */
692 static u64 __get_spte_lockless(u64 *sptep)
693 {
694         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
695         union split_spte spte, *orig = (union split_spte *)sptep;
696         int count;
697
698 retry:
699         count = sp->clear_spte_count;
700         smp_rmb();
701
702         spte.spte_low = orig->spte_low;
703         smp_rmb();
704
705         spte.spte_high = orig->spte_high;
706         smp_rmb();
707
708         if (unlikely(spte.spte_low != orig->spte_low ||
709               count != sp->clear_spte_count))
710                 goto retry;
711
712         return spte.spte;
713 }
714 #endif
715
716 static bool spte_can_locklessly_be_made_writable(u64 spte)
717 {
718         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
719                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
720 }
721
722 static bool spte_has_volatile_bits(u64 spte)
723 {
724         if (!is_shadow_present_pte(spte))
725                 return false;
726
727         /*
728          * Always atomically update spte if it can be updated
729          * out of mmu-lock, it can ensure dirty bit is not lost,
730          * also, it can help us to get a stable is_writable_pte()
731          * to ensure tlb flush is not missed.
732          */
733         if (spte_can_locklessly_be_made_writable(spte) ||
734             is_access_track_spte(spte))
735                 return true;
736
737         if (spte_ad_enabled(spte)) {
738                 if ((spte & shadow_accessed_mask) == 0 ||
739                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
740                         return true;
741         }
742
743         return false;
744 }
745
746 static bool is_accessed_spte(u64 spte)
747 {
748         u64 accessed_mask = spte_shadow_accessed_mask(spte);
749
750         return accessed_mask ? spte & accessed_mask
751                              : !is_access_track_spte(spte);
752 }
753
754 static bool is_dirty_spte(u64 spte)
755 {
756         u64 dirty_mask = spte_shadow_dirty_mask(spte);
757
758         return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
759 }
760
761 /* Rules for using mmu_spte_set:
762  * Set the sptep from nonpresent to present.
763  * Note: the sptep being assigned *must* be either not present
764  * or in a state where the hardware will not attempt to update
765  * the spte.
766  */
767 static void mmu_spte_set(u64 *sptep, u64 new_spte)
768 {
769         WARN_ON(is_shadow_present_pte(*sptep));
770         __set_spte(sptep, new_spte);
771 }
772
773 /*
774  * Update the SPTE (excluding the PFN), but do not track changes in its
775  * accessed/dirty status.
776  */
777 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
778 {
779         u64 old_spte = *sptep;
780
781         WARN_ON(!is_shadow_present_pte(new_spte));
782
783         if (!is_shadow_present_pte(old_spte)) {
784                 mmu_spte_set(sptep, new_spte);
785                 return old_spte;
786         }
787
788         if (!spte_has_volatile_bits(old_spte))
789                 __update_clear_spte_fast(sptep, new_spte);
790         else
791                 old_spte = __update_clear_spte_slow(sptep, new_spte);
792
793         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
794
795         return old_spte;
796 }
797
798 /* Rules for using mmu_spte_update:
799  * Update the state bits, it means the mapped pfn is not changed.
800  *
801  * Whenever we overwrite a writable spte with a read-only one we
802  * should flush remote TLBs. Otherwise rmap_write_protect
803  * will find a read-only spte, even though the writable spte
804  * might be cached on a CPU's TLB, the return value indicates this
805  * case.
806  *
807  * Returns true if the TLB needs to be flushed
808  */
809 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
810 {
811         bool flush = false;
812         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
813
814         if (!is_shadow_present_pte(old_spte))
815                 return false;
816
817         /*
818          * For the spte updated out of mmu-lock is safe, since
819          * we always atomically update it, see the comments in
820          * spte_has_volatile_bits().
821          */
822         if (spte_can_locklessly_be_made_writable(old_spte) &&
823               !is_writable_pte(new_spte))
824                 flush = true;
825
826         /*
827          * Flush TLB when accessed/dirty states are changed in the page tables,
828          * to guarantee consistency between TLB and page tables.
829          */
830
831         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
832                 flush = true;
833                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
834         }
835
836         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
837                 flush = true;
838                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
839         }
840
841         return flush;
842 }
843
844 /*
845  * Rules for using mmu_spte_clear_track_bits:
846  * It sets the sptep from present to nonpresent, and track the
847  * state bits, it is used to clear the last level sptep.
848  * Returns non-zero if the PTE was previously valid.
849  */
850 static int mmu_spte_clear_track_bits(u64 *sptep)
851 {
852         kvm_pfn_t pfn;
853         u64 old_spte = *sptep;
854
855         if (!spte_has_volatile_bits(old_spte))
856                 __update_clear_spte_fast(sptep, 0ull);
857         else
858                 old_spte = __update_clear_spte_slow(sptep, 0ull);
859
860         if (!is_shadow_present_pte(old_spte))
861                 return 0;
862
863         pfn = spte_to_pfn(old_spte);
864
865         /*
866          * KVM does not hold the refcount of the page used by
867          * kvm mmu, before reclaiming the page, we should
868          * unmap it from mmu first.
869          */
870         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
871
872         if (is_accessed_spte(old_spte))
873                 kvm_set_pfn_accessed(pfn);
874
875         if (is_dirty_spte(old_spte))
876                 kvm_set_pfn_dirty(pfn);
877
878         return 1;
879 }
880
881 /*
882  * Rules for using mmu_spte_clear_no_track:
883  * Directly clear spte without caring the state bits of sptep,
884  * it is used to set the upper level spte.
885  */
886 static void mmu_spte_clear_no_track(u64 *sptep)
887 {
888         __update_clear_spte_fast(sptep, 0ull);
889 }
890
891 static u64 mmu_spte_get_lockless(u64 *sptep)
892 {
893         return __get_spte_lockless(sptep);
894 }
895
896 static u64 mark_spte_for_access_track(u64 spte)
897 {
898         if (spte_ad_enabled(spte))
899                 return spte & ~shadow_accessed_mask;
900
901         if (is_access_track_spte(spte))
902                 return spte;
903
904         /*
905          * Making an Access Tracking PTE will result in removal of write access
906          * from the PTE. So, verify that we will be able to restore the write
907          * access in the fast page fault path later on.
908          */
909         WARN_ONCE((spte & PT_WRITABLE_MASK) &&
910                   !spte_can_locklessly_be_made_writable(spte),
911                   "kvm: Writable SPTE is not locklessly dirty-trackable\n");
912
913         WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
914                           shadow_acc_track_saved_bits_shift),
915                   "kvm: Access Tracking saved bit locations are not zero\n");
916
917         spte |= (spte & shadow_acc_track_saved_bits_mask) <<
918                 shadow_acc_track_saved_bits_shift;
919         spte &= ~shadow_acc_track_mask;
920
921         return spte;
922 }
923
924 /* Restore an acc-track PTE back to a regular PTE */
925 static u64 restore_acc_track_spte(u64 spte)
926 {
927         u64 new_spte = spte;
928         u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
929                          & shadow_acc_track_saved_bits_mask;
930
931         WARN_ON_ONCE(spte_ad_enabled(spte));
932         WARN_ON_ONCE(!is_access_track_spte(spte));
933
934         new_spte &= ~shadow_acc_track_mask;
935         new_spte &= ~(shadow_acc_track_saved_bits_mask <<
936                       shadow_acc_track_saved_bits_shift);
937         new_spte |= saved_bits;
938
939         return new_spte;
940 }
941
942 /* Returns the Accessed status of the PTE and resets it at the same time. */
943 static bool mmu_spte_age(u64 *sptep)
944 {
945         u64 spte = mmu_spte_get_lockless(sptep);
946
947         if (!is_accessed_spte(spte))
948                 return false;
949
950         if (spte_ad_enabled(spte)) {
951                 clear_bit((ffs(shadow_accessed_mask) - 1),
952                           (unsigned long *)sptep);
953         } else {
954                 /*
955                  * Capture the dirty status of the page, so that it doesn't get
956                  * lost when the SPTE is marked for access tracking.
957                  */
958                 if (is_writable_pte(spte))
959                         kvm_set_pfn_dirty(spte_to_pfn(spte));
960
961                 spte = mark_spte_for_access_track(spte);
962                 mmu_spte_update_no_track(sptep, spte);
963         }
964
965         return true;
966 }
967
968 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
969 {
970         /*
971          * Prevent page table teardown by making any free-er wait during
972          * kvm_flush_remote_tlbs() IPI to all active vcpus.
973          */
974         local_irq_disable();
975
976         /*
977          * Make sure a following spte read is not reordered ahead of the write
978          * to vcpu->mode.
979          */
980         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
981 }
982
983 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
984 {
985         /*
986          * Make sure the write to vcpu->mode is not reordered in front of
987          * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
988          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
989          */
990         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
991         local_irq_enable();
992 }
993
994 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
995                                   struct kmem_cache *base_cache, int min)
996 {
997         void *obj;
998
999         if (cache->nobjs >= min)
1000                 return 0;
1001         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1002                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT);
1003                 if (!obj)
1004                         return cache->nobjs >= min ? 0 : -ENOMEM;
1005                 cache->objects[cache->nobjs++] = obj;
1006         }
1007         return 0;
1008 }
1009
1010 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
1011 {
1012         return cache->nobjs;
1013 }
1014
1015 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
1016                                   struct kmem_cache *cache)
1017 {
1018         while (mc->nobjs)
1019                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
1020 }
1021
1022 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
1023                                        int min)
1024 {
1025         void *page;
1026
1027         if (cache->nobjs >= min)
1028                 return 0;
1029         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1030                 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
1031                 if (!page)
1032                         return cache->nobjs >= min ? 0 : -ENOMEM;
1033                 cache->objects[cache->nobjs++] = page;
1034         }
1035         return 0;
1036 }
1037
1038 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
1039 {
1040         while (mc->nobjs)
1041                 free_page((unsigned long)mc->objects[--mc->nobjs]);
1042 }
1043
1044 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
1045 {
1046         int r;
1047
1048         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1049                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
1050         if (r)
1051                 goto out;
1052         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
1053         if (r)
1054                 goto out;
1055         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
1056                                    mmu_page_header_cache, 4);
1057 out:
1058         return r;
1059 }
1060
1061 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1062 {
1063         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1064                                 pte_list_desc_cache);
1065         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
1066         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
1067                                 mmu_page_header_cache);
1068 }
1069
1070 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
1071 {
1072         void *p;
1073
1074         BUG_ON(!mc->nobjs);
1075         p = mc->objects[--mc->nobjs];
1076         return p;
1077 }
1078
1079 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1080 {
1081         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1082 }
1083
1084 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1085 {
1086         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1087 }
1088
1089 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1090 {
1091         if (!sp->role.direct)
1092                 return sp->gfns[index];
1093
1094         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1095 }
1096
1097 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1098 {
1099         if (!sp->role.direct) {
1100                 sp->gfns[index] = gfn;
1101                 return;
1102         }
1103
1104         if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
1105                 pr_err_ratelimited("gfn mismatch under direct page %llx "
1106                                    "(expected %llx, got %llx)\n",
1107                                    sp->gfn,
1108                                    kvm_mmu_page_get_gfn(sp, index), gfn);
1109 }
1110
1111 /*
1112  * Return the pointer to the large page information for a given gfn,
1113  * handling slots that are not large page aligned.
1114  */
1115 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1116                                               struct kvm_memory_slot *slot,
1117                                               int level)
1118 {
1119         unsigned long idx;
1120
1121         idx = gfn_to_index(gfn, slot->base_gfn, level);
1122         return &slot->arch.lpage_info[level - 2][idx];
1123 }
1124
1125 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1126                                             gfn_t gfn, int count)
1127 {
1128         struct kvm_lpage_info *linfo;
1129         int i;
1130
1131         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1132                 linfo = lpage_info_slot(gfn, slot, i);
1133                 linfo->disallow_lpage += count;
1134                 WARN_ON(linfo->disallow_lpage < 0);
1135         }
1136 }
1137
1138 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1139 {
1140         update_gfn_disallow_lpage_count(slot, gfn, 1);
1141 }
1142
1143 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1144 {
1145         update_gfn_disallow_lpage_count(slot, gfn, -1);
1146 }
1147
1148 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1149 {
1150         struct kvm_memslots *slots;
1151         struct kvm_memory_slot *slot;
1152         gfn_t gfn;
1153
1154         kvm->arch.indirect_shadow_pages++;
1155         gfn = sp->gfn;
1156         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1157         slot = __gfn_to_memslot(slots, gfn);
1158
1159         /* the non-leaf shadow pages are keeping readonly. */
1160         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1161                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1162                                                     KVM_PAGE_TRACK_WRITE);
1163
1164         kvm_mmu_gfn_disallow_lpage(slot, gfn);
1165 }
1166
1167 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1168 {
1169         struct kvm_memslots *slots;
1170         struct kvm_memory_slot *slot;
1171         gfn_t gfn;
1172
1173         kvm->arch.indirect_shadow_pages--;
1174         gfn = sp->gfn;
1175         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1176         slot = __gfn_to_memslot(slots, gfn);
1177         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1178                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1179                                                        KVM_PAGE_TRACK_WRITE);
1180
1181         kvm_mmu_gfn_allow_lpage(slot, gfn);
1182 }
1183
1184 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1185                                           struct kvm_memory_slot *slot)
1186 {
1187         struct kvm_lpage_info *linfo;
1188
1189         if (slot) {
1190                 linfo = lpage_info_slot(gfn, slot, level);
1191                 return !!linfo->disallow_lpage;
1192         }
1193
1194         return true;
1195 }
1196
1197 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1198                                         int level)
1199 {
1200         struct kvm_memory_slot *slot;
1201
1202         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1203         return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1204 }
1205
1206 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
1207 {
1208         unsigned long page_size;
1209         int i, ret = 0;
1210
1211         page_size = kvm_host_page_size(kvm, gfn);
1212
1213         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1214                 if (page_size >= KVM_HPAGE_SIZE(i))
1215                         ret = i;
1216                 else
1217                         break;
1218         }
1219
1220         return ret;
1221 }
1222
1223 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1224                                           bool no_dirty_log)
1225 {
1226         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1227                 return false;
1228         if (no_dirty_log && slot->dirty_bitmap)
1229                 return false;
1230
1231         return true;
1232 }
1233
1234 static struct kvm_memory_slot *
1235 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1236                             bool no_dirty_log)
1237 {
1238         struct kvm_memory_slot *slot;
1239
1240         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1241         if (!memslot_valid_for_gpte(slot, no_dirty_log))
1242                 slot = NULL;
1243
1244         return slot;
1245 }
1246
1247 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1248                          bool *force_pt_level)
1249 {
1250         int host_level, level, max_level;
1251         struct kvm_memory_slot *slot;
1252
1253         if (unlikely(*force_pt_level))
1254                 return PT_PAGE_TABLE_LEVEL;
1255
1256         slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1257         *force_pt_level = !memslot_valid_for_gpte(slot, true);
1258         if (unlikely(*force_pt_level))
1259                 return PT_PAGE_TABLE_LEVEL;
1260
1261         host_level = host_mapping_level(vcpu->kvm, large_gfn);
1262
1263         if (host_level == PT_PAGE_TABLE_LEVEL)
1264                 return host_level;
1265
1266         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1267
1268         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1269                 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1270                         break;
1271
1272         return level - 1;
1273 }
1274
1275 /*
1276  * About rmap_head encoding:
1277  *
1278  * If the bit zero of rmap_head->val is clear, then it points to the only spte
1279  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1280  * pte_list_desc containing more mappings.
1281  */
1282
1283 /*
1284  * Returns the number of pointers in the rmap chain, not counting the new one.
1285  */
1286 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1287                         struct kvm_rmap_head *rmap_head)
1288 {
1289         struct pte_list_desc *desc;
1290         int i, count = 0;
1291
1292         if (!rmap_head->val) {
1293                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1294                 rmap_head->val = (unsigned long)spte;
1295         } else if (!(rmap_head->val & 1)) {
1296                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1297                 desc = mmu_alloc_pte_list_desc(vcpu);
1298                 desc->sptes[0] = (u64 *)rmap_head->val;
1299                 desc->sptes[1] = spte;
1300                 rmap_head->val = (unsigned long)desc | 1;
1301                 ++count;
1302         } else {
1303                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1304                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1305                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1306                         desc = desc->more;
1307                         count += PTE_LIST_EXT;
1308                 }
1309                 if (desc->sptes[PTE_LIST_EXT-1]) {
1310                         desc->more = mmu_alloc_pte_list_desc(vcpu);
1311                         desc = desc->more;
1312                 }
1313                 for (i = 0; desc->sptes[i]; ++i)
1314                         ++count;
1315                 desc->sptes[i] = spte;
1316         }
1317         return count;
1318 }
1319
1320 static void
1321 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1322                            struct pte_list_desc *desc, int i,
1323                            struct pte_list_desc *prev_desc)
1324 {
1325         int j;
1326
1327         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1328                 ;
1329         desc->sptes[i] = desc->sptes[j];
1330         desc->sptes[j] = NULL;
1331         if (j != 0)
1332                 return;
1333         if (!prev_desc && !desc->more)
1334                 rmap_head->val = (unsigned long)desc->sptes[0];
1335         else
1336                 if (prev_desc)
1337                         prev_desc->more = desc->more;
1338                 else
1339                         rmap_head->val = (unsigned long)desc->more | 1;
1340         mmu_free_pte_list_desc(desc);
1341 }
1342
1343 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1344 {
1345         struct pte_list_desc *desc;
1346         struct pte_list_desc *prev_desc;
1347         int i;
1348
1349         if (!rmap_head->val) {
1350                 pr_err("%s: %p 0->BUG\n", __func__, spte);
1351                 BUG();
1352         } else if (!(rmap_head->val & 1)) {
1353                 rmap_printk("%s:  %p 1->0\n", __func__, spte);
1354                 if ((u64 *)rmap_head->val != spte) {
1355                         pr_err("%s:  %p 1->BUG\n", __func__, spte);
1356                         BUG();
1357                 }
1358                 rmap_head->val = 0;
1359         } else {
1360                 rmap_printk("%s:  %p many->many\n", __func__, spte);
1361                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1362                 prev_desc = NULL;
1363                 while (desc) {
1364                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1365                                 if (desc->sptes[i] == spte) {
1366                                         pte_list_desc_remove_entry(rmap_head,
1367                                                         desc, i, prev_desc);
1368                                         return;
1369                                 }
1370                         }
1371                         prev_desc = desc;
1372                         desc = desc->more;
1373                 }
1374                 pr_err("%s: %p many->many\n", __func__, spte);
1375                 BUG();
1376         }
1377 }
1378
1379 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1380 {
1381         mmu_spte_clear_track_bits(sptep);
1382         __pte_list_remove(sptep, rmap_head);
1383 }
1384
1385 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1386                                            struct kvm_memory_slot *slot)
1387 {
1388         unsigned long idx;
1389
1390         idx = gfn_to_index(gfn, slot->base_gfn, level);
1391         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1392 }
1393
1394 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1395                                          struct kvm_mmu_page *sp)
1396 {
1397         struct kvm_memslots *slots;
1398         struct kvm_memory_slot *slot;
1399
1400         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1401         slot = __gfn_to_memslot(slots, gfn);
1402         return __gfn_to_rmap(gfn, sp->role.level, slot);
1403 }
1404
1405 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1406 {
1407         struct kvm_mmu_memory_cache *cache;
1408
1409         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1410         return mmu_memory_cache_free_objects(cache);
1411 }
1412
1413 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1414 {
1415         struct kvm_mmu_page *sp;
1416         struct kvm_rmap_head *rmap_head;
1417
1418         sp = page_header(__pa(spte));
1419         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1420         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1421         return pte_list_add(vcpu, spte, rmap_head);
1422 }
1423
1424 static void rmap_remove(struct kvm *kvm, u64 *spte)
1425 {
1426         struct kvm_mmu_page *sp;
1427         gfn_t gfn;
1428         struct kvm_rmap_head *rmap_head;
1429
1430         sp = page_header(__pa(spte));
1431         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1432         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1433         __pte_list_remove(spte, rmap_head);
1434 }
1435
1436 /*
1437  * Used by the following functions to iterate through the sptes linked by a
1438  * rmap.  All fields are private and not assumed to be used outside.
1439  */
1440 struct rmap_iterator {
1441         /* private fields */
1442         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1443         int pos;                        /* index of the sptep */
1444 };
1445
1446 /*
1447  * Iteration must be started by this function.  This should also be used after
1448  * removing/dropping sptes from the rmap link because in such cases the
1449  * information in the itererator may not be valid.
1450  *
1451  * Returns sptep if found, NULL otherwise.
1452  */
1453 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1454                            struct rmap_iterator *iter)
1455 {
1456         u64 *sptep;
1457
1458         if (!rmap_head->val)
1459                 return NULL;
1460
1461         if (!(rmap_head->val & 1)) {
1462                 iter->desc = NULL;
1463                 sptep = (u64 *)rmap_head->val;
1464                 goto out;
1465         }
1466
1467         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1468         iter->pos = 0;
1469         sptep = iter->desc->sptes[iter->pos];
1470 out:
1471         BUG_ON(!is_shadow_present_pte(*sptep));
1472         return sptep;
1473 }
1474
1475 /*
1476  * Must be used with a valid iterator: e.g. after rmap_get_first().
1477  *
1478  * Returns sptep if found, NULL otherwise.
1479  */
1480 static u64 *rmap_get_next(struct rmap_iterator *iter)
1481 {
1482         u64 *sptep;
1483
1484         if (iter->desc) {
1485                 if (iter->pos < PTE_LIST_EXT - 1) {
1486                         ++iter->pos;
1487                         sptep = iter->desc->sptes[iter->pos];
1488                         if (sptep)
1489                                 goto out;
1490                 }
1491
1492                 iter->desc = iter->desc->more;
1493
1494                 if (iter->desc) {
1495                         iter->pos = 0;
1496                         /* desc->sptes[0] cannot be NULL */
1497                         sptep = iter->desc->sptes[iter->pos];
1498                         goto out;
1499                 }
1500         }
1501
1502         return NULL;
1503 out:
1504         BUG_ON(!is_shadow_present_pte(*sptep));
1505         return sptep;
1506 }
1507
1508 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1509         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1510              _spte_; _spte_ = rmap_get_next(_iter_))
1511
1512 static void drop_spte(struct kvm *kvm, u64 *sptep)
1513 {
1514         if (mmu_spte_clear_track_bits(sptep))
1515                 rmap_remove(kvm, sptep);
1516 }
1517
1518
1519 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1520 {
1521         if (is_large_pte(*sptep)) {
1522                 WARN_ON(page_header(__pa(sptep))->role.level ==
1523                         PT_PAGE_TABLE_LEVEL);
1524                 drop_spte(kvm, sptep);
1525                 --kvm->stat.lpages;
1526                 return true;
1527         }
1528
1529         return false;
1530 }
1531
1532 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1533 {
1534         if (__drop_large_spte(vcpu->kvm, sptep)) {
1535                 struct kvm_mmu_page *sp = page_header(__pa(sptep));
1536
1537                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1538                         KVM_PAGES_PER_HPAGE(sp->role.level));
1539         }
1540 }
1541
1542 /*
1543  * Write-protect on the specified @sptep, @pt_protect indicates whether
1544  * spte write-protection is caused by protecting shadow page table.
1545  *
1546  * Note: write protection is difference between dirty logging and spte
1547  * protection:
1548  * - for dirty logging, the spte can be set to writable at anytime if
1549  *   its dirty bitmap is properly set.
1550  * - for spte protection, the spte can be writable only after unsync-ing
1551  *   shadow page.
1552  *
1553  * Return true if tlb need be flushed.
1554  */
1555 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1556 {
1557         u64 spte = *sptep;
1558
1559         if (!is_writable_pte(spte) &&
1560               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1561                 return false;
1562
1563         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1564
1565         if (pt_protect)
1566                 spte &= ~SPTE_MMU_WRITEABLE;
1567         spte = spte & ~PT_WRITABLE_MASK;
1568
1569         return mmu_spte_update(sptep, spte);
1570 }
1571
1572 static bool __rmap_write_protect(struct kvm *kvm,
1573                                  struct kvm_rmap_head *rmap_head,
1574                                  bool pt_protect)
1575 {
1576         u64 *sptep;
1577         struct rmap_iterator iter;
1578         bool flush = false;
1579
1580         for_each_rmap_spte(rmap_head, &iter, sptep)
1581                 flush |= spte_write_protect(sptep, pt_protect);
1582
1583         return flush;
1584 }
1585
1586 static bool spte_clear_dirty(u64 *sptep)
1587 {
1588         u64 spte = *sptep;
1589
1590         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1591
1592         spte &= ~shadow_dirty_mask;
1593
1594         return mmu_spte_update(sptep, spte);
1595 }
1596
1597 static bool wrprot_ad_disabled_spte(u64 *sptep)
1598 {
1599         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1600                                                (unsigned long *)sptep);
1601         if (was_writable)
1602                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1603
1604         return was_writable;
1605 }
1606
1607 /*
1608  * Gets the GFN ready for another round of dirty logging by clearing the
1609  *      - D bit on ad-enabled SPTEs, and
1610  *      - W bit on ad-disabled SPTEs.
1611  * Returns true iff any D or W bits were cleared.
1612  */
1613 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1614 {
1615         u64 *sptep;
1616         struct rmap_iterator iter;
1617         bool flush = false;
1618
1619         for_each_rmap_spte(rmap_head, &iter, sptep)
1620                 if (spte_ad_enabled(*sptep))
1621                         flush |= spte_clear_dirty(sptep);
1622                 else
1623                         flush |= wrprot_ad_disabled_spte(sptep);
1624
1625         return flush;
1626 }
1627
1628 static bool spte_set_dirty(u64 *sptep)
1629 {
1630         u64 spte = *sptep;
1631
1632         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1633
1634         spte |= shadow_dirty_mask;
1635
1636         return mmu_spte_update(sptep, spte);
1637 }
1638
1639 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1640 {
1641         u64 *sptep;
1642         struct rmap_iterator iter;
1643         bool flush = false;
1644
1645         for_each_rmap_spte(rmap_head, &iter, sptep)
1646                 if (spte_ad_enabled(*sptep))
1647                         flush |= spte_set_dirty(sptep);
1648
1649         return flush;
1650 }
1651
1652 /**
1653  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1654  * @kvm: kvm instance
1655  * @slot: slot to protect
1656  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1657  * @mask: indicates which pages we should protect
1658  *
1659  * Used when we do not need to care about huge page mappings: e.g. during dirty
1660  * logging we do not have any such mappings.
1661  */
1662 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1663                                      struct kvm_memory_slot *slot,
1664                                      gfn_t gfn_offset, unsigned long mask)
1665 {
1666         struct kvm_rmap_head *rmap_head;
1667
1668         while (mask) {
1669                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1670                                           PT_PAGE_TABLE_LEVEL, slot);
1671                 __rmap_write_protect(kvm, rmap_head, false);
1672
1673                 /* clear the first set bit */
1674                 mask &= mask - 1;
1675         }
1676 }
1677
1678 /**
1679  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1680  * protect the page if the D-bit isn't supported.
1681  * @kvm: kvm instance
1682  * @slot: slot to clear D-bit
1683  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1684  * @mask: indicates which pages we should clear D-bit
1685  *
1686  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1687  */
1688 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1689                                      struct kvm_memory_slot *slot,
1690                                      gfn_t gfn_offset, unsigned long mask)
1691 {
1692         struct kvm_rmap_head *rmap_head;
1693
1694         while (mask) {
1695                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1696                                           PT_PAGE_TABLE_LEVEL, slot);
1697                 __rmap_clear_dirty(kvm, rmap_head);
1698
1699                 /* clear the first set bit */
1700                 mask &= mask - 1;
1701         }
1702 }
1703 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1704
1705 /**
1706  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1707  * PT level pages.
1708  *
1709  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1710  * enable dirty logging for them.
1711  *
1712  * Used when we do not need to care about huge page mappings: e.g. during dirty
1713  * logging we do not have any such mappings.
1714  */
1715 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1716                                 struct kvm_memory_slot *slot,
1717                                 gfn_t gfn_offset, unsigned long mask)
1718 {
1719         if (kvm_x86_ops->enable_log_dirty_pt_masked)
1720                 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1721                                 mask);
1722         else
1723                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1724 }
1725
1726 /**
1727  * kvm_arch_write_log_dirty - emulate dirty page logging
1728  * @vcpu: Guest mode vcpu
1729  *
1730  * Emulate arch specific page modification logging for the
1731  * nested hypervisor
1732  */
1733 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1734 {
1735         if (kvm_x86_ops->write_log_dirty)
1736                 return kvm_x86_ops->write_log_dirty(vcpu);
1737
1738         return 0;
1739 }
1740
1741 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1742                                     struct kvm_memory_slot *slot, u64 gfn)
1743 {
1744         struct kvm_rmap_head *rmap_head;
1745         int i;
1746         bool write_protected = false;
1747
1748         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1749                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1750                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1751         }
1752
1753         return write_protected;
1754 }
1755
1756 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1757 {
1758         struct kvm_memory_slot *slot;
1759
1760         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1761         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1762 }
1763
1764 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1765 {
1766         u64 *sptep;
1767         struct rmap_iterator iter;
1768         bool flush = false;
1769
1770         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1771                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1772
1773                 pte_list_remove(rmap_head, sptep);
1774                 flush = true;
1775         }
1776
1777         return flush;
1778 }
1779
1780 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1781                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1782                            unsigned long data)
1783 {
1784         return kvm_zap_rmapp(kvm, rmap_head);
1785 }
1786
1787 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1788                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1789                              unsigned long data)
1790 {
1791         u64 *sptep;
1792         struct rmap_iterator iter;
1793         int need_flush = 0;
1794         u64 new_spte;
1795         pte_t *ptep = (pte_t *)data;
1796         kvm_pfn_t new_pfn;
1797
1798         WARN_ON(pte_huge(*ptep));
1799         new_pfn = pte_pfn(*ptep);
1800
1801 restart:
1802         for_each_rmap_spte(rmap_head, &iter, sptep) {
1803                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1804                             sptep, *sptep, gfn, level);
1805
1806                 need_flush = 1;
1807
1808                 if (pte_write(*ptep)) {
1809                         pte_list_remove(rmap_head, sptep);
1810                         goto restart;
1811                 } else {
1812                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1813                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1814
1815                         new_spte &= ~PT_WRITABLE_MASK;
1816                         new_spte &= ~SPTE_HOST_WRITEABLE;
1817
1818                         new_spte = mark_spte_for_access_track(new_spte);
1819
1820                         mmu_spte_clear_track_bits(sptep);
1821                         mmu_spte_set(sptep, new_spte);
1822                 }
1823         }
1824
1825         if (need_flush && kvm_available_flush_tlb_with_range()) {
1826                 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1827                 return 0;
1828         }
1829
1830         return need_flush;
1831 }
1832
1833 struct slot_rmap_walk_iterator {
1834         /* input fields. */
1835         struct kvm_memory_slot *slot;
1836         gfn_t start_gfn;
1837         gfn_t end_gfn;
1838         int start_level;
1839         int end_level;
1840
1841         /* output fields. */
1842         gfn_t gfn;
1843         struct kvm_rmap_head *rmap;
1844         int level;
1845
1846         /* private field. */
1847         struct kvm_rmap_head *end_rmap;
1848 };
1849
1850 static void
1851 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1852 {
1853         iterator->level = level;
1854         iterator->gfn = iterator->start_gfn;
1855         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1856         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1857                                            iterator->slot);
1858 }
1859
1860 static void
1861 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1862                     struct kvm_memory_slot *slot, int start_level,
1863                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1864 {
1865         iterator->slot = slot;
1866         iterator->start_level = start_level;
1867         iterator->end_level = end_level;
1868         iterator->start_gfn = start_gfn;
1869         iterator->end_gfn = end_gfn;
1870
1871         rmap_walk_init_level(iterator, iterator->start_level);
1872 }
1873
1874 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1875 {
1876         return !!iterator->rmap;
1877 }
1878
1879 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1880 {
1881         if (++iterator->rmap <= iterator->end_rmap) {
1882                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1883                 return;
1884         }
1885
1886         if (++iterator->level > iterator->end_level) {
1887                 iterator->rmap = NULL;
1888                 return;
1889         }
1890
1891         rmap_walk_init_level(iterator, iterator->level);
1892 }
1893
1894 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1895            _start_gfn, _end_gfn, _iter_)                                \
1896         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1897                                  _end_level_, _start_gfn, _end_gfn);    \
1898              slot_rmap_walk_okay(_iter_);                               \
1899              slot_rmap_walk_next(_iter_))
1900
1901 static int kvm_handle_hva_range(struct kvm *kvm,
1902                                 unsigned long start,
1903                                 unsigned long end,
1904                                 unsigned long data,
1905                                 int (*handler)(struct kvm *kvm,
1906                                                struct kvm_rmap_head *rmap_head,
1907                                                struct kvm_memory_slot *slot,
1908                                                gfn_t gfn,
1909                                                int level,
1910                                                unsigned long data))
1911 {
1912         struct kvm_memslots *slots;
1913         struct kvm_memory_slot *memslot;
1914         struct slot_rmap_walk_iterator iterator;
1915         int ret = 0;
1916         int i;
1917
1918         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1919                 slots = __kvm_memslots(kvm, i);
1920                 kvm_for_each_memslot(memslot, slots) {
1921                         unsigned long hva_start, hva_end;
1922                         gfn_t gfn_start, gfn_end;
1923
1924                         hva_start = max(start, memslot->userspace_addr);
1925                         hva_end = min(end, memslot->userspace_addr +
1926                                       (memslot->npages << PAGE_SHIFT));
1927                         if (hva_start >= hva_end)
1928                                 continue;
1929                         /*
1930                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1931                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1932                          */
1933                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1934                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1935
1936                         for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1937                                                  PT_MAX_HUGEPAGE_LEVEL,
1938                                                  gfn_start, gfn_end - 1,
1939                                                  &iterator)
1940                                 ret |= handler(kvm, iterator.rmap, memslot,
1941                                                iterator.gfn, iterator.level, data);
1942                 }
1943         }
1944
1945         return ret;
1946 }
1947
1948 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1949                           unsigned long data,
1950                           int (*handler)(struct kvm *kvm,
1951                                          struct kvm_rmap_head *rmap_head,
1952                                          struct kvm_memory_slot *slot,
1953                                          gfn_t gfn, int level,
1954                                          unsigned long data))
1955 {
1956         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1957 }
1958
1959 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1960 {
1961         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1962 }
1963
1964 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1965 {
1966         return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1967 }
1968
1969 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1970                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1971                          unsigned long data)
1972 {
1973         u64 *sptep;
1974         struct rmap_iterator uninitialized_var(iter);
1975         int young = 0;
1976
1977         for_each_rmap_spte(rmap_head, &iter, sptep)
1978                 young |= mmu_spte_age(sptep);
1979
1980         trace_kvm_age_page(gfn, level, slot, young);
1981         return young;
1982 }
1983
1984 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1985                               struct kvm_memory_slot *slot, gfn_t gfn,
1986                               int level, unsigned long data)
1987 {
1988         u64 *sptep;
1989         struct rmap_iterator iter;
1990
1991         for_each_rmap_spte(rmap_head, &iter, sptep)
1992                 if (is_accessed_spte(*sptep))
1993                         return 1;
1994         return 0;
1995 }
1996
1997 #define RMAP_RECYCLE_THRESHOLD 1000
1998
1999 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
2000 {
2001         struct kvm_rmap_head *rmap_head;
2002         struct kvm_mmu_page *sp;
2003
2004         sp = page_header(__pa(spte));
2005
2006         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
2007
2008         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
2009         kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
2010                         KVM_PAGES_PER_HPAGE(sp->role.level));
2011 }
2012
2013 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
2014 {
2015         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
2016 }
2017
2018 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2019 {
2020         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
2021 }
2022
2023 #ifdef MMU_DEBUG
2024 static int is_empty_shadow_page(u64 *spt)
2025 {
2026         u64 *pos;
2027         u64 *end;
2028
2029         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
2030                 if (is_shadow_present_pte(*pos)) {
2031                         printk(KERN_ERR "%s: %p %llx\n", __func__,
2032                                pos, *pos);
2033                         return 0;
2034                 }
2035         return 1;
2036 }
2037 #endif
2038
2039 /*
2040  * This value is the sum of all of the kvm instances's
2041  * kvm->arch.n_used_mmu_pages values.  We need a global,
2042  * aggregate version in order to make the slab shrinker
2043  * faster
2044  */
2045 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
2046 {
2047         kvm->arch.n_used_mmu_pages += nr;
2048         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2049 }
2050
2051 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
2052 {
2053         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
2054         hlist_del(&sp->hash_link);
2055         list_del(&sp->link);
2056         free_page((unsigned long)sp->spt);
2057         if (!sp->role.direct)
2058                 free_page((unsigned long)sp->gfns);
2059         kmem_cache_free(mmu_page_header_cache, sp);
2060 }
2061
2062 static unsigned kvm_page_table_hashfn(gfn_t gfn)
2063 {
2064         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
2065 }
2066
2067 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
2068                                     struct kvm_mmu_page *sp, u64 *parent_pte)
2069 {
2070         if (!parent_pte)
2071                 return;
2072
2073         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
2074 }
2075
2076 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
2077                                        u64 *parent_pte)
2078 {
2079         __pte_list_remove(parent_pte, &sp->parent_ptes);
2080 }
2081
2082 static void drop_parent_pte(struct kvm_mmu_page *sp,
2083                             u64 *parent_pte)
2084 {
2085         mmu_page_remove_parent_pte(sp, parent_pte);
2086         mmu_spte_clear_no_track(parent_pte);
2087 }
2088
2089 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
2090 {
2091         struct kvm_mmu_page *sp;
2092
2093         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2094         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2095         if (!direct)
2096                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2097         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2098
2099         /*
2100          * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2101          * depends on valid pages being added to the head of the list.  See
2102          * comments in kvm_zap_obsolete_pages().
2103          */
2104         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
2105         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2106         return sp;
2107 }
2108
2109 static void mark_unsync(u64 *spte);
2110 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2111 {
2112         u64 *sptep;
2113         struct rmap_iterator iter;
2114
2115         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2116                 mark_unsync(sptep);
2117         }
2118 }
2119
2120 static void mark_unsync(u64 *spte)
2121 {
2122         struct kvm_mmu_page *sp;
2123         unsigned int index;
2124
2125         sp = page_header(__pa(spte));
2126         index = spte - sp->spt;
2127         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2128                 return;
2129         if (sp->unsync_children++)
2130                 return;
2131         kvm_mmu_mark_parents_unsync(sp);
2132 }
2133
2134 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2135                                struct kvm_mmu_page *sp)
2136 {
2137         return 0;
2138 }
2139
2140 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
2141 {
2142 }
2143
2144 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2145                                  struct kvm_mmu_page *sp, u64 *spte,
2146                                  const void *pte)
2147 {
2148         WARN_ON(1);
2149 }
2150
2151 #define KVM_PAGE_ARRAY_NR 16
2152
2153 struct kvm_mmu_pages {
2154         struct mmu_page_and_offset {
2155                 struct kvm_mmu_page *sp;
2156                 unsigned int idx;
2157         } page[KVM_PAGE_ARRAY_NR];
2158         unsigned int nr;
2159 };
2160
2161 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2162                          int idx)
2163 {
2164         int i;
2165
2166         if (sp->unsync)
2167                 for (i=0; i < pvec->nr; i++)
2168                         if (pvec->page[i].sp == sp)
2169                                 return 0;
2170
2171         pvec->page[pvec->nr].sp = sp;
2172         pvec->page[pvec->nr].idx = idx;
2173         pvec->nr++;
2174         return (pvec->nr == KVM_PAGE_ARRAY_NR);
2175 }
2176
2177 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2178 {
2179         --sp->unsync_children;
2180         WARN_ON((int)sp->unsync_children < 0);
2181         __clear_bit(idx, sp->unsync_child_bitmap);
2182 }
2183
2184 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2185                            struct kvm_mmu_pages *pvec)
2186 {
2187         int i, ret, nr_unsync_leaf = 0;
2188
2189         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2190                 struct kvm_mmu_page *child;
2191                 u64 ent = sp->spt[i];
2192
2193                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2194                         clear_unsync_child_bit(sp, i);
2195                         continue;
2196                 }
2197
2198                 child = page_header(ent & PT64_BASE_ADDR_MASK);
2199
2200                 if (child->unsync_children) {
2201                         if (mmu_pages_add(pvec, child, i))
2202                                 return -ENOSPC;
2203
2204                         ret = __mmu_unsync_walk(child, pvec);
2205                         if (!ret) {
2206                                 clear_unsync_child_bit(sp, i);
2207                                 continue;
2208                         } else if (ret > 0) {
2209                                 nr_unsync_leaf += ret;
2210                         } else
2211                                 return ret;
2212                 } else if (child->unsync) {
2213                         nr_unsync_leaf++;
2214                         if (mmu_pages_add(pvec, child, i))
2215                                 return -ENOSPC;
2216                 } else
2217                         clear_unsync_child_bit(sp, i);
2218         }
2219
2220         return nr_unsync_leaf;
2221 }
2222
2223 #define INVALID_INDEX (-1)
2224
2225 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2226                            struct kvm_mmu_pages *pvec)
2227 {
2228         pvec->nr = 0;
2229         if (!sp->unsync_children)
2230                 return 0;
2231
2232         mmu_pages_add(pvec, sp, INVALID_INDEX);
2233         return __mmu_unsync_walk(sp, pvec);
2234 }
2235
2236 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2237 {
2238         WARN_ON(!sp->unsync);
2239         trace_kvm_mmu_sync_page(sp);
2240         sp->unsync = 0;
2241         --kvm->stat.mmu_unsync;
2242 }
2243
2244 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2245                                      struct list_head *invalid_list);
2246 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2247                                     struct list_head *invalid_list);
2248
2249
2250 #define for_each_valid_sp(_kvm, _sp, _gfn)                              \
2251         hlist_for_each_entry(_sp,                                       \
2252           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2253                 if (is_obsolete_sp((_kvm), (_sp))) {                    \
2254                 } else
2255
2256 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
2257         for_each_valid_sp(_kvm, _sp, _gfn)                              \
2258                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2259
2260 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
2261 {
2262         return sp->role.cr0_wp && sp->role.smap_andnot_wp;
2263 }
2264
2265 /* @sp->gfn should be write-protected at the call site */
2266 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2267                             struct list_head *invalid_list)
2268 {
2269         if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
2270             vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
2271                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2272                 return false;
2273         }
2274
2275         return true;
2276 }
2277
2278 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
2279                                         struct list_head *invalid_list,
2280                                         bool remote_flush)
2281 {
2282         if (!remote_flush && list_empty(invalid_list))
2283                 return false;
2284
2285         if (!list_empty(invalid_list))
2286                 kvm_mmu_commit_zap_page(kvm, invalid_list);
2287         else
2288                 kvm_flush_remote_tlbs(kvm);
2289         return true;
2290 }
2291
2292 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2293                                  struct list_head *invalid_list,
2294                                  bool remote_flush, bool local_flush)
2295 {
2296         if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
2297                 return;
2298
2299         if (local_flush)
2300                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2301 }
2302
2303 #ifdef CONFIG_KVM_MMU_AUDIT
2304 #include "mmu_audit.c"
2305 #else
2306 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2307 static void mmu_audit_disable(void) { }
2308 #endif
2309
2310 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2311 {
2312         return sp->role.invalid ||
2313                unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2314 }
2315
2316 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2317                          struct list_head *invalid_list)
2318 {
2319         kvm_unlink_unsync_page(vcpu->kvm, sp);
2320         return __kvm_sync_page(vcpu, sp, invalid_list);
2321 }
2322
2323 /* @gfn should be write-protected at the call site */
2324 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2325                            struct list_head *invalid_list)
2326 {
2327         struct kvm_mmu_page *s;
2328         bool ret = false;
2329
2330         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2331                 if (!s->unsync)
2332                         continue;
2333
2334                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2335                 ret |= kvm_sync_page(vcpu, s, invalid_list);
2336         }
2337
2338         return ret;
2339 }
2340
2341 struct mmu_page_path {
2342         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2343         unsigned int idx[PT64_ROOT_MAX_LEVEL];
2344 };
2345
2346 #define for_each_sp(pvec, sp, parents, i)                       \
2347                 for (i = mmu_pages_first(&pvec, &parents);      \
2348                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
2349                         i = mmu_pages_next(&pvec, &parents, i))
2350
2351 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2352                           struct mmu_page_path *parents,
2353                           int i)
2354 {
2355         int n;
2356
2357         for (n = i+1; n < pvec->nr; n++) {
2358                 struct kvm_mmu_page *sp = pvec->page[n].sp;
2359                 unsigned idx = pvec->page[n].idx;
2360                 int level = sp->role.level;
2361
2362                 parents->idx[level-1] = idx;
2363                 if (level == PT_PAGE_TABLE_LEVEL)
2364                         break;
2365
2366                 parents->parent[level-2] = sp;
2367         }
2368
2369         return n;
2370 }
2371
2372 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2373                            struct mmu_page_path *parents)
2374 {
2375         struct kvm_mmu_page *sp;
2376         int level;
2377
2378         if (pvec->nr == 0)
2379                 return 0;
2380
2381         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2382
2383         sp = pvec->page[0].sp;
2384         level = sp->role.level;
2385         WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2386
2387         parents->parent[level-2] = sp;
2388
2389         /* Also set up a sentinel.  Further entries in pvec are all
2390          * children of sp, so this element is never overwritten.
2391          */
2392         parents->parent[level-1] = NULL;
2393         return mmu_pages_next(pvec, parents, 0);
2394 }
2395
2396 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2397 {
2398         struct kvm_mmu_page *sp;
2399         unsigned int level = 0;
2400
2401         do {
2402                 unsigned int idx = parents->idx[level];
2403                 sp = parents->parent[level];
2404                 if (!sp)
2405                         return;
2406
2407                 WARN_ON(idx == INVALID_INDEX);
2408                 clear_unsync_child_bit(sp, idx);
2409                 level++;
2410         } while (!sp->unsync_children);
2411 }
2412
2413 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2414                               struct kvm_mmu_page *parent)
2415 {
2416         int i;
2417         struct kvm_mmu_page *sp;
2418         struct mmu_page_path parents;
2419         struct kvm_mmu_pages pages;
2420         LIST_HEAD(invalid_list);
2421         bool flush = false;
2422
2423         while (mmu_unsync_walk(parent, &pages)) {
2424                 bool protected = false;
2425
2426                 for_each_sp(pages, sp, parents, i)
2427                         protected |= rmap_write_protect(vcpu, sp->gfn);
2428
2429                 if (protected) {
2430                         kvm_flush_remote_tlbs(vcpu->kvm);
2431                         flush = false;
2432                 }
2433
2434                 for_each_sp(pages, sp, parents, i) {
2435                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2436                         mmu_pages_clear_parents(&parents);
2437                 }
2438                 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2439                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2440                         cond_resched_lock(&vcpu->kvm->mmu_lock);
2441                         flush = false;
2442                 }
2443         }
2444
2445         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2446 }
2447
2448 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2449 {
2450         atomic_set(&sp->write_flooding_count,  0);
2451 }
2452
2453 static void clear_sp_write_flooding_count(u64 *spte)
2454 {
2455         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2456
2457         __clear_sp_write_flooding_count(sp);
2458 }
2459
2460 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2461                                              gfn_t gfn,
2462                                              gva_t gaddr,
2463                                              unsigned level,
2464                                              int direct,
2465                                              unsigned access)
2466 {
2467         union kvm_mmu_page_role role;
2468         unsigned quadrant;
2469         struct kvm_mmu_page *sp;
2470         bool need_sync = false;
2471         bool flush = false;
2472         int collisions = 0;
2473         LIST_HEAD(invalid_list);
2474
2475         role = vcpu->arch.mmu->mmu_role.base;
2476         role.level = level;
2477         role.direct = direct;
2478         if (role.direct)
2479                 role.gpte_is_8_bytes = true;
2480         role.access = access;
2481         if (!vcpu->arch.mmu->direct_map
2482             && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2483                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2484                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2485                 role.quadrant = quadrant;
2486         }
2487         for_each_valid_sp(vcpu->kvm, sp, gfn) {
2488                 if (sp->gfn != gfn) {
2489                         collisions++;
2490                         continue;
2491                 }
2492
2493                 if (!need_sync && sp->unsync)
2494                         need_sync = true;
2495
2496                 if (sp->role.word != role.word)
2497                         continue;
2498
2499                 if (sp->unsync) {
2500                         /* The page is good, but __kvm_sync_page might still end
2501                          * up zapping it.  If so, break in order to rebuild it.
2502                          */
2503                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2504                                 break;
2505
2506                         WARN_ON(!list_empty(&invalid_list));
2507                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2508                 }
2509
2510                 if (sp->unsync_children)
2511                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2512
2513                 __clear_sp_write_flooding_count(sp);
2514                 trace_kvm_mmu_get_page(sp, false);
2515                 goto out;
2516         }
2517
2518         ++vcpu->kvm->stat.mmu_cache_miss;
2519
2520         sp = kvm_mmu_alloc_page(vcpu, direct);
2521
2522         sp->gfn = gfn;
2523         sp->role = role;
2524         hlist_add_head(&sp->hash_link,
2525                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2526         if (!direct) {
2527                 /*
2528                  * we should do write protection before syncing pages
2529                  * otherwise the content of the synced shadow page may
2530                  * be inconsistent with guest page table.
2531                  */
2532                 account_shadowed(vcpu->kvm, sp);
2533                 if (level == PT_PAGE_TABLE_LEVEL &&
2534                       rmap_write_protect(vcpu, gfn))
2535                         kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2536
2537                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2538                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2539         }
2540         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2541         clear_page(sp->spt);
2542         trace_kvm_mmu_get_page(sp, true);
2543
2544         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2545 out:
2546         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2547                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2548         return sp;
2549 }
2550
2551 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2552                                         struct kvm_vcpu *vcpu, hpa_t root,
2553                                         u64 addr)
2554 {
2555         iterator->addr = addr;
2556         iterator->shadow_addr = root;
2557         iterator->level = vcpu->arch.mmu->shadow_root_level;
2558
2559         if (iterator->level == PT64_ROOT_4LEVEL &&
2560             vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2561             !vcpu->arch.mmu->direct_map)
2562                 --iterator->level;
2563
2564         if (iterator->level == PT32E_ROOT_LEVEL) {
2565                 /*
2566                  * prev_root is currently only used for 64-bit hosts. So only
2567                  * the active root_hpa is valid here.
2568                  */
2569                 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2570
2571                 iterator->shadow_addr
2572                         = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2573                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2574                 --iterator->level;
2575                 if (!iterator->shadow_addr)
2576                         iterator->level = 0;
2577         }
2578 }
2579
2580 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2581                              struct kvm_vcpu *vcpu, u64 addr)
2582 {
2583         shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2584                                     addr);
2585 }
2586
2587 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2588 {
2589         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2590                 return false;
2591
2592         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2593         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2594         return true;
2595 }
2596
2597 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2598                                u64 spte)
2599 {
2600         if (is_last_spte(spte, iterator->level)) {
2601                 iterator->level = 0;
2602                 return;
2603         }
2604
2605         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2606         --iterator->level;
2607 }
2608
2609 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2610 {
2611         __shadow_walk_next(iterator, *iterator->sptep);
2612 }
2613
2614 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2615                              struct kvm_mmu_page *sp)
2616 {
2617         u64 spte;
2618
2619         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2620
2621         spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2622                shadow_user_mask | shadow_x_mask | shadow_me_mask;
2623
2624         if (sp_ad_disabled(sp))
2625                 spte |= shadow_acc_track_value;
2626         else
2627                 spte |= shadow_accessed_mask;
2628
2629         mmu_spte_set(sptep, spte);
2630
2631         mmu_page_add_parent_pte(vcpu, sp, sptep);
2632
2633         if (sp->unsync_children || sp->unsync)
2634                 mark_unsync(sptep);
2635 }
2636
2637 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2638                                    unsigned direct_access)
2639 {
2640         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2641                 struct kvm_mmu_page *child;
2642
2643                 /*
2644                  * For the direct sp, if the guest pte's dirty bit
2645                  * changed form clean to dirty, it will corrupt the
2646                  * sp's access: allow writable in the read-only sp,
2647                  * so we should update the spte at this point to get
2648                  * a new sp with the correct access.
2649                  */
2650                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2651                 if (child->role.access == direct_access)
2652                         return;
2653
2654                 drop_parent_pte(child, sptep);
2655                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2656         }
2657 }
2658
2659 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2660                              u64 *spte)
2661 {
2662         u64 pte;
2663         struct kvm_mmu_page *child;
2664
2665         pte = *spte;
2666         if (is_shadow_present_pte(pte)) {
2667                 if (is_last_spte(pte, sp->role.level)) {
2668                         drop_spte(kvm, spte);
2669                         if (is_large_pte(pte))
2670                                 --kvm->stat.lpages;
2671                 } else {
2672                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2673                         drop_parent_pte(child, spte);
2674                 }
2675                 return true;
2676         }
2677
2678         if (is_mmio_spte(pte))
2679                 mmu_spte_clear_no_track(spte);
2680
2681         return false;
2682 }
2683
2684 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2685                                          struct kvm_mmu_page *sp)
2686 {
2687         unsigned i;
2688
2689         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2690                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2691 }
2692
2693 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2694 {
2695         u64 *sptep;
2696         struct rmap_iterator iter;
2697
2698         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2699                 drop_parent_pte(sp, sptep);
2700 }
2701
2702 static int mmu_zap_unsync_children(struct kvm *kvm,
2703                                    struct kvm_mmu_page *parent,
2704                                    struct list_head *invalid_list)
2705 {
2706         int i, zapped = 0;
2707         struct mmu_page_path parents;
2708         struct kvm_mmu_pages pages;
2709
2710         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2711                 return 0;
2712
2713         while (mmu_unsync_walk(parent, &pages)) {
2714                 struct kvm_mmu_page *sp;
2715
2716                 for_each_sp(pages, sp, parents, i) {
2717                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2718                         mmu_pages_clear_parents(&parents);
2719                         zapped++;
2720                 }
2721         }
2722
2723         return zapped;
2724 }
2725
2726 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2727                                        struct kvm_mmu_page *sp,
2728                                        struct list_head *invalid_list,
2729                                        int *nr_zapped)
2730 {
2731         bool list_unstable;
2732
2733         trace_kvm_mmu_prepare_zap_page(sp);
2734         ++kvm->stat.mmu_shadow_zapped;
2735         *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2736         kvm_mmu_page_unlink_children(kvm, sp);
2737         kvm_mmu_unlink_parents(kvm, sp);
2738
2739         /* Zapping children means active_mmu_pages has become unstable. */
2740         list_unstable = *nr_zapped;
2741
2742         if (!sp->role.invalid && !sp->role.direct)
2743                 unaccount_shadowed(kvm, sp);
2744
2745         if (sp->unsync)
2746                 kvm_unlink_unsync_page(kvm, sp);
2747         if (!sp->root_count) {
2748                 /* Count self */
2749                 (*nr_zapped)++;
2750                 list_move(&sp->link, invalid_list);
2751                 kvm_mod_used_mmu_pages(kvm, -1);
2752         } else {
2753                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2754
2755                 if (!sp->role.invalid)
2756                         kvm_reload_remote_mmus(kvm);
2757         }
2758
2759         sp->role.invalid = 1;
2760         return list_unstable;
2761 }
2762
2763 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2764                                      struct list_head *invalid_list)
2765 {
2766         int nr_zapped;
2767
2768         __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2769         return nr_zapped;
2770 }
2771
2772 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2773                                     struct list_head *invalid_list)
2774 {
2775         struct kvm_mmu_page *sp, *nsp;
2776
2777         if (list_empty(invalid_list))
2778                 return;
2779
2780         /*
2781          * We need to make sure everyone sees our modifications to
2782          * the page tables and see changes to vcpu->mode here. The barrier
2783          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2784          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2785          *
2786          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2787          * guest mode and/or lockless shadow page table walks.
2788          */
2789         kvm_flush_remote_tlbs(kvm);
2790
2791         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2792                 WARN_ON(!sp->role.invalid || sp->root_count);
2793                 kvm_mmu_free_page(sp);
2794         }
2795 }
2796
2797 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2798                                         struct list_head *invalid_list)
2799 {
2800         struct kvm_mmu_page *sp;
2801
2802         if (list_empty(&kvm->arch.active_mmu_pages))
2803                 return false;
2804
2805         sp = list_last_entry(&kvm->arch.active_mmu_pages,
2806                              struct kvm_mmu_page, link);
2807         return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2808 }
2809
2810 /*
2811  * Changing the number of mmu pages allocated to the vm
2812  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2813  */
2814 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2815 {
2816         LIST_HEAD(invalid_list);
2817
2818         spin_lock(&kvm->mmu_lock);
2819
2820         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2821                 /* Need to free some mmu pages to achieve the goal. */
2822                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2823                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2824                                 break;
2825
2826                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2827                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2828         }
2829
2830         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2831
2832         spin_unlock(&kvm->mmu_lock);
2833 }
2834
2835 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2836 {
2837         struct kvm_mmu_page *sp;
2838         LIST_HEAD(invalid_list);
2839         int r;
2840
2841         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2842         r = 0;
2843         spin_lock(&kvm->mmu_lock);
2844         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2845                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2846                          sp->role.word);
2847                 r = 1;
2848                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2849         }
2850         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2851         spin_unlock(&kvm->mmu_lock);
2852
2853         return r;
2854 }
2855 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2856
2857 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2858 {
2859         trace_kvm_mmu_unsync_page(sp);
2860         ++vcpu->kvm->stat.mmu_unsync;
2861         sp->unsync = 1;
2862
2863         kvm_mmu_mark_parents_unsync(sp);
2864 }
2865
2866 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2867                                    bool can_unsync)
2868 {
2869         struct kvm_mmu_page *sp;
2870
2871         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2872                 return true;
2873
2874         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2875                 if (!can_unsync)
2876                         return true;
2877
2878                 if (sp->unsync)
2879                         continue;
2880
2881                 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2882                 kvm_unsync_page(vcpu, sp);
2883         }
2884
2885         /*
2886          * We need to ensure that the marking of unsync pages is visible
2887          * before the SPTE is updated to allow writes because
2888          * kvm_mmu_sync_roots() checks the unsync flags without holding
2889          * the MMU lock and so can race with this. If the SPTE was updated
2890          * before the page had been marked as unsync-ed, something like the
2891          * following could happen:
2892          *
2893          * CPU 1                    CPU 2
2894          * ---------------------------------------------------------------------
2895          * 1.2 Host updates SPTE
2896          *     to be writable
2897          *                      2.1 Guest writes a GPTE for GVA X.
2898          *                          (GPTE being in the guest page table shadowed
2899          *                           by the SP from CPU 1.)
2900          *                          This reads SPTE during the page table walk.
2901          *                          Since SPTE.W is read as 1, there is no
2902          *                          fault.
2903          *
2904          *                      2.2 Guest issues TLB flush.
2905          *                          That causes a VM Exit.
2906          *
2907          *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
2908          *                          Since it is false, so it just returns.
2909          *
2910          *                      2.4 Guest accesses GVA X.
2911          *                          Since the mapping in the SP was not updated,
2912          *                          so the old mapping for GVA X incorrectly
2913          *                          gets used.
2914          * 1.1 Host marks SP
2915          *     as unsync
2916          *     (sp->unsync = true)
2917          *
2918          * The write barrier below ensures that 1.1 happens before 1.2 and thus
2919          * the situation in 2.4 does not arise. The implicit barrier in 2.2
2920          * pairs with this write barrier.
2921          */
2922         smp_wmb();
2923
2924         return false;
2925 }
2926
2927 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2928 {
2929         if (pfn_valid(pfn))
2930                 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2931                         /*
2932                          * Some reserved pages, such as those from NVDIMM
2933                          * DAX devices, are not for MMIO, and can be mapped
2934                          * with cached memory type for better performance.
2935                          * However, the above check misconceives those pages
2936                          * as MMIO, and results in KVM mapping them with UC
2937                          * memory type, which would hurt the performance.
2938                          * Therefore, we check the host memory type in addition
2939                          * and only treat UC/UC-/WC pages as MMIO.
2940                          */
2941                         (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
2942
2943         return !e820__mapped_raw_any(pfn_to_hpa(pfn),
2944                                      pfn_to_hpa(pfn + 1) - 1,
2945                                      E820_TYPE_RAM);
2946 }
2947
2948 /* Bits which may be returned by set_spte() */
2949 #define SET_SPTE_WRITE_PROTECTED_PT     BIT(0)
2950 #define SET_SPTE_NEED_REMOTE_TLB_FLUSH  BIT(1)
2951
2952 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2953                     unsigned pte_access, int level,
2954                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2955                     bool can_unsync, bool host_writable)
2956 {
2957         u64 spte = 0;
2958         int ret = 0;
2959         struct kvm_mmu_page *sp;
2960
2961         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2962                 return 0;
2963
2964         sp = page_header(__pa(sptep));
2965         if (sp_ad_disabled(sp))
2966                 spte |= shadow_acc_track_value;
2967
2968         /*
2969          * For the EPT case, shadow_present_mask is 0 if hardware
2970          * supports exec-only page table entries.  In that case,
2971          * ACC_USER_MASK and shadow_user_mask are used to represent
2972          * read access.  See FNAME(gpte_access) in paging_tmpl.h.
2973          */
2974         spte |= shadow_present_mask;
2975         if (!speculative)
2976                 spte |= spte_shadow_accessed_mask(spte);
2977
2978         if (pte_access & ACC_EXEC_MASK)
2979                 spte |= shadow_x_mask;
2980         else
2981                 spte |= shadow_nx_mask;
2982
2983         if (pte_access & ACC_USER_MASK)
2984                 spte |= shadow_user_mask;
2985
2986         if (level > PT_PAGE_TABLE_LEVEL)
2987                 spte |= PT_PAGE_SIZE_MASK;
2988         if (tdp_enabled)
2989                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2990                         kvm_is_mmio_pfn(pfn));
2991
2992         if (host_writable)
2993                 spte |= SPTE_HOST_WRITEABLE;
2994         else
2995                 pte_access &= ~ACC_WRITE_MASK;
2996
2997         if (!kvm_is_mmio_pfn(pfn))
2998                 spte |= shadow_me_mask;
2999
3000         spte |= (u64)pfn << PAGE_SHIFT;
3001
3002         if (pte_access & ACC_WRITE_MASK) {
3003
3004                 /*
3005                  * Other vcpu creates new sp in the window between
3006                  * mapping_level() and acquiring mmu-lock. We can
3007                  * allow guest to retry the access, the mapping can
3008                  * be fixed if guest refault.
3009                  */
3010                 if (level > PT_PAGE_TABLE_LEVEL &&
3011                     mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
3012                         goto done;
3013
3014                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
3015
3016                 /*
3017                  * Optimization: for pte sync, if spte was writable the hash
3018                  * lookup is unnecessary (and expensive). Write protection
3019                  * is responsibility of mmu_get_page / kvm_sync_page.
3020                  * Same reasoning can be applied to dirty page accounting.
3021                  */
3022                 if (!can_unsync && is_writable_pte(*sptep))
3023                         goto set_pte;
3024
3025                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
3026                         pgprintk("%s: found shadow page for %llx, marking ro\n",
3027                                  __func__, gfn);
3028                         ret |= SET_SPTE_WRITE_PROTECTED_PT;
3029                         pte_access &= ~ACC_WRITE_MASK;
3030                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
3031                 }
3032         }
3033
3034         if (pte_access & ACC_WRITE_MASK) {
3035                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3036                 spte |= spte_shadow_dirty_mask(spte);
3037         }
3038
3039         if (speculative)
3040                 spte = mark_spte_for_access_track(spte);
3041
3042 set_pte:
3043         if (mmu_spte_update(sptep, spte))
3044                 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
3045 done:
3046         return ret;
3047 }
3048
3049 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
3050                         int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
3051                         bool speculative, bool host_writable)
3052 {
3053         int was_rmapped = 0;
3054         int rmap_count;
3055         int set_spte_ret;
3056         int ret = RET_PF_RETRY;
3057         bool flush = false;
3058
3059         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
3060                  *sptep, write_fault, gfn);
3061
3062         if (is_shadow_present_pte(*sptep)) {
3063                 /*
3064                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3065                  * the parent of the now unreachable PTE.
3066                  */
3067                 if (level > PT_PAGE_TABLE_LEVEL &&
3068                     !is_large_pte(*sptep)) {
3069                         struct kvm_mmu_page *child;
3070                         u64 pte = *sptep;
3071
3072                         child = page_header(pte & PT64_BASE_ADDR_MASK);
3073                         drop_parent_pte(child, sptep);
3074                         flush = true;
3075                 } else if (pfn != spte_to_pfn(*sptep)) {
3076                         pgprintk("hfn old %llx new %llx\n",
3077                                  spte_to_pfn(*sptep), pfn);
3078                         drop_spte(vcpu->kvm, sptep);
3079                         flush = true;
3080                 } else
3081                         was_rmapped = 1;
3082         }
3083
3084         set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
3085                                 speculative, true, host_writable);
3086         if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
3087                 if (write_fault)
3088                         ret = RET_PF_EMULATE;
3089                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3090         }
3091
3092         if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
3093                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
3094                                 KVM_PAGES_PER_HPAGE(level));
3095
3096         if (unlikely(is_mmio_spte(*sptep)))
3097                 ret = RET_PF_EMULATE;
3098
3099         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
3100         trace_kvm_mmu_set_spte(level, gfn, sptep);
3101         if (!was_rmapped && is_large_pte(*sptep))
3102                 ++vcpu->kvm->stat.lpages;
3103
3104         if (is_shadow_present_pte(*sptep)) {
3105                 if (!was_rmapped) {
3106                         rmap_count = rmap_add(vcpu, sptep, gfn);
3107                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3108                                 rmap_recycle(vcpu, sptep, gfn);
3109                 }
3110         }
3111
3112         return ret;
3113 }
3114
3115 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
3116                                      bool no_dirty_log)
3117 {
3118         struct kvm_memory_slot *slot;
3119
3120         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3121         if (!slot)
3122                 return KVM_PFN_ERR_FAULT;
3123
3124         return gfn_to_pfn_memslot_atomic(slot, gfn);
3125 }
3126
3127 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3128                                     struct kvm_mmu_page *sp,
3129                                     u64 *start, u64 *end)
3130 {
3131         struct page *pages[PTE_PREFETCH_NUM];
3132         struct kvm_memory_slot *slot;
3133         unsigned access = sp->role.access;
3134         int i, ret;
3135         gfn_t gfn;
3136
3137         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3138         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3139         if (!slot)
3140                 return -1;
3141
3142         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3143         if (ret <= 0)
3144                 return -1;
3145
3146         for (i = 0; i < ret; i++, gfn++, start++) {
3147                 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3148                              page_to_pfn(pages[i]), true, true);
3149                 put_page(pages[i]);
3150         }
3151
3152         return 0;
3153 }
3154
3155 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3156                                   struct kvm_mmu_page *sp, u64 *sptep)
3157 {
3158         u64 *spte, *start = NULL;
3159         int i;
3160
3161         WARN_ON(!sp->role.direct);
3162
3163         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3164         spte = sp->spt + i;
3165
3166         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3167                 if (is_shadow_present_pte(*spte) || spte == sptep) {
3168                         if (!start)
3169                                 continue;
3170                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3171                                 break;
3172                         start = NULL;
3173                 } else if (!start)
3174                         start = spte;
3175         }
3176 }
3177
3178 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3179 {
3180         struct kvm_mmu_page *sp;
3181
3182         sp = page_header(__pa(sptep));
3183
3184         /*
3185          * Without accessed bits, there's no way to distinguish between
3186          * actually accessed translations and prefetched, so disable pte
3187          * prefetch if accessed bits aren't available.
3188          */
3189         if (sp_ad_disabled(sp))
3190                 return;
3191
3192         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3193                 return;
3194
3195         __direct_pte_prefetch(vcpu, sp, sptep);
3196 }
3197
3198 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
3199                         int map_writable, int level, kvm_pfn_t pfn,
3200                         bool prefault)
3201 {
3202         struct kvm_shadow_walk_iterator it;
3203         struct kvm_mmu_page *sp;
3204         int ret;
3205         gfn_t gfn = gpa >> PAGE_SHIFT;
3206         gfn_t base_gfn = gfn;
3207
3208         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3209                 return RET_PF_RETRY;
3210
3211         trace_kvm_mmu_spte_requested(gpa, level, pfn);
3212         for_each_shadow_entry(vcpu, gpa, it) {
3213                 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3214                 if (it.level == level)
3215                         break;
3216
3217                 drop_large_spte(vcpu, it.sptep);
3218                 if (!is_shadow_present_pte(*it.sptep)) {
3219                         sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
3220                                               it.level - 1, true, ACC_ALL);
3221
3222                         link_shadow_page(vcpu, it.sptep, sp);
3223                 }
3224         }
3225
3226         ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3227                            write, level, base_gfn, pfn, prefault,
3228                            map_writable);
3229         direct_pte_prefetch(vcpu, it.sptep);
3230         ++vcpu->stat.pf_fixed;
3231         return ret;
3232 }
3233
3234 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3235 {
3236         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3237 }
3238
3239 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3240 {
3241         /*
3242          * Do not cache the mmio info caused by writing the readonly gfn
3243          * into the spte otherwise read access on readonly gfn also can
3244          * caused mmio page fault and treat it as mmio access.
3245          */
3246         if (pfn == KVM_PFN_ERR_RO_FAULT)
3247                 return RET_PF_EMULATE;
3248
3249         if (pfn == KVM_PFN_ERR_HWPOISON) {
3250                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3251                 return RET_PF_RETRY;
3252         }
3253
3254         return -EFAULT;
3255 }
3256
3257 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
3258                                         gfn_t gfn, kvm_pfn_t *pfnp,
3259                                         int *levelp)
3260 {
3261         kvm_pfn_t pfn = *pfnp;
3262         int level = *levelp;
3263
3264         /*
3265          * Check if it's a transparent hugepage. If this would be an
3266          * hugetlbfs page, level wouldn't be set to
3267          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3268          * here.
3269          */
3270         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3271             level == PT_PAGE_TABLE_LEVEL &&
3272             PageTransCompoundMap(pfn_to_page(pfn)) &&
3273             !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
3274                 unsigned long mask;
3275                 /*
3276                  * mmu_notifier_retry was successful and we hold the
3277                  * mmu_lock here, so the pmd can't become splitting
3278                  * from under us, and in turn
3279                  * __split_huge_page_refcount() can't run from under
3280                  * us and we can safely transfer the refcount from
3281                  * PG_tail to PG_head as we switch the pfn to tail to
3282                  * head.
3283                  */
3284                 *levelp = level = PT_DIRECTORY_LEVEL;
3285                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3286                 VM_BUG_ON((gfn & mask) != (pfn & mask));
3287                 if (pfn & mask) {
3288                         kvm_release_pfn_clean(pfn);
3289                         pfn &= ~mask;
3290                         kvm_get_pfn(pfn);
3291                         *pfnp = pfn;
3292                 }
3293         }
3294 }
3295
3296 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3297                                 kvm_pfn_t pfn, unsigned access, int *ret_val)
3298 {
3299         /* The pfn is invalid, report the error! */
3300         if (unlikely(is_error_pfn(pfn))) {
3301                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3302                 return true;
3303         }
3304
3305         if (unlikely(is_noslot_pfn(pfn)))
3306                 vcpu_cache_mmio_info(vcpu, gva, gfn,
3307                                      access & shadow_mmio_access_mask);
3308
3309         return false;
3310 }
3311
3312 static bool page_fault_can_be_fast(u32 error_code)
3313 {
3314         /*
3315          * Do not fix the mmio spte with invalid generation number which
3316          * need to be updated by slow page fault path.
3317          */
3318         if (unlikely(error_code & PFERR_RSVD_MASK))
3319                 return false;
3320
3321         /* See if the page fault is due to an NX violation */
3322         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3323                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3324                 return false;
3325
3326         /*
3327          * #PF can be fast if:
3328          * 1. The shadow page table entry is not present, which could mean that
3329          *    the fault is potentially caused by access tracking (if enabled).
3330          * 2. The shadow page table entry is present and the fault
3331          *    is caused by write-protect, that means we just need change the W
3332          *    bit of the spte which can be done out of mmu-lock.
3333          *
3334          * However, if access tracking is disabled we know that a non-present
3335          * page must be a genuine page fault where we have to create a new SPTE.
3336          * So, if access tracking is disabled, we return true only for write
3337          * accesses to a present page.
3338          */
3339
3340         return shadow_acc_track_mask != 0 ||
3341                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3342                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3343 }
3344
3345 /*
3346  * Returns true if the SPTE was fixed successfully. Otherwise,
3347  * someone else modified the SPTE from its original value.
3348  */
3349 static bool
3350 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3351                         u64 *sptep, u64 old_spte, u64 new_spte)
3352 {
3353         gfn_t gfn;
3354
3355         WARN_ON(!sp->role.direct);
3356
3357         /*
3358          * Theoretically we could also set dirty bit (and flush TLB) here in
3359          * order to eliminate unnecessary PML logging. See comments in
3360          * set_spte. But fast_page_fault is very unlikely to happen with PML
3361          * enabled, so we do not do this. This might result in the same GPA
3362          * to be logged in PML buffer again when the write really happens, and
3363          * eventually to be called by mark_page_dirty twice. But it's also no
3364          * harm. This also avoids the TLB flush needed after setting dirty bit
3365          * so non-PML cases won't be impacted.
3366          *
3367          * Compare with set_spte where instead shadow_dirty_mask is set.
3368          */
3369         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3370                 return false;
3371
3372         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3373                 /*
3374                  * The gfn of direct spte is stable since it is
3375                  * calculated by sp->gfn.
3376                  */
3377                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3378                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3379         }
3380
3381         return true;
3382 }
3383
3384 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3385 {
3386         if (fault_err_code & PFERR_FETCH_MASK)
3387                 return is_executable_pte(spte);
3388
3389         if (fault_err_code & PFERR_WRITE_MASK)
3390                 return is_writable_pte(spte);
3391
3392         /* Fault was on Read access */
3393         return spte & PT_PRESENT_MASK;
3394 }
3395
3396 /*
3397  * Return value:
3398  * - true: let the vcpu to access on the same address again.
3399  * - false: let the real page fault path to fix it.
3400  */
3401 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3402                             u32 error_code)
3403 {
3404         struct kvm_shadow_walk_iterator iterator;
3405         struct kvm_mmu_page *sp;
3406         bool fault_handled = false;
3407         u64 spte = 0ull;
3408         uint retry_count = 0;
3409
3410         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3411                 return false;
3412
3413         if (!page_fault_can_be_fast(error_code))
3414                 return false;
3415
3416         walk_shadow_page_lockless_begin(vcpu);
3417
3418         do {
3419                 u64 new_spte;
3420
3421                 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3422                         if (!is_shadow_present_pte(spte) ||
3423                             iterator.level < level)
3424                                 break;
3425
3426                 sp = page_header(__pa(iterator.sptep));
3427                 if (!is_last_spte(spte, sp->role.level))
3428                         break;
3429
3430                 /*
3431                  * Check whether the memory access that caused the fault would
3432                  * still cause it if it were to be performed right now. If not,
3433                  * then this is a spurious fault caused by TLB lazily flushed,
3434                  * or some other CPU has already fixed the PTE after the
3435                  * current CPU took the fault.
3436                  *
3437                  * Need not check the access of upper level table entries since
3438                  * they are always ACC_ALL.
3439                  */
3440                 if (is_access_allowed(error_code, spte)) {
3441                         fault_handled = true;
3442                         break;
3443                 }
3444
3445                 new_spte = spte;
3446
3447                 if (is_access_track_spte(spte))
3448                         new_spte = restore_acc_track_spte(new_spte);
3449
3450                 /*
3451                  * Currently, to simplify the code, write-protection can
3452                  * be removed in the fast path only if the SPTE was
3453                  * write-protected for dirty-logging or access tracking.
3454                  */
3455                 if ((error_code & PFERR_WRITE_MASK) &&
3456                     spte_can_locklessly_be_made_writable(spte))
3457                 {
3458                         new_spte |= PT_WRITABLE_MASK;
3459
3460                         /*
3461                          * Do not fix write-permission on the large spte.  Since
3462                          * we only dirty the first page into the dirty-bitmap in
3463                          * fast_pf_fix_direct_spte(), other pages are missed
3464                          * if its slot has dirty logging enabled.
3465                          *
3466                          * Instead, we let the slow page fault path create a
3467                          * normal spte to fix the access.
3468                          *
3469                          * See the comments in kvm_arch_commit_memory_region().
3470                          */
3471                         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3472                                 break;
3473                 }
3474
3475                 /* Verify that the fault can be handled in the fast path */
3476                 if (new_spte == spte ||
3477                     !is_access_allowed(error_code, new_spte))
3478                         break;
3479
3480                 /*
3481                  * Currently, fast page fault only works for direct mapping
3482                  * since the gfn is not stable for indirect shadow page. See
3483                  * Documentation/virt/kvm/locking.txt to get more detail.
3484                  */
3485                 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3486                                                         iterator.sptep, spte,
3487                                                         new_spte);
3488                 if (fault_handled)
3489                         break;
3490
3491                 if (++retry_count > 4) {
3492                         printk_once(KERN_WARNING
3493                                 "kvm: Fast #PF retrying more than 4 times.\n");
3494                         break;
3495                 }
3496
3497         } while (true);
3498
3499         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3500                               spte, fault_handled);
3501         walk_shadow_page_lockless_end(vcpu);
3502
3503         return fault_handled;
3504 }
3505
3506 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3507                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3508 static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
3509
3510 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3511                          gfn_t gfn, bool prefault)
3512 {
3513         int r;
3514         int level;
3515         bool force_pt_level = false;
3516         kvm_pfn_t pfn;
3517         unsigned long mmu_seq;
3518         bool map_writable, write = error_code & PFERR_WRITE_MASK;
3519
3520         level = mapping_level(vcpu, gfn, &force_pt_level);
3521         if (likely(!force_pt_level)) {
3522                 /*
3523                  * This path builds a PAE pagetable - so we can map
3524                  * 2mb pages at maximum. Therefore check if the level
3525                  * is larger than that.
3526                  */
3527                 if (level > PT_DIRECTORY_LEVEL)
3528                         level = PT_DIRECTORY_LEVEL;
3529
3530                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3531         }
3532
3533         if (fast_page_fault(vcpu, v, level, error_code))
3534                 return RET_PF_RETRY;
3535
3536         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3537         smp_rmb();
3538
3539         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3540                 return RET_PF_RETRY;
3541
3542         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3543                 return r;
3544
3545         r = RET_PF_RETRY;
3546         spin_lock(&vcpu->kvm->mmu_lock);
3547         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3548                 goto out_unlock;
3549         if (make_mmu_pages_available(vcpu) < 0)
3550                 goto out_unlock;
3551         if (likely(!force_pt_level))
3552                 transparent_hugepage_adjust(vcpu, gfn, &pfn, &level);
3553         r = __direct_map(vcpu, v, write, map_writable, level, pfn, prefault);
3554 out_unlock:
3555         spin_unlock(&vcpu->kvm->mmu_lock);
3556         kvm_release_pfn_clean(pfn);
3557         return r;
3558 }
3559
3560 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3561                                struct list_head *invalid_list)
3562 {
3563         struct kvm_mmu_page *sp;
3564
3565         if (!VALID_PAGE(*root_hpa))
3566                 return;
3567
3568         sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3569         --sp->root_count;
3570         if (!sp->root_count && sp->role.invalid)
3571                 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3572
3573         *root_hpa = INVALID_PAGE;
3574 }
3575
3576 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3577 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3578                         ulong roots_to_free)
3579 {
3580         int i;
3581         LIST_HEAD(invalid_list);
3582         bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3583
3584         BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3585
3586         /* Before acquiring the MMU lock, see if we need to do any real work. */
3587         if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3588                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3589                         if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3590                             VALID_PAGE(mmu->prev_roots[i].hpa))
3591                                 break;
3592
3593                 if (i == KVM_MMU_NUM_PREV_ROOTS)
3594                         return;
3595         }
3596
3597         spin_lock(&vcpu->kvm->mmu_lock);
3598
3599         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3600                 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3601                         mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3602                                            &invalid_list);
3603
3604         if (free_active_root) {
3605                 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3606                     (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3607                         mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3608                                            &invalid_list);
3609                 } else {
3610                         for (i = 0; i < 4; ++i)
3611                                 if (mmu->pae_root[i] != 0)
3612                                         mmu_free_root_page(vcpu->kvm,
3613                                                            &mmu->pae_root[i],
3614                                                            &invalid_list);
3615                         mmu->root_hpa = INVALID_PAGE;
3616                 }
3617                 mmu->root_cr3 = 0;
3618         }
3619
3620         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3621         spin_unlock(&vcpu->kvm->mmu_lock);
3622 }
3623 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3624
3625 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3626 {
3627         int ret = 0;
3628
3629         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3630                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3631                 ret = 1;
3632         }
3633
3634         return ret;
3635 }
3636
3637 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3638 {
3639         struct kvm_mmu_page *sp;
3640         unsigned i;
3641
3642         if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3643                 spin_lock(&vcpu->kvm->mmu_lock);
3644                 if(make_mmu_pages_available(vcpu) < 0) {
3645                         spin_unlock(&vcpu->kvm->mmu_lock);
3646                         return -ENOSPC;
3647                 }
3648                 sp = kvm_mmu_get_page(vcpu, 0, 0,
3649                                 vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
3650                 ++sp->root_count;
3651                 spin_unlock(&vcpu->kvm->mmu_lock);
3652                 vcpu->arch.mmu->root_hpa = __pa(sp->spt);
3653         } else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
3654                 for (i = 0; i < 4; ++i) {
3655                         hpa_t root = vcpu->arch.mmu->pae_root[i];
3656
3657                         MMU_WARN_ON(VALID_PAGE(root));
3658                         spin_lock(&vcpu->kvm->mmu_lock);
3659                         if (make_mmu_pages_available(vcpu) < 0) {
3660                                 spin_unlock(&vcpu->kvm->mmu_lock);
3661                                 return -ENOSPC;
3662                         }
3663                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3664                                         i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3665                         root = __pa(sp->spt);
3666                         ++sp->root_count;
3667                         spin_unlock(&vcpu->kvm->mmu_lock);
3668                         vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3669                 }
3670                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3671         } else
3672                 BUG();
3673         vcpu->arch.mmu->root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
3674
3675         return 0;
3676 }
3677
3678 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3679 {
3680         struct kvm_mmu_page *sp;
3681         u64 pdptr, pm_mask;
3682         gfn_t root_gfn, root_cr3;
3683         int i;
3684
3685         root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
3686         root_gfn = root_cr3 >> PAGE_SHIFT;
3687
3688         if (mmu_check_root(vcpu, root_gfn))
3689                 return 1;
3690
3691         /*
3692          * Do we shadow a long mode page table? If so we need to
3693          * write-protect the guests page table root.
3694          */
3695         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3696                 hpa_t root = vcpu->arch.mmu->root_hpa;
3697
3698                 MMU_WARN_ON(VALID_PAGE(root));
3699
3700                 spin_lock(&vcpu->kvm->mmu_lock);
3701                 if (make_mmu_pages_available(vcpu) < 0) {
3702                         spin_unlock(&vcpu->kvm->mmu_lock);
3703                         return -ENOSPC;
3704                 }
3705                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3706                                 vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
3707                 root = __pa(sp->spt);
3708                 ++sp->root_count;
3709                 spin_unlock(&vcpu->kvm->mmu_lock);
3710                 vcpu->arch.mmu->root_hpa = root;
3711                 goto set_root_cr3;
3712         }
3713
3714         /*
3715          * We shadow a 32 bit page table. This may be a legacy 2-level
3716          * or a PAE 3-level page table. In either case we need to be aware that
3717          * the shadow page table may be a PAE or a long mode page table.
3718          */
3719         pm_mask = PT_PRESENT_MASK;
3720         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3721                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3722
3723         for (i = 0; i < 4; ++i) {
3724                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3725
3726                 MMU_WARN_ON(VALID_PAGE(root));
3727                 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3728                         pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3729                         if (!(pdptr & PT_PRESENT_MASK)) {
3730                                 vcpu->arch.mmu->pae_root[i] = 0;
3731                                 continue;
3732                         }
3733                         root_gfn = pdptr >> PAGE_SHIFT;
3734                         if (mmu_check_root(vcpu, root_gfn))
3735                                 return 1;
3736                 }
3737                 spin_lock(&vcpu->kvm->mmu_lock);
3738                 if (make_mmu_pages_available(vcpu) < 0) {
3739                         spin_unlock(&vcpu->kvm->mmu_lock);
3740                         return -ENOSPC;
3741                 }
3742                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3743                                       0, ACC_ALL);
3744                 root = __pa(sp->spt);
3745                 ++sp->root_count;
3746                 spin_unlock(&vcpu->kvm->mmu_lock);
3747
3748                 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3749         }
3750         vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3751
3752         /*
3753          * If we shadow a 32 bit page table with a long mode page
3754          * table we enter this path.
3755          */
3756         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3757                 if (vcpu->arch.mmu->lm_root == NULL) {
3758                         /*
3759                          * The additional page necessary for this is only
3760                          * allocated on demand.
3761                          */
3762
3763                         u64 *lm_root;
3764
3765                         lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3766                         if (lm_root == NULL)
3767                                 return 1;
3768
3769                         lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3770
3771                         vcpu->arch.mmu->lm_root = lm_root;
3772                 }
3773
3774                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3775         }
3776
3777 set_root_cr3:
3778         vcpu->arch.mmu->root_cr3 = root_cr3;
3779
3780         return 0;
3781 }
3782
3783 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3784 {
3785         if (vcpu->arch.mmu->direct_map)
3786                 return mmu_alloc_direct_roots(vcpu);
3787         else
3788                 return mmu_alloc_shadow_roots(vcpu);
3789 }
3790
3791 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3792 {
3793         int i;
3794         struct kvm_mmu_page *sp;
3795
3796         if (vcpu->arch.mmu->direct_map)
3797                 return;
3798
3799         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3800                 return;
3801
3802         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3803
3804         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3805                 hpa_t root = vcpu->arch.mmu->root_hpa;
3806                 sp = page_header(root);
3807
3808                 /*
3809                  * Even if another CPU was marking the SP as unsync-ed
3810                  * simultaneously, any guest page table changes are not
3811                  * guaranteed to be visible anyway until this VCPU issues a TLB
3812                  * flush strictly after those changes are made. We only need to
3813                  * ensure that the other CPU sets these flags before any actual
3814                  * changes to the page tables are made. The comments in
3815                  * mmu_need_write_protect() describe what could go wrong if this
3816                  * requirement isn't satisfied.
3817                  */
3818                 if (!smp_load_acquire(&sp->unsync) &&
3819                     !smp_load_acquire(&sp->unsync_children))
3820                         return;
3821
3822                 spin_lock(&vcpu->kvm->mmu_lock);
3823                 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3824
3825                 mmu_sync_children(vcpu, sp);
3826
3827                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3828                 spin_unlock(&vcpu->kvm->mmu_lock);
3829                 return;
3830         }
3831
3832         spin_lock(&vcpu->kvm->mmu_lock);
3833         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3834
3835         for (i = 0; i < 4; ++i) {
3836                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3837
3838                 if (root && VALID_PAGE(root)) {
3839                         root &= PT64_BASE_ADDR_MASK;
3840                         sp = page_header(root);
3841                         mmu_sync_children(vcpu, sp);
3842                 }
3843         }
3844
3845         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3846         spin_unlock(&vcpu->kvm->mmu_lock);
3847 }
3848 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3849
3850 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3851                                   u32 access, struct x86_exception *exception)
3852 {
3853         if (exception)
3854                 exception->error_code = 0;
3855         return vaddr;
3856 }
3857
3858 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3859                                          u32 access,
3860                                          struct x86_exception *exception)
3861 {
3862         if (exception)
3863                 exception->error_code = 0;
3864         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3865 }
3866
3867 static bool
3868 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3869 {
3870         int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3871
3872         return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3873                 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3874 }
3875
3876 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3877 {
3878         return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3879 }
3880
3881 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3882 {
3883         return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3884 }
3885
3886 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3887 {
3888         /*
3889          * A nested guest cannot use the MMIO cache if it is using nested
3890          * page tables, because cr2 is a nGPA while the cache stores GPAs.
3891          */
3892         if (mmu_is_nested(vcpu))
3893                 return false;
3894
3895         if (direct)
3896                 return vcpu_match_mmio_gpa(vcpu, addr);
3897
3898         return vcpu_match_mmio_gva(vcpu, addr);
3899 }
3900
3901 /* return true if reserved bit is detected on spte. */
3902 static bool
3903 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3904 {
3905         struct kvm_shadow_walk_iterator iterator;
3906         u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3907         int root, leaf;
3908         bool reserved = false;
3909
3910         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3911                 goto exit;
3912
3913         walk_shadow_page_lockless_begin(vcpu);
3914
3915         for (shadow_walk_init(&iterator, vcpu, addr),
3916                  leaf = root = iterator.level;
3917              shadow_walk_okay(&iterator);
3918              __shadow_walk_next(&iterator, spte)) {
3919                 spte = mmu_spte_get_lockless(iterator.sptep);
3920
3921                 sptes[leaf - 1] = spte;
3922                 leaf--;
3923
3924                 if (!is_shadow_present_pte(spte))
3925                         break;
3926
3927                 reserved |= is_shadow_zero_bits_set(vcpu->arch.mmu, spte,
3928                                                     iterator.level);
3929         }
3930
3931         walk_shadow_page_lockless_end(vcpu);
3932
3933         if (reserved) {
3934                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3935                        __func__, addr);
3936                 while (root > leaf) {
3937                         pr_err("------ spte 0x%llx level %d.\n",
3938                                sptes[root - 1], root);
3939                         root--;
3940                 }
3941         }
3942 exit:
3943         *sptep = spte;
3944         return reserved;
3945 }
3946
3947 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3948 {
3949         u64 spte;
3950         bool reserved;
3951
3952         if (mmio_info_in_cache(vcpu, addr, direct))
3953                 return RET_PF_EMULATE;
3954
3955         reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3956         if (WARN_ON(reserved))
3957                 return -EINVAL;
3958
3959         if (is_mmio_spte(spte)) {
3960                 gfn_t gfn = get_mmio_spte_gfn(spte);
3961                 unsigned access = get_mmio_spte_access(spte);
3962
3963                 if (!check_mmio_spte(vcpu, spte))
3964                         return RET_PF_INVALID;
3965
3966                 if (direct)
3967                         addr = 0;
3968
3969                 trace_handle_mmio_page_fault(addr, gfn, access);
3970                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3971                 return RET_PF_EMULATE;
3972         }
3973
3974         /*
3975          * If the page table is zapped by other cpus, let CPU fault again on
3976          * the address.
3977          */
3978         return RET_PF_RETRY;
3979 }
3980
3981 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3982                                          u32 error_code, gfn_t gfn)
3983 {
3984         if (unlikely(error_code & PFERR_RSVD_MASK))
3985                 return false;
3986
3987         if (!(error_code & PFERR_PRESENT_MASK) ||
3988               !(error_code & PFERR_WRITE_MASK))
3989                 return false;
3990
3991         /*
3992          * guest is writing the page which is write tracked which can
3993          * not be fixed by page fault handler.
3994          */
3995         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3996                 return true;
3997
3998         return false;
3999 }
4000
4001 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4002 {
4003         struct kvm_shadow_walk_iterator iterator;
4004         u64 spte;
4005
4006         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
4007                 return;
4008
4009         walk_shadow_page_lockless_begin(vcpu);
4010         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4011                 clear_sp_write_flooding_count(iterator.sptep);
4012                 if (!is_shadow_present_pte(spte))
4013                         break;
4014         }
4015         walk_shadow_page_lockless_end(vcpu);
4016 }
4017
4018 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
4019                                 u32 error_code, bool prefault)
4020 {
4021         gfn_t gfn = gva >> PAGE_SHIFT;
4022         int r;
4023
4024         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
4025
4026         if (page_fault_handle_page_track(vcpu, error_code, gfn))
4027                 return RET_PF_EMULATE;
4028
4029         r = mmu_topup_memory_caches(vcpu);
4030         if (r)
4031                 return r;
4032
4033         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
4034
4035
4036         return nonpaging_map(vcpu, gva & PAGE_MASK,
4037                              error_code, gfn, prefault);
4038 }
4039
4040 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
4041 {
4042         struct kvm_arch_async_pf arch;
4043
4044         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4045         arch.gfn = gfn;
4046         arch.direct_map = vcpu->arch.mmu->direct_map;
4047         arch.cr3 = vcpu->arch.mmu->get_cr3(vcpu);
4048
4049         return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4050 }
4051
4052 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
4053                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
4054 {
4055         struct kvm_memory_slot *slot;
4056         bool async;
4057
4058         /*
4059          * Don't expose private memslots to L2.
4060          */
4061         if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
4062                 *pfn = KVM_PFN_NOSLOT;
4063                 return false;
4064         }
4065
4066         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
4067         async = false;
4068         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
4069         if (!async)
4070                 return false; /* *pfn has correct page already */
4071
4072         if (!prefault && kvm_can_do_async_pf(vcpu)) {
4073                 trace_kvm_try_async_get_page(gva, gfn);
4074                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4075                         trace_kvm_async_pf_doublefault(gva, gfn);
4076                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4077                         return true;
4078                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
4079                         return true;
4080         }
4081
4082         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
4083         return false;
4084 }
4085
4086 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4087                                 u64 fault_address, char *insn, int insn_len)
4088 {
4089         int r = 1;
4090
4091         vcpu->arch.l1tf_flush_l1d = true;
4092         switch (vcpu->arch.apf.host_apf_reason) {
4093         default:
4094                 trace_kvm_page_fault(fault_address, error_code);
4095
4096                 if (kvm_event_needs_reinjection(vcpu))
4097                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4098                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4099                                 insn_len);
4100                 break;
4101         case KVM_PV_REASON_PAGE_NOT_PRESENT:
4102                 vcpu->arch.apf.host_apf_reason = 0;
4103                 local_irq_disable();
4104                 kvm_async_pf_task_wait(fault_address, 0);
4105                 local_irq_enable();
4106                 break;
4107         case KVM_PV_REASON_PAGE_READY:
4108                 vcpu->arch.apf.host_apf_reason = 0;
4109                 local_irq_disable();
4110                 kvm_async_pf_task_wake(fault_address);
4111                 local_irq_enable();
4112                 break;
4113         }
4114         return r;
4115 }
4116 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4117
4118 static bool
4119 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
4120 {
4121         int page_num = KVM_PAGES_PER_HPAGE(level);
4122
4123         gfn &= ~(page_num - 1);
4124
4125         return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
4126 }
4127
4128 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
4129                           bool prefault)
4130 {
4131         kvm_pfn_t pfn;
4132         int r;
4133         int level;
4134         bool force_pt_level;
4135         gfn_t gfn = gpa >> PAGE_SHIFT;
4136         unsigned long mmu_seq;
4137         int write = error_code & PFERR_WRITE_MASK;
4138         bool map_writable;
4139
4140         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
4141
4142         if (page_fault_handle_page_track(vcpu, error_code, gfn))
4143                 return RET_PF_EMULATE;
4144
4145         r = mmu_topup_memory_caches(vcpu);
4146         if (r)
4147                 return r;
4148
4149         force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
4150                                                            PT_DIRECTORY_LEVEL);
4151         level = mapping_level(vcpu, gfn, &force_pt_level);
4152         if (likely(!force_pt_level)) {
4153                 if (level > PT_DIRECTORY_LEVEL &&
4154                     !check_hugepage_cache_consistency(vcpu, gfn, level))
4155                         level = PT_DIRECTORY_LEVEL;
4156                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
4157         }
4158
4159         if (fast_page_fault(vcpu, gpa, level, error_code))
4160                 return RET_PF_RETRY;
4161
4162         mmu_seq = vcpu->kvm->mmu_notifier_seq;
4163         smp_rmb();
4164
4165         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4166                 return RET_PF_RETRY;
4167
4168         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
4169                 return r;
4170
4171         r = RET_PF_RETRY;
4172         spin_lock(&vcpu->kvm->mmu_lock);
4173         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4174                 goto out_unlock;
4175         if (make_mmu_pages_available(vcpu) < 0)
4176                 goto out_unlock;
4177         if (likely(!force_pt_level))
4178                 transparent_hugepage_adjust(vcpu, gfn, &pfn, &level);
4179         r = __direct_map(vcpu, gpa, write, map_writable, level, pfn, prefault);
4180 out_unlock:
4181         spin_unlock(&vcpu->kvm->mmu_lock);
4182         kvm_release_pfn_clean(pfn);
4183         return r;
4184 }
4185
4186 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4187                                    struct kvm_mmu *context)
4188 {
4189         context->page_fault = nonpaging_page_fault;
4190         context->gva_to_gpa = nonpaging_gva_to_gpa;
4191         context->sync_page = nonpaging_sync_page;
4192         context->invlpg = nonpaging_invlpg;
4193         context->update_pte = nonpaging_update_pte;
4194         context->root_level = 0;
4195         context->shadow_root_level = PT32E_ROOT_LEVEL;
4196         context->direct_map = true;
4197         context->nx = false;
4198 }
4199
4200 /*
4201  * Find out if a previously cached root matching the new CR3/role is available.
4202  * The current root is also inserted into the cache.
4203  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4204  * returned.
4205  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4206  * false is returned. This root should now be freed by the caller.
4207  */
4208 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4209                                   union kvm_mmu_page_role new_role)
4210 {
4211         uint i;
4212         struct kvm_mmu_root_info root;
4213         struct kvm_mmu *mmu = vcpu->arch.mmu;
4214
4215         root.cr3 = mmu->root_cr3;
4216         root.hpa = mmu->root_hpa;
4217
4218         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4219                 swap(root, mmu->prev_roots[i]);
4220
4221                 if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) &&
4222                     page_header(root.hpa) != NULL &&
4223                     new_role.word == page_header(root.hpa)->role.word)
4224                         break;
4225         }
4226
4227         mmu->root_hpa = root.hpa;
4228         mmu->root_cr3 = root.cr3;
4229
4230         return i < KVM_MMU_NUM_PREV_ROOTS;
4231 }
4232
4233 static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4234                             union kvm_mmu_page_role new_role,
4235                             bool skip_tlb_flush)
4236 {
4237         struct kvm_mmu *mmu = vcpu->arch.mmu;
4238
4239         /*
4240          * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4241          * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4242          * later if necessary.
4243          */
4244         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4245             mmu->root_level >= PT64_ROOT_4LEVEL) {
4246                 if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
4247                         return false;
4248
4249                 if (cached_root_available(vcpu, new_cr3, new_role)) {
4250                         /*
4251                          * It is possible that the cached previous root page is
4252                          * obsolete because of a change in the MMU generation
4253                          * number. However, changing the generation number is
4254                          * accompanied by KVM_REQ_MMU_RELOAD, which will free
4255                          * the root set here and allocate a new one.
4256                          */
4257                         kvm_make_request(KVM_REQ_LOAD_CR3, vcpu);
4258                         if (!skip_tlb_flush) {
4259                                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4260                                 kvm_x86_ops->tlb_flush(vcpu, true);
4261                         }
4262
4263                         /*
4264                          * The last MMIO access's GVA and GPA are cached in the
4265                          * VCPU. When switching to a new CR3, that GVA->GPA
4266                          * mapping may no longer be valid. So clear any cached
4267                          * MMIO info even when we don't need to sync the shadow
4268                          * page tables.
4269                          */
4270                         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4271
4272                         __clear_sp_write_flooding_count(
4273                                 page_header(mmu->root_hpa));
4274
4275                         return true;
4276                 }
4277         }
4278
4279         return false;
4280 }
4281
4282 static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4283                               union kvm_mmu_page_role new_role,
4284                               bool skip_tlb_flush)
4285 {
4286         if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
4287                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu,
4288                                    KVM_MMU_ROOT_CURRENT);
4289 }
4290
4291 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
4292 {
4293         __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
4294                           skip_tlb_flush);
4295 }
4296 EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
4297
4298 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4299 {
4300         return kvm_read_cr3(vcpu);
4301 }
4302
4303 static void inject_page_fault(struct kvm_vcpu *vcpu,
4304                               struct x86_exception *fault)
4305 {
4306         vcpu->arch.mmu->inject_page_fault(vcpu, fault);
4307 }
4308
4309 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4310                            unsigned access, int *nr_present)
4311 {
4312         if (unlikely(is_mmio_spte(*sptep))) {
4313                 if (gfn != get_mmio_spte_gfn(*sptep)) {
4314                         mmu_spte_clear_no_track(sptep);
4315                         return true;
4316                 }
4317
4318                 (*nr_present)++;
4319                 mark_mmio_spte(vcpu, sptep, gfn, access);
4320                 return true;
4321         }
4322
4323         return false;
4324 }
4325
4326 static inline bool is_last_gpte(struct kvm_mmu *mmu,
4327                                 unsigned level, unsigned gpte)
4328 {
4329         /*
4330          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4331          * If it is clear, there are no large pages at this level, so clear
4332          * PT_PAGE_SIZE_MASK in gpte if that is the case.
4333          */
4334         gpte &= level - mmu->last_nonleaf_level;
4335
4336         /*
4337          * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
4338          * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4339          * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4340          */
4341         gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4342
4343         return gpte & PT_PAGE_SIZE_MASK;
4344 }
4345
4346 #define PTTYPE_EPT 18 /* arbitrary */
4347 #define PTTYPE PTTYPE_EPT
4348 #include "paging_tmpl.h"
4349 #undef PTTYPE
4350
4351 #define PTTYPE 64
4352 #include "paging_tmpl.h"
4353 #undef PTTYPE
4354
4355 #define PTTYPE 32
4356 #include "paging_tmpl.h"
4357 #undef PTTYPE
4358
4359 static void
4360 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4361                         struct rsvd_bits_validate *rsvd_check,
4362                         int maxphyaddr, int level, bool nx, bool gbpages,
4363                         bool pse, bool amd)
4364 {
4365         u64 exb_bit_rsvd = 0;
4366         u64 gbpages_bit_rsvd = 0;
4367         u64 nonleaf_bit8_rsvd = 0;
4368
4369         rsvd_check->bad_mt_xwr = 0;
4370
4371         if (!nx)
4372                 exb_bit_rsvd = rsvd_bits(63, 63);
4373         if (!gbpages)
4374                 gbpages_bit_rsvd = rsvd_bits(7, 7);
4375
4376         /*
4377          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4378          * leaf entries) on AMD CPUs only.
4379          */
4380         if (amd)
4381                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4382
4383         switch (level) {
4384         case PT32_ROOT_LEVEL:
4385                 /* no rsvd bits for 2 level 4K page table entries */
4386                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4387                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4388                 rsvd_check->rsvd_bits_mask[1][0] =
4389                         rsvd_check->rsvd_bits_mask[0][0];
4390
4391                 if (!pse) {
4392                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4393                         break;
4394                 }
4395
4396                 if (is_cpuid_PSE36())
4397                         /* 36bits PSE 4MB page */
4398                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4399                 else
4400                         /* 32 bits PSE 4MB page */
4401                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4402                 break;
4403         case PT32E_ROOT_LEVEL:
4404                 rsvd_check->rsvd_bits_mask[0][2] =
4405                         rsvd_bits(maxphyaddr, 63) |
4406                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
4407                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4408                         rsvd_bits(maxphyaddr, 62);      /* PDE */
4409                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4410                         rsvd_bits(maxphyaddr, 62);      /* PTE */
4411                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4412                         rsvd_bits(maxphyaddr, 62) |
4413                         rsvd_bits(13, 20);              /* large page */
4414                 rsvd_check->rsvd_bits_mask[1][0] =
4415                         rsvd_check->rsvd_bits_mask[0][0];
4416                 break;
4417         case PT64_ROOT_5LEVEL:
4418                 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4419                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4420                         rsvd_bits(maxphyaddr, 51);
4421                 rsvd_check->rsvd_bits_mask[1][4] =
4422                         rsvd_check->rsvd_bits_mask[0][4];
4423                 /* fall through */
4424         case PT64_ROOT_4LEVEL:
4425                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4426                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4427                         rsvd_bits(maxphyaddr, 51);
4428                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4429                         nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4430                         rsvd_bits(maxphyaddr, 51);
4431                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4432                         rsvd_bits(maxphyaddr, 51);
4433                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4434                         rsvd_bits(maxphyaddr, 51);
4435                 rsvd_check->rsvd_bits_mask[1][3] =
4436                         rsvd_check->rsvd_bits_mask[0][3];
4437                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4438                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4439                         rsvd_bits(13, 29);
4440                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4441                         rsvd_bits(maxphyaddr, 51) |
4442                         rsvd_bits(13, 20);              /* large page */
4443                 rsvd_check->rsvd_bits_mask[1][0] =
4444                         rsvd_check->rsvd_bits_mask[0][0];
4445                 break;
4446         }
4447 }
4448
4449 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4450                                   struct kvm_mmu *context)
4451 {
4452         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4453                                 cpuid_maxphyaddr(vcpu), context->root_level,
4454                                 context->nx,
4455                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4456                                 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4457 }
4458
4459 static void
4460 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4461                             int maxphyaddr, bool execonly)
4462 {
4463         u64 bad_mt_xwr;
4464
4465         rsvd_check->rsvd_bits_mask[0][4] =
4466                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4467         rsvd_check->rsvd_bits_mask[0][3] =
4468                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4469         rsvd_check->rsvd_bits_mask[0][2] =
4470                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4471         rsvd_check->rsvd_bits_mask[0][1] =
4472                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4473         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4474
4475         /* large page */
4476         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4477         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4478         rsvd_check->rsvd_bits_mask[1][2] =
4479                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4480         rsvd_check->rsvd_bits_mask[1][1] =
4481                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4482         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4483
4484         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4485         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4486         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4487         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4488         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4489         if (!execonly) {
4490                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4491                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4492         }
4493         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4494 }
4495
4496 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4497                 struct kvm_mmu *context, bool execonly)
4498 {
4499         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4500                                     cpuid_maxphyaddr(vcpu), execonly);
4501 }
4502
4503 /*
4504  * the page table on host is the shadow page table for the page
4505  * table in guest or amd nested guest, its mmu features completely
4506  * follow the features in guest.
4507  */
4508 void
4509 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4510 {
4511         bool uses_nx = context->nx ||
4512                 context->mmu_role.base.smep_andnot_wp;
4513         struct rsvd_bits_validate *shadow_zero_check;
4514         int i;
4515
4516         /*
4517          * Passing "true" to the last argument is okay; it adds a check
4518          * on bit 8 of the SPTEs which KVM doesn't use anyway.
4519          */
4520         shadow_zero_check = &context->shadow_zero_check;
4521         __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4522                                 shadow_phys_bits,
4523                                 context->shadow_root_level, uses_nx,
4524                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4525                                 is_pse(vcpu), true);
4526
4527         if (!shadow_me_mask)
4528                 return;
4529
4530         for (i = context->shadow_root_level; --i >= 0;) {
4531                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4532                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4533         }
4534
4535 }
4536 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4537
4538 static inline bool boot_cpu_is_amd(void)
4539 {
4540         WARN_ON_ONCE(!tdp_enabled);
4541         return shadow_x_mask == 0;
4542 }
4543
4544 /*
4545  * the direct page table on host, use as much mmu features as
4546  * possible, however, kvm currently does not do execution-protection.
4547  */
4548 static void
4549 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4550                                 struct kvm_mmu *context)
4551 {
4552         struct rsvd_bits_validate *shadow_zero_check;
4553         int i;
4554
4555         shadow_zero_check = &context->shadow_zero_check;
4556
4557         if (boot_cpu_is_amd())
4558                 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4559                                         shadow_phys_bits,
4560                                         context->shadow_root_level, false,
4561                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4562                                         true, true);
4563         else
4564                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4565                                             shadow_phys_bits,
4566                                             false);
4567
4568         if (!shadow_me_mask)
4569                 return;
4570
4571         for (i = context->shadow_root_level; --i >= 0;) {
4572                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4573                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4574         }
4575 }
4576
4577 /*
4578  * as the comments in reset_shadow_zero_bits_mask() except it
4579  * is the shadow page table for intel nested guest.
4580  */
4581 static void
4582 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4583                                 struct kvm_mmu *context, bool execonly)
4584 {
4585         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4586                                     shadow_phys_bits, execonly);
4587 }
4588
4589 #define BYTE_MASK(access) \
4590         ((1 & (access) ? 2 : 0) | \
4591          (2 & (access) ? 4 : 0) | \
4592          (3 & (access) ? 8 : 0) | \
4593          (4 & (access) ? 16 : 0) | \
4594          (5 & (access) ? 32 : 0) | \
4595          (6 & (access) ? 64 : 0) | \
4596          (7 & (access) ? 128 : 0))
4597
4598
4599 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4600                                       struct kvm_mmu *mmu, bool ept)
4601 {
4602         unsigned byte;
4603
4604         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4605         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4606         const u8 u = BYTE_MASK(ACC_USER_MASK);
4607
4608         bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4609         bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4610         bool cr0_wp = is_write_protection(vcpu);
4611
4612         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4613                 unsigned pfec = byte << 1;
4614
4615                 /*
4616                  * Each "*f" variable has a 1 bit for each UWX value
4617                  * that causes a fault with the given PFEC.
4618                  */
4619
4620                 /* Faults from writes to non-writable pages */
4621                 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4622                 /* Faults from user mode accesses to supervisor pages */
4623                 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4624                 /* Faults from fetches of non-executable pages*/
4625                 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4626                 /* Faults from kernel mode fetches of user pages */
4627                 u8 smepf = 0;
4628                 /* Faults from kernel mode accesses of user pages */
4629                 u8 smapf = 0;
4630
4631                 if (!ept) {
4632                         /* Faults from kernel mode accesses to user pages */
4633                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4634
4635                         /* Not really needed: !nx will cause pte.nx to fault */
4636                         if (!mmu->nx)
4637                                 ff = 0;
4638
4639                         /* Allow supervisor writes if !cr0.wp */
4640                         if (!cr0_wp)
4641                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4642
4643                         /* Disallow supervisor fetches of user code if cr4.smep */
4644                         if (cr4_smep)
4645                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4646
4647                         /*
4648                          * SMAP:kernel-mode data accesses from user-mode
4649                          * mappings should fault. A fault is considered
4650                          * as a SMAP violation if all of the following
4651                          * conditions are true:
4652                          *   - X86_CR4_SMAP is set in CR4
4653                          *   - A user page is accessed
4654                          *   - The access is not a fetch
4655                          *   - Page fault in kernel mode
4656                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4657                          *
4658                          * Here, we cover the first three conditions.
4659                          * The fourth is computed dynamically in permission_fault();
4660                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4661                          * *not* subject to SMAP restrictions.
4662                          */
4663                         if (cr4_smap)
4664                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4665                 }
4666
4667                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4668         }
4669 }
4670
4671 /*
4672 * PKU is an additional mechanism by which the paging controls access to
4673 * user-mode addresses based on the value in the PKRU register.  Protection
4674 * key violations are reported through a bit in the page fault error code.
4675 * Unlike other bits of the error code, the PK bit is not known at the
4676 * call site of e.g. gva_to_gpa; it must be computed directly in
4677 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4678 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4679 *
4680 * In particular the following conditions come from the error code, the
4681 * page tables and the machine state:
4682 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4683 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4684 * - PK is always zero if U=0 in the page tables
4685 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4686 *
4687 * The PKRU bitmask caches the result of these four conditions.  The error
4688 * code (minus the P bit) and the page table's U bit form an index into the
4689 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4690 * with the two bits of the PKRU register corresponding to the protection key.
4691 * For the first three conditions above the bits will be 00, thus masking
4692 * away both AD and WD.  For all reads or if the last condition holds, WD
4693 * only will be masked away.
4694 */
4695 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4696                                 bool ept)
4697 {
4698         unsigned bit;
4699         bool wp;
4700
4701         if (ept) {
4702                 mmu->pkru_mask = 0;
4703                 return;
4704         }
4705
4706         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4707         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4708                 mmu->pkru_mask = 0;
4709                 return;
4710         }
4711
4712         wp = is_write_protection(vcpu);
4713
4714         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4715                 unsigned pfec, pkey_bits;
4716                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4717
4718                 pfec = bit << 1;
4719                 ff = pfec & PFERR_FETCH_MASK;
4720                 uf = pfec & PFERR_USER_MASK;
4721                 wf = pfec & PFERR_WRITE_MASK;
4722
4723                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4724                 pte_user = pfec & PFERR_RSVD_MASK;
4725
4726                 /*
4727                  * Only need to check the access which is not an
4728                  * instruction fetch and is to a user page.
4729                  */
4730                 check_pkey = (!ff && pte_user);
4731                 /*
4732                  * write access is controlled by PKRU if it is a
4733                  * user access or CR0.WP = 1.
4734                  */
4735                 check_write = check_pkey && wf && (uf || wp);
4736
4737                 /* PKRU.AD stops both read and write access. */
4738                 pkey_bits = !!check_pkey;
4739                 /* PKRU.WD stops write access. */
4740                 pkey_bits |= (!!check_write) << 1;
4741
4742                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4743         }
4744 }
4745
4746 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4747 {
4748         unsigned root_level = mmu->root_level;
4749
4750         mmu->last_nonleaf_level = root_level;
4751         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4752                 mmu->last_nonleaf_level++;
4753 }
4754
4755 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4756                                          struct kvm_mmu *context,
4757                                          int level)
4758 {
4759         context->nx = is_nx(vcpu);
4760         context->root_level = level;
4761
4762         reset_rsvds_bits_mask(vcpu, context);
4763         update_permission_bitmask(vcpu, context, false);
4764         update_pkru_bitmask(vcpu, context, false);
4765         update_last_nonleaf_level(vcpu, context);
4766
4767         MMU_WARN_ON(!is_pae(vcpu));
4768         context->page_fault = paging64_page_fault;
4769         context->gva_to_gpa = paging64_gva_to_gpa;
4770         context->sync_page = paging64_sync_page;
4771         context->invlpg = paging64_invlpg;
4772         context->update_pte = paging64_update_pte;
4773         context->shadow_root_level = level;
4774         context->direct_map = false;
4775 }
4776
4777 static void paging64_init_context(struct kvm_vcpu *vcpu,
4778                                   struct kvm_mmu *context)
4779 {
4780         int root_level = is_la57_mode(vcpu) ?
4781                          PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4782
4783         paging64_init_context_common(vcpu, context, root_level);
4784 }
4785
4786 static void paging32_init_context(struct kvm_vcpu *vcpu,
4787                                   struct kvm_mmu *context)
4788 {
4789         context->nx = false;
4790         context->root_level = PT32_ROOT_LEVEL;
4791
4792         reset_rsvds_bits_mask(vcpu, context);
4793         update_permission_bitmask(vcpu, context, false);
4794         update_pkru_bitmask(vcpu, context, false);
4795         update_last_nonleaf_level(vcpu, context);
4796
4797         context->page_fault = paging32_page_fault;
4798         context->gva_to_gpa = paging32_gva_to_gpa;
4799         context->sync_page = paging32_sync_page;
4800         context->invlpg = paging32_invlpg;
4801         context->update_pte = paging32_update_pte;
4802         context->shadow_root_level = PT32E_ROOT_LEVEL;
4803         context->direct_map = false;
4804 }
4805
4806 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4807                                    struct kvm_mmu *context)
4808 {
4809         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4810 }
4811
4812 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4813 {
4814         union kvm_mmu_extended_role ext = {0};
4815
4816         ext.cr0_pg = !!is_paging(vcpu);
4817         ext.cr4_pae = !!is_pae(vcpu);
4818         ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4819         ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4820         ext.cr4_pse = !!is_pse(vcpu);
4821         ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4822         ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
4823         ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4824
4825         ext.valid = 1;
4826
4827         return ext;
4828 }
4829
4830 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4831                                                    bool base_only)
4832 {
4833         union kvm_mmu_role role = {0};
4834
4835         role.base.access = ACC_ALL;
4836         role.base.nxe = !!is_nx(vcpu);
4837         role.base.cr0_wp = is_write_protection(vcpu);
4838         role.base.smm = is_smm(vcpu);
4839         role.base.guest_mode = is_guest_mode(vcpu);
4840
4841         if (base_only)
4842                 return role;
4843
4844         role.ext = kvm_calc_mmu_role_ext(vcpu);
4845
4846         return role;
4847 }
4848
4849 static union kvm_mmu_role
4850 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4851 {
4852         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4853
4854         role.base.ad_disabled = (shadow_accessed_mask == 0);
4855         role.base.level = kvm_x86_ops->get_tdp_level(vcpu);
4856         role.base.direct = true;
4857         role.base.gpte_is_8_bytes = true;
4858
4859         return role;
4860 }
4861
4862 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4863 {
4864         struct kvm_mmu *context = vcpu->arch.mmu;
4865         union kvm_mmu_role new_role =
4866                 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4867
4868         new_role.base.word &= mmu_base_role_mask.word;
4869         if (new_role.as_u64 == context->mmu_role.as_u64)
4870                 return;
4871
4872         context->mmu_role.as_u64 = new_role.as_u64;
4873         context->page_fault = tdp_page_fault;
4874         context->sync_page = nonpaging_sync_page;
4875         context->invlpg = nonpaging_invlpg;
4876         context->update_pte = nonpaging_update_pte;
4877         context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
4878         context->direct_map = true;
4879         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4880         context->get_cr3 = get_cr3;
4881         context->get_pdptr = kvm_pdptr_read;
4882         context->inject_page_fault = kvm_inject_page_fault;
4883
4884         if (!is_paging(vcpu)) {
4885                 context->nx = false;
4886                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4887                 context->root_level = 0;
4888         } else if (is_long_mode(vcpu)) {
4889                 context->nx = is_nx(vcpu);
4890                 context->root_level = is_la57_mode(vcpu) ?
4891                                 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4892                 reset_rsvds_bits_mask(vcpu, context);
4893                 context->gva_to_gpa = paging64_gva_to_gpa;
4894         } else if (is_pae(vcpu)) {
4895                 context->nx = is_nx(vcpu);
4896                 context->root_level = PT32E_ROOT_LEVEL;
4897                 reset_rsvds_bits_mask(vcpu, context);
4898                 context->gva_to_gpa = paging64_gva_to_gpa;
4899         } else {
4900                 context->nx = false;
4901                 context->root_level = PT32_ROOT_LEVEL;
4902                 reset_rsvds_bits_mask(vcpu, context);
4903                 context->gva_to_gpa = paging32_gva_to_gpa;
4904         }
4905
4906         update_permission_bitmask(vcpu, context, false);
4907         update_pkru_bitmask(vcpu, context, false);
4908         update_last_nonleaf_level(vcpu, context);
4909         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4910 }
4911
4912 static union kvm_mmu_role
4913 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4914 {
4915         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4916
4917         role.base.smep_andnot_wp = role.ext.cr4_smep &&
4918                 !is_write_protection(vcpu);
4919         role.base.smap_andnot_wp = role.ext.cr4_smap &&
4920                 !is_write_protection(vcpu);
4921         role.base.direct = !is_paging(vcpu);
4922         role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4923
4924         if (!is_long_mode(vcpu))
4925                 role.base.level = PT32E_ROOT_LEVEL;
4926         else if (is_la57_mode(vcpu))
4927                 role.base.level = PT64_ROOT_5LEVEL;
4928         else
4929                 role.base.level = PT64_ROOT_4LEVEL;
4930
4931         return role;
4932 }
4933
4934 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4935 {
4936         struct kvm_mmu *context = vcpu->arch.mmu;
4937         union kvm_mmu_role new_role =
4938                 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4939
4940         new_role.base.word &= mmu_base_role_mask.word;
4941         if (new_role.as_u64 == context->mmu_role.as_u64)
4942                 return;
4943
4944         if (!is_paging(vcpu))
4945                 nonpaging_init_context(vcpu, context);
4946         else if (is_long_mode(vcpu))
4947                 paging64_init_context(vcpu, context);
4948         else if (is_pae(vcpu))
4949                 paging32E_init_context(vcpu, context);
4950         else
4951                 paging32_init_context(vcpu, context);
4952
4953         context->mmu_role.as_u64 = new_role.as_u64;
4954         reset_shadow_zero_bits_mask(vcpu, context);
4955 }
4956 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4957
4958 static union kvm_mmu_role
4959 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4960                                    bool execonly)
4961 {
4962         union kvm_mmu_role role = {0};
4963
4964         /* SMM flag is inherited from root_mmu */
4965         role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4966
4967         role.base.level = PT64_ROOT_4LEVEL;
4968         role.base.gpte_is_8_bytes = true;
4969         role.base.direct = false;
4970         role.base.ad_disabled = !accessed_dirty;
4971         role.base.guest_mode = true;
4972         role.base.access = ACC_ALL;
4973
4974         /*
4975          * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4976          * SMAP variation to denote shadow EPT entries.
4977          */
4978         role.base.cr0_wp = true;
4979         role.base.smap_andnot_wp = true;
4980
4981         role.ext = kvm_calc_mmu_role_ext(vcpu);
4982         role.ext.execonly = execonly;
4983
4984         return role;
4985 }
4986
4987 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4988                              bool accessed_dirty, gpa_t new_eptp)
4989 {
4990         struct kvm_mmu *context = vcpu->arch.mmu;
4991         union kvm_mmu_role new_role =
4992                 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4993                                                    execonly);
4994
4995         __kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false);
4996
4997         new_role.base.word &= mmu_base_role_mask.word;
4998         if (new_role.as_u64 == context->mmu_role.as_u64)
4999                 return;
5000
5001         context->shadow_root_level = PT64_ROOT_4LEVEL;
5002
5003         context->nx = true;
5004         context->ept_ad = accessed_dirty;
5005         context->page_fault = ept_page_fault;
5006         context->gva_to_gpa = ept_gva_to_gpa;
5007         context->sync_page = ept_sync_page;
5008         context->invlpg = ept_invlpg;
5009         context->update_pte = ept_update_pte;
5010         context->root_level = PT64_ROOT_4LEVEL;
5011         context->direct_map = false;
5012         context->mmu_role.as_u64 = new_role.as_u64;
5013
5014         update_permission_bitmask(vcpu, context, true);
5015         update_pkru_bitmask(vcpu, context, true);
5016         update_last_nonleaf_level(vcpu, context);
5017         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
5018         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
5019 }
5020 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5021
5022 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
5023 {
5024         struct kvm_mmu *context = vcpu->arch.mmu;
5025
5026         kvm_init_shadow_mmu(vcpu);
5027         context->set_cr3           = kvm_x86_ops->set_cr3;
5028         context->get_cr3           = get_cr3;
5029         context->get_pdptr         = kvm_pdptr_read;
5030         context->inject_page_fault = kvm_inject_page_fault;
5031 }
5032
5033 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
5034 {
5035         union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
5036         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5037
5038         new_role.base.word &= mmu_base_role_mask.word;
5039         if (new_role.as_u64 == g_context->mmu_role.as_u64)
5040                 return;
5041
5042         g_context->mmu_role.as_u64 = new_role.as_u64;
5043         g_context->get_cr3           = get_cr3;
5044         g_context->get_pdptr         = kvm_pdptr_read;
5045         g_context->inject_page_fault = kvm_inject_page_fault;
5046
5047         /*
5048          * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5049          * L1's nested page tables (e.g. EPT12). The nested translation
5050          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5051          * L2's page tables as the first level of translation and L1's
5052          * nested page tables as the second level of translation. Basically
5053          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5054          */
5055         if (!is_paging(vcpu)) {
5056                 g_context->nx = false;
5057                 g_context->root_level = 0;
5058                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5059         } else if (is_long_mode(vcpu)) {
5060                 g_context->nx = is_nx(vcpu);
5061                 g_context->root_level = is_la57_mode(vcpu) ?
5062                                         PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5063                 reset_rsvds_bits_mask(vcpu, g_context);
5064                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5065         } else if (is_pae(vcpu)) {
5066                 g_context->nx = is_nx(vcpu);
5067                 g_context->root_level = PT32E_ROOT_LEVEL;
5068                 reset_rsvds_bits_mask(vcpu, g_context);
5069                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5070         } else {
5071                 g_context->nx = false;
5072                 g_context->root_level = PT32_ROOT_LEVEL;
5073                 reset_rsvds_bits_mask(vcpu, g_context);
5074                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5075         }
5076
5077         update_permission_bitmask(vcpu, g_context, false);
5078         update_pkru_bitmask(vcpu, g_context, false);
5079         update_last_nonleaf_level(vcpu, g_context);
5080 }
5081
5082 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
5083 {
5084         if (reset_roots) {
5085                 uint i;
5086
5087                 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
5088
5089                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5090                         vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5091         }
5092
5093         if (mmu_is_nested(vcpu))
5094                 init_kvm_nested_mmu(vcpu);
5095         else if (tdp_enabled)
5096                 init_kvm_tdp_mmu(vcpu);
5097         else
5098                 init_kvm_softmmu(vcpu);
5099 }
5100 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5101
5102 static union kvm_mmu_page_role
5103 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5104 {
5105         union kvm_mmu_role role;
5106
5107         if (tdp_enabled)
5108                 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
5109         else
5110                 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5111
5112         return role.base;
5113 }
5114
5115 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5116 {
5117         kvm_mmu_unload(vcpu);
5118         kvm_init_mmu(vcpu, true);
5119 }
5120 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5121
5122 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5123 {
5124         int r;
5125
5126         r = mmu_topup_memory_caches(vcpu);
5127         if (r)
5128                 goto out;
5129         r = mmu_alloc_roots(vcpu);
5130         kvm_mmu_sync_roots(vcpu);
5131         if (r)
5132                 goto out;
5133         kvm_mmu_load_cr3(vcpu);
5134         kvm_x86_ops->tlb_flush(vcpu, true);
5135 out:
5136         return r;
5137 }
5138 EXPORT_SYMBOL_GPL(kvm_mmu_load);
5139
5140 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5141 {
5142         kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5143         WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5144         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5145         WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
5146 }
5147 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
5148
5149 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
5150                                   struct kvm_mmu_page *sp, u64 *spte,
5151                                   const void *new)
5152 {
5153         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
5154                 ++vcpu->kvm->stat.mmu_pde_zapped;
5155                 return;
5156         }
5157
5158         ++vcpu->kvm->stat.mmu_pte_updated;
5159         vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
5160 }
5161
5162 static bool need_remote_flush(u64 old, u64 new)
5163 {
5164         if (!is_shadow_present_pte(old))
5165                 return false;
5166         if (!is_shadow_present_pte(new))
5167                 return true;
5168         if ((old ^ new) & PT64_BASE_ADDR_MASK)
5169                 return true;
5170         old ^= shadow_nx_mask;
5171         new ^= shadow_nx_mask;
5172         return (old & ~new & PT64_PERM_MASK) != 0;
5173 }
5174
5175 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5176                                     int *bytes)
5177 {
5178         u64 gentry = 0;
5179         int r;
5180
5181         /*
5182          * Assume that the pte write on a page table of the same type
5183          * as the current vcpu paging mode since we update the sptes only
5184          * when they have the same mode.
5185          */
5186         if (is_pae(vcpu) && *bytes == 4) {
5187                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5188                 *gpa &= ~(gpa_t)7;
5189                 *bytes = 8;
5190         }
5191
5192         if (*bytes == 4 || *bytes == 8) {
5193                 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5194                 if (r)
5195                         gentry = 0;
5196         }
5197
5198         return gentry;
5199 }
5200
5201 /*
5202  * If we're seeing too many writes to a page, it may no longer be a page table,
5203  * or we may be forking, in which case it is better to unmap the page.
5204  */
5205 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5206 {
5207         /*
5208          * Skip write-flooding detected for the sp whose level is 1, because
5209          * it can become unsync, then the guest page is not write-protected.
5210          */
5211         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
5212                 return false;
5213
5214         atomic_inc(&sp->write_flooding_count);
5215         return atomic_read(&sp->write_flooding_count) >= 3;
5216 }
5217
5218 /*
5219  * Misaligned accesses are too much trouble to fix up; also, they usually
5220  * indicate a page is not used as a page table.
5221  */
5222 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5223                                     int bytes)
5224 {
5225         unsigned offset, pte_size, misaligned;
5226
5227         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5228                  gpa, bytes, sp->role.word);
5229
5230         offset = offset_in_page(gpa);
5231         pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5232
5233         /*
5234          * Sometimes, the OS only writes the last one bytes to update status
5235          * bits, for example, in linux, andb instruction is used in clear_bit().
5236          */
5237         if (!(offset & (pte_size - 1)) && bytes == 1)
5238                 return false;
5239
5240         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5241         misaligned |= bytes < 4;
5242
5243         return misaligned;
5244 }
5245
5246 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5247 {
5248         unsigned page_offset, quadrant;
5249         u64 *spte;
5250         int level;
5251
5252         page_offset = offset_in_page(gpa);
5253         level = sp->role.level;
5254         *nspte = 1;
5255         if (!sp->role.gpte_is_8_bytes) {
5256                 page_offset <<= 1;      /* 32->64 */
5257                 /*
5258                  * A 32-bit pde maps 4MB while the shadow pdes map
5259                  * only 2MB.  So we need to double the offset again
5260                  * and zap two pdes instead of one.
5261                  */
5262                 if (level == PT32_ROOT_LEVEL) {
5263                         page_offset &= ~7; /* kill rounding error */
5264                         page_offset <<= 1;
5265                         *nspte = 2;
5266                 }
5267                 quadrant = page_offset >> PAGE_SHIFT;
5268                 page_offset &= ~PAGE_MASK;
5269                 if (quadrant != sp->role.quadrant)
5270                         return NULL;
5271         }
5272
5273         spte = &sp->spt[page_offset / sizeof(*spte)];
5274         return spte;
5275 }
5276
5277 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5278                               const u8 *new, int bytes,
5279                               struct kvm_page_track_notifier_node *node)
5280 {
5281         gfn_t gfn = gpa >> PAGE_SHIFT;
5282         struct kvm_mmu_page *sp;
5283         LIST_HEAD(invalid_list);
5284         u64 entry, gentry, *spte;
5285         int npte;
5286         bool remote_flush, local_flush;
5287
5288         /*
5289          * If we don't have indirect shadow pages, it means no page is
5290          * write-protected, so we can exit simply.
5291          */
5292         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5293                 return;
5294
5295         remote_flush = local_flush = false;
5296
5297         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5298
5299         /*
5300          * No need to care whether allocation memory is successful
5301          * or not since pte prefetch is skiped if it does not have
5302          * enough objects in the cache.
5303          */
5304         mmu_topup_memory_caches(vcpu);
5305
5306         spin_lock(&vcpu->kvm->mmu_lock);
5307
5308         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5309
5310         ++vcpu->kvm->stat.mmu_pte_write;
5311         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5312
5313         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5314                 if (detect_write_misaligned(sp, gpa, bytes) ||
5315                       detect_write_flooding(sp)) {
5316                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5317                         ++vcpu->kvm->stat.mmu_flooded;
5318                         continue;
5319                 }
5320
5321                 spte = get_written_sptes(sp, gpa, &npte);
5322                 if (!spte)
5323                         continue;
5324
5325                 local_flush = true;
5326                 while (npte--) {
5327                         u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5328
5329                         entry = *spte;
5330                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
5331                         if (gentry &&
5332                               !((sp->role.word ^ base_role)
5333                               & mmu_base_role_mask.word) && rmap_can_add(vcpu))
5334                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5335                         if (need_remote_flush(entry, *spte))
5336                                 remote_flush = true;
5337                         ++spte;
5338                 }
5339         }
5340         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5341         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5342         spin_unlock(&vcpu->kvm->mmu_lock);
5343 }
5344
5345 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5346 {
5347         gpa_t gpa;
5348         int r;
5349
5350         if (vcpu->arch.mmu->direct_map)
5351                 return 0;
5352
5353         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5354
5355         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5356
5357         return r;
5358 }
5359 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5360
5361 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
5362 {
5363         LIST_HEAD(invalid_list);
5364
5365         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
5366                 return 0;
5367
5368         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
5369                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
5370                         break;
5371
5372                 ++vcpu->kvm->stat.mmu_recycled;
5373         }
5374         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
5375
5376         if (!kvm_mmu_available_pages(vcpu->kvm))
5377                 return -ENOSPC;
5378         return 0;
5379 }
5380
5381 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
5382                        void *insn, int insn_len)
5383 {
5384         int r, emulation_type = 0;
5385         bool direct = vcpu->arch.mmu->direct_map;
5386
5387         /* With shadow page tables, fault_address contains a GVA or nGPA.  */
5388         if (vcpu->arch.mmu->direct_map) {
5389                 vcpu->arch.gpa_available = true;
5390                 vcpu->arch.gpa_val = cr2;
5391         }
5392
5393         r = RET_PF_INVALID;
5394         if (unlikely(error_code & PFERR_RSVD_MASK)) {
5395                 r = handle_mmio_page_fault(vcpu, cr2, direct);
5396                 if (r == RET_PF_EMULATE)
5397                         goto emulate;
5398         }
5399
5400         if (r == RET_PF_INVALID) {
5401                 r = vcpu->arch.mmu->page_fault(vcpu, cr2,
5402                                                lower_32_bits(error_code),
5403                                                false);
5404                 WARN_ON(r == RET_PF_INVALID);
5405         }
5406
5407         if (r == RET_PF_RETRY)
5408                 return 1;
5409         if (r < 0)
5410                 return r;
5411
5412         /*
5413          * Before emulating the instruction, check if the error code
5414          * was due to a RO violation while translating the guest page.
5415          * This can occur when using nested virtualization with nested
5416          * paging in both guests. If true, we simply unprotect the page
5417          * and resume the guest.
5418          */
5419         if (vcpu->arch.mmu->direct_map &&
5420             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5421                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
5422                 return 1;
5423         }
5424
5425         /*
5426          * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5427          * optimistically try to just unprotect the page and let the processor
5428          * re-execute the instruction that caused the page fault.  Do not allow
5429          * retrying MMIO emulation, as it's not only pointless but could also
5430          * cause us to enter an infinite loop because the processor will keep
5431          * faulting on the non-existent MMIO address.  Retrying an instruction
5432          * from a nested guest is also pointless and dangerous as we are only
5433          * explicitly shadowing L1's page tables, i.e. unprotecting something
5434          * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5435          */
5436         if (!mmio_info_in_cache(vcpu, cr2, direct) && !is_guest_mode(vcpu))
5437                 emulation_type = EMULTYPE_ALLOW_RETRY;
5438 emulate:
5439         /*
5440          * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5441          * This can happen if a guest gets a page-fault on data access but the HW
5442          * table walker is not able to read the instruction page (e.g instruction
5443          * page is not present in memory). In those cases we simply restart the
5444          * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
5445          */
5446         if (unlikely(insn && !insn_len)) {
5447                 if (!kvm_x86_ops->need_emulation_on_page_fault(vcpu))
5448                         return 1;
5449         }
5450
5451         return x86_emulate_instruction(vcpu, cr2, emulation_type, insn,
5452                                        insn_len);
5453 }
5454 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5455
5456 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5457 {
5458         struct kvm_mmu *mmu = vcpu->arch.mmu;
5459         int i;
5460
5461         /* INVLPG on a * non-canonical address is a NOP according to the SDM.  */
5462         if (is_noncanonical_address(gva, vcpu))
5463                 return;
5464
5465         mmu->invlpg(vcpu, gva, mmu->root_hpa);
5466
5467         /*
5468          * INVLPG is required to invalidate any global mappings for the VA,
5469          * irrespective of PCID. Since it would take us roughly similar amount
5470          * of work to determine whether any of the prev_root mappings of the VA
5471          * is marked global, or to just sync it blindly, so we might as well
5472          * just always sync it.
5473          *
5474          * Mappings not reachable via the current cr3 or the prev_roots will be
5475          * synced when switching to that cr3, so nothing needs to be done here
5476          * for them.
5477          */
5478         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5479                 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5480                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5481
5482         kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5483         ++vcpu->stat.invlpg;
5484 }
5485 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5486
5487 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5488 {
5489         struct kvm_mmu *mmu = vcpu->arch.mmu;
5490         bool tlb_flush = false;
5491         uint i;
5492
5493         if (pcid == kvm_get_active_pcid(vcpu)) {
5494                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5495                 tlb_flush = true;
5496         }
5497
5498         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5499                 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5500                     pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
5501                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5502                         tlb_flush = true;
5503                 }
5504         }
5505
5506         if (tlb_flush)
5507                 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5508
5509         ++vcpu->stat.invlpg;
5510
5511         /*
5512          * Mappings not reachable via the current cr3 or the prev_roots will be
5513          * synced when switching to that cr3, so nothing needs to be done here
5514          * for them.
5515          */
5516 }
5517 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5518
5519 void kvm_enable_tdp(void)
5520 {
5521         tdp_enabled = true;
5522 }
5523 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5524
5525 void kvm_disable_tdp(void)
5526 {
5527         tdp_enabled = false;
5528 }
5529 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5530
5531
5532 /* The return value indicates if tlb flush on all vcpus is needed. */
5533 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5534
5535 /* The caller should hold mmu-lock before calling this function. */
5536 static __always_inline bool
5537 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5538                         slot_level_handler fn, int start_level, int end_level,
5539                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5540 {
5541         struct slot_rmap_walk_iterator iterator;
5542         bool flush = false;
5543
5544         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5545                         end_gfn, &iterator) {
5546                 if (iterator.rmap)
5547                         flush |= fn(kvm, iterator.rmap);
5548
5549                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5550                         if (flush && lock_flush_tlb) {
5551                                 kvm_flush_remote_tlbs_with_address(kvm,
5552                                                 start_gfn,
5553                                                 iterator.gfn - start_gfn + 1);
5554                                 flush = false;
5555                         }
5556                         cond_resched_lock(&kvm->mmu_lock);
5557                 }
5558         }
5559
5560         if (flush && lock_flush_tlb) {
5561                 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5562                                                    end_gfn - start_gfn + 1);
5563                 flush = false;
5564         }
5565
5566         return flush;
5567 }
5568
5569 static __always_inline bool
5570 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5571                   slot_level_handler fn, int start_level, int end_level,
5572                   bool lock_flush_tlb)
5573 {
5574         return slot_handle_level_range(kvm, memslot, fn, start_level,
5575                         end_level, memslot->base_gfn,
5576                         memslot->base_gfn + memslot->npages - 1,
5577                         lock_flush_tlb);
5578 }
5579
5580 static __always_inline bool
5581 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5582                       slot_level_handler fn, bool lock_flush_tlb)
5583 {
5584         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5585                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5586 }
5587
5588 static __always_inline bool
5589 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5590                         slot_level_handler fn, bool lock_flush_tlb)
5591 {
5592         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5593                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5594 }
5595
5596 static __always_inline bool
5597 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5598                  slot_level_handler fn, bool lock_flush_tlb)
5599 {
5600         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5601                                  PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5602 }
5603
5604 static void free_mmu_pages(struct kvm_mmu *mmu)
5605 {
5606         free_page((unsigned long)mmu->pae_root);
5607         free_page((unsigned long)mmu->lm_root);
5608 }
5609
5610 static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5611 {
5612         struct page *page;
5613         int i;
5614
5615         /*
5616          * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5617          * while the PDP table is a per-vCPU construct that's allocated at MMU
5618          * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5619          * x86_64.  Therefore we need to allocate the PDP table in the first
5620          * 4GB of memory, which happens to fit the DMA32 zone.  Except for
5621          * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5622          * skip allocating the PDP table.
5623          */
5624         if (tdp_enabled && kvm_x86_ops->get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5625                 return 0;
5626
5627         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5628         if (!page)
5629                 return -ENOMEM;
5630
5631         mmu->pae_root = page_address(page);
5632         for (i = 0; i < 4; ++i)
5633                 mmu->pae_root[i] = INVALID_PAGE;
5634
5635         return 0;
5636 }
5637
5638 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5639 {
5640         uint i;
5641         int ret;
5642
5643         vcpu->arch.mmu = &vcpu->arch.root_mmu;
5644         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5645
5646         vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
5647         vcpu->arch.root_mmu.root_cr3 = 0;
5648         vcpu->arch.root_mmu.translate_gpa = translate_gpa;
5649         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5650                 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5651
5652         vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
5653         vcpu->arch.guest_mmu.root_cr3 = 0;
5654         vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5655         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5656                 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5657
5658         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5659
5660         ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu);
5661         if (ret)
5662                 return ret;
5663
5664         ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu);
5665         if (ret)
5666                 goto fail_allocate_root;
5667
5668         return ret;
5669  fail_allocate_root:
5670         free_mmu_pages(&vcpu->arch.guest_mmu);
5671         return ret;
5672 }
5673
5674
5675 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5676 {
5677         struct kvm_mmu_page *sp, *node;
5678         LIST_HEAD(invalid_list);
5679         int ign;
5680
5681 restart:
5682         list_for_each_entry_safe_reverse(sp, node,
5683               &kvm->arch.active_mmu_pages, link) {
5684                 /*
5685                  * No obsolete valid page exists before a newly created page
5686                  * since active_mmu_pages is a FIFO list.
5687                  */
5688                 if (!is_obsolete_sp(kvm, sp))
5689                         break;
5690
5691                 /*
5692                  * Do not repeatedly zap a root page to avoid unnecessary
5693                  * KVM_REQ_MMU_RELOAD, otherwise we may not be able to
5694                  * progress:
5695                  *    vcpu 0                        vcpu 1
5696                  *                         call vcpu_enter_guest():
5697                  *                            1): handle KVM_REQ_MMU_RELOAD
5698                  *                                and require mmu-lock to
5699                  *                                load mmu
5700                  * repeat:
5701                  *    1): zap root page and
5702                  *        send KVM_REQ_MMU_RELOAD
5703                  *
5704                  *    2): if (cond_resched_lock(mmu-lock))
5705                  *
5706                  *                            2): hold mmu-lock and load mmu
5707                  *
5708                  *                            3): see KVM_REQ_MMU_RELOAD bit
5709                  *                                on vcpu->requests is set
5710                  *                                then return 1 to call
5711                  *                                vcpu_enter_guest() again.
5712                  *            goto repeat;
5713                  *
5714                  * Since we are reversely walking the list and the invalid
5715                  * list will be moved to the head, skip the invalid page
5716                  * can help us to avoid the infinity list walking.
5717                  */
5718                 if (sp->role.invalid)
5719                         continue;
5720
5721                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5722                         kvm_mmu_commit_zap_page(kvm, &invalid_list);
5723                         cond_resched_lock(&kvm->mmu_lock);
5724                         goto restart;
5725                 }
5726
5727                 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5728                         goto restart;
5729         }
5730
5731         kvm_mmu_commit_zap_page(kvm, &invalid_list);
5732 }
5733
5734 /*
5735  * Fast invalidate all shadow pages and use lock-break technique
5736  * to zap obsolete pages.
5737  *
5738  * It's required when memslot is being deleted or VM is being
5739  * destroyed, in these cases, we should ensure that KVM MMU does
5740  * not use any resource of the being-deleted slot or all slots
5741  * after calling the function.
5742  */
5743 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5744 {
5745         spin_lock(&kvm->mmu_lock);
5746         kvm->arch.mmu_valid_gen++;
5747
5748         kvm_zap_obsolete_pages(kvm);
5749         spin_unlock(&kvm->mmu_lock);
5750 }
5751
5752 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5753                         struct kvm_memory_slot *slot,
5754                         struct kvm_page_track_notifier_node *node)
5755 {
5756         kvm_mmu_zap_all_fast(kvm);
5757 }
5758
5759 void kvm_mmu_init_vm(struct kvm *kvm)
5760 {
5761         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5762
5763         node->track_write = kvm_mmu_pte_write;
5764         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5765         kvm_page_track_register_notifier(kvm, node);
5766 }
5767
5768 void kvm_mmu_uninit_vm(struct kvm *kvm)
5769 {
5770         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5771
5772         kvm_page_track_unregister_notifier(kvm, node);
5773 }
5774
5775 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5776 {
5777         struct kvm_memslots *slots;
5778         struct kvm_memory_slot *memslot;
5779         int i;
5780
5781         spin_lock(&kvm->mmu_lock);
5782         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5783                 slots = __kvm_memslots(kvm, i);
5784                 kvm_for_each_memslot(memslot, slots) {
5785                         gfn_t start, end;
5786
5787                         start = max(gfn_start, memslot->base_gfn);
5788                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
5789                         if (start >= end)
5790                                 continue;
5791
5792                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5793                                                 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5794                                                 start, end - 1, true);
5795                 }
5796         }
5797
5798         spin_unlock(&kvm->mmu_lock);
5799 }
5800
5801 static bool slot_rmap_write_protect(struct kvm *kvm,
5802                                     struct kvm_rmap_head *rmap_head)
5803 {
5804         return __rmap_write_protect(kvm, rmap_head, false);
5805 }
5806
5807 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5808                                       struct kvm_memory_slot *memslot)
5809 {
5810         bool flush;
5811
5812         spin_lock(&kvm->mmu_lock);
5813         flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5814                                       false);
5815         spin_unlock(&kvm->mmu_lock);
5816
5817         /*
5818          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5819          * which do tlb flush out of mmu-lock should be serialized by
5820          * kvm->slots_lock otherwise tlb flush would be missed.
5821          */
5822         lockdep_assert_held(&kvm->slots_lock);
5823
5824         /*
5825          * We can flush all the TLBs out of the mmu lock without TLB
5826          * corruption since we just change the spte from writable to
5827          * readonly so that we only need to care the case of changing
5828          * spte from present to present (changing the spte from present
5829          * to nonpresent will flush all the TLBs immediately), in other
5830          * words, the only case we care is mmu_spte_update() where we
5831          * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5832          * instead of PT_WRITABLE_MASK, that means it does not depend
5833          * on PT_WRITABLE_MASK anymore.
5834          */
5835         if (flush)
5836                 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5837                         memslot->npages);
5838 }
5839
5840 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5841                                          struct kvm_rmap_head *rmap_head)
5842 {
5843         u64 *sptep;
5844         struct rmap_iterator iter;
5845         int need_tlb_flush = 0;
5846         kvm_pfn_t pfn;
5847         struct kvm_mmu_page *sp;
5848
5849 restart:
5850         for_each_rmap_spte(rmap_head, &iter, sptep) {
5851                 sp = page_header(__pa(sptep));
5852                 pfn = spte_to_pfn(*sptep);
5853
5854                 /*
5855                  * We cannot do huge page mapping for indirect shadow pages,
5856                  * which are found on the last rmap (level = 1) when not using
5857                  * tdp; such shadow pages are synced with the page table in
5858                  * the guest, and the guest page table is using 4K page size
5859                  * mapping if the indirect sp has level = 1.
5860                  */
5861                 if (sp->role.direct &&
5862                         !kvm_is_reserved_pfn(pfn) &&
5863                         PageTransCompoundMap(pfn_to_page(pfn))) {
5864                         pte_list_remove(rmap_head, sptep);
5865
5866                         if (kvm_available_flush_tlb_with_range())
5867                                 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5868                                         KVM_PAGES_PER_HPAGE(sp->role.level));
5869                         else
5870                                 need_tlb_flush = 1;
5871
5872                         goto restart;
5873                 }
5874         }
5875
5876         return need_tlb_flush;
5877 }
5878
5879 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5880                                    const struct kvm_memory_slot *memslot)
5881 {
5882         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5883         spin_lock(&kvm->mmu_lock);
5884         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5885                          kvm_mmu_zap_collapsible_spte, true);
5886         spin_unlock(&kvm->mmu_lock);
5887 }
5888
5889 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5890                                    struct kvm_memory_slot *memslot)
5891 {
5892         bool flush;
5893
5894         spin_lock(&kvm->mmu_lock);
5895         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5896         spin_unlock(&kvm->mmu_lock);
5897
5898         lockdep_assert_held(&kvm->slots_lock);
5899
5900         /*
5901          * It's also safe to flush TLBs out of mmu lock here as currently this
5902          * function is only used for dirty logging, in which case flushing TLB
5903          * out of mmu lock also guarantees no dirty pages will be lost in
5904          * dirty_bitmap.
5905          */
5906         if (flush)
5907                 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5908                                 memslot->npages);
5909 }
5910 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5911
5912 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5913                                         struct kvm_memory_slot *memslot)
5914 {
5915         bool flush;
5916
5917         spin_lock(&kvm->mmu_lock);
5918         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5919                                         false);
5920         spin_unlock(&kvm->mmu_lock);
5921
5922         /* see kvm_mmu_slot_remove_write_access */
5923         lockdep_assert_held(&kvm->slots_lock);
5924
5925         if (flush)
5926                 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5927                                 memslot->npages);
5928 }
5929 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5930
5931 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5932                             struct kvm_memory_slot *memslot)
5933 {
5934         bool flush;
5935
5936         spin_lock(&kvm->mmu_lock);
5937         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5938         spin_unlock(&kvm->mmu_lock);
5939
5940         lockdep_assert_held(&kvm->slots_lock);
5941
5942         /* see kvm_mmu_slot_leaf_clear_dirty */
5943         if (flush)
5944                 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5945                                 memslot->npages);
5946 }
5947 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5948
5949 void kvm_mmu_zap_all(struct kvm *kvm)
5950 {
5951         struct kvm_mmu_page *sp, *node;
5952         LIST_HEAD(invalid_list);
5953         int ign;
5954
5955         spin_lock(&kvm->mmu_lock);
5956 restart:
5957         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5958                 if (sp->role.invalid && sp->root_count)
5959                         continue;
5960                 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5961                         goto restart;
5962                 if (cond_resched_lock(&kvm->mmu_lock))
5963                         goto restart;
5964         }
5965
5966         kvm_mmu_commit_zap_page(kvm, &invalid_list);
5967         spin_unlock(&kvm->mmu_lock);
5968 }
5969
5970 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5971 {
5972         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5973
5974         gen &= MMIO_SPTE_GEN_MASK;
5975
5976         /*
5977          * Generation numbers are incremented in multiples of the number of
5978          * address spaces in order to provide unique generations across all
5979          * address spaces.  Strip what is effectively the address space
5980          * modifier prior to checking for a wrap of the MMIO generation so
5981          * that a wrap in any address space is detected.
5982          */
5983         gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5984
5985         /*
5986          * The very rare case: if the MMIO generation number has wrapped,
5987          * zap all shadow pages.
5988          */
5989         if (unlikely(gen == 0)) {
5990                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5991                 kvm_mmu_zap_all_fast(kvm);
5992         }
5993 }
5994
5995 static unsigned long
5996 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5997 {
5998         struct kvm *kvm;
5999         int nr_to_scan = sc->nr_to_scan;
6000         unsigned long freed = 0;
6001
6002         mutex_lock(&kvm_lock);
6003
6004         list_for_each_entry(kvm, &vm_list, vm_list) {
6005                 int idx;
6006                 LIST_HEAD(invalid_list);
6007
6008                 /*
6009                  * Never scan more than sc->nr_to_scan VM instances.
6010                  * Will not hit this condition practically since we do not try
6011                  * to shrink more than one VM and it is very unlikely to see
6012                  * !n_used_mmu_pages so many times.
6013                  */
6014                 if (!nr_to_scan--)
6015                         break;
6016                 /*
6017                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6018                  * here. We may skip a VM instance errorneosly, but we do not
6019                  * want to shrink a VM that only started to populate its MMU
6020                  * anyway.
6021                  */
6022                 if (!kvm->arch.n_used_mmu_pages)
6023                         continue;
6024
6025                 idx = srcu_read_lock(&kvm->srcu);
6026                 spin_lock(&kvm->mmu_lock);
6027
6028                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
6029                         freed++;
6030                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6031
6032                 spin_unlock(&kvm->mmu_lock);
6033                 srcu_read_unlock(&kvm->srcu, idx);
6034
6035                 /*
6036                  * unfair on small ones
6037                  * per-vm shrinkers cry out
6038                  * sadness comes quickly
6039                  */
6040                 list_move_tail(&kvm->vm_list, &vm_list);
6041                 break;
6042         }
6043
6044         mutex_unlock(&kvm_lock);
6045         return freed;
6046 }
6047
6048 static unsigned long
6049 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6050 {
6051         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6052 }
6053
6054 static struct shrinker mmu_shrinker = {
6055         .count_objects = mmu_shrink_count,
6056         .scan_objects = mmu_shrink_scan,
6057         .seeks = DEFAULT_SEEKS * 10,
6058 };
6059
6060 static void mmu_destroy_caches(void)
6061 {
6062         kmem_cache_destroy(pte_list_desc_cache);
6063         kmem_cache_destroy(mmu_page_header_cache);
6064 }
6065
6066 static void kvm_set_mmio_spte_mask(void)
6067 {
6068         u64 mask;
6069
6070         /*
6071          * Set the reserved bits and the present bit of an paging-structure
6072          * entry to generate page fault with PFER.RSV = 1.
6073          */
6074
6075         /*
6076          * Mask the uppermost physical address bit, which would be reserved as
6077          * long as the supported physical address width is less than 52.
6078          */
6079         mask = 1ull << 51;
6080
6081         /* Set the present bit. */
6082         mask |= 1ull;
6083
6084         /*
6085          * If reserved bit is not supported, clear the present bit to disable
6086          * mmio page fault.
6087          */
6088         if (IS_ENABLED(CONFIG_X86_64) && shadow_phys_bits == 52)
6089                 mask &= ~1ull;
6090
6091         kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
6092 }
6093
6094 int kvm_mmu_module_init(void)
6095 {
6096         int ret = -ENOMEM;
6097
6098         /*
6099          * MMU roles use union aliasing which is, generally speaking, an
6100          * undefined behavior. However, we supposedly know how compilers behave
6101          * and the current status quo is unlikely to change. Guardians below are
6102          * supposed to let us know if the assumption becomes false.
6103          */
6104         BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6105         BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6106         BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6107
6108         kvm_mmu_reset_all_pte_masks();
6109
6110         kvm_set_mmio_spte_mask();
6111
6112         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6113                                             sizeof(struct pte_list_desc),
6114                                             0, SLAB_ACCOUNT, NULL);
6115         if (!pte_list_desc_cache)
6116                 goto out;
6117
6118         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6119                                                   sizeof(struct kvm_mmu_page),
6120                                                   0, SLAB_ACCOUNT, NULL);
6121         if (!mmu_page_header_cache)
6122                 goto out;
6123
6124         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6125                 goto out;
6126
6127         ret = register_shrinker(&mmu_shrinker);
6128         if (ret)
6129                 goto out;
6130
6131         return 0;
6132
6133 out:
6134         mmu_destroy_caches();
6135         return ret;
6136 }
6137
6138 /*
6139  * Calculate mmu pages needed for kvm.
6140  */
6141 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6142 {
6143         unsigned long nr_mmu_pages;
6144         unsigned long nr_pages = 0;
6145         struct kvm_memslots *slots;
6146         struct kvm_memory_slot *memslot;
6147         int i;
6148
6149         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6150                 slots = __kvm_memslots(kvm, i);
6151
6152                 kvm_for_each_memslot(memslot, slots)
6153                         nr_pages += memslot->npages;
6154         }
6155
6156         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6157         nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6158
6159         return nr_mmu_pages;
6160 }
6161
6162 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6163 {
6164         kvm_mmu_unload(vcpu);
6165         free_mmu_pages(&vcpu->arch.root_mmu);
6166         free_mmu_pages(&vcpu->arch.guest_mmu);
6167         mmu_free_memory_caches(vcpu);
6168 }
6169
6170 void kvm_mmu_module_exit(void)
6171 {
6172         mmu_destroy_caches();
6173         percpu_counter_destroy(&kvm_total_used_mmu_pages);
6174         unregister_shrinker(&mmu_shrinker);
6175         mmu_audit_disable();
6176 }