]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/mmu.c
Merge tag 'rproc-v4.16' of git://github.com/andersson/remoteproc
[linux.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/moduleparam.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/hugetlb.h>
36 #include <linux/compiler.h>
37 #include <linux/srcu.h>
38 #include <linux/slab.h>
39 #include <linux/sched/signal.h>
40 #include <linux/uaccess.h>
41 #include <linux/hash.h>
42 #include <linux/kern_levels.h>
43
44 #include <asm/page.h>
45 #include <asm/cmpxchg.h>
46 #include <asm/io.h>
47 #include <asm/vmx.h>
48 #include <asm/kvm_page_track.h>
49 #include "trace.h"
50
51 /*
52  * When setting this variable to true it enables Two-Dimensional-Paging
53  * where the hardware walks 2 page tables:
54  * 1. the guest-virtual to guest-physical
55  * 2. while doing 1. it walks guest-physical to host-physical
56  * If the hardware supports that we don't need to do shadow paging.
57  */
58 bool tdp_enabled = false;
59
60 enum {
61         AUDIT_PRE_PAGE_FAULT,
62         AUDIT_POST_PAGE_FAULT,
63         AUDIT_PRE_PTE_WRITE,
64         AUDIT_POST_PTE_WRITE,
65         AUDIT_PRE_SYNC,
66         AUDIT_POST_SYNC
67 };
68
69 #undef MMU_DEBUG
70
71 #ifdef MMU_DEBUG
72 static bool dbg = 0;
73 module_param(dbg, bool, 0644);
74
75 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
76 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
77 #define MMU_WARN_ON(x) WARN_ON(x)
78 #else
79 #define pgprintk(x...) do { } while (0)
80 #define rmap_printk(x...) do { } while (0)
81 #define MMU_WARN_ON(x) do { } while (0)
82 #endif
83
84 #define PTE_PREFETCH_NUM                8
85
86 #define PT_FIRST_AVAIL_BITS_SHIFT 10
87 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
88
89 #define PT64_LEVEL_BITS 9
90
91 #define PT64_LEVEL_SHIFT(level) \
92                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
93
94 #define PT64_INDEX(address, level)\
95         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
96
97
98 #define PT32_LEVEL_BITS 10
99
100 #define PT32_LEVEL_SHIFT(level) \
101                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
102
103 #define PT32_LVL_OFFSET_MASK(level) \
104         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
105                                                 * PT32_LEVEL_BITS))) - 1))
106
107 #define PT32_INDEX(address, level)\
108         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
109
110
111 #define PT64_BASE_ADDR_MASK __sme_clr((((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)))
112 #define PT64_DIR_BASE_ADDR_MASK \
113         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
114 #define PT64_LVL_ADDR_MASK(level) \
115         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
116                                                 * PT64_LEVEL_BITS))) - 1))
117 #define PT64_LVL_OFFSET_MASK(level) \
118         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
119                                                 * PT64_LEVEL_BITS))) - 1))
120
121 #define PT32_BASE_ADDR_MASK PAGE_MASK
122 #define PT32_DIR_BASE_ADDR_MASK \
123         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
124 #define PT32_LVL_ADDR_MASK(level) \
125         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
126                                             * PT32_LEVEL_BITS))) - 1))
127
128 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
129                         | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
130
131 #define ACC_EXEC_MASK    1
132 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
133 #define ACC_USER_MASK    PT_USER_MASK
134 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
135
136 /* The mask for the R/X bits in EPT PTEs */
137 #define PT64_EPT_READABLE_MASK                  0x1ull
138 #define PT64_EPT_EXECUTABLE_MASK                0x4ull
139
140 #include <trace/events/kvm.h>
141
142 #define CREATE_TRACE_POINTS
143 #include "mmutrace.h"
144
145 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
146 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
147
148 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
149
150 /* make pte_list_desc fit well in cache line */
151 #define PTE_LIST_EXT 3
152
153 /*
154  * Return values of handle_mmio_page_fault and mmu.page_fault:
155  * RET_PF_RETRY: let CPU fault again on the address.
156  * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
157  *
158  * For handle_mmio_page_fault only:
159  * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
160  */
161 enum {
162         RET_PF_RETRY = 0,
163         RET_PF_EMULATE = 1,
164         RET_PF_INVALID = 2,
165 };
166
167 struct pte_list_desc {
168         u64 *sptes[PTE_LIST_EXT];
169         struct pte_list_desc *more;
170 };
171
172 struct kvm_shadow_walk_iterator {
173         u64 addr;
174         hpa_t shadow_addr;
175         u64 *sptep;
176         int level;
177         unsigned index;
178 };
179
180 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
181         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
182              shadow_walk_okay(&(_walker));                      \
183              shadow_walk_next(&(_walker)))
184
185 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
186         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
187              shadow_walk_okay(&(_walker)) &&                            \
188                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
189              __shadow_walk_next(&(_walker), spte))
190
191 static struct kmem_cache *pte_list_desc_cache;
192 static struct kmem_cache *mmu_page_header_cache;
193 static struct percpu_counter kvm_total_used_mmu_pages;
194
195 static u64 __read_mostly shadow_nx_mask;
196 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
197 static u64 __read_mostly shadow_user_mask;
198 static u64 __read_mostly shadow_accessed_mask;
199 static u64 __read_mostly shadow_dirty_mask;
200 static u64 __read_mostly shadow_mmio_mask;
201 static u64 __read_mostly shadow_mmio_value;
202 static u64 __read_mostly shadow_present_mask;
203 static u64 __read_mostly shadow_me_mask;
204
205 /*
206  * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
207  * Non-present SPTEs with shadow_acc_track_value set are in place for access
208  * tracking.
209  */
210 static u64 __read_mostly shadow_acc_track_mask;
211 static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
212
213 /*
214  * The mask/shift to use for saving the original R/X bits when marking the PTE
215  * as not-present for access tracking purposes. We do not save the W bit as the
216  * PTEs being access tracked also need to be dirty tracked, so the W bit will be
217  * restored only when a write is attempted to the page.
218  */
219 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
220                                                     PT64_EPT_EXECUTABLE_MASK;
221 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
222
223 static void mmu_spte_set(u64 *sptep, u64 spte);
224 static void mmu_free_roots(struct kvm_vcpu *vcpu);
225
226 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
227 {
228         BUG_ON((mmio_mask & mmio_value) != mmio_value);
229         shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
230         shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
231 }
232 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
233
234 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
235 {
236         return sp->role.ad_disabled;
237 }
238
239 static inline bool spte_ad_enabled(u64 spte)
240 {
241         MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
242         return !(spte & shadow_acc_track_value);
243 }
244
245 static inline u64 spte_shadow_accessed_mask(u64 spte)
246 {
247         MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
248         return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
249 }
250
251 static inline u64 spte_shadow_dirty_mask(u64 spte)
252 {
253         MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
254         return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
255 }
256
257 static inline bool is_access_track_spte(u64 spte)
258 {
259         return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
260 }
261
262 /*
263  * the low bit of the generation number is always presumed to be zero.
264  * This disables mmio caching during memslot updates.  The concept is
265  * similar to a seqcount but instead of retrying the access we just punt
266  * and ignore the cache.
267  *
268  * spte bits 3-11 are used as bits 1-9 of the generation number,
269  * the bits 52-61 are used as bits 10-19 of the generation number.
270  */
271 #define MMIO_SPTE_GEN_LOW_SHIFT         2
272 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
273
274 #define MMIO_GEN_SHIFT                  20
275 #define MMIO_GEN_LOW_SHIFT              10
276 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 2)
277 #define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
278
279 static u64 generation_mmio_spte_mask(unsigned int gen)
280 {
281         u64 mask;
282
283         WARN_ON(gen & ~MMIO_GEN_MASK);
284
285         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
286         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
287         return mask;
288 }
289
290 static unsigned int get_mmio_spte_generation(u64 spte)
291 {
292         unsigned int gen;
293
294         spte &= ~shadow_mmio_mask;
295
296         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
297         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
298         return gen;
299 }
300
301 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
302 {
303         return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
304 }
305
306 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
307                            unsigned access)
308 {
309         unsigned int gen = kvm_current_mmio_generation(vcpu);
310         u64 mask = generation_mmio_spte_mask(gen);
311
312         access &= ACC_WRITE_MASK | ACC_USER_MASK;
313         mask |= shadow_mmio_value | access | gfn << PAGE_SHIFT;
314
315         trace_mark_mmio_spte(sptep, gfn, access, gen);
316         mmu_spte_set(sptep, mask);
317 }
318
319 static bool is_mmio_spte(u64 spte)
320 {
321         return (spte & shadow_mmio_mask) == shadow_mmio_value;
322 }
323
324 static gfn_t get_mmio_spte_gfn(u64 spte)
325 {
326         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
327         return (spte & ~mask) >> PAGE_SHIFT;
328 }
329
330 static unsigned get_mmio_spte_access(u64 spte)
331 {
332         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
333         return (spte & ~mask) & ~PAGE_MASK;
334 }
335
336 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
337                           kvm_pfn_t pfn, unsigned access)
338 {
339         if (unlikely(is_noslot_pfn(pfn))) {
340                 mark_mmio_spte(vcpu, sptep, gfn, access);
341                 return true;
342         }
343
344         return false;
345 }
346
347 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
348 {
349         unsigned int kvm_gen, spte_gen;
350
351         kvm_gen = kvm_current_mmio_generation(vcpu);
352         spte_gen = get_mmio_spte_generation(spte);
353
354         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
355         return likely(kvm_gen == spte_gen);
356 }
357
358 /*
359  * Sets the shadow PTE masks used by the MMU.
360  *
361  * Assumptions:
362  *  - Setting either @accessed_mask or @dirty_mask requires setting both
363  *  - At least one of @accessed_mask or @acc_track_mask must be set
364  */
365 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
366                 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
367                 u64 acc_track_mask, u64 me_mask)
368 {
369         BUG_ON(!dirty_mask != !accessed_mask);
370         BUG_ON(!accessed_mask && !acc_track_mask);
371         BUG_ON(acc_track_mask & shadow_acc_track_value);
372
373         shadow_user_mask = user_mask;
374         shadow_accessed_mask = accessed_mask;
375         shadow_dirty_mask = dirty_mask;
376         shadow_nx_mask = nx_mask;
377         shadow_x_mask = x_mask;
378         shadow_present_mask = p_mask;
379         shadow_acc_track_mask = acc_track_mask;
380         shadow_me_mask = me_mask;
381 }
382 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
383
384 void kvm_mmu_clear_all_pte_masks(void)
385 {
386         shadow_user_mask = 0;
387         shadow_accessed_mask = 0;
388         shadow_dirty_mask = 0;
389         shadow_nx_mask = 0;
390         shadow_x_mask = 0;
391         shadow_mmio_mask = 0;
392         shadow_present_mask = 0;
393         shadow_acc_track_mask = 0;
394 }
395
396 static int is_cpuid_PSE36(void)
397 {
398         return 1;
399 }
400
401 static int is_nx(struct kvm_vcpu *vcpu)
402 {
403         return vcpu->arch.efer & EFER_NX;
404 }
405
406 static int is_shadow_present_pte(u64 pte)
407 {
408         return (pte != 0) && !is_mmio_spte(pte);
409 }
410
411 static int is_large_pte(u64 pte)
412 {
413         return pte & PT_PAGE_SIZE_MASK;
414 }
415
416 static int is_last_spte(u64 pte, int level)
417 {
418         if (level == PT_PAGE_TABLE_LEVEL)
419                 return 1;
420         if (is_large_pte(pte))
421                 return 1;
422         return 0;
423 }
424
425 static bool is_executable_pte(u64 spte)
426 {
427         return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
428 }
429
430 static kvm_pfn_t spte_to_pfn(u64 pte)
431 {
432         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
433 }
434
435 static gfn_t pse36_gfn_delta(u32 gpte)
436 {
437         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
438
439         return (gpte & PT32_DIR_PSE36_MASK) << shift;
440 }
441
442 #ifdef CONFIG_X86_64
443 static void __set_spte(u64 *sptep, u64 spte)
444 {
445         WRITE_ONCE(*sptep, spte);
446 }
447
448 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
449 {
450         WRITE_ONCE(*sptep, spte);
451 }
452
453 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
454 {
455         return xchg(sptep, spte);
456 }
457
458 static u64 __get_spte_lockless(u64 *sptep)
459 {
460         return READ_ONCE(*sptep);
461 }
462 #else
463 union split_spte {
464         struct {
465                 u32 spte_low;
466                 u32 spte_high;
467         };
468         u64 spte;
469 };
470
471 static void count_spte_clear(u64 *sptep, u64 spte)
472 {
473         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
474
475         if (is_shadow_present_pte(spte))
476                 return;
477
478         /* Ensure the spte is completely set before we increase the count */
479         smp_wmb();
480         sp->clear_spte_count++;
481 }
482
483 static void __set_spte(u64 *sptep, u64 spte)
484 {
485         union split_spte *ssptep, sspte;
486
487         ssptep = (union split_spte *)sptep;
488         sspte = (union split_spte)spte;
489
490         ssptep->spte_high = sspte.spte_high;
491
492         /*
493          * If we map the spte from nonpresent to present, We should store
494          * the high bits firstly, then set present bit, so cpu can not
495          * fetch this spte while we are setting the spte.
496          */
497         smp_wmb();
498
499         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
500 }
501
502 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
503 {
504         union split_spte *ssptep, sspte;
505
506         ssptep = (union split_spte *)sptep;
507         sspte = (union split_spte)spte;
508
509         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
510
511         /*
512          * If we map the spte from present to nonpresent, we should clear
513          * present bit firstly to avoid vcpu fetch the old high bits.
514          */
515         smp_wmb();
516
517         ssptep->spte_high = sspte.spte_high;
518         count_spte_clear(sptep, spte);
519 }
520
521 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
522 {
523         union split_spte *ssptep, sspte, orig;
524
525         ssptep = (union split_spte *)sptep;
526         sspte = (union split_spte)spte;
527
528         /* xchg acts as a barrier before the setting of the high bits */
529         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
530         orig.spte_high = ssptep->spte_high;
531         ssptep->spte_high = sspte.spte_high;
532         count_spte_clear(sptep, spte);
533
534         return orig.spte;
535 }
536
537 /*
538  * The idea using the light way get the spte on x86_32 guest is from
539  * gup_get_pte(arch/x86/mm/gup.c).
540  *
541  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
542  * coalesces them and we are running out of the MMU lock.  Therefore
543  * we need to protect against in-progress updates of the spte.
544  *
545  * Reading the spte while an update is in progress may get the old value
546  * for the high part of the spte.  The race is fine for a present->non-present
547  * change (because the high part of the spte is ignored for non-present spte),
548  * but for a present->present change we must reread the spte.
549  *
550  * All such changes are done in two steps (present->non-present and
551  * non-present->present), hence it is enough to count the number of
552  * present->non-present updates: if it changed while reading the spte,
553  * we might have hit the race.  This is done using clear_spte_count.
554  */
555 static u64 __get_spte_lockless(u64 *sptep)
556 {
557         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
558         union split_spte spte, *orig = (union split_spte *)sptep;
559         int count;
560
561 retry:
562         count = sp->clear_spte_count;
563         smp_rmb();
564
565         spte.spte_low = orig->spte_low;
566         smp_rmb();
567
568         spte.spte_high = orig->spte_high;
569         smp_rmb();
570
571         if (unlikely(spte.spte_low != orig->spte_low ||
572               count != sp->clear_spte_count))
573                 goto retry;
574
575         return spte.spte;
576 }
577 #endif
578
579 static bool spte_can_locklessly_be_made_writable(u64 spte)
580 {
581         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
582                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
583 }
584
585 static bool spte_has_volatile_bits(u64 spte)
586 {
587         if (!is_shadow_present_pte(spte))
588                 return false;
589
590         /*
591          * Always atomically update spte if it can be updated
592          * out of mmu-lock, it can ensure dirty bit is not lost,
593          * also, it can help us to get a stable is_writable_pte()
594          * to ensure tlb flush is not missed.
595          */
596         if (spte_can_locklessly_be_made_writable(spte) ||
597             is_access_track_spte(spte))
598                 return true;
599
600         if (spte_ad_enabled(spte)) {
601                 if ((spte & shadow_accessed_mask) == 0 ||
602                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
603                         return true;
604         }
605
606         return false;
607 }
608
609 static bool is_accessed_spte(u64 spte)
610 {
611         u64 accessed_mask = spte_shadow_accessed_mask(spte);
612
613         return accessed_mask ? spte & accessed_mask
614                              : !is_access_track_spte(spte);
615 }
616
617 static bool is_dirty_spte(u64 spte)
618 {
619         u64 dirty_mask = spte_shadow_dirty_mask(spte);
620
621         return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
622 }
623
624 /* Rules for using mmu_spte_set:
625  * Set the sptep from nonpresent to present.
626  * Note: the sptep being assigned *must* be either not present
627  * or in a state where the hardware will not attempt to update
628  * the spte.
629  */
630 static void mmu_spte_set(u64 *sptep, u64 new_spte)
631 {
632         WARN_ON(is_shadow_present_pte(*sptep));
633         __set_spte(sptep, new_spte);
634 }
635
636 /*
637  * Update the SPTE (excluding the PFN), but do not track changes in its
638  * accessed/dirty status.
639  */
640 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
641 {
642         u64 old_spte = *sptep;
643
644         WARN_ON(!is_shadow_present_pte(new_spte));
645
646         if (!is_shadow_present_pte(old_spte)) {
647                 mmu_spte_set(sptep, new_spte);
648                 return old_spte;
649         }
650
651         if (!spte_has_volatile_bits(old_spte))
652                 __update_clear_spte_fast(sptep, new_spte);
653         else
654                 old_spte = __update_clear_spte_slow(sptep, new_spte);
655
656         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
657
658         return old_spte;
659 }
660
661 /* Rules for using mmu_spte_update:
662  * Update the state bits, it means the mapped pfn is not changed.
663  *
664  * Whenever we overwrite a writable spte with a read-only one we
665  * should flush remote TLBs. Otherwise rmap_write_protect
666  * will find a read-only spte, even though the writable spte
667  * might be cached on a CPU's TLB, the return value indicates this
668  * case.
669  *
670  * Returns true if the TLB needs to be flushed
671  */
672 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
673 {
674         bool flush = false;
675         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
676
677         if (!is_shadow_present_pte(old_spte))
678                 return false;
679
680         /*
681          * For the spte updated out of mmu-lock is safe, since
682          * we always atomically update it, see the comments in
683          * spte_has_volatile_bits().
684          */
685         if (spte_can_locklessly_be_made_writable(old_spte) &&
686               !is_writable_pte(new_spte))
687                 flush = true;
688
689         /*
690          * Flush TLB when accessed/dirty states are changed in the page tables,
691          * to guarantee consistency between TLB and page tables.
692          */
693
694         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
695                 flush = true;
696                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
697         }
698
699         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
700                 flush = true;
701                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
702         }
703
704         return flush;
705 }
706
707 /*
708  * Rules for using mmu_spte_clear_track_bits:
709  * It sets the sptep from present to nonpresent, and track the
710  * state bits, it is used to clear the last level sptep.
711  * Returns non-zero if the PTE was previously valid.
712  */
713 static int mmu_spte_clear_track_bits(u64 *sptep)
714 {
715         kvm_pfn_t pfn;
716         u64 old_spte = *sptep;
717
718         if (!spte_has_volatile_bits(old_spte))
719                 __update_clear_spte_fast(sptep, 0ull);
720         else
721                 old_spte = __update_clear_spte_slow(sptep, 0ull);
722
723         if (!is_shadow_present_pte(old_spte))
724                 return 0;
725
726         pfn = spte_to_pfn(old_spte);
727
728         /*
729          * KVM does not hold the refcount of the page used by
730          * kvm mmu, before reclaiming the page, we should
731          * unmap it from mmu first.
732          */
733         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
734
735         if (is_accessed_spte(old_spte))
736                 kvm_set_pfn_accessed(pfn);
737
738         if (is_dirty_spte(old_spte))
739                 kvm_set_pfn_dirty(pfn);
740
741         return 1;
742 }
743
744 /*
745  * Rules for using mmu_spte_clear_no_track:
746  * Directly clear spte without caring the state bits of sptep,
747  * it is used to set the upper level spte.
748  */
749 static void mmu_spte_clear_no_track(u64 *sptep)
750 {
751         __update_clear_spte_fast(sptep, 0ull);
752 }
753
754 static u64 mmu_spte_get_lockless(u64 *sptep)
755 {
756         return __get_spte_lockless(sptep);
757 }
758
759 static u64 mark_spte_for_access_track(u64 spte)
760 {
761         if (spte_ad_enabled(spte))
762                 return spte & ~shadow_accessed_mask;
763
764         if (is_access_track_spte(spte))
765                 return spte;
766
767         /*
768          * Making an Access Tracking PTE will result in removal of write access
769          * from the PTE. So, verify that we will be able to restore the write
770          * access in the fast page fault path later on.
771          */
772         WARN_ONCE((spte & PT_WRITABLE_MASK) &&
773                   !spte_can_locklessly_be_made_writable(spte),
774                   "kvm: Writable SPTE is not locklessly dirty-trackable\n");
775
776         WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
777                           shadow_acc_track_saved_bits_shift),
778                   "kvm: Access Tracking saved bit locations are not zero\n");
779
780         spte |= (spte & shadow_acc_track_saved_bits_mask) <<
781                 shadow_acc_track_saved_bits_shift;
782         spte &= ~shadow_acc_track_mask;
783
784         return spte;
785 }
786
787 /* Restore an acc-track PTE back to a regular PTE */
788 static u64 restore_acc_track_spte(u64 spte)
789 {
790         u64 new_spte = spte;
791         u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
792                          & shadow_acc_track_saved_bits_mask;
793
794         WARN_ON_ONCE(spte_ad_enabled(spte));
795         WARN_ON_ONCE(!is_access_track_spte(spte));
796
797         new_spte &= ~shadow_acc_track_mask;
798         new_spte &= ~(shadow_acc_track_saved_bits_mask <<
799                       shadow_acc_track_saved_bits_shift);
800         new_spte |= saved_bits;
801
802         return new_spte;
803 }
804
805 /* Returns the Accessed status of the PTE and resets it at the same time. */
806 static bool mmu_spte_age(u64 *sptep)
807 {
808         u64 spte = mmu_spte_get_lockless(sptep);
809
810         if (!is_accessed_spte(spte))
811                 return false;
812
813         if (spte_ad_enabled(spte)) {
814                 clear_bit((ffs(shadow_accessed_mask) - 1),
815                           (unsigned long *)sptep);
816         } else {
817                 /*
818                  * Capture the dirty status of the page, so that it doesn't get
819                  * lost when the SPTE is marked for access tracking.
820                  */
821                 if (is_writable_pte(spte))
822                         kvm_set_pfn_dirty(spte_to_pfn(spte));
823
824                 spte = mark_spte_for_access_track(spte);
825                 mmu_spte_update_no_track(sptep, spte);
826         }
827
828         return true;
829 }
830
831 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
832 {
833         /*
834          * Prevent page table teardown by making any free-er wait during
835          * kvm_flush_remote_tlbs() IPI to all active vcpus.
836          */
837         local_irq_disable();
838
839         /*
840          * Make sure a following spte read is not reordered ahead of the write
841          * to vcpu->mode.
842          */
843         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
844 }
845
846 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
847 {
848         /*
849          * Make sure the write to vcpu->mode is not reordered in front of
850          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
851          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
852          */
853         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
854         local_irq_enable();
855 }
856
857 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
858                                   struct kmem_cache *base_cache, int min)
859 {
860         void *obj;
861
862         if (cache->nobjs >= min)
863                 return 0;
864         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
865                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
866                 if (!obj)
867                         return -ENOMEM;
868                 cache->objects[cache->nobjs++] = obj;
869         }
870         return 0;
871 }
872
873 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
874 {
875         return cache->nobjs;
876 }
877
878 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
879                                   struct kmem_cache *cache)
880 {
881         while (mc->nobjs)
882                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
883 }
884
885 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
886                                        int min)
887 {
888         void *page;
889
890         if (cache->nobjs >= min)
891                 return 0;
892         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
893                 page = (void *)__get_free_page(GFP_KERNEL);
894                 if (!page)
895                         return -ENOMEM;
896                 cache->objects[cache->nobjs++] = page;
897         }
898         return 0;
899 }
900
901 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
902 {
903         while (mc->nobjs)
904                 free_page((unsigned long)mc->objects[--mc->nobjs]);
905 }
906
907 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
908 {
909         int r;
910
911         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
912                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
913         if (r)
914                 goto out;
915         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
916         if (r)
917                 goto out;
918         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
919                                    mmu_page_header_cache, 4);
920 out:
921         return r;
922 }
923
924 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
925 {
926         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
927                                 pte_list_desc_cache);
928         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
929         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
930                                 mmu_page_header_cache);
931 }
932
933 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
934 {
935         void *p;
936
937         BUG_ON(!mc->nobjs);
938         p = mc->objects[--mc->nobjs];
939         return p;
940 }
941
942 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
943 {
944         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
945 }
946
947 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
948 {
949         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
950 }
951
952 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
953 {
954         if (!sp->role.direct)
955                 return sp->gfns[index];
956
957         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
958 }
959
960 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
961 {
962         if (sp->role.direct)
963                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
964         else
965                 sp->gfns[index] = gfn;
966 }
967
968 /*
969  * Return the pointer to the large page information for a given gfn,
970  * handling slots that are not large page aligned.
971  */
972 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
973                                               struct kvm_memory_slot *slot,
974                                               int level)
975 {
976         unsigned long idx;
977
978         idx = gfn_to_index(gfn, slot->base_gfn, level);
979         return &slot->arch.lpage_info[level - 2][idx];
980 }
981
982 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
983                                             gfn_t gfn, int count)
984 {
985         struct kvm_lpage_info *linfo;
986         int i;
987
988         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
989                 linfo = lpage_info_slot(gfn, slot, i);
990                 linfo->disallow_lpage += count;
991                 WARN_ON(linfo->disallow_lpage < 0);
992         }
993 }
994
995 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
996 {
997         update_gfn_disallow_lpage_count(slot, gfn, 1);
998 }
999
1000 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1001 {
1002         update_gfn_disallow_lpage_count(slot, gfn, -1);
1003 }
1004
1005 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1006 {
1007         struct kvm_memslots *slots;
1008         struct kvm_memory_slot *slot;
1009         gfn_t gfn;
1010
1011         kvm->arch.indirect_shadow_pages++;
1012         gfn = sp->gfn;
1013         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1014         slot = __gfn_to_memslot(slots, gfn);
1015
1016         /* the non-leaf shadow pages are keeping readonly. */
1017         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1018                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1019                                                     KVM_PAGE_TRACK_WRITE);
1020
1021         kvm_mmu_gfn_disallow_lpage(slot, gfn);
1022 }
1023
1024 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1025 {
1026         struct kvm_memslots *slots;
1027         struct kvm_memory_slot *slot;
1028         gfn_t gfn;
1029
1030         kvm->arch.indirect_shadow_pages--;
1031         gfn = sp->gfn;
1032         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1033         slot = __gfn_to_memslot(slots, gfn);
1034         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1035                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1036                                                        KVM_PAGE_TRACK_WRITE);
1037
1038         kvm_mmu_gfn_allow_lpage(slot, gfn);
1039 }
1040
1041 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1042                                           struct kvm_memory_slot *slot)
1043 {
1044         struct kvm_lpage_info *linfo;
1045
1046         if (slot) {
1047                 linfo = lpage_info_slot(gfn, slot, level);
1048                 return !!linfo->disallow_lpage;
1049         }
1050
1051         return true;
1052 }
1053
1054 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1055                                         int level)
1056 {
1057         struct kvm_memory_slot *slot;
1058
1059         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1060         return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1061 }
1062
1063 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
1064 {
1065         unsigned long page_size;
1066         int i, ret = 0;
1067
1068         page_size = kvm_host_page_size(kvm, gfn);
1069
1070         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1071                 if (page_size >= KVM_HPAGE_SIZE(i))
1072                         ret = i;
1073                 else
1074                         break;
1075         }
1076
1077         return ret;
1078 }
1079
1080 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1081                                           bool no_dirty_log)
1082 {
1083         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1084                 return false;
1085         if (no_dirty_log && slot->dirty_bitmap)
1086                 return false;
1087
1088         return true;
1089 }
1090
1091 static struct kvm_memory_slot *
1092 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1093                             bool no_dirty_log)
1094 {
1095         struct kvm_memory_slot *slot;
1096
1097         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1098         if (!memslot_valid_for_gpte(slot, no_dirty_log))
1099                 slot = NULL;
1100
1101         return slot;
1102 }
1103
1104 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1105                          bool *force_pt_level)
1106 {
1107         int host_level, level, max_level;
1108         struct kvm_memory_slot *slot;
1109
1110         if (unlikely(*force_pt_level))
1111                 return PT_PAGE_TABLE_LEVEL;
1112
1113         slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1114         *force_pt_level = !memslot_valid_for_gpte(slot, true);
1115         if (unlikely(*force_pt_level))
1116                 return PT_PAGE_TABLE_LEVEL;
1117
1118         host_level = host_mapping_level(vcpu->kvm, large_gfn);
1119
1120         if (host_level == PT_PAGE_TABLE_LEVEL)
1121                 return host_level;
1122
1123         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1124
1125         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1126                 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1127                         break;
1128
1129         return level - 1;
1130 }
1131
1132 /*
1133  * About rmap_head encoding:
1134  *
1135  * If the bit zero of rmap_head->val is clear, then it points to the only spte
1136  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1137  * pte_list_desc containing more mappings.
1138  */
1139
1140 /*
1141  * Returns the number of pointers in the rmap chain, not counting the new one.
1142  */
1143 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1144                         struct kvm_rmap_head *rmap_head)
1145 {
1146         struct pte_list_desc *desc;
1147         int i, count = 0;
1148
1149         if (!rmap_head->val) {
1150                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1151                 rmap_head->val = (unsigned long)spte;
1152         } else if (!(rmap_head->val & 1)) {
1153                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1154                 desc = mmu_alloc_pte_list_desc(vcpu);
1155                 desc->sptes[0] = (u64 *)rmap_head->val;
1156                 desc->sptes[1] = spte;
1157                 rmap_head->val = (unsigned long)desc | 1;
1158                 ++count;
1159         } else {
1160                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1161                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1162                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1163                         desc = desc->more;
1164                         count += PTE_LIST_EXT;
1165                 }
1166                 if (desc->sptes[PTE_LIST_EXT-1]) {
1167                         desc->more = mmu_alloc_pte_list_desc(vcpu);
1168                         desc = desc->more;
1169                 }
1170                 for (i = 0; desc->sptes[i]; ++i)
1171                         ++count;
1172                 desc->sptes[i] = spte;
1173         }
1174         return count;
1175 }
1176
1177 static void
1178 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1179                            struct pte_list_desc *desc, int i,
1180                            struct pte_list_desc *prev_desc)
1181 {
1182         int j;
1183
1184         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1185                 ;
1186         desc->sptes[i] = desc->sptes[j];
1187         desc->sptes[j] = NULL;
1188         if (j != 0)
1189                 return;
1190         if (!prev_desc && !desc->more)
1191                 rmap_head->val = (unsigned long)desc->sptes[0];
1192         else
1193                 if (prev_desc)
1194                         prev_desc->more = desc->more;
1195                 else
1196                         rmap_head->val = (unsigned long)desc->more | 1;
1197         mmu_free_pte_list_desc(desc);
1198 }
1199
1200 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1201 {
1202         struct pte_list_desc *desc;
1203         struct pte_list_desc *prev_desc;
1204         int i;
1205
1206         if (!rmap_head->val) {
1207                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1208                 BUG();
1209         } else if (!(rmap_head->val & 1)) {
1210                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
1211                 if ((u64 *)rmap_head->val != spte) {
1212                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
1213                         BUG();
1214                 }
1215                 rmap_head->val = 0;
1216         } else {
1217                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
1218                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1219                 prev_desc = NULL;
1220                 while (desc) {
1221                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1222                                 if (desc->sptes[i] == spte) {
1223                                         pte_list_desc_remove_entry(rmap_head,
1224                                                         desc, i, prev_desc);
1225                                         return;
1226                                 }
1227                         }
1228                         prev_desc = desc;
1229                         desc = desc->more;
1230                 }
1231                 pr_err("pte_list_remove: %p many->many\n", spte);
1232                 BUG();
1233         }
1234 }
1235
1236 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1237                                            struct kvm_memory_slot *slot)
1238 {
1239         unsigned long idx;
1240
1241         idx = gfn_to_index(gfn, slot->base_gfn, level);
1242         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1243 }
1244
1245 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1246                                          struct kvm_mmu_page *sp)
1247 {
1248         struct kvm_memslots *slots;
1249         struct kvm_memory_slot *slot;
1250
1251         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1252         slot = __gfn_to_memslot(slots, gfn);
1253         return __gfn_to_rmap(gfn, sp->role.level, slot);
1254 }
1255
1256 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1257 {
1258         struct kvm_mmu_memory_cache *cache;
1259
1260         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1261         return mmu_memory_cache_free_objects(cache);
1262 }
1263
1264 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1265 {
1266         struct kvm_mmu_page *sp;
1267         struct kvm_rmap_head *rmap_head;
1268
1269         sp = page_header(__pa(spte));
1270         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1271         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1272         return pte_list_add(vcpu, spte, rmap_head);
1273 }
1274
1275 static void rmap_remove(struct kvm *kvm, u64 *spte)
1276 {
1277         struct kvm_mmu_page *sp;
1278         gfn_t gfn;
1279         struct kvm_rmap_head *rmap_head;
1280
1281         sp = page_header(__pa(spte));
1282         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1283         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1284         pte_list_remove(spte, rmap_head);
1285 }
1286
1287 /*
1288  * Used by the following functions to iterate through the sptes linked by a
1289  * rmap.  All fields are private and not assumed to be used outside.
1290  */
1291 struct rmap_iterator {
1292         /* private fields */
1293         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1294         int pos;                        /* index of the sptep */
1295 };
1296
1297 /*
1298  * Iteration must be started by this function.  This should also be used after
1299  * removing/dropping sptes from the rmap link because in such cases the
1300  * information in the itererator may not be valid.
1301  *
1302  * Returns sptep if found, NULL otherwise.
1303  */
1304 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1305                            struct rmap_iterator *iter)
1306 {
1307         u64 *sptep;
1308
1309         if (!rmap_head->val)
1310                 return NULL;
1311
1312         if (!(rmap_head->val & 1)) {
1313                 iter->desc = NULL;
1314                 sptep = (u64 *)rmap_head->val;
1315                 goto out;
1316         }
1317
1318         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1319         iter->pos = 0;
1320         sptep = iter->desc->sptes[iter->pos];
1321 out:
1322         BUG_ON(!is_shadow_present_pte(*sptep));
1323         return sptep;
1324 }
1325
1326 /*
1327  * Must be used with a valid iterator: e.g. after rmap_get_first().
1328  *
1329  * Returns sptep if found, NULL otherwise.
1330  */
1331 static u64 *rmap_get_next(struct rmap_iterator *iter)
1332 {
1333         u64 *sptep;
1334
1335         if (iter->desc) {
1336                 if (iter->pos < PTE_LIST_EXT - 1) {
1337                         ++iter->pos;
1338                         sptep = iter->desc->sptes[iter->pos];
1339                         if (sptep)
1340                                 goto out;
1341                 }
1342
1343                 iter->desc = iter->desc->more;
1344
1345                 if (iter->desc) {
1346                         iter->pos = 0;
1347                         /* desc->sptes[0] cannot be NULL */
1348                         sptep = iter->desc->sptes[iter->pos];
1349                         goto out;
1350                 }
1351         }
1352
1353         return NULL;
1354 out:
1355         BUG_ON(!is_shadow_present_pte(*sptep));
1356         return sptep;
1357 }
1358
1359 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1360         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1361              _spte_; _spte_ = rmap_get_next(_iter_))
1362
1363 static void drop_spte(struct kvm *kvm, u64 *sptep)
1364 {
1365         if (mmu_spte_clear_track_bits(sptep))
1366                 rmap_remove(kvm, sptep);
1367 }
1368
1369
1370 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1371 {
1372         if (is_large_pte(*sptep)) {
1373                 WARN_ON(page_header(__pa(sptep))->role.level ==
1374                         PT_PAGE_TABLE_LEVEL);
1375                 drop_spte(kvm, sptep);
1376                 --kvm->stat.lpages;
1377                 return true;
1378         }
1379
1380         return false;
1381 }
1382
1383 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1384 {
1385         if (__drop_large_spte(vcpu->kvm, sptep))
1386                 kvm_flush_remote_tlbs(vcpu->kvm);
1387 }
1388
1389 /*
1390  * Write-protect on the specified @sptep, @pt_protect indicates whether
1391  * spte write-protection is caused by protecting shadow page table.
1392  *
1393  * Note: write protection is difference between dirty logging and spte
1394  * protection:
1395  * - for dirty logging, the spte can be set to writable at anytime if
1396  *   its dirty bitmap is properly set.
1397  * - for spte protection, the spte can be writable only after unsync-ing
1398  *   shadow page.
1399  *
1400  * Return true if tlb need be flushed.
1401  */
1402 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1403 {
1404         u64 spte = *sptep;
1405
1406         if (!is_writable_pte(spte) &&
1407               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1408                 return false;
1409
1410         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1411
1412         if (pt_protect)
1413                 spte &= ~SPTE_MMU_WRITEABLE;
1414         spte = spte & ~PT_WRITABLE_MASK;
1415
1416         return mmu_spte_update(sptep, spte);
1417 }
1418
1419 static bool __rmap_write_protect(struct kvm *kvm,
1420                                  struct kvm_rmap_head *rmap_head,
1421                                  bool pt_protect)
1422 {
1423         u64 *sptep;
1424         struct rmap_iterator iter;
1425         bool flush = false;
1426
1427         for_each_rmap_spte(rmap_head, &iter, sptep)
1428                 flush |= spte_write_protect(sptep, pt_protect);
1429
1430         return flush;
1431 }
1432
1433 static bool spte_clear_dirty(u64 *sptep)
1434 {
1435         u64 spte = *sptep;
1436
1437         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1438
1439         spte &= ~shadow_dirty_mask;
1440
1441         return mmu_spte_update(sptep, spte);
1442 }
1443
1444 static bool wrprot_ad_disabled_spte(u64 *sptep)
1445 {
1446         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1447                                                (unsigned long *)sptep);
1448         if (was_writable)
1449                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1450
1451         return was_writable;
1452 }
1453
1454 /*
1455  * Gets the GFN ready for another round of dirty logging by clearing the
1456  *      - D bit on ad-enabled SPTEs, and
1457  *      - W bit on ad-disabled SPTEs.
1458  * Returns true iff any D or W bits were cleared.
1459  */
1460 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1461 {
1462         u64 *sptep;
1463         struct rmap_iterator iter;
1464         bool flush = false;
1465
1466         for_each_rmap_spte(rmap_head, &iter, sptep)
1467                 if (spte_ad_enabled(*sptep))
1468                         flush |= spte_clear_dirty(sptep);
1469                 else
1470                         flush |= wrprot_ad_disabled_spte(sptep);
1471
1472         return flush;
1473 }
1474
1475 static bool spte_set_dirty(u64 *sptep)
1476 {
1477         u64 spte = *sptep;
1478
1479         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1480
1481         spte |= shadow_dirty_mask;
1482
1483         return mmu_spte_update(sptep, spte);
1484 }
1485
1486 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1487 {
1488         u64 *sptep;
1489         struct rmap_iterator iter;
1490         bool flush = false;
1491
1492         for_each_rmap_spte(rmap_head, &iter, sptep)
1493                 if (spte_ad_enabled(*sptep))
1494                         flush |= spte_set_dirty(sptep);
1495
1496         return flush;
1497 }
1498
1499 /**
1500  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1501  * @kvm: kvm instance
1502  * @slot: slot to protect
1503  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1504  * @mask: indicates which pages we should protect
1505  *
1506  * Used when we do not need to care about huge page mappings: e.g. during dirty
1507  * logging we do not have any such mappings.
1508  */
1509 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1510                                      struct kvm_memory_slot *slot,
1511                                      gfn_t gfn_offset, unsigned long mask)
1512 {
1513         struct kvm_rmap_head *rmap_head;
1514
1515         while (mask) {
1516                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1517                                           PT_PAGE_TABLE_LEVEL, slot);
1518                 __rmap_write_protect(kvm, rmap_head, false);
1519
1520                 /* clear the first set bit */
1521                 mask &= mask - 1;
1522         }
1523 }
1524
1525 /**
1526  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1527  * protect the page if the D-bit isn't supported.
1528  * @kvm: kvm instance
1529  * @slot: slot to clear D-bit
1530  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1531  * @mask: indicates which pages we should clear D-bit
1532  *
1533  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1534  */
1535 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1536                                      struct kvm_memory_slot *slot,
1537                                      gfn_t gfn_offset, unsigned long mask)
1538 {
1539         struct kvm_rmap_head *rmap_head;
1540
1541         while (mask) {
1542                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1543                                           PT_PAGE_TABLE_LEVEL, slot);
1544                 __rmap_clear_dirty(kvm, rmap_head);
1545
1546                 /* clear the first set bit */
1547                 mask &= mask - 1;
1548         }
1549 }
1550 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1551
1552 /**
1553  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1554  * PT level pages.
1555  *
1556  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1557  * enable dirty logging for them.
1558  *
1559  * Used when we do not need to care about huge page mappings: e.g. during dirty
1560  * logging we do not have any such mappings.
1561  */
1562 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1563                                 struct kvm_memory_slot *slot,
1564                                 gfn_t gfn_offset, unsigned long mask)
1565 {
1566         if (kvm_x86_ops->enable_log_dirty_pt_masked)
1567                 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1568                                 mask);
1569         else
1570                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1571 }
1572
1573 /**
1574  * kvm_arch_write_log_dirty - emulate dirty page logging
1575  * @vcpu: Guest mode vcpu
1576  *
1577  * Emulate arch specific page modification logging for the
1578  * nested hypervisor
1579  */
1580 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1581 {
1582         if (kvm_x86_ops->write_log_dirty)
1583                 return kvm_x86_ops->write_log_dirty(vcpu);
1584
1585         return 0;
1586 }
1587
1588 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1589                                     struct kvm_memory_slot *slot, u64 gfn)
1590 {
1591         struct kvm_rmap_head *rmap_head;
1592         int i;
1593         bool write_protected = false;
1594
1595         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1596                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1597                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1598         }
1599
1600         return write_protected;
1601 }
1602
1603 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1604 {
1605         struct kvm_memory_slot *slot;
1606
1607         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1608         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1609 }
1610
1611 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1612 {
1613         u64 *sptep;
1614         struct rmap_iterator iter;
1615         bool flush = false;
1616
1617         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1618                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1619
1620                 drop_spte(kvm, sptep);
1621                 flush = true;
1622         }
1623
1624         return flush;
1625 }
1626
1627 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1628                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1629                            unsigned long data)
1630 {
1631         return kvm_zap_rmapp(kvm, rmap_head);
1632 }
1633
1634 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1635                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1636                              unsigned long data)
1637 {
1638         u64 *sptep;
1639         struct rmap_iterator iter;
1640         int need_flush = 0;
1641         u64 new_spte;
1642         pte_t *ptep = (pte_t *)data;
1643         kvm_pfn_t new_pfn;
1644
1645         WARN_ON(pte_huge(*ptep));
1646         new_pfn = pte_pfn(*ptep);
1647
1648 restart:
1649         for_each_rmap_spte(rmap_head, &iter, sptep) {
1650                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1651                             sptep, *sptep, gfn, level);
1652
1653                 need_flush = 1;
1654
1655                 if (pte_write(*ptep)) {
1656                         drop_spte(kvm, sptep);
1657                         goto restart;
1658                 } else {
1659                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1660                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1661
1662                         new_spte &= ~PT_WRITABLE_MASK;
1663                         new_spte &= ~SPTE_HOST_WRITEABLE;
1664
1665                         new_spte = mark_spte_for_access_track(new_spte);
1666
1667                         mmu_spte_clear_track_bits(sptep);
1668                         mmu_spte_set(sptep, new_spte);
1669                 }
1670         }
1671
1672         if (need_flush)
1673                 kvm_flush_remote_tlbs(kvm);
1674
1675         return 0;
1676 }
1677
1678 struct slot_rmap_walk_iterator {
1679         /* input fields. */
1680         struct kvm_memory_slot *slot;
1681         gfn_t start_gfn;
1682         gfn_t end_gfn;
1683         int start_level;
1684         int end_level;
1685
1686         /* output fields. */
1687         gfn_t gfn;
1688         struct kvm_rmap_head *rmap;
1689         int level;
1690
1691         /* private field. */
1692         struct kvm_rmap_head *end_rmap;
1693 };
1694
1695 static void
1696 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1697 {
1698         iterator->level = level;
1699         iterator->gfn = iterator->start_gfn;
1700         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1701         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1702                                            iterator->slot);
1703 }
1704
1705 static void
1706 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1707                     struct kvm_memory_slot *slot, int start_level,
1708                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1709 {
1710         iterator->slot = slot;
1711         iterator->start_level = start_level;
1712         iterator->end_level = end_level;
1713         iterator->start_gfn = start_gfn;
1714         iterator->end_gfn = end_gfn;
1715
1716         rmap_walk_init_level(iterator, iterator->start_level);
1717 }
1718
1719 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1720 {
1721         return !!iterator->rmap;
1722 }
1723
1724 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1725 {
1726         if (++iterator->rmap <= iterator->end_rmap) {
1727                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1728                 return;
1729         }
1730
1731         if (++iterator->level > iterator->end_level) {
1732                 iterator->rmap = NULL;
1733                 return;
1734         }
1735
1736         rmap_walk_init_level(iterator, iterator->level);
1737 }
1738
1739 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1740            _start_gfn, _end_gfn, _iter_)                                \
1741         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1742                                  _end_level_, _start_gfn, _end_gfn);    \
1743              slot_rmap_walk_okay(_iter_);                               \
1744              slot_rmap_walk_next(_iter_))
1745
1746 static int kvm_handle_hva_range(struct kvm *kvm,
1747                                 unsigned long start,
1748                                 unsigned long end,
1749                                 unsigned long data,
1750                                 int (*handler)(struct kvm *kvm,
1751                                                struct kvm_rmap_head *rmap_head,
1752                                                struct kvm_memory_slot *slot,
1753                                                gfn_t gfn,
1754                                                int level,
1755                                                unsigned long data))
1756 {
1757         struct kvm_memslots *slots;
1758         struct kvm_memory_slot *memslot;
1759         struct slot_rmap_walk_iterator iterator;
1760         int ret = 0;
1761         int i;
1762
1763         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1764                 slots = __kvm_memslots(kvm, i);
1765                 kvm_for_each_memslot(memslot, slots) {
1766                         unsigned long hva_start, hva_end;
1767                         gfn_t gfn_start, gfn_end;
1768
1769                         hva_start = max(start, memslot->userspace_addr);
1770                         hva_end = min(end, memslot->userspace_addr +
1771                                       (memslot->npages << PAGE_SHIFT));
1772                         if (hva_start >= hva_end)
1773                                 continue;
1774                         /*
1775                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1776                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1777                          */
1778                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1779                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1780
1781                         for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1782                                                  PT_MAX_HUGEPAGE_LEVEL,
1783                                                  gfn_start, gfn_end - 1,
1784                                                  &iterator)
1785                                 ret |= handler(kvm, iterator.rmap, memslot,
1786                                                iterator.gfn, iterator.level, data);
1787                 }
1788         }
1789
1790         return ret;
1791 }
1792
1793 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1794                           unsigned long data,
1795                           int (*handler)(struct kvm *kvm,
1796                                          struct kvm_rmap_head *rmap_head,
1797                                          struct kvm_memory_slot *slot,
1798                                          gfn_t gfn, int level,
1799                                          unsigned long data))
1800 {
1801         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1802 }
1803
1804 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1805 {
1806         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1807 }
1808
1809 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1810 {
1811         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1812 }
1813
1814 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1815 {
1816         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1817 }
1818
1819 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1820                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1821                          unsigned long data)
1822 {
1823         u64 *sptep;
1824         struct rmap_iterator uninitialized_var(iter);
1825         int young = 0;
1826
1827         for_each_rmap_spte(rmap_head, &iter, sptep)
1828                 young |= mmu_spte_age(sptep);
1829
1830         trace_kvm_age_page(gfn, level, slot, young);
1831         return young;
1832 }
1833
1834 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1835                               struct kvm_memory_slot *slot, gfn_t gfn,
1836                               int level, unsigned long data)
1837 {
1838         u64 *sptep;
1839         struct rmap_iterator iter;
1840
1841         for_each_rmap_spte(rmap_head, &iter, sptep)
1842                 if (is_accessed_spte(*sptep))
1843                         return 1;
1844         return 0;
1845 }
1846
1847 #define RMAP_RECYCLE_THRESHOLD 1000
1848
1849 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1850 {
1851         struct kvm_rmap_head *rmap_head;
1852         struct kvm_mmu_page *sp;
1853
1854         sp = page_header(__pa(spte));
1855
1856         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1857
1858         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1859         kvm_flush_remote_tlbs(vcpu->kvm);
1860 }
1861
1862 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1863 {
1864         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1865 }
1866
1867 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1868 {
1869         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1870 }
1871
1872 #ifdef MMU_DEBUG
1873 static int is_empty_shadow_page(u64 *spt)
1874 {
1875         u64 *pos;
1876         u64 *end;
1877
1878         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1879                 if (is_shadow_present_pte(*pos)) {
1880                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1881                                pos, *pos);
1882                         return 0;
1883                 }
1884         return 1;
1885 }
1886 #endif
1887
1888 /*
1889  * This value is the sum of all of the kvm instances's
1890  * kvm->arch.n_used_mmu_pages values.  We need a global,
1891  * aggregate version in order to make the slab shrinker
1892  * faster
1893  */
1894 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1895 {
1896         kvm->arch.n_used_mmu_pages += nr;
1897         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1898 }
1899
1900 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1901 {
1902         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1903         hlist_del(&sp->hash_link);
1904         list_del(&sp->link);
1905         free_page((unsigned long)sp->spt);
1906         if (!sp->role.direct)
1907                 free_page((unsigned long)sp->gfns);
1908         kmem_cache_free(mmu_page_header_cache, sp);
1909 }
1910
1911 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1912 {
1913         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1914 }
1915
1916 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1917                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1918 {
1919         if (!parent_pte)
1920                 return;
1921
1922         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1923 }
1924
1925 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1926                                        u64 *parent_pte)
1927 {
1928         pte_list_remove(parent_pte, &sp->parent_ptes);
1929 }
1930
1931 static void drop_parent_pte(struct kvm_mmu_page *sp,
1932                             u64 *parent_pte)
1933 {
1934         mmu_page_remove_parent_pte(sp, parent_pte);
1935         mmu_spte_clear_no_track(parent_pte);
1936 }
1937
1938 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1939 {
1940         struct kvm_mmu_page *sp;
1941
1942         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1943         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1944         if (!direct)
1945                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1946         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1947
1948         /*
1949          * The active_mmu_pages list is the FIFO list, do not move the
1950          * page until it is zapped. kvm_zap_obsolete_pages depends on
1951          * this feature. See the comments in kvm_zap_obsolete_pages().
1952          */
1953         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1954         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1955         return sp;
1956 }
1957
1958 static void mark_unsync(u64 *spte);
1959 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1960 {
1961         u64 *sptep;
1962         struct rmap_iterator iter;
1963
1964         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1965                 mark_unsync(sptep);
1966         }
1967 }
1968
1969 static void mark_unsync(u64 *spte)
1970 {
1971         struct kvm_mmu_page *sp;
1972         unsigned int index;
1973
1974         sp = page_header(__pa(spte));
1975         index = spte - sp->spt;
1976         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1977                 return;
1978         if (sp->unsync_children++)
1979                 return;
1980         kvm_mmu_mark_parents_unsync(sp);
1981 }
1982
1983 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1984                                struct kvm_mmu_page *sp)
1985 {
1986         return 0;
1987 }
1988
1989 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1990 {
1991 }
1992
1993 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1994                                  struct kvm_mmu_page *sp, u64 *spte,
1995                                  const void *pte)
1996 {
1997         WARN_ON(1);
1998 }
1999
2000 #define KVM_PAGE_ARRAY_NR 16
2001
2002 struct kvm_mmu_pages {
2003         struct mmu_page_and_offset {
2004                 struct kvm_mmu_page *sp;
2005                 unsigned int idx;
2006         } page[KVM_PAGE_ARRAY_NR];
2007         unsigned int nr;
2008 };
2009
2010 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2011                          int idx)
2012 {
2013         int i;
2014
2015         if (sp->unsync)
2016                 for (i=0; i < pvec->nr; i++)
2017                         if (pvec->page[i].sp == sp)
2018                                 return 0;
2019
2020         pvec->page[pvec->nr].sp = sp;
2021         pvec->page[pvec->nr].idx = idx;
2022         pvec->nr++;
2023         return (pvec->nr == KVM_PAGE_ARRAY_NR);
2024 }
2025
2026 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2027 {
2028         --sp->unsync_children;
2029         WARN_ON((int)sp->unsync_children < 0);
2030         __clear_bit(idx, sp->unsync_child_bitmap);
2031 }
2032
2033 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2034                            struct kvm_mmu_pages *pvec)
2035 {
2036         int i, ret, nr_unsync_leaf = 0;
2037
2038         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2039                 struct kvm_mmu_page *child;
2040                 u64 ent = sp->spt[i];
2041
2042                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2043                         clear_unsync_child_bit(sp, i);
2044                         continue;
2045                 }
2046
2047                 child = page_header(ent & PT64_BASE_ADDR_MASK);
2048
2049                 if (child->unsync_children) {
2050                         if (mmu_pages_add(pvec, child, i))
2051                                 return -ENOSPC;
2052
2053                         ret = __mmu_unsync_walk(child, pvec);
2054                         if (!ret) {
2055                                 clear_unsync_child_bit(sp, i);
2056                                 continue;
2057                         } else if (ret > 0) {
2058                                 nr_unsync_leaf += ret;
2059                         } else
2060                                 return ret;
2061                 } else if (child->unsync) {
2062                         nr_unsync_leaf++;
2063                         if (mmu_pages_add(pvec, child, i))
2064                                 return -ENOSPC;
2065                 } else
2066                         clear_unsync_child_bit(sp, i);
2067         }
2068
2069         return nr_unsync_leaf;
2070 }
2071
2072 #define INVALID_INDEX (-1)
2073
2074 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2075                            struct kvm_mmu_pages *pvec)
2076 {
2077         pvec->nr = 0;
2078         if (!sp->unsync_children)
2079                 return 0;
2080
2081         mmu_pages_add(pvec, sp, INVALID_INDEX);
2082         return __mmu_unsync_walk(sp, pvec);
2083 }
2084
2085 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2086 {
2087         WARN_ON(!sp->unsync);
2088         trace_kvm_mmu_sync_page(sp);
2089         sp->unsync = 0;
2090         --kvm->stat.mmu_unsync;
2091 }
2092
2093 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2094                                     struct list_head *invalid_list);
2095 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2096                                     struct list_head *invalid_list);
2097
2098 /*
2099  * NOTE: we should pay more attention on the zapped-obsolete page
2100  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
2101  * since it has been deleted from active_mmu_pages but still can be found
2102  * at hast list.
2103  *
2104  * for_each_valid_sp() has skipped that kind of pages.
2105  */
2106 #define for_each_valid_sp(_kvm, _sp, _gfn)                              \
2107         hlist_for_each_entry(_sp,                                       \
2108           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2109                 if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) {    \
2110                 } else
2111
2112 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
2113         for_each_valid_sp(_kvm, _sp, _gfn)                              \
2114                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2115
2116 /* @sp->gfn should be write-protected at the call site */
2117 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2118                             struct list_head *invalid_list)
2119 {
2120         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
2121                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2122                 return false;
2123         }
2124
2125         if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
2126                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2127                 return false;
2128         }
2129
2130         return true;
2131 }
2132
2133 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2134                                  struct list_head *invalid_list,
2135                                  bool remote_flush, bool local_flush)
2136 {
2137         if (!list_empty(invalid_list)) {
2138                 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
2139                 return;
2140         }
2141
2142         if (remote_flush)
2143                 kvm_flush_remote_tlbs(vcpu->kvm);
2144         else if (local_flush)
2145                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2146 }
2147
2148 #ifdef CONFIG_KVM_MMU_AUDIT
2149 #include "mmu_audit.c"
2150 #else
2151 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2152 static void mmu_audit_disable(void) { }
2153 #endif
2154
2155 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2156 {
2157         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2158 }
2159
2160 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2161                          struct list_head *invalid_list)
2162 {
2163         kvm_unlink_unsync_page(vcpu->kvm, sp);
2164         return __kvm_sync_page(vcpu, sp, invalid_list);
2165 }
2166
2167 /* @gfn should be write-protected at the call site */
2168 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2169                            struct list_head *invalid_list)
2170 {
2171         struct kvm_mmu_page *s;
2172         bool ret = false;
2173
2174         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2175                 if (!s->unsync)
2176                         continue;
2177
2178                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2179                 ret |= kvm_sync_page(vcpu, s, invalid_list);
2180         }
2181
2182         return ret;
2183 }
2184
2185 struct mmu_page_path {
2186         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2187         unsigned int idx[PT64_ROOT_MAX_LEVEL];
2188 };
2189
2190 #define for_each_sp(pvec, sp, parents, i)                       \
2191                 for (i = mmu_pages_first(&pvec, &parents);      \
2192                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
2193                         i = mmu_pages_next(&pvec, &parents, i))
2194
2195 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2196                           struct mmu_page_path *parents,
2197                           int i)
2198 {
2199         int n;
2200
2201         for (n = i+1; n < pvec->nr; n++) {
2202                 struct kvm_mmu_page *sp = pvec->page[n].sp;
2203                 unsigned idx = pvec->page[n].idx;
2204                 int level = sp->role.level;
2205
2206                 parents->idx[level-1] = idx;
2207                 if (level == PT_PAGE_TABLE_LEVEL)
2208                         break;
2209
2210                 parents->parent[level-2] = sp;
2211         }
2212
2213         return n;
2214 }
2215
2216 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2217                            struct mmu_page_path *parents)
2218 {
2219         struct kvm_mmu_page *sp;
2220         int level;
2221
2222         if (pvec->nr == 0)
2223                 return 0;
2224
2225         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2226
2227         sp = pvec->page[0].sp;
2228         level = sp->role.level;
2229         WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2230
2231         parents->parent[level-2] = sp;
2232
2233         /* Also set up a sentinel.  Further entries in pvec are all
2234          * children of sp, so this element is never overwritten.
2235          */
2236         parents->parent[level-1] = NULL;
2237         return mmu_pages_next(pvec, parents, 0);
2238 }
2239
2240 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2241 {
2242         struct kvm_mmu_page *sp;
2243         unsigned int level = 0;
2244
2245         do {
2246                 unsigned int idx = parents->idx[level];
2247                 sp = parents->parent[level];
2248                 if (!sp)
2249                         return;
2250
2251                 WARN_ON(idx == INVALID_INDEX);
2252                 clear_unsync_child_bit(sp, idx);
2253                 level++;
2254         } while (!sp->unsync_children);
2255 }
2256
2257 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2258                               struct kvm_mmu_page *parent)
2259 {
2260         int i;
2261         struct kvm_mmu_page *sp;
2262         struct mmu_page_path parents;
2263         struct kvm_mmu_pages pages;
2264         LIST_HEAD(invalid_list);
2265         bool flush = false;
2266
2267         while (mmu_unsync_walk(parent, &pages)) {
2268                 bool protected = false;
2269
2270                 for_each_sp(pages, sp, parents, i)
2271                         protected |= rmap_write_protect(vcpu, sp->gfn);
2272
2273                 if (protected) {
2274                         kvm_flush_remote_tlbs(vcpu->kvm);
2275                         flush = false;
2276                 }
2277
2278                 for_each_sp(pages, sp, parents, i) {
2279                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2280                         mmu_pages_clear_parents(&parents);
2281                 }
2282                 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2283                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2284                         cond_resched_lock(&vcpu->kvm->mmu_lock);
2285                         flush = false;
2286                 }
2287         }
2288
2289         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2290 }
2291
2292 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2293 {
2294         atomic_set(&sp->write_flooding_count,  0);
2295 }
2296
2297 static void clear_sp_write_flooding_count(u64 *spte)
2298 {
2299         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2300
2301         __clear_sp_write_flooding_count(sp);
2302 }
2303
2304 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2305                                              gfn_t gfn,
2306                                              gva_t gaddr,
2307                                              unsigned level,
2308                                              int direct,
2309                                              unsigned access)
2310 {
2311         union kvm_mmu_page_role role;
2312         unsigned quadrant;
2313         struct kvm_mmu_page *sp;
2314         bool need_sync = false;
2315         bool flush = false;
2316         int collisions = 0;
2317         LIST_HEAD(invalid_list);
2318
2319         role = vcpu->arch.mmu.base_role;
2320         role.level = level;
2321         role.direct = direct;
2322         if (role.direct)
2323                 role.cr4_pae = 0;
2324         role.access = access;
2325         if (!vcpu->arch.mmu.direct_map
2326             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2327                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2328                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2329                 role.quadrant = quadrant;
2330         }
2331         for_each_valid_sp(vcpu->kvm, sp, gfn) {
2332                 if (sp->gfn != gfn) {
2333                         collisions++;
2334                         continue;
2335                 }
2336
2337                 if (!need_sync && sp->unsync)
2338                         need_sync = true;
2339
2340                 if (sp->role.word != role.word)
2341                         continue;
2342
2343                 if (sp->unsync) {
2344                         /* The page is good, but __kvm_sync_page might still end
2345                          * up zapping it.  If so, break in order to rebuild it.
2346                          */
2347                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2348                                 break;
2349
2350                         WARN_ON(!list_empty(&invalid_list));
2351                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2352                 }
2353
2354                 if (sp->unsync_children)
2355                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2356
2357                 __clear_sp_write_flooding_count(sp);
2358                 trace_kvm_mmu_get_page(sp, false);
2359                 goto out;
2360         }
2361
2362         ++vcpu->kvm->stat.mmu_cache_miss;
2363
2364         sp = kvm_mmu_alloc_page(vcpu, direct);
2365
2366         sp->gfn = gfn;
2367         sp->role = role;
2368         hlist_add_head(&sp->hash_link,
2369                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2370         if (!direct) {
2371                 /*
2372                  * we should do write protection before syncing pages
2373                  * otherwise the content of the synced shadow page may
2374                  * be inconsistent with guest page table.
2375                  */
2376                 account_shadowed(vcpu->kvm, sp);
2377                 if (level == PT_PAGE_TABLE_LEVEL &&
2378                       rmap_write_protect(vcpu, gfn))
2379                         kvm_flush_remote_tlbs(vcpu->kvm);
2380
2381                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2382                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2383         }
2384         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2385         clear_page(sp->spt);
2386         trace_kvm_mmu_get_page(sp, true);
2387
2388         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2389 out:
2390         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2391                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2392         return sp;
2393 }
2394
2395 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2396                              struct kvm_vcpu *vcpu, u64 addr)
2397 {
2398         iterator->addr = addr;
2399         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2400         iterator->level = vcpu->arch.mmu.shadow_root_level;
2401
2402         if (iterator->level == PT64_ROOT_4LEVEL &&
2403             vcpu->arch.mmu.root_level < PT64_ROOT_4LEVEL &&
2404             !vcpu->arch.mmu.direct_map)
2405                 --iterator->level;
2406
2407         if (iterator->level == PT32E_ROOT_LEVEL) {
2408                 iterator->shadow_addr
2409                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2410                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2411                 --iterator->level;
2412                 if (!iterator->shadow_addr)
2413                         iterator->level = 0;
2414         }
2415 }
2416
2417 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2418 {
2419         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2420                 return false;
2421
2422         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2423         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2424         return true;
2425 }
2426
2427 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2428                                u64 spte)
2429 {
2430         if (is_last_spte(spte, iterator->level)) {
2431                 iterator->level = 0;
2432                 return;
2433         }
2434
2435         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2436         --iterator->level;
2437 }
2438
2439 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2440 {
2441         __shadow_walk_next(iterator, *iterator->sptep);
2442 }
2443
2444 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2445                              struct kvm_mmu_page *sp)
2446 {
2447         u64 spte;
2448
2449         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2450
2451         spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2452                shadow_user_mask | shadow_x_mask | shadow_me_mask;
2453
2454         if (sp_ad_disabled(sp))
2455                 spte |= shadow_acc_track_value;
2456         else
2457                 spte |= shadow_accessed_mask;
2458
2459         mmu_spte_set(sptep, spte);
2460
2461         mmu_page_add_parent_pte(vcpu, sp, sptep);
2462
2463         if (sp->unsync_children || sp->unsync)
2464                 mark_unsync(sptep);
2465 }
2466
2467 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2468                                    unsigned direct_access)
2469 {
2470         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2471                 struct kvm_mmu_page *child;
2472
2473                 /*
2474                  * For the direct sp, if the guest pte's dirty bit
2475                  * changed form clean to dirty, it will corrupt the
2476                  * sp's access: allow writable in the read-only sp,
2477                  * so we should update the spte at this point to get
2478                  * a new sp with the correct access.
2479                  */
2480                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2481                 if (child->role.access == direct_access)
2482                         return;
2483
2484                 drop_parent_pte(child, sptep);
2485                 kvm_flush_remote_tlbs(vcpu->kvm);
2486         }
2487 }
2488
2489 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2490                              u64 *spte)
2491 {
2492         u64 pte;
2493         struct kvm_mmu_page *child;
2494
2495         pte = *spte;
2496         if (is_shadow_present_pte(pte)) {
2497                 if (is_last_spte(pte, sp->role.level)) {
2498                         drop_spte(kvm, spte);
2499                         if (is_large_pte(pte))
2500                                 --kvm->stat.lpages;
2501                 } else {
2502                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2503                         drop_parent_pte(child, spte);
2504                 }
2505                 return true;
2506         }
2507
2508         if (is_mmio_spte(pte))
2509                 mmu_spte_clear_no_track(spte);
2510
2511         return false;
2512 }
2513
2514 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2515                                          struct kvm_mmu_page *sp)
2516 {
2517         unsigned i;
2518
2519         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2520                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2521 }
2522
2523 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2524 {
2525         u64 *sptep;
2526         struct rmap_iterator iter;
2527
2528         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2529                 drop_parent_pte(sp, sptep);
2530 }
2531
2532 static int mmu_zap_unsync_children(struct kvm *kvm,
2533                                    struct kvm_mmu_page *parent,
2534                                    struct list_head *invalid_list)
2535 {
2536         int i, zapped = 0;
2537         struct mmu_page_path parents;
2538         struct kvm_mmu_pages pages;
2539
2540         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2541                 return 0;
2542
2543         while (mmu_unsync_walk(parent, &pages)) {
2544                 struct kvm_mmu_page *sp;
2545
2546                 for_each_sp(pages, sp, parents, i) {
2547                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2548                         mmu_pages_clear_parents(&parents);
2549                         zapped++;
2550                 }
2551         }
2552
2553         return zapped;
2554 }
2555
2556 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2557                                     struct list_head *invalid_list)
2558 {
2559         int ret;
2560
2561         trace_kvm_mmu_prepare_zap_page(sp);
2562         ++kvm->stat.mmu_shadow_zapped;
2563         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2564         kvm_mmu_page_unlink_children(kvm, sp);
2565         kvm_mmu_unlink_parents(kvm, sp);
2566
2567         if (!sp->role.invalid && !sp->role.direct)
2568                 unaccount_shadowed(kvm, sp);
2569
2570         if (sp->unsync)
2571                 kvm_unlink_unsync_page(kvm, sp);
2572         if (!sp->root_count) {
2573                 /* Count self */
2574                 ret++;
2575                 list_move(&sp->link, invalid_list);
2576                 kvm_mod_used_mmu_pages(kvm, -1);
2577         } else {
2578                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2579
2580                 /*
2581                  * The obsolete pages can not be used on any vcpus.
2582                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2583                  */
2584                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2585                         kvm_reload_remote_mmus(kvm);
2586         }
2587
2588         sp->role.invalid = 1;
2589         return ret;
2590 }
2591
2592 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2593                                     struct list_head *invalid_list)
2594 {
2595         struct kvm_mmu_page *sp, *nsp;
2596
2597         if (list_empty(invalid_list))
2598                 return;
2599
2600         /*
2601          * We need to make sure everyone sees our modifications to
2602          * the page tables and see changes to vcpu->mode here. The barrier
2603          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2604          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2605          *
2606          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2607          * guest mode and/or lockless shadow page table walks.
2608          */
2609         kvm_flush_remote_tlbs(kvm);
2610
2611         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2612                 WARN_ON(!sp->role.invalid || sp->root_count);
2613                 kvm_mmu_free_page(sp);
2614         }
2615 }
2616
2617 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2618                                         struct list_head *invalid_list)
2619 {
2620         struct kvm_mmu_page *sp;
2621
2622         if (list_empty(&kvm->arch.active_mmu_pages))
2623                 return false;
2624
2625         sp = list_last_entry(&kvm->arch.active_mmu_pages,
2626                              struct kvm_mmu_page, link);
2627         return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2628 }
2629
2630 /*
2631  * Changing the number of mmu pages allocated to the vm
2632  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2633  */
2634 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2635 {
2636         LIST_HEAD(invalid_list);
2637
2638         spin_lock(&kvm->mmu_lock);
2639
2640         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2641                 /* Need to free some mmu pages to achieve the goal. */
2642                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2643                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2644                                 break;
2645
2646                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2647                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2648         }
2649
2650         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2651
2652         spin_unlock(&kvm->mmu_lock);
2653 }
2654
2655 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2656 {
2657         struct kvm_mmu_page *sp;
2658         LIST_HEAD(invalid_list);
2659         int r;
2660
2661         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2662         r = 0;
2663         spin_lock(&kvm->mmu_lock);
2664         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2665                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2666                          sp->role.word);
2667                 r = 1;
2668                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2669         }
2670         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2671         spin_unlock(&kvm->mmu_lock);
2672
2673         return r;
2674 }
2675 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2676
2677 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2678 {
2679         trace_kvm_mmu_unsync_page(sp);
2680         ++vcpu->kvm->stat.mmu_unsync;
2681         sp->unsync = 1;
2682
2683         kvm_mmu_mark_parents_unsync(sp);
2684 }
2685
2686 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2687                                    bool can_unsync)
2688 {
2689         struct kvm_mmu_page *sp;
2690
2691         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2692                 return true;
2693
2694         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2695                 if (!can_unsync)
2696                         return true;
2697
2698                 if (sp->unsync)
2699                         continue;
2700
2701                 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2702                 kvm_unsync_page(vcpu, sp);
2703         }
2704
2705         return false;
2706 }
2707
2708 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2709 {
2710         if (pfn_valid(pfn))
2711                 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2712
2713         return true;
2714 }
2715
2716 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2717                     unsigned pte_access, int level,
2718                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2719                     bool can_unsync, bool host_writable)
2720 {
2721         u64 spte = 0;
2722         int ret = 0;
2723         struct kvm_mmu_page *sp;
2724
2725         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2726                 return 0;
2727
2728         sp = page_header(__pa(sptep));
2729         if (sp_ad_disabled(sp))
2730                 spte |= shadow_acc_track_value;
2731
2732         /*
2733          * For the EPT case, shadow_present_mask is 0 if hardware
2734          * supports exec-only page table entries.  In that case,
2735          * ACC_USER_MASK and shadow_user_mask are used to represent
2736          * read access.  See FNAME(gpte_access) in paging_tmpl.h.
2737          */
2738         spte |= shadow_present_mask;
2739         if (!speculative)
2740                 spte |= spte_shadow_accessed_mask(spte);
2741
2742         if (pte_access & ACC_EXEC_MASK)
2743                 spte |= shadow_x_mask;
2744         else
2745                 spte |= shadow_nx_mask;
2746
2747         if (pte_access & ACC_USER_MASK)
2748                 spte |= shadow_user_mask;
2749
2750         if (level > PT_PAGE_TABLE_LEVEL)
2751                 spte |= PT_PAGE_SIZE_MASK;
2752         if (tdp_enabled)
2753                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2754                         kvm_is_mmio_pfn(pfn));
2755
2756         if (host_writable)
2757                 spte |= SPTE_HOST_WRITEABLE;
2758         else
2759                 pte_access &= ~ACC_WRITE_MASK;
2760
2761         spte |= (u64)pfn << PAGE_SHIFT;
2762         spte |= shadow_me_mask;
2763
2764         if (pte_access & ACC_WRITE_MASK) {
2765
2766                 /*
2767                  * Other vcpu creates new sp in the window between
2768                  * mapping_level() and acquiring mmu-lock. We can
2769                  * allow guest to retry the access, the mapping can
2770                  * be fixed if guest refault.
2771                  */
2772                 if (level > PT_PAGE_TABLE_LEVEL &&
2773                     mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2774                         goto done;
2775
2776                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2777
2778                 /*
2779                  * Optimization: for pte sync, if spte was writable the hash
2780                  * lookup is unnecessary (and expensive). Write protection
2781                  * is responsibility of mmu_get_page / kvm_sync_page.
2782                  * Same reasoning can be applied to dirty page accounting.
2783                  */
2784                 if (!can_unsync && is_writable_pte(*sptep))
2785                         goto set_pte;
2786
2787                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2788                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2789                                  __func__, gfn);
2790                         ret = 1;
2791                         pte_access &= ~ACC_WRITE_MASK;
2792                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2793                 }
2794         }
2795
2796         if (pte_access & ACC_WRITE_MASK) {
2797                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2798                 spte |= spte_shadow_dirty_mask(spte);
2799         }
2800
2801         if (speculative)
2802                 spte = mark_spte_for_access_track(spte);
2803
2804 set_pte:
2805         if (mmu_spte_update(sptep, spte))
2806                 kvm_flush_remote_tlbs(vcpu->kvm);
2807 done:
2808         return ret;
2809 }
2810
2811 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2812                         int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2813                         bool speculative, bool host_writable)
2814 {
2815         int was_rmapped = 0;
2816         int rmap_count;
2817         int ret = RET_PF_RETRY;
2818
2819         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2820                  *sptep, write_fault, gfn);
2821
2822         if (is_shadow_present_pte(*sptep)) {
2823                 /*
2824                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2825                  * the parent of the now unreachable PTE.
2826                  */
2827                 if (level > PT_PAGE_TABLE_LEVEL &&
2828                     !is_large_pte(*sptep)) {
2829                         struct kvm_mmu_page *child;
2830                         u64 pte = *sptep;
2831
2832                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2833                         drop_parent_pte(child, sptep);
2834                         kvm_flush_remote_tlbs(vcpu->kvm);
2835                 } else if (pfn != spte_to_pfn(*sptep)) {
2836                         pgprintk("hfn old %llx new %llx\n",
2837                                  spte_to_pfn(*sptep), pfn);
2838                         drop_spte(vcpu->kvm, sptep);
2839                         kvm_flush_remote_tlbs(vcpu->kvm);
2840                 } else
2841                         was_rmapped = 1;
2842         }
2843
2844         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2845               true, host_writable)) {
2846                 if (write_fault)
2847                         ret = RET_PF_EMULATE;
2848                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2849         }
2850
2851         if (unlikely(is_mmio_spte(*sptep)))
2852                 ret = RET_PF_EMULATE;
2853
2854         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2855         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2856                  is_large_pte(*sptep)? "2MB" : "4kB",
2857                  *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
2858                  *sptep, sptep);
2859         if (!was_rmapped && is_large_pte(*sptep))
2860                 ++vcpu->kvm->stat.lpages;
2861
2862         if (is_shadow_present_pte(*sptep)) {
2863                 if (!was_rmapped) {
2864                         rmap_count = rmap_add(vcpu, sptep, gfn);
2865                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2866                                 rmap_recycle(vcpu, sptep, gfn);
2867                 }
2868         }
2869
2870         kvm_release_pfn_clean(pfn);
2871
2872         return ret;
2873 }
2874
2875 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2876                                      bool no_dirty_log)
2877 {
2878         struct kvm_memory_slot *slot;
2879
2880         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2881         if (!slot)
2882                 return KVM_PFN_ERR_FAULT;
2883
2884         return gfn_to_pfn_memslot_atomic(slot, gfn);
2885 }
2886
2887 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2888                                     struct kvm_mmu_page *sp,
2889                                     u64 *start, u64 *end)
2890 {
2891         struct page *pages[PTE_PREFETCH_NUM];
2892         struct kvm_memory_slot *slot;
2893         unsigned access = sp->role.access;
2894         int i, ret;
2895         gfn_t gfn;
2896
2897         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2898         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2899         if (!slot)
2900                 return -1;
2901
2902         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2903         if (ret <= 0)
2904                 return -1;
2905
2906         for (i = 0; i < ret; i++, gfn++, start++)
2907                 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2908                              page_to_pfn(pages[i]), true, true);
2909
2910         return 0;
2911 }
2912
2913 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2914                                   struct kvm_mmu_page *sp, u64 *sptep)
2915 {
2916         u64 *spte, *start = NULL;
2917         int i;
2918
2919         WARN_ON(!sp->role.direct);
2920
2921         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2922         spte = sp->spt + i;
2923
2924         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2925                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2926                         if (!start)
2927                                 continue;
2928                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2929                                 break;
2930                         start = NULL;
2931                 } else if (!start)
2932                         start = spte;
2933         }
2934 }
2935
2936 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2937 {
2938         struct kvm_mmu_page *sp;
2939
2940         sp = page_header(__pa(sptep));
2941
2942         /*
2943          * Without accessed bits, there's no way to distinguish between
2944          * actually accessed translations and prefetched, so disable pte
2945          * prefetch if accessed bits aren't available.
2946          */
2947         if (sp_ad_disabled(sp))
2948                 return;
2949
2950         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2951                 return;
2952
2953         __direct_pte_prefetch(vcpu, sp, sptep);
2954 }
2955
2956 static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
2957                         int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2958 {
2959         struct kvm_shadow_walk_iterator iterator;
2960         struct kvm_mmu_page *sp;
2961         int emulate = 0;
2962         gfn_t pseudo_gfn;
2963
2964         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2965                 return 0;
2966
2967         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2968                 if (iterator.level == level) {
2969                         emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2970                                                write, level, gfn, pfn, prefault,
2971                                                map_writable);
2972                         direct_pte_prefetch(vcpu, iterator.sptep);
2973                         ++vcpu->stat.pf_fixed;
2974                         break;
2975                 }
2976
2977                 drop_large_spte(vcpu, iterator.sptep);
2978                 if (!is_shadow_present_pte(*iterator.sptep)) {
2979                         u64 base_addr = iterator.addr;
2980
2981                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2982                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2983                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2984                                               iterator.level - 1, 1, ACC_ALL);
2985
2986                         link_shadow_page(vcpu, iterator.sptep, sp);
2987                 }
2988         }
2989         return emulate;
2990 }
2991
2992 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2993 {
2994         siginfo_t info;
2995
2996         info.si_signo   = SIGBUS;
2997         info.si_errno   = 0;
2998         info.si_code    = BUS_MCEERR_AR;
2999         info.si_addr    = (void __user *)address;
3000         info.si_addr_lsb = PAGE_SHIFT;
3001
3002         send_sig_info(SIGBUS, &info, tsk);
3003 }
3004
3005 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3006 {
3007         /*
3008          * Do not cache the mmio info caused by writing the readonly gfn
3009          * into the spte otherwise read access on readonly gfn also can
3010          * caused mmio page fault and treat it as mmio access.
3011          */
3012         if (pfn == KVM_PFN_ERR_RO_FAULT)
3013                 return RET_PF_EMULATE;
3014
3015         if (pfn == KVM_PFN_ERR_HWPOISON) {
3016                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3017                 return RET_PF_RETRY;
3018         }
3019
3020         return -EFAULT;
3021 }
3022
3023 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
3024                                         gfn_t *gfnp, kvm_pfn_t *pfnp,
3025                                         int *levelp)
3026 {
3027         kvm_pfn_t pfn = *pfnp;
3028         gfn_t gfn = *gfnp;
3029         int level = *levelp;
3030
3031         /*
3032          * Check if it's a transparent hugepage. If this would be an
3033          * hugetlbfs page, level wouldn't be set to
3034          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3035          * here.
3036          */
3037         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3038             level == PT_PAGE_TABLE_LEVEL &&
3039             PageTransCompoundMap(pfn_to_page(pfn)) &&
3040             !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
3041                 unsigned long mask;
3042                 /*
3043                  * mmu_notifier_retry was successful and we hold the
3044                  * mmu_lock here, so the pmd can't become splitting
3045                  * from under us, and in turn
3046                  * __split_huge_page_refcount() can't run from under
3047                  * us and we can safely transfer the refcount from
3048                  * PG_tail to PG_head as we switch the pfn to tail to
3049                  * head.
3050                  */
3051                 *levelp = level = PT_DIRECTORY_LEVEL;
3052                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3053                 VM_BUG_ON((gfn & mask) != (pfn & mask));
3054                 if (pfn & mask) {
3055                         gfn &= ~mask;
3056                         *gfnp = gfn;
3057                         kvm_release_pfn_clean(pfn);
3058                         pfn &= ~mask;
3059                         kvm_get_pfn(pfn);
3060                         *pfnp = pfn;
3061                 }
3062         }
3063 }
3064
3065 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3066                                 kvm_pfn_t pfn, unsigned access, int *ret_val)
3067 {
3068         /* The pfn is invalid, report the error! */
3069         if (unlikely(is_error_pfn(pfn))) {
3070                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3071                 return true;
3072         }
3073
3074         if (unlikely(is_noslot_pfn(pfn)))
3075                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
3076
3077         return false;
3078 }
3079
3080 static bool page_fault_can_be_fast(u32 error_code)
3081 {
3082         /*
3083          * Do not fix the mmio spte with invalid generation number which
3084          * need to be updated by slow page fault path.
3085          */
3086         if (unlikely(error_code & PFERR_RSVD_MASK))
3087                 return false;
3088
3089         /* See if the page fault is due to an NX violation */
3090         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3091                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3092                 return false;
3093
3094         /*
3095          * #PF can be fast if:
3096          * 1. The shadow page table entry is not present, which could mean that
3097          *    the fault is potentially caused by access tracking (if enabled).
3098          * 2. The shadow page table entry is present and the fault
3099          *    is caused by write-protect, that means we just need change the W
3100          *    bit of the spte which can be done out of mmu-lock.
3101          *
3102          * However, if access tracking is disabled we know that a non-present
3103          * page must be a genuine page fault where we have to create a new SPTE.
3104          * So, if access tracking is disabled, we return true only for write
3105          * accesses to a present page.
3106          */
3107
3108         return shadow_acc_track_mask != 0 ||
3109                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3110                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3111 }
3112
3113 /*
3114  * Returns true if the SPTE was fixed successfully. Otherwise,
3115  * someone else modified the SPTE from its original value.
3116  */
3117 static bool
3118 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3119                         u64 *sptep, u64 old_spte, u64 new_spte)
3120 {
3121         gfn_t gfn;
3122
3123         WARN_ON(!sp->role.direct);
3124
3125         /*
3126          * Theoretically we could also set dirty bit (and flush TLB) here in
3127          * order to eliminate unnecessary PML logging. See comments in
3128          * set_spte. But fast_page_fault is very unlikely to happen with PML
3129          * enabled, so we do not do this. This might result in the same GPA
3130          * to be logged in PML buffer again when the write really happens, and
3131          * eventually to be called by mark_page_dirty twice. But it's also no
3132          * harm. This also avoids the TLB flush needed after setting dirty bit
3133          * so non-PML cases won't be impacted.
3134          *
3135          * Compare with set_spte where instead shadow_dirty_mask is set.
3136          */
3137         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3138                 return false;
3139
3140         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3141                 /*
3142                  * The gfn of direct spte is stable since it is
3143                  * calculated by sp->gfn.
3144                  */
3145                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3146                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3147         }
3148
3149         return true;
3150 }
3151
3152 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3153 {
3154         if (fault_err_code & PFERR_FETCH_MASK)
3155                 return is_executable_pte(spte);
3156
3157         if (fault_err_code & PFERR_WRITE_MASK)
3158                 return is_writable_pte(spte);
3159
3160         /* Fault was on Read access */
3161         return spte & PT_PRESENT_MASK;
3162 }
3163
3164 /*
3165  * Return value:
3166  * - true: let the vcpu to access on the same address again.
3167  * - false: let the real page fault path to fix it.
3168  */
3169 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3170                             u32 error_code)
3171 {
3172         struct kvm_shadow_walk_iterator iterator;
3173         struct kvm_mmu_page *sp;
3174         bool fault_handled = false;
3175         u64 spte = 0ull;
3176         uint retry_count = 0;
3177
3178         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3179                 return false;
3180
3181         if (!page_fault_can_be_fast(error_code))
3182                 return false;
3183
3184         walk_shadow_page_lockless_begin(vcpu);
3185
3186         do {
3187                 u64 new_spte;
3188
3189                 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3190                         if (!is_shadow_present_pte(spte) ||
3191                             iterator.level < level)
3192                                 break;
3193
3194                 sp = page_header(__pa(iterator.sptep));
3195                 if (!is_last_spte(spte, sp->role.level))
3196                         break;
3197
3198                 /*
3199                  * Check whether the memory access that caused the fault would
3200                  * still cause it if it were to be performed right now. If not,
3201                  * then this is a spurious fault caused by TLB lazily flushed,
3202                  * or some other CPU has already fixed the PTE after the
3203                  * current CPU took the fault.
3204                  *
3205                  * Need not check the access of upper level table entries since
3206                  * they are always ACC_ALL.
3207                  */
3208                 if (is_access_allowed(error_code, spte)) {
3209                         fault_handled = true;
3210                         break;
3211                 }
3212
3213                 new_spte = spte;
3214
3215                 if (is_access_track_spte(spte))
3216                         new_spte = restore_acc_track_spte(new_spte);
3217
3218                 /*
3219                  * Currently, to simplify the code, write-protection can
3220                  * be removed in the fast path only if the SPTE was
3221                  * write-protected for dirty-logging or access tracking.
3222                  */
3223                 if ((error_code & PFERR_WRITE_MASK) &&
3224                     spte_can_locklessly_be_made_writable(spte))
3225                 {
3226                         new_spte |= PT_WRITABLE_MASK;
3227
3228                         /*
3229                          * Do not fix write-permission on the large spte.  Since
3230                          * we only dirty the first page into the dirty-bitmap in
3231                          * fast_pf_fix_direct_spte(), other pages are missed
3232                          * if its slot has dirty logging enabled.
3233                          *
3234                          * Instead, we let the slow page fault path create a
3235                          * normal spte to fix the access.
3236                          *
3237                          * See the comments in kvm_arch_commit_memory_region().
3238                          */
3239                         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3240                                 break;
3241                 }
3242
3243                 /* Verify that the fault can be handled in the fast path */
3244                 if (new_spte == spte ||
3245                     !is_access_allowed(error_code, new_spte))
3246                         break;
3247
3248                 /*
3249                  * Currently, fast page fault only works for direct mapping
3250                  * since the gfn is not stable for indirect shadow page. See
3251                  * Documentation/virtual/kvm/locking.txt to get more detail.
3252                  */
3253                 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3254                                                         iterator.sptep, spte,
3255                                                         new_spte);
3256                 if (fault_handled)
3257                         break;
3258
3259                 if (++retry_count > 4) {
3260                         printk_once(KERN_WARNING
3261                                 "kvm: Fast #PF retrying more than 4 times.\n");
3262                         break;
3263                 }
3264
3265         } while (true);
3266
3267         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3268                               spte, fault_handled);
3269         walk_shadow_page_lockless_end(vcpu);
3270
3271         return fault_handled;
3272 }
3273
3274 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3275                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3276 static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
3277
3278 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3279                          gfn_t gfn, bool prefault)
3280 {
3281         int r;
3282         int level;
3283         bool force_pt_level = false;
3284         kvm_pfn_t pfn;
3285         unsigned long mmu_seq;
3286         bool map_writable, write = error_code & PFERR_WRITE_MASK;
3287
3288         level = mapping_level(vcpu, gfn, &force_pt_level);
3289         if (likely(!force_pt_level)) {
3290                 /*
3291                  * This path builds a PAE pagetable - so we can map
3292                  * 2mb pages at maximum. Therefore check if the level
3293                  * is larger than that.
3294                  */
3295                 if (level > PT_DIRECTORY_LEVEL)
3296                         level = PT_DIRECTORY_LEVEL;
3297
3298                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3299         }
3300
3301         if (fast_page_fault(vcpu, v, level, error_code))
3302                 return RET_PF_RETRY;
3303
3304         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3305         smp_rmb();
3306
3307         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3308                 return RET_PF_RETRY;
3309
3310         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3311                 return r;
3312
3313         spin_lock(&vcpu->kvm->mmu_lock);
3314         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3315                 goto out_unlock;
3316         if (make_mmu_pages_available(vcpu) < 0)
3317                 goto out_unlock;
3318         if (likely(!force_pt_level))
3319                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3320         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3321         spin_unlock(&vcpu->kvm->mmu_lock);
3322
3323         return r;
3324
3325 out_unlock:
3326         spin_unlock(&vcpu->kvm->mmu_lock);
3327         kvm_release_pfn_clean(pfn);
3328         return RET_PF_RETRY;
3329 }
3330
3331
3332 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3333 {
3334         int i;
3335         struct kvm_mmu_page *sp;
3336         LIST_HEAD(invalid_list);
3337
3338         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3339                 return;
3340
3341         if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL &&
3342             (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL ||
3343              vcpu->arch.mmu.direct_map)) {
3344                 hpa_t root = vcpu->arch.mmu.root_hpa;
3345
3346                 spin_lock(&vcpu->kvm->mmu_lock);
3347                 sp = page_header(root);
3348                 --sp->root_count;
3349                 if (!sp->root_count && sp->role.invalid) {
3350                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3351                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3352                 }
3353                 spin_unlock(&vcpu->kvm->mmu_lock);
3354                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3355                 return;
3356         }
3357
3358         spin_lock(&vcpu->kvm->mmu_lock);
3359         for (i = 0; i < 4; ++i) {
3360                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3361
3362                 if (root) {
3363                         root &= PT64_BASE_ADDR_MASK;
3364                         sp = page_header(root);
3365                         --sp->root_count;
3366                         if (!sp->root_count && sp->role.invalid)
3367                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3368                                                          &invalid_list);
3369                 }
3370                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3371         }
3372         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3373         spin_unlock(&vcpu->kvm->mmu_lock);
3374         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3375 }
3376
3377 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3378 {
3379         int ret = 0;
3380
3381         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3382                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3383                 ret = 1;
3384         }
3385
3386         return ret;
3387 }
3388
3389 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3390 {
3391         struct kvm_mmu_page *sp;
3392         unsigned i;
3393
3394         if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL) {
3395                 spin_lock(&vcpu->kvm->mmu_lock);
3396                 if(make_mmu_pages_available(vcpu) < 0) {
3397                         spin_unlock(&vcpu->kvm->mmu_lock);
3398                         return -ENOSPC;
3399                 }
3400                 sp = kvm_mmu_get_page(vcpu, 0, 0,
3401                                 vcpu->arch.mmu.shadow_root_level, 1, ACC_ALL);
3402                 ++sp->root_count;
3403                 spin_unlock(&vcpu->kvm->mmu_lock);
3404                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3405         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3406                 for (i = 0; i < 4; ++i) {
3407                         hpa_t root = vcpu->arch.mmu.pae_root[i];
3408
3409                         MMU_WARN_ON(VALID_PAGE(root));
3410                         spin_lock(&vcpu->kvm->mmu_lock);
3411                         if (make_mmu_pages_available(vcpu) < 0) {
3412                                 spin_unlock(&vcpu->kvm->mmu_lock);
3413                                 return -ENOSPC;
3414                         }
3415                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3416                                         i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3417                         root = __pa(sp->spt);
3418                         ++sp->root_count;
3419                         spin_unlock(&vcpu->kvm->mmu_lock);
3420                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3421                 }
3422                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3423         } else
3424                 BUG();
3425
3426         return 0;
3427 }
3428
3429 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3430 {
3431         struct kvm_mmu_page *sp;
3432         u64 pdptr, pm_mask;
3433         gfn_t root_gfn;
3434         int i;
3435
3436         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3437
3438         if (mmu_check_root(vcpu, root_gfn))
3439                 return 1;
3440
3441         /*
3442          * Do we shadow a long mode page table? If so we need to
3443          * write-protect the guests page table root.
3444          */
3445         if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3446                 hpa_t root = vcpu->arch.mmu.root_hpa;
3447
3448                 MMU_WARN_ON(VALID_PAGE(root));
3449
3450                 spin_lock(&vcpu->kvm->mmu_lock);
3451                 if (make_mmu_pages_available(vcpu) < 0) {
3452                         spin_unlock(&vcpu->kvm->mmu_lock);
3453                         return -ENOSPC;
3454                 }
3455                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3456                                 vcpu->arch.mmu.shadow_root_level, 0, ACC_ALL);
3457                 root = __pa(sp->spt);
3458                 ++sp->root_count;
3459                 spin_unlock(&vcpu->kvm->mmu_lock);
3460                 vcpu->arch.mmu.root_hpa = root;
3461                 return 0;
3462         }
3463
3464         /*
3465          * We shadow a 32 bit page table. This may be a legacy 2-level
3466          * or a PAE 3-level page table. In either case we need to be aware that
3467          * the shadow page table may be a PAE or a long mode page table.
3468          */
3469         pm_mask = PT_PRESENT_MASK;
3470         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL)
3471                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3472
3473         for (i = 0; i < 4; ++i) {
3474                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3475
3476                 MMU_WARN_ON(VALID_PAGE(root));
3477                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3478                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3479                         if (!(pdptr & PT_PRESENT_MASK)) {
3480                                 vcpu->arch.mmu.pae_root[i] = 0;
3481                                 continue;
3482                         }
3483                         root_gfn = pdptr >> PAGE_SHIFT;
3484                         if (mmu_check_root(vcpu, root_gfn))
3485                                 return 1;
3486                 }
3487                 spin_lock(&vcpu->kvm->mmu_lock);
3488                 if (make_mmu_pages_available(vcpu) < 0) {
3489                         spin_unlock(&vcpu->kvm->mmu_lock);
3490                         return -ENOSPC;
3491                 }
3492                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3493                                       0, ACC_ALL);
3494                 root = __pa(sp->spt);
3495                 ++sp->root_count;
3496                 spin_unlock(&vcpu->kvm->mmu_lock);
3497
3498                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3499         }
3500         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3501
3502         /*
3503          * If we shadow a 32 bit page table with a long mode page
3504          * table we enter this path.
3505          */
3506         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL) {
3507                 if (vcpu->arch.mmu.lm_root == NULL) {
3508                         /*
3509                          * The additional page necessary for this is only
3510                          * allocated on demand.
3511                          */
3512
3513                         u64 *lm_root;
3514
3515                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3516                         if (lm_root == NULL)
3517                                 return 1;
3518
3519                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3520
3521                         vcpu->arch.mmu.lm_root = lm_root;
3522                 }
3523
3524                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3525         }
3526
3527         return 0;
3528 }
3529
3530 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3531 {
3532         if (vcpu->arch.mmu.direct_map)
3533                 return mmu_alloc_direct_roots(vcpu);
3534         else
3535                 return mmu_alloc_shadow_roots(vcpu);
3536 }
3537
3538 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3539 {
3540         int i;
3541         struct kvm_mmu_page *sp;
3542
3543         if (vcpu->arch.mmu.direct_map)
3544                 return;
3545
3546         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3547                 return;
3548
3549         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3550         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3551         if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3552                 hpa_t root = vcpu->arch.mmu.root_hpa;
3553                 sp = page_header(root);
3554                 mmu_sync_children(vcpu, sp);
3555                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3556                 return;
3557         }
3558         for (i = 0; i < 4; ++i) {
3559                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3560
3561                 if (root && VALID_PAGE(root)) {
3562                         root &= PT64_BASE_ADDR_MASK;
3563                         sp = page_header(root);
3564                         mmu_sync_children(vcpu, sp);
3565                 }
3566         }
3567         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3568 }
3569
3570 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3571 {
3572         spin_lock(&vcpu->kvm->mmu_lock);
3573         mmu_sync_roots(vcpu);
3574         spin_unlock(&vcpu->kvm->mmu_lock);
3575 }
3576 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3577
3578 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3579                                   u32 access, struct x86_exception *exception)
3580 {
3581         if (exception)
3582                 exception->error_code = 0;
3583         return vaddr;
3584 }
3585
3586 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3587                                          u32 access,
3588                                          struct x86_exception *exception)
3589 {
3590         if (exception)
3591                 exception->error_code = 0;
3592         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3593 }
3594
3595 static bool
3596 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3597 {
3598         int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3599
3600         return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3601                 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3602 }
3603
3604 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3605 {
3606         return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3607 }
3608
3609 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3610 {
3611         return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3612 }
3613
3614 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3615 {
3616         /*
3617          * A nested guest cannot use the MMIO cache if it is using nested
3618          * page tables, because cr2 is a nGPA while the cache stores GPAs.
3619          */
3620         if (mmu_is_nested(vcpu))
3621                 return false;
3622
3623         if (direct)
3624                 return vcpu_match_mmio_gpa(vcpu, addr);
3625
3626         return vcpu_match_mmio_gva(vcpu, addr);
3627 }
3628
3629 /* return true if reserved bit is detected on spte. */
3630 static bool
3631 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3632 {
3633         struct kvm_shadow_walk_iterator iterator;
3634         u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3635         int root, leaf;
3636         bool reserved = false;
3637
3638         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3639                 goto exit;
3640
3641         walk_shadow_page_lockless_begin(vcpu);
3642
3643         for (shadow_walk_init(&iterator, vcpu, addr),
3644                  leaf = root = iterator.level;
3645              shadow_walk_okay(&iterator);
3646              __shadow_walk_next(&iterator, spte)) {
3647                 spte = mmu_spte_get_lockless(iterator.sptep);
3648
3649                 sptes[leaf - 1] = spte;
3650                 leaf--;
3651
3652                 if (!is_shadow_present_pte(spte))
3653                         break;
3654
3655                 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3656                                                     iterator.level);
3657         }
3658
3659         walk_shadow_page_lockless_end(vcpu);
3660
3661         if (reserved) {
3662                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3663                        __func__, addr);
3664                 while (root > leaf) {
3665                         pr_err("------ spte 0x%llx level %d.\n",
3666                                sptes[root - 1], root);
3667                         root--;
3668                 }
3669         }
3670 exit:
3671         *sptep = spte;
3672         return reserved;
3673 }
3674
3675 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3676 {
3677         u64 spte;
3678         bool reserved;
3679
3680         if (mmio_info_in_cache(vcpu, addr, direct))
3681                 return RET_PF_EMULATE;
3682
3683         reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3684         if (WARN_ON(reserved))
3685                 return -EINVAL;
3686
3687         if (is_mmio_spte(spte)) {
3688                 gfn_t gfn = get_mmio_spte_gfn(spte);
3689                 unsigned access = get_mmio_spte_access(spte);
3690
3691                 if (!check_mmio_spte(vcpu, spte))
3692                         return RET_PF_INVALID;
3693
3694                 if (direct)
3695                         addr = 0;
3696
3697                 trace_handle_mmio_page_fault(addr, gfn, access);
3698                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3699                 return RET_PF_EMULATE;
3700         }
3701
3702         /*
3703          * If the page table is zapped by other cpus, let CPU fault again on
3704          * the address.
3705          */
3706         return RET_PF_RETRY;
3707 }
3708 EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3709
3710 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3711                                          u32 error_code, gfn_t gfn)
3712 {
3713         if (unlikely(error_code & PFERR_RSVD_MASK))
3714                 return false;
3715
3716         if (!(error_code & PFERR_PRESENT_MASK) ||
3717               !(error_code & PFERR_WRITE_MASK))
3718                 return false;
3719
3720         /*
3721          * guest is writing the page which is write tracked which can
3722          * not be fixed by page fault handler.
3723          */
3724         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3725                 return true;
3726
3727         return false;
3728 }
3729
3730 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3731 {
3732         struct kvm_shadow_walk_iterator iterator;
3733         u64 spte;
3734
3735         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3736                 return;
3737
3738         walk_shadow_page_lockless_begin(vcpu);
3739         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3740                 clear_sp_write_flooding_count(iterator.sptep);
3741                 if (!is_shadow_present_pte(spte))
3742                         break;
3743         }
3744         walk_shadow_page_lockless_end(vcpu);
3745 }
3746
3747 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3748                                 u32 error_code, bool prefault)
3749 {
3750         gfn_t gfn = gva >> PAGE_SHIFT;
3751         int r;
3752
3753         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3754
3755         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3756                 return RET_PF_EMULATE;
3757
3758         r = mmu_topup_memory_caches(vcpu);
3759         if (r)
3760                 return r;
3761
3762         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3763
3764
3765         return nonpaging_map(vcpu, gva & PAGE_MASK,
3766                              error_code, gfn, prefault);
3767 }
3768
3769 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3770 {
3771         struct kvm_arch_async_pf arch;
3772
3773         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3774         arch.gfn = gfn;
3775         arch.direct_map = vcpu->arch.mmu.direct_map;
3776         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3777
3778         return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3779 }
3780
3781 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
3782 {
3783         if (unlikely(!lapic_in_kernel(vcpu) ||
3784                      kvm_event_needs_reinjection(vcpu) ||
3785                      vcpu->arch.exception.pending))
3786                 return false;
3787
3788         if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
3789                 return false;
3790
3791         return kvm_x86_ops->interrupt_allowed(vcpu);
3792 }
3793
3794 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3795                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3796 {
3797         struct kvm_memory_slot *slot;
3798         bool async;
3799
3800         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3801         async = false;
3802         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3803         if (!async)
3804                 return false; /* *pfn has correct page already */
3805
3806         if (!prefault && kvm_can_do_async_pf(vcpu)) {
3807                 trace_kvm_try_async_get_page(gva, gfn);
3808                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3809                         trace_kvm_async_pf_doublefault(gva, gfn);
3810                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3811                         return true;
3812                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3813                         return true;
3814         }
3815
3816         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3817         return false;
3818 }
3819
3820 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3821                                 u64 fault_address, char *insn, int insn_len)
3822 {
3823         int r = 1;
3824
3825         switch (vcpu->arch.apf.host_apf_reason) {
3826         default:
3827                 trace_kvm_page_fault(fault_address, error_code);
3828
3829                 if (kvm_event_needs_reinjection(vcpu))
3830                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3831                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3832                                 insn_len);
3833                 break;
3834         case KVM_PV_REASON_PAGE_NOT_PRESENT:
3835                 vcpu->arch.apf.host_apf_reason = 0;
3836                 local_irq_disable();
3837                 kvm_async_pf_task_wait(fault_address, 0);
3838                 local_irq_enable();
3839                 break;
3840         case KVM_PV_REASON_PAGE_READY:
3841                 vcpu->arch.apf.host_apf_reason = 0;
3842                 local_irq_disable();
3843                 kvm_async_pf_task_wake(fault_address);
3844                 local_irq_enable();
3845                 break;
3846         }
3847         return r;
3848 }
3849 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3850
3851 static bool
3852 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3853 {
3854         int page_num = KVM_PAGES_PER_HPAGE(level);
3855
3856         gfn &= ~(page_num - 1);
3857
3858         return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3859 }
3860
3861 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3862                           bool prefault)
3863 {
3864         kvm_pfn_t pfn;
3865         int r;
3866         int level;
3867         bool force_pt_level;
3868         gfn_t gfn = gpa >> PAGE_SHIFT;
3869         unsigned long mmu_seq;
3870         int write = error_code & PFERR_WRITE_MASK;
3871         bool map_writable;
3872
3873         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3874
3875         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3876                 return RET_PF_EMULATE;
3877
3878         r = mmu_topup_memory_caches(vcpu);
3879         if (r)
3880                 return r;
3881
3882         force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3883                                                            PT_DIRECTORY_LEVEL);
3884         level = mapping_level(vcpu, gfn, &force_pt_level);
3885         if (likely(!force_pt_level)) {
3886                 if (level > PT_DIRECTORY_LEVEL &&
3887                     !check_hugepage_cache_consistency(vcpu, gfn, level))
3888                         level = PT_DIRECTORY_LEVEL;
3889                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3890         }
3891
3892         if (fast_page_fault(vcpu, gpa, level, error_code))
3893                 return RET_PF_RETRY;
3894
3895         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3896         smp_rmb();
3897
3898         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3899                 return RET_PF_RETRY;
3900
3901         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3902                 return r;
3903
3904         spin_lock(&vcpu->kvm->mmu_lock);
3905         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3906                 goto out_unlock;
3907         if (make_mmu_pages_available(vcpu) < 0)
3908                 goto out_unlock;
3909         if (likely(!force_pt_level))
3910                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3911         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3912         spin_unlock(&vcpu->kvm->mmu_lock);
3913
3914         return r;
3915
3916 out_unlock:
3917         spin_unlock(&vcpu->kvm->mmu_lock);
3918         kvm_release_pfn_clean(pfn);
3919         return RET_PF_RETRY;
3920 }
3921
3922 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3923                                    struct kvm_mmu *context)
3924 {
3925         context->page_fault = nonpaging_page_fault;
3926         context->gva_to_gpa = nonpaging_gva_to_gpa;
3927         context->sync_page = nonpaging_sync_page;
3928         context->invlpg = nonpaging_invlpg;
3929         context->update_pte = nonpaging_update_pte;
3930         context->root_level = 0;
3931         context->shadow_root_level = PT32E_ROOT_LEVEL;
3932         context->root_hpa = INVALID_PAGE;
3933         context->direct_map = true;
3934         context->nx = false;
3935 }
3936
3937 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3938 {
3939         mmu_free_roots(vcpu);
3940 }
3941
3942 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3943 {
3944         return kvm_read_cr3(vcpu);
3945 }
3946
3947 static void inject_page_fault(struct kvm_vcpu *vcpu,
3948                               struct x86_exception *fault)
3949 {
3950         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3951 }
3952
3953 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3954                            unsigned access, int *nr_present)
3955 {
3956         if (unlikely(is_mmio_spte(*sptep))) {
3957                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3958                         mmu_spte_clear_no_track(sptep);
3959                         return true;
3960                 }
3961
3962                 (*nr_present)++;
3963                 mark_mmio_spte(vcpu, sptep, gfn, access);
3964                 return true;
3965         }
3966
3967         return false;
3968 }
3969
3970 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3971                                 unsigned level, unsigned gpte)
3972 {
3973         /*
3974          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3975          * If it is clear, there are no large pages at this level, so clear
3976          * PT_PAGE_SIZE_MASK in gpte if that is the case.
3977          */
3978         gpte &= level - mmu->last_nonleaf_level;
3979
3980         /*
3981          * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
3982          * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
3983          * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
3984          */
3985         gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
3986
3987         return gpte & PT_PAGE_SIZE_MASK;
3988 }
3989
3990 #define PTTYPE_EPT 18 /* arbitrary */
3991 #define PTTYPE PTTYPE_EPT
3992 #include "paging_tmpl.h"
3993 #undef PTTYPE
3994
3995 #define PTTYPE 64
3996 #include "paging_tmpl.h"
3997 #undef PTTYPE
3998
3999 #define PTTYPE 32
4000 #include "paging_tmpl.h"
4001 #undef PTTYPE
4002
4003 static void
4004 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4005                         struct rsvd_bits_validate *rsvd_check,
4006                         int maxphyaddr, int level, bool nx, bool gbpages,
4007                         bool pse, bool amd)
4008 {
4009         u64 exb_bit_rsvd = 0;
4010         u64 gbpages_bit_rsvd = 0;
4011         u64 nonleaf_bit8_rsvd = 0;
4012
4013         rsvd_check->bad_mt_xwr = 0;
4014
4015         if (!nx)
4016                 exb_bit_rsvd = rsvd_bits(63, 63);
4017         if (!gbpages)
4018                 gbpages_bit_rsvd = rsvd_bits(7, 7);
4019
4020         /*
4021          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4022          * leaf entries) on AMD CPUs only.
4023          */
4024         if (amd)
4025                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4026
4027         switch (level) {
4028         case PT32_ROOT_LEVEL:
4029                 /* no rsvd bits for 2 level 4K page table entries */
4030                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4031                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4032                 rsvd_check->rsvd_bits_mask[1][0] =
4033                         rsvd_check->rsvd_bits_mask[0][0];
4034
4035                 if (!pse) {
4036                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4037                         break;
4038                 }
4039
4040                 if (is_cpuid_PSE36())
4041                         /* 36bits PSE 4MB page */
4042                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4043                 else
4044                         /* 32 bits PSE 4MB page */
4045                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4046                 break;
4047         case PT32E_ROOT_LEVEL:
4048                 rsvd_check->rsvd_bits_mask[0][2] =
4049                         rsvd_bits(maxphyaddr, 63) |
4050                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
4051                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4052                         rsvd_bits(maxphyaddr, 62);      /* PDE */
4053                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4054                         rsvd_bits(maxphyaddr, 62);      /* PTE */
4055                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4056                         rsvd_bits(maxphyaddr, 62) |
4057                         rsvd_bits(13, 20);              /* large page */
4058                 rsvd_check->rsvd_bits_mask[1][0] =
4059                         rsvd_check->rsvd_bits_mask[0][0];
4060                 break;
4061         case PT64_ROOT_5LEVEL:
4062                 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4063                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4064                         rsvd_bits(maxphyaddr, 51);
4065                 rsvd_check->rsvd_bits_mask[1][4] =
4066                         rsvd_check->rsvd_bits_mask[0][4];
4067         case PT64_ROOT_4LEVEL:
4068                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4069                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4070                         rsvd_bits(maxphyaddr, 51);
4071                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4072                         nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4073                         rsvd_bits(maxphyaddr, 51);
4074                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4075                         rsvd_bits(maxphyaddr, 51);
4076                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4077                         rsvd_bits(maxphyaddr, 51);
4078                 rsvd_check->rsvd_bits_mask[1][3] =
4079                         rsvd_check->rsvd_bits_mask[0][3];
4080                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4081                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4082                         rsvd_bits(13, 29);
4083                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4084                         rsvd_bits(maxphyaddr, 51) |
4085                         rsvd_bits(13, 20);              /* large page */
4086                 rsvd_check->rsvd_bits_mask[1][0] =
4087                         rsvd_check->rsvd_bits_mask[0][0];
4088                 break;
4089         }
4090 }
4091
4092 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4093                                   struct kvm_mmu *context)
4094 {
4095         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4096                                 cpuid_maxphyaddr(vcpu), context->root_level,
4097                                 context->nx,
4098                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4099                                 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4100 }
4101
4102 static void
4103 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4104                             int maxphyaddr, bool execonly)
4105 {
4106         u64 bad_mt_xwr;
4107
4108         rsvd_check->rsvd_bits_mask[0][4] =
4109                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4110         rsvd_check->rsvd_bits_mask[0][3] =
4111                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4112         rsvd_check->rsvd_bits_mask[0][2] =
4113                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4114         rsvd_check->rsvd_bits_mask[0][1] =
4115                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4116         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4117
4118         /* large page */
4119         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4120         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4121         rsvd_check->rsvd_bits_mask[1][2] =
4122                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4123         rsvd_check->rsvd_bits_mask[1][1] =
4124                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4125         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4126
4127         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4128         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4129         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4130         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4131         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4132         if (!execonly) {
4133                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4134                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4135         }
4136         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4137 }
4138
4139 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4140                 struct kvm_mmu *context, bool execonly)
4141 {
4142         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4143                                     cpuid_maxphyaddr(vcpu), execonly);
4144 }
4145
4146 /*
4147  * the page table on host is the shadow page table for the page
4148  * table in guest or amd nested guest, its mmu features completely
4149  * follow the features in guest.
4150  */
4151 void
4152 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4153 {
4154         bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
4155         struct rsvd_bits_validate *shadow_zero_check;
4156         int i;
4157
4158         /*
4159          * Passing "true" to the last argument is okay; it adds a check
4160          * on bit 8 of the SPTEs which KVM doesn't use anyway.
4161          */
4162         shadow_zero_check = &context->shadow_zero_check;
4163         __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4164                                 boot_cpu_data.x86_phys_bits,
4165                                 context->shadow_root_level, uses_nx,
4166                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4167                                 is_pse(vcpu), true);
4168
4169         if (!shadow_me_mask)
4170                 return;
4171
4172         for (i = context->shadow_root_level; --i >= 0;) {
4173                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4174                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4175         }
4176
4177 }
4178 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4179
4180 static inline bool boot_cpu_is_amd(void)
4181 {
4182         WARN_ON_ONCE(!tdp_enabled);
4183         return shadow_x_mask == 0;
4184 }
4185
4186 /*
4187  * the direct page table on host, use as much mmu features as
4188  * possible, however, kvm currently does not do execution-protection.
4189  */
4190 static void
4191 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4192                                 struct kvm_mmu *context)
4193 {
4194         struct rsvd_bits_validate *shadow_zero_check;
4195         int i;
4196
4197         shadow_zero_check = &context->shadow_zero_check;
4198
4199         if (boot_cpu_is_amd())
4200                 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4201                                         boot_cpu_data.x86_phys_bits,
4202                                         context->shadow_root_level, false,
4203                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4204                                         true, true);
4205         else
4206                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4207                                             boot_cpu_data.x86_phys_bits,
4208                                             false);
4209
4210         if (!shadow_me_mask)
4211                 return;
4212
4213         for (i = context->shadow_root_level; --i >= 0;) {
4214                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4215                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4216         }
4217 }
4218
4219 /*
4220  * as the comments in reset_shadow_zero_bits_mask() except it
4221  * is the shadow page table for intel nested guest.
4222  */
4223 static void
4224 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4225                                 struct kvm_mmu *context, bool execonly)
4226 {
4227         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4228                                     boot_cpu_data.x86_phys_bits, execonly);
4229 }
4230
4231 #define BYTE_MASK(access) \
4232         ((1 & (access) ? 2 : 0) | \
4233          (2 & (access) ? 4 : 0) | \
4234          (3 & (access) ? 8 : 0) | \
4235          (4 & (access) ? 16 : 0) | \
4236          (5 & (access) ? 32 : 0) | \
4237          (6 & (access) ? 64 : 0) | \
4238          (7 & (access) ? 128 : 0))
4239
4240
4241 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4242                                       struct kvm_mmu *mmu, bool ept)
4243 {
4244         unsigned byte;
4245
4246         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4247         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4248         const u8 u = BYTE_MASK(ACC_USER_MASK);
4249
4250         bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4251         bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4252         bool cr0_wp = is_write_protection(vcpu);
4253
4254         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4255                 unsigned pfec = byte << 1;
4256
4257                 /*
4258                  * Each "*f" variable has a 1 bit for each UWX value
4259                  * that causes a fault with the given PFEC.
4260                  */
4261
4262                 /* Faults from writes to non-writable pages */
4263                 u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0;
4264                 /* Faults from user mode accesses to supervisor pages */
4265                 u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0;
4266                 /* Faults from fetches of non-executable pages*/
4267                 u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0;
4268                 /* Faults from kernel mode fetches of user pages */
4269                 u8 smepf = 0;
4270                 /* Faults from kernel mode accesses of user pages */
4271                 u8 smapf = 0;
4272
4273                 if (!ept) {
4274                         /* Faults from kernel mode accesses to user pages */
4275                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4276
4277                         /* Not really needed: !nx will cause pte.nx to fault */
4278                         if (!mmu->nx)
4279                                 ff = 0;
4280
4281                         /* Allow supervisor writes if !cr0.wp */
4282                         if (!cr0_wp)
4283                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4284
4285                         /* Disallow supervisor fetches of user code if cr4.smep */
4286                         if (cr4_smep)
4287                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4288
4289                         /*
4290                          * SMAP:kernel-mode data accesses from user-mode
4291                          * mappings should fault. A fault is considered
4292                          * as a SMAP violation if all of the following
4293                          * conditions are ture:
4294                          *   - X86_CR4_SMAP is set in CR4
4295                          *   - A user page is accessed
4296                          *   - The access is not a fetch
4297                          *   - Page fault in kernel mode
4298                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4299                          *
4300                          * Here, we cover the first three conditions.
4301                          * The fourth is computed dynamically in permission_fault();
4302                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4303                          * *not* subject to SMAP restrictions.
4304                          */
4305                         if (cr4_smap)
4306                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4307                 }
4308
4309                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4310         }
4311 }
4312
4313 /*
4314 * PKU is an additional mechanism by which the paging controls access to
4315 * user-mode addresses based on the value in the PKRU register.  Protection
4316 * key violations are reported through a bit in the page fault error code.
4317 * Unlike other bits of the error code, the PK bit is not known at the
4318 * call site of e.g. gva_to_gpa; it must be computed directly in
4319 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4320 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4321 *
4322 * In particular the following conditions come from the error code, the
4323 * page tables and the machine state:
4324 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4325 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4326 * - PK is always zero if U=0 in the page tables
4327 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4328 *
4329 * The PKRU bitmask caches the result of these four conditions.  The error
4330 * code (minus the P bit) and the page table's U bit form an index into the
4331 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4332 * with the two bits of the PKRU register corresponding to the protection key.
4333 * For the first three conditions above the bits will be 00, thus masking
4334 * away both AD and WD.  For all reads or if the last condition holds, WD
4335 * only will be masked away.
4336 */
4337 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4338                                 bool ept)
4339 {
4340         unsigned bit;
4341         bool wp;
4342
4343         if (ept) {
4344                 mmu->pkru_mask = 0;
4345                 return;
4346         }
4347
4348         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4349         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4350                 mmu->pkru_mask = 0;
4351                 return;
4352         }
4353
4354         wp = is_write_protection(vcpu);
4355
4356         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4357                 unsigned pfec, pkey_bits;
4358                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4359
4360                 pfec = bit << 1;
4361                 ff = pfec & PFERR_FETCH_MASK;
4362                 uf = pfec & PFERR_USER_MASK;
4363                 wf = pfec & PFERR_WRITE_MASK;
4364
4365                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4366                 pte_user = pfec & PFERR_RSVD_MASK;
4367
4368                 /*
4369                  * Only need to check the access which is not an
4370                  * instruction fetch and is to a user page.
4371                  */
4372                 check_pkey = (!ff && pte_user);
4373                 /*
4374                  * write access is controlled by PKRU if it is a
4375                  * user access or CR0.WP = 1.
4376                  */
4377                 check_write = check_pkey && wf && (uf || wp);
4378
4379                 /* PKRU.AD stops both read and write access. */
4380                 pkey_bits = !!check_pkey;
4381                 /* PKRU.WD stops write access. */
4382                 pkey_bits |= (!!check_write) << 1;
4383
4384                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4385         }
4386 }
4387
4388 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4389 {
4390         unsigned root_level = mmu->root_level;
4391
4392         mmu->last_nonleaf_level = root_level;
4393         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4394                 mmu->last_nonleaf_level++;
4395 }
4396
4397 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4398                                          struct kvm_mmu *context,
4399                                          int level)
4400 {
4401         context->nx = is_nx(vcpu);
4402         context->root_level = level;
4403
4404         reset_rsvds_bits_mask(vcpu, context);
4405         update_permission_bitmask(vcpu, context, false);
4406         update_pkru_bitmask(vcpu, context, false);
4407         update_last_nonleaf_level(vcpu, context);
4408
4409         MMU_WARN_ON(!is_pae(vcpu));
4410         context->page_fault = paging64_page_fault;
4411         context->gva_to_gpa = paging64_gva_to_gpa;
4412         context->sync_page = paging64_sync_page;
4413         context->invlpg = paging64_invlpg;
4414         context->update_pte = paging64_update_pte;
4415         context->shadow_root_level = level;
4416         context->root_hpa = INVALID_PAGE;
4417         context->direct_map = false;
4418 }
4419
4420 static void paging64_init_context(struct kvm_vcpu *vcpu,
4421                                   struct kvm_mmu *context)
4422 {
4423         int root_level = is_la57_mode(vcpu) ?
4424                          PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4425
4426         paging64_init_context_common(vcpu, context, root_level);
4427 }
4428
4429 static void paging32_init_context(struct kvm_vcpu *vcpu,
4430                                   struct kvm_mmu *context)
4431 {
4432         context->nx = false;
4433         context->root_level = PT32_ROOT_LEVEL;
4434
4435         reset_rsvds_bits_mask(vcpu, context);
4436         update_permission_bitmask(vcpu, context, false);
4437         update_pkru_bitmask(vcpu, context, false);
4438         update_last_nonleaf_level(vcpu, context);
4439
4440         context->page_fault = paging32_page_fault;
4441         context->gva_to_gpa = paging32_gva_to_gpa;
4442         context->sync_page = paging32_sync_page;
4443         context->invlpg = paging32_invlpg;
4444         context->update_pte = paging32_update_pte;
4445         context->shadow_root_level = PT32E_ROOT_LEVEL;
4446         context->root_hpa = INVALID_PAGE;
4447         context->direct_map = false;
4448 }
4449
4450 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4451                                    struct kvm_mmu *context)
4452 {
4453         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4454 }
4455
4456 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4457 {
4458         struct kvm_mmu *context = &vcpu->arch.mmu;
4459
4460         context->base_role.word = 0;
4461         context->base_role.smm = is_smm(vcpu);
4462         context->base_role.ad_disabled = (shadow_accessed_mask == 0);
4463         context->page_fault = tdp_page_fault;
4464         context->sync_page = nonpaging_sync_page;
4465         context->invlpg = nonpaging_invlpg;
4466         context->update_pte = nonpaging_update_pte;
4467         context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
4468         context->root_hpa = INVALID_PAGE;
4469         context->direct_map = true;
4470         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4471         context->get_cr3 = get_cr3;
4472         context->get_pdptr = kvm_pdptr_read;
4473         context->inject_page_fault = kvm_inject_page_fault;
4474
4475         if (!is_paging(vcpu)) {
4476                 context->nx = false;
4477                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4478                 context->root_level = 0;
4479         } else if (is_long_mode(vcpu)) {
4480                 context->nx = is_nx(vcpu);
4481                 context->root_level = is_la57_mode(vcpu) ?
4482                                 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4483                 reset_rsvds_bits_mask(vcpu, context);
4484                 context->gva_to_gpa = paging64_gva_to_gpa;
4485         } else if (is_pae(vcpu)) {
4486                 context->nx = is_nx(vcpu);
4487                 context->root_level = PT32E_ROOT_LEVEL;
4488                 reset_rsvds_bits_mask(vcpu, context);
4489                 context->gva_to_gpa = paging64_gva_to_gpa;
4490         } else {
4491                 context->nx = false;
4492                 context->root_level = PT32_ROOT_LEVEL;
4493                 reset_rsvds_bits_mask(vcpu, context);
4494                 context->gva_to_gpa = paging32_gva_to_gpa;
4495         }
4496
4497         update_permission_bitmask(vcpu, context, false);
4498         update_pkru_bitmask(vcpu, context, false);
4499         update_last_nonleaf_level(vcpu, context);
4500         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4501 }
4502
4503 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4504 {
4505         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4506         bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4507         struct kvm_mmu *context = &vcpu->arch.mmu;
4508
4509         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4510
4511         if (!is_paging(vcpu))
4512                 nonpaging_init_context(vcpu, context);
4513         else if (is_long_mode(vcpu))
4514                 paging64_init_context(vcpu, context);
4515         else if (is_pae(vcpu))
4516                 paging32E_init_context(vcpu, context);
4517         else
4518                 paging32_init_context(vcpu, context);
4519
4520         context->base_role.nxe = is_nx(vcpu);
4521         context->base_role.cr4_pae = !!is_pae(vcpu);
4522         context->base_role.cr0_wp  = is_write_protection(vcpu);
4523         context->base_role.smep_andnot_wp
4524                 = smep && !is_write_protection(vcpu);
4525         context->base_role.smap_andnot_wp
4526                 = smap && !is_write_protection(vcpu);
4527         context->base_role.smm = is_smm(vcpu);
4528         reset_shadow_zero_bits_mask(vcpu, context);
4529 }
4530 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4531
4532 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4533                              bool accessed_dirty)
4534 {
4535         struct kvm_mmu *context = &vcpu->arch.mmu;
4536
4537         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4538
4539         context->shadow_root_level = PT64_ROOT_4LEVEL;
4540
4541         context->nx = true;
4542         context->ept_ad = accessed_dirty;
4543         context->page_fault = ept_page_fault;
4544         context->gva_to_gpa = ept_gva_to_gpa;
4545         context->sync_page = ept_sync_page;
4546         context->invlpg = ept_invlpg;
4547         context->update_pte = ept_update_pte;
4548         context->root_level = PT64_ROOT_4LEVEL;
4549         context->root_hpa = INVALID_PAGE;
4550         context->direct_map = false;
4551         context->base_role.ad_disabled = !accessed_dirty;
4552
4553         update_permission_bitmask(vcpu, context, true);
4554         update_pkru_bitmask(vcpu, context, true);
4555         update_last_nonleaf_level(vcpu, context);
4556         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4557         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4558 }
4559 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4560
4561 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4562 {
4563         struct kvm_mmu *context = &vcpu->arch.mmu;
4564
4565         kvm_init_shadow_mmu(vcpu);
4566         context->set_cr3           = kvm_x86_ops->set_cr3;
4567         context->get_cr3           = get_cr3;
4568         context->get_pdptr         = kvm_pdptr_read;
4569         context->inject_page_fault = kvm_inject_page_fault;
4570 }
4571
4572 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4573 {
4574         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4575
4576         g_context->get_cr3           = get_cr3;
4577         g_context->get_pdptr         = kvm_pdptr_read;
4578         g_context->inject_page_fault = kvm_inject_page_fault;
4579
4580         /*
4581          * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4582          * L1's nested page tables (e.g. EPT12). The nested translation
4583          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4584          * L2's page tables as the first level of translation and L1's
4585          * nested page tables as the second level of translation. Basically
4586          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4587          */
4588         if (!is_paging(vcpu)) {
4589                 g_context->nx = false;
4590                 g_context->root_level = 0;
4591                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4592         } else if (is_long_mode(vcpu)) {
4593                 g_context->nx = is_nx(vcpu);
4594                 g_context->root_level = is_la57_mode(vcpu) ?
4595                                         PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4596                 reset_rsvds_bits_mask(vcpu, g_context);
4597                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4598         } else if (is_pae(vcpu)) {
4599                 g_context->nx = is_nx(vcpu);
4600                 g_context->root_level = PT32E_ROOT_LEVEL;
4601                 reset_rsvds_bits_mask(vcpu, g_context);
4602                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4603         } else {
4604                 g_context->nx = false;
4605                 g_context->root_level = PT32_ROOT_LEVEL;
4606                 reset_rsvds_bits_mask(vcpu, g_context);
4607                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4608         }
4609
4610         update_permission_bitmask(vcpu, g_context, false);
4611         update_pkru_bitmask(vcpu, g_context, false);
4612         update_last_nonleaf_level(vcpu, g_context);
4613 }
4614
4615 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4616 {
4617         if (mmu_is_nested(vcpu))
4618                 init_kvm_nested_mmu(vcpu);
4619         else if (tdp_enabled)
4620                 init_kvm_tdp_mmu(vcpu);
4621         else
4622                 init_kvm_softmmu(vcpu);
4623 }
4624
4625 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4626 {
4627         kvm_mmu_unload(vcpu);
4628         init_kvm_mmu(vcpu);
4629 }
4630 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4631
4632 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4633 {
4634         int r;
4635
4636         r = mmu_topup_memory_caches(vcpu);
4637         if (r)
4638                 goto out;
4639         r = mmu_alloc_roots(vcpu);
4640         kvm_mmu_sync_roots(vcpu);
4641         if (r)
4642                 goto out;
4643         /* set_cr3() should ensure TLB has been flushed */
4644         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4645 out:
4646         return r;
4647 }
4648 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4649
4650 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4651 {
4652         mmu_free_roots(vcpu);
4653         WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4654 }
4655 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4656
4657 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4658                                   struct kvm_mmu_page *sp, u64 *spte,
4659                                   const void *new)
4660 {
4661         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4662                 ++vcpu->kvm->stat.mmu_pde_zapped;
4663                 return;
4664         }
4665
4666         ++vcpu->kvm->stat.mmu_pte_updated;
4667         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4668 }
4669
4670 static bool need_remote_flush(u64 old, u64 new)
4671 {
4672         if (!is_shadow_present_pte(old))
4673                 return false;
4674         if (!is_shadow_present_pte(new))
4675                 return true;
4676         if ((old ^ new) & PT64_BASE_ADDR_MASK)
4677                 return true;
4678         old ^= shadow_nx_mask;
4679         new ^= shadow_nx_mask;
4680         return (old & ~new & PT64_PERM_MASK) != 0;
4681 }
4682
4683 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4684                                     const u8 *new, int *bytes)
4685 {
4686         u64 gentry;
4687         int r;
4688
4689         /*
4690          * Assume that the pte write on a page table of the same type
4691          * as the current vcpu paging mode since we update the sptes only
4692          * when they have the same mode.
4693          */
4694         if (is_pae(vcpu) && *bytes == 4) {
4695                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4696                 *gpa &= ~(gpa_t)7;
4697                 *bytes = 8;
4698                 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4699                 if (r)
4700                         gentry = 0;
4701                 new = (const u8 *)&gentry;
4702         }
4703
4704         switch (*bytes) {
4705         case 4:
4706                 gentry = *(const u32 *)new;
4707                 break;
4708         case 8:
4709                 gentry = *(const u64 *)new;
4710                 break;
4711         default:
4712                 gentry = 0;
4713                 break;
4714         }
4715
4716         return gentry;
4717 }
4718
4719 /*
4720  * If we're seeing too many writes to a page, it may no longer be a page table,
4721  * or we may be forking, in which case it is better to unmap the page.
4722  */
4723 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4724 {
4725         /*
4726          * Skip write-flooding detected for the sp whose level is 1, because
4727          * it can become unsync, then the guest page is not write-protected.
4728          */
4729         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4730                 return false;
4731
4732         atomic_inc(&sp->write_flooding_count);
4733         return atomic_read(&sp->write_flooding_count) >= 3;
4734 }
4735
4736 /*
4737  * Misaligned accesses are too much trouble to fix up; also, they usually
4738  * indicate a page is not used as a page table.
4739  */
4740 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4741                                     int bytes)
4742 {
4743         unsigned offset, pte_size, misaligned;
4744
4745         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4746                  gpa, bytes, sp->role.word);
4747
4748         offset = offset_in_page(gpa);
4749         pte_size = sp->role.cr4_pae ? 8 : 4;
4750
4751         /*
4752          * Sometimes, the OS only writes the last one bytes to update status
4753          * bits, for example, in linux, andb instruction is used in clear_bit().
4754          */
4755         if (!(offset & (pte_size - 1)) && bytes == 1)
4756                 return false;
4757
4758         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4759         misaligned |= bytes < 4;
4760
4761         return misaligned;
4762 }
4763
4764 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4765 {
4766         unsigned page_offset, quadrant;
4767         u64 *spte;
4768         int level;
4769
4770         page_offset = offset_in_page(gpa);
4771         level = sp->role.level;
4772         *nspte = 1;
4773         if (!sp->role.cr4_pae) {
4774                 page_offset <<= 1;      /* 32->64 */
4775                 /*
4776                  * A 32-bit pde maps 4MB while the shadow pdes map
4777                  * only 2MB.  So we need to double the offset again
4778                  * and zap two pdes instead of one.
4779                  */
4780                 if (level == PT32_ROOT_LEVEL) {
4781                         page_offset &= ~7; /* kill rounding error */
4782                         page_offset <<= 1;
4783                         *nspte = 2;
4784                 }
4785                 quadrant = page_offset >> PAGE_SHIFT;
4786                 page_offset &= ~PAGE_MASK;
4787                 if (quadrant != sp->role.quadrant)
4788                         return NULL;
4789         }
4790
4791         spte = &sp->spt[page_offset / sizeof(*spte)];
4792         return spte;
4793 }
4794
4795 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4796                               const u8 *new, int bytes,
4797                               struct kvm_page_track_notifier_node *node)
4798 {
4799         gfn_t gfn = gpa >> PAGE_SHIFT;
4800         struct kvm_mmu_page *sp;
4801         LIST_HEAD(invalid_list);
4802         u64 entry, gentry, *spte;
4803         int npte;
4804         bool remote_flush, local_flush;
4805         union kvm_mmu_page_role mask = { };
4806
4807         mask.cr0_wp = 1;
4808         mask.cr4_pae = 1;
4809         mask.nxe = 1;
4810         mask.smep_andnot_wp = 1;
4811         mask.smap_andnot_wp = 1;
4812         mask.smm = 1;
4813         mask.ad_disabled = 1;
4814
4815         /*
4816          * If we don't have indirect shadow pages, it means no page is
4817          * write-protected, so we can exit simply.
4818          */
4819         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4820                 return;
4821
4822         remote_flush = local_flush = false;
4823
4824         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4825
4826         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4827
4828         /*
4829          * No need to care whether allocation memory is successful
4830          * or not since pte prefetch is skiped if it does not have
4831          * enough objects in the cache.
4832          */
4833         mmu_topup_memory_caches(vcpu);
4834
4835         spin_lock(&vcpu->kvm->mmu_lock);
4836         ++vcpu->kvm->stat.mmu_pte_write;
4837         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4838
4839         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4840                 if (detect_write_misaligned(sp, gpa, bytes) ||
4841                       detect_write_flooding(sp)) {
4842                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4843                         ++vcpu->kvm->stat.mmu_flooded;
4844                         continue;
4845                 }
4846
4847                 spte = get_written_sptes(sp, gpa, &npte);
4848                 if (!spte)
4849                         continue;
4850
4851                 local_flush = true;
4852                 while (npte--) {
4853                         entry = *spte;
4854                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
4855                         if (gentry &&
4856                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4857                               & mask.word) && rmap_can_add(vcpu))
4858                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4859                         if (need_remote_flush(entry, *spte))
4860                                 remote_flush = true;
4861                         ++spte;
4862                 }
4863         }
4864         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4865         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4866         spin_unlock(&vcpu->kvm->mmu_lock);
4867 }
4868
4869 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4870 {
4871         gpa_t gpa;
4872         int r;
4873
4874         if (vcpu->arch.mmu.direct_map)
4875                 return 0;
4876
4877         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4878
4879         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4880
4881         return r;
4882 }
4883 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4884
4885 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
4886 {
4887         LIST_HEAD(invalid_list);
4888
4889         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4890                 return 0;
4891
4892         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4893                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4894                         break;
4895
4896                 ++vcpu->kvm->stat.mmu_recycled;
4897         }
4898         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4899
4900         if (!kvm_mmu_available_pages(vcpu->kvm))
4901                 return -ENOSPC;
4902         return 0;
4903 }
4904
4905 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
4906                        void *insn, int insn_len)
4907 {
4908         int r, emulation_type = EMULTYPE_RETRY;
4909         enum emulation_result er;
4910         bool direct = vcpu->arch.mmu.direct_map;
4911
4912         /* With shadow page tables, fault_address contains a GVA or nGPA.  */
4913         if (vcpu->arch.mmu.direct_map) {
4914                 vcpu->arch.gpa_available = true;
4915                 vcpu->arch.gpa_val = cr2;
4916         }
4917
4918         r = RET_PF_INVALID;
4919         if (unlikely(error_code & PFERR_RSVD_MASK)) {
4920                 r = handle_mmio_page_fault(vcpu, cr2, direct);
4921                 if (r == RET_PF_EMULATE) {
4922                         emulation_type = 0;
4923                         goto emulate;
4924                 }
4925         }
4926
4927         if (r == RET_PF_INVALID) {
4928                 r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
4929                                               false);
4930                 WARN_ON(r == RET_PF_INVALID);
4931         }
4932
4933         if (r == RET_PF_RETRY)
4934                 return 1;
4935         if (r < 0)
4936                 return r;
4937
4938         /*
4939          * Before emulating the instruction, check if the error code
4940          * was due to a RO violation while translating the guest page.
4941          * This can occur when using nested virtualization with nested
4942          * paging in both guests. If true, we simply unprotect the page
4943          * and resume the guest.
4944          */
4945         if (vcpu->arch.mmu.direct_map &&
4946             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
4947                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
4948                 return 1;
4949         }
4950
4951         if (mmio_info_in_cache(vcpu, cr2, direct))
4952                 emulation_type = 0;
4953 emulate:
4954         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4955
4956         switch (er) {
4957         case EMULATE_DONE:
4958                 return 1;
4959         case EMULATE_USER_EXIT:
4960                 ++vcpu->stat.mmio_exits;
4961                 /* fall through */
4962         case EMULATE_FAIL:
4963                 return 0;
4964         default:
4965                 BUG();
4966         }
4967 }
4968 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4969
4970 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4971 {
4972         vcpu->arch.mmu.invlpg(vcpu, gva);
4973         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4974         ++vcpu->stat.invlpg;
4975 }
4976 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4977
4978 void kvm_enable_tdp(void)
4979 {
4980         tdp_enabled = true;
4981 }
4982 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4983
4984 void kvm_disable_tdp(void)
4985 {
4986         tdp_enabled = false;
4987 }
4988 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4989
4990 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4991 {
4992         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4993         free_page((unsigned long)vcpu->arch.mmu.lm_root);
4994 }
4995
4996 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4997 {
4998         struct page *page;
4999         int i;
5000
5001         /*
5002          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
5003          * Therefore we need to allocate shadow page tables in the first
5004          * 4GB of memory, which happens to fit the DMA32 zone.
5005          */
5006         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
5007         if (!page)
5008                 return -ENOMEM;
5009
5010         vcpu->arch.mmu.pae_root = page_address(page);
5011         for (i = 0; i < 4; ++i)
5012                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
5013
5014         return 0;
5015 }
5016
5017 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5018 {
5019         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
5020         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5021         vcpu->arch.mmu.translate_gpa = translate_gpa;
5022         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5023
5024         return alloc_mmu_pages(vcpu);
5025 }
5026
5027 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
5028 {
5029         MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
5030
5031         init_kvm_mmu(vcpu);
5032 }
5033
5034 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5035                         struct kvm_memory_slot *slot,
5036                         struct kvm_page_track_notifier_node *node)
5037 {
5038         kvm_mmu_invalidate_zap_all_pages(kvm);
5039 }
5040
5041 void kvm_mmu_init_vm(struct kvm *kvm)
5042 {
5043         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5044
5045         node->track_write = kvm_mmu_pte_write;
5046         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5047         kvm_page_track_register_notifier(kvm, node);
5048 }
5049
5050 void kvm_mmu_uninit_vm(struct kvm *kvm)
5051 {
5052         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5053
5054         kvm_page_track_unregister_notifier(kvm, node);
5055 }
5056
5057 /* The return value indicates if tlb flush on all vcpus is needed. */
5058 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5059
5060 /* The caller should hold mmu-lock before calling this function. */
5061 static bool
5062 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5063                         slot_level_handler fn, int start_level, int end_level,
5064                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5065 {
5066         struct slot_rmap_walk_iterator iterator;
5067         bool flush = false;
5068
5069         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5070                         end_gfn, &iterator) {
5071                 if (iterator.rmap)
5072                         flush |= fn(kvm, iterator.rmap);
5073
5074                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5075                         if (flush && lock_flush_tlb) {
5076                                 kvm_flush_remote_tlbs(kvm);
5077                                 flush = false;
5078                         }
5079                         cond_resched_lock(&kvm->mmu_lock);
5080                 }
5081         }
5082
5083         if (flush && lock_flush_tlb) {
5084                 kvm_flush_remote_tlbs(kvm);
5085                 flush = false;
5086         }
5087
5088         return flush;
5089 }
5090
5091 static bool
5092 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5093                   slot_level_handler fn, int start_level, int end_level,
5094                   bool lock_flush_tlb)
5095 {
5096         return slot_handle_level_range(kvm, memslot, fn, start_level,
5097                         end_level, memslot->base_gfn,
5098                         memslot->base_gfn + memslot->npages - 1,
5099                         lock_flush_tlb);
5100 }
5101
5102 static bool
5103 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5104                       slot_level_handler fn, bool lock_flush_tlb)
5105 {
5106         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5107                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5108 }
5109
5110 static bool
5111 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5112                         slot_level_handler fn, bool lock_flush_tlb)
5113 {
5114         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5115                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5116 }
5117
5118 static bool
5119 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5120                  slot_level_handler fn, bool lock_flush_tlb)
5121 {
5122         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5123                                  PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5124 }
5125
5126 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5127 {
5128         struct kvm_memslots *slots;
5129         struct kvm_memory_slot *memslot;
5130         int i;
5131
5132         spin_lock(&kvm->mmu_lock);
5133         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5134                 slots = __kvm_memslots(kvm, i);
5135                 kvm_for_each_memslot(memslot, slots) {
5136                         gfn_t start, end;
5137
5138                         start = max(gfn_start, memslot->base_gfn);
5139                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
5140                         if (start >= end)
5141                                 continue;
5142
5143                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5144                                                 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5145                                                 start, end - 1, true);
5146                 }
5147         }
5148
5149         spin_unlock(&kvm->mmu_lock);
5150 }
5151
5152 static bool slot_rmap_write_protect(struct kvm *kvm,
5153                                     struct kvm_rmap_head *rmap_head)
5154 {
5155         return __rmap_write_protect(kvm, rmap_head, false);
5156 }
5157
5158 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5159                                       struct kvm_memory_slot *memslot)
5160 {
5161         bool flush;
5162
5163         spin_lock(&kvm->mmu_lock);
5164         flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5165                                       false);
5166         spin_unlock(&kvm->mmu_lock);
5167
5168         /*
5169          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5170          * which do tlb flush out of mmu-lock should be serialized by
5171          * kvm->slots_lock otherwise tlb flush would be missed.
5172          */
5173         lockdep_assert_held(&kvm->slots_lock);
5174
5175         /*
5176          * We can flush all the TLBs out of the mmu lock without TLB
5177          * corruption since we just change the spte from writable to
5178          * readonly so that we only need to care the case of changing
5179          * spte from present to present (changing the spte from present
5180          * to nonpresent will flush all the TLBs immediately), in other
5181          * words, the only case we care is mmu_spte_update() where we
5182          * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5183          * instead of PT_WRITABLE_MASK, that means it does not depend
5184          * on PT_WRITABLE_MASK anymore.
5185          */
5186         if (flush)
5187                 kvm_flush_remote_tlbs(kvm);
5188 }
5189
5190 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5191                                          struct kvm_rmap_head *rmap_head)
5192 {
5193         u64 *sptep;
5194         struct rmap_iterator iter;
5195         int need_tlb_flush = 0;
5196         kvm_pfn_t pfn;
5197         struct kvm_mmu_page *sp;
5198
5199 restart:
5200         for_each_rmap_spte(rmap_head, &iter, sptep) {
5201                 sp = page_header(__pa(sptep));
5202                 pfn = spte_to_pfn(*sptep);
5203
5204                 /*
5205                  * We cannot do huge page mapping for indirect shadow pages,
5206                  * which are found on the last rmap (level = 1) when not using
5207                  * tdp; such shadow pages are synced with the page table in
5208                  * the guest, and the guest page table is using 4K page size
5209                  * mapping if the indirect sp has level = 1.
5210                  */
5211                 if (sp->role.direct &&
5212                         !kvm_is_reserved_pfn(pfn) &&
5213                         PageTransCompoundMap(pfn_to_page(pfn))) {
5214                         drop_spte(kvm, sptep);
5215                         need_tlb_flush = 1;
5216                         goto restart;
5217                 }
5218         }
5219
5220         return need_tlb_flush;
5221 }
5222
5223 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5224                                    const struct kvm_memory_slot *memslot)
5225 {
5226         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5227         spin_lock(&kvm->mmu_lock);
5228         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5229                          kvm_mmu_zap_collapsible_spte, true);
5230         spin_unlock(&kvm->mmu_lock);
5231 }
5232
5233 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5234                                    struct kvm_memory_slot *memslot)
5235 {
5236         bool flush;
5237
5238         spin_lock(&kvm->mmu_lock);
5239         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5240         spin_unlock(&kvm->mmu_lock);
5241
5242         lockdep_assert_held(&kvm->slots_lock);
5243
5244         /*
5245          * It's also safe to flush TLBs out of mmu lock here as currently this
5246          * function is only used for dirty logging, in which case flushing TLB
5247          * out of mmu lock also guarantees no dirty pages will be lost in
5248          * dirty_bitmap.
5249          */
5250         if (flush)
5251                 kvm_flush_remote_tlbs(kvm);
5252 }
5253 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5254
5255 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5256                                         struct kvm_memory_slot *memslot)
5257 {
5258         bool flush;
5259
5260         spin_lock(&kvm->mmu_lock);
5261         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5262                                         false);
5263         spin_unlock(&kvm->mmu_lock);
5264
5265         /* see kvm_mmu_slot_remove_write_access */
5266         lockdep_assert_held(&kvm->slots_lock);
5267
5268         if (flush)
5269                 kvm_flush_remote_tlbs(kvm);
5270 }
5271 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5272
5273 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5274                             struct kvm_memory_slot *memslot)
5275 {
5276         bool flush;
5277
5278         spin_lock(&kvm->mmu_lock);
5279         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5280         spin_unlock(&kvm->mmu_lock);
5281
5282         lockdep_assert_held(&kvm->slots_lock);
5283
5284         /* see kvm_mmu_slot_leaf_clear_dirty */
5285         if (flush)
5286                 kvm_flush_remote_tlbs(kvm);
5287 }
5288 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5289
5290 #define BATCH_ZAP_PAGES 10
5291 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5292 {
5293         struct kvm_mmu_page *sp, *node;
5294         int batch = 0;
5295
5296 restart:
5297         list_for_each_entry_safe_reverse(sp, node,
5298               &kvm->arch.active_mmu_pages, link) {
5299                 int ret;
5300
5301                 /*
5302                  * No obsolete page exists before new created page since
5303                  * active_mmu_pages is the FIFO list.
5304                  */
5305                 if (!is_obsolete_sp(kvm, sp))
5306                         break;
5307
5308                 /*
5309                  * Since we are reversely walking the list and the invalid
5310                  * list will be moved to the head, skip the invalid page
5311                  * can help us to avoid the infinity list walking.
5312                  */
5313                 if (sp->role.invalid)
5314                         continue;
5315
5316                 /*
5317                  * Need not flush tlb since we only zap the sp with invalid
5318                  * generation number.
5319                  */
5320                 if (batch >= BATCH_ZAP_PAGES &&
5321                       cond_resched_lock(&kvm->mmu_lock)) {
5322                         batch = 0;
5323                         goto restart;
5324                 }
5325
5326                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
5327                                 &kvm->arch.zapped_obsolete_pages);
5328                 batch += ret;
5329
5330                 if (ret)
5331                         goto restart;
5332         }
5333
5334         /*
5335          * Should flush tlb before free page tables since lockless-walking
5336          * may use the pages.
5337          */
5338         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5339 }
5340
5341 /*
5342  * Fast invalidate all shadow pages and use lock-break technique
5343  * to zap obsolete pages.
5344  *
5345  * It's required when memslot is being deleted or VM is being
5346  * destroyed, in these cases, we should ensure that KVM MMU does
5347  * not use any resource of the being-deleted slot or all slots
5348  * after calling the function.
5349  */
5350 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
5351 {
5352         spin_lock(&kvm->mmu_lock);
5353         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5354         kvm->arch.mmu_valid_gen++;
5355
5356         /*
5357          * Notify all vcpus to reload its shadow page table
5358          * and flush TLB. Then all vcpus will switch to new
5359          * shadow page table with the new mmu_valid_gen.
5360          *
5361          * Note: we should do this under the protection of
5362          * mmu-lock, otherwise, vcpu would purge shadow page
5363          * but miss tlb flush.
5364          */
5365         kvm_reload_remote_mmus(kvm);
5366
5367         kvm_zap_obsolete_pages(kvm);
5368         spin_unlock(&kvm->mmu_lock);
5369 }
5370
5371 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5372 {
5373         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5374 }
5375
5376 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
5377 {
5378         /*
5379          * The very rare case: if the generation-number is round,
5380          * zap all shadow pages.
5381          */
5382         if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
5383                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5384                 kvm_mmu_invalidate_zap_all_pages(kvm);
5385         }
5386 }
5387
5388 static unsigned long
5389 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5390 {
5391         struct kvm *kvm;
5392         int nr_to_scan = sc->nr_to_scan;
5393         unsigned long freed = 0;
5394
5395         spin_lock(&kvm_lock);
5396
5397         list_for_each_entry(kvm, &vm_list, vm_list) {
5398                 int idx;
5399                 LIST_HEAD(invalid_list);
5400
5401                 /*
5402                  * Never scan more than sc->nr_to_scan VM instances.
5403                  * Will not hit this condition practically since we do not try
5404                  * to shrink more than one VM and it is very unlikely to see
5405                  * !n_used_mmu_pages so many times.
5406                  */
5407                 if (!nr_to_scan--)
5408                         break;
5409                 /*
5410                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5411                  * here. We may skip a VM instance errorneosly, but we do not
5412                  * want to shrink a VM that only started to populate its MMU
5413                  * anyway.
5414                  */
5415                 if (!kvm->arch.n_used_mmu_pages &&
5416                       !kvm_has_zapped_obsolete_pages(kvm))
5417                         continue;
5418
5419                 idx = srcu_read_lock(&kvm->srcu);
5420                 spin_lock(&kvm->mmu_lock);
5421
5422                 if (kvm_has_zapped_obsolete_pages(kvm)) {
5423                         kvm_mmu_commit_zap_page(kvm,
5424                               &kvm->arch.zapped_obsolete_pages);
5425                         goto unlock;
5426                 }
5427
5428                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5429                         freed++;
5430                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5431
5432 unlock:
5433                 spin_unlock(&kvm->mmu_lock);
5434                 srcu_read_unlock(&kvm->srcu, idx);
5435
5436                 /*
5437                  * unfair on small ones
5438                  * per-vm shrinkers cry out
5439                  * sadness comes quickly
5440                  */
5441                 list_move_tail(&kvm->vm_list, &vm_list);
5442                 break;
5443         }
5444
5445         spin_unlock(&kvm_lock);
5446         return freed;
5447 }
5448
5449 static unsigned long
5450 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5451 {
5452         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5453 }
5454
5455 static struct shrinker mmu_shrinker = {
5456         .count_objects = mmu_shrink_count,
5457         .scan_objects = mmu_shrink_scan,
5458         .seeks = DEFAULT_SEEKS * 10,
5459 };
5460
5461 static void mmu_destroy_caches(void)
5462 {
5463         kmem_cache_destroy(pte_list_desc_cache);
5464         kmem_cache_destroy(mmu_page_header_cache);
5465 }
5466
5467 int kvm_mmu_module_init(void)
5468 {
5469         int ret = -ENOMEM;
5470
5471         kvm_mmu_clear_all_pte_masks();
5472
5473         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5474                                             sizeof(struct pte_list_desc),
5475                                             0, SLAB_ACCOUNT, NULL);
5476         if (!pte_list_desc_cache)
5477                 goto out;
5478
5479         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5480                                                   sizeof(struct kvm_mmu_page),
5481                                                   0, SLAB_ACCOUNT, NULL);
5482         if (!mmu_page_header_cache)
5483                 goto out;
5484
5485         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5486                 goto out;
5487
5488         ret = register_shrinker(&mmu_shrinker);
5489         if (ret)
5490                 goto out;
5491
5492         return 0;
5493
5494 out:
5495         mmu_destroy_caches();
5496         return ret;
5497 }
5498
5499 /*
5500  * Caculate mmu pages needed for kvm.
5501  */
5502 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5503 {
5504         unsigned int nr_mmu_pages;
5505         unsigned int  nr_pages = 0;
5506         struct kvm_memslots *slots;
5507         struct kvm_memory_slot *memslot;
5508         int i;
5509
5510         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5511                 slots = __kvm_memslots(kvm, i);
5512
5513                 kvm_for_each_memslot(memslot, slots)
5514                         nr_pages += memslot->npages;
5515         }
5516
5517         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5518         nr_mmu_pages = max(nr_mmu_pages,
5519                            (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5520
5521         return nr_mmu_pages;
5522 }
5523
5524 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5525 {
5526         kvm_mmu_unload(vcpu);
5527         free_mmu_pages(vcpu);
5528         mmu_free_memory_caches(vcpu);
5529 }
5530
5531 void kvm_mmu_module_exit(void)
5532 {
5533         mmu_destroy_caches();
5534         percpu_counter_destroy(&kvm_total_used_mmu_pages);
5535         unregister_shrinker(&mmu_shrinker);
5536         mmu_audit_disable();
5537 }