]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/svm.c
0762e81e0498a48d216c34117b56d01be9d95a22
[linux.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #define pr_fmt(fmt) "SVM: " fmt
19
20 #include <linux/kvm_host.h>
21
22 #include "irq.h"
23 #include "mmu.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
28
29 #include <linux/module.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/kernel.h>
32 #include <linux/vmalloc.h>
33 #include <linux/highmem.h>
34 #include <linux/sched.h>
35 #include <linux/trace_events.h>
36 #include <linux/slab.h>
37 #include <linux/amd-iommu.h>
38 #include <linux/hashtable.h>
39 #include <linux/frame.h>
40 #include <linux/psp-sev.h>
41 #include <linux/file.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44
45 #include <asm/apic.h>
46 #include <asm/perf_event.h>
47 #include <asm/tlbflush.h>
48 #include <asm/desc.h>
49 #include <asm/debugreg.h>
50 #include <asm/kvm_para.h>
51 #include <asm/irq_remapping.h>
52 #include <asm/spec-ctrl.h>
53
54 #include <asm/virtext.h>
55 #include "trace.h"
56
57 #define __ex(x) __kvm_handle_fault_on_reboot(x)
58
59 MODULE_AUTHOR("Qumranet");
60 MODULE_LICENSE("GPL");
61
62 static const struct x86_cpu_id svm_cpu_id[] = {
63         X86_FEATURE_MATCH(X86_FEATURE_SVM),
64         {}
65 };
66 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
67
68 #define IOPM_ALLOC_ORDER 2
69 #define MSRPM_ALLOC_ORDER 1
70
71 #define SEG_TYPE_LDT 2
72 #define SEG_TYPE_BUSY_TSS16 3
73
74 #define SVM_FEATURE_NPT            (1 <<  0)
75 #define SVM_FEATURE_LBRV           (1 <<  1)
76 #define SVM_FEATURE_SVML           (1 <<  2)
77 #define SVM_FEATURE_NRIP           (1 <<  3)
78 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
79 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
80 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
81 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
82 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
83
84 #define SVM_AVIC_DOORBELL       0xc001011b
85
86 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
87 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
88 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
89
90 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
91
92 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
93 #define TSC_RATIO_MIN           0x0000000000000001ULL
94 #define TSC_RATIO_MAX           0x000000ffffffffffULL
95
96 #define AVIC_HPA_MASK   ~((0xFFFULL << 52) | 0xFFF)
97
98 /*
99  * 0xff is broadcast, so the max index allowed for physical APIC ID
100  * table is 0xfe.  APIC IDs above 0xff are reserved.
101  */
102 #define AVIC_MAX_PHYSICAL_ID_COUNT      255
103
104 #define AVIC_UNACCEL_ACCESS_WRITE_MASK          1
105 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK         0xFF0
106 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK         0xFFFFFFFF
107
108 /* AVIC GATAG is encoded using VM and VCPU IDs */
109 #define AVIC_VCPU_ID_BITS               8
110 #define AVIC_VCPU_ID_MASK               ((1 << AVIC_VCPU_ID_BITS) - 1)
111
112 #define AVIC_VM_ID_BITS                 24
113 #define AVIC_VM_ID_NR                   (1 << AVIC_VM_ID_BITS)
114 #define AVIC_VM_ID_MASK                 ((1 << AVIC_VM_ID_BITS) - 1)
115
116 #define AVIC_GATAG(x, y)                (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
117                                                 (y & AVIC_VCPU_ID_MASK))
118 #define AVIC_GATAG_TO_VMID(x)           ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
119 #define AVIC_GATAG_TO_VCPUID(x)         (x & AVIC_VCPU_ID_MASK)
120
121 static bool erratum_383_found __read_mostly;
122
123 static const u32 host_save_user_msrs[] = {
124 #ifdef CONFIG_X86_64
125         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
126         MSR_FS_BASE,
127 #endif
128         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
129         MSR_TSC_AUX,
130 };
131
132 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
133
134 struct kvm_sev_info {
135         bool active;            /* SEV enabled guest */
136         unsigned int asid;      /* ASID used for this guest */
137         unsigned int handle;    /* SEV firmware handle */
138         int fd;                 /* SEV device fd */
139         unsigned long pages_locked; /* Number of pages locked */
140         struct list_head regions_list;  /* List of registered regions */
141 };
142
143 struct kvm_svm {
144         struct kvm kvm;
145
146         /* Struct members for AVIC */
147         u32 avic_vm_id;
148         u32 ldr_mode;
149         struct page *avic_logical_id_table_page;
150         struct page *avic_physical_id_table_page;
151         struct hlist_node hnode;
152
153         struct kvm_sev_info sev_info;
154 };
155
156 struct kvm_vcpu;
157
158 struct nested_state {
159         struct vmcb *hsave;
160         u64 hsave_msr;
161         u64 vm_cr_msr;
162         u64 vmcb;
163
164         /* These are the merged vectors */
165         u32 *msrpm;
166
167         /* gpa pointers to the real vectors */
168         u64 vmcb_msrpm;
169         u64 vmcb_iopm;
170
171         /* A VMEXIT is required but not yet emulated */
172         bool exit_required;
173
174         /* cache for intercepts of the guest */
175         u32 intercept_cr;
176         u32 intercept_dr;
177         u32 intercept_exceptions;
178         u64 intercept;
179
180         /* Nested Paging related state */
181         u64 nested_cr3;
182 };
183
184 #define MSRPM_OFFSETS   16
185 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
186
187 /*
188  * Set osvw_len to higher value when updated Revision Guides
189  * are published and we know what the new status bits are
190  */
191 static uint64_t osvw_len = 4, osvw_status;
192
193 struct vcpu_svm {
194         struct kvm_vcpu vcpu;
195         struct vmcb *vmcb;
196         unsigned long vmcb_pa;
197         struct svm_cpu_data *svm_data;
198         uint64_t asid_generation;
199         uint64_t sysenter_esp;
200         uint64_t sysenter_eip;
201         uint64_t tsc_aux;
202
203         u64 msr_decfg;
204
205         u64 next_rip;
206
207         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
208         struct {
209                 u16 fs;
210                 u16 gs;
211                 u16 ldt;
212                 u64 gs_base;
213         } host;
214
215         u64 spec_ctrl;
216         /*
217          * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be
218          * translated into the appropriate L2_CFG bits on the host to
219          * perform speculative control.
220          */
221         u64 virt_spec_ctrl;
222
223         u32 *msrpm;
224
225         ulong nmi_iret_rip;
226
227         struct nested_state nested;
228
229         bool nmi_singlestep;
230         u64 nmi_singlestep_guest_rflags;
231
232         unsigned int3_injected;
233         unsigned long int3_rip;
234
235         /* cached guest cpuid flags for faster access */
236         bool nrips_enabled      : 1;
237
238         u32 ldr_reg;
239         struct page *avic_backing_page;
240         u64 *avic_physical_id_cache;
241         bool avic_is_running;
242
243         /*
244          * Per-vcpu list of struct amd_svm_iommu_ir:
245          * This is used mainly to store interrupt remapping information used
246          * when update the vcpu affinity. This avoids the need to scan for
247          * IRTE and try to match ga_tag in the IOMMU driver.
248          */
249         struct list_head ir_list;
250         spinlock_t ir_list_lock;
251
252         /* which host CPU was used for running this vcpu */
253         unsigned int last_cpu;
254 };
255
256 /*
257  * This is a wrapper of struct amd_iommu_ir_data.
258  */
259 struct amd_svm_iommu_ir {
260         struct list_head node;  /* Used by SVM for per-vcpu ir_list */
261         void *data;             /* Storing pointer to struct amd_ir_data */
262 };
263
264 #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK    (0xFF)
265 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK                (1 << 31)
266
267 #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK    (0xFFULL)
268 #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK        (0xFFFFFFFFFFULL << 12)
269 #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK          (1ULL << 62)
270 #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK               (1ULL << 63)
271
272 static DEFINE_PER_CPU(u64, current_tsc_ratio);
273 #define TSC_RATIO_DEFAULT       0x0100000000ULL
274
275 #define MSR_INVALID                     0xffffffffU
276
277 static const struct svm_direct_access_msrs {
278         u32 index;   /* Index of the MSR */
279         bool always; /* True if intercept is always on */
280 } direct_access_msrs[] = {
281         { .index = MSR_STAR,                            .always = true  },
282         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
283 #ifdef CONFIG_X86_64
284         { .index = MSR_GS_BASE,                         .always = true  },
285         { .index = MSR_FS_BASE,                         .always = true  },
286         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
287         { .index = MSR_LSTAR,                           .always = true  },
288         { .index = MSR_CSTAR,                           .always = true  },
289         { .index = MSR_SYSCALL_MASK,                    .always = true  },
290 #endif
291         { .index = MSR_IA32_SPEC_CTRL,                  .always = false },
292         { .index = MSR_IA32_PRED_CMD,                   .always = false },
293         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
294         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
295         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
296         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
297         { .index = MSR_INVALID,                         .always = false },
298 };
299
300 /* enable NPT for AMD64 and X86 with PAE */
301 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
302 static bool npt_enabled = true;
303 #else
304 static bool npt_enabled;
305 #endif
306
307 /*
308  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
309  * pause_filter_count: On processors that support Pause filtering(indicated
310  *      by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
311  *      count value. On VMRUN this value is loaded into an internal counter.
312  *      Each time a pause instruction is executed, this counter is decremented
313  *      until it reaches zero at which time a #VMEXIT is generated if pause
314  *      intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
315  *      Intercept Filtering for more details.
316  *      This also indicate if ple logic enabled.
317  *
318  * pause_filter_thresh: In addition, some processor families support advanced
319  *      pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
320  *      the amount of time a guest is allowed to execute in a pause loop.
321  *      In this mode, a 16-bit pause filter threshold field is added in the
322  *      VMCB. The threshold value is a cycle count that is used to reset the
323  *      pause counter. As with simple pause filtering, VMRUN loads the pause
324  *      count value from VMCB into an internal counter. Then, on each pause
325  *      instruction the hardware checks the elapsed number of cycles since
326  *      the most recent pause instruction against the pause filter threshold.
327  *      If the elapsed cycle count is greater than the pause filter threshold,
328  *      then the internal pause count is reloaded from the VMCB and execution
329  *      continues. If the elapsed cycle count is less than the pause filter
330  *      threshold, then the internal pause count is decremented. If the count
331  *      value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
332  *      triggered. If advanced pause filtering is supported and pause filter
333  *      threshold field is set to zero, the filter will operate in the simpler,
334  *      count only mode.
335  */
336
337 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
338 module_param(pause_filter_thresh, ushort, 0444);
339
340 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
341 module_param(pause_filter_count, ushort, 0444);
342
343 /* Default doubles per-vcpu window every exit. */
344 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
345 module_param(pause_filter_count_grow, ushort, 0444);
346
347 /* Default resets per-vcpu window every exit to pause_filter_count. */
348 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
349 module_param(pause_filter_count_shrink, ushort, 0444);
350
351 /* Default is to compute the maximum so we can never overflow. */
352 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
353 module_param(pause_filter_count_max, ushort, 0444);
354
355 /* allow nested paging (virtualized MMU) for all guests */
356 static int npt = true;
357 module_param(npt, int, S_IRUGO);
358
359 /* allow nested virtualization in KVM/SVM */
360 static int nested = true;
361 module_param(nested, int, S_IRUGO);
362
363 /* enable / disable AVIC */
364 static int avic;
365 #ifdef CONFIG_X86_LOCAL_APIC
366 module_param(avic, int, S_IRUGO);
367 #endif
368
369 /* enable/disable Virtual VMLOAD VMSAVE */
370 static int vls = true;
371 module_param(vls, int, 0444);
372
373 /* enable/disable Virtual GIF */
374 static int vgif = true;
375 module_param(vgif, int, 0444);
376
377 /* enable/disable SEV support */
378 static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
379 module_param(sev, int, 0444);
380
381 static u8 rsm_ins_bytes[] = "\x0f\xaa";
382
383 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
384 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa);
385 static void svm_complete_interrupts(struct vcpu_svm *svm);
386
387 static int nested_svm_exit_handled(struct vcpu_svm *svm);
388 static int nested_svm_intercept(struct vcpu_svm *svm);
389 static int nested_svm_vmexit(struct vcpu_svm *svm);
390 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
391                                       bool has_error_code, u32 error_code);
392
393 enum {
394         VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
395                             pause filter count */
396         VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
397         VMCB_ASID,       /* ASID */
398         VMCB_INTR,       /* int_ctl, int_vector */
399         VMCB_NPT,        /* npt_en, nCR3, gPAT */
400         VMCB_CR,         /* CR0, CR3, CR4, EFER */
401         VMCB_DR,         /* DR6, DR7 */
402         VMCB_DT,         /* GDT, IDT */
403         VMCB_SEG,        /* CS, DS, SS, ES, CPL */
404         VMCB_CR2,        /* CR2 only */
405         VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
406         VMCB_AVIC,       /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
407                           * AVIC PHYSICAL_TABLE pointer,
408                           * AVIC LOGICAL_TABLE pointer
409                           */
410         VMCB_DIRTY_MAX,
411 };
412
413 /* TPR and CR2 are always written before VMRUN */
414 #define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
415
416 #define VMCB_AVIC_APIC_BAR_MASK         0xFFFFFFFFFF000ULL
417
418 static unsigned int max_sev_asid;
419 static unsigned int min_sev_asid;
420 static unsigned long *sev_asid_bitmap;
421 #define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT)
422
423 struct enc_region {
424         struct list_head list;
425         unsigned long npages;
426         struct page **pages;
427         unsigned long uaddr;
428         unsigned long size;
429 };
430
431
432 static inline struct kvm_svm *to_kvm_svm(struct kvm *kvm)
433 {
434         return container_of(kvm, struct kvm_svm, kvm);
435 }
436
437 static inline bool svm_sev_enabled(void)
438 {
439         return IS_ENABLED(CONFIG_KVM_AMD_SEV) ? max_sev_asid : 0;
440 }
441
442 static inline bool sev_guest(struct kvm *kvm)
443 {
444 #ifdef CONFIG_KVM_AMD_SEV
445         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
446
447         return sev->active;
448 #else
449         return false;
450 #endif
451 }
452
453 static inline int sev_get_asid(struct kvm *kvm)
454 {
455         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
456
457         return sev->asid;
458 }
459
460 static inline void mark_all_dirty(struct vmcb *vmcb)
461 {
462         vmcb->control.clean = 0;
463 }
464
465 static inline void mark_all_clean(struct vmcb *vmcb)
466 {
467         vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
468                                & ~VMCB_ALWAYS_DIRTY_MASK;
469 }
470
471 static inline void mark_dirty(struct vmcb *vmcb, int bit)
472 {
473         vmcb->control.clean &= ~(1 << bit);
474 }
475
476 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
477 {
478         return container_of(vcpu, struct vcpu_svm, vcpu);
479 }
480
481 static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
482 {
483         svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
484         mark_dirty(svm->vmcb, VMCB_AVIC);
485 }
486
487 static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
488 {
489         struct vcpu_svm *svm = to_svm(vcpu);
490         u64 *entry = svm->avic_physical_id_cache;
491
492         if (!entry)
493                 return false;
494
495         return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
496 }
497
498 static void recalc_intercepts(struct vcpu_svm *svm)
499 {
500         struct vmcb_control_area *c, *h;
501         struct nested_state *g;
502
503         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
504
505         if (!is_guest_mode(&svm->vcpu))
506                 return;
507
508         c = &svm->vmcb->control;
509         h = &svm->nested.hsave->control;
510         g = &svm->nested;
511
512         c->intercept_cr = h->intercept_cr | g->intercept_cr;
513         c->intercept_dr = h->intercept_dr | g->intercept_dr;
514         c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
515         c->intercept = h->intercept | g->intercept;
516 }
517
518 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
519 {
520         if (is_guest_mode(&svm->vcpu))
521                 return svm->nested.hsave;
522         else
523                 return svm->vmcb;
524 }
525
526 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
527 {
528         struct vmcb *vmcb = get_host_vmcb(svm);
529
530         vmcb->control.intercept_cr |= (1U << bit);
531
532         recalc_intercepts(svm);
533 }
534
535 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
536 {
537         struct vmcb *vmcb = get_host_vmcb(svm);
538
539         vmcb->control.intercept_cr &= ~(1U << bit);
540
541         recalc_intercepts(svm);
542 }
543
544 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
545 {
546         struct vmcb *vmcb = get_host_vmcb(svm);
547
548         return vmcb->control.intercept_cr & (1U << bit);
549 }
550
551 static inline void set_dr_intercepts(struct vcpu_svm *svm)
552 {
553         struct vmcb *vmcb = get_host_vmcb(svm);
554
555         vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
556                 | (1 << INTERCEPT_DR1_READ)
557                 | (1 << INTERCEPT_DR2_READ)
558                 | (1 << INTERCEPT_DR3_READ)
559                 | (1 << INTERCEPT_DR4_READ)
560                 | (1 << INTERCEPT_DR5_READ)
561                 | (1 << INTERCEPT_DR6_READ)
562                 | (1 << INTERCEPT_DR7_READ)
563                 | (1 << INTERCEPT_DR0_WRITE)
564                 | (1 << INTERCEPT_DR1_WRITE)
565                 | (1 << INTERCEPT_DR2_WRITE)
566                 | (1 << INTERCEPT_DR3_WRITE)
567                 | (1 << INTERCEPT_DR4_WRITE)
568                 | (1 << INTERCEPT_DR5_WRITE)
569                 | (1 << INTERCEPT_DR6_WRITE)
570                 | (1 << INTERCEPT_DR7_WRITE);
571
572         recalc_intercepts(svm);
573 }
574
575 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
576 {
577         struct vmcb *vmcb = get_host_vmcb(svm);
578
579         vmcb->control.intercept_dr = 0;
580
581         recalc_intercepts(svm);
582 }
583
584 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
585 {
586         struct vmcb *vmcb = get_host_vmcb(svm);
587
588         vmcb->control.intercept_exceptions |= (1U << bit);
589
590         recalc_intercepts(svm);
591 }
592
593 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
594 {
595         struct vmcb *vmcb = get_host_vmcb(svm);
596
597         vmcb->control.intercept_exceptions &= ~(1U << bit);
598
599         recalc_intercepts(svm);
600 }
601
602 static inline void set_intercept(struct vcpu_svm *svm, int bit)
603 {
604         struct vmcb *vmcb = get_host_vmcb(svm);
605
606         vmcb->control.intercept |= (1ULL << bit);
607
608         recalc_intercepts(svm);
609 }
610
611 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
612 {
613         struct vmcb *vmcb = get_host_vmcb(svm);
614
615         vmcb->control.intercept &= ~(1ULL << bit);
616
617         recalc_intercepts(svm);
618 }
619
620 static inline bool vgif_enabled(struct vcpu_svm *svm)
621 {
622         return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK);
623 }
624
625 static inline void enable_gif(struct vcpu_svm *svm)
626 {
627         if (vgif_enabled(svm))
628                 svm->vmcb->control.int_ctl |= V_GIF_MASK;
629         else
630                 svm->vcpu.arch.hflags |= HF_GIF_MASK;
631 }
632
633 static inline void disable_gif(struct vcpu_svm *svm)
634 {
635         if (vgif_enabled(svm))
636                 svm->vmcb->control.int_ctl &= ~V_GIF_MASK;
637         else
638                 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
639 }
640
641 static inline bool gif_set(struct vcpu_svm *svm)
642 {
643         if (vgif_enabled(svm))
644                 return !!(svm->vmcb->control.int_ctl & V_GIF_MASK);
645         else
646                 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
647 }
648
649 static unsigned long iopm_base;
650
651 struct kvm_ldttss_desc {
652         u16 limit0;
653         u16 base0;
654         unsigned base1:8, type:5, dpl:2, p:1;
655         unsigned limit1:4, zero0:3, g:1, base2:8;
656         u32 base3;
657         u32 zero1;
658 } __attribute__((packed));
659
660 struct svm_cpu_data {
661         int cpu;
662
663         u64 asid_generation;
664         u32 max_asid;
665         u32 next_asid;
666         u32 min_asid;
667         struct kvm_ldttss_desc *tss_desc;
668
669         struct page *save_area;
670         struct vmcb *current_vmcb;
671
672         /* index = sev_asid, value = vmcb pointer */
673         struct vmcb **sev_vmcbs;
674 };
675
676 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
677
678 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
679
680 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
681 #define MSRS_RANGE_SIZE 2048
682 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
683
684 static u32 svm_msrpm_offset(u32 msr)
685 {
686         u32 offset;
687         int i;
688
689         for (i = 0; i < NUM_MSR_MAPS; i++) {
690                 if (msr < msrpm_ranges[i] ||
691                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
692                         continue;
693
694                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
695                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
696
697                 /* Now we have the u8 offset - but need the u32 offset */
698                 return offset / 4;
699         }
700
701         /* MSR not in any range */
702         return MSR_INVALID;
703 }
704
705 #define MAX_INST_SIZE 15
706
707 static inline void clgi(void)
708 {
709         asm volatile (__ex(SVM_CLGI));
710 }
711
712 static inline void stgi(void)
713 {
714         asm volatile (__ex(SVM_STGI));
715 }
716
717 static inline void invlpga(unsigned long addr, u32 asid)
718 {
719         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
720 }
721
722 static int get_npt_level(struct kvm_vcpu *vcpu)
723 {
724 #ifdef CONFIG_X86_64
725         return PT64_ROOT_4LEVEL;
726 #else
727         return PT32E_ROOT_LEVEL;
728 #endif
729 }
730
731 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
732 {
733         vcpu->arch.efer = efer;
734         if (!npt_enabled && !(efer & EFER_LMA))
735                 efer &= ~EFER_LME;
736
737         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
738         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
739 }
740
741 static int is_external_interrupt(u32 info)
742 {
743         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
744         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
745 }
746
747 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
748 {
749         struct vcpu_svm *svm = to_svm(vcpu);
750         u32 ret = 0;
751
752         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
753                 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
754         return ret;
755 }
756
757 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
758 {
759         struct vcpu_svm *svm = to_svm(vcpu);
760
761         if (mask == 0)
762                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
763         else
764                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
765
766 }
767
768 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
769 {
770         struct vcpu_svm *svm = to_svm(vcpu);
771
772         if (svm->vmcb->control.next_rip != 0) {
773                 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
774                 svm->next_rip = svm->vmcb->control.next_rip;
775         }
776
777         if (!svm->next_rip) {
778                 if (kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) !=
779                                 EMULATE_DONE)
780                         printk(KERN_DEBUG "%s: NOP\n", __func__);
781                 return;
782         }
783         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
784                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
785                        __func__, kvm_rip_read(vcpu), svm->next_rip);
786
787         kvm_rip_write(vcpu, svm->next_rip);
788         svm_set_interrupt_shadow(vcpu, 0);
789 }
790
791 static void svm_queue_exception(struct kvm_vcpu *vcpu)
792 {
793         struct vcpu_svm *svm = to_svm(vcpu);
794         unsigned nr = vcpu->arch.exception.nr;
795         bool has_error_code = vcpu->arch.exception.has_error_code;
796         bool reinject = vcpu->arch.exception.injected;
797         u32 error_code = vcpu->arch.exception.error_code;
798
799         /*
800          * If we are within a nested VM we'd better #VMEXIT and let the guest
801          * handle the exception
802          */
803         if (!reinject &&
804             nested_svm_check_exception(svm, nr, has_error_code, error_code))
805                 return;
806
807         kvm_deliver_exception_payload(&svm->vcpu);
808
809         if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
810                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
811
812                 /*
813                  * For guest debugging where we have to reinject #BP if some
814                  * INT3 is guest-owned:
815                  * Emulate nRIP by moving RIP forward. Will fail if injection
816                  * raises a fault that is not intercepted. Still better than
817                  * failing in all cases.
818                  */
819                 skip_emulated_instruction(&svm->vcpu);
820                 rip = kvm_rip_read(&svm->vcpu);
821                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
822                 svm->int3_injected = rip - old_rip;
823         }
824
825         svm->vmcb->control.event_inj = nr
826                 | SVM_EVTINJ_VALID
827                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
828                 | SVM_EVTINJ_TYPE_EXEPT;
829         svm->vmcb->control.event_inj_err = error_code;
830 }
831
832 static void svm_init_erratum_383(void)
833 {
834         u32 low, high;
835         int err;
836         u64 val;
837
838         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
839                 return;
840
841         /* Use _safe variants to not break nested virtualization */
842         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
843         if (err)
844                 return;
845
846         val |= (1ULL << 47);
847
848         low  = lower_32_bits(val);
849         high = upper_32_bits(val);
850
851         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
852
853         erratum_383_found = true;
854 }
855
856 static void svm_init_osvw(struct kvm_vcpu *vcpu)
857 {
858         /*
859          * Guests should see errata 400 and 415 as fixed (assuming that
860          * HLT and IO instructions are intercepted).
861          */
862         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
863         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
864
865         /*
866          * By increasing VCPU's osvw.length to 3 we are telling the guest that
867          * all osvw.status bits inside that length, including bit 0 (which is
868          * reserved for erratum 298), are valid. However, if host processor's
869          * osvw_len is 0 then osvw_status[0] carries no information. We need to
870          * be conservative here and therefore we tell the guest that erratum 298
871          * is present (because we really don't know).
872          */
873         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
874                 vcpu->arch.osvw.status |= 1;
875 }
876
877 static int has_svm(void)
878 {
879         const char *msg;
880
881         if (!cpu_has_svm(&msg)) {
882                 printk(KERN_INFO "has_svm: %s\n", msg);
883                 return 0;
884         }
885
886         return 1;
887 }
888
889 static void svm_hardware_disable(void)
890 {
891         /* Make sure we clean up behind us */
892         if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
893                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
894
895         cpu_svm_disable();
896
897         amd_pmu_disable_virt();
898 }
899
900 static int svm_hardware_enable(void)
901 {
902
903         struct svm_cpu_data *sd;
904         uint64_t efer;
905         struct desc_struct *gdt;
906         int me = raw_smp_processor_id();
907
908         rdmsrl(MSR_EFER, efer);
909         if (efer & EFER_SVME)
910                 return -EBUSY;
911
912         if (!has_svm()) {
913                 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
914                 return -EINVAL;
915         }
916         sd = per_cpu(svm_data, me);
917         if (!sd) {
918                 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
919                 return -EINVAL;
920         }
921
922         sd->asid_generation = 1;
923         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
924         sd->next_asid = sd->max_asid + 1;
925         sd->min_asid = max_sev_asid + 1;
926
927         gdt = get_current_gdt_rw();
928         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
929
930         wrmsrl(MSR_EFER, efer | EFER_SVME);
931
932         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
933
934         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
935                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
936                 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
937         }
938
939
940         /*
941          * Get OSVW bits.
942          *
943          * Note that it is possible to have a system with mixed processor
944          * revisions and therefore different OSVW bits. If bits are not the same
945          * on different processors then choose the worst case (i.e. if erratum
946          * is present on one processor and not on another then assume that the
947          * erratum is present everywhere).
948          */
949         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
950                 uint64_t len, status = 0;
951                 int err;
952
953                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
954                 if (!err)
955                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
956                                                       &err);
957
958                 if (err)
959                         osvw_status = osvw_len = 0;
960                 else {
961                         if (len < osvw_len)
962                                 osvw_len = len;
963                         osvw_status |= status;
964                         osvw_status &= (1ULL << osvw_len) - 1;
965                 }
966         } else
967                 osvw_status = osvw_len = 0;
968
969         svm_init_erratum_383();
970
971         amd_pmu_enable_virt();
972
973         return 0;
974 }
975
976 static void svm_cpu_uninit(int cpu)
977 {
978         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
979
980         if (!sd)
981                 return;
982
983         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
984         kfree(sd->sev_vmcbs);
985         __free_page(sd->save_area);
986         kfree(sd);
987 }
988
989 static int svm_cpu_init(int cpu)
990 {
991         struct svm_cpu_data *sd;
992         int r;
993
994         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
995         if (!sd)
996                 return -ENOMEM;
997         sd->cpu = cpu;
998         r = -ENOMEM;
999         sd->save_area = alloc_page(GFP_KERNEL);
1000         if (!sd->save_area)
1001                 goto err_1;
1002
1003         if (svm_sev_enabled()) {
1004                 r = -ENOMEM;
1005                 sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
1006                                               sizeof(void *),
1007                                               GFP_KERNEL);
1008                 if (!sd->sev_vmcbs)
1009                         goto err_1;
1010         }
1011
1012         per_cpu(svm_data, cpu) = sd;
1013
1014         return 0;
1015
1016 err_1:
1017         kfree(sd);
1018         return r;
1019
1020 }
1021
1022 static bool valid_msr_intercept(u32 index)
1023 {
1024         int i;
1025
1026         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
1027                 if (direct_access_msrs[i].index == index)
1028                         return true;
1029
1030         return false;
1031 }
1032
1033 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr)
1034 {
1035         u8 bit_write;
1036         unsigned long tmp;
1037         u32 offset;
1038         u32 *msrpm;
1039
1040         msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
1041                                       to_svm(vcpu)->msrpm;
1042
1043         offset    = svm_msrpm_offset(msr);
1044         bit_write = 2 * (msr & 0x0f) + 1;
1045         tmp       = msrpm[offset];
1046
1047         BUG_ON(offset == MSR_INVALID);
1048
1049         return !!test_bit(bit_write,  &tmp);
1050 }
1051
1052 static void set_msr_interception(u32 *msrpm, unsigned msr,
1053                                  int read, int write)
1054 {
1055         u8 bit_read, bit_write;
1056         unsigned long tmp;
1057         u32 offset;
1058
1059         /*
1060          * If this warning triggers extend the direct_access_msrs list at the
1061          * beginning of the file
1062          */
1063         WARN_ON(!valid_msr_intercept(msr));
1064
1065         offset    = svm_msrpm_offset(msr);
1066         bit_read  = 2 * (msr & 0x0f);
1067         bit_write = 2 * (msr & 0x0f) + 1;
1068         tmp       = msrpm[offset];
1069
1070         BUG_ON(offset == MSR_INVALID);
1071
1072         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
1073         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
1074
1075         msrpm[offset] = tmp;
1076 }
1077
1078 static void svm_vcpu_init_msrpm(u32 *msrpm)
1079 {
1080         int i;
1081
1082         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
1083
1084         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1085                 if (!direct_access_msrs[i].always)
1086                         continue;
1087
1088                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
1089         }
1090 }
1091
1092 static void add_msr_offset(u32 offset)
1093 {
1094         int i;
1095
1096         for (i = 0; i < MSRPM_OFFSETS; ++i) {
1097
1098                 /* Offset already in list? */
1099                 if (msrpm_offsets[i] == offset)
1100                         return;
1101
1102                 /* Slot used by another offset? */
1103                 if (msrpm_offsets[i] != MSR_INVALID)
1104                         continue;
1105
1106                 /* Add offset to list */
1107                 msrpm_offsets[i] = offset;
1108
1109                 return;
1110         }
1111
1112         /*
1113          * If this BUG triggers the msrpm_offsets table has an overflow. Just
1114          * increase MSRPM_OFFSETS in this case.
1115          */
1116         BUG();
1117 }
1118
1119 static void init_msrpm_offsets(void)
1120 {
1121         int i;
1122
1123         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
1124
1125         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1126                 u32 offset;
1127
1128                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
1129                 BUG_ON(offset == MSR_INVALID);
1130
1131                 add_msr_offset(offset);
1132         }
1133 }
1134
1135 static void svm_enable_lbrv(struct vcpu_svm *svm)
1136 {
1137         u32 *msrpm = svm->msrpm;
1138
1139         svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1140         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1141         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1142         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1143         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1144 }
1145
1146 static void svm_disable_lbrv(struct vcpu_svm *svm)
1147 {
1148         u32 *msrpm = svm->msrpm;
1149
1150         svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1151         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1152         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1153         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1154         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1155 }
1156
1157 static void disable_nmi_singlestep(struct vcpu_svm *svm)
1158 {
1159         svm->nmi_singlestep = false;
1160
1161         if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1162                 /* Clear our flags if they were not set by the guest */
1163                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1164                         svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1165                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1166                         svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1167         }
1168 }
1169
1170 /* Note:
1171  * This hash table is used to map VM_ID to a struct kvm_svm,
1172  * when handling AMD IOMMU GALOG notification to schedule in
1173  * a particular vCPU.
1174  */
1175 #define SVM_VM_DATA_HASH_BITS   8
1176 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
1177 static u32 next_vm_id = 0;
1178 static bool next_vm_id_wrapped = 0;
1179 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
1180
1181 /* Note:
1182  * This function is called from IOMMU driver to notify
1183  * SVM to schedule in a particular vCPU of a particular VM.
1184  */
1185 static int avic_ga_log_notifier(u32 ga_tag)
1186 {
1187         unsigned long flags;
1188         struct kvm_svm *kvm_svm;
1189         struct kvm_vcpu *vcpu = NULL;
1190         u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
1191         u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
1192
1193         pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
1194
1195         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1196         hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
1197                 if (kvm_svm->avic_vm_id != vm_id)
1198                         continue;
1199                 vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
1200                 break;
1201         }
1202         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1203
1204         /* Note:
1205          * At this point, the IOMMU should have already set the pending
1206          * bit in the vAPIC backing page. So, we just need to schedule
1207          * in the vcpu.
1208          */
1209         if (vcpu)
1210                 kvm_vcpu_wake_up(vcpu);
1211
1212         return 0;
1213 }
1214
1215 static __init int sev_hardware_setup(void)
1216 {
1217         struct sev_user_data_status *status;
1218         int rc;
1219
1220         /* Maximum number of encrypted guests supported simultaneously */
1221         max_sev_asid = cpuid_ecx(0x8000001F);
1222
1223         if (!max_sev_asid)
1224                 return 1;
1225
1226         /* Minimum ASID value that should be used for SEV guest */
1227         min_sev_asid = cpuid_edx(0x8000001F);
1228
1229         /* Initialize SEV ASID bitmap */
1230         sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1231         if (!sev_asid_bitmap)
1232                 return 1;
1233
1234         status = kmalloc(sizeof(*status), GFP_KERNEL);
1235         if (!status)
1236                 return 1;
1237
1238         /*
1239          * Check SEV platform status.
1240          *
1241          * PLATFORM_STATUS can be called in any state, if we failed to query
1242          * the PLATFORM status then either PSP firmware does not support SEV
1243          * feature or SEV firmware is dead.
1244          */
1245         rc = sev_platform_status(status, NULL);
1246         if (rc)
1247                 goto err;
1248
1249         pr_info("SEV supported\n");
1250
1251 err:
1252         kfree(status);
1253         return rc;
1254 }
1255
1256 static void grow_ple_window(struct kvm_vcpu *vcpu)
1257 {
1258         struct vcpu_svm *svm = to_svm(vcpu);
1259         struct vmcb_control_area *control = &svm->vmcb->control;
1260         int old = control->pause_filter_count;
1261
1262         control->pause_filter_count = __grow_ple_window(old,
1263                                                         pause_filter_count,
1264                                                         pause_filter_count_grow,
1265                                                         pause_filter_count_max);
1266
1267         if (control->pause_filter_count != old)
1268                 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1269
1270         trace_kvm_ple_window_grow(vcpu->vcpu_id,
1271                                   control->pause_filter_count, old);
1272 }
1273
1274 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1275 {
1276         struct vcpu_svm *svm = to_svm(vcpu);
1277         struct vmcb_control_area *control = &svm->vmcb->control;
1278         int old = control->pause_filter_count;
1279
1280         control->pause_filter_count =
1281                                 __shrink_ple_window(old,
1282                                                     pause_filter_count,
1283                                                     pause_filter_count_shrink,
1284                                                     pause_filter_count);
1285         if (control->pause_filter_count != old)
1286                 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1287
1288         trace_kvm_ple_window_shrink(vcpu->vcpu_id,
1289                                     control->pause_filter_count, old);
1290 }
1291
1292 static __init int svm_hardware_setup(void)
1293 {
1294         int cpu;
1295         struct page *iopm_pages;
1296         void *iopm_va;
1297         int r;
1298
1299         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1300
1301         if (!iopm_pages)
1302                 return -ENOMEM;
1303
1304         iopm_va = page_address(iopm_pages);
1305         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1306         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1307
1308         init_msrpm_offsets();
1309
1310         if (boot_cpu_has(X86_FEATURE_NX))
1311                 kvm_enable_efer_bits(EFER_NX);
1312
1313         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1314                 kvm_enable_efer_bits(EFER_FFXSR);
1315
1316         if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1317                 kvm_has_tsc_control = true;
1318                 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1319                 kvm_tsc_scaling_ratio_frac_bits = 32;
1320         }
1321
1322         /* Check for pause filtering support */
1323         if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1324                 pause_filter_count = 0;
1325                 pause_filter_thresh = 0;
1326         } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
1327                 pause_filter_thresh = 0;
1328         }
1329
1330         if (nested) {
1331                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1332                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1333         }
1334
1335         if (sev) {
1336                 if (boot_cpu_has(X86_FEATURE_SEV) &&
1337                     IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
1338                         r = sev_hardware_setup();
1339                         if (r)
1340                                 sev = false;
1341                 } else {
1342                         sev = false;
1343                 }
1344         }
1345
1346         for_each_possible_cpu(cpu) {
1347                 r = svm_cpu_init(cpu);
1348                 if (r)
1349                         goto err;
1350         }
1351
1352         if (!boot_cpu_has(X86_FEATURE_NPT))
1353                 npt_enabled = false;
1354
1355         if (npt_enabled && !npt) {
1356                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
1357                 npt_enabled = false;
1358         }
1359
1360         if (npt_enabled) {
1361                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
1362                 kvm_enable_tdp();
1363         } else
1364                 kvm_disable_tdp();
1365
1366         if (avic) {
1367                 if (!npt_enabled ||
1368                     !boot_cpu_has(X86_FEATURE_AVIC) ||
1369                     !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1370                         avic = false;
1371                 } else {
1372                         pr_info("AVIC enabled\n");
1373
1374                         amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1375                 }
1376         }
1377
1378         if (vls) {
1379                 if (!npt_enabled ||
1380                     !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1381                     !IS_ENABLED(CONFIG_X86_64)) {
1382                         vls = false;
1383                 } else {
1384                         pr_info("Virtual VMLOAD VMSAVE supported\n");
1385                 }
1386         }
1387
1388         if (vgif) {
1389                 if (!boot_cpu_has(X86_FEATURE_VGIF))
1390                         vgif = false;
1391                 else
1392                         pr_info("Virtual GIF supported\n");
1393         }
1394
1395         return 0;
1396
1397 err:
1398         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1399         iopm_base = 0;
1400         return r;
1401 }
1402
1403 static __exit void svm_hardware_unsetup(void)
1404 {
1405         int cpu;
1406
1407         if (svm_sev_enabled())
1408                 bitmap_free(sev_asid_bitmap);
1409
1410         for_each_possible_cpu(cpu)
1411                 svm_cpu_uninit(cpu);
1412
1413         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1414         iopm_base = 0;
1415 }
1416
1417 static void init_seg(struct vmcb_seg *seg)
1418 {
1419         seg->selector = 0;
1420         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1421                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1422         seg->limit = 0xffff;
1423         seg->base = 0;
1424 }
1425
1426 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1427 {
1428         seg->selector = 0;
1429         seg->attrib = SVM_SELECTOR_P_MASK | type;
1430         seg->limit = 0xffff;
1431         seg->base = 0;
1432 }
1433
1434 static u64 svm_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1435 {
1436         struct vcpu_svm *svm = to_svm(vcpu);
1437
1438         if (is_guest_mode(vcpu))
1439                 return svm->nested.hsave->control.tsc_offset;
1440
1441         return vcpu->arch.tsc_offset;
1442 }
1443
1444 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1445 {
1446         struct vcpu_svm *svm = to_svm(vcpu);
1447         u64 g_tsc_offset = 0;
1448
1449         if (is_guest_mode(vcpu)) {
1450                 /* Write L1's TSC offset.  */
1451                 g_tsc_offset = svm->vmcb->control.tsc_offset -
1452                                svm->nested.hsave->control.tsc_offset;
1453                 svm->nested.hsave->control.tsc_offset = offset;
1454         }
1455
1456         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1457                                    svm->vmcb->control.tsc_offset - g_tsc_offset,
1458                                    offset);
1459
1460         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1461
1462         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1463         return svm->vmcb->control.tsc_offset;
1464 }
1465
1466 static void avic_init_vmcb(struct vcpu_svm *svm)
1467 {
1468         struct vmcb *vmcb = svm->vmcb;
1469         struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
1470         phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
1471         phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
1472         phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
1473
1474         vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1475         vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1476         vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1477         vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1478         vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1479 }
1480
1481 static void init_vmcb(struct vcpu_svm *svm)
1482 {
1483         struct vmcb_control_area *control = &svm->vmcb->control;
1484         struct vmcb_save_area *save = &svm->vmcb->save;
1485
1486         svm->vcpu.arch.hflags = 0;
1487
1488         set_cr_intercept(svm, INTERCEPT_CR0_READ);
1489         set_cr_intercept(svm, INTERCEPT_CR3_READ);
1490         set_cr_intercept(svm, INTERCEPT_CR4_READ);
1491         set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1492         set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1493         set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1494         if (!kvm_vcpu_apicv_active(&svm->vcpu))
1495                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1496
1497         set_dr_intercepts(svm);
1498
1499         set_exception_intercept(svm, PF_VECTOR);
1500         set_exception_intercept(svm, UD_VECTOR);
1501         set_exception_intercept(svm, MC_VECTOR);
1502         set_exception_intercept(svm, AC_VECTOR);
1503         set_exception_intercept(svm, DB_VECTOR);
1504         /*
1505          * Guest access to VMware backdoor ports could legitimately
1506          * trigger #GP because of TSS I/O permission bitmap.
1507          * We intercept those #GP and allow access to them anyway
1508          * as VMware does.
1509          */
1510         if (enable_vmware_backdoor)
1511                 set_exception_intercept(svm, GP_VECTOR);
1512
1513         set_intercept(svm, INTERCEPT_INTR);
1514         set_intercept(svm, INTERCEPT_NMI);
1515         set_intercept(svm, INTERCEPT_SMI);
1516         set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1517         set_intercept(svm, INTERCEPT_RDPMC);
1518         set_intercept(svm, INTERCEPT_CPUID);
1519         set_intercept(svm, INTERCEPT_INVD);
1520         set_intercept(svm, INTERCEPT_INVLPG);
1521         set_intercept(svm, INTERCEPT_INVLPGA);
1522         set_intercept(svm, INTERCEPT_IOIO_PROT);
1523         set_intercept(svm, INTERCEPT_MSR_PROT);
1524         set_intercept(svm, INTERCEPT_TASK_SWITCH);
1525         set_intercept(svm, INTERCEPT_SHUTDOWN);
1526         set_intercept(svm, INTERCEPT_VMRUN);
1527         set_intercept(svm, INTERCEPT_VMMCALL);
1528         set_intercept(svm, INTERCEPT_VMLOAD);
1529         set_intercept(svm, INTERCEPT_VMSAVE);
1530         set_intercept(svm, INTERCEPT_STGI);
1531         set_intercept(svm, INTERCEPT_CLGI);
1532         set_intercept(svm, INTERCEPT_SKINIT);
1533         set_intercept(svm, INTERCEPT_WBINVD);
1534         set_intercept(svm, INTERCEPT_XSETBV);
1535         set_intercept(svm, INTERCEPT_RSM);
1536
1537         if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1538                 set_intercept(svm, INTERCEPT_MONITOR);
1539                 set_intercept(svm, INTERCEPT_MWAIT);
1540         }
1541
1542         if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1543                 set_intercept(svm, INTERCEPT_HLT);
1544
1545         control->iopm_base_pa = __sme_set(iopm_base);
1546         control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1547         control->int_ctl = V_INTR_MASKING_MASK;
1548
1549         init_seg(&save->es);
1550         init_seg(&save->ss);
1551         init_seg(&save->ds);
1552         init_seg(&save->fs);
1553         init_seg(&save->gs);
1554
1555         save->cs.selector = 0xf000;
1556         save->cs.base = 0xffff0000;
1557         /* Executable/Readable Code Segment */
1558         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1559                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1560         save->cs.limit = 0xffff;
1561
1562         save->gdtr.limit = 0xffff;
1563         save->idtr.limit = 0xffff;
1564
1565         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1566         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1567
1568         svm_set_efer(&svm->vcpu, 0);
1569         save->dr6 = 0xffff0ff0;
1570         kvm_set_rflags(&svm->vcpu, 2);
1571         save->rip = 0x0000fff0;
1572         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1573
1574         /*
1575          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1576          * It also updates the guest-visible cr0 value.
1577          */
1578         svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1579         kvm_mmu_reset_context(&svm->vcpu);
1580
1581         save->cr4 = X86_CR4_PAE;
1582         /* rdx = ?? */
1583
1584         if (npt_enabled) {
1585                 /* Setup VMCB for Nested Paging */
1586                 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1587                 clr_intercept(svm, INTERCEPT_INVLPG);
1588                 clr_exception_intercept(svm, PF_VECTOR);
1589                 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1590                 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1591                 save->g_pat = svm->vcpu.arch.pat;
1592                 save->cr3 = 0;
1593                 save->cr4 = 0;
1594         }
1595         svm->asid_generation = 0;
1596
1597         svm->nested.vmcb = 0;
1598         svm->vcpu.arch.hflags = 0;
1599
1600         if (pause_filter_count) {
1601                 control->pause_filter_count = pause_filter_count;
1602                 if (pause_filter_thresh)
1603                         control->pause_filter_thresh = pause_filter_thresh;
1604                 set_intercept(svm, INTERCEPT_PAUSE);
1605         } else {
1606                 clr_intercept(svm, INTERCEPT_PAUSE);
1607         }
1608
1609         if (kvm_vcpu_apicv_active(&svm->vcpu))
1610                 avic_init_vmcb(svm);
1611
1612         /*
1613          * If hardware supports Virtual VMLOAD VMSAVE then enable it
1614          * in VMCB and clear intercepts to avoid #VMEXIT.
1615          */
1616         if (vls) {
1617                 clr_intercept(svm, INTERCEPT_VMLOAD);
1618                 clr_intercept(svm, INTERCEPT_VMSAVE);
1619                 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1620         }
1621
1622         if (vgif) {
1623                 clr_intercept(svm, INTERCEPT_STGI);
1624                 clr_intercept(svm, INTERCEPT_CLGI);
1625                 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1626         }
1627
1628         if (sev_guest(svm->vcpu.kvm)) {
1629                 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1630                 clr_exception_intercept(svm, UD_VECTOR);
1631         }
1632
1633         mark_all_dirty(svm->vmcb);
1634
1635         enable_gif(svm);
1636
1637 }
1638
1639 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
1640                                        unsigned int index)
1641 {
1642         u64 *avic_physical_id_table;
1643         struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
1644
1645         if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1646                 return NULL;
1647
1648         avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
1649
1650         return &avic_physical_id_table[index];
1651 }
1652
1653 /**
1654  * Note:
1655  * AVIC hardware walks the nested page table to check permissions,
1656  * but does not use the SPA address specified in the leaf page
1657  * table entry since it uses  address in the AVIC_BACKING_PAGE pointer
1658  * field of the VMCB. Therefore, we set up the
1659  * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1660  */
1661 static int avic_init_access_page(struct kvm_vcpu *vcpu)
1662 {
1663         struct kvm *kvm = vcpu->kvm;
1664         int ret = 0;
1665
1666         mutex_lock(&kvm->slots_lock);
1667         if (kvm->arch.apic_access_page_done)
1668                 goto out;
1669
1670         ret = __x86_set_memory_region(kvm,
1671                                       APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1672                                       APIC_DEFAULT_PHYS_BASE,
1673                                       PAGE_SIZE);
1674         if (ret)
1675                 goto out;
1676
1677         kvm->arch.apic_access_page_done = true;
1678 out:
1679         mutex_unlock(&kvm->slots_lock);
1680         return ret;
1681 }
1682
1683 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1684 {
1685         int ret;
1686         u64 *entry, new_entry;
1687         int id = vcpu->vcpu_id;
1688         struct vcpu_svm *svm = to_svm(vcpu);
1689
1690         ret = avic_init_access_page(vcpu);
1691         if (ret)
1692                 return ret;
1693
1694         if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1695                 return -EINVAL;
1696
1697         if (!svm->vcpu.arch.apic->regs)
1698                 return -EINVAL;
1699
1700         svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1701
1702         /* Setting AVIC backing page address in the phy APIC ID table */
1703         entry = avic_get_physical_id_entry(vcpu, id);
1704         if (!entry)
1705                 return -EINVAL;
1706
1707         new_entry = READ_ONCE(*entry);
1708         new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
1709                               AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1710                               AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
1711         WRITE_ONCE(*entry, new_entry);
1712
1713         svm->avic_physical_id_cache = entry;
1714
1715         return 0;
1716 }
1717
1718 static void __sev_asid_free(int asid)
1719 {
1720         struct svm_cpu_data *sd;
1721         int cpu, pos;
1722
1723         pos = asid - 1;
1724         clear_bit(pos, sev_asid_bitmap);
1725
1726         for_each_possible_cpu(cpu) {
1727                 sd = per_cpu(svm_data, cpu);
1728                 sd->sev_vmcbs[pos] = NULL;
1729         }
1730 }
1731
1732 static void sev_asid_free(struct kvm *kvm)
1733 {
1734         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1735
1736         __sev_asid_free(sev->asid);
1737 }
1738
1739 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
1740 {
1741         struct sev_data_decommission *decommission;
1742         struct sev_data_deactivate *data;
1743
1744         if (!handle)
1745                 return;
1746
1747         data = kzalloc(sizeof(*data), GFP_KERNEL);
1748         if (!data)
1749                 return;
1750
1751         /* deactivate handle */
1752         data->handle = handle;
1753         sev_guest_deactivate(data, NULL);
1754
1755         wbinvd_on_all_cpus();
1756         sev_guest_df_flush(NULL);
1757         kfree(data);
1758
1759         decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
1760         if (!decommission)
1761                 return;
1762
1763         /* decommission handle */
1764         decommission->handle = handle;
1765         sev_guest_decommission(decommission, NULL);
1766
1767         kfree(decommission);
1768 }
1769
1770 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
1771                                     unsigned long ulen, unsigned long *n,
1772                                     int write)
1773 {
1774         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1775         unsigned long npages, npinned, size;
1776         unsigned long locked, lock_limit;
1777         struct page **pages;
1778         unsigned long first, last;
1779
1780         if (ulen == 0 || uaddr + ulen < uaddr)
1781                 return NULL;
1782
1783         /* Calculate number of pages. */
1784         first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
1785         last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
1786         npages = (last - first + 1);
1787
1788         locked = sev->pages_locked + npages;
1789         lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1790         if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
1791                 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
1792                 return NULL;
1793         }
1794
1795         /* Avoid using vmalloc for smaller buffers. */
1796         size = npages * sizeof(struct page *);
1797         if (size > PAGE_SIZE)
1798                 pages = vmalloc(size);
1799         else
1800                 pages = kmalloc(size, GFP_KERNEL);
1801
1802         if (!pages)
1803                 return NULL;
1804
1805         /* Pin the user virtual address. */
1806         npinned = get_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
1807         if (npinned != npages) {
1808                 pr_err("SEV: Failure locking %lu pages.\n", npages);
1809                 goto err;
1810         }
1811
1812         *n = npages;
1813         sev->pages_locked = locked;
1814
1815         return pages;
1816
1817 err:
1818         if (npinned > 0)
1819                 release_pages(pages, npinned);
1820
1821         kvfree(pages);
1822         return NULL;
1823 }
1824
1825 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
1826                              unsigned long npages)
1827 {
1828         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1829
1830         release_pages(pages, npages);
1831         kvfree(pages);
1832         sev->pages_locked -= npages;
1833 }
1834
1835 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
1836 {
1837         uint8_t *page_virtual;
1838         unsigned long i;
1839
1840         if (npages == 0 || pages == NULL)
1841                 return;
1842
1843         for (i = 0; i < npages; i++) {
1844                 page_virtual = kmap_atomic(pages[i]);
1845                 clflush_cache_range(page_virtual, PAGE_SIZE);
1846                 kunmap_atomic(page_virtual);
1847         }
1848 }
1849
1850 static void __unregister_enc_region_locked(struct kvm *kvm,
1851                                            struct enc_region *region)
1852 {
1853         /*
1854          * The guest may change the memory encryption attribute from C=0 -> C=1
1855          * or vice versa for this memory range. Lets make sure caches are
1856          * flushed to ensure that guest data gets written into memory with
1857          * correct C-bit.
1858          */
1859         sev_clflush_pages(region->pages, region->npages);
1860
1861         sev_unpin_memory(kvm, region->pages, region->npages);
1862         list_del(&region->list);
1863         kfree(region);
1864 }
1865
1866 static struct kvm *svm_vm_alloc(void)
1867 {
1868         struct kvm_svm *kvm_svm = vzalloc(sizeof(struct kvm_svm));
1869         return &kvm_svm->kvm;
1870 }
1871
1872 static void svm_vm_free(struct kvm *kvm)
1873 {
1874         vfree(to_kvm_svm(kvm));
1875 }
1876
1877 static void sev_vm_destroy(struct kvm *kvm)
1878 {
1879         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1880         struct list_head *head = &sev->regions_list;
1881         struct list_head *pos, *q;
1882
1883         if (!sev_guest(kvm))
1884                 return;
1885
1886         mutex_lock(&kvm->lock);
1887
1888         /*
1889          * if userspace was terminated before unregistering the memory regions
1890          * then lets unpin all the registered memory.
1891          */
1892         if (!list_empty(head)) {
1893                 list_for_each_safe(pos, q, head) {
1894                         __unregister_enc_region_locked(kvm,
1895                                 list_entry(pos, struct enc_region, list));
1896                 }
1897         }
1898
1899         mutex_unlock(&kvm->lock);
1900
1901         sev_unbind_asid(kvm, sev->handle);
1902         sev_asid_free(kvm);
1903 }
1904
1905 static void avic_vm_destroy(struct kvm *kvm)
1906 {
1907         unsigned long flags;
1908         struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1909
1910         if (!avic)
1911                 return;
1912
1913         if (kvm_svm->avic_logical_id_table_page)
1914                 __free_page(kvm_svm->avic_logical_id_table_page);
1915         if (kvm_svm->avic_physical_id_table_page)
1916                 __free_page(kvm_svm->avic_physical_id_table_page);
1917
1918         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1919         hash_del(&kvm_svm->hnode);
1920         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1921 }
1922
1923 static void svm_vm_destroy(struct kvm *kvm)
1924 {
1925         avic_vm_destroy(kvm);
1926         sev_vm_destroy(kvm);
1927 }
1928
1929 static int avic_vm_init(struct kvm *kvm)
1930 {
1931         unsigned long flags;
1932         int err = -ENOMEM;
1933         struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1934         struct kvm_svm *k2;
1935         struct page *p_page;
1936         struct page *l_page;
1937         u32 vm_id;
1938
1939         if (!avic)
1940                 return 0;
1941
1942         /* Allocating physical APIC ID table (4KB) */
1943         p_page = alloc_page(GFP_KERNEL);
1944         if (!p_page)
1945                 goto free_avic;
1946
1947         kvm_svm->avic_physical_id_table_page = p_page;
1948         clear_page(page_address(p_page));
1949
1950         /* Allocating logical APIC ID table (4KB) */
1951         l_page = alloc_page(GFP_KERNEL);
1952         if (!l_page)
1953                 goto free_avic;
1954
1955         kvm_svm->avic_logical_id_table_page = l_page;
1956         clear_page(page_address(l_page));
1957
1958         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1959  again:
1960         vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
1961         if (vm_id == 0) { /* id is 1-based, zero is not okay */
1962                 next_vm_id_wrapped = 1;
1963                 goto again;
1964         }
1965         /* Is it still in use? Only possible if wrapped at least once */
1966         if (next_vm_id_wrapped) {
1967                 hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
1968                         if (k2->avic_vm_id == vm_id)
1969                                 goto again;
1970                 }
1971         }
1972         kvm_svm->avic_vm_id = vm_id;
1973         hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
1974         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1975
1976         return 0;
1977
1978 free_avic:
1979         avic_vm_destroy(kvm);
1980         return err;
1981 }
1982
1983 static inline int
1984 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1985 {
1986         int ret = 0;
1987         unsigned long flags;
1988         struct amd_svm_iommu_ir *ir;
1989         struct vcpu_svm *svm = to_svm(vcpu);
1990
1991         if (!kvm_arch_has_assigned_device(vcpu->kvm))
1992                 return 0;
1993
1994         /*
1995          * Here, we go through the per-vcpu ir_list to update all existing
1996          * interrupt remapping table entry targeting this vcpu.
1997          */
1998         spin_lock_irqsave(&svm->ir_list_lock, flags);
1999
2000         if (list_empty(&svm->ir_list))
2001                 goto out;
2002
2003         list_for_each_entry(ir, &svm->ir_list, node) {
2004                 ret = amd_iommu_update_ga(cpu, r, ir->data);
2005                 if (ret)
2006                         break;
2007         }
2008 out:
2009         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
2010         return ret;
2011 }
2012
2013 static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2014 {
2015         u64 entry;
2016         /* ID = 0xff (broadcast), ID > 0xff (reserved) */
2017         int h_physical_id = kvm_cpu_get_apicid(cpu);
2018         struct vcpu_svm *svm = to_svm(vcpu);
2019
2020         if (!kvm_vcpu_apicv_active(vcpu))
2021                 return;
2022
2023         if (WARN_ON(h_physical_id >= AVIC_MAX_PHYSICAL_ID_COUNT))
2024                 return;
2025
2026         entry = READ_ONCE(*(svm->avic_physical_id_cache));
2027         WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
2028
2029         entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
2030         entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
2031
2032         entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2033         if (svm->avic_is_running)
2034                 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2035
2036         WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2037         avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
2038                                         svm->avic_is_running);
2039 }
2040
2041 static void avic_vcpu_put(struct kvm_vcpu *vcpu)
2042 {
2043         u64 entry;
2044         struct vcpu_svm *svm = to_svm(vcpu);
2045
2046         if (!kvm_vcpu_apicv_active(vcpu))
2047                 return;
2048
2049         entry = READ_ONCE(*(svm->avic_physical_id_cache));
2050         if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
2051                 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
2052
2053         entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2054         WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2055 }
2056
2057 /**
2058  * This function is called during VCPU halt/unhalt.
2059  */
2060 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
2061 {
2062         struct vcpu_svm *svm = to_svm(vcpu);
2063
2064         svm->avic_is_running = is_run;
2065         if (is_run)
2066                 avic_vcpu_load(vcpu, vcpu->cpu);
2067         else
2068                 avic_vcpu_put(vcpu);
2069 }
2070
2071 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
2072 {
2073         struct vcpu_svm *svm = to_svm(vcpu);
2074         u32 dummy;
2075         u32 eax = 1;
2076
2077         vcpu->arch.microcode_version = 0x01000065;
2078         svm->spec_ctrl = 0;
2079         svm->virt_spec_ctrl = 0;
2080
2081         if (!init_event) {
2082                 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
2083                                            MSR_IA32_APICBASE_ENABLE;
2084                 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
2085                         svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
2086         }
2087         init_vmcb(svm);
2088
2089         kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true);
2090         kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
2091
2092         if (kvm_vcpu_apicv_active(vcpu) && !init_event)
2093                 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
2094 }
2095
2096 static int avic_init_vcpu(struct vcpu_svm *svm)
2097 {
2098         int ret;
2099
2100         if (!kvm_vcpu_apicv_active(&svm->vcpu))
2101                 return 0;
2102
2103         ret = avic_init_backing_page(&svm->vcpu);
2104         if (ret)
2105                 return ret;
2106
2107         INIT_LIST_HEAD(&svm->ir_list);
2108         spin_lock_init(&svm->ir_list_lock);
2109
2110         return ret;
2111 }
2112
2113 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
2114 {
2115         struct vcpu_svm *svm;
2116         struct page *page;
2117         struct page *msrpm_pages;
2118         struct page *hsave_page;
2119         struct page *nested_msrpm_pages;
2120         int err;
2121
2122         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2123         if (!svm) {
2124                 err = -ENOMEM;
2125                 goto out;
2126         }
2127
2128         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
2129         if (err)
2130                 goto free_svm;
2131
2132         err = -ENOMEM;
2133         page = alloc_page(GFP_KERNEL);
2134         if (!page)
2135                 goto uninit;
2136
2137         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
2138         if (!msrpm_pages)
2139                 goto free_page1;
2140
2141         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
2142         if (!nested_msrpm_pages)
2143                 goto free_page2;
2144
2145         hsave_page = alloc_page(GFP_KERNEL);
2146         if (!hsave_page)
2147                 goto free_page3;
2148
2149         err = avic_init_vcpu(svm);
2150         if (err)
2151                 goto free_page4;
2152
2153         /* We initialize this flag to true to make sure that the is_running
2154          * bit would be set the first time the vcpu is loaded.
2155          */
2156         svm->avic_is_running = true;
2157
2158         svm->nested.hsave = page_address(hsave_page);
2159
2160         svm->msrpm = page_address(msrpm_pages);
2161         svm_vcpu_init_msrpm(svm->msrpm);
2162
2163         svm->nested.msrpm = page_address(nested_msrpm_pages);
2164         svm_vcpu_init_msrpm(svm->nested.msrpm);
2165
2166         svm->vmcb = page_address(page);
2167         clear_page(svm->vmcb);
2168         svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
2169         svm->asid_generation = 0;
2170         init_vmcb(svm);
2171
2172         svm_init_osvw(&svm->vcpu);
2173
2174         return &svm->vcpu;
2175
2176 free_page4:
2177         __free_page(hsave_page);
2178 free_page3:
2179         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
2180 free_page2:
2181         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
2182 free_page1:
2183         __free_page(page);
2184 uninit:
2185         kvm_vcpu_uninit(&svm->vcpu);
2186 free_svm:
2187         kmem_cache_free(kvm_vcpu_cache, svm);
2188 out:
2189         return ERR_PTR(err);
2190 }
2191
2192 static void svm_clear_current_vmcb(struct vmcb *vmcb)
2193 {
2194         int i;
2195
2196         for_each_online_cpu(i)
2197                 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
2198 }
2199
2200 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
2201 {
2202         struct vcpu_svm *svm = to_svm(vcpu);
2203
2204         /*
2205          * The vmcb page can be recycled, causing a false negative in
2206          * svm_vcpu_load(). So, ensure that no logical CPU has this
2207          * vmcb page recorded as its current vmcb.
2208          */
2209         svm_clear_current_vmcb(svm->vmcb);
2210
2211         __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
2212         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
2213         __free_page(virt_to_page(svm->nested.hsave));
2214         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
2215         kvm_vcpu_uninit(vcpu);
2216         kmem_cache_free(kvm_vcpu_cache, svm);
2217 }
2218
2219 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2220 {
2221         struct vcpu_svm *svm = to_svm(vcpu);
2222         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2223         int i;
2224
2225         if (unlikely(cpu != vcpu->cpu)) {
2226                 svm->asid_generation = 0;
2227                 mark_all_dirty(svm->vmcb);
2228         }
2229
2230 #ifdef CONFIG_X86_64
2231         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
2232 #endif
2233         savesegment(fs, svm->host.fs);
2234         savesegment(gs, svm->host.gs);
2235         svm->host.ldt = kvm_read_ldt();
2236
2237         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2238                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2239
2240         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
2241                 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2242                 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
2243                         __this_cpu_write(current_tsc_ratio, tsc_ratio);
2244                         wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
2245                 }
2246         }
2247         /* This assumes that the kernel never uses MSR_TSC_AUX */
2248         if (static_cpu_has(X86_FEATURE_RDTSCP))
2249                 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2250
2251         if (sd->current_vmcb != svm->vmcb) {
2252                 sd->current_vmcb = svm->vmcb;
2253                 indirect_branch_prediction_barrier();
2254         }
2255         avic_vcpu_load(vcpu, cpu);
2256 }
2257
2258 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
2259 {
2260         struct vcpu_svm *svm = to_svm(vcpu);
2261         int i;
2262
2263         avic_vcpu_put(vcpu);
2264
2265         ++vcpu->stat.host_state_reload;
2266         kvm_load_ldt(svm->host.ldt);
2267 #ifdef CONFIG_X86_64
2268         loadsegment(fs, svm->host.fs);
2269         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
2270         load_gs_index(svm->host.gs);
2271 #else
2272 #ifdef CONFIG_X86_32_LAZY_GS
2273         loadsegment(gs, svm->host.gs);
2274 #endif
2275 #endif
2276         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2277                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2278 }
2279
2280 static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
2281 {
2282         avic_set_running(vcpu, false);
2283 }
2284
2285 static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
2286 {
2287         avic_set_running(vcpu, true);
2288 }
2289
2290 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
2291 {
2292         struct vcpu_svm *svm = to_svm(vcpu);
2293         unsigned long rflags = svm->vmcb->save.rflags;
2294
2295         if (svm->nmi_singlestep) {
2296                 /* Hide our flags if they were not set by the guest */
2297                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
2298                         rflags &= ~X86_EFLAGS_TF;
2299                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
2300                         rflags &= ~X86_EFLAGS_RF;
2301         }
2302         return rflags;
2303 }
2304
2305 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2306 {
2307         if (to_svm(vcpu)->nmi_singlestep)
2308                 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2309
2310        /*
2311         * Any change of EFLAGS.VM is accompanied by a reload of SS
2312         * (caused by either a task switch or an inter-privilege IRET),
2313         * so we do not need to update the CPL here.
2314         */
2315         to_svm(vcpu)->vmcb->save.rflags = rflags;
2316 }
2317
2318 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2319 {
2320         switch (reg) {
2321         case VCPU_EXREG_PDPTR:
2322                 BUG_ON(!npt_enabled);
2323                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
2324                 break;
2325         default:
2326                 BUG();
2327         }
2328 }
2329
2330 static void svm_set_vintr(struct vcpu_svm *svm)
2331 {
2332         set_intercept(svm, INTERCEPT_VINTR);
2333 }
2334
2335 static void svm_clear_vintr(struct vcpu_svm *svm)
2336 {
2337         clr_intercept(svm, INTERCEPT_VINTR);
2338 }
2339
2340 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
2341 {
2342         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2343
2344         switch (seg) {
2345         case VCPU_SREG_CS: return &save->cs;
2346         case VCPU_SREG_DS: return &save->ds;
2347         case VCPU_SREG_ES: return &save->es;
2348         case VCPU_SREG_FS: return &save->fs;
2349         case VCPU_SREG_GS: return &save->gs;
2350         case VCPU_SREG_SS: return &save->ss;
2351         case VCPU_SREG_TR: return &save->tr;
2352         case VCPU_SREG_LDTR: return &save->ldtr;
2353         }
2354         BUG();
2355         return NULL;
2356 }
2357
2358 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2359 {
2360         struct vmcb_seg *s = svm_seg(vcpu, seg);
2361
2362         return s->base;
2363 }
2364
2365 static void svm_get_segment(struct kvm_vcpu *vcpu,
2366                             struct kvm_segment *var, int seg)
2367 {
2368         struct vmcb_seg *s = svm_seg(vcpu, seg);
2369
2370         var->base = s->base;
2371         var->limit = s->limit;
2372         var->selector = s->selector;
2373         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
2374         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
2375         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
2376         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
2377         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
2378         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
2379         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
2380
2381         /*
2382          * AMD CPUs circa 2014 track the G bit for all segments except CS.
2383          * However, the SVM spec states that the G bit is not observed by the
2384          * CPU, and some VMware virtual CPUs drop the G bit for all segments.
2385          * So let's synthesize a legal G bit for all segments, this helps
2386          * running KVM nested. It also helps cross-vendor migration, because
2387          * Intel's vmentry has a check on the 'G' bit.
2388          */
2389         var->g = s->limit > 0xfffff;
2390
2391         /*
2392          * AMD's VMCB does not have an explicit unusable field, so emulate it
2393          * for cross vendor migration purposes by "not present"
2394          */
2395         var->unusable = !var->present;
2396
2397         switch (seg) {
2398         case VCPU_SREG_TR:
2399                 /*
2400                  * Work around a bug where the busy flag in the tr selector
2401                  * isn't exposed
2402                  */
2403                 var->type |= 0x2;
2404                 break;
2405         case VCPU_SREG_DS:
2406         case VCPU_SREG_ES:
2407         case VCPU_SREG_FS:
2408         case VCPU_SREG_GS:
2409                 /*
2410                  * The accessed bit must always be set in the segment
2411                  * descriptor cache, although it can be cleared in the
2412                  * descriptor, the cached bit always remains at 1. Since
2413                  * Intel has a check on this, set it here to support
2414                  * cross-vendor migration.
2415                  */
2416                 if (!var->unusable)
2417                         var->type |= 0x1;
2418                 break;
2419         case VCPU_SREG_SS:
2420                 /*
2421                  * On AMD CPUs sometimes the DB bit in the segment
2422                  * descriptor is left as 1, although the whole segment has
2423                  * been made unusable. Clear it here to pass an Intel VMX
2424                  * entry check when cross vendor migrating.
2425                  */
2426                 if (var->unusable)
2427                         var->db = 0;
2428                 /* This is symmetric with svm_set_segment() */
2429                 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
2430                 break;
2431         }
2432 }
2433
2434 static int svm_get_cpl(struct kvm_vcpu *vcpu)
2435 {
2436         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2437
2438         return save->cpl;
2439 }
2440
2441 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2442 {
2443         struct vcpu_svm *svm = to_svm(vcpu);
2444
2445         dt->size = svm->vmcb->save.idtr.limit;
2446         dt->address = svm->vmcb->save.idtr.base;
2447 }
2448
2449 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2450 {
2451         struct vcpu_svm *svm = to_svm(vcpu);
2452
2453         svm->vmcb->save.idtr.limit = dt->size;
2454         svm->vmcb->save.idtr.base = dt->address ;
2455         mark_dirty(svm->vmcb, VMCB_DT);
2456 }
2457
2458 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2459 {
2460         struct vcpu_svm *svm = to_svm(vcpu);
2461
2462         dt->size = svm->vmcb->save.gdtr.limit;
2463         dt->address = svm->vmcb->save.gdtr.base;
2464 }
2465
2466 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2467 {
2468         struct vcpu_svm *svm = to_svm(vcpu);
2469
2470         svm->vmcb->save.gdtr.limit = dt->size;
2471         svm->vmcb->save.gdtr.base = dt->address ;
2472         mark_dirty(svm->vmcb, VMCB_DT);
2473 }
2474
2475 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2476 {
2477 }
2478
2479 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
2480 {
2481 }
2482
2483 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2484 {
2485 }
2486
2487 static void update_cr0_intercept(struct vcpu_svm *svm)
2488 {
2489         ulong gcr0 = svm->vcpu.arch.cr0;
2490         u64 *hcr0 = &svm->vmcb->save.cr0;
2491
2492         *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
2493                 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
2494
2495         mark_dirty(svm->vmcb, VMCB_CR);
2496
2497         if (gcr0 == *hcr0) {
2498                 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
2499                 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2500         } else {
2501                 set_cr_intercept(svm, INTERCEPT_CR0_READ);
2502                 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2503         }
2504 }
2505
2506 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2507 {
2508         struct vcpu_svm *svm = to_svm(vcpu);
2509
2510 #ifdef CONFIG_X86_64
2511         if (vcpu->arch.efer & EFER_LME) {
2512                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
2513                         vcpu->arch.efer |= EFER_LMA;
2514                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
2515                 }
2516
2517                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
2518                         vcpu->arch.efer &= ~EFER_LMA;
2519                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
2520                 }
2521         }
2522 #endif
2523         vcpu->arch.cr0 = cr0;
2524
2525         if (!npt_enabled)
2526                 cr0 |= X86_CR0_PG | X86_CR0_WP;
2527
2528         /*
2529          * re-enable caching here because the QEMU bios
2530          * does not do it - this results in some delay at
2531          * reboot
2532          */
2533         if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
2534                 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
2535         svm->vmcb->save.cr0 = cr0;
2536         mark_dirty(svm->vmcb, VMCB_CR);
2537         update_cr0_intercept(svm);
2538 }
2539
2540 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2541 {
2542         unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
2543         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
2544
2545         if (cr4 & X86_CR4_VMXE)
2546                 return 1;
2547
2548         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
2549                 svm_flush_tlb(vcpu, true);
2550
2551         vcpu->arch.cr4 = cr4;
2552         if (!npt_enabled)
2553                 cr4 |= X86_CR4_PAE;
2554         cr4 |= host_cr4_mce;
2555         to_svm(vcpu)->vmcb->save.cr4 = cr4;
2556         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
2557         return 0;
2558 }
2559
2560 static void svm_set_segment(struct kvm_vcpu *vcpu,
2561                             struct kvm_segment *var, int seg)
2562 {
2563         struct vcpu_svm *svm = to_svm(vcpu);
2564         struct vmcb_seg *s = svm_seg(vcpu, seg);
2565
2566         s->base = var->base;
2567         s->limit = var->limit;
2568         s->selector = var->selector;
2569         s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2570         s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2571         s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2572         s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2573         s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2574         s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2575         s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2576         s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2577
2578         /*
2579          * This is always accurate, except if SYSRET returned to a segment
2580          * with SS.DPL != 3.  Intel does not have this quirk, and always
2581          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2582          * would entail passing the CPL to userspace and back.
2583          */
2584         if (seg == VCPU_SREG_SS)
2585                 /* This is symmetric with svm_get_segment() */
2586                 svm->vmcb->save.cpl = (var->dpl & 3);
2587
2588         mark_dirty(svm->vmcb, VMCB_SEG);
2589 }
2590
2591 static void update_bp_intercept(struct kvm_vcpu *vcpu)
2592 {
2593         struct vcpu_svm *svm = to_svm(vcpu);
2594
2595         clr_exception_intercept(svm, BP_VECTOR);
2596
2597         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2598                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2599                         set_exception_intercept(svm, BP_VECTOR);
2600         } else
2601                 vcpu->guest_debug = 0;
2602 }
2603
2604 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2605 {
2606         if (sd->next_asid > sd->max_asid) {
2607                 ++sd->asid_generation;
2608                 sd->next_asid = sd->min_asid;
2609                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2610         }
2611
2612         svm->asid_generation = sd->asid_generation;
2613         svm->vmcb->control.asid = sd->next_asid++;
2614
2615         mark_dirty(svm->vmcb, VMCB_ASID);
2616 }
2617
2618 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2619 {
2620         return to_svm(vcpu)->vmcb->save.dr6;
2621 }
2622
2623 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2624 {
2625         struct vcpu_svm *svm = to_svm(vcpu);
2626
2627         svm->vmcb->save.dr6 = value;
2628         mark_dirty(svm->vmcb, VMCB_DR);
2629 }
2630
2631 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2632 {
2633         struct vcpu_svm *svm = to_svm(vcpu);
2634
2635         get_debugreg(vcpu->arch.db[0], 0);
2636         get_debugreg(vcpu->arch.db[1], 1);
2637         get_debugreg(vcpu->arch.db[2], 2);
2638         get_debugreg(vcpu->arch.db[3], 3);
2639         vcpu->arch.dr6 = svm_get_dr6(vcpu);
2640         vcpu->arch.dr7 = svm->vmcb->save.dr7;
2641
2642         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2643         set_dr_intercepts(svm);
2644 }
2645
2646 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2647 {
2648         struct vcpu_svm *svm = to_svm(vcpu);
2649
2650         svm->vmcb->save.dr7 = value;
2651         mark_dirty(svm->vmcb, VMCB_DR);
2652 }
2653
2654 static int pf_interception(struct vcpu_svm *svm)
2655 {
2656         u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2657         u64 error_code = svm->vmcb->control.exit_info_1;
2658
2659         return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
2660                         static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2661                         svm->vmcb->control.insn_bytes : NULL,
2662                         svm->vmcb->control.insn_len);
2663 }
2664
2665 static int npf_interception(struct vcpu_svm *svm)
2666 {
2667         u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2668         u64 error_code = svm->vmcb->control.exit_info_1;
2669
2670         trace_kvm_page_fault(fault_address, error_code);
2671         return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
2672                         static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2673                         svm->vmcb->control.insn_bytes : NULL,
2674                         svm->vmcb->control.insn_len);
2675 }
2676
2677 static int db_interception(struct vcpu_svm *svm)
2678 {
2679         struct kvm_run *kvm_run = svm->vcpu.run;
2680
2681         if (!(svm->vcpu.guest_debug &
2682               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2683                 !svm->nmi_singlestep) {
2684                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2685                 return 1;
2686         }
2687
2688         if (svm->nmi_singlestep) {
2689                 disable_nmi_singlestep(svm);
2690         }
2691
2692         if (svm->vcpu.guest_debug &
2693             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2694                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2695                 kvm_run->debug.arch.pc =
2696                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2697                 kvm_run->debug.arch.exception = DB_VECTOR;
2698                 return 0;
2699         }
2700
2701         return 1;
2702 }
2703
2704 static int bp_interception(struct vcpu_svm *svm)
2705 {
2706         struct kvm_run *kvm_run = svm->vcpu.run;
2707
2708         kvm_run->exit_reason = KVM_EXIT_DEBUG;
2709         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2710         kvm_run->debug.arch.exception = BP_VECTOR;
2711         return 0;
2712 }
2713
2714 static int ud_interception(struct vcpu_svm *svm)
2715 {
2716         return handle_ud(&svm->vcpu);
2717 }
2718
2719 static int ac_interception(struct vcpu_svm *svm)
2720 {
2721         kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2722         return 1;
2723 }
2724
2725 static int gp_interception(struct vcpu_svm *svm)
2726 {
2727         struct kvm_vcpu *vcpu = &svm->vcpu;
2728         u32 error_code = svm->vmcb->control.exit_info_1;
2729         int er;
2730
2731         WARN_ON_ONCE(!enable_vmware_backdoor);
2732
2733         er = kvm_emulate_instruction(vcpu,
2734                 EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
2735         if (er == EMULATE_USER_EXIT)
2736                 return 0;
2737         else if (er != EMULATE_DONE)
2738                 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2739         return 1;
2740 }
2741
2742 static bool is_erratum_383(void)
2743 {
2744         int err, i;
2745         u64 value;
2746
2747         if (!erratum_383_found)
2748                 return false;
2749
2750         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2751         if (err)
2752                 return false;
2753
2754         /* Bit 62 may or may not be set for this mce */
2755         value &= ~(1ULL << 62);
2756
2757         if (value != 0xb600000000010015ULL)
2758                 return false;
2759
2760         /* Clear MCi_STATUS registers */
2761         for (i = 0; i < 6; ++i)
2762                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2763
2764         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2765         if (!err) {
2766                 u32 low, high;
2767
2768                 value &= ~(1ULL << 2);
2769                 low    = lower_32_bits(value);
2770                 high   = upper_32_bits(value);
2771
2772                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2773         }
2774
2775         /* Flush tlb to evict multi-match entries */
2776         __flush_tlb_all();
2777
2778         return true;
2779 }
2780
2781 static void svm_handle_mce(struct vcpu_svm *svm)
2782 {
2783         if (is_erratum_383()) {
2784                 /*
2785                  * Erratum 383 triggered. Guest state is corrupt so kill the
2786                  * guest.
2787                  */
2788                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2789
2790                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2791
2792                 return;
2793         }
2794
2795         /*
2796          * On an #MC intercept the MCE handler is not called automatically in
2797          * the host. So do it by hand here.
2798          */
2799         asm volatile (
2800                 "int $0x12\n");
2801         /* not sure if we ever come back to this point */
2802
2803         return;
2804 }
2805
2806 static int mc_interception(struct vcpu_svm *svm)
2807 {
2808         return 1;
2809 }
2810
2811 static int shutdown_interception(struct vcpu_svm *svm)
2812 {
2813         struct kvm_run *kvm_run = svm->vcpu.run;
2814
2815         /*
2816          * VMCB is undefined after a SHUTDOWN intercept
2817          * so reinitialize it.
2818          */
2819         clear_page(svm->vmcb);
2820         init_vmcb(svm);
2821
2822         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2823         return 0;
2824 }
2825
2826 static int io_interception(struct vcpu_svm *svm)
2827 {
2828         struct kvm_vcpu *vcpu = &svm->vcpu;
2829         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2830         int size, in, string;
2831         unsigned port;
2832
2833         ++svm->vcpu.stat.io_exits;
2834         string = (io_info & SVM_IOIO_STR_MASK) != 0;
2835         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2836         if (string)
2837                 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
2838
2839         port = io_info >> 16;
2840         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2841         svm->next_rip = svm->vmcb->control.exit_info_2;
2842
2843         return kvm_fast_pio(&svm->vcpu, size, port, in);
2844 }
2845
2846 static int nmi_interception(struct vcpu_svm *svm)
2847 {
2848         return 1;
2849 }
2850
2851 static int intr_interception(struct vcpu_svm *svm)
2852 {
2853         ++svm->vcpu.stat.irq_exits;
2854         return 1;
2855 }
2856
2857 static int nop_on_interception(struct vcpu_svm *svm)
2858 {
2859         return 1;
2860 }
2861
2862 static int halt_interception(struct vcpu_svm *svm)
2863 {
2864         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2865         return kvm_emulate_halt(&svm->vcpu);
2866 }
2867
2868 static int vmmcall_interception(struct vcpu_svm *svm)
2869 {
2870         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2871         return kvm_emulate_hypercall(&svm->vcpu);
2872 }
2873
2874 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2875 {
2876         struct vcpu_svm *svm = to_svm(vcpu);
2877
2878         return svm->nested.nested_cr3;
2879 }
2880
2881 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2882 {
2883         struct vcpu_svm *svm = to_svm(vcpu);
2884         u64 cr3 = svm->nested.nested_cr3;
2885         u64 pdpte;
2886         int ret;
2887
2888         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
2889                                        offset_in_page(cr3) + index * 8, 8);
2890         if (ret)
2891                 return 0;
2892         return pdpte;
2893 }
2894
2895 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2896                                    unsigned long root)
2897 {
2898         struct vcpu_svm *svm = to_svm(vcpu);
2899
2900         svm->vmcb->control.nested_cr3 = __sme_set(root);
2901         mark_dirty(svm->vmcb, VMCB_NPT);
2902 }
2903
2904 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2905                                        struct x86_exception *fault)
2906 {
2907         struct vcpu_svm *svm = to_svm(vcpu);
2908
2909         if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2910                 /*
2911                  * TODO: track the cause of the nested page fault, and
2912                  * correctly fill in the high bits of exit_info_1.
2913                  */
2914                 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2915                 svm->vmcb->control.exit_code_hi = 0;
2916                 svm->vmcb->control.exit_info_1 = (1ULL << 32);
2917                 svm->vmcb->control.exit_info_2 = fault->address;
2918         }
2919
2920         svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2921         svm->vmcb->control.exit_info_1 |= fault->error_code;
2922
2923         /*
2924          * The present bit is always zero for page structure faults on real
2925          * hardware.
2926          */
2927         if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2928                 svm->vmcb->control.exit_info_1 &= ~1;
2929
2930         nested_svm_vmexit(svm);
2931 }
2932
2933 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2934 {
2935         WARN_ON(mmu_is_nested(vcpu));
2936         kvm_init_shadow_mmu(vcpu);
2937         vcpu->arch.mmu->set_cr3           = nested_svm_set_tdp_cr3;
2938         vcpu->arch.mmu->get_cr3           = nested_svm_get_tdp_cr3;
2939         vcpu->arch.mmu->get_pdptr         = nested_svm_get_tdp_pdptr;
2940         vcpu->arch.mmu->inject_page_fault = nested_svm_inject_npf_exit;
2941         vcpu->arch.mmu->shadow_root_level = get_npt_level(vcpu);
2942         reset_shadow_zero_bits_mask(vcpu, vcpu->arch.mmu);
2943         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
2944 }
2945
2946 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2947 {
2948         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
2949 }
2950
2951 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2952 {
2953         if (!(svm->vcpu.arch.efer & EFER_SVME) ||
2954             !is_paging(&svm->vcpu)) {
2955                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2956                 return 1;
2957         }
2958
2959         if (svm->vmcb->save.cpl) {
2960                 kvm_inject_gp(&svm->vcpu, 0);
2961                 return 1;
2962         }
2963
2964         return 0;
2965 }
2966
2967 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2968                                       bool has_error_code, u32 error_code)
2969 {
2970         int vmexit;
2971
2972         if (!is_guest_mode(&svm->vcpu))
2973                 return 0;
2974
2975         vmexit = nested_svm_intercept(svm);
2976         if (vmexit != NESTED_EXIT_DONE)
2977                 return 0;
2978
2979         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2980         svm->vmcb->control.exit_code_hi = 0;
2981         svm->vmcb->control.exit_info_1 = error_code;
2982
2983         /*
2984          * EXITINFO2 is undefined for all exception intercepts other
2985          * than #PF.
2986          */
2987         if (svm->vcpu.arch.exception.nested_apf)
2988                 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
2989         else if (svm->vcpu.arch.exception.has_payload)
2990                 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.exception.payload;
2991         else
2992                 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2993
2994         svm->nested.exit_required = true;
2995         return vmexit;
2996 }
2997
2998 /* This function returns true if it is save to enable the irq window */
2999 static inline bool nested_svm_intr(struct vcpu_svm *svm)
3000 {
3001         if (!is_guest_mode(&svm->vcpu))
3002                 return true;
3003
3004         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3005                 return true;
3006
3007         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
3008                 return false;
3009
3010         /*
3011          * if vmexit was already requested (by intercepted exception
3012          * for instance) do not overwrite it with "external interrupt"
3013          * vmexit.
3014          */
3015         if (svm->nested.exit_required)
3016                 return false;
3017
3018         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
3019         svm->vmcb->control.exit_info_1 = 0;
3020         svm->vmcb->control.exit_info_2 = 0;
3021
3022         if (svm->nested.intercept & 1ULL) {
3023                 /*
3024                  * The #vmexit can't be emulated here directly because this
3025                  * code path runs with irqs and preemption disabled. A
3026                  * #vmexit emulation might sleep. Only signal request for
3027                  * the #vmexit here.
3028                  */
3029                 svm->nested.exit_required = true;
3030                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
3031                 return false;
3032         }
3033
3034         return true;
3035 }
3036
3037 /* This function returns true if it is save to enable the nmi window */
3038 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
3039 {
3040         if (!is_guest_mode(&svm->vcpu))
3041                 return true;
3042
3043         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
3044                 return true;
3045
3046         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
3047         svm->nested.exit_required = true;
3048
3049         return false;
3050 }
3051
3052 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
3053 {
3054         struct page *page;
3055
3056         might_sleep();
3057
3058         page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
3059         if (is_error_page(page))
3060                 goto error;
3061
3062         *_page = page;
3063
3064         return kmap(page);
3065
3066 error:
3067         kvm_inject_gp(&svm->vcpu, 0);
3068
3069         return NULL;
3070 }
3071
3072 static void nested_svm_unmap(struct page *page)
3073 {
3074         kunmap(page);
3075         kvm_release_page_dirty(page);
3076 }
3077
3078 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
3079 {
3080         unsigned port, size, iopm_len;
3081         u16 val, mask;
3082         u8 start_bit;
3083         u64 gpa;
3084
3085         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
3086                 return NESTED_EXIT_HOST;
3087
3088         port = svm->vmcb->control.exit_info_1 >> 16;
3089         size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
3090                 SVM_IOIO_SIZE_SHIFT;
3091         gpa  = svm->nested.vmcb_iopm + (port / 8);
3092         start_bit = port % 8;
3093         iopm_len = (start_bit + size > 8) ? 2 : 1;
3094         mask = (0xf >> (4 - size)) << start_bit;
3095         val = 0;
3096
3097         if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
3098                 return NESTED_EXIT_DONE;
3099
3100         return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3101 }
3102
3103 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
3104 {
3105         u32 offset, msr, value;
3106         int write, mask;
3107
3108         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3109                 return NESTED_EXIT_HOST;
3110
3111         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3112         offset = svm_msrpm_offset(msr);
3113         write  = svm->vmcb->control.exit_info_1 & 1;
3114         mask   = 1 << ((2 * (msr & 0xf)) + write);
3115
3116         if (offset == MSR_INVALID)
3117                 return NESTED_EXIT_DONE;
3118
3119         /* Offset is in 32 bit units but need in 8 bit units */
3120         offset *= 4;
3121
3122         if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
3123                 return NESTED_EXIT_DONE;
3124
3125         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3126 }
3127
3128 /* DB exceptions for our internal use must not cause vmexit */
3129 static int nested_svm_intercept_db(struct vcpu_svm *svm)
3130 {
3131         unsigned long dr6;
3132
3133         /* if we're not singlestepping, it's not ours */
3134         if (!svm->nmi_singlestep)
3135                 return NESTED_EXIT_DONE;
3136
3137         /* if it's not a singlestep exception, it's not ours */
3138         if (kvm_get_dr(&svm->vcpu, 6, &dr6))
3139                 return NESTED_EXIT_DONE;
3140         if (!(dr6 & DR6_BS))
3141                 return NESTED_EXIT_DONE;
3142
3143         /* if the guest is singlestepping, it should get the vmexit */
3144         if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
3145                 disable_nmi_singlestep(svm);
3146                 return NESTED_EXIT_DONE;
3147         }
3148
3149         /* it's ours, the nested hypervisor must not see this one */
3150         return NESTED_EXIT_HOST;
3151 }
3152
3153 static int nested_svm_exit_special(struct vcpu_svm *svm)
3154 {
3155         u32 exit_code = svm->vmcb->control.exit_code;
3156
3157         switch (exit_code) {
3158         case SVM_EXIT_INTR:
3159         case SVM_EXIT_NMI:
3160         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
3161                 return NESTED_EXIT_HOST;
3162         case SVM_EXIT_NPF:
3163                 /* For now we are always handling NPFs when using them */
3164                 if (npt_enabled)
3165                         return NESTED_EXIT_HOST;
3166                 break;
3167         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
3168                 /* When we're shadowing, trap PFs, but not async PF */
3169                 if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0)
3170                         return NESTED_EXIT_HOST;
3171                 break;
3172         default:
3173                 break;
3174         }
3175
3176         return NESTED_EXIT_CONTINUE;
3177 }
3178
3179 /*
3180  * If this function returns true, this #vmexit was already handled
3181  */
3182 static int nested_svm_intercept(struct vcpu_svm *svm)
3183 {
3184         u32 exit_code = svm->vmcb->control.exit_code;
3185         int vmexit = NESTED_EXIT_HOST;
3186
3187         switch (exit_code) {
3188         case SVM_EXIT_MSR:
3189                 vmexit = nested_svm_exit_handled_msr(svm);
3190                 break;
3191         case SVM_EXIT_IOIO:
3192                 vmexit = nested_svm_intercept_ioio(svm);
3193                 break;
3194         case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
3195                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
3196                 if (svm->nested.intercept_cr & bit)
3197                         vmexit = NESTED_EXIT_DONE;
3198                 break;
3199         }
3200         case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
3201                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
3202                 if (svm->nested.intercept_dr & bit)
3203                         vmexit = NESTED_EXIT_DONE;
3204                 break;
3205         }
3206         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
3207                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
3208                 if (svm->nested.intercept_exceptions & excp_bits) {
3209                         if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
3210                                 vmexit = nested_svm_intercept_db(svm);
3211                         else
3212                                 vmexit = NESTED_EXIT_DONE;
3213                 }
3214                 /* async page fault always cause vmexit */
3215                 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
3216                          svm->vcpu.arch.exception.nested_apf != 0)
3217                         vmexit = NESTED_EXIT_DONE;
3218                 break;
3219         }
3220         case SVM_EXIT_ERR: {
3221                 vmexit = NESTED_EXIT_DONE;
3222                 break;
3223         }
3224         default: {
3225                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
3226                 if (svm->nested.intercept & exit_bits)
3227                         vmexit = NESTED_EXIT_DONE;
3228         }
3229         }
3230
3231         return vmexit;
3232 }
3233
3234 static int nested_svm_exit_handled(struct vcpu_svm *svm)
3235 {
3236         int vmexit;
3237
3238         vmexit = nested_svm_intercept(svm);
3239
3240         if (vmexit == NESTED_EXIT_DONE)
3241                 nested_svm_vmexit(svm);
3242
3243         return vmexit;
3244 }
3245
3246 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
3247 {
3248         struct vmcb_control_area *dst  = &dst_vmcb->control;
3249         struct vmcb_control_area *from = &from_vmcb->control;
3250
3251         dst->intercept_cr         = from->intercept_cr;
3252         dst->intercept_dr         = from->intercept_dr;
3253         dst->intercept_exceptions = from->intercept_exceptions;
3254         dst->intercept            = from->intercept;
3255         dst->iopm_base_pa         = from->iopm_base_pa;
3256         dst->msrpm_base_pa        = from->msrpm_base_pa;
3257         dst->tsc_offset           = from->tsc_offset;
3258         dst->asid                 = from->asid;
3259         dst->tlb_ctl              = from->tlb_ctl;
3260         dst->int_ctl              = from->int_ctl;
3261         dst->int_vector           = from->int_vector;
3262         dst->int_state            = from->int_state;
3263         dst->exit_code            = from->exit_code;
3264         dst->exit_code_hi         = from->exit_code_hi;
3265         dst->exit_info_1          = from->exit_info_1;
3266         dst->exit_info_2          = from->exit_info_2;
3267         dst->exit_int_info        = from->exit_int_info;
3268         dst->exit_int_info_err    = from->exit_int_info_err;
3269         dst->nested_ctl           = from->nested_ctl;
3270         dst->event_inj            = from->event_inj;
3271         dst->event_inj_err        = from->event_inj_err;
3272         dst->nested_cr3           = from->nested_cr3;
3273         dst->virt_ext              = from->virt_ext;
3274 }
3275
3276 static int nested_svm_vmexit(struct vcpu_svm *svm)
3277 {
3278         struct vmcb *nested_vmcb;
3279         struct vmcb *hsave = svm->nested.hsave;
3280         struct vmcb *vmcb = svm->vmcb;
3281         struct page *page;
3282
3283         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
3284                                        vmcb->control.exit_info_1,
3285                                        vmcb->control.exit_info_2,
3286                                        vmcb->control.exit_int_info,
3287                                        vmcb->control.exit_int_info_err,
3288                                        KVM_ISA_SVM);
3289
3290         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
3291         if (!nested_vmcb)
3292                 return 1;
3293
3294         /* Exit Guest-Mode */
3295         leave_guest_mode(&svm->vcpu);
3296         svm->nested.vmcb = 0;
3297
3298         /* Give the current vmcb to the guest */
3299         disable_gif(svm);
3300
3301         nested_vmcb->save.es     = vmcb->save.es;
3302         nested_vmcb->save.cs     = vmcb->save.cs;
3303         nested_vmcb->save.ss     = vmcb->save.ss;
3304         nested_vmcb->save.ds     = vmcb->save.ds;
3305         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
3306         nested_vmcb->save.idtr   = vmcb->save.idtr;
3307         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
3308         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
3309         nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
3310         nested_vmcb->save.cr2    = vmcb->save.cr2;
3311         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
3312         nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
3313         nested_vmcb->save.rip    = vmcb->save.rip;
3314         nested_vmcb->save.rsp    = vmcb->save.rsp;
3315         nested_vmcb->save.rax    = vmcb->save.rax;
3316         nested_vmcb->save.dr7    = vmcb->save.dr7;
3317         nested_vmcb->save.dr6    = vmcb->save.dr6;
3318         nested_vmcb->save.cpl    = vmcb->save.cpl;
3319
3320         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
3321         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
3322         nested_vmcb->control.int_state         = vmcb->control.int_state;
3323         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
3324         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
3325         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
3326         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
3327         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
3328         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
3329
3330         if (svm->nrips_enabled)
3331                 nested_vmcb->control.next_rip  = vmcb->control.next_rip;
3332
3333         /*
3334          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
3335          * to make sure that we do not lose injected events. So check event_inj
3336          * here and copy it to exit_int_info if it is valid.
3337          * Exit_int_info and event_inj can't be both valid because the case
3338          * below only happens on a VMRUN instruction intercept which has
3339          * no valid exit_int_info set.
3340          */
3341         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
3342                 struct vmcb_control_area *nc = &nested_vmcb->control;
3343
3344                 nc->exit_int_info     = vmcb->control.event_inj;
3345                 nc->exit_int_info_err = vmcb->control.event_inj_err;
3346         }
3347
3348         nested_vmcb->control.tlb_ctl           = 0;
3349         nested_vmcb->control.event_inj         = 0;
3350         nested_vmcb->control.event_inj_err     = 0;
3351
3352         /* We always set V_INTR_MASKING and remember the old value in hflags */
3353         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3354                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
3355
3356         /* Restore the original control entries */
3357         copy_vmcb_control_area(vmcb, hsave);
3358
3359         svm->vcpu.arch.tsc_offset = svm->vmcb->control.tsc_offset;
3360         kvm_clear_exception_queue(&svm->vcpu);
3361         kvm_clear_interrupt_queue(&svm->vcpu);
3362
3363         svm->nested.nested_cr3 = 0;
3364
3365         /* Restore selected save entries */
3366         svm->vmcb->save.es = hsave->save.es;
3367         svm->vmcb->save.cs = hsave->save.cs;
3368         svm->vmcb->save.ss = hsave->save.ss;
3369         svm->vmcb->save.ds = hsave->save.ds;
3370         svm->vmcb->save.gdtr = hsave->save.gdtr;
3371         svm->vmcb->save.idtr = hsave->save.idtr;
3372         kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
3373         svm_set_efer(&svm->vcpu, hsave->save.efer);
3374         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
3375         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
3376         if (npt_enabled) {
3377                 svm->vmcb->save.cr3 = hsave->save.cr3;
3378                 svm->vcpu.arch.cr3 = hsave->save.cr3;
3379         } else {
3380                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
3381         }
3382         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
3383         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
3384         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
3385         svm->vmcb->save.dr7 = 0;
3386         svm->vmcb->save.cpl = 0;
3387         svm->vmcb->control.exit_int_info = 0;
3388
3389         mark_all_dirty(svm->vmcb);
3390
3391         nested_svm_unmap(page);
3392
3393         nested_svm_uninit_mmu_context(&svm->vcpu);
3394         kvm_mmu_reset_context(&svm->vcpu);
3395         kvm_mmu_load(&svm->vcpu);
3396
3397         return 0;
3398 }
3399
3400 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
3401 {
3402         /*
3403          * This function merges the msr permission bitmaps of kvm and the
3404          * nested vmcb. It is optimized in that it only merges the parts where
3405          * the kvm msr permission bitmap may contain zero bits
3406          */
3407         int i;
3408
3409         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3410                 return true;
3411
3412         for (i = 0; i < MSRPM_OFFSETS; i++) {
3413                 u32 value, p;
3414                 u64 offset;
3415
3416                 if (msrpm_offsets[i] == 0xffffffff)
3417                         break;
3418
3419                 p      = msrpm_offsets[i];
3420                 offset = svm->nested.vmcb_msrpm + (p * 4);
3421
3422                 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
3423                         return false;
3424
3425                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
3426         }
3427
3428         svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
3429
3430         return true;
3431 }
3432
3433 static bool nested_vmcb_checks(struct vmcb *vmcb)
3434 {
3435         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
3436                 return false;
3437
3438         if (vmcb->control.asid == 0)
3439                 return false;
3440
3441         if ((vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) &&
3442             !npt_enabled)
3443                 return false;
3444
3445         return true;
3446 }
3447
3448 static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
3449                                  struct vmcb *nested_vmcb, struct page *page)
3450 {
3451         if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
3452                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
3453         else
3454                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
3455
3456         if (nested_vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) {
3457                 kvm_mmu_unload(&svm->vcpu);
3458                 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
3459                 nested_svm_init_mmu_context(&svm->vcpu);
3460         }
3461
3462         /* Load the nested guest state */
3463         svm->vmcb->save.es = nested_vmcb->save.es;
3464         svm->vmcb->save.cs = nested_vmcb->save.cs;
3465         svm->vmcb->save.ss = nested_vmcb->save.ss;
3466         svm->vmcb->save.ds = nested_vmcb->save.ds;
3467         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
3468         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
3469         kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
3470         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
3471         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
3472         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
3473         if (npt_enabled) {
3474                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
3475                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
3476         } else
3477                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
3478
3479         /* Guest paging mode is active - reset mmu */
3480         kvm_mmu_reset_context(&svm->vcpu);
3481
3482         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
3483         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
3484         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
3485         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
3486
3487         /* In case we don't even reach vcpu_run, the fields are not updated */
3488         svm->vmcb->save.rax = nested_vmcb->save.rax;
3489         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
3490         svm->vmcb->save.rip = nested_vmcb->save.rip;
3491         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
3492         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
3493         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
3494
3495         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
3496         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
3497
3498         /* cache intercepts */
3499         svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
3500         svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
3501         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
3502         svm->nested.intercept            = nested_vmcb->control.intercept;
3503
3504         svm_flush_tlb(&svm->vcpu, true);
3505         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
3506         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
3507                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
3508         else
3509                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
3510
3511         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
3512                 /* We only want the cr8 intercept bits of the guest */
3513                 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
3514                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3515         }
3516
3517         /* We don't want to see VMMCALLs from a nested guest */
3518         clr_intercept(svm, INTERCEPT_VMMCALL);
3519
3520         svm->vcpu.arch.tsc_offset += nested_vmcb->control.tsc_offset;
3521         svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset;
3522
3523         svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
3524         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
3525         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
3526         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
3527         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
3528
3529         nested_svm_unmap(page);
3530
3531         /* Enter Guest-Mode */
3532         enter_guest_mode(&svm->vcpu);
3533
3534         /*
3535          * Merge guest and host intercepts - must be called  with vcpu in
3536          * guest-mode to take affect here
3537          */
3538         recalc_intercepts(svm);
3539
3540         svm->nested.vmcb = vmcb_gpa;
3541
3542         enable_gif(svm);
3543
3544         mark_all_dirty(svm->vmcb);
3545 }
3546
3547 static bool nested_svm_vmrun(struct vcpu_svm *svm)
3548 {
3549         struct vmcb *nested_vmcb;
3550         struct vmcb *hsave = svm->nested.hsave;
3551         struct vmcb *vmcb = svm->vmcb;
3552         struct page *page;
3553         u64 vmcb_gpa;
3554
3555         vmcb_gpa = svm->vmcb->save.rax;
3556
3557         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3558         if (!nested_vmcb)
3559                 return false;
3560
3561         if (!nested_vmcb_checks(nested_vmcb)) {
3562                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
3563                 nested_vmcb->control.exit_code_hi = 0;
3564                 nested_vmcb->control.exit_info_1  = 0;
3565                 nested_vmcb->control.exit_info_2  = 0;
3566
3567                 nested_svm_unmap(page);
3568
3569                 return false;
3570         }
3571
3572         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
3573                                nested_vmcb->save.rip,
3574                                nested_vmcb->control.int_ctl,
3575                                nested_vmcb->control.event_inj,
3576                                nested_vmcb->control.nested_ctl);
3577
3578         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
3579                                     nested_vmcb->control.intercept_cr >> 16,
3580                                     nested_vmcb->control.intercept_exceptions,
3581                                     nested_vmcb->control.intercept);
3582
3583         /* Clear internal status */
3584         kvm_clear_exception_queue(&svm->vcpu);
3585         kvm_clear_interrupt_queue(&svm->vcpu);
3586
3587         /*
3588          * Save the old vmcb, so we don't need to pick what we save, but can
3589          * restore everything when a VMEXIT occurs
3590          */
3591         hsave->save.es     = vmcb->save.es;
3592         hsave->save.cs     = vmcb->save.cs;
3593         hsave->save.ss     = vmcb->save.ss;
3594         hsave->save.ds     = vmcb->save.ds;
3595         hsave->save.gdtr   = vmcb->save.gdtr;
3596         hsave->save.idtr   = vmcb->save.idtr;
3597         hsave->save.efer   = svm->vcpu.arch.efer;
3598         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
3599         hsave->save.cr4    = svm->vcpu.arch.cr4;
3600         hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
3601         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
3602         hsave->save.rsp    = vmcb->save.rsp;
3603         hsave->save.rax    = vmcb->save.rax;
3604         if (npt_enabled)
3605                 hsave->save.cr3    = vmcb->save.cr3;
3606         else
3607                 hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
3608
3609         copy_vmcb_control_area(hsave, vmcb);
3610
3611         enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, page);
3612
3613         return true;
3614 }
3615
3616 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3617 {
3618         to_vmcb->save.fs = from_vmcb->save.fs;
3619         to_vmcb->save.gs = from_vmcb->save.gs;
3620         to_vmcb->save.tr = from_vmcb->save.tr;
3621         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3622         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3623         to_vmcb->save.star = from_vmcb->save.star;
3624         to_vmcb->save.lstar = from_vmcb->save.lstar;
3625         to_vmcb->save.cstar = from_vmcb->save.cstar;
3626         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3627         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3628         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3629         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3630 }
3631
3632 static int vmload_interception(struct vcpu_svm *svm)
3633 {
3634         struct vmcb *nested_vmcb;
3635         struct page *page;
3636         int ret;
3637
3638         if (nested_svm_check_permissions(svm))
3639                 return 1;
3640
3641         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3642         if (!nested_vmcb)
3643                 return 1;
3644
3645         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3646         ret = kvm_skip_emulated_instruction(&svm->vcpu);
3647
3648         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3649         nested_svm_unmap(page);
3650
3651         return ret;
3652 }
3653
3654 static int vmsave_interception(struct vcpu_svm *svm)
3655 {
3656         struct vmcb *nested_vmcb;
3657         struct page *page;
3658         int ret;
3659
3660         if (nested_svm_check_permissions(svm))
3661                 return 1;
3662
3663         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3664         if (!nested_vmcb)
3665                 return 1;
3666
3667         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3668         ret = kvm_skip_emulated_instruction(&svm->vcpu);
3669
3670         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3671         nested_svm_unmap(page);
3672
3673         return ret;
3674 }
3675
3676 static int vmrun_interception(struct vcpu_svm *svm)
3677 {
3678         if (nested_svm_check_permissions(svm))
3679                 return 1;
3680
3681         /* Save rip after vmrun instruction */
3682         kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
3683
3684         if (!nested_svm_vmrun(svm))
3685                 return 1;
3686
3687         if (!nested_svm_vmrun_msrpm(svm))
3688                 goto failed;
3689
3690         return 1;
3691
3692 failed:
3693
3694         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
3695         svm->vmcb->control.exit_code_hi = 0;
3696         svm->vmcb->control.exit_info_1  = 0;
3697         svm->vmcb->control.exit_info_2  = 0;
3698
3699         nested_svm_vmexit(svm);
3700
3701         return 1;
3702 }
3703
3704 static int stgi_interception(struct vcpu_svm *svm)
3705 {
3706         int ret;
3707
3708         if (nested_svm_check_permissions(svm))
3709                 return 1;
3710
3711         /*
3712          * If VGIF is enabled, the STGI intercept is only added to
3713          * detect the opening of the SMI/NMI window; remove it now.
3714          */
3715         if (vgif_enabled(svm))
3716                 clr_intercept(svm, INTERCEPT_STGI);
3717
3718         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3719         ret = kvm_skip_emulated_instruction(&svm->vcpu);
3720         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3721
3722         enable_gif(svm);
3723
3724         return ret;
3725 }
3726
3727 static int clgi_interception(struct vcpu_svm *svm)
3728 {
3729         int ret;
3730
3731         if (nested_svm_check_permissions(svm))
3732                 return 1;
3733
3734         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3735         ret = kvm_skip_emulated_instruction(&svm->vcpu);
3736
3737         disable_gif(svm);
3738
3739         /* After a CLGI no interrupts should come */
3740         if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3741                 svm_clear_vintr(svm);
3742                 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3743                 mark_dirty(svm->vmcb, VMCB_INTR);
3744         }
3745
3746         return ret;
3747 }
3748
3749 static int invlpga_interception(struct vcpu_svm *svm)
3750 {
3751         struct kvm_vcpu *vcpu = &svm->vcpu;
3752
3753         trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
3754                           kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3755
3756         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3757         kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3758
3759         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3760         return kvm_skip_emulated_instruction(&svm->vcpu);
3761 }
3762
3763 static int skinit_interception(struct vcpu_svm *svm)
3764 {
3765         trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3766
3767         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3768         return 1;
3769 }
3770
3771 static int wbinvd_interception(struct vcpu_svm *svm)
3772 {
3773         return kvm_emulate_wbinvd(&svm->vcpu);
3774 }
3775
3776 static int xsetbv_interception(struct vcpu_svm *svm)
3777 {
3778         u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3779         u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3780
3781         if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3782                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3783                 return kvm_skip_emulated_instruction(&svm->vcpu);
3784         }
3785
3786         return 1;
3787 }
3788
3789 static int task_switch_interception(struct vcpu_svm *svm)
3790 {
3791         u16 tss_selector;
3792         int reason;
3793         int int_type = svm->vmcb->control.exit_int_info &
3794                 SVM_EXITINTINFO_TYPE_MASK;
3795         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3796         uint32_t type =
3797                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3798         uint32_t idt_v =
3799                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3800         bool has_error_code = false;
3801         u32 error_code = 0;
3802
3803         tss_selector = (u16)svm->vmcb->control.exit_info_1;
3804
3805         if (svm->vmcb->control.exit_info_2 &
3806             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3807                 reason = TASK_SWITCH_IRET;
3808         else if (svm->vmcb->control.exit_info_2 &
3809                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3810                 reason = TASK_SWITCH_JMP;
3811         else if (idt_v)
3812                 reason = TASK_SWITCH_GATE;
3813         else
3814                 reason = TASK_SWITCH_CALL;
3815
3816         if (reason == TASK_SWITCH_GATE) {
3817                 switch (type) {
3818                 case SVM_EXITINTINFO_TYPE_NMI:
3819                         svm->vcpu.arch.nmi_injected = false;
3820                         break;
3821                 case SVM_EXITINTINFO_TYPE_EXEPT:
3822                         if (svm->vmcb->control.exit_info_2 &
3823                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3824                                 has_error_code = true;
3825                                 error_code =
3826                                         (u32)svm->vmcb->control.exit_info_2;
3827                         }
3828                         kvm_clear_exception_queue(&svm->vcpu);
3829                         break;
3830                 case SVM_EXITINTINFO_TYPE_INTR:
3831                         kvm_clear_interrupt_queue(&svm->vcpu);
3832                         break;
3833                 default:
3834                         break;
3835                 }
3836         }
3837
3838         if (reason != TASK_SWITCH_GATE ||
3839             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3840             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3841              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
3842                 skip_emulated_instruction(&svm->vcpu);
3843
3844         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3845                 int_vec = -1;
3846
3847         if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3848                                 has_error_code, error_code) == EMULATE_FAIL) {
3849                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3850                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3851                 svm->vcpu.run->internal.ndata = 0;
3852                 return 0;
3853         }
3854         return 1;
3855 }
3856
3857 static int cpuid_interception(struct vcpu_svm *svm)
3858 {
3859         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3860         return kvm_emulate_cpuid(&svm->vcpu);
3861 }
3862
3863 static int iret_interception(struct vcpu_svm *svm)
3864 {
3865         ++svm->vcpu.stat.nmi_window_exits;
3866         clr_intercept(svm, INTERCEPT_IRET);
3867         svm->vcpu.arch.hflags |= HF_IRET_MASK;
3868         svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3869         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3870         return 1;
3871 }
3872
3873 static int invlpg_interception(struct vcpu_svm *svm)
3874 {
3875         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3876                 return kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3877
3878         kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3879         return kvm_skip_emulated_instruction(&svm->vcpu);
3880 }
3881
3882 static int emulate_on_interception(struct vcpu_svm *svm)
3883 {
3884         return kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3885 }
3886
3887 static int rsm_interception(struct vcpu_svm *svm)
3888 {
3889         return kvm_emulate_instruction_from_buffer(&svm->vcpu,
3890                                         rsm_ins_bytes, 2) == EMULATE_DONE;
3891 }
3892
3893 static int rdpmc_interception(struct vcpu_svm *svm)
3894 {
3895         int err;
3896
3897         if (!static_cpu_has(X86_FEATURE_NRIPS))
3898                 return emulate_on_interception(svm);
3899
3900         err = kvm_rdpmc(&svm->vcpu);
3901         return kvm_complete_insn_gp(&svm->vcpu, err);
3902 }
3903
3904 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3905                                             unsigned long val)
3906 {
3907         unsigned long cr0 = svm->vcpu.arch.cr0;
3908         bool ret = false;
3909         u64 intercept;
3910
3911         intercept = svm->nested.intercept;
3912
3913         if (!is_guest_mode(&svm->vcpu) ||
3914             (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3915                 return false;
3916
3917         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3918         val &= ~SVM_CR0_SELECTIVE_MASK;
3919
3920         if (cr0 ^ val) {
3921                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3922                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3923         }
3924
3925         return ret;
3926 }
3927
3928 #define CR_VALID (1ULL << 63)
3929
3930 static int cr_interception(struct vcpu_svm *svm)
3931 {
3932         int reg, cr;
3933         unsigned long val;
3934         int err;
3935
3936         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3937                 return emulate_on_interception(svm);
3938
3939         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3940                 return emulate_on_interception(svm);
3941
3942         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3943         if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3944                 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3945         else
3946                 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3947
3948         err = 0;
3949         if (cr >= 16) { /* mov to cr */
3950                 cr -= 16;
3951                 val = kvm_register_read(&svm->vcpu, reg);
3952                 switch (cr) {
3953                 case 0:
3954                         if (!check_selective_cr0_intercepted(svm, val))
3955                                 err = kvm_set_cr0(&svm->vcpu, val);
3956                         else
3957                                 return 1;
3958
3959                         break;
3960                 case 3:
3961                         err = kvm_set_cr3(&svm->vcpu, val);
3962                         break;
3963                 case 4:
3964                         err = kvm_set_cr4(&svm->vcpu, val);
3965                         break;
3966                 case 8:
3967                         err = kvm_set_cr8(&svm->vcpu, val);
3968                         break;
3969                 default:
3970                         WARN(1, "unhandled write to CR%d", cr);
3971                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3972                         return 1;
3973                 }
3974         } else { /* mov from cr */
3975                 switch (cr) {
3976                 case 0:
3977                         val = kvm_read_cr0(&svm->vcpu);
3978                         break;
3979                 case 2:
3980                         val = svm->vcpu.arch.cr2;
3981                         break;
3982                 case 3:
3983                         val = kvm_read_cr3(&svm->vcpu);
3984                         break;
3985                 case 4:
3986                         val = kvm_read_cr4(&svm->vcpu);
3987                         break;
3988                 case 8:
3989                         val = kvm_get_cr8(&svm->vcpu);
3990                         break;
3991                 default:
3992                         WARN(1, "unhandled read from CR%d", cr);
3993                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3994                         return 1;
3995                 }
3996                 kvm_register_write(&svm->vcpu, reg, val);
3997         }
3998         return kvm_complete_insn_gp(&svm->vcpu, err);
3999 }
4000
4001 static int dr_interception(struct vcpu_svm *svm)
4002 {
4003         int reg, dr;
4004         unsigned long val;
4005
4006         if (svm->vcpu.guest_debug == 0) {
4007                 /*
4008                  * No more DR vmexits; force a reload of the debug registers
4009                  * and reenter on this instruction.  The next vmexit will
4010                  * retrieve the full state of the debug registers.
4011                  */
4012                 clr_dr_intercepts(svm);
4013                 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4014                 return 1;
4015         }
4016
4017         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
4018                 return emulate_on_interception(svm);
4019
4020         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
4021         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
4022
4023         if (dr >= 16) { /* mov to DRn */
4024                 if (!kvm_require_dr(&svm->vcpu, dr - 16))
4025                         return 1;
4026                 val = kvm_register_read(&svm->vcpu, reg);
4027                 kvm_set_dr(&svm->vcpu, dr - 16, val);
4028         } else {
4029                 if (!kvm_require_dr(&svm->vcpu, dr))
4030                         return 1;
4031                 kvm_get_dr(&svm->vcpu, dr, &val);
4032                 kvm_register_write(&svm->vcpu, reg, val);
4033         }
4034
4035         return kvm_skip_emulated_instruction(&svm->vcpu);
4036 }
4037
4038 static int cr8_write_interception(struct vcpu_svm *svm)
4039 {
4040         struct kvm_run *kvm_run = svm->vcpu.run;
4041         int r;
4042
4043         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
4044         /* instruction emulation calls kvm_set_cr8() */
4045         r = cr_interception(svm);
4046         if (lapic_in_kernel(&svm->vcpu))
4047                 return r;
4048         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
4049                 return r;
4050         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
4051         return 0;
4052 }
4053
4054 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
4055 {
4056         msr->data = 0;
4057
4058         switch (msr->index) {
4059         case MSR_F10H_DECFG:
4060                 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
4061                         msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
4062                 break;
4063         default:
4064                 return 1;
4065         }
4066
4067         return 0;
4068 }
4069
4070 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4071 {
4072         struct vcpu_svm *svm = to_svm(vcpu);
4073
4074         switch (msr_info->index) {
4075         case MSR_STAR:
4076                 msr_info->data = svm->vmcb->save.star;
4077                 break;
4078 #ifdef CONFIG_X86_64
4079         case MSR_LSTAR:
4080                 msr_info->data = svm->vmcb->save.lstar;
4081                 break;
4082         case MSR_CSTAR:
4083                 msr_info->data = svm->vmcb->save.cstar;
4084                 break;
4085         case MSR_KERNEL_GS_BASE:
4086                 msr_info->data = svm->vmcb->save.kernel_gs_base;
4087                 break;
4088         case MSR_SYSCALL_MASK:
4089                 msr_info->data = svm->vmcb->save.sfmask;
4090                 break;
4091 #endif
4092         case MSR_IA32_SYSENTER_CS:
4093                 msr_info->data = svm->vmcb->save.sysenter_cs;
4094                 break;
4095         case MSR_IA32_SYSENTER_EIP:
4096                 msr_info->data = svm->sysenter_eip;
4097                 break;
4098         case MSR_IA32_SYSENTER_ESP:
4099                 msr_info->data = svm->sysenter_esp;
4100                 break;
4101         case MSR_TSC_AUX:
4102                 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4103                         return 1;
4104                 msr_info->data = svm->tsc_aux;
4105                 break;
4106         /*
4107          * Nobody will change the following 5 values in the VMCB so we can
4108          * safely return them on rdmsr. They will always be 0 until LBRV is
4109          * implemented.
4110          */
4111         case MSR_IA32_DEBUGCTLMSR:
4112                 msr_info->data = svm->vmcb->save.dbgctl;
4113                 break;
4114         case MSR_IA32_LASTBRANCHFROMIP:
4115                 msr_info->data = svm->vmcb->save.br_from;
4116                 break;
4117         case MSR_IA32_LASTBRANCHTOIP:
4118                 msr_info->data = svm->vmcb->save.br_to;
4119                 break;
4120         case MSR_IA32_LASTINTFROMIP:
4121                 msr_info->data = svm->vmcb->save.last_excp_from;
4122                 break;
4123         case MSR_IA32_LASTINTTOIP:
4124                 msr_info->data = svm->vmcb->save.last_excp_to;
4125                 break;
4126         case MSR_VM_HSAVE_PA:
4127                 msr_info->data = svm->nested.hsave_msr;
4128                 break;
4129         case MSR_VM_CR:
4130                 msr_info->data = svm->nested.vm_cr_msr;
4131                 break;
4132         case MSR_IA32_SPEC_CTRL:
4133                 if (!msr_info->host_initiated &&
4134                     !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4135                     !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4136                         return 1;
4137
4138                 msr_info->data = svm->spec_ctrl;
4139                 break;
4140         case MSR_AMD64_VIRT_SPEC_CTRL:
4141                 if (!msr_info->host_initiated &&
4142                     !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4143                         return 1;
4144
4145                 msr_info->data = svm->virt_spec_ctrl;
4146                 break;
4147         case MSR_F15H_IC_CFG: {
4148
4149                 int family, model;
4150
4151                 family = guest_cpuid_family(vcpu);
4152                 model  = guest_cpuid_model(vcpu);
4153
4154                 if (family < 0 || model < 0)
4155                         return kvm_get_msr_common(vcpu, msr_info);
4156
4157                 msr_info->data = 0;
4158
4159                 if (family == 0x15 &&
4160                     (model >= 0x2 && model < 0x20))
4161                         msr_info->data = 0x1E;
4162                 }
4163                 break;
4164         case MSR_F10H_DECFG:
4165                 msr_info->data = svm->msr_decfg;
4166                 break;
4167         default:
4168                 return kvm_get_msr_common(vcpu, msr_info);
4169         }
4170         return 0;
4171 }
4172
4173 static int rdmsr_interception(struct vcpu_svm *svm)
4174 {
4175         u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
4176         struct msr_data msr_info;
4177
4178         msr_info.index = ecx;
4179         msr_info.host_initiated = false;
4180         if (svm_get_msr(&svm->vcpu, &msr_info)) {
4181                 trace_kvm_msr_read_ex(ecx);
4182                 kvm_inject_gp(&svm->vcpu, 0);
4183                 return 1;
4184         } else {
4185                 trace_kvm_msr_read(ecx, msr_info.data);
4186
4187                 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
4188                                    msr_info.data & 0xffffffff);
4189                 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
4190                                    msr_info.data >> 32);
4191                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
4192                 return kvm_skip_emulated_instruction(&svm->vcpu);
4193         }
4194 }
4195
4196 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
4197 {
4198         struct vcpu_svm *svm = to_svm(vcpu);
4199         int svm_dis, chg_mask;
4200
4201         if (data & ~SVM_VM_CR_VALID_MASK)
4202                 return 1;
4203
4204         chg_mask = SVM_VM_CR_VALID_MASK;
4205
4206         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
4207                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
4208
4209         svm->nested.vm_cr_msr &= ~chg_mask;
4210         svm->nested.vm_cr_msr |= (data & chg_mask);
4211
4212         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
4213
4214         /* check for svm_disable while efer.svme is set */
4215         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
4216                 return 1;
4217
4218         return 0;
4219 }
4220
4221 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
4222 {
4223         struct vcpu_svm *svm = to_svm(vcpu);
4224
4225         u32 ecx = msr->index;
4226         u64 data = msr->data;
4227         switch (ecx) {
4228         case MSR_IA32_CR_PAT:
4229                 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
4230                         return 1;
4231                 vcpu->arch.pat = data;
4232                 svm->vmcb->save.g_pat = data;
4233                 mark_dirty(svm->vmcb, VMCB_NPT);
4234                 break;
4235         case MSR_IA32_SPEC_CTRL:
4236                 if (!msr->host_initiated &&
4237                     !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4238                     !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4239                         return 1;
4240
4241                 /* The STIBP bit doesn't fault even if it's not advertised */
4242                 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
4243                         return 1;
4244
4245                 svm->spec_ctrl = data;
4246
4247                 if (!data)
4248                         break;
4249
4250                 /*
4251                  * For non-nested:
4252                  * When it's written (to non-zero) for the first time, pass
4253                  * it through.
4254                  *
4255                  * For nested:
4256                  * The handling of the MSR bitmap for L2 guests is done in
4257                  * nested_svm_vmrun_msrpm.
4258                  * We update the L1 MSR bit as well since it will end up
4259                  * touching the MSR anyway now.
4260                  */
4261                 set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
4262                 break;
4263         case MSR_IA32_PRED_CMD:
4264                 if (!msr->host_initiated &&
4265                     !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
4266                         return 1;
4267
4268                 if (data & ~PRED_CMD_IBPB)
4269                         return 1;
4270
4271                 if (!data)
4272                         break;
4273
4274                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
4275                 if (is_guest_mode(vcpu))
4276                         break;
4277                 set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
4278                 break;
4279         case MSR_AMD64_VIRT_SPEC_CTRL:
4280                 if (!msr->host_initiated &&
4281                     !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4282                         return 1;
4283
4284                 if (data & ~SPEC_CTRL_SSBD)
4285                         return 1;
4286
4287                 svm->virt_spec_ctrl = data;
4288                 break;
4289         case MSR_STAR:
4290                 svm->vmcb->save.star = data;
4291                 break;
4292 #ifdef CONFIG_X86_64
4293         case MSR_LSTAR:
4294                 svm->vmcb->save.lstar = data;
4295                 break;
4296         case MSR_CSTAR:
4297                 svm->vmcb->save.cstar = data;
4298                 break;
4299         case MSR_KERNEL_GS_BASE:
4300                 svm->vmcb->save.kernel_gs_base = data;
4301                 break;
4302         case MSR_SYSCALL_MASK:
4303                 svm->vmcb->save.sfmask = data;
4304                 break;
4305 #endif
4306         case MSR_IA32_SYSENTER_CS:
4307                 svm->vmcb->save.sysenter_cs = data;
4308                 break;
4309         case MSR_IA32_SYSENTER_EIP:
4310                 svm->sysenter_eip = data;
4311                 svm->vmcb->save.sysenter_eip = data;
4312                 break;
4313         case MSR_IA32_SYSENTER_ESP:
4314                 svm->sysenter_esp = data;
4315                 svm->vmcb->save.sysenter_esp = data;
4316                 break;
4317         case MSR_TSC_AUX:
4318                 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4319                         return 1;
4320
4321                 /*
4322                  * This is rare, so we update the MSR here instead of using
4323                  * direct_access_msrs.  Doing that would require a rdmsr in
4324                  * svm_vcpu_put.
4325                  */
4326                 svm->tsc_aux = data;
4327                 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
4328                 break;
4329         case MSR_IA32_DEBUGCTLMSR:
4330                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
4331                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
4332                                     __func__, data);
4333                         break;
4334                 }
4335                 if (data & DEBUGCTL_RESERVED_BITS)
4336                         return 1;
4337
4338                 svm->vmcb->save.dbgctl = data;
4339                 mark_dirty(svm->vmcb, VMCB_LBR);
4340                 if (data & (1ULL<<0))
4341                         svm_enable_lbrv(svm);
4342                 else
4343                         svm_disable_lbrv(svm);
4344                 break;
4345         case MSR_VM_HSAVE_PA:
4346                 svm->nested.hsave_msr = data;
4347                 break;
4348         case MSR_VM_CR:
4349                 return svm_set_vm_cr(vcpu, data);
4350         case MSR_VM_IGNNE:
4351                 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
4352                 break;
4353         case MSR_F10H_DECFG: {
4354                 struct kvm_msr_entry msr_entry;
4355
4356                 msr_entry.index = msr->index;
4357                 if (svm_get_msr_feature(&msr_entry))
4358                         return 1;
4359
4360                 /* Check the supported bits */
4361                 if (data & ~msr_entry.data)
4362                         return 1;
4363
4364                 /* Don't allow the guest to change a bit, #GP */
4365                 if (!msr->host_initiated && (data ^ msr_entry.data))
4366                         return 1;
4367
4368                 svm->msr_decfg = data;
4369                 break;
4370         }
4371         case MSR_IA32_APICBASE:
4372                 if (kvm_vcpu_apicv_active(vcpu))
4373                         avic_update_vapic_bar(to_svm(vcpu), data);
4374                 /* Follow through */
4375         default:
4376                 return kvm_set_msr_common(vcpu, msr);
4377         }
4378         return 0;
4379 }
4380
4381 static int wrmsr_interception(struct vcpu_svm *svm)
4382 {
4383         struct msr_data msr;
4384         u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
4385         u64 data = kvm_read_edx_eax(&svm->vcpu);
4386
4387         msr.data = data;
4388         msr.index = ecx;
4389         msr.host_initiated = false;
4390
4391         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
4392         if (kvm_set_msr(&svm->vcpu, &msr)) {
4393                 trace_kvm_msr_write_ex(ecx, data);
4394                 kvm_inject_gp(&svm->vcpu, 0);
4395                 return 1;
4396         } else {
4397                 trace_kvm_msr_write(ecx, data);
4398                 return kvm_skip_emulated_instruction(&svm->vcpu);
4399         }
4400 }
4401
4402 static int msr_interception(struct vcpu_svm *svm)
4403 {
4404         if (svm->vmcb->control.exit_info_1)
4405                 return wrmsr_interception(svm);
4406         else
4407                 return rdmsr_interception(svm);
4408 }
4409
4410 static int interrupt_window_interception(struct vcpu_svm *svm)
4411 {
4412         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4413         svm_clear_vintr(svm);
4414         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
4415         mark_dirty(svm->vmcb, VMCB_INTR);
4416         ++svm->vcpu.stat.irq_window_exits;
4417         return 1;
4418 }
4419
4420 static int pause_interception(struct vcpu_svm *svm)
4421 {
4422         struct kvm_vcpu *vcpu = &svm->vcpu;
4423         bool in_kernel = (svm_get_cpl(vcpu) == 0);
4424
4425         if (pause_filter_thresh)
4426                 grow_ple_window(vcpu);
4427
4428         kvm_vcpu_on_spin(vcpu, in_kernel);
4429         return 1;
4430 }
4431
4432 static int nop_interception(struct vcpu_svm *svm)
4433 {
4434         return kvm_skip_emulated_instruction(&(svm->vcpu));
4435 }
4436
4437 static int monitor_interception(struct vcpu_svm *svm)
4438 {
4439         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
4440         return nop_interception(svm);
4441 }
4442
4443 static int mwait_interception(struct vcpu_svm *svm)
4444 {
4445         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
4446         return nop_interception(svm);
4447 }
4448
4449 enum avic_ipi_failure_cause {
4450         AVIC_IPI_FAILURE_INVALID_INT_TYPE,
4451         AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
4452         AVIC_IPI_FAILURE_INVALID_TARGET,
4453         AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
4454 };
4455
4456 static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
4457 {
4458         u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
4459         u32 icrl = svm->vmcb->control.exit_info_1;
4460         u32 id = svm->vmcb->control.exit_info_2 >> 32;
4461         u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
4462         struct kvm_lapic *apic = svm->vcpu.arch.apic;
4463
4464         trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
4465
4466         switch (id) {
4467         case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
4468                 /*
4469                  * AVIC hardware handles the generation of
4470                  * IPIs when the specified Message Type is Fixed
4471                  * (also known as fixed delivery mode) and
4472                  * the Trigger Mode is edge-triggered. The hardware
4473                  * also supports self and broadcast delivery modes
4474                  * specified via the Destination Shorthand(DSH)
4475                  * field of the ICRL. Logical and physical APIC ID
4476                  * formats are supported. All other IPI types cause
4477                  * a #VMEXIT, which needs to emulated.
4478                  */
4479                 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
4480                 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
4481                 break;
4482         case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
4483                 int i;
4484                 struct kvm_vcpu *vcpu;
4485                 struct kvm *kvm = svm->vcpu.kvm;
4486                 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4487
4488                 /*
4489                  * At this point, we expect that the AVIC HW has already
4490                  * set the appropriate IRR bits on the valid target
4491                  * vcpus. So, we just need to kick the appropriate vcpu.
4492                  */
4493                 kvm_for_each_vcpu(i, vcpu, kvm) {
4494                         bool m = kvm_apic_match_dest(vcpu, apic,
4495                                                      icrl & KVM_APIC_SHORT_MASK,
4496                                                      GET_APIC_DEST_FIELD(icrh),
4497                                                      icrl & KVM_APIC_DEST_MASK);
4498
4499                         if (m && !avic_vcpu_is_running(vcpu))
4500                                 kvm_vcpu_wake_up(vcpu);
4501                 }
4502                 break;
4503         }
4504         case AVIC_IPI_FAILURE_INVALID_TARGET:
4505                 break;
4506         case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
4507                 WARN_ONCE(1, "Invalid backing page\n");
4508                 break;
4509         default:
4510                 pr_err("Unknown IPI interception\n");
4511         }
4512
4513         return 1;
4514 }
4515
4516 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
4517 {
4518         struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
4519         int index;
4520         u32 *logical_apic_id_table;
4521         int dlid = GET_APIC_LOGICAL_ID(ldr);
4522
4523         if (!dlid)
4524                 return NULL;
4525
4526         if (flat) { /* flat */
4527                 index = ffs(dlid) - 1;
4528                 if (index > 7)
4529                         return NULL;
4530         } else { /* cluster */
4531                 int cluster = (dlid & 0xf0) >> 4;
4532                 int apic = ffs(dlid & 0x0f) - 1;
4533
4534                 if ((apic < 0) || (apic > 7) ||
4535                     (cluster >= 0xf))
4536                         return NULL;
4537                 index = (cluster << 2) + apic;
4538         }
4539
4540         logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
4541
4542         return &logical_apic_id_table[index];
4543 }
4544
4545 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr,
4546                           bool valid)
4547 {
4548         bool flat;
4549         u32 *entry, new_entry;
4550
4551         flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
4552         entry = avic_get_logical_id_entry(vcpu, ldr, flat);
4553         if (!entry)
4554                 return -EINVAL;
4555
4556         new_entry = READ_ONCE(*entry);
4557         new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
4558         new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
4559         if (valid)
4560                 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4561         else
4562                 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4563         WRITE_ONCE(*entry, new_entry);
4564
4565         return 0;
4566 }
4567
4568 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
4569 {
4570         int ret;
4571         struct vcpu_svm *svm = to_svm(vcpu);
4572         u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
4573
4574         if (!ldr)
4575                 return 1;
4576
4577         ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr, true);
4578         if (ret && svm->ldr_reg) {
4579                 avic_ldr_write(vcpu, 0, svm->ldr_reg, false);
4580                 svm->ldr_reg = 0;
4581         } else {
4582                 svm->ldr_reg = ldr;
4583         }
4584         return ret;
4585 }
4586
4587 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
4588 {
4589         u64 *old, *new;
4590         struct vcpu_svm *svm = to_svm(vcpu);
4591         u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID);
4592         u32 id = (apic_id_reg >> 24) & 0xff;
4593
4594         if (vcpu->vcpu_id == id)
4595                 return 0;
4596
4597         old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
4598         new = avic_get_physical_id_entry(vcpu, id);
4599         if (!new || !old)
4600                 return 1;
4601
4602         /* We need to move physical_id_entry to new offset */
4603         *new = *old;
4604         *old = 0ULL;
4605         to_svm(vcpu)->avic_physical_id_cache = new;
4606
4607         /*
4608          * Also update the guest physical APIC ID in the logical
4609          * APIC ID table entry if already setup the LDR.
4610          */
4611         if (svm->ldr_reg)
4612                 avic_handle_ldr_update(vcpu);
4613
4614         return 0;
4615 }
4616
4617 static int avic_handle_dfr_update(struct kvm_vcpu *vcpu)
4618 {
4619         struct vcpu_svm *svm = to_svm(vcpu);
4620         struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
4621         u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
4622         u32 mod = (dfr >> 28) & 0xf;
4623
4624         /*
4625          * We assume that all local APICs are using the same type.
4626          * If this changes, we need to flush the AVIC logical
4627          * APID id table.
4628          */
4629         if (kvm_svm->ldr_mode == mod)
4630                 return 0;
4631
4632         clear_page(page_address(kvm_svm->avic_logical_id_table_page));
4633         kvm_svm->ldr_mode = mod;
4634
4635         if (svm->ldr_reg)
4636                 avic_handle_ldr_update(vcpu);
4637         return 0;
4638 }
4639
4640 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
4641 {
4642         struct kvm_lapic *apic = svm->vcpu.arch.apic;
4643         u32 offset = svm->vmcb->control.exit_info_1 &
4644                                 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4645
4646         switch (offset) {
4647         case APIC_ID:
4648                 if (avic_handle_apic_id_update(&svm->vcpu))
4649                         return 0;
4650                 break;
4651         case APIC_LDR:
4652                 if (avic_handle_ldr_update(&svm->vcpu))
4653                         return 0;
4654                 break;
4655         case APIC_DFR:
4656                 avic_handle_dfr_update(&svm->vcpu);
4657                 break;
4658         default:
4659                 break;
4660         }
4661
4662         kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
4663
4664         return 1;
4665 }
4666
4667 static bool is_avic_unaccelerated_access_trap(u32 offset)
4668 {
4669         bool ret = false;
4670
4671         switch (offset) {
4672         case APIC_ID:
4673         case APIC_EOI:
4674         case APIC_RRR:
4675         case APIC_LDR:
4676         case APIC_DFR:
4677         case APIC_SPIV:
4678         case APIC_ESR:
4679         case APIC_ICR:
4680         case APIC_LVTT:
4681         case APIC_LVTTHMR:
4682         case APIC_LVTPC:
4683         case APIC_LVT0:
4684         case APIC_LVT1:
4685         case APIC_LVTERR:
4686         case APIC_TMICT:
4687         case APIC_TDCR:
4688                 ret = true;
4689                 break;
4690         default:
4691                 break;
4692         }
4693         return ret;
4694 }
4695
4696 static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
4697 {
4698         int ret = 0;
4699         u32 offset = svm->vmcb->control.exit_info_1 &
4700                      AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4701         u32 vector = svm->vmcb->control.exit_info_2 &
4702                      AVIC_UNACCEL_ACCESS_VECTOR_MASK;
4703         bool write = (svm->vmcb->control.exit_info_1 >> 32) &
4704                      AVIC_UNACCEL_ACCESS_WRITE_MASK;
4705         bool trap = is_avic_unaccelerated_access_trap(offset);
4706
4707         trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
4708                                             trap, write, vector);
4709         if (trap) {
4710                 /* Handling Trap */
4711                 WARN_ONCE(!write, "svm: Handling trap read.\n");
4712                 ret = avic_unaccel_trap_write(svm);
4713         } else {
4714                 /* Handling Fault */
4715                 ret = (kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE);
4716         }
4717
4718         return ret;
4719 }
4720
4721 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
4722         [SVM_EXIT_READ_CR0]                     = cr_interception,
4723         [SVM_EXIT_READ_CR3]                     = cr_interception,
4724         [SVM_EXIT_READ_CR4]                     = cr_interception,
4725         [SVM_EXIT_READ_CR8]                     = cr_interception,
4726         [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
4727         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
4728         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
4729         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
4730         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
4731         [SVM_EXIT_READ_DR0]                     = dr_interception,
4732         [SVM_EXIT_READ_DR1]                     = dr_interception,
4733         [SVM_EXIT_READ_DR2]                     = dr_interception,
4734         [SVM_EXIT_READ_DR3]                     = dr_interception,
4735         [SVM_EXIT_READ_DR4]                     = dr_interception,
4736         [SVM_EXIT_READ_DR5]                     = dr_interception,
4737         [SVM_EXIT_READ_DR6]                     = dr_interception,
4738         [SVM_EXIT_READ_DR7]                     = dr_interception,
4739         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
4740         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
4741         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
4742         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
4743         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
4744         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
4745         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
4746         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
4747         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
4748         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
4749         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
4750         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
4751         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
4752         [SVM_EXIT_EXCP_BASE + AC_VECTOR]        = ac_interception,
4753         [SVM_EXIT_EXCP_BASE + GP_VECTOR]        = gp_interception,
4754         [SVM_EXIT_INTR]                         = intr_interception,
4755         [SVM_EXIT_NMI]                          = nmi_interception,
4756         [SVM_EXIT_SMI]                          = nop_on_interception,
4757         [SVM_EXIT_INIT]                         = nop_on_interception,
4758         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
4759         [SVM_EXIT_RDPMC]                        = rdpmc_interception,
4760         [SVM_EXIT_CPUID]                        = cpuid_interception,
4761         [SVM_EXIT_IRET]                         = iret_interception,
4762         [SVM_EXIT_INVD]                         = emulate_on_interception,
4763         [SVM_EXIT_PAUSE]                        = pause_interception,
4764         [SVM_EXIT_HLT]                          = halt_interception,
4765         [SVM_EXIT_INVLPG]                       = invlpg_interception,
4766         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
4767         [SVM_EXIT_IOIO]                         = io_interception,
4768         [SVM_EXIT_MSR]                          = msr_interception,
4769         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
4770         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
4771         [SVM_EXIT_VMRUN]                        = vmrun_interception,
4772         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
4773         [SVM_EXIT_VMLOAD]                       = vmload_interception,
4774         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
4775         [SVM_EXIT_STGI]                         = stgi_interception,
4776         [SVM_EXIT_CLGI]                         = clgi_interception,
4777         [SVM_EXIT_SKINIT]                       = skinit_interception,
4778         [SVM_EXIT_WBINVD]                       = wbinvd_interception,
4779         [SVM_EXIT_MONITOR]                      = monitor_interception,
4780         [SVM_EXIT_MWAIT]                        = mwait_interception,
4781         [SVM_EXIT_XSETBV]                       = xsetbv_interception,
4782         [SVM_EXIT_NPF]                          = npf_interception,
4783         [SVM_EXIT_RSM]                          = rsm_interception,
4784         [SVM_EXIT_AVIC_INCOMPLETE_IPI]          = avic_incomplete_ipi_interception,
4785         [SVM_EXIT_AVIC_UNACCELERATED_ACCESS]    = avic_unaccelerated_access_interception,
4786 };
4787
4788 static void dump_vmcb(struct kvm_vcpu *vcpu)
4789 {
4790         struct vcpu_svm *svm = to_svm(vcpu);
4791         struct vmcb_control_area *control = &svm->vmcb->control;
4792         struct vmcb_save_area *save = &svm->vmcb->save;
4793
4794         pr_err("VMCB Control Area:\n");
4795         pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4796         pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4797         pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4798         pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4799         pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4800         pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4801         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4802         pr_err("%-20s%d\n", "pause filter threshold:",
4803                control->pause_filter_thresh);
4804         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4805         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4806         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4807         pr_err("%-20s%d\n", "asid:", control->asid);
4808         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4809         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4810         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4811         pr_err("%-20s%08x\n", "int_state:", control->int_state);
4812         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4813         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4814         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4815         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4816         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4817         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4818         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4819         pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4820         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4821         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4822         pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
4823         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4824         pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4825         pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4826         pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4827         pr_err("VMCB State Save Area:\n");
4828         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4829                "es:",
4830                save->es.selector, save->es.attrib,
4831                save->es.limit, save->es.base);
4832         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4833                "cs:",
4834                save->cs.selector, save->cs.attrib,
4835                save->cs.limit, save->cs.base);
4836         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4837                "ss:",
4838                save->ss.selector, save->ss.attrib,
4839                save->ss.limit, save->ss.base);
4840         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4841                "ds:",
4842                save->ds.selector, save->ds.attrib,
4843                save->ds.limit, save->ds.base);
4844         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4845                "fs:",
4846                save->fs.selector, save->fs.attrib,
4847                save->fs.limit, save->fs.base);
4848         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4849                "gs:",
4850                save->gs.selector, save->gs.attrib,
4851                save->gs.limit, save->gs.base);
4852         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4853                "gdtr:",
4854                save->gdtr.selector, save->gdtr.attrib,
4855                save->gdtr.limit, save->gdtr.base);
4856         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4857                "ldtr:",
4858                save->ldtr.selector, save->ldtr.attrib,
4859                save->ldtr.limit, save->ldtr.base);
4860         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4861                "idtr:",
4862                save->idtr.selector, save->idtr.attrib,
4863                save->idtr.limit, save->idtr.base);
4864         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4865                "tr:",
4866                save->tr.selector, save->tr.attrib,
4867                save->tr.limit, save->tr.base);
4868         pr_err("cpl:            %d                efer:         %016llx\n",
4869                 save->cpl, save->efer);
4870         pr_err("%-15s %016llx %-13s %016llx\n",
4871                "cr0:", save->cr0, "cr2:", save->cr2);
4872         pr_err("%-15s %016llx %-13s %016llx\n",
4873                "cr3:", save->cr3, "cr4:", save->cr4);
4874         pr_err("%-15s %016llx %-13s %016llx\n",
4875                "dr6:", save->dr6, "dr7:", save->dr7);
4876         pr_err("%-15s %016llx %-13s %016llx\n",
4877                "rip:", save->rip, "rflags:", save->rflags);
4878         pr_err("%-15s %016llx %-13s %016llx\n",
4879                "rsp:", save->rsp, "rax:", save->rax);
4880         pr_err("%-15s %016llx %-13s %016llx\n",
4881                "star:", save->star, "lstar:", save->lstar);
4882         pr_err("%-15s %016llx %-13s %016llx\n",
4883                "cstar:", save->cstar, "sfmask:", save->sfmask);
4884         pr_err("%-15s %016llx %-13s %016llx\n",
4885                "kernel_gs_base:", save->kernel_gs_base,
4886                "sysenter_cs:", save->sysenter_cs);
4887         pr_err("%-15s %016llx %-13s %016llx\n",
4888                "sysenter_esp:", save->sysenter_esp,
4889                "sysenter_eip:", save->sysenter_eip);
4890         pr_err("%-15s %016llx %-13s %016llx\n",
4891                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4892         pr_err("%-15s %016llx %-13s %016llx\n",
4893                "br_from:", save->br_from, "br_to:", save->br_to);
4894         pr_err("%-15s %016llx %-13s %016llx\n",
4895                "excp_from:", save->last_excp_from,
4896                "excp_to:", save->last_excp_to);
4897 }
4898
4899 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4900 {
4901         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4902
4903         *info1 = control->exit_info_1;
4904         *info2 = control->exit_info_2;
4905 }
4906
4907 static int handle_exit(struct kvm_vcpu *vcpu)
4908 {
4909         struct vcpu_svm *svm = to_svm(vcpu);
4910         struct kvm_run *kvm_run = vcpu->run;
4911         u32 exit_code = svm->vmcb->control.exit_code;
4912
4913         trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4914
4915         if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4916                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
4917         if (npt_enabled)
4918                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
4919
4920         if (unlikely(svm->nested.exit_required)) {
4921                 nested_svm_vmexit(svm);
4922                 svm->nested.exit_required = false;
4923
4924                 return 1;
4925         }
4926
4927         if (is_guest_mode(vcpu)) {
4928                 int vmexit;
4929
4930                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4931                                         svm->vmcb->control.exit_info_1,
4932                                         svm->vmcb->control.exit_info_2,
4933                                         svm->vmcb->control.exit_int_info,
4934                                         svm->vmcb->control.exit_int_info_err,
4935                                         KVM_ISA_SVM);
4936
4937                 vmexit = nested_svm_exit_special(svm);
4938
4939                 if (vmexit == NESTED_EXIT_CONTINUE)
4940                         vmexit = nested_svm_exit_handled(svm);
4941
4942                 if (vmexit == NESTED_EXIT_DONE)
4943                         return 1;
4944         }
4945
4946         svm_complete_interrupts(svm);
4947
4948         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4949                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4950                 kvm_run->fail_entry.hardware_entry_failure_reason
4951                         = svm->vmcb->control.exit_code;
4952                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
4953                 dump_vmcb(vcpu);
4954                 return 0;
4955         }
4956
4957         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4958             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4959             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4960             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4961                 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4962                        "exit_code 0x%x\n",
4963                        __func__, svm->vmcb->control.exit_int_info,
4964                        exit_code);
4965
4966         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
4967             || !svm_exit_handlers[exit_code]) {
4968                 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
4969                 kvm_queue_exception(vcpu, UD_VECTOR);
4970                 return 1;
4971         }
4972
4973         return svm_exit_handlers[exit_code](svm);
4974 }
4975
4976 static void reload_tss(struct kvm_vcpu *vcpu)
4977 {
4978         int cpu = raw_smp_processor_id();
4979
4980         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4981         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
4982         load_TR_desc();
4983 }
4984
4985 static void pre_sev_run(struct vcpu_svm *svm, int cpu)
4986 {
4987         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4988         int asid = sev_get_asid(svm->vcpu.kvm);
4989
4990         /* Assign the asid allocated with this SEV guest */
4991         svm->vmcb->control.asid = asid;
4992
4993         /*
4994          * Flush guest TLB:
4995          *
4996          * 1) when different VMCB for the same ASID is to be run on the same host CPU.
4997          * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
4998          */
4999         if (sd->sev_vmcbs[asid] == svm->vmcb &&
5000             svm->last_cpu == cpu)
5001                 return;
5002
5003         svm->last_cpu = cpu;
5004         sd->sev_vmcbs[asid] = svm->vmcb;
5005         svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5006         mark_dirty(svm->vmcb, VMCB_ASID);
5007 }
5008
5009 static void pre_svm_run(struct vcpu_svm *svm)
5010 {
5011         int cpu = raw_smp_processor_id();
5012
5013         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5014
5015         if (sev_guest(svm->vcpu.kvm))
5016                 return pre_sev_run(svm, cpu);
5017
5018         /* FIXME: handle wraparound of asid_generation */
5019         if (svm->asid_generation != sd->asid_generation)
5020                 new_asid(svm, sd);
5021 }
5022
5023 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
5024 {
5025         struct vcpu_svm *svm = to_svm(vcpu);
5026
5027         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
5028         vcpu->arch.hflags |= HF_NMI_MASK;
5029         set_intercept(svm, INTERCEPT_IRET);
5030         ++vcpu->stat.nmi_injections;
5031 }
5032
5033 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
5034 {
5035         struct vmcb_control_area *control;
5036
5037         /* The following fields are ignored when AVIC is enabled */
5038         control = &svm->vmcb->control;
5039         control->int_vector = irq;
5040         control->int_ctl &= ~V_INTR_PRIO_MASK;
5041         control->int_ctl |= V_IRQ_MASK |
5042                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
5043         mark_dirty(svm->vmcb, VMCB_INTR);
5044 }
5045
5046 static void svm_set_irq(struct kvm_vcpu *vcpu)
5047 {
5048         struct vcpu_svm *svm = to_svm(vcpu);
5049
5050         BUG_ON(!(gif_set(svm)));
5051
5052         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
5053         ++vcpu->stat.irq_injections;
5054
5055         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
5056                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
5057 }
5058
5059 static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
5060 {
5061         return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
5062 }
5063
5064 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5065 {
5066         struct vcpu_svm *svm = to_svm(vcpu);
5067
5068         if (svm_nested_virtualize_tpr(vcpu) ||
5069             kvm_vcpu_apicv_active(vcpu))
5070                 return;
5071
5072         clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5073
5074         if (irr == -1)
5075                 return;
5076
5077         if (tpr >= irr)
5078                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5079 }
5080
5081 static void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
5082 {
5083         return;
5084 }
5085
5086 static bool svm_get_enable_apicv(struct kvm_vcpu *vcpu)
5087 {
5088         return avic && irqchip_split(vcpu->kvm);
5089 }
5090
5091 static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
5092 {
5093 }
5094
5095 static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
5096 {
5097 }
5098
5099 /* Note: Currently only used by Hyper-V. */
5100 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5101 {
5102         struct vcpu_svm *svm = to_svm(vcpu);
5103         struct vmcb *vmcb = svm->vmcb;
5104
5105         if (!kvm_vcpu_apicv_active(&svm->vcpu))
5106                 return;
5107
5108         vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
5109         mark_dirty(vmcb, VMCB_INTR);
5110 }
5111
5112 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
5113 {
5114         return;
5115 }
5116
5117 static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
5118 {
5119         kvm_lapic_set_irr(vec, vcpu->arch.apic);
5120         smp_mb__after_atomic();
5121
5122         if (avic_vcpu_is_running(vcpu))
5123                 wrmsrl(SVM_AVIC_DOORBELL,
5124                        kvm_cpu_get_apicid(vcpu->cpu));
5125         else
5126                 kvm_vcpu_wake_up(vcpu);
5127 }
5128
5129 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5130 {
5131         unsigned long flags;
5132         struct amd_svm_iommu_ir *cur;
5133
5134         spin_lock_irqsave(&svm->ir_list_lock, flags);
5135         list_for_each_entry(cur, &svm->ir_list, node) {
5136                 if (cur->data != pi->ir_data)
5137                         continue;
5138                 list_del(&cur->node);
5139                 kfree(cur);
5140                 break;
5141         }
5142         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5143 }
5144
5145 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5146 {
5147         int ret = 0;
5148         unsigned long flags;
5149         struct amd_svm_iommu_ir *ir;
5150
5151         /**
5152          * In some cases, the existing irte is updaed and re-set,
5153          * so we need to check here if it's already been * added
5154          * to the ir_list.
5155          */
5156         if (pi->ir_data && (pi->prev_ga_tag != 0)) {
5157                 struct kvm *kvm = svm->vcpu.kvm;
5158                 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
5159                 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
5160                 struct vcpu_svm *prev_svm;
5161
5162                 if (!prev_vcpu) {
5163                         ret = -EINVAL;
5164                         goto out;
5165                 }
5166
5167                 prev_svm = to_svm(prev_vcpu);
5168                 svm_ir_list_del(prev_svm, pi);
5169         }
5170
5171         /**
5172          * Allocating new amd_iommu_pi_data, which will get
5173          * add to the per-vcpu ir_list.
5174          */
5175         ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL);
5176         if (!ir) {
5177                 ret = -ENOMEM;
5178                 goto out;
5179         }
5180         ir->data = pi->ir_data;
5181
5182         spin_lock_irqsave(&svm->ir_list_lock, flags);
5183         list_add(&ir->node, &svm->ir_list);
5184         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5185 out:
5186         return ret;
5187 }
5188
5189 /**
5190  * Note:
5191  * The HW cannot support posting multicast/broadcast
5192  * interrupts to a vCPU. So, we still use legacy interrupt
5193  * remapping for these kind of interrupts.
5194  *
5195  * For lowest-priority interrupts, we only support
5196  * those with single CPU as the destination, e.g. user
5197  * configures the interrupts via /proc/irq or uses
5198  * irqbalance to make the interrupts single-CPU.
5199  */
5200 static int
5201 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
5202                  struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
5203 {
5204         struct kvm_lapic_irq irq;
5205         struct kvm_vcpu *vcpu = NULL;
5206
5207         kvm_set_msi_irq(kvm, e, &irq);
5208
5209         if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
5210                 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
5211                          __func__, irq.vector);
5212                 return -1;
5213         }
5214
5215         pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
5216                  irq.vector);
5217         *svm = to_svm(vcpu);
5218         vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
5219         vcpu_info->vector = irq.vector;
5220
5221         return 0;
5222 }
5223
5224 /*
5225  * svm_update_pi_irte - set IRTE for Posted-Interrupts
5226  *
5227  * @kvm: kvm
5228  * @host_irq: host irq of the interrupt
5229  * @guest_irq: gsi of the interrupt
5230  * @set: set or unset PI
5231  * returns 0 on success, < 0 on failure
5232  */
5233 static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
5234                               uint32_t guest_irq, bool set)
5235 {
5236         struct kvm_kernel_irq_routing_entry *e;
5237         struct kvm_irq_routing_table *irq_rt;
5238         int idx, ret = -EINVAL;
5239
5240         if (!kvm_arch_has_assigned_device(kvm) ||
5241             !irq_remapping_cap(IRQ_POSTING_CAP))
5242                 return 0;
5243
5244         pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
5245                  __func__, host_irq, guest_irq, set);
5246
5247         idx = srcu_read_lock(&kvm->irq_srcu);
5248         irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
5249         WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
5250
5251         hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
5252                 struct vcpu_data vcpu_info;
5253                 struct vcpu_svm *svm = NULL;
5254
5255                 if (e->type != KVM_IRQ_ROUTING_MSI)
5256                         continue;
5257
5258                 /**
5259                  * Here, we setup with legacy mode in the following cases:
5260                  * 1. When cannot target interrupt to a specific vcpu.
5261                  * 2. Unsetting posted interrupt.
5262                  * 3. APIC virtialization is disabled for the vcpu.
5263                  */
5264                 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
5265                     kvm_vcpu_apicv_active(&svm->vcpu)) {
5266                         struct amd_iommu_pi_data pi;
5267
5268                         /* Try to enable guest_mode in IRTE */
5269                         pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
5270                                             AVIC_HPA_MASK);
5271                         pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
5272                                                      svm->vcpu.vcpu_id);
5273                         pi.is_guest_mode = true;
5274                         pi.vcpu_data = &vcpu_info;
5275                         ret = irq_set_vcpu_affinity(host_irq, &pi);
5276
5277                         /**
5278                          * Here, we successfully setting up vcpu affinity in
5279                          * IOMMU guest mode. Now, we need to store the posted
5280                          * interrupt information in a per-vcpu ir_list so that
5281                          * we can reference to them directly when we update vcpu
5282                          * scheduling information in IOMMU irte.
5283                          */
5284                         if (!ret && pi.is_guest_mode)
5285                                 svm_ir_list_add(svm, &pi);
5286                 } else {
5287                         /* Use legacy mode in IRTE */
5288                         struct amd_iommu_pi_data pi;
5289
5290                         /**
5291                          * Here, pi is used to:
5292                          * - Tell IOMMU to use legacy mode for this interrupt.
5293                          * - Retrieve ga_tag of prior interrupt remapping data.
5294                          */
5295                         pi.is_guest_mode = false;
5296                         ret = irq_set_vcpu_affinity(host_irq, &pi);
5297
5298                         /**
5299                          * Check if the posted interrupt was previously
5300                          * setup with the guest_mode by checking if the ga_tag
5301                          * was cached. If so, we need to clean up the per-vcpu
5302                          * ir_list.
5303                          */
5304                         if (!ret && pi.prev_ga_tag) {
5305                                 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
5306                                 struct kvm_vcpu *vcpu;
5307
5308                                 vcpu = kvm_get_vcpu_by_id(kvm, id);
5309                                 if (vcpu)
5310                                         svm_ir_list_del(to_svm(vcpu), &pi);
5311                         }
5312                 }
5313
5314                 if (!ret && svm) {
5315                         trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
5316                                                  e->gsi, vcpu_info.vector,
5317                                                  vcpu_info.pi_desc_addr, set);
5318                 }
5319
5320                 if (ret < 0) {
5321                         pr_err("%s: failed to update PI IRTE\n", __func__);
5322                         goto out;
5323                 }
5324         }
5325
5326         ret = 0;
5327 out:
5328         srcu_read_unlock(&kvm->irq_srcu, idx);
5329         return ret;
5330 }
5331
5332 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
5333 {
5334         struct vcpu_svm *svm = to_svm(vcpu);
5335         struct vmcb *vmcb = svm->vmcb;
5336         int ret;
5337         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
5338               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
5339         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
5340
5341         return ret;
5342 }
5343
5344 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
5345 {
5346         struct vcpu_svm *svm = to_svm(vcpu);
5347
5348         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
5349 }
5350
5351 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5352 {
5353         struct vcpu_svm *svm = to_svm(vcpu);
5354
5355         if (masked) {
5356                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
5357                 set_intercept(svm, INTERCEPT_IRET);
5358         } else {
5359                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
5360                 clr_intercept(svm, INTERCEPT_IRET);
5361         }
5362 }
5363
5364 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
5365 {
5366         struct vcpu_svm *svm = to_svm(vcpu);
5367         struct vmcb *vmcb = svm->vmcb;
5368         int ret;
5369
5370         if (!gif_set(svm) ||
5371              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
5372                 return 0;
5373
5374         ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
5375
5376         if (is_guest_mode(vcpu))
5377                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
5378
5379         return ret;
5380 }
5381
5382 static void enable_irq_window(struct kvm_vcpu *vcpu)
5383 {
5384         struct vcpu_svm *svm = to_svm(vcpu);
5385
5386         if (kvm_vcpu_apicv_active(vcpu))
5387                 return;
5388
5389         /*
5390          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
5391          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
5392          * get that intercept, this function will be called again though and
5393          * we'll get the vintr intercept. However, if the vGIF feature is
5394          * enabled, the STGI interception will not occur. Enable the irq
5395          * window under the assumption that the hardware will set the GIF.
5396          */
5397         if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) {
5398                 svm_set_vintr(svm);
5399                 svm_inject_irq(svm, 0x0);
5400         }
5401 }
5402
5403 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5404 {
5405         struct vcpu_svm *svm = to_svm(vcpu);
5406
5407         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
5408             == HF_NMI_MASK)
5409                 return; /* IRET will cause a vm exit */
5410
5411         if (!gif_set(svm)) {
5412                 if (vgif_enabled(svm))
5413                         set_intercept(svm, INTERCEPT_STGI);
5414                 return; /* STGI will cause a vm exit */
5415         }
5416
5417         if (svm->nested.exit_required)
5418                 return; /* we're not going to run the guest yet */
5419
5420         /*
5421          * Something prevents NMI from been injected. Single step over possible
5422          * problem (IRET or exception injection or interrupt shadow)
5423          */
5424         svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
5425         svm->nmi_singlestep = true;
5426         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
5427 }
5428
5429 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
5430 {
5431         return 0;
5432 }
5433
5434 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5435 {
5436         return 0;
5437 }
5438
5439 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
5440 {
5441         struct vcpu_svm *svm = to_svm(vcpu);
5442
5443         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
5444                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5445         else
5446                 svm->asid_generation--;
5447 }
5448
5449 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
5450 {
5451         struct vcpu_svm *svm = to_svm(vcpu);
5452
5453         invlpga(gva, svm->vmcb->control.asid);
5454 }
5455
5456 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
5457 {
5458 }
5459
5460 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
5461 {
5462         struct vcpu_svm *svm = to_svm(vcpu);
5463
5464         if (svm_nested_virtualize_tpr(vcpu))
5465                 return;
5466
5467         if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
5468                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
5469                 kvm_set_cr8(vcpu, cr8);
5470         }
5471 }
5472
5473 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
5474 {
5475         struct vcpu_svm *svm = to_svm(vcpu);
5476         u64 cr8;
5477
5478         if (svm_nested_virtualize_tpr(vcpu) ||
5479             kvm_vcpu_apicv_active(vcpu))
5480                 return;
5481
5482         cr8 = kvm_get_cr8(vcpu);
5483         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
5484         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
5485 }
5486
5487 static void svm_complete_interrupts(struct vcpu_svm *svm)
5488 {
5489         u8 vector;
5490         int type;
5491         u32 exitintinfo = svm->vmcb->control.exit_int_info;
5492         unsigned int3_injected = svm->int3_injected;
5493
5494         svm->int3_injected = 0;
5495
5496         /*
5497          * If we've made progress since setting HF_IRET_MASK, we've
5498          * executed an IRET and can allow NMI injection.
5499          */
5500         if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
5501             && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
5502                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
5503                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5504         }
5505
5506         svm->vcpu.arch.nmi_injected = false;
5507         kvm_clear_exception_queue(&svm->vcpu);
5508         kvm_clear_interrupt_queue(&svm->vcpu);
5509
5510         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
5511                 return;
5512
5513         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5514
5515         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
5516         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
5517
5518         switch (type) {
5519         case SVM_EXITINTINFO_TYPE_NMI:
5520                 svm->vcpu.arch.nmi_injected = true;
5521                 break;
5522         case SVM_EXITINTINFO_TYPE_EXEPT:
5523                 /*
5524                  * In case of software exceptions, do not reinject the vector,
5525                  * but re-execute the instruction instead. Rewind RIP first
5526                  * if we emulated INT3 before.
5527                  */
5528                 if (kvm_exception_is_soft(vector)) {
5529                         if (vector == BP_VECTOR && int3_injected &&
5530                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
5531                                 kvm_rip_write(&svm->vcpu,
5532                                               kvm_rip_read(&svm->vcpu) -
5533                                               int3_injected);
5534                         break;
5535                 }
5536                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
5537                         u32 err = svm->vmcb->control.exit_int_info_err;
5538                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
5539
5540                 } else
5541                         kvm_requeue_exception(&svm->vcpu, vector);
5542                 break;
5543         case SVM_EXITINTINFO_TYPE_INTR:
5544                 kvm_queue_interrupt(&svm->vcpu, vector, false);
5545                 break;
5546         default:
5547                 break;
5548         }
5549 }
5550
5551 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
5552 {
5553         struct vcpu_svm *svm = to_svm(vcpu);
5554         struct vmcb_control_area *control = &svm->vmcb->control;
5555
5556         control->exit_int_info = control->event_inj;
5557         control->exit_int_info_err = control->event_inj_err;
5558         control->event_inj = 0;
5559         svm_complete_interrupts(svm);
5560 }
5561
5562 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
5563 {
5564         struct vcpu_svm *svm = to_svm(vcpu);
5565
5566         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
5567         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
5568         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
5569
5570         /*
5571          * A vmexit emulation is required before the vcpu can be executed
5572          * again.
5573          */
5574         if (unlikely(svm->nested.exit_required))
5575                 return;
5576
5577         /*
5578          * Disable singlestep if we're injecting an interrupt/exception.
5579          * We don't want our modified rflags to be pushed on the stack where
5580          * we might not be able to easily reset them if we disabled NMI
5581          * singlestep later.
5582          */
5583         if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
5584                 /*
5585                  * Event injection happens before external interrupts cause a
5586                  * vmexit and interrupts are disabled here, so smp_send_reschedule
5587                  * is enough to force an immediate vmexit.
5588                  */
5589                 disable_nmi_singlestep(svm);
5590                 smp_send_reschedule(vcpu->cpu);
5591         }
5592
5593         pre_svm_run(svm);
5594
5595         sync_lapic_to_cr8(vcpu);
5596
5597         svm->vmcb->save.cr2 = vcpu->arch.cr2;
5598
5599         clgi();
5600
5601         /*
5602          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
5603          * it's non-zero. Since vmentry is serialising on affected CPUs, there
5604          * is no need to worry about the conditional branch over the wrmsr
5605          * being speculatively taken.
5606          */
5607         x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
5608
5609         local_irq_enable();
5610
5611         asm volatile (
5612                 "push %%" _ASM_BP "; \n\t"
5613                 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
5614                 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
5615                 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
5616                 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
5617                 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
5618                 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
5619 #ifdef CONFIG_X86_64
5620                 "mov %c[r8](%[svm]),  %%r8  \n\t"
5621                 "mov %c[r9](%[svm]),  %%r9  \n\t"
5622                 "mov %c[r10](%[svm]), %%r10 \n\t"
5623                 "mov %c[r11](%[svm]), %%r11 \n\t"
5624                 "mov %c[r12](%[svm]), %%r12 \n\t"
5625                 "mov %c[r13](%[svm]), %%r13 \n\t"
5626                 "mov %c[r14](%[svm]), %%r14 \n\t"
5627                 "mov %c[r15](%[svm]), %%r15 \n\t"
5628 #endif
5629
5630                 /* Enter guest mode */
5631                 "push %%" _ASM_AX " \n\t"
5632                 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
5633                 __ex(SVM_VMLOAD) "\n\t"
5634                 __ex(SVM_VMRUN) "\n\t"
5635                 __ex(SVM_VMSAVE) "\n\t"
5636                 "pop %%" _ASM_AX " \n\t"
5637
5638                 /* Save guest registers, load host registers */
5639                 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
5640                 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
5641                 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
5642                 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
5643                 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
5644                 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
5645 #ifdef CONFIG_X86_64
5646                 "mov %%r8,  %c[r8](%[svm]) \n\t"
5647                 "mov %%r9,  %c[r9](%[svm]) \n\t"
5648                 "mov %%r10, %c[r10](%[svm]) \n\t"
5649                 "mov %%r11, %c[r11](%[svm]) \n\t"
5650                 "mov %%r12, %c[r12](%[svm]) \n\t"
5651                 "mov %%r13, %c[r13](%[svm]) \n\t"
5652                 "mov %%r14, %c[r14](%[svm]) \n\t"
5653                 "mov %%r15, %c[r15](%[svm]) \n\t"
5654                 /*
5655                 * Clear host registers marked as clobbered to prevent
5656                 * speculative use.
5657                 */
5658                 "xor %%r8d, %%r8d \n\t"
5659                 "xor %%r9d, %%r9d \n\t"
5660                 "xor %%r10d, %%r10d \n\t"
5661                 "xor %%r11d, %%r11d \n\t"
5662                 "xor %%r12d, %%r12d \n\t"
5663                 "xor %%r13d, %%r13d \n\t"
5664                 "xor %%r14d, %%r14d \n\t"
5665                 "xor %%r15d, %%r15d \n\t"
5666 #endif
5667                 "xor %%ebx, %%ebx \n\t"
5668                 "xor %%ecx, %%ecx \n\t"
5669                 "xor %%edx, %%edx \n\t"
5670                 "xor %%esi, %%esi \n\t"
5671                 "xor %%edi, %%edi \n\t"
5672                 "pop %%" _ASM_BP
5673                 :
5674                 : [svm]"a"(svm),
5675                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
5676                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
5677                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
5678                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
5679                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
5680                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
5681                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
5682 #ifdef CONFIG_X86_64
5683                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
5684                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
5685                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
5686                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
5687                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
5688                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
5689                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
5690                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
5691 #endif
5692                 : "cc", "memory"
5693 #ifdef CONFIG_X86_64
5694                 , "rbx", "rcx", "rdx", "rsi", "rdi"
5695                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
5696 #else
5697                 , "ebx", "ecx", "edx", "esi", "edi"
5698 #endif
5699                 );
5700
5701         /* Eliminate branch target predictions from guest mode */
5702         vmexit_fill_RSB();
5703
5704 #ifdef CONFIG_X86_64
5705         wrmsrl(MSR_GS_BASE, svm->host.gs_base);
5706 #else
5707         loadsegment(fs, svm->host.fs);
5708 #ifndef CONFIG_X86_32_LAZY_GS
5709         loadsegment(gs, svm->host.gs);
5710 #endif
5711 #endif
5712
5713         /*
5714          * We do not use IBRS in the kernel. If this vCPU has used the
5715          * SPEC_CTRL MSR it may have left it on; save the value and
5716          * turn it off. This is much more efficient than blindly adding
5717          * it to the atomic save/restore list. Especially as the former
5718          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
5719          *
5720          * For non-nested case:
5721          * If the L01 MSR bitmap does not intercept the MSR, then we need to
5722          * save it.
5723          *
5724          * For nested case:
5725          * If the L02 MSR bitmap does not intercept the MSR, then we need to
5726          * save it.
5727          */
5728         if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
5729                 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
5730
5731         reload_tss(vcpu);
5732
5733         local_irq_disable();
5734
5735         x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
5736
5737         vcpu->arch.cr2 = svm->vmcb->save.cr2;
5738         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
5739         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
5740         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
5741
5742         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5743                 kvm_before_interrupt(&svm->vcpu);
5744
5745         stgi();
5746
5747         /* Any pending NMI will happen here */
5748
5749         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5750                 kvm_after_interrupt(&svm->vcpu);
5751
5752         sync_cr8_to_lapic(vcpu);
5753
5754         svm->next_rip = 0;
5755
5756         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
5757
5758         /* if exit due to PF check for async PF */
5759         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
5760                 svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
5761
5762         if (npt_enabled) {
5763                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
5764                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
5765         }
5766
5767         /*
5768          * We need to handle MC intercepts here before the vcpu has a chance to
5769          * change the physical cpu
5770          */
5771         if (unlikely(svm->vmcb->control.exit_code ==
5772                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
5773                 svm_handle_mce(svm);
5774
5775         mark_all_clean(svm->vmcb);
5776 }
5777 STACK_FRAME_NON_STANDARD(svm_vcpu_run);
5778
5779 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5780 {
5781         struct vcpu_svm *svm = to_svm(vcpu);
5782
5783         svm->vmcb->save.cr3 = __sme_set(root);
5784         mark_dirty(svm->vmcb, VMCB_CR);
5785 }
5786
5787 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5788 {
5789         struct vcpu_svm *svm = to_svm(vcpu);
5790
5791         svm->vmcb->control.nested_cr3 = __sme_set(root);
5792         mark_dirty(svm->vmcb, VMCB_NPT);
5793
5794         /* Also sync guest cr3 here in case we live migrate */
5795         svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
5796         mark_dirty(svm->vmcb, VMCB_CR);
5797 }
5798
5799 static int is_disabled(void)
5800 {
5801         u64 vm_cr;
5802
5803         rdmsrl(MSR_VM_CR, vm_cr);
5804         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
5805                 return 1;
5806
5807         return 0;
5808 }
5809
5810 static void
5811 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5812 {
5813         /*
5814          * Patch in the VMMCALL instruction:
5815          */
5816         hypercall[0] = 0x0f;
5817         hypercall[1] = 0x01;
5818         hypercall[2] = 0xd9;
5819 }
5820
5821 static void svm_check_processor_compat(void *rtn)
5822 {
5823         *(int *)rtn = 0;
5824 }
5825
5826 static bool svm_cpu_has_accelerated_tpr(void)
5827 {
5828         return false;
5829 }
5830
5831 static bool svm_has_emulated_msr(int index)
5832 {
5833         return true;
5834 }
5835
5836 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5837 {
5838         return 0;
5839 }
5840
5841 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5842 {
5843         struct vcpu_svm *svm = to_svm(vcpu);
5844
5845         /* Update nrips enabled cache */
5846         svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
5847
5848         if (!kvm_vcpu_apicv_active(vcpu))
5849                 return;
5850
5851         guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC);
5852 }
5853
5854 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5855 {
5856         switch (func) {
5857         case 0x1:
5858                 if (avic)
5859                         entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5860                 break;
5861         case 0x80000001:
5862                 if (nested)
5863                         entry->ecx |= (1 << 2); /* Set SVM bit */
5864                 break;
5865         case 0x8000000A:
5866                 entry->eax = 1; /* SVM revision 1 */
5867                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5868                                    ASID emulation to nested SVM */
5869                 entry->ecx = 0; /* Reserved */
5870                 entry->edx = 0; /* Per default do not support any
5871                                    additional features */
5872
5873                 /* Support next_rip if host supports it */
5874                 if (boot_cpu_has(X86_FEATURE_NRIPS))
5875                         entry->edx |= SVM_FEATURE_NRIP;
5876
5877                 /* Support NPT for the guest if enabled */
5878                 if (npt_enabled)
5879                         entry->edx |= SVM_FEATURE_NPT;
5880
5881                 break;
5882         case 0x8000001F:
5883                 /* Support memory encryption cpuid if host supports it */
5884                 if (boot_cpu_has(X86_FEATURE_SEV))
5885                         cpuid(0x8000001f, &entry->eax, &entry->ebx,
5886                                 &entry->ecx, &entry->edx);
5887
5888         }
5889 }
5890
5891 static int svm_get_lpage_level(void)
5892 {
5893         return PT_PDPE_LEVEL;
5894 }
5895
5896 static bool svm_rdtscp_supported(void)
5897 {
5898         return boot_cpu_has(X86_FEATURE_RDTSCP);
5899 }
5900
5901 static bool svm_invpcid_supported(void)
5902 {
5903         return false;
5904 }
5905
5906 static bool svm_mpx_supported(void)
5907 {
5908         return false;
5909 }
5910
5911 static bool svm_xsaves_supported(void)
5912 {
5913         return false;
5914 }
5915
5916 static bool svm_umip_emulated(void)
5917 {
5918         return false;
5919 }
5920
5921 static bool svm_has_wbinvd_exit(void)
5922 {
5923         return true;
5924 }
5925
5926 #define PRE_EX(exit)  { .exit_code = (exit), \
5927                         .stage = X86_ICPT_PRE_EXCEPT, }
5928 #define POST_EX(exit) { .exit_code = (exit), \
5929                         .stage = X86_ICPT_POST_EXCEPT, }
5930 #define POST_MEM(exit) { .exit_code = (exit), \
5931                         .stage = X86_ICPT_POST_MEMACCESS, }
5932
5933 static const struct __x86_intercept {
5934         u32 exit_code;
5935         enum x86_intercept_stage stage;
5936 } x86_intercept_map[] = {
5937         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
5938         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
5939         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
5940         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
5941         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
5942         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
5943         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
5944         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
5945         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
5946         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
5947         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
5948         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
5949         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
5950         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
5951         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
5952         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
5953         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
5954         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
5955         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
5956         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
5957         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
5958         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
5959         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
5960         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
5961         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
5962         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
5963         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
5964         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
5965         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
5966         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
5967         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
5968         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
5969         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
5970         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
5971         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
5972         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
5973         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
5974         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
5975         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
5976         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
5977         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
5978         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
5979         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
5980         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
5981         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
5982         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
5983 };
5984
5985 #undef PRE_EX
5986 #undef POST_EX
5987 #undef POST_MEM
5988
5989 static int svm_check_intercept(struct kvm_vcpu *vcpu,
5990                                struct x86_instruction_info *info,
5991                                enum x86_intercept_stage stage)
5992 {
5993         struct vcpu_svm *svm = to_svm(vcpu);
5994         int vmexit, ret = X86EMUL_CONTINUE;
5995         struct __x86_intercept icpt_info;
5996         struct vmcb *vmcb = svm->vmcb;
5997
5998         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
5999                 goto out;
6000
6001         icpt_info = x86_intercept_map[info->intercept];
6002
6003         if (stage != icpt_info.stage)
6004                 goto out;
6005
6006         switch (icpt_info.exit_code) {
6007         case SVM_EXIT_READ_CR0:
6008                 if (info->intercept == x86_intercept_cr_read)
6009                         icpt_info.exit_code += info->modrm_reg;
6010                 break;
6011         case SVM_EXIT_WRITE_CR0: {
6012                 unsigned long cr0, val;
6013                 u64 intercept;
6014
6015                 if (info->intercept == x86_intercept_cr_write)
6016                         icpt_info.exit_code += info->modrm_reg;
6017
6018                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
6019                     info->intercept == x86_intercept_clts)
6020                         break;
6021
6022                 intercept = svm->nested.intercept;
6023
6024                 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
6025                         break;
6026
6027                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
6028                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
6029
6030                 if (info->intercept == x86_intercept_lmsw) {
6031                         cr0 &= 0xfUL;
6032                         val &= 0xfUL;
6033                         /* lmsw can't clear PE - catch this here */
6034                         if (cr0 & X86_CR0_PE)
6035                                 val |= X86_CR0_PE;
6036                 }
6037
6038                 if (cr0 ^ val)
6039                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
6040
6041                 break;
6042         }
6043         case SVM_EXIT_READ_DR0:
6044         case SVM_EXIT_WRITE_DR0:
6045                 icpt_info.exit_code += info->modrm_reg;
6046                 break;
6047         case SVM_EXIT_MSR:
6048                 if (info->intercept == x86_intercept_wrmsr)
6049                         vmcb->control.exit_info_1 = 1;
6050                 else
6051                         vmcb->control.exit_info_1 = 0;
6052                 break;
6053         case SVM_EXIT_PAUSE:
6054                 /*
6055                  * We get this for NOP only, but pause
6056                  * is rep not, check this here
6057                  */
6058                 if (info->rep_prefix != REPE_PREFIX)
6059                         goto out;
6060                 break;
6061         case SVM_EXIT_IOIO: {
6062                 u64 exit_info;
6063                 u32 bytes;
6064
6065                 if (info->intercept == x86_intercept_in ||
6066                     info->intercept == x86_intercept_ins) {
6067                         exit_info = ((info->src_val & 0xffff) << 16) |
6068                                 SVM_IOIO_TYPE_MASK;
6069                         bytes = info->dst_bytes;
6070                 } else {
6071                         exit_info = (info->dst_val & 0xffff) << 16;
6072                         bytes = info->src_bytes;
6073                 }
6074
6075                 if (info->intercept == x86_intercept_outs ||
6076                     info->intercept == x86_intercept_ins)
6077                         exit_info |= SVM_IOIO_STR_MASK;
6078
6079                 if (info->rep_prefix)
6080                         exit_info |= SVM_IOIO_REP_MASK;
6081
6082                 bytes = min(bytes, 4u);
6083
6084                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
6085
6086                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
6087
6088                 vmcb->control.exit_info_1 = exit_info;
6089                 vmcb->control.exit_info_2 = info->next_rip;
6090
6091                 break;
6092         }
6093         default:
6094                 break;
6095         }
6096
6097         /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
6098         if (static_cpu_has(X86_FEATURE_NRIPS))
6099                 vmcb->control.next_rip  = info->next_rip;
6100         vmcb->control.exit_code = icpt_info.exit_code;
6101         vmexit = nested_svm_exit_handled(svm);
6102
6103         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
6104                                            : X86EMUL_CONTINUE;
6105
6106 out:
6107         return ret;
6108 }
6109
6110 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
6111 {
6112         local_irq_enable();
6113         /*
6114          * We must have an instruction with interrupts enabled, so
6115          * the timer interrupt isn't delayed by the interrupt shadow.
6116          */
6117         asm("nop");
6118         local_irq_disable();
6119 }
6120
6121 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
6122 {
6123         if (pause_filter_thresh)
6124                 shrink_ple_window(vcpu);
6125 }
6126
6127 static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
6128 {
6129         if (avic_handle_apic_id_update(vcpu) != 0)
6130                 return;
6131         if (avic_handle_dfr_update(vcpu) != 0)
6132                 return;
6133         avic_handle_ldr_update(vcpu);
6134 }
6135
6136 static void svm_setup_mce(struct kvm_vcpu *vcpu)
6137 {
6138         /* [63:9] are reserved. */
6139         vcpu->arch.mcg_cap &= 0x1ff;
6140 }
6141
6142 static int svm_smi_allowed(struct kvm_vcpu *vcpu)
6143 {
6144         struct vcpu_svm *svm = to_svm(vcpu);
6145
6146         /* Per APM Vol.2 15.22.2 "Response to SMI" */
6147         if (!gif_set(svm))
6148                 return 0;
6149
6150         if (is_guest_mode(&svm->vcpu) &&
6151             svm->nested.intercept & (1ULL << INTERCEPT_SMI)) {
6152                 /* TODO: Might need to set exit_info_1 and exit_info_2 here */
6153                 svm->vmcb->control.exit_code = SVM_EXIT_SMI;
6154                 svm->nested.exit_required = true;
6155                 return 0;
6156         }
6157
6158         return 1;
6159 }
6160
6161 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
6162 {
6163         struct vcpu_svm *svm = to_svm(vcpu);
6164         int ret;
6165
6166         if (is_guest_mode(vcpu)) {
6167                 /* FED8h - SVM Guest */
6168                 put_smstate(u64, smstate, 0x7ed8, 1);
6169                 /* FEE0h - SVM Guest VMCB Physical Address */
6170                 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
6171
6172                 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
6173                 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
6174                 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
6175
6176                 ret = nested_svm_vmexit(svm);
6177                 if (ret)
6178                         return ret;
6179         }
6180         return 0;
6181 }
6182
6183 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
6184 {
6185         struct vcpu_svm *svm = to_svm(vcpu);
6186         struct vmcb *nested_vmcb;
6187         struct page *page;
6188         struct {
6189                 u64 guest;
6190                 u64 vmcb;
6191         } svm_state_save;
6192         int ret;
6193
6194         ret = kvm_vcpu_read_guest(vcpu, smbase + 0xfed8, &svm_state_save,
6195                                   sizeof(svm_state_save));
6196         if (ret)
6197                 return ret;
6198
6199         if (svm_state_save.guest) {
6200                 vcpu->arch.hflags &= ~HF_SMM_MASK;
6201                 nested_vmcb = nested_svm_map(svm, svm_state_save.vmcb, &page);
6202                 if (nested_vmcb)
6203                         enter_svm_guest_mode(svm, svm_state_save.vmcb, nested_vmcb, page);
6204                 else
6205                         ret = 1;
6206                 vcpu->arch.hflags |= HF_SMM_MASK;
6207         }
6208         return ret;
6209 }
6210
6211 static int enable_smi_window(struct kvm_vcpu *vcpu)
6212 {
6213         struct vcpu_svm *svm = to_svm(vcpu);
6214
6215         if (!gif_set(svm)) {
6216                 if (vgif_enabled(svm))
6217                         set_intercept(svm, INTERCEPT_STGI);
6218                 /* STGI will cause a vm exit */
6219                 return 1;
6220         }
6221         return 0;
6222 }
6223
6224 static int sev_asid_new(void)
6225 {
6226         int pos;
6227
6228         /*
6229          * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid.
6230          */
6231         pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1);
6232         if (pos >= max_sev_asid)
6233                 return -EBUSY;
6234
6235         set_bit(pos, sev_asid_bitmap);
6236         return pos + 1;
6237 }
6238
6239 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
6240 {
6241         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6242         int asid, ret;
6243
6244         ret = -EBUSY;
6245         asid = sev_asid_new();
6246         if (asid < 0)
6247                 return ret;
6248
6249         ret = sev_platform_init(&argp->error);
6250         if (ret)
6251                 goto e_free;
6252
6253         sev->active = true;
6254         sev->asid = asid;
6255         INIT_LIST_HEAD(&sev->regions_list);
6256
6257         return 0;
6258
6259 e_free:
6260         __sev_asid_free(asid);
6261         return ret;
6262 }
6263
6264 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
6265 {
6266         struct sev_data_activate *data;
6267         int asid = sev_get_asid(kvm);
6268         int ret;
6269
6270         wbinvd_on_all_cpus();
6271
6272         ret = sev_guest_df_flush(error);
6273         if (ret)
6274                 return ret;
6275
6276         data = kzalloc(sizeof(*data), GFP_KERNEL);
6277         if (!data)
6278                 return -ENOMEM;
6279
6280         /* activate ASID on the given handle */
6281         data->handle = handle;
6282         data->asid   = asid;
6283         ret = sev_guest_activate(data, error);
6284         kfree(data);
6285
6286         return ret;
6287 }
6288
6289 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
6290 {
6291         struct fd f;
6292         int ret;
6293
6294         f = fdget(fd);
6295         if (!f.file)
6296                 return -EBADF;
6297
6298         ret = sev_issue_cmd_external_user(f.file, id, data, error);
6299
6300         fdput(f);
6301         return ret;
6302 }
6303
6304 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
6305 {
6306         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6307
6308         return __sev_issue_cmd(sev->fd, id, data, error);
6309 }
6310
6311 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
6312 {
6313         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6314         struct sev_data_launch_start *start;
6315         struct kvm_sev_launch_start params;
6316         void *dh_blob, *session_blob;
6317         int *error = &argp->error;
6318         int ret;
6319
6320         if (!sev_guest(kvm))
6321                 return -ENOTTY;
6322
6323         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6324                 return -EFAULT;
6325
6326         start = kzalloc(sizeof(*start), GFP_KERNEL);
6327         if (!start)
6328                 return -ENOMEM;
6329
6330         dh_blob = NULL;
6331         if (params.dh_uaddr) {
6332                 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
6333                 if (IS_ERR(dh_blob)) {
6334                         ret = PTR_ERR(dh_blob);
6335                         goto e_free;
6336                 }
6337
6338                 start->dh_cert_address = __sme_set(__pa(dh_blob));
6339                 start->dh_cert_len = params.dh_len;
6340         }
6341
6342         session_blob = NULL;
6343         if (params.session_uaddr) {
6344                 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
6345                 if (IS_ERR(session_blob)) {
6346                         ret = PTR_ERR(session_blob);
6347                         goto e_free_dh;
6348                 }
6349
6350                 start->session_address = __sme_set(__pa(session_blob));
6351                 start->session_len = params.session_len;
6352         }
6353
6354         start->handle = params.handle;
6355         start->policy = params.policy;
6356
6357         /* create memory encryption context */
6358         ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
6359         if (ret)
6360                 goto e_free_session;
6361
6362         /* Bind ASID to this guest */
6363         ret = sev_bind_asid(kvm, start->handle, error);
6364         if (ret)
6365                 goto e_free_session;
6366
6367         /* return handle to userspace */
6368         params.handle = start->handle;
6369         if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
6370                 sev_unbind_asid(kvm, start->handle);
6371                 ret = -EFAULT;
6372                 goto e_free_session;
6373         }
6374
6375         sev->handle = start->handle;
6376         sev->fd = argp->sev_fd;
6377
6378 e_free_session:
6379         kfree(session_blob);
6380 e_free_dh:
6381         kfree(dh_blob);
6382 e_free:
6383         kfree(start);
6384         return ret;
6385 }
6386
6387 static int get_num_contig_pages(int idx, struct page **inpages,
6388                                 unsigned long npages)
6389 {
6390         unsigned long paddr, next_paddr;
6391         int i = idx + 1, pages = 1;
6392
6393         /* find the number of contiguous pages starting from idx */
6394         paddr = __sme_page_pa(inpages[idx]);
6395         while (i < npages) {
6396                 next_paddr = __sme_page_pa(inpages[i++]);
6397                 if ((paddr + PAGE_SIZE) == next_paddr) {
6398                         pages++;
6399                         paddr = next_paddr;
6400                         continue;
6401                 }
6402                 break;
6403         }
6404
6405         return pages;
6406 }
6407
6408 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
6409 {
6410         unsigned long vaddr, vaddr_end, next_vaddr, npages, size;
6411         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6412         struct kvm_sev_launch_update_data params;
6413         struct sev_data_launch_update_data *data;
6414         struct page **inpages;
6415         int i, ret, pages;
6416
6417         if (!sev_guest(kvm))
6418                 return -ENOTTY;
6419
6420         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6421                 return -EFAULT;
6422
6423         data = kzalloc(sizeof(*data), GFP_KERNEL);
6424         if (!data)
6425                 return -ENOMEM;
6426
6427         vaddr = params.uaddr;
6428         size = params.len;
6429         vaddr_end = vaddr + size;
6430
6431         /* Lock the user memory. */
6432         inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
6433         if (!inpages) {
6434                 ret = -ENOMEM;
6435                 goto e_free;
6436         }
6437
6438         /*
6439          * The LAUNCH_UPDATE command will perform in-place encryption of the
6440          * memory content (i.e it will write the same memory region with C=1).
6441          * It's possible that the cache may contain the data with C=0, i.e.,
6442          * unencrypted so invalidate it first.
6443          */
6444         sev_clflush_pages(inpages, npages);
6445
6446         for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
6447                 int offset, len;
6448
6449                 /*
6450                  * If the user buffer is not page-aligned, calculate the offset
6451                  * within the page.
6452                  */
6453                 offset = vaddr & (PAGE_SIZE - 1);
6454
6455                 /* Calculate the number of pages that can be encrypted in one go. */
6456                 pages = get_num_contig_pages(i, inpages, npages);
6457
6458                 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
6459
6460                 data->handle = sev->handle;
6461                 data->len = len;
6462                 data->address = __sme_page_pa(inpages[i]) + offset;
6463                 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
6464                 if (ret)
6465                         goto e_unpin;
6466
6467                 size -= len;
6468                 next_vaddr = vaddr + len;
6469         }
6470
6471 e_unpin:
6472         /* content of memory is updated, mark pages dirty */
6473         for (i = 0; i < npages; i++) {
6474                 set_page_dirty_lock(inpages[i]);
6475                 mark_page_accessed(inpages[i]);
6476         }
6477         /* unlock the user pages */
6478         sev_unpin_memory(kvm, inpages, npages);
6479 e_free:
6480         kfree(data);
6481         return ret;
6482 }
6483
6484 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
6485 {
6486         void __user *measure = (void __user *)(uintptr_t)argp->data;
6487         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6488         struct sev_data_launch_measure *data;
6489         struct kvm_sev_launch_measure params;
6490         void __user *p = NULL;
6491         void *blob = NULL;
6492         int ret;
6493
6494         if (!sev_guest(kvm))
6495                 return -ENOTTY;
6496
6497         if (copy_from_user(&params, measure, sizeof(params)))
6498                 return -EFAULT;
6499
6500         data = kzalloc(sizeof(*data), GFP_KERNEL);
6501         if (!data)
6502                 return -ENOMEM;
6503
6504         /* User wants to query the blob length */
6505         if (!params.len)
6506                 goto cmd;
6507
6508         p = (void __user *)(uintptr_t)params.uaddr;
6509         if (p) {
6510                 if (params.len > SEV_FW_BLOB_MAX_SIZE) {
6511                         ret = -EINVAL;
6512                         goto e_free;
6513                 }
6514
6515                 ret = -ENOMEM;
6516                 blob = kmalloc(params.len, GFP_KERNEL);
6517                 if (!blob)
6518                         goto e_free;
6519
6520                 data->address = __psp_pa(blob);
6521                 data->len = params.len;
6522         }
6523
6524 cmd:
6525         data->handle = sev->handle;
6526         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);
6527
6528         /*
6529          * If we query the session length, FW responded with expected data.
6530          */
6531         if (!params.len)
6532                 goto done;
6533
6534         if (ret)
6535                 goto e_free_blob;
6536
6537         if (blob) {
6538                 if (copy_to_user(p, blob, params.len))
6539                         ret = -EFAULT;
6540         }
6541
6542 done:
6543         params.len = data->len;
6544         if (copy_to_user(measure, &params, sizeof(params)))
6545                 ret = -EFAULT;
6546 e_free_blob:
6547         kfree(blob);
6548 e_free:
6549         kfree(data);
6550         return ret;
6551 }
6552
6553 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
6554 {
6555         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6556         struct sev_data_launch_finish *data;
6557         int ret;
6558
6559         if (!sev_guest(kvm))
6560                 return -ENOTTY;
6561
6562         data = kzalloc(sizeof(*data), GFP_KERNEL);
6563         if (!data)
6564                 return -ENOMEM;
6565
6566         data->handle = sev->handle;
6567         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);
6568
6569         kfree(data);
6570         return ret;
6571 }
6572
6573 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
6574 {
6575         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6576         struct kvm_sev_guest_status params;
6577         struct sev_data_guest_status *data;
6578         int ret;
6579
6580         if (!sev_guest(kvm))
6581                 return -ENOTTY;
6582
6583         data = kzalloc(sizeof(*data), GFP_KERNEL);
6584         if (!data)
6585                 return -ENOMEM;
6586
6587         data->handle = sev->handle;
6588         ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
6589         if (ret)
6590                 goto e_free;
6591
6592         params.policy = data->policy;
6593         params.state = data->state;
6594         params.handle = data->handle;
6595
6596         if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
6597                 ret = -EFAULT;
6598 e_free:
6599         kfree(data);
6600         return ret;
6601 }
6602
6603 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
6604                                unsigned long dst, int size,
6605                                int *error, bool enc)
6606 {
6607         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6608         struct sev_data_dbg *data;
6609         int ret;
6610
6611         data = kzalloc(sizeof(*data), GFP_KERNEL);
6612         if (!data)
6613                 return -ENOMEM;
6614
6615         data->handle = sev->handle;
6616         data->dst_addr = dst;
6617         data->src_addr = src;
6618         data->len = size;
6619
6620         ret = sev_issue_cmd(kvm,
6621                             enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
6622                             data, error);
6623         kfree(data);
6624         return ret;
6625 }
6626
6627 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
6628                              unsigned long dst_paddr, int sz, int *err)
6629 {
6630         int offset;
6631
6632         /*
6633          * Its safe to read more than we are asked, caller should ensure that
6634          * destination has enough space.
6635          */
6636         src_paddr = round_down(src_paddr, 16);
6637         offset = src_paddr & 15;
6638         sz = round_up(sz + offset, 16);
6639
6640         return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
6641 }
6642
6643 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
6644                                   unsigned long __user dst_uaddr,
6645                                   unsigned long dst_paddr,
6646                                   int size, int *err)
6647 {
6648         struct page *tpage = NULL;
6649         int ret, offset;
6650
6651         /* if inputs are not 16-byte then use intermediate buffer */
6652         if (!IS_ALIGNED(dst_paddr, 16) ||
6653             !IS_ALIGNED(paddr,     16) ||
6654             !IS_ALIGNED(size,      16)) {
6655                 tpage = (void *)alloc_page(GFP_KERNEL);
6656                 if (!tpage)
6657                         return -ENOMEM;
6658
6659                 dst_paddr = __sme_page_pa(tpage);
6660         }
6661
6662         ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
6663         if (ret)
6664                 goto e_free;
6665
6666         if (tpage) {
6667                 offset = paddr & 15;
6668                 if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
6669                                  page_address(tpage) + offset, size))
6670                         ret = -EFAULT;
6671         }
6672
6673 e_free:
6674         if (tpage)
6675                 __free_page(tpage);
6676
6677         return ret;
6678 }
6679
6680 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
6681                                   unsigned long __user vaddr,
6682                                   unsigned long dst_paddr,
6683                                   unsigned long __user dst_vaddr,
6684                                   int size, int *error)
6685 {
6686         struct page *src_tpage = NULL;
6687         struct page *dst_tpage = NULL;
6688         int ret, len = size;
6689
6690         /* If source buffer is not aligned then use an intermediate buffer */
6691         if (!IS_ALIGNED(vaddr, 16)) {
6692                 src_tpage = alloc_page(GFP_KERNEL);
6693                 if (!src_tpage)
6694                         return -ENOMEM;
6695
6696                 if (copy_from_user(page_address(src_tpage),
6697                                 (void __user *)(uintptr_t)vaddr, size)) {
6698                         __free_page(src_tpage);
6699                         return -EFAULT;
6700                 }
6701
6702                 paddr = __sme_page_pa(src_tpage);
6703         }
6704
6705         /*
6706          *  If destination buffer or length is not aligned then do read-modify-write:
6707          *   - decrypt destination in an intermediate buffer
6708          *   - copy the source buffer in an intermediate buffer
6709          *   - use the intermediate buffer as source buffer
6710          */
6711         if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
6712                 int dst_offset;
6713
6714                 dst_tpage = alloc_page(GFP_KERNEL);
6715                 if (!dst_tpage) {
6716                         ret = -ENOMEM;
6717                         goto e_free;
6718                 }
6719
6720                 ret = __sev_dbg_decrypt(kvm, dst_paddr,
6721                                         __sme_page_pa(dst_tpage), size, error);
6722                 if (ret)
6723                         goto e_free;
6724
6725                 /*
6726                  *  If source is kernel buffer then use memcpy() otherwise
6727                  *  copy_from_user().
6728                  */
6729                 dst_offset = dst_paddr & 15;
6730
6731                 if (src_tpage)
6732                         memcpy(page_address(dst_tpage) + dst_offset,
6733                                page_address(src_tpage), size);
6734                 else {
6735                         if (copy_from_user(page_address(dst_tpage) + dst_offset,
6736                                            (void __user *)(uintptr_t)vaddr, size)) {
6737                                 ret = -EFAULT;
6738                                 goto e_free;
6739                         }
6740                 }
6741
6742                 paddr = __sme_page_pa(dst_tpage);
6743                 dst_paddr = round_down(dst_paddr, 16);
6744                 len = round_up(size, 16);
6745         }
6746
6747         ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
6748
6749 e_free:
6750         if (src_tpage)
6751                 __free_page(src_tpage);
6752         if (dst_tpage)
6753                 __free_page(dst_tpage);
6754         return ret;
6755 }
6756
6757 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
6758 {
6759         unsigned long vaddr, vaddr_end, next_vaddr;
6760         unsigned long dst_vaddr;
6761         struct page **src_p, **dst_p;
6762         struct kvm_sev_dbg debug;
6763         unsigned long n;
6764         int ret, size;
6765
6766         if (!sev_guest(kvm))
6767                 return -ENOTTY;
6768
6769         if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
6770                 return -EFAULT;
6771
6772         vaddr = debug.src_uaddr;
6773         size = debug.len;
6774         vaddr_end = vaddr + size;
6775         dst_vaddr = debug.dst_uaddr;
6776
6777         for (; vaddr < vaddr_end; vaddr = next_vaddr) {
6778                 int len, s_off, d_off;
6779
6780                 /* lock userspace source and destination page */
6781                 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
6782                 if (!src_p)
6783                         return -EFAULT;
6784
6785                 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
6786                 if (!dst_p) {
6787                         sev_unpin_memory(kvm, src_p, n);
6788                         return -EFAULT;
6789                 }
6790
6791                 /*
6792                  * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the
6793                  * memory content (i.e it will write the same memory region with C=1).
6794                  * It's possible that the cache may contain the data with C=0, i.e.,
6795                  * unencrypted so invalidate it first.
6796                  */
6797                 sev_clflush_pages(src_p, 1);
6798                 sev_clflush_pages(dst_p, 1);
6799
6800                 /*
6801                  * Since user buffer may not be page aligned, calculate the
6802                  * offset within the page.
6803                  */
6804                 s_off = vaddr & ~PAGE_MASK;
6805                 d_off = dst_vaddr & ~PAGE_MASK;
6806                 len = min_t(size_t, (PAGE_SIZE - s_off), size);
6807
6808                 if (dec)
6809                         ret = __sev_dbg_decrypt_user(kvm,
6810                                                      __sme_page_pa(src_p[0]) + s_off,
6811                                                      dst_vaddr,
6812                                                      __sme_page_pa(dst_p[0]) + d_off,
6813                                                      len, &argp->error);
6814                 else
6815                         ret = __sev_dbg_encrypt_user(kvm,
6816                                                      __sme_page_pa(src_p[0]) + s_off,
6817                                                      vaddr,
6818                                                      __sme_page_pa(dst_p[0]) + d_off,
6819                                                      dst_vaddr,
6820                                                      len, &argp->error);
6821
6822                 sev_unpin_memory(kvm, src_p, 1);
6823                 sev_unpin_memory(kvm, dst_p, 1);
6824
6825                 if (ret)
6826                         goto err;
6827
6828                 next_vaddr = vaddr + len;
6829                 dst_vaddr = dst_vaddr + len;
6830                 size -= len;
6831         }
6832 err:
6833         return ret;
6834 }
6835
6836 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
6837 {
6838         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6839         struct sev_data_launch_secret *data;
6840         struct kvm_sev_launch_secret params;
6841         struct page **pages;
6842         void *blob, *hdr;
6843         unsigned long n;
6844         int ret, offset;
6845
6846         if (!sev_guest(kvm))
6847                 return -ENOTTY;
6848
6849         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6850                 return -EFAULT;
6851
6852         pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
6853         if (!pages)
6854                 return -ENOMEM;
6855
6856         /*
6857          * The secret must be copied into contiguous memory region, lets verify
6858          * that userspace memory pages are contiguous before we issue command.
6859          */
6860         if (get_num_contig_pages(0, pages, n) != n) {
6861                 ret = -EINVAL;
6862                 goto e_unpin_memory;
6863         }
6864
6865         ret = -ENOMEM;
6866         data = kzalloc(sizeof(*data), GFP_KERNEL);
6867         if (!data)
6868                 goto e_unpin_memory;
6869
6870         offset = params.guest_uaddr & (PAGE_SIZE - 1);
6871         data->guest_address = __sme_page_pa(pages[0]) + offset;
6872         data->guest_len = params.guest_len;
6873
6874         blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
6875         if (IS_ERR(blob)) {
6876                 ret = PTR_ERR(blob);
6877                 goto e_free;
6878         }
6879
6880         data->trans_address = __psp_pa(blob);
6881         data->trans_len = params.trans_len;
6882
6883         hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
6884         if (IS_ERR(hdr)) {
6885                 ret = PTR_ERR(hdr);
6886                 goto e_free_blob;
6887         }
6888         data->hdr_address = __psp_pa(hdr);
6889         data->hdr_len = params.hdr_len;
6890
6891         data->handle = sev->handle;
6892         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);
6893
6894         kfree(hdr);
6895
6896 e_free_blob:
6897         kfree(blob);
6898 e_free:
6899         kfree(data);
6900 e_unpin_memory:
6901         sev_unpin_memory(kvm, pages, n);
6902         return ret;
6903 }
6904
6905 static int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
6906 {
6907         struct kvm_sev_cmd sev_cmd;
6908         int r;
6909
6910         if (!svm_sev_enabled())
6911                 return -ENOTTY;
6912
6913         if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
6914                 return -EFAULT;
6915
6916         mutex_lock(&kvm->lock);
6917
6918         switch (sev_cmd.id) {
6919         case KVM_SEV_INIT:
6920                 r = sev_guest_init(kvm, &sev_cmd);
6921                 break;
6922         case KVM_SEV_LAUNCH_START:
6923                 r = sev_launch_start(kvm, &sev_cmd);
6924                 break;
6925         case KVM_SEV_LAUNCH_UPDATE_DATA:
6926                 r = sev_launch_update_data(kvm, &sev_cmd);
6927                 break;
6928         case KVM_SEV_LAUNCH_MEASURE:
6929                 r = sev_launch_measure(kvm, &sev_cmd);
6930                 break;
6931         case KVM_SEV_LAUNCH_FINISH:
6932                 r = sev_launch_finish(kvm, &sev_cmd);
6933                 break;
6934         case KVM_SEV_GUEST_STATUS:
6935                 r = sev_guest_status(kvm, &sev_cmd);
6936                 break;
6937         case KVM_SEV_DBG_DECRYPT:
6938                 r = sev_dbg_crypt(kvm, &sev_cmd, true);
6939                 break;
6940         case KVM_SEV_DBG_ENCRYPT:
6941                 r = sev_dbg_crypt(kvm, &sev_cmd, false);
6942                 break;
6943         case KVM_SEV_LAUNCH_SECRET:
6944                 r = sev_launch_secret(kvm, &sev_cmd);
6945                 break;
6946         default:
6947                 r = -EINVAL;
6948                 goto out;
6949         }
6950
6951         if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
6952                 r = -EFAULT;
6953
6954 out:
6955         mutex_unlock(&kvm->lock);
6956         return r;
6957 }
6958
6959 static int svm_register_enc_region(struct kvm *kvm,
6960                                    struct kvm_enc_region *range)
6961 {
6962         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6963         struct enc_region *region;
6964         int ret = 0;
6965
6966         if (!sev_guest(kvm))
6967                 return -ENOTTY;
6968
6969         if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
6970                 return -EINVAL;
6971
6972         region = kzalloc(sizeof(*region), GFP_KERNEL);
6973         if (!region)
6974                 return -ENOMEM;
6975
6976         region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
6977         if (!region->pages) {
6978                 ret = -ENOMEM;
6979                 goto e_free;
6980         }
6981
6982         /*
6983          * The guest may change the memory encryption attribute from C=0 -> C=1
6984          * or vice versa for this memory range. Lets make sure caches are
6985          * flushed to ensure that guest data gets written into memory with
6986          * correct C-bit.
6987          */
6988         sev_clflush_pages(region->pages, region->npages);
6989
6990         region->uaddr = range->addr;
6991         region->size = range->size;
6992
6993         mutex_lock(&kvm->lock);
6994         list_add_tail(&region->list, &sev->regions_list);
6995         mutex_unlock(&kvm->lock);
6996
6997         return ret;
6998
6999 e_free:
7000         kfree(region);
7001         return ret;
7002 }
7003
7004 static struct enc_region *
7005 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
7006 {
7007         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
7008         struct list_head *head = &sev->regions_list;
7009         struct enc_region *i;
7010
7011         list_for_each_entry(i, head, list) {
7012                 if (i->uaddr == range->addr &&
7013                     i->size == range->size)
7014                         return i;
7015         }
7016
7017         return NULL;
7018 }
7019
7020
7021 static int svm_unregister_enc_region(struct kvm *kvm,
7022                                      struct kvm_enc_region *range)
7023 {
7024         struct enc_region *region;
7025         int ret;
7026
7027         mutex_lock(&kvm->lock);
7028
7029         if (!sev_guest(kvm)) {
7030                 ret = -ENOTTY;
7031                 goto failed;
7032         }
7033
7034         region = find_enc_region(kvm, range);
7035         if (!region) {
7036                 ret = -EINVAL;
7037                 goto failed;
7038         }
7039
7040         __unregister_enc_region_locked(kvm, region);
7041
7042         mutex_unlock(&kvm->lock);
7043         return 0;
7044
7045 failed:
7046         mutex_unlock(&kvm->lock);
7047         return ret;
7048 }
7049
7050 static uint16_t nested_get_evmcs_version(struct kvm_vcpu *vcpu)
7051 {
7052         /* Not supported */
7053         return 0;
7054 }
7055
7056 static int nested_enable_evmcs(struct kvm_vcpu *vcpu,
7057                                    uint16_t *vmcs_version)
7058 {
7059         /* Intel-only feature */
7060         return -ENODEV;
7061 }
7062
7063 static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
7064         .cpu_has_kvm_support = has_svm,
7065         .disabled_by_bios = is_disabled,
7066         .hardware_setup = svm_hardware_setup,
7067         .hardware_unsetup = svm_hardware_unsetup,
7068         .check_processor_compatibility = svm_check_processor_compat,
7069         .hardware_enable = svm_hardware_enable,
7070         .hardware_disable = svm_hardware_disable,
7071         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
7072         .has_emulated_msr = svm_has_emulated_msr,
7073
7074         .vcpu_create = svm_create_vcpu,
7075         .vcpu_free = svm_free_vcpu,
7076         .vcpu_reset = svm_vcpu_reset,
7077
7078         .vm_alloc = svm_vm_alloc,
7079         .vm_free = svm_vm_free,
7080         .vm_init = avic_vm_init,
7081         .vm_destroy = svm_vm_destroy,
7082
7083         .prepare_guest_switch = svm_prepare_guest_switch,
7084         .vcpu_load = svm_vcpu_load,
7085         .vcpu_put = svm_vcpu_put,
7086         .vcpu_blocking = svm_vcpu_blocking,
7087         .vcpu_unblocking = svm_vcpu_unblocking,
7088
7089         .update_bp_intercept = update_bp_intercept,
7090         .get_msr_feature = svm_get_msr_feature,
7091         .get_msr = svm_get_msr,
7092         .set_msr = svm_set_msr,
7093         .get_segment_base = svm_get_segment_base,
7094         .get_segment = svm_get_segment,
7095         .set_segment = svm_set_segment,
7096         .get_cpl = svm_get_cpl,
7097         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
7098         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
7099         .decache_cr3 = svm_decache_cr3,
7100         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
7101         .set_cr0 = svm_set_cr0,
7102         .set_cr3 = svm_set_cr3,
7103         .set_cr4 = svm_set_cr4,
7104         .set_efer = svm_set_efer,
7105         .get_idt = svm_get_idt,
7106         .set_idt = svm_set_idt,
7107         .get_gdt = svm_get_gdt,
7108         .set_gdt = svm_set_gdt,
7109         .get_dr6 = svm_get_dr6,
7110         .set_dr6 = svm_set_dr6,
7111         .set_dr7 = svm_set_dr7,
7112         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
7113         .cache_reg = svm_cache_reg,
7114         .get_rflags = svm_get_rflags,
7115         .set_rflags = svm_set_rflags,
7116
7117         .tlb_flush = svm_flush_tlb,
7118         .tlb_flush_gva = svm_flush_tlb_gva,
7119
7120         .run = svm_vcpu_run,
7121         .handle_exit = handle_exit,
7122         .skip_emulated_instruction = skip_emulated_instruction,
7123         .set_interrupt_shadow = svm_set_interrupt_shadow,
7124         .get_interrupt_shadow = svm_get_interrupt_shadow,
7125         .patch_hypercall = svm_patch_hypercall,
7126         .set_irq = svm_set_irq,
7127         .set_nmi = svm_inject_nmi,
7128         .queue_exception = svm_queue_exception,
7129         .cancel_injection = svm_cancel_injection,
7130         .interrupt_allowed = svm_interrupt_allowed,
7131         .nmi_allowed = svm_nmi_allowed,
7132         .get_nmi_mask = svm_get_nmi_mask,
7133         .set_nmi_mask = svm_set_nmi_mask,
7134         .enable_nmi_window = enable_nmi_window,
7135         .enable_irq_window = enable_irq_window,
7136         .update_cr8_intercept = update_cr8_intercept,
7137         .set_virtual_apic_mode = svm_set_virtual_apic_mode,
7138         .get_enable_apicv = svm_get_enable_apicv,
7139         .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
7140         .load_eoi_exitmap = svm_load_eoi_exitmap,
7141         .hwapic_irr_update = svm_hwapic_irr_update,
7142         .hwapic_isr_update = svm_hwapic_isr_update,
7143         .sync_pir_to_irr = kvm_lapic_find_highest_irr,
7144         .apicv_post_state_restore = avic_post_state_restore,
7145
7146         .set_tss_addr = svm_set_tss_addr,
7147         .set_identity_map_addr = svm_set_identity_map_addr,
7148         .get_tdp_level = get_npt_level,
7149         .get_mt_mask = svm_get_mt_mask,
7150
7151         .get_exit_info = svm_get_exit_info,
7152
7153         .get_lpage_level = svm_get_lpage_level,
7154
7155         .cpuid_update = svm_cpuid_update,
7156
7157         .rdtscp_supported = svm_rdtscp_supported,
7158         .invpcid_supported = svm_invpcid_supported,
7159         .mpx_supported = svm_mpx_supported,
7160         .xsaves_supported = svm_xsaves_supported,
7161         .umip_emulated = svm_umip_emulated,
7162
7163         .set_supported_cpuid = svm_set_supported_cpuid,
7164
7165         .has_wbinvd_exit = svm_has_wbinvd_exit,
7166
7167         .read_l1_tsc_offset = svm_read_l1_tsc_offset,
7168         .write_l1_tsc_offset = svm_write_l1_tsc_offset,
7169
7170         .set_tdp_cr3 = set_tdp_cr3,
7171
7172         .check_intercept = svm_check_intercept,
7173         .handle_external_intr = svm_handle_external_intr,
7174
7175         .request_immediate_exit = __kvm_request_immediate_exit,
7176
7177         .sched_in = svm_sched_in,
7178
7179         .pmu_ops = &amd_pmu_ops,
7180         .deliver_posted_interrupt = svm_deliver_avic_intr,
7181         .update_pi_irte = svm_update_pi_irte,
7182         .setup_mce = svm_setup_mce,
7183
7184         .smi_allowed = svm_smi_allowed,
7185         .pre_enter_smm = svm_pre_enter_smm,
7186         .pre_leave_smm = svm_pre_leave_smm,
7187         .enable_smi_window = enable_smi_window,
7188
7189         .mem_enc_op = svm_mem_enc_op,
7190         .mem_enc_reg_region = svm_register_enc_region,
7191         .mem_enc_unreg_region = svm_unregister_enc_region,
7192
7193         .nested_enable_evmcs = nested_enable_evmcs,
7194         .nested_get_evmcs_version = nested_get_evmcs_version,
7195 };
7196
7197 static int __init svm_init(void)
7198 {
7199         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
7200                         __alignof__(struct vcpu_svm), THIS_MODULE);
7201 }
7202
7203 static void __exit svm_exit(void)
7204 {
7205         kvm_exit();
7206 }
7207
7208 module_init(svm_init)
7209 module_exit(svm_exit)