]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/svm.c
389dfd7594eb82d219f16183f831c19b40c7a221
[linux.git] / arch / x86 / kvm / svm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM support
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *   Avi Kivity   <avi@qumranet.com>
13  */
14
15 #define pr_fmt(fmt) "SVM: " fmt
16
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23 #include "cpuid.h"
24 #include "pmu.h"
25
26 #include <linux/module.h>
27 #include <linux/mod_devicetable.h>
28 #include <linux/kernel.h>
29 #include <linux/vmalloc.h>
30 #include <linux/highmem.h>
31 #include <linux/sched.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/amd-iommu.h>
35 #include <linux/hashtable.h>
36 #include <linux/frame.h>
37 #include <linux/psp-sev.h>
38 #include <linux/file.h>
39 #include <linux/pagemap.h>
40 #include <linux/swap.h>
41
42 #include <asm/apic.h>
43 #include <asm/perf_event.h>
44 #include <asm/tlbflush.h>
45 #include <asm/desc.h>
46 #include <asm/debugreg.h>
47 #include <asm/kvm_para.h>
48 #include <asm/irq_remapping.h>
49 #include <asm/spec-ctrl.h>
50
51 #include <asm/virtext.h>
52 #include "trace.h"
53
54 #define __ex(x) __kvm_handle_fault_on_reboot(x)
55
56 MODULE_AUTHOR("Qumranet");
57 MODULE_LICENSE("GPL");
58
59 static const struct x86_cpu_id svm_cpu_id[] = {
60         X86_FEATURE_MATCH(X86_FEATURE_SVM),
61         {}
62 };
63 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
64
65 #define IOPM_ALLOC_ORDER 2
66 #define MSRPM_ALLOC_ORDER 1
67
68 #define SEG_TYPE_LDT 2
69 #define SEG_TYPE_BUSY_TSS16 3
70
71 #define SVM_FEATURE_LBRV           (1 <<  1)
72 #define SVM_FEATURE_SVML           (1 <<  2)
73 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
74 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
75 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
76 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
77 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
78
79 #define SVM_AVIC_DOORBELL       0xc001011b
80
81 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
82 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
83 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
84
85 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
86
87 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
88 #define TSC_RATIO_MIN           0x0000000000000001ULL
89 #define TSC_RATIO_MAX           0x000000ffffffffffULL
90
91 #define AVIC_HPA_MASK   ~((0xFFFULL << 52) | 0xFFF)
92
93 /*
94  * 0xff is broadcast, so the max index allowed for physical APIC ID
95  * table is 0xfe.  APIC IDs above 0xff are reserved.
96  */
97 #define AVIC_MAX_PHYSICAL_ID_COUNT      255
98
99 #define AVIC_UNACCEL_ACCESS_WRITE_MASK          1
100 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK         0xFF0
101 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK         0xFFFFFFFF
102
103 /* AVIC GATAG is encoded using VM and VCPU IDs */
104 #define AVIC_VCPU_ID_BITS               8
105 #define AVIC_VCPU_ID_MASK               ((1 << AVIC_VCPU_ID_BITS) - 1)
106
107 #define AVIC_VM_ID_BITS                 24
108 #define AVIC_VM_ID_NR                   (1 << AVIC_VM_ID_BITS)
109 #define AVIC_VM_ID_MASK                 ((1 << AVIC_VM_ID_BITS) - 1)
110
111 #define AVIC_GATAG(x, y)                (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
112                                                 (y & AVIC_VCPU_ID_MASK))
113 #define AVIC_GATAG_TO_VMID(x)           ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
114 #define AVIC_GATAG_TO_VCPUID(x)         (x & AVIC_VCPU_ID_MASK)
115
116 static bool erratum_383_found __read_mostly;
117
118 static const u32 host_save_user_msrs[] = {
119 #ifdef CONFIG_X86_64
120         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
121         MSR_FS_BASE,
122 #endif
123         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
124         MSR_TSC_AUX,
125 };
126
127 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
128
129 struct kvm_sev_info {
130         bool active;            /* SEV enabled guest */
131         unsigned int asid;      /* ASID used for this guest */
132         unsigned int handle;    /* SEV firmware handle */
133         int fd;                 /* SEV device fd */
134         unsigned long pages_locked; /* Number of pages locked */
135         struct list_head regions_list;  /* List of registered regions */
136 };
137
138 struct kvm_svm {
139         struct kvm kvm;
140
141         /* Struct members for AVIC */
142         u32 avic_vm_id;
143         struct page *avic_logical_id_table_page;
144         struct page *avic_physical_id_table_page;
145         struct hlist_node hnode;
146
147         struct kvm_sev_info sev_info;
148 };
149
150 struct kvm_vcpu;
151
152 struct nested_state {
153         struct vmcb *hsave;
154         u64 hsave_msr;
155         u64 vm_cr_msr;
156         u64 vmcb;
157
158         /* These are the merged vectors */
159         u32 *msrpm;
160
161         /* gpa pointers to the real vectors */
162         u64 vmcb_msrpm;
163         u64 vmcb_iopm;
164
165         /* A VMEXIT is required but not yet emulated */
166         bool exit_required;
167
168         /* cache for intercepts of the guest */
169         u32 intercept_cr;
170         u32 intercept_dr;
171         u32 intercept_exceptions;
172         u64 intercept;
173
174         /* Nested Paging related state */
175         u64 nested_cr3;
176 };
177
178 #define MSRPM_OFFSETS   16
179 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
180
181 /*
182  * Set osvw_len to higher value when updated Revision Guides
183  * are published and we know what the new status bits are
184  */
185 static uint64_t osvw_len = 4, osvw_status;
186
187 struct vcpu_svm {
188         struct kvm_vcpu vcpu;
189         struct vmcb *vmcb;
190         unsigned long vmcb_pa;
191         struct svm_cpu_data *svm_data;
192         uint64_t asid_generation;
193         uint64_t sysenter_esp;
194         uint64_t sysenter_eip;
195         uint64_t tsc_aux;
196
197         u64 msr_decfg;
198
199         u64 next_rip;
200
201         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
202         struct {
203                 u16 fs;
204                 u16 gs;
205                 u16 ldt;
206                 u64 gs_base;
207         } host;
208
209         u64 spec_ctrl;
210         /*
211          * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be
212          * translated into the appropriate L2_CFG bits on the host to
213          * perform speculative control.
214          */
215         u64 virt_spec_ctrl;
216
217         u32 *msrpm;
218
219         ulong nmi_iret_rip;
220
221         struct nested_state nested;
222
223         bool nmi_singlestep;
224         u64 nmi_singlestep_guest_rflags;
225
226         unsigned int3_injected;
227         unsigned long int3_rip;
228
229         /* cached guest cpuid flags for faster access */
230         bool nrips_enabled      : 1;
231
232         u32 ldr_reg;
233         u32 dfr_reg;
234         struct page *avic_backing_page;
235         u64 *avic_physical_id_cache;
236         bool avic_is_running;
237
238         /*
239          * Per-vcpu list of struct amd_svm_iommu_ir:
240          * This is used mainly to store interrupt remapping information used
241          * when update the vcpu affinity. This avoids the need to scan for
242          * IRTE and try to match ga_tag in the IOMMU driver.
243          */
244         struct list_head ir_list;
245         spinlock_t ir_list_lock;
246
247         /* which host CPU was used for running this vcpu */
248         unsigned int last_cpu;
249 };
250
251 /*
252  * This is a wrapper of struct amd_iommu_ir_data.
253  */
254 struct amd_svm_iommu_ir {
255         struct list_head node;  /* Used by SVM for per-vcpu ir_list */
256         void *data;             /* Storing pointer to struct amd_ir_data */
257 };
258
259 #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK    (0xFF)
260 #define AVIC_LOGICAL_ID_ENTRY_VALID_BIT                 31
261 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK                (1 << 31)
262
263 #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK    (0xFFULL)
264 #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK        (0xFFFFFFFFFFULL << 12)
265 #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK          (1ULL << 62)
266 #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK               (1ULL << 63)
267
268 static DEFINE_PER_CPU(u64, current_tsc_ratio);
269 #define TSC_RATIO_DEFAULT       0x0100000000ULL
270
271 #define MSR_INVALID                     0xffffffffU
272
273 static const struct svm_direct_access_msrs {
274         u32 index;   /* Index of the MSR */
275         bool always; /* True if intercept is always on */
276 } direct_access_msrs[] = {
277         { .index = MSR_STAR,                            .always = true  },
278         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
279 #ifdef CONFIG_X86_64
280         { .index = MSR_GS_BASE,                         .always = true  },
281         { .index = MSR_FS_BASE,                         .always = true  },
282         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
283         { .index = MSR_LSTAR,                           .always = true  },
284         { .index = MSR_CSTAR,                           .always = true  },
285         { .index = MSR_SYSCALL_MASK,                    .always = true  },
286 #endif
287         { .index = MSR_IA32_SPEC_CTRL,                  .always = false },
288         { .index = MSR_IA32_PRED_CMD,                   .always = false },
289         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
290         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
291         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
292         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
293         { .index = MSR_INVALID,                         .always = false },
294 };
295
296 /* enable NPT for AMD64 and X86 with PAE */
297 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
298 static bool npt_enabled = true;
299 #else
300 static bool npt_enabled;
301 #endif
302
303 /*
304  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
305  * pause_filter_count: On processors that support Pause filtering(indicated
306  *      by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
307  *      count value. On VMRUN this value is loaded into an internal counter.
308  *      Each time a pause instruction is executed, this counter is decremented
309  *      until it reaches zero at which time a #VMEXIT is generated if pause
310  *      intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
311  *      Intercept Filtering for more details.
312  *      This also indicate if ple logic enabled.
313  *
314  * pause_filter_thresh: In addition, some processor families support advanced
315  *      pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
316  *      the amount of time a guest is allowed to execute in a pause loop.
317  *      In this mode, a 16-bit pause filter threshold field is added in the
318  *      VMCB. The threshold value is a cycle count that is used to reset the
319  *      pause counter. As with simple pause filtering, VMRUN loads the pause
320  *      count value from VMCB into an internal counter. Then, on each pause
321  *      instruction the hardware checks the elapsed number of cycles since
322  *      the most recent pause instruction against the pause filter threshold.
323  *      If the elapsed cycle count is greater than the pause filter threshold,
324  *      then the internal pause count is reloaded from the VMCB and execution
325  *      continues. If the elapsed cycle count is less than the pause filter
326  *      threshold, then the internal pause count is decremented. If the count
327  *      value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
328  *      triggered. If advanced pause filtering is supported and pause filter
329  *      threshold field is set to zero, the filter will operate in the simpler,
330  *      count only mode.
331  */
332
333 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
334 module_param(pause_filter_thresh, ushort, 0444);
335
336 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
337 module_param(pause_filter_count, ushort, 0444);
338
339 /* Default doubles per-vcpu window every exit. */
340 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
341 module_param(pause_filter_count_grow, ushort, 0444);
342
343 /* Default resets per-vcpu window every exit to pause_filter_count. */
344 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
345 module_param(pause_filter_count_shrink, ushort, 0444);
346
347 /* Default is to compute the maximum so we can never overflow. */
348 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
349 module_param(pause_filter_count_max, ushort, 0444);
350
351 /* allow nested paging (virtualized MMU) for all guests */
352 static int npt = true;
353 module_param(npt, int, S_IRUGO);
354
355 /* allow nested virtualization in KVM/SVM */
356 static int nested = true;
357 module_param(nested, int, S_IRUGO);
358
359 /* enable / disable AVIC */
360 static int avic;
361 #ifdef CONFIG_X86_LOCAL_APIC
362 module_param(avic, int, S_IRUGO);
363 #endif
364
365 /* enable/disable Next RIP Save */
366 static int nrips = true;
367 module_param(nrips, int, 0444);
368
369 /* enable/disable Virtual VMLOAD VMSAVE */
370 static int vls = true;
371 module_param(vls, int, 0444);
372
373 /* enable/disable Virtual GIF */
374 static int vgif = true;
375 module_param(vgif, int, 0444);
376
377 /* enable/disable SEV support */
378 static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
379 module_param(sev, int, 0444);
380
381 static bool __read_mostly dump_invalid_vmcb = 0;
382 module_param(dump_invalid_vmcb, bool, 0644);
383
384 static u8 rsm_ins_bytes[] = "\x0f\xaa";
385
386 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
387 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa);
388 static void svm_complete_interrupts(struct vcpu_svm *svm);
389
390 static int nested_svm_exit_handled(struct vcpu_svm *svm);
391 static int nested_svm_intercept(struct vcpu_svm *svm);
392 static int nested_svm_vmexit(struct vcpu_svm *svm);
393 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
394                                       bool has_error_code, u32 error_code);
395
396 enum {
397         VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
398                             pause filter count */
399         VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
400         VMCB_ASID,       /* ASID */
401         VMCB_INTR,       /* int_ctl, int_vector */
402         VMCB_NPT,        /* npt_en, nCR3, gPAT */
403         VMCB_CR,         /* CR0, CR3, CR4, EFER */
404         VMCB_DR,         /* DR6, DR7 */
405         VMCB_DT,         /* GDT, IDT */
406         VMCB_SEG,        /* CS, DS, SS, ES, CPL */
407         VMCB_CR2,        /* CR2 only */
408         VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
409         VMCB_AVIC,       /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
410                           * AVIC PHYSICAL_TABLE pointer,
411                           * AVIC LOGICAL_TABLE pointer
412                           */
413         VMCB_DIRTY_MAX,
414 };
415
416 /* TPR and CR2 are always written before VMRUN */
417 #define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
418
419 #define VMCB_AVIC_APIC_BAR_MASK         0xFFFFFFFFFF000ULL
420
421 static DEFINE_MUTEX(sev_deactivate_lock);
422 static DEFINE_MUTEX(sev_bitmap_lock);
423 static unsigned int max_sev_asid;
424 static unsigned int min_sev_asid;
425 static unsigned long *sev_asid_bitmap;
426 #define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT)
427
428 struct enc_region {
429         struct list_head list;
430         unsigned long npages;
431         struct page **pages;
432         unsigned long uaddr;
433         unsigned long size;
434 };
435
436
437 static inline struct kvm_svm *to_kvm_svm(struct kvm *kvm)
438 {
439         return container_of(kvm, struct kvm_svm, kvm);
440 }
441
442 static inline bool svm_sev_enabled(void)
443 {
444         return IS_ENABLED(CONFIG_KVM_AMD_SEV) ? max_sev_asid : 0;
445 }
446
447 static inline bool sev_guest(struct kvm *kvm)
448 {
449 #ifdef CONFIG_KVM_AMD_SEV
450         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
451
452         return sev->active;
453 #else
454         return false;
455 #endif
456 }
457
458 static inline int sev_get_asid(struct kvm *kvm)
459 {
460         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
461
462         return sev->asid;
463 }
464
465 static inline void mark_all_dirty(struct vmcb *vmcb)
466 {
467         vmcb->control.clean = 0;
468 }
469
470 static inline void mark_all_clean(struct vmcb *vmcb)
471 {
472         vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
473                                & ~VMCB_ALWAYS_DIRTY_MASK;
474 }
475
476 static inline void mark_dirty(struct vmcb *vmcb, int bit)
477 {
478         vmcb->control.clean &= ~(1 << bit);
479 }
480
481 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
482 {
483         return container_of(vcpu, struct vcpu_svm, vcpu);
484 }
485
486 static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
487 {
488         svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
489         mark_dirty(svm->vmcb, VMCB_AVIC);
490 }
491
492 static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
493 {
494         struct vcpu_svm *svm = to_svm(vcpu);
495         u64 *entry = svm->avic_physical_id_cache;
496
497         if (!entry)
498                 return false;
499
500         return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
501 }
502
503 static void recalc_intercepts(struct vcpu_svm *svm)
504 {
505         struct vmcb_control_area *c, *h;
506         struct nested_state *g;
507
508         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
509
510         if (!is_guest_mode(&svm->vcpu))
511                 return;
512
513         c = &svm->vmcb->control;
514         h = &svm->nested.hsave->control;
515         g = &svm->nested;
516
517         c->intercept_cr = h->intercept_cr | g->intercept_cr;
518         c->intercept_dr = h->intercept_dr | g->intercept_dr;
519         c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
520         c->intercept = h->intercept | g->intercept;
521 }
522
523 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
524 {
525         if (is_guest_mode(&svm->vcpu))
526                 return svm->nested.hsave;
527         else
528                 return svm->vmcb;
529 }
530
531 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
532 {
533         struct vmcb *vmcb = get_host_vmcb(svm);
534
535         vmcb->control.intercept_cr |= (1U << bit);
536
537         recalc_intercepts(svm);
538 }
539
540 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
541 {
542         struct vmcb *vmcb = get_host_vmcb(svm);
543
544         vmcb->control.intercept_cr &= ~(1U << bit);
545
546         recalc_intercepts(svm);
547 }
548
549 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
550 {
551         struct vmcb *vmcb = get_host_vmcb(svm);
552
553         return vmcb->control.intercept_cr & (1U << bit);
554 }
555
556 static inline void set_dr_intercepts(struct vcpu_svm *svm)
557 {
558         struct vmcb *vmcb = get_host_vmcb(svm);
559
560         vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
561                 | (1 << INTERCEPT_DR1_READ)
562                 | (1 << INTERCEPT_DR2_READ)
563                 | (1 << INTERCEPT_DR3_READ)
564                 | (1 << INTERCEPT_DR4_READ)
565                 | (1 << INTERCEPT_DR5_READ)
566                 | (1 << INTERCEPT_DR6_READ)
567                 | (1 << INTERCEPT_DR7_READ)
568                 | (1 << INTERCEPT_DR0_WRITE)
569                 | (1 << INTERCEPT_DR1_WRITE)
570                 | (1 << INTERCEPT_DR2_WRITE)
571                 | (1 << INTERCEPT_DR3_WRITE)
572                 | (1 << INTERCEPT_DR4_WRITE)
573                 | (1 << INTERCEPT_DR5_WRITE)
574                 | (1 << INTERCEPT_DR6_WRITE)
575                 | (1 << INTERCEPT_DR7_WRITE);
576
577         recalc_intercepts(svm);
578 }
579
580 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
581 {
582         struct vmcb *vmcb = get_host_vmcb(svm);
583
584         vmcb->control.intercept_dr = 0;
585
586         recalc_intercepts(svm);
587 }
588
589 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
590 {
591         struct vmcb *vmcb = get_host_vmcb(svm);
592
593         vmcb->control.intercept_exceptions |= (1U << bit);
594
595         recalc_intercepts(svm);
596 }
597
598 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
599 {
600         struct vmcb *vmcb = get_host_vmcb(svm);
601
602         vmcb->control.intercept_exceptions &= ~(1U << bit);
603
604         recalc_intercepts(svm);
605 }
606
607 static inline void set_intercept(struct vcpu_svm *svm, int bit)
608 {
609         struct vmcb *vmcb = get_host_vmcb(svm);
610
611         vmcb->control.intercept |= (1ULL << bit);
612
613         recalc_intercepts(svm);
614 }
615
616 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
617 {
618         struct vmcb *vmcb = get_host_vmcb(svm);
619
620         vmcb->control.intercept &= ~(1ULL << bit);
621
622         recalc_intercepts(svm);
623 }
624
625 static inline bool vgif_enabled(struct vcpu_svm *svm)
626 {
627         return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK);
628 }
629
630 static inline void enable_gif(struct vcpu_svm *svm)
631 {
632         if (vgif_enabled(svm))
633                 svm->vmcb->control.int_ctl |= V_GIF_MASK;
634         else
635                 svm->vcpu.arch.hflags |= HF_GIF_MASK;
636 }
637
638 static inline void disable_gif(struct vcpu_svm *svm)
639 {
640         if (vgif_enabled(svm))
641                 svm->vmcb->control.int_ctl &= ~V_GIF_MASK;
642         else
643                 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
644 }
645
646 static inline bool gif_set(struct vcpu_svm *svm)
647 {
648         if (vgif_enabled(svm))
649                 return !!(svm->vmcb->control.int_ctl & V_GIF_MASK);
650         else
651                 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
652 }
653
654 static unsigned long iopm_base;
655
656 struct kvm_ldttss_desc {
657         u16 limit0;
658         u16 base0;
659         unsigned base1:8, type:5, dpl:2, p:1;
660         unsigned limit1:4, zero0:3, g:1, base2:8;
661         u32 base3;
662         u32 zero1;
663 } __attribute__((packed));
664
665 struct svm_cpu_data {
666         int cpu;
667
668         u64 asid_generation;
669         u32 max_asid;
670         u32 next_asid;
671         u32 min_asid;
672         struct kvm_ldttss_desc *tss_desc;
673
674         struct page *save_area;
675         struct vmcb *current_vmcb;
676
677         /* index = sev_asid, value = vmcb pointer */
678         struct vmcb **sev_vmcbs;
679 };
680
681 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
682
683 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
684
685 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
686 #define MSRS_RANGE_SIZE 2048
687 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
688
689 static u32 svm_msrpm_offset(u32 msr)
690 {
691         u32 offset;
692         int i;
693
694         for (i = 0; i < NUM_MSR_MAPS; i++) {
695                 if (msr < msrpm_ranges[i] ||
696                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
697                         continue;
698
699                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
700                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
701
702                 /* Now we have the u8 offset - but need the u32 offset */
703                 return offset / 4;
704         }
705
706         /* MSR not in any range */
707         return MSR_INVALID;
708 }
709
710 #define MAX_INST_SIZE 15
711
712 static inline void clgi(void)
713 {
714         asm volatile (__ex("clgi"));
715 }
716
717 static inline void stgi(void)
718 {
719         asm volatile (__ex("stgi"));
720 }
721
722 static inline void invlpga(unsigned long addr, u32 asid)
723 {
724         asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr));
725 }
726
727 static int get_npt_level(struct kvm_vcpu *vcpu)
728 {
729 #ifdef CONFIG_X86_64
730         return PT64_ROOT_4LEVEL;
731 #else
732         return PT32E_ROOT_LEVEL;
733 #endif
734 }
735
736 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
737 {
738         vcpu->arch.efer = efer;
739         if (!npt_enabled && !(efer & EFER_LMA))
740                 efer &= ~EFER_LME;
741
742         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
743         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
744 }
745
746 static int is_external_interrupt(u32 info)
747 {
748         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
749         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
750 }
751
752 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
753 {
754         struct vcpu_svm *svm = to_svm(vcpu);
755         u32 ret = 0;
756
757         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
758                 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
759         return ret;
760 }
761
762 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
763 {
764         struct vcpu_svm *svm = to_svm(vcpu);
765
766         if (mask == 0)
767                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
768         else
769                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
770
771 }
772
773 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
774 {
775         struct vcpu_svm *svm = to_svm(vcpu);
776
777         if (nrips && svm->vmcb->control.next_rip != 0) {
778                 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
779                 svm->next_rip = svm->vmcb->control.next_rip;
780         }
781
782         if (!svm->next_rip) {
783                 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
784                         return 0;
785         } else {
786                 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
787                         pr_err("%s: ip 0x%lx next 0x%llx\n",
788                                __func__, kvm_rip_read(vcpu), svm->next_rip);
789                 kvm_rip_write(vcpu, svm->next_rip);
790         }
791         svm_set_interrupt_shadow(vcpu, 0);
792
793         return 1;
794 }
795
796 static void svm_queue_exception(struct kvm_vcpu *vcpu)
797 {
798         struct vcpu_svm *svm = to_svm(vcpu);
799         unsigned nr = vcpu->arch.exception.nr;
800         bool has_error_code = vcpu->arch.exception.has_error_code;
801         bool reinject = vcpu->arch.exception.injected;
802         u32 error_code = vcpu->arch.exception.error_code;
803
804         /*
805          * If we are within a nested VM we'd better #VMEXIT and let the guest
806          * handle the exception
807          */
808         if (!reinject &&
809             nested_svm_check_exception(svm, nr, has_error_code, error_code))
810                 return;
811
812         kvm_deliver_exception_payload(&svm->vcpu);
813
814         if (nr == BP_VECTOR && !nrips) {
815                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
816
817                 /*
818                  * For guest debugging where we have to reinject #BP if some
819                  * INT3 is guest-owned:
820                  * Emulate nRIP by moving RIP forward. Will fail if injection
821                  * raises a fault that is not intercepted. Still better than
822                  * failing in all cases.
823                  */
824                 (void)skip_emulated_instruction(&svm->vcpu);
825                 rip = kvm_rip_read(&svm->vcpu);
826                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
827                 svm->int3_injected = rip - old_rip;
828         }
829
830         svm->vmcb->control.event_inj = nr
831                 | SVM_EVTINJ_VALID
832                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
833                 | SVM_EVTINJ_TYPE_EXEPT;
834         svm->vmcb->control.event_inj_err = error_code;
835 }
836
837 static void svm_init_erratum_383(void)
838 {
839         u32 low, high;
840         int err;
841         u64 val;
842
843         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
844                 return;
845
846         /* Use _safe variants to not break nested virtualization */
847         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
848         if (err)
849                 return;
850
851         val |= (1ULL << 47);
852
853         low  = lower_32_bits(val);
854         high = upper_32_bits(val);
855
856         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
857
858         erratum_383_found = true;
859 }
860
861 static void svm_init_osvw(struct kvm_vcpu *vcpu)
862 {
863         /*
864          * Guests should see errata 400 and 415 as fixed (assuming that
865          * HLT and IO instructions are intercepted).
866          */
867         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
868         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
869
870         /*
871          * By increasing VCPU's osvw.length to 3 we are telling the guest that
872          * all osvw.status bits inside that length, including bit 0 (which is
873          * reserved for erratum 298), are valid. However, if host processor's
874          * osvw_len is 0 then osvw_status[0] carries no information. We need to
875          * be conservative here and therefore we tell the guest that erratum 298
876          * is present (because we really don't know).
877          */
878         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
879                 vcpu->arch.osvw.status |= 1;
880 }
881
882 static int has_svm(void)
883 {
884         const char *msg;
885
886         if (!cpu_has_svm(&msg)) {
887                 printk(KERN_INFO "has_svm: %s\n", msg);
888                 return 0;
889         }
890
891         return 1;
892 }
893
894 static void svm_hardware_disable(void)
895 {
896         /* Make sure we clean up behind us */
897         if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
898                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
899
900         cpu_svm_disable();
901
902         amd_pmu_disable_virt();
903 }
904
905 static int svm_hardware_enable(void)
906 {
907
908         struct svm_cpu_data *sd;
909         uint64_t efer;
910         struct desc_struct *gdt;
911         int me = raw_smp_processor_id();
912
913         rdmsrl(MSR_EFER, efer);
914         if (efer & EFER_SVME)
915                 return -EBUSY;
916
917         if (!has_svm()) {
918                 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
919                 return -EINVAL;
920         }
921         sd = per_cpu(svm_data, me);
922         if (!sd) {
923                 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
924                 return -EINVAL;
925         }
926
927         sd->asid_generation = 1;
928         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
929         sd->next_asid = sd->max_asid + 1;
930         sd->min_asid = max_sev_asid + 1;
931
932         gdt = get_current_gdt_rw();
933         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
934
935         wrmsrl(MSR_EFER, efer | EFER_SVME);
936
937         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
938
939         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
940                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
941                 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
942         }
943
944
945         /*
946          * Get OSVW bits.
947          *
948          * Note that it is possible to have a system with mixed processor
949          * revisions and therefore different OSVW bits. If bits are not the same
950          * on different processors then choose the worst case (i.e. if erratum
951          * is present on one processor and not on another then assume that the
952          * erratum is present everywhere).
953          */
954         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
955                 uint64_t len, status = 0;
956                 int err;
957
958                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
959                 if (!err)
960                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
961                                                       &err);
962
963                 if (err)
964                         osvw_status = osvw_len = 0;
965                 else {
966                         if (len < osvw_len)
967                                 osvw_len = len;
968                         osvw_status |= status;
969                         osvw_status &= (1ULL << osvw_len) - 1;
970                 }
971         } else
972                 osvw_status = osvw_len = 0;
973
974         svm_init_erratum_383();
975
976         amd_pmu_enable_virt();
977
978         return 0;
979 }
980
981 static void svm_cpu_uninit(int cpu)
982 {
983         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
984
985         if (!sd)
986                 return;
987
988         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
989         kfree(sd->sev_vmcbs);
990         __free_page(sd->save_area);
991         kfree(sd);
992 }
993
994 static int svm_cpu_init(int cpu)
995 {
996         struct svm_cpu_data *sd;
997         int r;
998
999         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
1000         if (!sd)
1001                 return -ENOMEM;
1002         sd->cpu = cpu;
1003         r = -ENOMEM;
1004         sd->save_area = alloc_page(GFP_KERNEL);
1005         if (!sd->save_area)
1006                 goto err_1;
1007
1008         if (svm_sev_enabled()) {
1009                 r = -ENOMEM;
1010                 sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
1011                                               sizeof(void *),
1012                                               GFP_KERNEL);
1013                 if (!sd->sev_vmcbs)
1014                         goto err_1;
1015         }
1016
1017         per_cpu(svm_data, cpu) = sd;
1018
1019         return 0;
1020
1021 err_1:
1022         kfree(sd);
1023         return r;
1024
1025 }
1026
1027 static bool valid_msr_intercept(u32 index)
1028 {
1029         int i;
1030
1031         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
1032                 if (direct_access_msrs[i].index == index)
1033                         return true;
1034
1035         return false;
1036 }
1037
1038 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr)
1039 {
1040         u8 bit_write;
1041         unsigned long tmp;
1042         u32 offset;
1043         u32 *msrpm;
1044
1045         msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
1046                                       to_svm(vcpu)->msrpm;
1047
1048         offset    = svm_msrpm_offset(msr);
1049         bit_write = 2 * (msr & 0x0f) + 1;
1050         tmp       = msrpm[offset];
1051
1052         BUG_ON(offset == MSR_INVALID);
1053
1054         return !!test_bit(bit_write,  &tmp);
1055 }
1056
1057 static void set_msr_interception(u32 *msrpm, unsigned msr,
1058                                  int read, int write)
1059 {
1060         u8 bit_read, bit_write;
1061         unsigned long tmp;
1062         u32 offset;
1063
1064         /*
1065          * If this warning triggers extend the direct_access_msrs list at the
1066          * beginning of the file
1067          */
1068         WARN_ON(!valid_msr_intercept(msr));
1069
1070         offset    = svm_msrpm_offset(msr);
1071         bit_read  = 2 * (msr & 0x0f);
1072         bit_write = 2 * (msr & 0x0f) + 1;
1073         tmp       = msrpm[offset];
1074
1075         BUG_ON(offset == MSR_INVALID);
1076
1077         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
1078         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
1079
1080         msrpm[offset] = tmp;
1081 }
1082
1083 static void svm_vcpu_init_msrpm(u32 *msrpm)
1084 {
1085         int i;
1086
1087         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
1088
1089         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1090                 if (!direct_access_msrs[i].always)
1091                         continue;
1092
1093                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
1094         }
1095 }
1096
1097 static void add_msr_offset(u32 offset)
1098 {
1099         int i;
1100
1101         for (i = 0; i < MSRPM_OFFSETS; ++i) {
1102
1103                 /* Offset already in list? */
1104                 if (msrpm_offsets[i] == offset)
1105                         return;
1106
1107                 /* Slot used by another offset? */
1108                 if (msrpm_offsets[i] != MSR_INVALID)
1109                         continue;
1110
1111                 /* Add offset to list */
1112                 msrpm_offsets[i] = offset;
1113
1114                 return;
1115         }
1116
1117         /*
1118          * If this BUG triggers the msrpm_offsets table has an overflow. Just
1119          * increase MSRPM_OFFSETS in this case.
1120          */
1121         BUG();
1122 }
1123
1124 static void init_msrpm_offsets(void)
1125 {
1126         int i;
1127
1128         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
1129
1130         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1131                 u32 offset;
1132
1133                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
1134                 BUG_ON(offset == MSR_INVALID);
1135
1136                 add_msr_offset(offset);
1137         }
1138 }
1139
1140 static void svm_enable_lbrv(struct vcpu_svm *svm)
1141 {
1142         u32 *msrpm = svm->msrpm;
1143
1144         svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1145         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1146         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1147         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1148         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1149 }
1150
1151 static void svm_disable_lbrv(struct vcpu_svm *svm)
1152 {
1153         u32 *msrpm = svm->msrpm;
1154
1155         svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1156         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1157         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1158         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1159         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1160 }
1161
1162 static void disable_nmi_singlestep(struct vcpu_svm *svm)
1163 {
1164         svm->nmi_singlestep = false;
1165
1166         if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1167                 /* Clear our flags if they were not set by the guest */
1168                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1169                         svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1170                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1171                         svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1172         }
1173 }
1174
1175 /* Note:
1176  * This hash table is used to map VM_ID to a struct kvm_svm,
1177  * when handling AMD IOMMU GALOG notification to schedule in
1178  * a particular vCPU.
1179  */
1180 #define SVM_VM_DATA_HASH_BITS   8
1181 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
1182 static u32 next_vm_id = 0;
1183 static bool next_vm_id_wrapped = 0;
1184 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
1185
1186 /* Note:
1187  * This function is called from IOMMU driver to notify
1188  * SVM to schedule in a particular vCPU of a particular VM.
1189  */
1190 static int avic_ga_log_notifier(u32 ga_tag)
1191 {
1192         unsigned long flags;
1193         struct kvm_svm *kvm_svm;
1194         struct kvm_vcpu *vcpu = NULL;
1195         u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
1196         u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
1197
1198         pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
1199
1200         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1201         hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
1202                 if (kvm_svm->avic_vm_id != vm_id)
1203                         continue;
1204                 vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
1205                 break;
1206         }
1207         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1208
1209         /* Note:
1210          * At this point, the IOMMU should have already set the pending
1211          * bit in the vAPIC backing page. So, we just need to schedule
1212          * in the vcpu.
1213          */
1214         if (vcpu)
1215                 kvm_vcpu_wake_up(vcpu);
1216
1217         return 0;
1218 }
1219
1220 static __init int sev_hardware_setup(void)
1221 {
1222         struct sev_user_data_status *status;
1223         int rc;
1224
1225         /* Maximum number of encrypted guests supported simultaneously */
1226         max_sev_asid = cpuid_ecx(0x8000001F);
1227
1228         if (!max_sev_asid)
1229                 return 1;
1230
1231         /* Minimum ASID value that should be used for SEV guest */
1232         min_sev_asid = cpuid_edx(0x8000001F);
1233
1234         /* Initialize SEV ASID bitmap */
1235         sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1236         if (!sev_asid_bitmap)
1237                 return 1;
1238
1239         status = kmalloc(sizeof(*status), GFP_KERNEL);
1240         if (!status)
1241                 return 1;
1242
1243         /*
1244          * Check SEV platform status.
1245          *
1246          * PLATFORM_STATUS can be called in any state, if we failed to query
1247          * the PLATFORM status then either PSP firmware does not support SEV
1248          * feature or SEV firmware is dead.
1249          */
1250         rc = sev_platform_status(status, NULL);
1251         if (rc)
1252                 goto err;
1253
1254         pr_info("SEV supported\n");
1255
1256 err:
1257         kfree(status);
1258         return rc;
1259 }
1260
1261 static void grow_ple_window(struct kvm_vcpu *vcpu)
1262 {
1263         struct vcpu_svm *svm = to_svm(vcpu);
1264         struct vmcb_control_area *control = &svm->vmcb->control;
1265         int old = control->pause_filter_count;
1266
1267         control->pause_filter_count = __grow_ple_window(old,
1268                                                         pause_filter_count,
1269                                                         pause_filter_count_grow,
1270                                                         pause_filter_count_max);
1271
1272         if (control->pause_filter_count != old) {
1273                 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1274                 trace_kvm_ple_window_update(vcpu->vcpu_id,
1275                                             control->pause_filter_count, old);
1276         }
1277 }
1278
1279 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1280 {
1281         struct vcpu_svm *svm = to_svm(vcpu);
1282         struct vmcb_control_area *control = &svm->vmcb->control;
1283         int old = control->pause_filter_count;
1284
1285         control->pause_filter_count =
1286                                 __shrink_ple_window(old,
1287                                                     pause_filter_count,
1288                                                     pause_filter_count_shrink,
1289                                                     pause_filter_count);
1290         if (control->pause_filter_count != old) {
1291                 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1292                 trace_kvm_ple_window_update(vcpu->vcpu_id,
1293                                             control->pause_filter_count, old);
1294         }
1295 }
1296
1297 static __init int svm_hardware_setup(void)
1298 {
1299         int cpu;
1300         struct page *iopm_pages;
1301         void *iopm_va;
1302         int r;
1303
1304         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1305
1306         if (!iopm_pages)
1307                 return -ENOMEM;
1308
1309         iopm_va = page_address(iopm_pages);
1310         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1311         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1312
1313         init_msrpm_offsets();
1314
1315         if (boot_cpu_has(X86_FEATURE_NX))
1316                 kvm_enable_efer_bits(EFER_NX);
1317
1318         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1319                 kvm_enable_efer_bits(EFER_FFXSR);
1320
1321         if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1322                 kvm_has_tsc_control = true;
1323                 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1324                 kvm_tsc_scaling_ratio_frac_bits = 32;
1325         }
1326
1327         /* Check for pause filtering support */
1328         if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1329                 pause_filter_count = 0;
1330                 pause_filter_thresh = 0;
1331         } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
1332                 pause_filter_thresh = 0;
1333         }
1334
1335         if (nested) {
1336                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1337                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1338         }
1339
1340         if (sev) {
1341                 if (boot_cpu_has(X86_FEATURE_SEV) &&
1342                     IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
1343                         r = sev_hardware_setup();
1344                         if (r)
1345                                 sev = false;
1346                 } else {
1347                         sev = false;
1348                 }
1349         }
1350
1351         for_each_possible_cpu(cpu) {
1352                 r = svm_cpu_init(cpu);
1353                 if (r)
1354                         goto err;
1355         }
1356
1357         if (!boot_cpu_has(X86_FEATURE_NPT))
1358                 npt_enabled = false;
1359
1360         if (npt_enabled && !npt) {
1361                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
1362                 npt_enabled = false;
1363         }
1364
1365         if (npt_enabled) {
1366                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
1367                 kvm_enable_tdp();
1368         } else
1369                 kvm_disable_tdp();
1370
1371         if (nrips) {
1372                 if (!boot_cpu_has(X86_FEATURE_NRIPS))
1373                         nrips = false;
1374         }
1375
1376         if (avic) {
1377                 if (!npt_enabled ||
1378                     !boot_cpu_has(X86_FEATURE_AVIC) ||
1379                     !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1380                         avic = false;
1381                 } else {
1382                         pr_info("AVIC enabled\n");
1383
1384                         amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1385                 }
1386         }
1387
1388         if (vls) {
1389                 if (!npt_enabled ||
1390                     !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1391                     !IS_ENABLED(CONFIG_X86_64)) {
1392                         vls = false;
1393                 } else {
1394                         pr_info("Virtual VMLOAD VMSAVE supported\n");
1395                 }
1396         }
1397
1398         if (vgif) {
1399                 if (!boot_cpu_has(X86_FEATURE_VGIF))
1400                         vgif = false;
1401                 else
1402                         pr_info("Virtual GIF supported\n");
1403         }
1404
1405         return 0;
1406
1407 err:
1408         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1409         iopm_base = 0;
1410         return r;
1411 }
1412
1413 static __exit void svm_hardware_unsetup(void)
1414 {
1415         int cpu;
1416
1417         if (svm_sev_enabled())
1418                 bitmap_free(sev_asid_bitmap);
1419
1420         for_each_possible_cpu(cpu)
1421                 svm_cpu_uninit(cpu);
1422
1423         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1424         iopm_base = 0;
1425 }
1426
1427 static void init_seg(struct vmcb_seg *seg)
1428 {
1429         seg->selector = 0;
1430         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1431                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1432         seg->limit = 0xffff;
1433         seg->base = 0;
1434 }
1435
1436 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1437 {
1438         seg->selector = 0;
1439         seg->attrib = SVM_SELECTOR_P_MASK | type;
1440         seg->limit = 0xffff;
1441         seg->base = 0;
1442 }
1443
1444 static u64 svm_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1445 {
1446         struct vcpu_svm *svm = to_svm(vcpu);
1447
1448         if (is_guest_mode(vcpu))
1449                 return svm->nested.hsave->control.tsc_offset;
1450
1451         return vcpu->arch.tsc_offset;
1452 }
1453
1454 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1455 {
1456         struct vcpu_svm *svm = to_svm(vcpu);
1457         u64 g_tsc_offset = 0;
1458
1459         if (is_guest_mode(vcpu)) {
1460                 /* Write L1's TSC offset.  */
1461                 g_tsc_offset = svm->vmcb->control.tsc_offset -
1462                                svm->nested.hsave->control.tsc_offset;
1463                 svm->nested.hsave->control.tsc_offset = offset;
1464         }
1465
1466         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1467                                    svm->vmcb->control.tsc_offset - g_tsc_offset,
1468                                    offset);
1469
1470         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1471
1472         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1473         return svm->vmcb->control.tsc_offset;
1474 }
1475
1476 static void avic_init_vmcb(struct vcpu_svm *svm)
1477 {
1478         struct vmcb *vmcb = svm->vmcb;
1479         struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
1480         phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
1481         phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
1482         phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
1483
1484         vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1485         vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1486         vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1487         vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1488         vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1489 }
1490
1491 static void init_vmcb(struct vcpu_svm *svm)
1492 {
1493         struct vmcb_control_area *control = &svm->vmcb->control;
1494         struct vmcb_save_area *save = &svm->vmcb->save;
1495
1496         svm->vcpu.arch.hflags = 0;
1497
1498         set_cr_intercept(svm, INTERCEPT_CR0_READ);
1499         set_cr_intercept(svm, INTERCEPT_CR3_READ);
1500         set_cr_intercept(svm, INTERCEPT_CR4_READ);
1501         set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1502         set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1503         set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1504         if (!kvm_vcpu_apicv_active(&svm->vcpu))
1505                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1506
1507         set_dr_intercepts(svm);
1508
1509         set_exception_intercept(svm, PF_VECTOR);
1510         set_exception_intercept(svm, UD_VECTOR);
1511         set_exception_intercept(svm, MC_VECTOR);
1512         set_exception_intercept(svm, AC_VECTOR);
1513         set_exception_intercept(svm, DB_VECTOR);
1514         /*
1515          * Guest access to VMware backdoor ports could legitimately
1516          * trigger #GP because of TSS I/O permission bitmap.
1517          * We intercept those #GP and allow access to them anyway
1518          * as VMware does.
1519          */
1520         if (enable_vmware_backdoor)
1521                 set_exception_intercept(svm, GP_VECTOR);
1522
1523         set_intercept(svm, INTERCEPT_INTR);
1524         set_intercept(svm, INTERCEPT_NMI);
1525         set_intercept(svm, INTERCEPT_SMI);
1526         set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1527         set_intercept(svm, INTERCEPT_RDPMC);
1528         set_intercept(svm, INTERCEPT_CPUID);
1529         set_intercept(svm, INTERCEPT_INVD);
1530         set_intercept(svm, INTERCEPT_INVLPG);
1531         set_intercept(svm, INTERCEPT_INVLPGA);
1532         set_intercept(svm, INTERCEPT_IOIO_PROT);
1533         set_intercept(svm, INTERCEPT_MSR_PROT);
1534         set_intercept(svm, INTERCEPT_TASK_SWITCH);
1535         set_intercept(svm, INTERCEPT_SHUTDOWN);
1536         set_intercept(svm, INTERCEPT_VMRUN);
1537         set_intercept(svm, INTERCEPT_VMMCALL);
1538         set_intercept(svm, INTERCEPT_VMLOAD);
1539         set_intercept(svm, INTERCEPT_VMSAVE);
1540         set_intercept(svm, INTERCEPT_STGI);
1541         set_intercept(svm, INTERCEPT_CLGI);
1542         set_intercept(svm, INTERCEPT_SKINIT);
1543         set_intercept(svm, INTERCEPT_WBINVD);
1544         set_intercept(svm, INTERCEPT_XSETBV);
1545         set_intercept(svm, INTERCEPT_RDPRU);
1546         set_intercept(svm, INTERCEPT_RSM);
1547
1548         if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1549                 set_intercept(svm, INTERCEPT_MONITOR);
1550                 set_intercept(svm, INTERCEPT_MWAIT);
1551         }
1552
1553         if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1554                 set_intercept(svm, INTERCEPT_HLT);
1555
1556         control->iopm_base_pa = __sme_set(iopm_base);
1557         control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1558         control->int_ctl = V_INTR_MASKING_MASK;
1559
1560         init_seg(&save->es);
1561         init_seg(&save->ss);
1562         init_seg(&save->ds);
1563         init_seg(&save->fs);
1564         init_seg(&save->gs);
1565
1566         save->cs.selector = 0xf000;
1567         save->cs.base = 0xffff0000;
1568         /* Executable/Readable Code Segment */
1569         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1570                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1571         save->cs.limit = 0xffff;
1572
1573         save->gdtr.limit = 0xffff;
1574         save->idtr.limit = 0xffff;
1575
1576         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1577         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1578
1579         svm_set_efer(&svm->vcpu, 0);
1580         save->dr6 = 0xffff0ff0;
1581         kvm_set_rflags(&svm->vcpu, 2);
1582         save->rip = 0x0000fff0;
1583         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1584
1585         /*
1586          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1587          * It also updates the guest-visible cr0 value.
1588          */
1589         svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1590         kvm_mmu_reset_context(&svm->vcpu);
1591
1592         save->cr4 = X86_CR4_PAE;
1593         /* rdx = ?? */
1594
1595         if (npt_enabled) {
1596                 /* Setup VMCB for Nested Paging */
1597                 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1598                 clr_intercept(svm, INTERCEPT_INVLPG);
1599                 clr_exception_intercept(svm, PF_VECTOR);
1600                 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1601                 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1602                 save->g_pat = svm->vcpu.arch.pat;
1603                 save->cr3 = 0;
1604                 save->cr4 = 0;
1605         }
1606         svm->asid_generation = 0;
1607
1608         svm->nested.vmcb = 0;
1609         svm->vcpu.arch.hflags = 0;
1610
1611         if (pause_filter_count) {
1612                 control->pause_filter_count = pause_filter_count;
1613                 if (pause_filter_thresh)
1614                         control->pause_filter_thresh = pause_filter_thresh;
1615                 set_intercept(svm, INTERCEPT_PAUSE);
1616         } else {
1617                 clr_intercept(svm, INTERCEPT_PAUSE);
1618         }
1619
1620         if (kvm_vcpu_apicv_active(&svm->vcpu))
1621                 avic_init_vmcb(svm);
1622
1623         /*
1624          * If hardware supports Virtual VMLOAD VMSAVE then enable it
1625          * in VMCB and clear intercepts to avoid #VMEXIT.
1626          */
1627         if (vls) {
1628                 clr_intercept(svm, INTERCEPT_VMLOAD);
1629                 clr_intercept(svm, INTERCEPT_VMSAVE);
1630                 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1631         }
1632
1633         if (vgif) {
1634                 clr_intercept(svm, INTERCEPT_STGI);
1635                 clr_intercept(svm, INTERCEPT_CLGI);
1636                 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1637         }
1638
1639         if (sev_guest(svm->vcpu.kvm)) {
1640                 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1641                 clr_exception_intercept(svm, UD_VECTOR);
1642         }
1643
1644         mark_all_dirty(svm->vmcb);
1645
1646         enable_gif(svm);
1647
1648 }
1649
1650 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
1651                                        unsigned int index)
1652 {
1653         u64 *avic_physical_id_table;
1654         struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
1655
1656         if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1657                 return NULL;
1658
1659         avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
1660
1661         return &avic_physical_id_table[index];
1662 }
1663
1664 /**
1665  * Note:
1666  * AVIC hardware walks the nested page table to check permissions,
1667  * but does not use the SPA address specified in the leaf page
1668  * table entry since it uses  address in the AVIC_BACKING_PAGE pointer
1669  * field of the VMCB. Therefore, we set up the
1670  * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1671  */
1672 static int avic_init_access_page(struct kvm_vcpu *vcpu)
1673 {
1674         struct kvm *kvm = vcpu->kvm;
1675         int ret = 0;
1676
1677         mutex_lock(&kvm->slots_lock);
1678         if (kvm->arch.apic_access_page_done)
1679                 goto out;
1680
1681         ret = __x86_set_memory_region(kvm,
1682                                       APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1683                                       APIC_DEFAULT_PHYS_BASE,
1684                                       PAGE_SIZE);
1685         if (ret)
1686                 goto out;
1687
1688         kvm->arch.apic_access_page_done = true;
1689 out:
1690         mutex_unlock(&kvm->slots_lock);
1691         return ret;
1692 }
1693
1694 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1695 {
1696         int ret;
1697         u64 *entry, new_entry;
1698         int id = vcpu->vcpu_id;
1699         struct vcpu_svm *svm = to_svm(vcpu);
1700
1701         ret = avic_init_access_page(vcpu);
1702         if (ret)
1703                 return ret;
1704
1705         if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1706                 return -EINVAL;
1707
1708         if (!svm->vcpu.arch.apic->regs)
1709                 return -EINVAL;
1710
1711         svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1712
1713         /* Setting AVIC backing page address in the phy APIC ID table */
1714         entry = avic_get_physical_id_entry(vcpu, id);
1715         if (!entry)
1716                 return -EINVAL;
1717
1718         new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
1719                               AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1720                               AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
1721         WRITE_ONCE(*entry, new_entry);
1722
1723         svm->avic_physical_id_cache = entry;
1724
1725         return 0;
1726 }
1727
1728 static void sev_asid_free(int asid)
1729 {
1730         struct svm_cpu_data *sd;
1731         int cpu, pos;
1732
1733         mutex_lock(&sev_bitmap_lock);
1734
1735         pos = asid - 1;
1736         __clear_bit(pos, sev_asid_bitmap);
1737
1738         for_each_possible_cpu(cpu) {
1739                 sd = per_cpu(svm_data, cpu);
1740                 sd->sev_vmcbs[pos] = NULL;
1741         }
1742
1743         mutex_unlock(&sev_bitmap_lock);
1744 }
1745
1746 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
1747 {
1748         struct sev_data_decommission *decommission;
1749         struct sev_data_deactivate *data;
1750
1751         if (!handle)
1752                 return;
1753
1754         data = kzalloc(sizeof(*data), GFP_KERNEL);
1755         if (!data)
1756                 return;
1757
1758         /* deactivate handle */
1759         data->handle = handle;
1760
1761         /*
1762          * Guard against a parallel DEACTIVATE command before the DF_FLUSH
1763          * command has completed.
1764          */
1765         mutex_lock(&sev_deactivate_lock);
1766
1767         sev_guest_deactivate(data, NULL);
1768
1769         wbinvd_on_all_cpus();
1770         sev_guest_df_flush(NULL);
1771
1772         mutex_unlock(&sev_deactivate_lock);
1773
1774         kfree(data);
1775
1776         decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
1777         if (!decommission)
1778                 return;
1779
1780         /* decommission handle */
1781         decommission->handle = handle;
1782         sev_guest_decommission(decommission, NULL);
1783
1784         kfree(decommission);
1785 }
1786
1787 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
1788                                     unsigned long ulen, unsigned long *n,
1789                                     int write)
1790 {
1791         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1792         unsigned long npages, npinned, size;
1793         unsigned long locked, lock_limit;
1794         struct page **pages;
1795         unsigned long first, last;
1796
1797         if (ulen == 0 || uaddr + ulen < uaddr)
1798                 return NULL;
1799
1800         /* Calculate number of pages. */
1801         first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
1802         last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
1803         npages = (last - first + 1);
1804
1805         locked = sev->pages_locked + npages;
1806         lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1807         if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
1808                 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
1809                 return NULL;
1810         }
1811
1812         /* Avoid using vmalloc for smaller buffers. */
1813         size = npages * sizeof(struct page *);
1814         if (size > PAGE_SIZE)
1815                 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO,
1816                                   PAGE_KERNEL);
1817         else
1818                 pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
1819
1820         if (!pages)
1821                 return NULL;
1822
1823         /* Pin the user virtual address. */
1824         npinned = get_user_pages_fast(uaddr, npages, FOLL_WRITE, pages);
1825         if (npinned != npages) {
1826                 pr_err("SEV: Failure locking %lu pages.\n", npages);
1827                 goto err;
1828         }
1829
1830         *n = npages;
1831         sev->pages_locked = locked;
1832
1833         return pages;
1834
1835 err:
1836         if (npinned > 0)
1837                 release_pages(pages, npinned);
1838
1839         kvfree(pages);
1840         return NULL;
1841 }
1842
1843 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
1844                              unsigned long npages)
1845 {
1846         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1847
1848         release_pages(pages, npages);
1849         kvfree(pages);
1850         sev->pages_locked -= npages;
1851 }
1852
1853 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
1854 {
1855         uint8_t *page_virtual;
1856         unsigned long i;
1857
1858         if (npages == 0 || pages == NULL)
1859                 return;
1860
1861         for (i = 0; i < npages; i++) {
1862                 page_virtual = kmap_atomic(pages[i]);
1863                 clflush_cache_range(page_virtual, PAGE_SIZE);
1864                 kunmap_atomic(page_virtual);
1865         }
1866 }
1867
1868 static void __unregister_enc_region_locked(struct kvm *kvm,
1869                                            struct enc_region *region)
1870 {
1871         /*
1872          * The guest may change the memory encryption attribute from C=0 -> C=1
1873          * or vice versa for this memory range. Lets make sure caches are
1874          * flushed to ensure that guest data gets written into memory with
1875          * correct C-bit.
1876          */
1877         sev_clflush_pages(region->pages, region->npages);
1878
1879         sev_unpin_memory(kvm, region->pages, region->npages);
1880         list_del(&region->list);
1881         kfree(region);
1882 }
1883
1884 static struct kvm *svm_vm_alloc(void)
1885 {
1886         struct kvm_svm *kvm_svm = __vmalloc(sizeof(struct kvm_svm),
1887                                             GFP_KERNEL_ACCOUNT | __GFP_ZERO,
1888                                             PAGE_KERNEL);
1889         return &kvm_svm->kvm;
1890 }
1891
1892 static void svm_vm_free(struct kvm *kvm)
1893 {
1894         vfree(to_kvm_svm(kvm));
1895 }
1896
1897 static void sev_vm_destroy(struct kvm *kvm)
1898 {
1899         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1900         struct list_head *head = &sev->regions_list;
1901         struct list_head *pos, *q;
1902
1903         if (!sev_guest(kvm))
1904                 return;
1905
1906         mutex_lock(&kvm->lock);
1907
1908         /*
1909          * if userspace was terminated before unregistering the memory regions
1910          * then lets unpin all the registered memory.
1911          */
1912         if (!list_empty(head)) {
1913                 list_for_each_safe(pos, q, head) {
1914                         __unregister_enc_region_locked(kvm,
1915                                 list_entry(pos, struct enc_region, list));
1916                 }
1917         }
1918
1919         mutex_unlock(&kvm->lock);
1920
1921         sev_unbind_asid(kvm, sev->handle);
1922         sev_asid_free(sev->asid);
1923 }
1924
1925 static void avic_vm_destroy(struct kvm *kvm)
1926 {
1927         unsigned long flags;
1928         struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1929
1930         if (!avic)
1931                 return;
1932
1933         if (kvm_svm->avic_logical_id_table_page)
1934                 __free_page(kvm_svm->avic_logical_id_table_page);
1935         if (kvm_svm->avic_physical_id_table_page)
1936                 __free_page(kvm_svm->avic_physical_id_table_page);
1937
1938         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1939         hash_del(&kvm_svm->hnode);
1940         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1941 }
1942
1943 static void svm_vm_destroy(struct kvm *kvm)
1944 {
1945         avic_vm_destroy(kvm);
1946         sev_vm_destroy(kvm);
1947 }
1948
1949 static int avic_vm_init(struct kvm *kvm)
1950 {
1951         unsigned long flags;
1952         int err = -ENOMEM;
1953         struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1954         struct kvm_svm *k2;
1955         struct page *p_page;
1956         struct page *l_page;
1957         u32 vm_id;
1958
1959         if (!avic)
1960                 return 0;
1961
1962         /* Allocating physical APIC ID table (4KB) */
1963         p_page = alloc_page(GFP_KERNEL_ACCOUNT);
1964         if (!p_page)
1965                 goto free_avic;
1966
1967         kvm_svm->avic_physical_id_table_page = p_page;
1968         clear_page(page_address(p_page));
1969
1970         /* Allocating logical APIC ID table (4KB) */
1971         l_page = alloc_page(GFP_KERNEL_ACCOUNT);
1972         if (!l_page)
1973                 goto free_avic;
1974
1975         kvm_svm->avic_logical_id_table_page = l_page;
1976         clear_page(page_address(l_page));
1977
1978         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1979  again:
1980         vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
1981         if (vm_id == 0) { /* id is 1-based, zero is not okay */
1982                 next_vm_id_wrapped = 1;
1983                 goto again;
1984         }
1985         /* Is it still in use? Only possible if wrapped at least once */
1986         if (next_vm_id_wrapped) {
1987                 hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
1988                         if (k2->avic_vm_id == vm_id)
1989                                 goto again;
1990                 }
1991         }
1992         kvm_svm->avic_vm_id = vm_id;
1993         hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
1994         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1995
1996         return 0;
1997
1998 free_avic:
1999         avic_vm_destroy(kvm);
2000         return err;
2001 }
2002
2003 static inline int
2004 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
2005 {
2006         int ret = 0;
2007         unsigned long flags;
2008         struct amd_svm_iommu_ir *ir;
2009         struct vcpu_svm *svm = to_svm(vcpu);
2010
2011         if (!kvm_arch_has_assigned_device(vcpu->kvm))
2012                 return 0;
2013
2014         /*
2015          * Here, we go through the per-vcpu ir_list to update all existing
2016          * interrupt remapping table entry targeting this vcpu.
2017          */
2018         spin_lock_irqsave(&svm->ir_list_lock, flags);
2019
2020         if (list_empty(&svm->ir_list))
2021                 goto out;
2022
2023         list_for_each_entry(ir, &svm->ir_list, node) {
2024                 ret = amd_iommu_update_ga(cpu, r, ir->data);
2025                 if (ret)
2026                         break;
2027         }
2028 out:
2029         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
2030         return ret;
2031 }
2032
2033 static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2034 {
2035         u64 entry;
2036         /* ID = 0xff (broadcast), ID > 0xff (reserved) */
2037         int h_physical_id = kvm_cpu_get_apicid(cpu);
2038         struct vcpu_svm *svm = to_svm(vcpu);
2039
2040         if (!kvm_vcpu_apicv_active(vcpu))
2041                 return;
2042
2043         /*
2044          * Since the host physical APIC id is 8 bits,
2045          * we can support host APIC ID upto 255.
2046          */
2047         if (WARN_ON(h_physical_id > AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK))
2048                 return;
2049
2050         entry = READ_ONCE(*(svm->avic_physical_id_cache));
2051         WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
2052
2053         entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
2054         entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
2055
2056         entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2057         if (svm->avic_is_running)
2058                 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2059
2060         WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2061         avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
2062                                         svm->avic_is_running);
2063 }
2064
2065 static void avic_vcpu_put(struct kvm_vcpu *vcpu)
2066 {
2067         u64 entry;
2068         struct vcpu_svm *svm = to_svm(vcpu);
2069
2070         if (!kvm_vcpu_apicv_active(vcpu))
2071                 return;
2072
2073         entry = READ_ONCE(*(svm->avic_physical_id_cache));
2074         if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
2075                 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
2076
2077         entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2078         WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2079 }
2080
2081 /**
2082  * This function is called during VCPU halt/unhalt.
2083  */
2084 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
2085 {
2086         struct vcpu_svm *svm = to_svm(vcpu);
2087
2088         svm->avic_is_running = is_run;
2089         if (is_run)
2090                 avic_vcpu_load(vcpu, vcpu->cpu);
2091         else
2092                 avic_vcpu_put(vcpu);
2093 }
2094
2095 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
2096 {
2097         struct vcpu_svm *svm = to_svm(vcpu);
2098         u32 dummy;
2099         u32 eax = 1;
2100
2101         vcpu->arch.microcode_version = 0x01000065;
2102         svm->spec_ctrl = 0;
2103         svm->virt_spec_ctrl = 0;
2104
2105         if (!init_event) {
2106                 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
2107                                            MSR_IA32_APICBASE_ENABLE;
2108                 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
2109                         svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
2110         }
2111         init_vmcb(svm);
2112
2113         kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true);
2114         kvm_rdx_write(vcpu, eax);
2115
2116         if (kvm_vcpu_apicv_active(vcpu) && !init_event)
2117                 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
2118 }
2119
2120 static int avic_init_vcpu(struct vcpu_svm *svm)
2121 {
2122         int ret;
2123
2124         if (!kvm_vcpu_apicv_active(&svm->vcpu))
2125                 return 0;
2126
2127         ret = avic_init_backing_page(&svm->vcpu);
2128         if (ret)
2129                 return ret;
2130
2131         INIT_LIST_HEAD(&svm->ir_list);
2132         spin_lock_init(&svm->ir_list_lock);
2133         svm->dfr_reg = APIC_DFR_FLAT;
2134
2135         return ret;
2136 }
2137
2138 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
2139 {
2140         struct vcpu_svm *svm;
2141         struct page *page;
2142         struct page *msrpm_pages;
2143         struct page *hsave_page;
2144         struct page *nested_msrpm_pages;
2145         int err;
2146
2147         BUILD_BUG_ON_MSG(offsetof(struct vcpu_svm, vcpu) != 0,
2148                 "struct kvm_vcpu must be at offset 0 for arch usercopy region");
2149
2150         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
2151         if (!svm) {
2152                 err = -ENOMEM;
2153                 goto out;
2154         }
2155
2156         svm->vcpu.arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
2157                                                      GFP_KERNEL_ACCOUNT);
2158         if (!svm->vcpu.arch.user_fpu) {
2159                 printk(KERN_ERR "kvm: failed to allocate kvm userspace's fpu\n");
2160                 err = -ENOMEM;
2161                 goto free_partial_svm;
2162         }
2163
2164         svm->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
2165                                                      GFP_KERNEL_ACCOUNT);
2166         if (!svm->vcpu.arch.guest_fpu) {
2167                 printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
2168                 err = -ENOMEM;
2169                 goto free_user_fpu;
2170         }
2171
2172         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
2173         if (err)
2174                 goto free_svm;
2175
2176         err = -ENOMEM;
2177         page = alloc_page(GFP_KERNEL_ACCOUNT);
2178         if (!page)
2179                 goto uninit;
2180
2181         msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
2182         if (!msrpm_pages)
2183                 goto free_page1;
2184
2185         nested_msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
2186         if (!nested_msrpm_pages)
2187                 goto free_page2;
2188
2189         hsave_page = alloc_page(GFP_KERNEL_ACCOUNT);
2190         if (!hsave_page)
2191                 goto free_page3;
2192
2193         err = avic_init_vcpu(svm);
2194         if (err)
2195                 goto free_page4;
2196
2197         /* We initialize this flag to true to make sure that the is_running
2198          * bit would be set the first time the vcpu is loaded.
2199          */
2200         svm->avic_is_running = true;
2201
2202         svm->nested.hsave = page_address(hsave_page);
2203
2204         svm->msrpm = page_address(msrpm_pages);
2205         svm_vcpu_init_msrpm(svm->msrpm);
2206
2207         svm->nested.msrpm = page_address(nested_msrpm_pages);
2208         svm_vcpu_init_msrpm(svm->nested.msrpm);
2209
2210         svm->vmcb = page_address(page);
2211         clear_page(svm->vmcb);
2212         svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
2213         svm->asid_generation = 0;
2214         init_vmcb(svm);
2215
2216         svm_init_osvw(&svm->vcpu);
2217
2218         return &svm->vcpu;
2219
2220 free_page4:
2221         __free_page(hsave_page);
2222 free_page3:
2223         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
2224 free_page2:
2225         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
2226 free_page1:
2227         __free_page(page);
2228 uninit:
2229         kvm_vcpu_uninit(&svm->vcpu);
2230 free_svm:
2231         kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu);
2232 free_user_fpu:
2233         kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.user_fpu);
2234 free_partial_svm:
2235         kmem_cache_free(kvm_vcpu_cache, svm);
2236 out:
2237         return ERR_PTR(err);
2238 }
2239
2240 static void svm_clear_current_vmcb(struct vmcb *vmcb)
2241 {
2242         int i;
2243
2244         for_each_online_cpu(i)
2245                 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
2246 }
2247
2248 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
2249 {
2250         struct vcpu_svm *svm = to_svm(vcpu);
2251
2252         /*
2253          * The vmcb page can be recycled, causing a false negative in
2254          * svm_vcpu_load(). So, ensure that no logical CPU has this
2255          * vmcb page recorded as its current vmcb.
2256          */
2257         svm_clear_current_vmcb(svm->vmcb);
2258
2259         __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
2260         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
2261         __free_page(virt_to_page(svm->nested.hsave));
2262         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
2263         kvm_vcpu_uninit(vcpu);
2264         kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.user_fpu);
2265         kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu);
2266         kmem_cache_free(kvm_vcpu_cache, svm);
2267 }
2268
2269 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2270 {
2271         struct vcpu_svm *svm = to_svm(vcpu);
2272         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2273         int i;
2274
2275         if (unlikely(cpu != vcpu->cpu)) {
2276                 svm->asid_generation = 0;
2277                 mark_all_dirty(svm->vmcb);
2278         }
2279
2280 #ifdef CONFIG_X86_64
2281         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
2282 #endif
2283         savesegment(fs, svm->host.fs);
2284         savesegment(gs, svm->host.gs);
2285         svm->host.ldt = kvm_read_ldt();
2286
2287         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2288                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2289
2290         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
2291                 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2292                 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
2293                         __this_cpu_write(current_tsc_ratio, tsc_ratio);
2294                         wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
2295                 }
2296         }
2297         /* This assumes that the kernel never uses MSR_TSC_AUX */
2298         if (static_cpu_has(X86_FEATURE_RDTSCP))
2299                 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2300
2301         if (sd->current_vmcb != svm->vmcb) {
2302                 sd->current_vmcb = svm->vmcb;
2303                 indirect_branch_prediction_barrier();
2304         }
2305         avic_vcpu_load(vcpu, cpu);
2306 }
2307
2308 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
2309 {
2310         struct vcpu_svm *svm = to_svm(vcpu);
2311         int i;
2312
2313         avic_vcpu_put(vcpu);
2314
2315         ++vcpu->stat.host_state_reload;
2316         kvm_load_ldt(svm->host.ldt);
2317 #ifdef CONFIG_X86_64
2318         loadsegment(fs, svm->host.fs);
2319         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
2320         load_gs_index(svm->host.gs);
2321 #else
2322 #ifdef CONFIG_X86_32_LAZY_GS
2323         loadsegment(gs, svm->host.gs);
2324 #endif
2325 #endif
2326         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2327                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2328 }
2329
2330 static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
2331 {
2332         avic_set_running(vcpu, false);
2333 }
2334
2335 static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
2336 {
2337         avic_set_running(vcpu, true);
2338 }
2339
2340 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
2341 {
2342         struct vcpu_svm *svm = to_svm(vcpu);
2343         unsigned long rflags = svm->vmcb->save.rflags;
2344
2345         if (svm->nmi_singlestep) {
2346                 /* Hide our flags if they were not set by the guest */
2347                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
2348                         rflags &= ~X86_EFLAGS_TF;
2349                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
2350                         rflags &= ~X86_EFLAGS_RF;
2351         }
2352         return rflags;
2353 }
2354
2355 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2356 {
2357         if (to_svm(vcpu)->nmi_singlestep)
2358                 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2359
2360        /*
2361         * Any change of EFLAGS.VM is accompanied by a reload of SS
2362         * (caused by either a task switch or an inter-privilege IRET),
2363         * so we do not need to update the CPL here.
2364         */
2365         to_svm(vcpu)->vmcb->save.rflags = rflags;
2366 }
2367
2368 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2369 {
2370         switch (reg) {
2371         case VCPU_EXREG_PDPTR:
2372                 BUG_ON(!npt_enabled);
2373                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
2374                 break;
2375         default:
2376                 BUG();
2377         }
2378 }
2379
2380 static void svm_set_vintr(struct vcpu_svm *svm)
2381 {
2382         set_intercept(svm, INTERCEPT_VINTR);
2383 }
2384
2385 static void svm_clear_vintr(struct vcpu_svm *svm)
2386 {
2387         clr_intercept(svm, INTERCEPT_VINTR);
2388 }
2389
2390 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
2391 {
2392         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2393
2394         switch (seg) {
2395         case VCPU_SREG_CS: return &save->cs;
2396         case VCPU_SREG_DS: return &save->ds;
2397         case VCPU_SREG_ES: return &save->es;
2398         case VCPU_SREG_FS: return &save->fs;
2399         case VCPU_SREG_GS: return &save->gs;
2400         case VCPU_SREG_SS: return &save->ss;
2401         case VCPU_SREG_TR: return &save->tr;
2402         case VCPU_SREG_LDTR: return &save->ldtr;
2403         }
2404         BUG();
2405         return NULL;
2406 }
2407
2408 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2409 {
2410         struct vmcb_seg *s = svm_seg(vcpu, seg);
2411
2412         return s->base;
2413 }
2414
2415 static void svm_get_segment(struct kvm_vcpu *vcpu,
2416                             struct kvm_segment *var, int seg)
2417 {
2418         struct vmcb_seg *s = svm_seg(vcpu, seg);
2419
2420         var->base = s->base;
2421         var->limit = s->limit;
2422         var->selector = s->selector;
2423         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
2424         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
2425         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
2426         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
2427         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
2428         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
2429         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
2430
2431         /*
2432          * AMD CPUs circa 2014 track the G bit for all segments except CS.
2433          * However, the SVM spec states that the G bit is not observed by the
2434          * CPU, and some VMware virtual CPUs drop the G bit for all segments.
2435          * So let's synthesize a legal G bit for all segments, this helps
2436          * running KVM nested. It also helps cross-vendor migration, because
2437          * Intel's vmentry has a check on the 'G' bit.
2438          */
2439         var->g = s->limit > 0xfffff;
2440
2441         /*
2442          * AMD's VMCB does not have an explicit unusable field, so emulate it
2443          * for cross vendor migration purposes by "not present"
2444          */
2445         var->unusable = !var->present;
2446
2447         switch (seg) {
2448         case VCPU_SREG_TR:
2449                 /*
2450                  * Work around a bug where the busy flag in the tr selector
2451                  * isn't exposed
2452                  */
2453                 var->type |= 0x2;
2454                 break;
2455         case VCPU_SREG_DS:
2456         case VCPU_SREG_ES:
2457         case VCPU_SREG_FS:
2458         case VCPU_SREG_GS:
2459                 /*
2460                  * The accessed bit must always be set in the segment
2461                  * descriptor cache, although it can be cleared in the
2462                  * descriptor, the cached bit always remains at 1. Since
2463                  * Intel has a check on this, set it here to support
2464                  * cross-vendor migration.
2465                  */
2466                 if (!var->unusable)
2467                         var->type |= 0x1;
2468                 break;
2469         case VCPU_SREG_SS:
2470                 /*
2471                  * On AMD CPUs sometimes the DB bit in the segment
2472                  * descriptor is left as 1, although the whole segment has
2473                  * been made unusable. Clear it here to pass an Intel VMX
2474                  * entry check when cross vendor migrating.
2475                  */
2476                 if (var->unusable)
2477                         var->db = 0;
2478                 /* This is symmetric with svm_set_segment() */
2479                 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
2480                 break;
2481         }
2482 }
2483
2484 static int svm_get_cpl(struct kvm_vcpu *vcpu)
2485 {
2486         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2487
2488         return save->cpl;
2489 }
2490
2491 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2492 {
2493         struct vcpu_svm *svm = to_svm(vcpu);
2494
2495         dt->size = svm->vmcb->save.idtr.limit;
2496         dt->address = svm->vmcb->save.idtr.base;
2497 }
2498
2499 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2500 {
2501         struct vcpu_svm *svm = to_svm(vcpu);
2502
2503         svm->vmcb->save.idtr.limit = dt->size;
2504         svm->vmcb->save.idtr.base = dt->address ;
2505         mark_dirty(svm->vmcb, VMCB_DT);
2506 }
2507
2508 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2509 {
2510         struct vcpu_svm *svm = to_svm(vcpu);
2511
2512         dt->size = svm->vmcb->save.gdtr.limit;
2513         dt->address = svm->vmcb->save.gdtr.base;
2514 }
2515
2516 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2517 {
2518         struct vcpu_svm *svm = to_svm(vcpu);
2519
2520         svm->vmcb->save.gdtr.limit = dt->size;
2521         svm->vmcb->save.gdtr.base = dt->address ;
2522         mark_dirty(svm->vmcb, VMCB_DT);
2523 }
2524
2525 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2526 {
2527 }
2528
2529 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
2530 {
2531 }
2532
2533 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2534 {
2535 }
2536
2537 static void update_cr0_intercept(struct vcpu_svm *svm)
2538 {
2539         ulong gcr0 = svm->vcpu.arch.cr0;
2540         u64 *hcr0 = &svm->vmcb->save.cr0;
2541
2542         *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
2543                 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
2544
2545         mark_dirty(svm->vmcb, VMCB_CR);
2546
2547         if (gcr0 == *hcr0) {
2548                 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
2549                 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2550         } else {
2551                 set_cr_intercept(svm, INTERCEPT_CR0_READ);
2552                 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2553         }
2554 }
2555
2556 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2557 {
2558         struct vcpu_svm *svm = to_svm(vcpu);
2559
2560 #ifdef CONFIG_X86_64
2561         if (vcpu->arch.efer & EFER_LME) {
2562                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
2563                         vcpu->arch.efer |= EFER_LMA;
2564                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
2565                 }
2566
2567                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
2568                         vcpu->arch.efer &= ~EFER_LMA;
2569                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
2570                 }
2571         }
2572 #endif
2573         vcpu->arch.cr0 = cr0;
2574
2575         if (!npt_enabled)
2576                 cr0 |= X86_CR0_PG | X86_CR0_WP;
2577
2578         /*
2579          * re-enable caching here because the QEMU bios
2580          * does not do it - this results in some delay at
2581          * reboot
2582          */
2583         if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
2584                 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
2585         svm->vmcb->save.cr0 = cr0;
2586         mark_dirty(svm->vmcb, VMCB_CR);
2587         update_cr0_intercept(svm);
2588 }
2589
2590 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2591 {
2592         unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
2593         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
2594
2595         if (cr4 & X86_CR4_VMXE)
2596                 return 1;
2597
2598         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
2599                 svm_flush_tlb(vcpu, true);
2600
2601         vcpu->arch.cr4 = cr4;
2602         if (!npt_enabled)
2603                 cr4 |= X86_CR4_PAE;
2604         cr4 |= host_cr4_mce;
2605         to_svm(vcpu)->vmcb->save.cr4 = cr4;
2606         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
2607         return 0;
2608 }
2609
2610 static void svm_set_segment(struct kvm_vcpu *vcpu,
2611                             struct kvm_segment *var, int seg)
2612 {
2613         struct vcpu_svm *svm = to_svm(vcpu);
2614         struct vmcb_seg *s = svm_seg(vcpu, seg);
2615
2616         s->base = var->base;
2617         s->limit = var->limit;
2618         s->selector = var->selector;
2619         s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2620         s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2621         s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2622         s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2623         s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2624         s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2625         s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2626         s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2627
2628         /*
2629          * This is always accurate, except if SYSRET returned to a segment
2630          * with SS.DPL != 3.  Intel does not have this quirk, and always
2631          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2632          * would entail passing the CPL to userspace and back.
2633          */
2634         if (seg == VCPU_SREG_SS)
2635                 /* This is symmetric with svm_get_segment() */
2636                 svm->vmcb->save.cpl = (var->dpl & 3);
2637
2638         mark_dirty(svm->vmcb, VMCB_SEG);
2639 }
2640
2641 static void update_bp_intercept(struct kvm_vcpu *vcpu)
2642 {
2643         struct vcpu_svm *svm = to_svm(vcpu);
2644
2645         clr_exception_intercept(svm, BP_VECTOR);
2646
2647         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2648                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2649                         set_exception_intercept(svm, BP_VECTOR);
2650         } else
2651                 vcpu->guest_debug = 0;
2652 }
2653
2654 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2655 {
2656         if (sd->next_asid > sd->max_asid) {
2657                 ++sd->asid_generation;
2658                 sd->next_asid = sd->min_asid;
2659                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2660         }
2661
2662         svm->asid_generation = sd->asid_generation;
2663         svm->vmcb->control.asid = sd->next_asid++;
2664
2665         mark_dirty(svm->vmcb, VMCB_ASID);
2666 }
2667
2668 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2669 {
2670         return to_svm(vcpu)->vmcb->save.dr6;
2671 }
2672
2673 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2674 {
2675         struct vcpu_svm *svm = to_svm(vcpu);
2676
2677         svm->vmcb->save.dr6 = value;
2678         mark_dirty(svm->vmcb, VMCB_DR);
2679 }
2680
2681 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2682 {
2683         struct vcpu_svm *svm = to_svm(vcpu);
2684
2685         get_debugreg(vcpu->arch.db[0], 0);
2686         get_debugreg(vcpu->arch.db[1], 1);
2687         get_debugreg(vcpu->arch.db[2], 2);
2688         get_debugreg(vcpu->arch.db[3], 3);
2689         vcpu->arch.dr6 = svm_get_dr6(vcpu);
2690         vcpu->arch.dr7 = svm->vmcb->save.dr7;
2691
2692         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2693         set_dr_intercepts(svm);
2694 }
2695
2696 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2697 {
2698         struct vcpu_svm *svm = to_svm(vcpu);
2699
2700         svm->vmcb->save.dr7 = value;
2701         mark_dirty(svm->vmcb, VMCB_DR);
2702 }
2703
2704 static int pf_interception(struct vcpu_svm *svm)
2705 {
2706         u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2707         u64 error_code = svm->vmcb->control.exit_info_1;
2708
2709         return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
2710                         static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2711                         svm->vmcb->control.insn_bytes : NULL,
2712                         svm->vmcb->control.insn_len);
2713 }
2714
2715 static int npf_interception(struct vcpu_svm *svm)
2716 {
2717         u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2718         u64 error_code = svm->vmcb->control.exit_info_1;
2719
2720         trace_kvm_page_fault(fault_address, error_code);
2721         return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
2722                         static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2723                         svm->vmcb->control.insn_bytes : NULL,
2724                         svm->vmcb->control.insn_len);
2725 }
2726
2727 static int db_interception(struct vcpu_svm *svm)
2728 {
2729         struct kvm_run *kvm_run = svm->vcpu.run;
2730         struct kvm_vcpu *vcpu = &svm->vcpu;
2731
2732         if (!(svm->vcpu.guest_debug &
2733               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2734                 !svm->nmi_singlestep) {
2735                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2736                 return 1;
2737         }
2738
2739         if (svm->nmi_singlestep) {
2740                 disable_nmi_singlestep(svm);
2741                 /* Make sure we check for pending NMIs upon entry */
2742                 kvm_make_request(KVM_REQ_EVENT, vcpu);
2743         }
2744
2745         if (svm->vcpu.guest_debug &
2746             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2747                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2748                 kvm_run->debug.arch.pc =
2749                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2750                 kvm_run->debug.arch.exception = DB_VECTOR;
2751                 return 0;
2752         }
2753
2754         return 1;
2755 }
2756
2757 static int bp_interception(struct vcpu_svm *svm)
2758 {
2759         struct kvm_run *kvm_run = svm->vcpu.run;
2760
2761         kvm_run->exit_reason = KVM_EXIT_DEBUG;
2762         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2763         kvm_run->debug.arch.exception = BP_VECTOR;
2764         return 0;
2765 }
2766
2767 static int ud_interception(struct vcpu_svm *svm)
2768 {
2769         return handle_ud(&svm->vcpu);
2770 }
2771
2772 static int ac_interception(struct vcpu_svm *svm)
2773 {
2774         kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2775         return 1;
2776 }
2777
2778 static int gp_interception(struct vcpu_svm *svm)
2779 {
2780         struct kvm_vcpu *vcpu = &svm->vcpu;
2781         u32 error_code = svm->vmcb->control.exit_info_1;
2782
2783         WARN_ON_ONCE(!enable_vmware_backdoor);
2784
2785         /*
2786          * VMware backdoor emulation on #GP interception only handles IN{S},
2787          * OUT{S}, and RDPMC, none of which generate a non-zero error code.
2788          */
2789         if (error_code) {
2790                 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2791                 return 1;
2792         }
2793         return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
2794 }
2795
2796 static bool is_erratum_383(void)
2797 {
2798         int err, i;
2799         u64 value;
2800
2801         if (!erratum_383_found)
2802                 return false;
2803
2804         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2805         if (err)
2806                 return false;
2807
2808         /* Bit 62 may or may not be set for this mce */
2809         value &= ~(1ULL << 62);
2810
2811         if (value != 0xb600000000010015ULL)
2812                 return false;
2813
2814         /* Clear MCi_STATUS registers */
2815         for (i = 0; i < 6; ++i)
2816                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2817
2818         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2819         if (!err) {
2820                 u32 low, high;
2821
2822                 value &= ~(1ULL << 2);
2823                 low    = lower_32_bits(value);
2824                 high   = upper_32_bits(value);
2825
2826                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2827         }
2828
2829         /* Flush tlb to evict multi-match entries */
2830         __flush_tlb_all();
2831
2832         return true;
2833 }
2834
2835 static void svm_handle_mce(struct vcpu_svm *svm)
2836 {
2837         if (is_erratum_383()) {
2838                 /*
2839                  * Erratum 383 triggered. Guest state is corrupt so kill the
2840                  * guest.
2841                  */
2842                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2843
2844                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2845
2846                 return;
2847         }
2848
2849         /*
2850          * On an #MC intercept the MCE handler is not called automatically in
2851          * the host. So do it by hand here.
2852          */
2853         asm volatile (
2854                 "int $0x12\n");
2855         /* not sure if we ever come back to this point */
2856
2857         return;
2858 }
2859
2860 static int mc_interception(struct vcpu_svm *svm)
2861 {
2862         return 1;
2863 }
2864
2865 static int shutdown_interception(struct vcpu_svm *svm)
2866 {
2867         struct kvm_run *kvm_run = svm->vcpu.run;
2868
2869         /*
2870          * VMCB is undefined after a SHUTDOWN intercept
2871          * so reinitialize it.
2872          */
2873         clear_page(svm->vmcb);
2874         init_vmcb(svm);
2875
2876         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2877         return 0;
2878 }
2879
2880 static int io_interception(struct vcpu_svm *svm)
2881 {
2882         struct kvm_vcpu *vcpu = &svm->vcpu;
2883         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2884         int size, in, string;
2885         unsigned port;
2886
2887         ++svm->vcpu.stat.io_exits;
2888         string = (io_info & SVM_IOIO_STR_MASK) != 0;
2889         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2890         if (string)
2891                 return kvm_emulate_instruction(vcpu, 0);
2892
2893         port = io_info >> 16;
2894         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2895         svm->next_rip = svm->vmcb->control.exit_info_2;
2896
2897         return kvm_fast_pio(&svm->vcpu, size, port, in);
2898 }
2899
2900 static int nmi_interception(struct vcpu_svm *svm)
2901 {
2902         return 1;
2903 }
2904
2905 static int intr_interception(struct vcpu_svm *svm)
2906 {
2907         ++svm->vcpu.stat.irq_exits;
2908         return 1;
2909 }
2910
2911 static int nop_on_interception(struct vcpu_svm *svm)
2912 {
2913         return 1;
2914 }
2915
2916 static int halt_interception(struct vcpu_svm *svm)
2917 {
2918         return kvm_emulate_halt(&svm->vcpu);
2919 }
2920
2921 static int vmmcall_interception(struct vcpu_svm *svm)
2922 {
2923         return kvm_emulate_hypercall(&svm->vcpu);
2924 }
2925
2926 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2927 {
2928         struct vcpu_svm *svm = to_svm(vcpu);
2929
2930         return svm->nested.nested_cr3;
2931 }
2932
2933 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2934 {
2935         struct vcpu_svm *svm = to_svm(vcpu);
2936         u64 cr3 = svm->nested.nested_cr3;
2937         u64 pdpte;
2938         int ret;
2939
2940         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
2941                                        offset_in_page(cr3) + index * 8, 8);
2942         if (ret)
2943                 return 0;
2944         return pdpte;
2945 }
2946
2947 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2948                                    unsigned long root)
2949 {
2950         struct vcpu_svm *svm = to_svm(vcpu);
2951
2952         svm->vmcb->control.nested_cr3 = __sme_set(root);
2953         mark_dirty(svm->vmcb, VMCB_NPT);
2954 }
2955
2956 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2957                                        struct x86_exception *fault)
2958 {
2959         struct vcpu_svm *svm = to_svm(vcpu);
2960
2961         if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2962                 /*
2963                  * TODO: track the cause of the nested page fault, and
2964                  * correctly fill in the high bits of exit_info_1.
2965                  */
2966                 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2967                 svm->vmcb->control.exit_code_hi = 0;
2968                 svm->vmcb->control.exit_info_1 = (1ULL << 32);
2969                 svm->vmcb->control.exit_info_2 = fault->address;
2970         }
2971
2972         svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2973         svm->vmcb->control.exit_info_1 |= fault->error_code;
2974
2975         /*
2976          * The present bit is always zero for page structure faults on real
2977          * hardware.
2978          */
2979         if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2980                 svm->vmcb->control.exit_info_1 &= ~1;
2981
2982         nested_svm_vmexit(svm);
2983 }
2984
2985 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2986 {
2987         WARN_ON(mmu_is_nested(vcpu));
2988
2989         vcpu->arch.mmu = &vcpu->arch.guest_mmu;
2990         kvm_init_shadow_mmu(vcpu);
2991         vcpu->arch.mmu->set_cr3           = nested_svm_set_tdp_cr3;
2992         vcpu->arch.mmu->get_cr3           = nested_svm_get_tdp_cr3;
2993         vcpu->arch.mmu->get_pdptr         = nested_svm_get_tdp_pdptr;
2994         vcpu->arch.mmu->inject_page_fault = nested_svm_inject_npf_exit;
2995         vcpu->arch.mmu->shadow_root_level = get_npt_level(vcpu);
2996         reset_shadow_zero_bits_mask(vcpu, vcpu->arch.mmu);
2997         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
2998 }
2999
3000 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
3001 {
3002         vcpu->arch.mmu = &vcpu->arch.root_mmu;
3003         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
3004 }
3005
3006 static int nested_svm_check_permissions(struct vcpu_svm *svm)
3007 {
3008         if (!(svm->vcpu.arch.efer & EFER_SVME) ||
3009             !is_paging(&svm->vcpu)) {
3010                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3011                 return 1;
3012         }
3013
3014         if (svm->vmcb->save.cpl) {
3015                 kvm_inject_gp(&svm->vcpu, 0);
3016                 return 1;
3017         }
3018
3019         return 0;
3020 }
3021
3022 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
3023                                       bool has_error_code, u32 error_code)
3024 {
3025         int vmexit;
3026
3027         if (!is_guest_mode(&svm->vcpu))
3028                 return 0;
3029
3030         vmexit = nested_svm_intercept(svm);
3031         if (vmexit != NESTED_EXIT_DONE)
3032                 return 0;
3033
3034         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
3035         svm->vmcb->control.exit_code_hi = 0;
3036         svm->vmcb->control.exit_info_1 = error_code;
3037
3038         /*
3039          * EXITINFO2 is undefined for all exception intercepts other
3040          * than #PF.
3041          */
3042         if (svm->vcpu.arch.exception.nested_apf)
3043                 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
3044         else if (svm->vcpu.arch.exception.has_payload)
3045                 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.exception.payload;
3046         else
3047                 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
3048
3049         svm->nested.exit_required = true;
3050         return vmexit;
3051 }
3052
3053 /* This function returns true if it is save to enable the irq window */
3054 static inline bool nested_svm_intr(struct vcpu_svm *svm)
3055 {
3056         if (!is_guest_mode(&svm->vcpu))
3057                 return true;
3058
3059         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3060                 return true;
3061
3062         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
3063                 return false;
3064
3065         /*
3066          * if vmexit was already requested (by intercepted exception
3067          * for instance) do not overwrite it with "external interrupt"
3068          * vmexit.
3069          */
3070         if (svm->nested.exit_required)
3071                 return false;
3072
3073         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
3074         svm->vmcb->control.exit_info_1 = 0;
3075         svm->vmcb->control.exit_info_2 = 0;
3076
3077         if (svm->nested.intercept & 1ULL) {
3078                 /*
3079                  * The #vmexit can't be emulated here directly because this
3080                  * code path runs with irqs and preemption disabled. A
3081                  * #vmexit emulation might sleep. Only signal request for
3082                  * the #vmexit here.
3083                  */
3084                 svm->nested.exit_required = true;
3085                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
3086                 return false;
3087         }
3088
3089         return true;
3090 }
3091
3092 /* This function returns true if it is save to enable the nmi window */
3093 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
3094 {
3095         if (!is_guest_mode(&svm->vcpu))
3096                 return true;
3097
3098         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
3099                 return true;
3100
3101         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
3102         svm->nested.exit_required = true;
3103
3104         return false;
3105 }
3106
3107 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
3108 {
3109         unsigned port, size, iopm_len;
3110         u16 val, mask;
3111         u8 start_bit;
3112         u64 gpa;
3113
3114         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
3115                 return NESTED_EXIT_HOST;
3116
3117         port = svm->vmcb->control.exit_info_1 >> 16;
3118         size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
3119                 SVM_IOIO_SIZE_SHIFT;
3120         gpa  = svm->nested.vmcb_iopm + (port / 8);
3121         start_bit = port % 8;
3122         iopm_len = (start_bit + size > 8) ? 2 : 1;
3123         mask = (0xf >> (4 - size)) << start_bit;
3124         val = 0;
3125
3126         if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
3127                 return NESTED_EXIT_DONE;
3128
3129         return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3130 }
3131
3132 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
3133 {
3134         u32 offset, msr, value;
3135         int write, mask;
3136
3137         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3138                 return NESTED_EXIT_HOST;
3139
3140         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3141         offset = svm_msrpm_offset(msr);
3142         write  = svm->vmcb->control.exit_info_1 & 1;
3143         mask   = 1 << ((2 * (msr & 0xf)) + write);
3144
3145         if (offset == MSR_INVALID)
3146                 return NESTED_EXIT_DONE;
3147
3148         /* Offset is in 32 bit units but need in 8 bit units */
3149         offset *= 4;
3150
3151         if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
3152                 return NESTED_EXIT_DONE;
3153
3154         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3155 }
3156
3157 /* DB exceptions for our internal use must not cause vmexit */
3158 static int nested_svm_intercept_db(struct vcpu_svm *svm)
3159 {
3160         unsigned long dr6;
3161
3162         /* if we're not singlestepping, it's not ours */
3163         if (!svm->nmi_singlestep)
3164                 return NESTED_EXIT_DONE;
3165
3166         /* if it's not a singlestep exception, it's not ours */
3167         if (kvm_get_dr(&svm->vcpu, 6, &dr6))
3168                 return NESTED_EXIT_DONE;
3169         if (!(dr6 & DR6_BS))
3170                 return NESTED_EXIT_DONE;
3171
3172         /* if the guest is singlestepping, it should get the vmexit */
3173         if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
3174                 disable_nmi_singlestep(svm);
3175                 return NESTED_EXIT_DONE;
3176         }
3177
3178         /* it's ours, the nested hypervisor must not see this one */
3179         return NESTED_EXIT_HOST;
3180 }
3181
3182 static int nested_svm_exit_special(struct vcpu_svm *svm)
3183 {
3184         u32 exit_code = svm->vmcb->control.exit_code;
3185
3186         switch (exit_code) {
3187         case SVM_EXIT_INTR:
3188         case SVM_EXIT_NMI:
3189         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
3190                 return NESTED_EXIT_HOST;
3191         case SVM_EXIT_NPF:
3192                 /* For now we are always handling NPFs when using them */
3193                 if (npt_enabled)
3194                         return NESTED_EXIT_HOST;
3195                 break;
3196         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
3197                 /* When we're shadowing, trap PFs, but not async PF */
3198                 if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0)
3199                         return NESTED_EXIT_HOST;
3200                 break;
3201         default:
3202                 break;
3203         }
3204
3205         return NESTED_EXIT_CONTINUE;
3206 }
3207
3208 /*
3209  * If this function returns true, this #vmexit was already handled
3210  */
3211 static int nested_svm_intercept(struct vcpu_svm *svm)
3212 {
3213         u32 exit_code = svm->vmcb->control.exit_code;
3214         int vmexit = NESTED_EXIT_HOST;
3215
3216         switch (exit_code) {
3217         case SVM_EXIT_MSR:
3218                 vmexit = nested_svm_exit_handled_msr(svm);
3219                 break;
3220         case SVM_EXIT_IOIO:
3221                 vmexit = nested_svm_intercept_ioio(svm);
3222                 break;
3223         case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
3224                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
3225                 if (svm->nested.intercept_cr & bit)
3226                         vmexit = NESTED_EXIT_DONE;
3227                 break;
3228         }
3229         case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
3230                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
3231                 if (svm->nested.intercept_dr & bit)
3232                         vmexit = NESTED_EXIT_DONE;
3233                 break;
3234         }
3235         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
3236                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
3237                 if (svm->nested.intercept_exceptions & excp_bits) {
3238                         if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
3239                                 vmexit = nested_svm_intercept_db(svm);
3240                         else
3241                                 vmexit = NESTED_EXIT_DONE;
3242                 }
3243                 /* async page fault always cause vmexit */
3244                 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
3245                          svm->vcpu.arch.exception.nested_apf != 0)
3246                         vmexit = NESTED_EXIT_DONE;
3247                 break;
3248         }
3249         case SVM_EXIT_ERR: {
3250                 vmexit = NESTED_EXIT_DONE;
3251                 break;
3252         }
3253         default: {
3254                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
3255                 if (svm->nested.intercept & exit_bits)
3256                         vmexit = NESTED_EXIT_DONE;
3257         }
3258         }
3259
3260         return vmexit;
3261 }
3262
3263 static int nested_svm_exit_handled(struct vcpu_svm *svm)
3264 {
3265         int vmexit;
3266
3267         vmexit = nested_svm_intercept(svm);
3268
3269         if (vmexit == NESTED_EXIT_DONE)
3270                 nested_svm_vmexit(svm);
3271
3272         return vmexit;
3273 }
3274
3275 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
3276 {
3277         struct vmcb_control_area *dst  = &dst_vmcb->control;
3278         struct vmcb_control_area *from = &from_vmcb->control;
3279
3280         dst->intercept_cr         = from->intercept_cr;
3281         dst->intercept_dr         = from->intercept_dr;
3282         dst->intercept_exceptions = from->intercept_exceptions;
3283         dst->intercept            = from->intercept;
3284         dst->iopm_base_pa         = from->iopm_base_pa;
3285         dst->msrpm_base_pa        = from->msrpm_base_pa;
3286         dst->tsc_offset           = from->tsc_offset;
3287         dst->asid                 = from->asid;
3288         dst->tlb_ctl              = from->tlb_ctl;
3289         dst->int_ctl              = from->int_ctl;
3290         dst->int_vector           = from->int_vector;
3291         dst->int_state            = from->int_state;
3292         dst->exit_code            = from->exit_code;
3293         dst->exit_code_hi         = from->exit_code_hi;
3294         dst->exit_info_1          = from->exit_info_1;
3295         dst->exit_info_2          = from->exit_info_2;
3296         dst->exit_int_info        = from->exit_int_info;
3297         dst->exit_int_info_err    = from->exit_int_info_err;
3298         dst->nested_ctl           = from->nested_ctl;
3299         dst->event_inj            = from->event_inj;
3300         dst->event_inj_err        = from->event_inj_err;
3301         dst->nested_cr3           = from->nested_cr3;
3302         dst->virt_ext              = from->virt_ext;
3303         dst->pause_filter_count   = from->pause_filter_count;
3304         dst->pause_filter_thresh  = from->pause_filter_thresh;
3305 }
3306
3307 static int nested_svm_vmexit(struct vcpu_svm *svm)
3308 {
3309         int rc;
3310         struct vmcb *nested_vmcb;
3311         struct vmcb *hsave = svm->nested.hsave;
3312         struct vmcb *vmcb = svm->vmcb;
3313         struct kvm_host_map map;
3314
3315         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
3316                                        vmcb->control.exit_info_1,
3317                                        vmcb->control.exit_info_2,
3318                                        vmcb->control.exit_int_info,
3319                                        vmcb->control.exit_int_info_err,
3320                                        KVM_ISA_SVM);
3321
3322         rc = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->nested.vmcb), &map);
3323         if (rc) {
3324                 if (rc == -EINVAL)
3325                         kvm_inject_gp(&svm->vcpu, 0);
3326                 return 1;
3327         }
3328
3329         nested_vmcb = map.hva;
3330
3331         /* Exit Guest-Mode */
3332         leave_guest_mode(&svm->vcpu);
3333         svm->nested.vmcb = 0;
3334
3335         /* Give the current vmcb to the guest */
3336         disable_gif(svm);
3337
3338         nested_vmcb->save.es     = vmcb->save.es;
3339         nested_vmcb->save.cs     = vmcb->save.cs;
3340         nested_vmcb->save.ss     = vmcb->save.ss;
3341         nested_vmcb->save.ds     = vmcb->save.ds;
3342         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
3343         nested_vmcb->save.idtr   = vmcb->save.idtr;
3344         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
3345         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
3346         nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
3347         nested_vmcb->save.cr2    = vmcb->save.cr2;
3348         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
3349         nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
3350         nested_vmcb->save.rip    = vmcb->save.rip;
3351         nested_vmcb->save.rsp    = vmcb->save.rsp;
3352         nested_vmcb->save.rax    = vmcb->save.rax;
3353         nested_vmcb->save.dr7    = vmcb->save.dr7;
3354         nested_vmcb->save.dr6    = vmcb->save.dr6;
3355         nested_vmcb->save.cpl    = vmcb->save.cpl;
3356
3357         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
3358         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
3359         nested_vmcb->control.int_state         = vmcb->control.int_state;
3360         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
3361         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
3362         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
3363         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
3364         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
3365         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
3366
3367         if (svm->nrips_enabled)
3368                 nested_vmcb->control.next_rip  = vmcb->control.next_rip;
3369
3370         /*
3371          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
3372          * to make sure that we do not lose injected events. So check event_inj
3373          * here and copy it to exit_int_info if it is valid.
3374          * Exit_int_info and event_inj can't be both valid because the case
3375          * below only happens on a VMRUN instruction intercept which has
3376          * no valid exit_int_info set.
3377          */
3378         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
3379                 struct vmcb_control_area *nc = &nested_vmcb->control;
3380
3381                 nc->exit_int_info     = vmcb->control.event_inj;
3382                 nc->exit_int_info_err = vmcb->control.event_inj_err;
3383         }
3384
3385         nested_vmcb->control.tlb_ctl           = 0;
3386         nested_vmcb->control.event_inj         = 0;
3387         nested_vmcb->control.event_inj_err     = 0;
3388
3389         nested_vmcb->control.pause_filter_count =
3390                 svm->vmcb->control.pause_filter_count;
3391         nested_vmcb->control.pause_filter_thresh =
3392                 svm->vmcb->control.pause_filter_thresh;
3393
3394         /* We always set V_INTR_MASKING and remember the old value in hflags */
3395         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3396                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
3397
3398         /* Restore the original control entries */
3399         copy_vmcb_control_area(vmcb, hsave);
3400
3401         svm->vcpu.arch.tsc_offset = svm->vmcb->control.tsc_offset;
3402         kvm_clear_exception_queue(&svm->vcpu);
3403         kvm_clear_interrupt_queue(&svm->vcpu);
3404
3405         svm->nested.nested_cr3 = 0;
3406
3407         /* Restore selected save entries */
3408         svm->vmcb->save.es = hsave->save.es;
3409         svm->vmcb->save.cs = hsave->save.cs;
3410         svm->vmcb->save.ss = hsave->save.ss;
3411         svm->vmcb->save.ds = hsave->save.ds;
3412         svm->vmcb->save.gdtr = hsave->save.gdtr;
3413         svm->vmcb->save.idtr = hsave->save.idtr;
3414         kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
3415         svm_set_efer(&svm->vcpu, hsave->save.efer);
3416         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
3417         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
3418         if (npt_enabled) {
3419                 svm->vmcb->save.cr3 = hsave->save.cr3;
3420                 svm->vcpu.arch.cr3 = hsave->save.cr3;
3421         } else {
3422                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
3423         }
3424         kvm_rax_write(&svm->vcpu, hsave->save.rax);
3425         kvm_rsp_write(&svm->vcpu, hsave->save.rsp);
3426         kvm_rip_write(&svm->vcpu, hsave->save.rip);
3427         svm->vmcb->save.dr7 = 0;
3428         svm->vmcb->save.cpl = 0;
3429         svm->vmcb->control.exit_int_info = 0;
3430
3431         mark_all_dirty(svm->vmcb);
3432
3433         kvm_vcpu_unmap(&svm->vcpu, &map, true);
3434
3435         nested_svm_uninit_mmu_context(&svm->vcpu);
3436         kvm_mmu_reset_context(&svm->vcpu);
3437         kvm_mmu_load(&svm->vcpu);
3438
3439         /*
3440          * Drop what we picked up for L2 via svm_complete_interrupts() so it
3441          * doesn't end up in L1.
3442          */
3443         svm->vcpu.arch.nmi_injected = false;
3444         kvm_clear_exception_queue(&svm->vcpu);
3445         kvm_clear_interrupt_queue(&svm->vcpu);
3446
3447         return 0;
3448 }
3449
3450 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
3451 {
3452         /*
3453          * This function merges the msr permission bitmaps of kvm and the
3454          * nested vmcb. It is optimized in that it only merges the parts where
3455          * the kvm msr permission bitmap may contain zero bits
3456          */
3457         int i;
3458
3459         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3460                 return true;
3461
3462         for (i = 0; i < MSRPM_OFFSETS; i++) {
3463                 u32 value, p;
3464                 u64 offset;
3465
3466                 if (msrpm_offsets[i] == 0xffffffff)
3467                         break;
3468
3469                 p      = msrpm_offsets[i];
3470                 offset = svm->nested.vmcb_msrpm + (p * 4);
3471
3472                 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
3473                         return false;
3474
3475                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
3476         }
3477
3478         svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
3479
3480         return true;
3481 }
3482
3483 static bool nested_vmcb_checks(struct vmcb *vmcb)
3484 {
3485         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
3486                 return false;
3487
3488         if (vmcb->control.asid == 0)
3489                 return false;
3490
3491         if ((vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) &&
3492             !npt_enabled)
3493                 return false;
3494
3495         return true;
3496 }
3497
3498 static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
3499                                  struct vmcb *nested_vmcb, struct kvm_host_map *map)
3500 {
3501         if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
3502                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
3503         else
3504                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
3505
3506         if (nested_vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) {
3507                 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
3508                 nested_svm_init_mmu_context(&svm->vcpu);
3509         }
3510
3511         /* Load the nested guest state */
3512         svm->vmcb->save.es = nested_vmcb->save.es;
3513         svm->vmcb->save.cs = nested_vmcb->save.cs;
3514         svm->vmcb->save.ss = nested_vmcb->save.ss;
3515         svm->vmcb->save.ds = nested_vmcb->save.ds;
3516         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
3517         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
3518         kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
3519         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
3520         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
3521         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
3522         if (npt_enabled) {
3523                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
3524                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
3525         } else
3526                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
3527
3528         /* Guest paging mode is active - reset mmu */
3529         kvm_mmu_reset_context(&svm->vcpu);
3530
3531         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
3532         kvm_rax_write(&svm->vcpu, nested_vmcb->save.rax);
3533         kvm_rsp_write(&svm->vcpu, nested_vmcb->save.rsp);
3534         kvm_rip_write(&svm->vcpu, nested_vmcb->save.rip);
3535
3536         /* In case we don't even reach vcpu_run, the fields are not updated */
3537         svm->vmcb->save.rax = nested_vmcb->save.rax;
3538         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
3539         svm->vmcb->save.rip = nested_vmcb->save.rip;
3540         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
3541         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
3542         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
3543
3544         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
3545         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
3546
3547         /* cache intercepts */
3548         svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
3549         svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
3550         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
3551         svm->nested.intercept            = nested_vmcb->control.intercept;
3552
3553         svm_flush_tlb(&svm->vcpu, true);
3554         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
3555         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
3556                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
3557         else
3558                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
3559
3560         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
3561                 /* We only want the cr8 intercept bits of the guest */
3562                 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
3563                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3564         }
3565
3566         /* We don't want to see VMMCALLs from a nested guest */
3567         clr_intercept(svm, INTERCEPT_VMMCALL);
3568
3569         svm->vcpu.arch.tsc_offset += nested_vmcb->control.tsc_offset;
3570         svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset;
3571
3572         svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
3573         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
3574         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
3575         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
3576         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
3577
3578         svm->vmcb->control.pause_filter_count =
3579                 nested_vmcb->control.pause_filter_count;
3580         svm->vmcb->control.pause_filter_thresh =
3581                 nested_vmcb->control.pause_filter_thresh;
3582
3583         kvm_vcpu_unmap(&svm->vcpu, map, true);
3584
3585         /* Enter Guest-Mode */
3586         enter_guest_mode(&svm->vcpu);
3587
3588         /*
3589          * Merge guest and host intercepts - must be called  with vcpu in
3590          * guest-mode to take affect here
3591          */
3592         recalc_intercepts(svm);
3593
3594         svm->nested.vmcb = vmcb_gpa;
3595
3596         enable_gif(svm);
3597
3598         mark_all_dirty(svm->vmcb);
3599 }
3600
3601 static int nested_svm_vmrun(struct vcpu_svm *svm)
3602 {
3603         int ret;
3604         struct vmcb *nested_vmcb;
3605         struct vmcb *hsave = svm->nested.hsave;
3606         struct vmcb *vmcb = svm->vmcb;
3607         struct kvm_host_map map;
3608         u64 vmcb_gpa;
3609
3610         vmcb_gpa = svm->vmcb->save.rax;
3611
3612         ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb_gpa), &map);
3613         if (ret == -EINVAL) {
3614                 kvm_inject_gp(&svm->vcpu, 0);
3615                 return 1;
3616         } else if (ret) {
3617                 return kvm_skip_emulated_instruction(&svm->vcpu);
3618         }
3619
3620         ret = kvm_skip_emulated_instruction(&svm->vcpu);
3621
3622         nested_vmcb = map.hva;
3623
3624         if (!nested_vmcb_checks(nested_vmcb)) {
3625                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
3626                 nested_vmcb->control.exit_code_hi = 0;
3627                 nested_vmcb->control.exit_info_1  = 0;
3628                 nested_vmcb->control.exit_info_2  = 0;
3629
3630                 kvm_vcpu_unmap(&svm->vcpu, &map, true);
3631
3632                 return ret;
3633         }
3634
3635         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
3636                                nested_vmcb->save.rip,
3637                                nested_vmcb->control.int_ctl,
3638                                nested_vmcb->control.event_inj,
3639                                nested_vmcb->control.nested_ctl);
3640
3641         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
3642                                     nested_vmcb->control.intercept_cr >> 16,
3643                                     nested_vmcb->control.intercept_exceptions,
3644                                     nested_vmcb->control.intercept);
3645
3646         /* Clear internal status */
3647         kvm_clear_exception_queue(&svm->vcpu);
3648         kvm_clear_interrupt_queue(&svm->vcpu);
3649
3650         /*
3651          * Save the old vmcb, so we don't need to pick what we save, but can
3652          * restore everything when a VMEXIT occurs
3653          */
3654         hsave->save.es     = vmcb->save.es;
3655         hsave->save.cs     = vmcb->save.cs;
3656         hsave->save.ss     = vmcb->save.ss;
3657         hsave->save.ds     = vmcb->save.ds;
3658         hsave->save.gdtr   = vmcb->save.gdtr;
3659         hsave->save.idtr   = vmcb->save.idtr;
3660         hsave->save.efer   = svm->vcpu.arch.efer;
3661         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
3662         hsave->save.cr4    = svm->vcpu.arch.cr4;
3663         hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
3664         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
3665         hsave->save.rsp    = vmcb->save.rsp;
3666         hsave->save.rax    = vmcb->save.rax;
3667         if (npt_enabled)
3668                 hsave->save.cr3    = vmcb->save.cr3;
3669         else
3670                 hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
3671
3672         copy_vmcb_control_area(hsave, vmcb);
3673
3674         enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, &map);
3675
3676         if (!nested_svm_vmrun_msrpm(svm)) {
3677                 svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
3678                 svm->vmcb->control.exit_code_hi = 0;
3679                 svm->vmcb->control.exit_info_1  = 0;
3680                 svm->vmcb->control.exit_info_2  = 0;
3681
3682                 nested_svm_vmexit(svm);
3683         }
3684
3685         return ret;
3686 }
3687
3688 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3689 {
3690         to_vmcb->save.fs = from_vmcb->save.fs;
3691         to_vmcb->save.gs = from_vmcb->save.gs;
3692         to_vmcb->save.tr = from_vmcb->save.tr;
3693         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3694         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3695         to_vmcb->save.star = from_vmcb->save.star;
3696         to_vmcb->save.lstar = from_vmcb->save.lstar;
3697         to_vmcb->save.cstar = from_vmcb->save.cstar;
3698         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3699         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3700         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3701         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3702 }
3703
3704 static int vmload_interception(struct vcpu_svm *svm)
3705 {
3706         struct vmcb *nested_vmcb;
3707         struct kvm_host_map map;
3708         int ret;
3709
3710         if (nested_svm_check_permissions(svm))
3711                 return 1;
3712
3713         ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
3714         if (ret) {
3715                 if (ret == -EINVAL)
3716                         kvm_inject_gp(&svm->vcpu, 0);
3717                 return 1;
3718         }
3719
3720         nested_vmcb = map.hva;
3721
3722         ret = kvm_skip_emulated_instruction(&svm->vcpu);
3723
3724         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3725         kvm_vcpu_unmap(&svm->vcpu, &map, true);
3726
3727         return ret;
3728 }
3729
3730 static int vmsave_interception(struct vcpu_svm *svm)
3731 {
3732         struct vmcb *nested_vmcb;
3733         struct kvm_host_map map;
3734         int ret;
3735
3736         if (nested_svm_check_permissions(svm))
3737                 return 1;
3738
3739         ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
3740         if (ret) {
3741                 if (ret == -EINVAL)
3742                         kvm_inject_gp(&svm->vcpu, 0);
3743                 return 1;
3744         }
3745
3746         nested_vmcb = map.hva;
3747
3748         ret = kvm_skip_emulated_instruction(&svm->vcpu);
3749
3750         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3751         kvm_vcpu_unmap(&svm->vcpu, &map, true);
3752
3753         return ret;
3754 }
3755
3756 static int vmrun_interception(struct vcpu_svm *svm)
3757 {
3758         if (nested_svm_check_permissions(svm))
3759                 return 1;
3760
3761         return nested_svm_vmrun(svm);
3762 }
3763
3764 static int stgi_interception(struct vcpu_svm *svm)
3765 {
3766         int ret;
3767
3768         if (nested_svm_check_permissions(svm))
3769                 return 1;
3770
3771         /*
3772          * If VGIF is enabled, the STGI intercept is only added to
3773          * detect the opening of the SMI/NMI window; remove it now.
3774          */
3775         if (vgif_enabled(svm))
3776                 clr_intercept(svm, INTERCEPT_STGI);
3777
3778         ret = kvm_skip_emulated_instruction(&svm->vcpu);
3779         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3780
3781         enable_gif(svm);
3782
3783         return ret;
3784 }
3785
3786 static int clgi_interception(struct vcpu_svm *svm)
3787 {
3788         int ret;
3789
3790         if (nested_svm_check_permissions(svm))
3791                 return 1;
3792
3793         ret = kvm_skip_emulated_instruction(&svm->vcpu);
3794
3795         disable_gif(svm);
3796
3797         /* After a CLGI no interrupts should come */
3798         if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3799                 svm_clear_vintr(svm);
3800                 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3801                 mark_dirty(svm->vmcb, VMCB_INTR);
3802         }
3803
3804         return ret;
3805 }
3806
3807 static int invlpga_interception(struct vcpu_svm *svm)
3808 {
3809         struct kvm_vcpu *vcpu = &svm->vcpu;
3810
3811         trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu),
3812                           kvm_rax_read(&svm->vcpu));
3813
3814         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3815         kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu));
3816
3817         return kvm_skip_emulated_instruction(&svm->vcpu);
3818 }
3819
3820 static int skinit_interception(struct vcpu_svm *svm)
3821 {
3822         trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu));
3823
3824         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3825         return 1;
3826 }
3827
3828 static int wbinvd_interception(struct vcpu_svm *svm)
3829 {
3830         return kvm_emulate_wbinvd(&svm->vcpu);
3831 }
3832
3833 static int xsetbv_interception(struct vcpu_svm *svm)
3834 {
3835         u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3836         u32 index = kvm_rcx_read(&svm->vcpu);
3837
3838         if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3839                 return kvm_skip_emulated_instruction(&svm->vcpu);
3840         }
3841
3842         return 1;
3843 }
3844
3845 static int rdpru_interception(struct vcpu_svm *svm)
3846 {
3847         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3848         return 1;
3849 }
3850
3851 static int task_switch_interception(struct vcpu_svm *svm)
3852 {
3853         u16 tss_selector;
3854         int reason;
3855         int int_type = svm->vmcb->control.exit_int_info &
3856                 SVM_EXITINTINFO_TYPE_MASK;
3857         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3858         uint32_t type =
3859                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3860         uint32_t idt_v =
3861                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3862         bool has_error_code = false;
3863         u32 error_code = 0;
3864
3865         tss_selector = (u16)svm->vmcb->control.exit_info_1;
3866
3867         if (svm->vmcb->control.exit_info_2 &
3868             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3869                 reason = TASK_SWITCH_IRET;
3870         else if (svm->vmcb->control.exit_info_2 &
3871                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3872                 reason = TASK_SWITCH_JMP;
3873         else if (idt_v)
3874                 reason = TASK_SWITCH_GATE;
3875         else
3876                 reason = TASK_SWITCH_CALL;
3877
3878         if (reason == TASK_SWITCH_GATE) {
3879                 switch (type) {
3880                 case SVM_EXITINTINFO_TYPE_NMI:
3881                         svm->vcpu.arch.nmi_injected = false;
3882                         break;
3883                 case SVM_EXITINTINFO_TYPE_EXEPT:
3884                         if (svm->vmcb->control.exit_info_2 &
3885                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3886                                 has_error_code = true;
3887                                 error_code =
3888                                         (u32)svm->vmcb->control.exit_info_2;
3889                         }
3890                         kvm_clear_exception_queue(&svm->vcpu);
3891                         break;
3892                 case SVM_EXITINTINFO_TYPE_INTR:
3893                         kvm_clear_interrupt_queue(&svm->vcpu);
3894                         break;
3895                 default:
3896                         break;
3897                 }
3898         }
3899
3900         if (reason != TASK_SWITCH_GATE ||
3901             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3902             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3903              (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
3904                 if (!skip_emulated_instruction(&svm->vcpu))
3905                         return 0;
3906         }
3907
3908         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3909                 int_vec = -1;
3910
3911         return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3912                                has_error_code, error_code);
3913 }
3914
3915 static int cpuid_interception(struct vcpu_svm *svm)
3916 {
3917         return kvm_emulate_cpuid(&svm->vcpu);
3918 }
3919
3920 static int iret_interception(struct vcpu_svm *svm)
3921 {
3922         ++svm->vcpu.stat.nmi_window_exits;
3923         clr_intercept(svm, INTERCEPT_IRET);
3924         svm->vcpu.arch.hflags |= HF_IRET_MASK;
3925         svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3926         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3927         return 1;
3928 }
3929
3930 static int invlpg_interception(struct vcpu_svm *svm)
3931 {
3932         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3933                 return kvm_emulate_instruction(&svm->vcpu, 0);
3934
3935         kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3936         return kvm_skip_emulated_instruction(&svm->vcpu);
3937 }
3938
3939 static int emulate_on_interception(struct vcpu_svm *svm)
3940 {
3941         return kvm_emulate_instruction(&svm->vcpu, 0);
3942 }
3943
3944 static int rsm_interception(struct vcpu_svm *svm)
3945 {
3946         return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2);
3947 }
3948
3949 static int rdpmc_interception(struct vcpu_svm *svm)
3950 {
3951         int err;
3952
3953         if (!nrips)
3954                 return emulate_on_interception(svm);
3955
3956         err = kvm_rdpmc(&svm->vcpu);
3957         return kvm_complete_insn_gp(&svm->vcpu, err);
3958 }
3959
3960 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3961                                             unsigned long val)
3962 {
3963         unsigned long cr0 = svm->vcpu.arch.cr0;
3964         bool ret = false;
3965         u64 intercept;
3966
3967         intercept = svm->nested.intercept;
3968
3969         if (!is_guest_mode(&svm->vcpu) ||
3970             (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3971                 return false;
3972
3973         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3974         val &= ~SVM_CR0_SELECTIVE_MASK;
3975
3976         if (cr0 ^ val) {
3977                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3978                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3979         }
3980
3981         return ret;
3982 }
3983
3984 #define CR_VALID (1ULL << 63)
3985
3986 static int cr_interception(struct vcpu_svm *svm)
3987 {
3988         int reg, cr;
3989         unsigned long val;
3990         int err;
3991
3992         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3993                 return emulate_on_interception(svm);
3994
3995         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3996                 return emulate_on_interception(svm);
3997
3998         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3999         if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
4000                 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
4001         else
4002                 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
4003
4004         err = 0;
4005         if (cr >= 16) { /* mov to cr */
4006                 cr -= 16;
4007                 val = kvm_register_read(&svm->vcpu, reg);
4008                 switch (cr) {
4009                 case 0:
4010                         if (!check_selective_cr0_intercepted(svm, val))
4011                                 err = kvm_set_cr0(&svm->vcpu, val);
4012                         else
4013                                 return 1;
4014
4015                         break;
4016                 case 3:
4017                         err = kvm_set_cr3(&svm->vcpu, val);
4018                         break;
4019                 case 4:
4020                         err = kvm_set_cr4(&svm->vcpu, val);
4021                         break;
4022                 case 8:
4023                         err = kvm_set_cr8(&svm->vcpu, val);
4024                         break;
4025                 default:
4026                         WARN(1, "unhandled write to CR%d", cr);
4027                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
4028                         return 1;
4029                 }
4030         } else { /* mov from cr */
4031                 switch (cr) {
4032                 case 0:
4033                         val = kvm_read_cr0(&svm->vcpu);
4034                         break;
4035                 case 2:
4036                         val = svm->vcpu.arch.cr2;
4037                         break;
4038                 case 3:
4039                         val = kvm_read_cr3(&svm->vcpu);
4040                         break;
4041                 case 4:
4042                         val = kvm_read_cr4(&svm->vcpu);
4043                         break;
4044                 case 8:
4045                         val = kvm_get_cr8(&svm->vcpu);
4046                         break;
4047                 default:
4048                         WARN(1, "unhandled read from CR%d", cr);
4049                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
4050                         return 1;
4051                 }
4052                 kvm_register_write(&svm->vcpu, reg, val);
4053         }
4054         return kvm_complete_insn_gp(&svm->vcpu, err);
4055 }
4056
4057 static int dr_interception(struct vcpu_svm *svm)
4058 {
4059         int reg, dr;
4060         unsigned long val;
4061
4062         if (svm->vcpu.guest_debug == 0) {
4063                 /*
4064                  * No more DR vmexits; force a reload of the debug registers
4065                  * and reenter on this instruction.  The next vmexit will
4066                  * retrieve the full state of the debug registers.
4067                  */
4068                 clr_dr_intercepts(svm);
4069                 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4070                 return 1;
4071         }
4072
4073         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
4074                 return emulate_on_interception(svm);
4075
4076         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
4077         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
4078
4079         if (dr >= 16) { /* mov to DRn */
4080                 if (!kvm_require_dr(&svm->vcpu, dr - 16))
4081                         return 1;
4082                 val = kvm_register_read(&svm->vcpu, reg);
4083                 kvm_set_dr(&svm->vcpu, dr - 16, val);
4084         } else {
4085                 if (!kvm_require_dr(&svm->vcpu, dr))
4086                         return 1;
4087                 kvm_get_dr(&svm->vcpu, dr, &val);
4088                 kvm_register_write(&svm->vcpu, reg, val);
4089         }
4090
4091         return kvm_skip_emulated_instruction(&svm->vcpu);
4092 }
4093
4094 static int cr8_write_interception(struct vcpu_svm *svm)
4095 {
4096         struct kvm_run *kvm_run = svm->vcpu.run;
4097         int r;
4098
4099         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
4100         /* instruction emulation calls kvm_set_cr8() */
4101         r = cr_interception(svm);
4102         if (lapic_in_kernel(&svm->vcpu))
4103                 return r;
4104         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
4105                 return r;
4106         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
4107         return 0;
4108 }
4109
4110 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
4111 {
4112         msr->data = 0;
4113
4114         switch (msr->index) {
4115         case MSR_F10H_DECFG:
4116                 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
4117                         msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
4118                 break;
4119         default:
4120                 return 1;
4121         }
4122
4123         return 0;
4124 }
4125
4126 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4127 {
4128         struct vcpu_svm *svm = to_svm(vcpu);
4129
4130         switch (msr_info->index) {
4131         case MSR_STAR:
4132                 msr_info->data = svm->vmcb->save.star;
4133                 break;
4134 #ifdef CONFIG_X86_64
4135         case MSR_LSTAR:
4136                 msr_info->data = svm->vmcb->save.lstar;
4137                 break;
4138         case MSR_CSTAR:
4139                 msr_info->data = svm->vmcb->save.cstar;
4140                 break;
4141         case MSR_KERNEL_GS_BASE:
4142                 msr_info->data = svm->vmcb->save.kernel_gs_base;
4143                 break;
4144         case MSR_SYSCALL_MASK:
4145                 msr_info->data = svm->vmcb->save.sfmask;
4146                 break;
4147 #endif
4148         case MSR_IA32_SYSENTER_CS:
4149                 msr_info->data = svm->vmcb->save.sysenter_cs;
4150                 break;
4151         case MSR_IA32_SYSENTER_EIP:
4152                 msr_info->data = svm->sysenter_eip;
4153                 break;
4154         case MSR_IA32_SYSENTER_ESP:
4155                 msr_info->data = svm->sysenter_esp;
4156                 break;
4157         case MSR_TSC_AUX:
4158                 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4159                         return 1;
4160                 msr_info->data = svm->tsc_aux;
4161                 break;
4162         /*
4163          * Nobody will change the following 5 values in the VMCB so we can
4164          * safely return them on rdmsr. They will always be 0 until LBRV is
4165          * implemented.
4166          */
4167         case MSR_IA32_DEBUGCTLMSR:
4168                 msr_info->data = svm->vmcb->save.dbgctl;
4169                 break;
4170         case MSR_IA32_LASTBRANCHFROMIP:
4171                 msr_info->data = svm->vmcb->save.br_from;
4172                 break;
4173         case MSR_IA32_LASTBRANCHTOIP:
4174                 msr_info->data = svm->vmcb->save.br_to;
4175                 break;
4176         case MSR_IA32_LASTINTFROMIP:
4177                 msr_info->data = svm->vmcb->save.last_excp_from;
4178                 break;
4179         case MSR_IA32_LASTINTTOIP:
4180                 msr_info->data = svm->vmcb->save.last_excp_to;
4181                 break;
4182         case MSR_VM_HSAVE_PA:
4183                 msr_info->data = svm->nested.hsave_msr;
4184                 break;
4185         case MSR_VM_CR:
4186                 msr_info->data = svm->nested.vm_cr_msr;
4187                 break;
4188         case MSR_IA32_SPEC_CTRL:
4189                 if (!msr_info->host_initiated &&
4190                     !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4191                     !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4192                         return 1;
4193
4194                 msr_info->data = svm->spec_ctrl;
4195                 break;
4196         case MSR_AMD64_VIRT_SPEC_CTRL:
4197                 if (!msr_info->host_initiated &&
4198                     !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4199                         return 1;
4200
4201                 msr_info->data = svm->virt_spec_ctrl;
4202                 break;
4203         case MSR_F15H_IC_CFG: {
4204
4205                 int family, model;
4206
4207                 family = guest_cpuid_family(vcpu);
4208                 model  = guest_cpuid_model(vcpu);
4209
4210                 if (family < 0 || model < 0)
4211                         return kvm_get_msr_common(vcpu, msr_info);
4212
4213                 msr_info->data = 0;
4214
4215                 if (family == 0x15 &&
4216                     (model >= 0x2 && model < 0x20))
4217                         msr_info->data = 0x1E;
4218                 }
4219                 break;
4220         case MSR_F10H_DECFG:
4221                 msr_info->data = svm->msr_decfg;
4222                 break;
4223         default:
4224                 return kvm_get_msr_common(vcpu, msr_info);
4225         }
4226         return 0;
4227 }
4228
4229 static int rdmsr_interception(struct vcpu_svm *svm)
4230 {
4231         return kvm_emulate_rdmsr(&svm->vcpu);
4232 }
4233
4234 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
4235 {
4236         struct vcpu_svm *svm = to_svm(vcpu);
4237         int svm_dis, chg_mask;
4238
4239         if (data & ~SVM_VM_CR_VALID_MASK)
4240                 return 1;
4241
4242         chg_mask = SVM_VM_CR_VALID_MASK;
4243
4244         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
4245                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
4246
4247         svm->nested.vm_cr_msr &= ~chg_mask;
4248         svm->nested.vm_cr_msr |= (data & chg_mask);
4249
4250         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
4251
4252         /* check for svm_disable while efer.svme is set */
4253         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
4254                 return 1;
4255
4256         return 0;
4257 }
4258
4259 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
4260 {
4261         struct vcpu_svm *svm = to_svm(vcpu);
4262
4263         u32 ecx = msr->index;
4264         u64 data = msr->data;
4265         switch (ecx) {
4266         case MSR_IA32_CR_PAT:
4267                 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
4268                         return 1;
4269                 vcpu->arch.pat = data;
4270                 svm->vmcb->save.g_pat = data;
4271                 mark_dirty(svm->vmcb, VMCB_NPT);
4272                 break;
4273         case MSR_IA32_SPEC_CTRL:
4274                 if (!msr->host_initiated &&
4275                     !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4276                     !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4277                         return 1;
4278
4279                 /* The STIBP bit doesn't fault even if it's not advertised */
4280                 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
4281                         return 1;
4282
4283                 svm->spec_ctrl = data;
4284
4285                 if (!data)
4286                         break;
4287
4288                 /*
4289                  * For non-nested:
4290                  * When it's written (to non-zero) for the first time, pass
4291                  * it through.
4292                  *
4293                  * For nested:
4294                  * The handling of the MSR bitmap for L2 guests is done in
4295                  * nested_svm_vmrun_msrpm.
4296                  * We update the L1 MSR bit as well since it will end up
4297                  * touching the MSR anyway now.
4298                  */
4299                 set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
4300                 break;
4301         case MSR_IA32_PRED_CMD:
4302                 if (!msr->host_initiated &&
4303                     !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
4304                         return 1;
4305
4306                 if (data & ~PRED_CMD_IBPB)
4307                         return 1;
4308
4309                 if (!data)
4310                         break;
4311
4312                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
4313                 if (is_guest_mode(vcpu))
4314                         break;
4315                 set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
4316                 break;
4317         case MSR_AMD64_VIRT_SPEC_CTRL:
4318                 if (!msr->host_initiated &&
4319                     !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4320                         return 1;
4321
4322                 if (data & ~SPEC_CTRL_SSBD)
4323                         return 1;
4324
4325                 svm->virt_spec_ctrl = data;
4326                 break;
4327         case MSR_STAR:
4328                 svm->vmcb->save.star = data;
4329                 break;
4330 #ifdef CONFIG_X86_64
4331         case MSR_LSTAR:
4332                 svm->vmcb->save.lstar = data;
4333                 break;
4334         case MSR_CSTAR:
4335                 svm->vmcb->save.cstar = data;
4336                 break;
4337         case MSR_KERNEL_GS_BASE:
4338                 svm->vmcb->save.kernel_gs_base = data;
4339                 break;
4340         case MSR_SYSCALL_MASK:
4341                 svm->vmcb->save.sfmask = data;
4342                 break;
4343 #endif
4344         case MSR_IA32_SYSENTER_CS:
4345                 svm->vmcb->save.sysenter_cs = data;
4346                 break;
4347         case MSR_IA32_SYSENTER_EIP:
4348                 svm->sysenter_eip = data;
4349                 svm->vmcb->save.sysenter_eip = data;
4350                 break;
4351         case MSR_IA32_SYSENTER_ESP:
4352                 svm->sysenter_esp = data;
4353                 svm->vmcb->save.sysenter_esp = data;
4354                 break;
4355         case MSR_TSC_AUX:
4356                 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4357                         return 1;
4358
4359                 /*
4360                  * This is rare, so we update the MSR here instead of using
4361                  * direct_access_msrs.  Doing that would require a rdmsr in
4362                  * svm_vcpu_put.
4363                  */
4364                 svm->tsc_aux = data;
4365                 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
4366                 break;
4367         case MSR_IA32_DEBUGCTLMSR:
4368                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
4369                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
4370                                     __func__, data);
4371                         break;
4372                 }
4373                 if (data & DEBUGCTL_RESERVED_BITS)
4374                         return 1;
4375
4376                 svm->vmcb->save.dbgctl = data;
4377                 mark_dirty(svm->vmcb, VMCB_LBR);
4378                 if (data & (1ULL<<0))
4379                         svm_enable_lbrv(svm);
4380                 else
4381                         svm_disable_lbrv(svm);
4382                 break;
4383         case MSR_VM_HSAVE_PA:
4384                 svm->nested.hsave_msr = data;
4385                 break;
4386         case MSR_VM_CR:
4387                 return svm_set_vm_cr(vcpu, data);
4388         case MSR_VM_IGNNE:
4389                 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
4390                 break;
4391         case MSR_F10H_DECFG: {
4392                 struct kvm_msr_entry msr_entry;
4393
4394                 msr_entry.index = msr->index;
4395                 if (svm_get_msr_feature(&msr_entry))
4396                         return 1;
4397
4398                 /* Check the supported bits */
4399                 if (data & ~msr_entry.data)
4400                         return 1;
4401
4402                 /* Don't allow the guest to change a bit, #GP */
4403                 if (!msr->host_initiated && (data ^ msr_entry.data))
4404                         return 1;
4405
4406                 svm->msr_decfg = data;
4407                 break;
4408         }
4409         case MSR_IA32_APICBASE:
4410                 if (kvm_vcpu_apicv_active(vcpu))
4411                         avic_update_vapic_bar(to_svm(vcpu), data);
4412                 /* Fall through */
4413         default:
4414                 return kvm_set_msr_common(vcpu, msr);
4415         }
4416         return 0;
4417 }
4418
4419 static int wrmsr_interception(struct vcpu_svm *svm)
4420 {
4421         return kvm_emulate_wrmsr(&svm->vcpu);
4422 }
4423
4424 static int msr_interception(struct vcpu_svm *svm)
4425 {
4426         if (svm->vmcb->control.exit_info_1)
4427                 return wrmsr_interception(svm);
4428         else
4429                 return rdmsr_interception(svm);
4430 }
4431
4432 static int interrupt_window_interception(struct vcpu_svm *svm)
4433 {
4434         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4435         svm_clear_vintr(svm);
4436         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
4437         mark_dirty(svm->vmcb, VMCB_INTR);
4438         ++svm->vcpu.stat.irq_window_exits;
4439         return 1;
4440 }
4441
4442 static int pause_interception(struct vcpu_svm *svm)
4443 {
4444         struct kvm_vcpu *vcpu = &svm->vcpu;
4445         bool in_kernel = (svm_get_cpl(vcpu) == 0);
4446
4447         if (pause_filter_thresh)
4448                 grow_ple_window(vcpu);
4449
4450         kvm_vcpu_on_spin(vcpu, in_kernel);
4451         return 1;
4452 }
4453
4454 static int nop_interception(struct vcpu_svm *svm)
4455 {
4456         return kvm_skip_emulated_instruction(&(svm->vcpu));
4457 }
4458
4459 static int monitor_interception(struct vcpu_svm *svm)
4460 {
4461         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
4462         return nop_interception(svm);
4463 }
4464
4465 static int mwait_interception(struct vcpu_svm *svm)
4466 {
4467         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
4468         return nop_interception(svm);
4469 }
4470
4471 enum avic_ipi_failure_cause {
4472         AVIC_IPI_FAILURE_INVALID_INT_TYPE,
4473         AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
4474         AVIC_IPI_FAILURE_INVALID_TARGET,
4475         AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
4476 };
4477
4478 static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
4479 {
4480         u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
4481         u32 icrl = svm->vmcb->control.exit_info_1;
4482         u32 id = svm->vmcb->control.exit_info_2 >> 32;
4483         u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
4484         struct kvm_lapic *apic = svm->vcpu.arch.apic;
4485
4486         trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
4487
4488         switch (id) {
4489         case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
4490                 /*
4491                  * AVIC hardware handles the generation of
4492                  * IPIs when the specified Message Type is Fixed
4493                  * (also known as fixed delivery mode) and
4494                  * the Trigger Mode is edge-triggered. The hardware
4495                  * also supports self and broadcast delivery modes
4496                  * specified via the Destination Shorthand(DSH)
4497                  * field of the ICRL. Logical and physical APIC ID
4498                  * formats are supported. All other IPI types cause
4499                  * a #VMEXIT, which needs to emulated.
4500                  */
4501                 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
4502                 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
4503                 break;
4504         case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
4505                 int i;
4506                 struct kvm_vcpu *vcpu;
4507                 struct kvm *kvm = svm->vcpu.kvm;
4508                 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4509
4510                 /*
4511                  * At this point, we expect that the AVIC HW has already
4512                  * set the appropriate IRR bits on the valid target
4513                  * vcpus. So, we just need to kick the appropriate vcpu.
4514                  */
4515                 kvm_for_each_vcpu(i, vcpu, kvm) {
4516                         bool m = kvm_apic_match_dest(vcpu, apic,
4517                                                      icrl & KVM_APIC_SHORT_MASK,
4518                                                      GET_APIC_DEST_FIELD(icrh),
4519                                                      icrl & KVM_APIC_DEST_MASK);
4520
4521                         if (m && !avic_vcpu_is_running(vcpu))
4522                                 kvm_vcpu_wake_up(vcpu);
4523                 }
4524                 break;
4525         }
4526         case AVIC_IPI_FAILURE_INVALID_TARGET:
4527                 WARN_ONCE(1, "Invalid IPI target: index=%u, vcpu=%d, icr=%#0x:%#0x\n",
4528                           index, svm->vcpu.vcpu_id, icrh, icrl);
4529                 break;
4530         case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
4531                 WARN_ONCE(1, "Invalid backing page\n");
4532                 break;
4533         default:
4534                 pr_err("Unknown IPI interception\n");
4535         }
4536
4537         return 1;
4538 }
4539
4540 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
4541 {
4542         struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
4543         int index;
4544         u32 *logical_apic_id_table;
4545         int dlid = GET_APIC_LOGICAL_ID(ldr);
4546
4547         if (!dlid)
4548                 return NULL;
4549
4550         if (flat) { /* flat */
4551                 index = ffs(dlid) - 1;
4552                 if (index > 7)
4553                         return NULL;
4554         } else { /* cluster */
4555                 int cluster = (dlid & 0xf0) >> 4;
4556                 int apic = ffs(dlid & 0x0f) - 1;
4557
4558                 if ((apic < 0) || (apic > 7) ||
4559                     (cluster >= 0xf))
4560                         return NULL;
4561                 index = (cluster << 2) + apic;
4562         }
4563
4564         logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
4565
4566         return &logical_apic_id_table[index];
4567 }
4568
4569 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr)
4570 {
4571         bool flat;
4572         u32 *entry, new_entry;
4573
4574         flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
4575         entry = avic_get_logical_id_entry(vcpu, ldr, flat);
4576         if (!entry)
4577                 return -EINVAL;
4578
4579         new_entry = READ_ONCE(*entry);
4580         new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
4581         new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
4582         new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4583         WRITE_ONCE(*entry, new_entry);
4584
4585         return 0;
4586 }
4587
4588 static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu)
4589 {
4590         struct vcpu_svm *svm = to_svm(vcpu);
4591         bool flat = svm->dfr_reg == APIC_DFR_FLAT;
4592         u32 *entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat);
4593
4594         if (entry)
4595                 clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry);
4596 }
4597
4598 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
4599 {
4600         int ret = 0;
4601         struct vcpu_svm *svm = to_svm(vcpu);
4602         u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
4603
4604         if (ldr == svm->ldr_reg)
4605                 return 0;
4606
4607         avic_invalidate_logical_id_entry(vcpu);
4608
4609         if (ldr)
4610                 ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr);
4611
4612         if (!ret)
4613                 svm->ldr_reg = ldr;
4614
4615         return ret;
4616 }
4617
4618 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
4619 {
4620         u64 *old, *new;
4621         struct vcpu_svm *svm = to_svm(vcpu);
4622         u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID);
4623         u32 id = (apic_id_reg >> 24) & 0xff;
4624
4625         if (vcpu->vcpu_id == id)
4626                 return 0;
4627
4628         old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
4629         new = avic_get_physical_id_entry(vcpu, id);
4630         if (!new || !old)
4631                 return 1;
4632
4633         /* We need to move physical_id_entry to new offset */
4634         *new = *old;
4635         *old = 0ULL;
4636         to_svm(vcpu)->avic_physical_id_cache = new;
4637
4638         /*
4639          * Also update the guest physical APIC ID in the logical
4640          * APIC ID table entry if already setup the LDR.
4641          */
4642         if (svm->ldr_reg)
4643                 avic_handle_ldr_update(vcpu);
4644
4645         return 0;
4646 }
4647
4648 static void avic_handle_dfr_update(struct kvm_vcpu *vcpu)
4649 {
4650         struct vcpu_svm *svm = to_svm(vcpu);
4651         u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
4652
4653         if (svm->dfr_reg == dfr)
4654                 return;
4655
4656         avic_invalidate_logical_id_entry(vcpu);
4657         svm->dfr_reg = dfr;
4658 }
4659
4660 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
4661 {
4662         struct kvm_lapic *apic = svm->vcpu.arch.apic;
4663         u32 offset = svm->vmcb->control.exit_info_1 &
4664                                 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4665
4666         switch (offset) {
4667         case APIC_ID:
4668                 if (avic_handle_apic_id_update(&svm->vcpu))
4669                         return 0;
4670                 break;
4671         case APIC_LDR:
4672                 if (avic_handle_ldr_update(&svm->vcpu))
4673                         return 0;
4674                 break;
4675         case APIC_DFR:
4676                 avic_handle_dfr_update(&svm->vcpu);
4677                 break;
4678         default:
4679                 break;
4680         }
4681
4682         kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
4683
4684         return 1;
4685 }
4686
4687 static bool is_avic_unaccelerated_access_trap(u32 offset)
4688 {
4689         bool ret = false;
4690
4691         switch (offset) {
4692         case APIC_ID:
4693         case APIC_EOI:
4694         case APIC_RRR:
4695         case APIC_LDR:
4696         case APIC_DFR:
4697         case APIC_SPIV:
4698         case APIC_ESR:
4699         case APIC_ICR:
4700         case APIC_LVTT:
4701         case APIC_LVTTHMR:
4702         case APIC_LVTPC:
4703         case APIC_LVT0:
4704         case APIC_LVT1:
4705         case APIC_LVTERR:
4706         case APIC_TMICT:
4707         case APIC_TDCR:
4708                 ret = true;
4709                 break;
4710         default:
4711                 break;
4712         }
4713         return ret;
4714 }
4715
4716 static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
4717 {
4718         int ret = 0;
4719         u32 offset = svm->vmcb->control.exit_info_1 &
4720                      AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4721         u32 vector = svm->vmcb->control.exit_info_2 &
4722                      AVIC_UNACCEL_ACCESS_VECTOR_MASK;
4723         bool write = (svm->vmcb->control.exit_info_1 >> 32) &
4724                      AVIC_UNACCEL_ACCESS_WRITE_MASK;
4725         bool trap = is_avic_unaccelerated_access_trap(offset);
4726
4727         trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
4728                                             trap, write, vector);
4729         if (trap) {
4730                 /* Handling Trap */
4731                 WARN_ONCE(!write, "svm: Handling trap read.\n");
4732                 ret = avic_unaccel_trap_write(svm);
4733         } else {
4734                 /* Handling Fault */
4735                 ret = kvm_emulate_instruction(&svm->vcpu, 0);
4736         }
4737
4738         return ret;
4739 }
4740
4741 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
4742         [SVM_EXIT_READ_CR0]                     = cr_interception,
4743         [SVM_EXIT_READ_CR3]                     = cr_interception,
4744         [SVM_EXIT_READ_CR4]                     = cr_interception,
4745         [SVM_EXIT_READ_CR8]                     = cr_interception,
4746         [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
4747         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
4748         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
4749         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
4750         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
4751         [SVM_EXIT_READ_DR0]                     = dr_interception,
4752         [SVM_EXIT_READ_DR1]                     = dr_interception,
4753         [SVM_EXIT_READ_DR2]                     = dr_interception,
4754         [SVM_EXIT_READ_DR3]                     = dr_interception,
4755         [SVM_EXIT_READ_DR4]                     = dr_interception,
4756         [SVM_EXIT_READ_DR5]                     = dr_interception,
4757         [SVM_EXIT_READ_DR6]                     = dr_interception,
4758         [SVM_EXIT_READ_DR7]                     = dr_interception,
4759         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
4760         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
4761         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
4762         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
4763         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
4764         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
4765         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
4766         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
4767         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
4768         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
4769         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
4770         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
4771         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
4772         [SVM_EXIT_EXCP_BASE + AC_VECTOR]        = ac_interception,
4773         [SVM_EXIT_EXCP_BASE + GP_VECTOR]        = gp_interception,
4774         [SVM_EXIT_INTR]                         = intr_interception,
4775         [SVM_EXIT_NMI]                          = nmi_interception,
4776         [SVM_EXIT_SMI]                          = nop_on_interception,
4777         [SVM_EXIT_INIT]                         = nop_on_interception,
4778         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
4779         [SVM_EXIT_RDPMC]                        = rdpmc_interception,
4780         [SVM_EXIT_CPUID]                        = cpuid_interception,
4781         [SVM_EXIT_IRET]                         = iret_interception,
4782         [SVM_EXIT_INVD]                         = emulate_on_interception,
4783         [SVM_EXIT_PAUSE]                        = pause_interception,
4784         [SVM_EXIT_HLT]                          = halt_interception,
4785         [SVM_EXIT_INVLPG]                       = invlpg_interception,
4786         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
4787         [SVM_EXIT_IOIO]                         = io_interception,
4788         [SVM_EXIT_MSR]                          = msr_interception,
4789         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
4790         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
4791         [SVM_EXIT_VMRUN]                        = vmrun_interception,
4792         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
4793         [SVM_EXIT_VMLOAD]                       = vmload_interception,
4794         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
4795         [SVM_EXIT_STGI]                         = stgi_interception,
4796         [SVM_EXIT_CLGI]                         = clgi_interception,
4797         [SVM_EXIT_SKINIT]                       = skinit_interception,
4798         [SVM_EXIT_WBINVD]                       = wbinvd_interception,
4799         [SVM_EXIT_MONITOR]                      = monitor_interception,
4800         [SVM_EXIT_MWAIT]                        = mwait_interception,
4801         [SVM_EXIT_XSETBV]                       = xsetbv_interception,
4802         [SVM_EXIT_RDPRU]                        = rdpru_interception,
4803         [SVM_EXIT_NPF]                          = npf_interception,
4804         [SVM_EXIT_RSM]                          = rsm_interception,
4805         [SVM_EXIT_AVIC_INCOMPLETE_IPI]          = avic_incomplete_ipi_interception,
4806         [SVM_EXIT_AVIC_UNACCELERATED_ACCESS]    = avic_unaccelerated_access_interception,
4807 };
4808
4809 static void dump_vmcb(struct kvm_vcpu *vcpu)
4810 {
4811         struct vcpu_svm *svm = to_svm(vcpu);
4812         struct vmcb_control_area *control = &svm->vmcb->control;
4813         struct vmcb_save_area *save = &svm->vmcb->save;
4814
4815         if (!dump_invalid_vmcb) {
4816                 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
4817                 return;
4818         }
4819
4820         pr_err("VMCB Control Area:\n");
4821         pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4822         pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4823         pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4824         pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4825         pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4826         pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4827         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4828         pr_err("%-20s%d\n", "pause filter threshold:",
4829                control->pause_filter_thresh);
4830         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4831         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4832         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4833         pr_err("%-20s%d\n", "asid:", control->asid);
4834         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4835         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4836         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4837         pr_err("%-20s%08x\n", "int_state:", control->int_state);
4838         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4839         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4840         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4841         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4842         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4843         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4844         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4845         pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4846         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4847         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4848         pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
4849         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4850         pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4851         pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4852         pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4853         pr_err("VMCB State Save Area:\n");
4854         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4855                "es:",
4856                save->es.selector, save->es.attrib,
4857                save->es.limit, save->es.base);
4858         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4859                "cs:",
4860                save->cs.selector, save->cs.attrib,
4861                save->cs.limit, save->cs.base);
4862         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4863                "ss:",
4864                save->ss.selector, save->ss.attrib,
4865                save->ss.limit, save->ss.base);
4866         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4867                "ds:",
4868                save->ds.selector, save->ds.attrib,
4869                save->ds.limit, save->ds.base);
4870         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4871                "fs:",
4872                save->fs.selector, save->fs.attrib,
4873                save->fs.limit, save->fs.base);
4874         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4875                "gs:",
4876                save->gs.selector, save->gs.attrib,
4877                save->gs.limit, save->gs.base);
4878         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4879                "gdtr:",
4880                save->gdtr.selector, save->gdtr.attrib,
4881                save->gdtr.limit, save->gdtr.base);
4882         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4883                "ldtr:",
4884                save->ldtr.selector, save->ldtr.attrib,
4885                save->ldtr.limit, save->ldtr.base);
4886         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4887                "idtr:",
4888                save->idtr.selector, save->idtr.attrib,
4889                save->idtr.limit, save->idtr.base);
4890         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4891                "tr:",
4892                save->tr.selector, save->tr.attrib,
4893                save->tr.limit, save->tr.base);
4894         pr_err("cpl:            %d                efer:         %016llx\n",
4895                 save->cpl, save->efer);
4896         pr_err("%-15s %016llx %-13s %016llx\n",
4897                "cr0:", save->cr0, "cr2:", save->cr2);
4898         pr_err("%-15s %016llx %-13s %016llx\n",
4899                "cr3:", save->cr3, "cr4:", save->cr4);
4900         pr_err("%-15s %016llx %-13s %016llx\n",
4901                "dr6:", save->dr6, "dr7:", save->dr7);
4902         pr_err("%-15s %016llx %-13s %016llx\n",
4903                "rip:", save->rip, "rflags:", save->rflags);
4904         pr_err("%-15s %016llx %-13s %016llx\n",
4905                "rsp:", save->rsp, "rax:", save->rax);
4906         pr_err("%-15s %016llx %-13s %016llx\n",
4907                "star:", save->star, "lstar:", save->lstar);
4908         pr_err("%-15s %016llx %-13s %016llx\n",
4909                "cstar:", save->cstar, "sfmask:", save->sfmask);
4910         pr_err("%-15s %016llx %-13s %016llx\n",
4911                "kernel_gs_base:", save->kernel_gs_base,
4912                "sysenter_cs:", save->sysenter_cs);
4913         pr_err("%-15s %016llx %-13s %016llx\n",
4914                "sysenter_esp:", save->sysenter_esp,
4915                "sysenter_eip:", save->sysenter_eip);
4916         pr_err("%-15s %016llx %-13s %016llx\n",
4917                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4918         pr_err("%-15s %016llx %-13s %016llx\n",
4919                "br_from:", save->br_from, "br_to:", save->br_to);
4920         pr_err("%-15s %016llx %-13s %016llx\n",
4921                "excp_from:", save->last_excp_from,
4922                "excp_to:", save->last_excp_to);
4923 }
4924
4925 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4926 {
4927         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4928
4929         *info1 = control->exit_info_1;
4930         *info2 = control->exit_info_2;
4931 }
4932
4933 static int handle_exit(struct kvm_vcpu *vcpu)
4934 {
4935         struct vcpu_svm *svm = to_svm(vcpu);
4936         struct kvm_run *kvm_run = vcpu->run;
4937         u32 exit_code = svm->vmcb->control.exit_code;
4938
4939         trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4940
4941         if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4942                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
4943         if (npt_enabled)
4944                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
4945
4946         if (unlikely(svm->nested.exit_required)) {
4947                 nested_svm_vmexit(svm);
4948                 svm->nested.exit_required = false;
4949
4950                 return 1;
4951         }
4952
4953         if (is_guest_mode(vcpu)) {
4954                 int vmexit;
4955
4956                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4957                                         svm->vmcb->control.exit_info_1,
4958                                         svm->vmcb->control.exit_info_2,
4959                                         svm->vmcb->control.exit_int_info,
4960                                         svm->vmcb->control.exit_int_info_err,
4961                                         KVM_ISA_SVM);
4962
4963                 vmexit = nested_svm_exit_special(svm);
4964
4965                 if (vmexit == NESTED_EXIT_CONTINUE)
4966                         vmexit = nested_svm_exit_handled(svm);
4967
4968                 if (vmexit == NESTED_EXIT_DONE)
4969                         return 1;
4970         }
4971
4972         svm_complete_interrupts(svm);
4973
4974         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4975                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4976                 kvm_run->fail_entry.hardware_entry_failure_reason
4977                         = svm->vmcb->control.exit_code;
4978                 dump_vmcb(vcpu);
4979                 return 0;
4980         }
4981
4982         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4983             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4984             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4985             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4986                 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4987                        "exit_code 0x%x\n",
4988                        __func__, svm->vmcb->control.exit_int_info,
4989                        exit_code);
4990
4991         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
4992             || !svm_exit_handlers[exit_code]) {
4993                 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%x\n", exit_code);
4994                 dump_vmcb(vcpu);
4995                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4996                 vcpu->run->internal.suberror =
4997                         KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
4998                 vcpu->run->internal.ndata = 1;
4999                 vcpu->run->internal.data[0] = exit_code;
5000                 return 0;
5001         }
5002
5003         return svm_exit_handlers[exit_code](svm);
5004 }
5005
5006 static void reload_tss(struct kvm_vcpu *vcpu)
5007 {
5008         int cpu = raw_smp_processor_id();
5009
5010         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5011         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
5012         load_TR_desc();
5013 }
5014
5015 static void pre_sev_run(struct vcpu_svm *svm, int cpu)
5016 {
5017         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5018         int asid = sev_get_asid(svm->vcpu.kvm);
5019
5020         /* Assign the asid allocated with this SEV guest */
5021         svm->vmcb->control.asid = asid;
5022
5023         /*
5024          * Flush guest TLB:
5025          *
5026          * 1) when different VMCB for the same ASID is to be run on the same host CPU.
5027          * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
5028          */
5029         if (sd->sev_vmcbs[asid] == svm->vmcb &&
5030             svm->last_cpu == cpu)
5031                 return;
5032
5033         svm->last_cpu = cpu;
5034         sd->sev_vmcbs[asid] = svm->vmcb;
5035         svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5036         mark_dirty(svm->vmcb, VMCB_ASID);
5037 }
5038
5039 static void pre_svm_run(struct vcpu_svm *svm)
5040 {
5041         int cpu = raw_smp_processor_id();
5042
5043         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5044
5045         if (sev_guest(svm->vcpu.kvm))
5046                 return pre_sev_run(svm, cpu);
5047
5048         /* FIXME: handle wraparound of asid_generation */
5049         if (svm->asid_generation != sd->asid_generation)
5050                 new_asid(svm, sd);
5051 }
5052
5053 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
5054 {
5055         struct vcpu_svm *svm = to_svm(vcpu);
5056
5057         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
5058         vcpu->arch.hflags |= HF_NMI_MASK;
5059         set_intercept(svm, INTERCEPT_IRET);
5060         ++vcpu->stat.nmi_injections;
5061 }
5062
5063 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
5064 {
5065         struct vmcb_control_area *control;
5066
5067         /* The following fields are ignored when AVIC is enabled */
5068         control = &svm->vmcb->control;
5069         control->int_vector = irq;
5070         control->int_ctl &= ~V_INTR_PRIO_MASK;
5071         control->int_ctl |= V_IRQ_MASK |
5072                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
5073         mark_dirty(svm->vmcb, VMCB_INTR);
5074 }
5075
5076 static void svm_set_irq(struct kvm_vcpu *vcpu)
5077 {
5078         struct vcpu_svm *svm = to_svm(vcpu);
5079
5080         BUG_ON(!(gif_set(svm)));
5081
5082         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
5083         ++vcpu->stat.irq_injections;
5084
5085         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
5086                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
5087 }
5088
5089 static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
5090 {
5091         return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
5092 }
5093
5094 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5095 {
5096         struct vcpu_svm *svm = to_svm(vcpu);
5097
5098         if (svm_nested_virtualize_tpr(vcpu) ||
5099             kvm_vcpu_apicv_active(vcpu))
5100                 return;
5101
5102         clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5103
5104         if (irr == -1)
5105                 return;
5106
5107         if (tpr >= irr)
5108                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5109 }
5110
5111 static void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
5112 {
5113         return;
5114 }
5115
5116 static bool svm_get_enable_apicv(struct kvm_vcpu *vcpu)
5117 {
5118         return avic && irqchip_split(vcpu->kvm);
5119 }
5120
5121 static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
5122 {
5123 }
5124
5125 static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
5126 {
5127 }
5128
5129 /* Note: Currently only used by Hyper-V. */
5130 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5131 {
5132         struct vcpu_svm *svm = to_svm(vcpu);
5133         struct vmcb *vmcb = svm->vmcb;
5134
5135         if (kvm_vcpu_apicv_active(vcpu))
5136                 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
5137         else
5138                 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
5139         mark_dirty(vmcb, VMCB_AVIC);
5140 }
5141
5142 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
5143 {
5144         return;
5145 }
5146
5147 static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
5148 {
5149         kvm_lapic_set_irr(vec, vcpu->arch.apic);
5150         smp_mb__after_atomic();
5151
5152         if (avic_vcpu_is_running(vcpu)) {
5153                 int cpuid = vcpu->cpu;
5154
5155                 if (cpuid != get_cpu())
5156                         wrmsrl(SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpuid));
5157                 put_cpu();
5158         } else
5159                 kvm_vcpu_wake_up(vcpu);
5160 }
5161
5162 static bool svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
5163 {
5164         return false;
5165 }
5166
5167 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5168 {
5169         unsigned long flags;
5170         struct amd_svm_iommu_ir *cur;
5171
5172         spin_lock_irqsave(&svm->ir_list_lock, flags);
5173         list_for_each_entry(cur, &svm->ir_list, node) {
5174                 if (cur->data != pi->ir_data)
5175                         continue;
5176                 list_del(&cur->node);
5177                 kfree(cur);
5178                 break;
5179         }
5180         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5181 }
5182
5183 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5184 {
5185         int ret = 0;
5186         unsigned long flags;
5187         struct amd_svm_iommu_ir *ir;
5188
5189         /**
5190          * In some cases, the existing irte is updaed and re-set,
5191          * so we need to check here if it's already been * added
5192          * to the ir_list.
5193          */
5194         if (pi->ir_data && (pi->prev_ga_tag != 0)) {
5195                 struct kvm *kvm = svm->vcpu.kvm;
5196                 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
5197                 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
5198                 struct vcpu_svm *prev_svm;
5199
5200                 if (!prev_vcpu) {
5201                         ret = -EINVAL;
5202                         goto out;
5203                 }
5204
5205                 prev_svm = to_svm(prev_vcpu);
5206                 svm_ir_list_del(prev_svm, pi);
5207         }
5208
5209         /**
5210          * Allocating new amd_iommu_pi_data, which will get
5211          * add to the per-vcpu ir_list.
5212          */
5213         ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT);
5214         if (!ir) {
5215                 ret = -ENOMEM;
5216                 goto out;
5217         }
5218         ir->data = pi->ir_data;
5219
5220         spin_lock_irqsave(&svm->ir_list_lock, flags);
5221         list_add(&ir->node, &svm->ir_list);
5222         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5223 out:
5224         return ret;
5225 }
5226
5227 /**
5228  * Note:
5229  * The HW cannot support posting multicast/broadcast
5230  * interrupts to a vCPU. So, we still use legacy interrupt
5231  * remapping for these kind of interrupts.
5232  *
5233  * For lowest-priority interrupts, we only support
5234  * those with single CPU as the destination, e.g. user
5235  * configures the interrupts via /proc/irq or uses
5236  * irqbalance to make the interrupts single-CPU.
5237  */
5238 static int
5239 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
5240                  struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
5241 {
5242         struct kvm_lapic_irq irq;
5243         struct kvm_vcpu *vcpu = NULL;
5244
5245         kvm_set_msi_irq(kvm, e, &irq);
5246
5247         if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
5248             !kvm_irq_is_postable(&irq)) {
5249                 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
5250                          __func__, irq.vector);
5251                 return -1;
5252         }
5253
5254         pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
5255                  irq.vector);
5256         *svm = to_svm(vcpu);
5257         vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
5258         vcpu_info->vector = irq.vector;
5259
5260         return 0;
5261 }
5262
5263 /*
5264  * svm_update_pi_irte - set IRTE for Posted-Interrupts
5265  *
5266  * @kvm: kvm
5267  * @host_irq: host irq of the interrupt
5268  * @guest_irq: gsi of the interrupt
5269  * @set: set or unset PI
5270  * returns 0 on success, < 0 on failure
5271  */
5272 static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
5273                               uint32_t guest_irq, bool set)
5274 {
5275         struct kvm_kernel_irq_routing_entry *e;
5276         struct kvm_irq_routing_table *irq_rt;
5277         int idx, ret = -EINVAL;
5278
5279         if (!kvm_arch_has_assigned_device(kvm) ||
5280             !irq_remapping_cap(IRQ_POSTING_CAP))
5281                 return 0;
5282
5283         pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
5284                  __func__, host_irq, guest_irq, set);
5285
5286         idx = srcu_read_lock(&kvm->irq_srcu);
5287         irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
5288         WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
5289
5290         hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
5291                 struct vcpu_data vcpu_info;
5292                 struct vcpu_svm *svm = NULL;
5293
5294                 if (e->type != KVM_IRQ_ROUTING_MSI)
5295                         continue;
5296
5297                 /**
5298                  * Here, we setup with legacy mode in the following cases:
5299                  * 1. When cannot target interrupt to a specific vcpu.
5300                  * 2. Unsetting posted interrupt.
5301                  * 3. APIC virtialization is disabled for the vcpu.
5302                  * 4. IRQ has incompatible delivery mode (SMI, INIT, etc)
5303                  */
5304                 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
5305                     kvm_vcpu_apicv_active(&svm->vcpu)) {
5306                         struct amd_iommu_pi_data pi;
5307
5308                         /* Try to enable guest_mode in IRTE */
5309                         pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
5310                                             AVIC_HPA_MASK);
5311                         pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
5312                                                      svm->vcpu.vcpu_id);
5313                         pi.is_guest_mode = true;
5314                         pi.vcpu_data = &vcpu_info;
5315                         ret = irq_set_vcpu_affinity(host_irq, &pi);
5316
5317                         /**
5318                          * Here, we successfully setting up vcpu affinity in
5319                          * IOMMU guest mode. Now, we need to store the posted
5320                          * interrupt information in a per-vcpu ir_list so that
5321                          * we can reference to them directly when we update vcpu
5322                          * scheduling information in IOMMU irte.
5323                          */
5324                         if (!ret && pi.is_guest_mode)
5325                                 svm_ir_list_add(svm, &pi);
5326                 } else {
5327                         /* Use legacy mode in IRTE */
5328                         struct amd_iommu_pi_data pi;
5329
5330                         /**
5331                          * Here, pi is used to:
5332                          * - Tell IOMMU to use legacy mode for this interrupt.
5333                          * - Retrieve ga_tag of prior interrupt remapping data.
5334                          */
5335                         pi.is_guest_mode = false;
5336                         ret = irq_set_vcpu_affinity(host_irq, &pi);
5337
5338                         /**
5339                          * Check if the posted interrupt was previously
5340                          * setup with the guest_mode by checking if the ga_tag
5341                          * was cached. If so, we need to clean up the per-vcpu
5342                          * ir_list.
5343                          */
5344                         if (!ret && pi.prev_ga_tag) {
5345                                 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
5346                                 struct kvm_vcpu *vcpu;
5347
5348                                 vcpu = kvm_get_vcpu_by_id(kvm, id);
5349                                 if (vcpu)
5350                                         svm_ir_list_del(to_svm(vcpu), &pi);
5351                         }
5352                 }
5353
5354                 if (!ret && svm) {
5355                         trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
5356                                                  e->gsi, vcpu_info.vector,
5357                                                  vcpu_info.pi_desc_addr, set);
5358                 }
5359
5360                 if (ret < 0) {
5361                         pr_err("%s: failed to update PI IRTE\n", __func__);
5362                         goto out;
5363                 }
5364         }
5365
5366         ret = 0;
5367 out:
5368         srcu_read_unlock(&kvm->irq_srcu, idx);
5369         return ret;
5370 }
5371
5372 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
5373 {
5374         struct vcpu_svm *svm = to_svm(vcpu);
5375         struct vmcb *vmcb = svm->vmcb;
5376         int ret;
5377         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
5378               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
5379         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
5380
5381         return ret;
5382 }
5383
5384 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
5385 {
5386         struct vcpu_svm *svm = to_svm(vcpu);
5387
5388         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
5389 }
5390
5391 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5392 {
5393         struct vcpu_svm *svm = to_svm(vcpu);
5394
5395         if (masked) {
5396                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
5397                 set_intercept(svm, INTERCEPT_IRET);
5398         } else {
5399                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
5400                 clr_intercept(svm, INTERCEPT_IRET);
5401         }
5402 }
5403
5404 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
5405 {
5406         struct vcpu_svm *svm = to_svm(vcpu);
5407         struct vmcb *vmcb = svm->vmcb;
5408         int ret;
5409
5410         if (!gif_set(svm) ||
5411              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
5412                 return 0;
5413
5414         ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
5415
5416         if (is_guest_mode(vcpu))
5417                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
5418
5419         return ret;
5420 }
5421
5422 static void enable_irq_window(struct kvm_vcpu *vcpu)
5423 {
5424         struct vcpu_svm *svm = to_svm(vcpu);
5425
5426         if (kvm_vcpu_apicv_active(vcpu))
5427                 return;
5428
5429         /*
5430          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
5431          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
5432          * get that intercept, this function will be called again though and
5433          * we'll get the vintr intercept. However, if the vGIF feature is
5434          * enabled, the STGI interception will not occur. Enable the irq
5435          * window under the assumption that the hardware will set the GIF.
5436          */
5437         if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) {
5438                 svm_set_vintr(svm);
5439                 svm_inject_irq(svm, 0x0);
5440         }
5441 }
5442
5443 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5444 {
5445         struct vcpu_svm *svm = to_svm(vcpu);
5446
5447         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
5448             == HF_NMI_MASK)
5449                 return; /* IRET will cause a vm exit */
5450
5451         if (!gif_set(svm)) {
5452                 if (vgif_enabled(svm))
5453                         set_intercept(svm, INTERCEPT_STGI);
5454                 return; /* STGI will cause a vm exit */
5455         }
5456
5457         if (svm->nested.exit_required)
5458                 return; /* we're not going to run the guest yet */
5459
5460         /*
5461          * Something prevents NMI from been injected. Single step over possible
5462          * problem (IRET or exception injection or interrupt shadow)
5463          */
5464         svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
5465         svm->nmi_singlestep = true;
5466         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
5467 }
5468
5469 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
5470 {
5471         return 0;
5472 }
5473
5474 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5475 {
5476         return 0;
5477 }
5478
5479 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
5480 {
5481         struct vcpu_svm *svm = to_svm(vcpu);
5482
5483         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
5484                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5485         else
5486                 svm->asid_generation--;
5487 }
5488
5489 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
5490 {
5491         struct vcpu_svm *svm = to_svm(vcpu);
5492
5493         invlpga(gva, svm->vmcb->control.asid);
5494 }
5495
5496 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
5497 {
5498 }
5499
5500 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
5501 {
5502         struct vcpu_svm *svm = to_svm(vcpu);
5503
5504         if (svm_nested_virtualize_tpr(vcpu))
5505                 return;
5506
5507         if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
5508                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
5509                 kvm_set_cr8(vcpu, cr8);
5510         }
5511 }
5512
5513 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
5514 {
5515         struct vcpu_svm *svm = to_svm(vcpu);
5516         u64 cr8;
5517
5518         if (svm_nested_virtualize_tpr(vcpu) ||
5519             kvm_vcpu_apicv_active(vcpu))
5520                 return;
5521
5522         cr8 = kvm_get_cr8(vcpu);
5523         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
5524         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
5525 }
5526
5527 static void svm_complete_interrupts(struct vcpu_svm *svm)
5528 {
5529         u8 vector;
5530         int type;
5531         u32 exitintinfo = svm->vmcb->control.exit_int_info;
5532         unsigned int3_injected = svm->int3_injected;
5533
5534         svm->int3_injected = 0;
5535
5536         /*
5537          * If we've made progress since setting HF_IRET_MASK, we've
5538          * executed an IRET and can allow NMI injection.
5539          */
5540         if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
5541             && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
5542                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
5543                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5544         }
5545
5546         svm->vcpu.arch.nmi_injected = false;
5547         kvm_clear_exception_queue(&svm->vcpu);
5548         kvm_clear_interrupt_queue(&svm->vcpu);
5549
5550         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
5551                 return;
5552
5553         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5554
5555         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
5556         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
5557
5558         switch (type) {
5559         case SVM_EXITINTINFO_TYPE_NMI:
5560                 svm->vcpu.arch.nmi_injected = true;
5561                 break;
5562         case SVM_EXITINTINFO_TYPE_EXEPT:
5563                 /*
5564                  * In case of software exceptions, do not reinject the vector,
5565                  * but re-execute the instruction instead. Rewind RIP first
5566                  * if we emulated INT3 before.
5567                  */
5568                 if (kvm_exception_is_soft(vector)) {
5569                         if (vector == BP_VECTOR && int3_injected &&
5570                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
5571                                 kvm_rip_write(&svm->vcpu,
5572                                               kvm_rip_read(&svm->vcpu) -
5573                                               int3_injected);
5574                         break;
5575                 }
5576                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
5577                         u32 err = svm->vmcb->control.exit_int_info_err;
5578                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
5579
5580                 } else
5581                         kvm_requeue_exception(&svm->vcpu, vector);
5582                 break;
5583         case SVM_EXITINTINFO_TYPE_INTR:
5584                 kvm_queue_interrupt(&svm->vcpu, vector, false);
5585                 break;
5586         default:
5587                 break;
5588         }
5589 }
5590
5591 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
5592 {
5593         struct vcpu_svm *svm = to_svm(vcpu);
5594         struct vmcb_control_area *control = &svm->vmcb->control;
5595
5596         control->exit_int_info = control->event_inj;
5597         control->exit_int_info_err = control->event_inj_err;
5598         control->event_inj = 0;
5599         svm_complete_interrupts(svm);
5600 }
5601
5602 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
5603 {
5604         struct vcpu_svm *svm = to_svm(vcpu);
5605
5606         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
5607         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
5608         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
5609
5610         /*
5611          * A vmexit emulation is required before the vcpu can be executed
5612          * again.
5613          */
5614         if (unlikely(svm->nested.exit_required))
5615                 return;
5616
5617         /*
5618          * Disable singlestep if we're injecting an interrupt/exception.
5619          * We don't want our modified rflags to be pushed on the stack where
5620          * we might not be able to easily reset them if we disabled NMI
5621          * singlestep later.
5622          */
5623         if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
5624                 /*
5625                  * Event injection happens before external interrupts cause a
5626                  * vmexit and interrupts are disabled here, so smp_send_reschedule
5627                  * is enough to force an immediate vmexit.
5628                  */
5629                 disable_nmi_singlestep(svm);
5630                 smp_send_reschedule(vcpu->cpu);
5631         }
5632
5633         pre_svm_run(svm);
5634
5635         sync_lapic_to_cr8(vcpu);
5636
5637         svm->vmcb->save.cr2 = vcpu->arch.cr2;
5638
5639         clgi();
5640         kvm_load_guest_xcr0(vcpu);
5641
5642         if (lapic_in_kernel(vcpu) &&
5643                 vcpu->arch.apic->lapic_timer.timer_advance_ns)
5644                 kvm_wait_lapic_expire(vcpu);
5645
5646         /*
5647          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
5648          * it's non-zero. Since vmentry is serialising on affected CPUs, there
5649          * is no need to worry about the conditional branch over the wrmsr
5650          * being speculatively taken.
5651          */
5652         x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
5653
5654         local_irq_enable();
5655
5656         asm volatile (
5657                 "push %%" _ASM_BP "; \n\t"
5658                 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
5659                 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
5660                 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
5661                 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
5662                 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
5663                 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
5664 #ifdef CONFIG_X86_64
5665                 "mov %c[r8](%[svm]),  %%r8  \n\t"
5666                 "mov %c[r9](%[svm]),  %%r9  \n\t"
5667                 "mov %c[r10](%[svm]), %%r10 \n\t"
5668                 "mov %c[r11](%[svm]), %%r11 \n\t"
5669                 "mov %c[r12](%[svm]), %%r12 \n\t"
5670                 "mov %c[r13](%[svm]), %%r13 \n\t"
5671                 "mov %c[r14](%[svm]), %%r14 \n\t"
5672                 "mov %c[r15](%[svm]), %%r15 \n\t"
5673 #endif
5674
5675                 /* Enter guest mode */
5676                 "push %%" _ASM_AX " \n\t"
5677                 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
5678                 __ex("vmload %%" _ASM_AX) "\n\t"
5679                 __ex("vmrun %%" _ASM_AX) "\n\t"
5680                 __ex("vmsave %%" _ASM_AX) "\n\t"
5681                 "pop %%" _ASM_AX " \n\t"
5682
5683                 /* Save guest registers, load host registers */
5684                 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
5685                 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
5686                 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
5687                 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
5688                 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
5689                 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
5690 #ifdef CONFIG_X86_64
5691                 "mov %%r8,  %c[r8](%[svm]) \n\t"
5692                 "mov %%r9,  %c[r9](%[svm]) \n\t"
5693                 "mov %%r10, %c[r10](%[svm]) \n\t"
5694                 "mov %%r11, %c[r11](%[svm]) \n\t"
5695                 "mov %%r12, %c[r12](%[svm]) \n\t"
5696                 "mov %%r13, %c[r13](%[svm]) \n\t"
5697                 "mov %%r14, %c[r14](%[svm]) \n\t"
5698                 "mov %%r15, %c[r15](%[svm]) \n\t"
5699                 /*
5700                 * Clear host registers marked as clobbered to prevent
5701                 * speculative use.
5702                 */
5703                 "xor %%r8d, %%r8d \n\t"
5704                 "xor %%r9d, %%r9d \n\t"
5705                 "xor %%r10d, %%r10d \n\t"
5706                 "xor %%r11d, %%r11d \n\t"
5707                 "xor %%r12d, %%r12d \n\t"
5708                 "xor %%r13d, %%r13d \n\t"
5709                 "xor %%r14d, %%r14d \n\t"
5710                 "xor %%r15d, %%r15d \n\t"
5711 #endif
5712                 "xor %%ebx, %%ebx \n\t"
5713                 "xor %%ecx, %%ecx \n\t"
5714                 "xor %%edx, %%edx \n\t"
5715                 "xor %%esi, %%esi \n\t"
5716                 "xor %%edi, %%edi \n\t"
5717                 "pop %%" _ASM_BP
5718                 :
5719                 : [svm]"a"(svm),
5720                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
5721                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
5722                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
5723                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
5724                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
5725                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
5726                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
5727 #ifdef CONFIG_X86_64
5728                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
5729                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
5730                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
5731                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
5732                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
5733                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
5734                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
5735                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
5736 #endif
5737                 : "cc", "memory"
5738 #ifdef CONFIG_X86_64
5739                 , "rbx", "rcx", "rdx", "rsi", "rdi"
5740                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
5741 #else
5742                 , "ebx", "ecx", "edx", "esi", "edi"
5743 #endif
5744                 );
5745
5746         /* Eliminate branch target predictions from guest mode */
5747         vmexit_fill_RSB();
5748
5749 #ifdef CONFIG_X86_64
5750         wrmsrl(MSR_GS_BASE, svm->host.gs_base);
5751 #else
5752         loadsegment(fs, svm->host.fs);
5753 #ifndef CONFIG_X86_32_LAZY_GS
5754         loadsegment(gs, svm->host.gs);
5755 #endif
5756 #endif
5757
5758         /*
5759          * We do not use IBRS in the kernel. If this vCPU has used the
5760          * SPEC_CTRL MSR it may have left it on; save the value and
5761          * turn it off. This is much more efficient than blindly adding
5762          * it to the atomic save/restore list. Especially as the former
5763          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
5764          *
5765          * For non-nested case:
5766          * If the L01 MSR bitmap does not intercept the MSR, then we need to
5767          * save it.
5768          *
5769          * For nested case:
5770          * If the L02 MSR bitmap does not intercept the MSR, then we need to
5771          * save it.
5772          */
5773         if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
5774                 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
5775
5776         reload_tss(vcpu);
5777
5778         local_irq_disable();
5779
5780         x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
5781
5782         vcpu->arch.cr2 = svm->vmcb->save.cr2;
5783         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
5784         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
5785         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
5786
5787         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5788                 kvm_before_interrupt(&svm->vcpu);
5789
5790         kvm_put_guest_xcr0(vcpu);
5791         stgi();
5792
5793         /* Any pending NMI will happen here */
5794
5795         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5796                 kvm_after_interrupt(&svm->vcpu);
5797
5798         sync_cr8_to_lapic(vcpu);
5799
5800         svm->next_rip = 0;
5801
5802         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
5803
5804         /* if exit due to PF check for async PF */
5805         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
5806                 svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
5807
5808         if (npt_enabled) {
5809                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
5810                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
5811         }
5812
5813         /*
5814          * We need to handle MC intercepts here before the vcpu has a chance to
5815          * change the physical cpu
5816          */
5817         if (unlikely(svm->vmcb->control.exit_code ==
5818                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
5819                 svm_handle_mce(svm);
5820
5821         mark_all_clean(svm->vmcb);
5822 }
5823 STACK_FRAME_NON_STANDARD(svm_vcpu_run);
5824
5825 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5826 {
5827         struct vcpu_svm *svm = to_svm(vcpu);
5828
5829         svm->vmcb->save.cr3 = __sme_set(root);
5830         mark_dirty(svm->vmcb, VMCB_CR);
5831 }
5832
5833 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5834 {
5835         struct vcpu_svm *svm = to_svm(vcpu);
5836
5837         svm->vmcb->control.nested_cr3 = __sme_set(root);
5838         mark_dirty(svm->vmcb, VMCB_NPT);
5839
5840         /* Also sync guest cr3 here in case we live migrate */
5841         svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
5842         mark_dirty(svm->vmcb, VMCB_CR);
5843 }
5844
5845 static int is_disabled(void)
5846 {
5847         u64 vm_cr;
5848
5849         rdmsrl(MSR_VM_CR, vm_cr);
5850         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
5851                 return 1;
5852
5853         return 0;
5854 }
5855
5856 static void
5857 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5858 {
5859         /*
5860          * Patch in the VMMCALL instruction:
5861          */
5862         hypercall[0] = 0x0f;
5863         hypercall[1] = 0x01;
5864         hypercall[2] = 0xd9;
5865 }
5866
5867 static int __init svm_check_processor_compat(void)
5868 {
5869         return 0;
5870 }
5871
5872 static bool svm_cpu_has_accelerated_tpr(void)
5873 {
5874         return false;
5875 }
5876
5877 static bool svm_has_emulated_msr(int index)
5878 {
5879         switch (index) {
5880         case MSR_IA32_MCG_EXT_CTL:
5881         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
5882                 return false;
5883         default:
5884                 break;
5885         }
5886
5887         return true;
5888 }
5889
5890 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5891 {
5892         return 0;
5893 }
5894
5895 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5896 {
5897         struct vcpu_svm *svm = to_svm(vcpu);
5898
5899         /* Update nrips enabled cache */
5900         svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
5901
5902         if (!kvm_vcpu_apicv_active(vcpu))
5903                 return;
5904
5905         guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC);
5906 }
5907
5908 #define F(x) bit(X86_FEATURE_##x)
5909
5910 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5911 {
5912         switch (func) {
5913         case 0x1:
5914                 if (avic)
5915                         entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5916                 break;
5917         case 0x80000001:
5918                 if (nested)
5919                         entry->ecx |= (1 << 2); /* Set SVM bit */
5920                 break;
5921         case 0x80000008:
5922                 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
5923                      boot_cpu_has(X86_FEATURE_AMD_SSBD))
5924                         entry->ebx |= F(VIRT_SSBD);
5925                 break;
5926         case 0x8000000A:
5927                 entry->eax = 1; /* SVM revision 1 */
5928                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5929                                    ASID emulation to nested SVM */
5930                 entry->ecx = 0; /* Reserved */
5931                 entry->edx = 0; /* Per default do not support any
5932                                    additional features */
5933
5934                 /* Support next_rip if host supports it */
5935                 if (boot_cpu_has(X86_FEATURE_NRIPS))
5936                         entry->edx |= F(NRIPS);
5937
5938                 /* Support NPT for the guest if enabled */
5939                 if (npt_enabled)
5940                         entry->edx |= F(NPT);
5941
5942                 break;
5943         case 0x8000001F:
5944                 /* Support memory encryption cpuid if host supports it */
5945                 if (boot_cpu_has(X86_FEATURE_SEV))
5946                         cpuid(0x8000001f, &entry->eax, &entry->ebx,
5947                                 &entry->ecx, &entry->edx);
5948
5949         }
5950 }
5951
5952 static int svm_get_lpage_level(void)
5953 {
5954         return PT_PDPE_LEVEL;
5955 }
5956
5957 static bool svm_rdtscp_supported(void)
5958 {
5959         return boot_cpu_has(X86_FEATURE_RDTSCP);
5960 }
5961
5962 static bool svm_invpcid_supported(void)
5963 {
5964         return false;
5965 }
5966
5967 static bool svm_mpx_supported(void)
5968 {
5969         return false;
5970 }
5971
5972 static bool svm_xsaves_supported(void)
5973 {
5974         return false;
5975 }
5976
5977 static bool svm_umip_emulated(void)
5978 {
5979         return false;
5980 }
5981
5982 static bool svm_pt_supported(void)
5983 {
5984         return false;
5985 }
5986
5987 static bool svm_has_wbinvd_exit(void)
5988 {
5989         return true;
5990 }
5991
5992 #define PRE_EX(exit)  { .exit_code = (exit), \
5993                         .stage = X86_ICPT_PRE_EXCEPT, }
5994 #define POST_EX(exit) { .exit_code = (exit), \
5995                         .stage = X86_ICPT_POST_EXCEPT, }
5996 #define POST_MEM(exit) { .exit_code = (exit), \
5997                         .stage = X86_ICPT_POST_MEMACCESS, }
5998
5999 static const struct __x86_intercept {
6000         u32 exit_code;
6001         enum x86_intercept_stage stage;
6002 } x86_intercept_map[] = {
6003         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
6004         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
6005         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
6006         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
6007         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
6008         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
6009         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
6010         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
6011         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
6012         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
6013         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
6014         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
6015         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
6016         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
6017         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
6018         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
6019         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
6020         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
6021         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
6022         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
6023         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
6024         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
6025         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
6026         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
6027         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
6028         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
6029         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
6030         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
6031         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
6032         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
6033         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
6034         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
6035         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
6036         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
6037         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
6038         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
6039         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
6040         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
6041         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
6042         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
6043         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
6044         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
6045         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
6046         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
6047         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
6048         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
6049         [x86_intercept_xsetbv]          = PRE_EX(SVM_EXIT_XSETBV),
6050 };
6051
6052 #undef PRE_EX
6053 #undef POST_EX
6054 #undef POST_MEM
6055
6056 static int svm_check_intercept(struct kvm_vcpu *vcpu,
6057                                struct x86_instruction_info *info,
6058                                enum x86_intercept_stage stage)
6059 {
6060         struct vcpu_svm *svm = to_svm(vcpu);
6061         int vmexit, ret = X86EMUL_CONTINUE;
6062         struct __x86_intercept icpt_info;
6063         struct vmcb *vmcb = svm->vmcb;
6064
6065         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
6066                 goto out;
6067
6068         icpt_info = x86_intercept_map[info->intercept];
6069
6070         if (stage != icpt_info.stage)
6071                 goto out;
6072
6073         switch (icpt_info.exit_code) {
6074         case SVM_EXIT_READ_CR0:
6075                 if (info->intercept == x86_intercept_cr_read)
6076                         icpt_info.exit_code += info->modrm_reg;
6077                 break;
6078         case SVM_EXIT_WRITE_CR0: {
6079                 unsigned long cr0, val;
6080                 u64 intercept;
6081
6082                 if (info->intercept == x86_intercept_cr_write)
6083                         icpt_info.exit_code += info->modrm_reg;
6084
6085                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
6086                     info->intercept == x86_intercept_clts)
6087                         break;
6088
6089                 intercept = svm->nested.intercept;
6090
6091                 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
6092                         break;
6093
6094                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
6095                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
6096
6097                 if (info->intercept == x86_intercept_lmsw) {
6098                         cr0 &= 0xfUL;
6099                         val &= 0xfUL;
6100                         /* lmsw can't clear PE - catch this here */
6101                         if (cr0 & X86_CR0_PE)
6102                                 val |= X86_CR0_PE;
6103                 }
6104
6105                 if (cr0 ^ val)
6106                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
6107
6108                 break;
6109         }
6110         case SVM_EXIT_READ_DR0:
6111         case SVM_EXIT_WRITE_DR0:
6112                 icpt_info.exit_code += info->modrm_reg;
6113                 break;
6114         case SVM_EXIT_MSR:
6115                 if (info->intercept == x86_intercept_wrmsr)
6116                         vmcb->control.exit_info_1 = 1;
6117                 else
6118                         vmcb->control.exit_info_1 = 0;
6119                 break;
6120         case SVM_EXIT_PAUSE:
6121                 /*
6122                  * We get this for NOP only, but pause
6123                  * is rep not, check this here
6124                  */
6125                 if (info->rep_prefix != REPE_PREFIX)
6126                         goto out;
6127                 break;
6128         case SVM_EXIT_IOIO: {
6129                 u64 exit_info;
6130                 u32 bytes;
6131
6132                 if (info->intercept == x86_intercept_in ||
6133                     info->intercept == x86_intercept_ins) {
6134                         exit_info = ((info->src_val & 0xffff) << 16) |
6135                                 SVM_IOIO_TYPE_MASK;
6136                         bytes = info->dst_bytes;
6137                 } else {
6138                         exit_info = (info->dst_val & 0xffff) << 16;
6139                         bytes = info->src_bytes;
6140                 }
6141
6142                 if (info->intercept == x86_intercept_outs ||
6143                     info->intercept == x86_intercept_ins)
6144                         exit_info |= SVM_IOIO_STR_MASK;
6145
6146                 if (info->rep_prefix)
6147                         exit_info |= SVM_IOIO_REP_MASK;
6148
6149                 bytes = min(bytes, 4u);
6150
6151                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
6152
6153                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
6154
6155                 vmcb->control.exit_info_1 = exit_info;
6156                 vmcb->control.exit_info_2 = info->next_rip;
6157
6158                 break;
6159         }
6160         default:
6161                 break;
6162         }
6163
6164         /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
6165         if (static_cpu_has(X86_FEATURE_NRIPS))
6166                 vmcb->control.next_rip  = info->next_rip;
6167         vmcb->control.exit_code = icpt_info.exit_code;
6168         vmexit = nested_svm_exit_handled(svm);
6169
6170         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
6171                                            : X86EMUL_CONTINUE;
6172
6173 out:
6174         return ret;
6175 }
6176
6177 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6178 {
6179
6180 }
6181
6182 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
6183 {
6184         if (pause_filter_thresh)
6185                 shrink_ple_window(vcpu);
6186 }
6187
6188 static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
6189 {
6190         if (avic_handle_apic_id_update(vcpu) != 0)
6191                 return;
6192         avic_handle_dfr_update(vcpu);
6193         avic_handle_ldr_update(vcpu);
6194 }
6195
6196 static void svm_setup_mce(struct kvm_vcpu *vcpu)
6197 {
6198         /* [63:9] are reserved. */
6199         vcpu->arch.mcg_cap &= 0x1ff;
6200 }
6201
6202 static int svm_smi_allowed(struct kvm_vcpu *vcpu)
6203 {
6204         struct vcpu_svm *svm = to_svm(vcpu);
6205
6206         /* Per APM Vol.2 15.22.2 "Response to SMI" */
6207         if (!gif_set(svm))
6208                 return 0;
6209
6210         if (is_guest_mode(&svm->vcpu) &&
6211             svm->nested.intercept & (1ULL << INTERCEPT_SMI)) {
6212                 /* TODO: Might need to set exit_info_1 and exit_info_2 here */
6213                 svm->vmcb->control.exit_code = SVM_EXIT_SMI;
6214                 svm->nested.exit_required = true;
6215                 return 0;
6216         }
6217
6218         return 1;
6219 }
6220
6221 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
6222 {
6223         struct vcpu_svm *svm = to_svm(vcpu);
6224         int ret;
6225
6226         if (is_guest_mode(vcpu)) {
6227                 /* FED8h - SVM Guest */
6228                 put_smstate(u64, smstate, 0x7ed8, 1);
6229                 /* FEE0h - SVM Guest VMCB Physical Address */
6230                 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
6231
6232                 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
6233                 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
6234                 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
6235
6236                 ret = nested_svm_vmexit(svm);
6237                 if (ret)
6238                         return ret;
6239         }
6240         return 0;
6241 }
6242
6243 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
6244 {
6245         struct vcpu_svm *svm = to_svm(vcpu);
6246         struct vmcb *nested_vmcb;
6247         struct kvm_host_map map;
6248         u64 guest;
6249         u64 vmcb;
6250
6251         guest = GET_SMSTATE(u64, smstate, 0x7ed8);
6252         vmcb = GET_SMSTATE(u64, smstate, 0x7ee0);
6253
6254         if (guest) {
6255                 if (kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb), &map) == -EINVAL)
6256                         return 1;
6257                 nested_vmcb = map.hva;
6258                 enter_svm_guest_mode(svm, vmcb, nested_vmcb, &map);
6259         }
6260         return 0;
6261 }
6262
6263 static int enable_smi_window(struct kvm_vcpu *vcpu)
6264 {
6265         struct vcpu_svm *svm = to_svm(vcpu);
6266
6267         if (!gif_set(svm)) {
6268                 if (vgif_enabled(svm))
6269                         set_intercept(svm, INTERCEPT_STGI);
6270                 /* STGI will cause a vm exit */
6271                 return 1;
6272         }
6273         return 0;
6274 }
6275
6276 static int sev_asid_new(void)
6277 {
6278         int pos;
6279
6280         mutex_lock(&sev_bitmap_lock);
6281
6282         /*
6283          * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid.
6284          */
6285         pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1);
6286         if (pos >= max_sev_asid) {
6287                 mutex_unlock(&sev_bitmap_lock);
6288                 return -EBUSY;
6289         }
6290
6291         __set_bit(pos, sev_asid_bitmap);
6292
6293         mutex_unlock(&sev_bitmap_lock);
6294
6295         return pos + 1;
6296 }
6297
6298 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
6299 {
6300         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6301         int asid, ret;
6302
6303         ret = -EBUSY;
6304         if (unlikely(sev->active))
6305                 return ret;
6306
6307         asid = sev_asid_new();
6308         if (asid < 0)
6309                 return ret;
6310
6311         ret = sev_platform_init(&argp->error);
6312         if (ret)
6313                 goto e_free;
6314
6315         sev->active = true;
6316         sev->asid = asid;
6317         INIT_LIST_HEAD(&sev->regions_list);
6318
6319         return 0;
6320
6321 e_free:
6322         sev_asid_free(asid);
6323         return ret;
6324 }
6325
6326 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
6327 {
6328         struct sev_data_activate *data;
6329         int asid = sev_get_asid(kvm);
6330         int ret;
6331
6332         data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6333         if (!data)
6334                 return -ENOMEM;
6335
6336         /* activate ASID on the given handle */
6337         data->handle = handle;
6338         data->asid   = asid;
6339         ret = sev_guest_activate(data, error);
6340         kfree(data);
6341
6342         return ret;
6343 }
6344
6345 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
6346 {
6347         struct fd f;
6348         int ret;
6349
6350         f = fdget(fd);
6351         if (!f.file)
6352                 return -EBADF;
6353
6354         ret = sev_issue_cmd_external_user(f.file, id, data, error);
6355
6356         fdput(f);
6357         return ret;
6358 }
6359
6360 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
6361 {
6362         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6363
6364         return __sev_issue_cmd(sev->fd, id, data, error);
6365 }
6366
6367 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
6368 {
6369         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6370         struct sev_data_launch_start *start;
6371         struct kvm_sev_launch_start params;
6372         void *dh_blob, *session_blob;
6373         int *error = &argp->error;
6374         int ret;
6375
6376         if (!sev_guest(kvm))
6377                 return -ENOTTY;
6378
6379         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6380                 return -EFAULT;
6381
6382         start = kzalloc(sizeof(*start), GFP_KERNEL_ACCOUNT);
6383         if (!start)
6384                 return -ENOMEM;
6385
6386         dh_blob = NULL;
6387         if (params.dh_uaddr) {
6388                 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
6389                 if (IS_ERR(dh_blob)) {
6390                         ret = PTR_ERR(dh_blob);
6391                         goto e_free;
6392                 }
6393
6394                 start->dh_cert_address = __sme_set(__pa(dh_blob));
6395                 start->dh_cert_len = params.dh_len;
6396         }
6397
6398         session_blob = NULL;
6399         if (params.session_uaddr) {
6400                 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
6401                 if (IS_ERR(session_blob)) {
6402                         ret = PTR_ERR(session_blob);
6403                         goto e_free_dh;
6404                 }
6405
6406                 start->session_address = __sme_set(__pa(session_blob));
6407                 start->session_len = params.session_len;
6408         }
6409
6410         start->handle = params.handle;
6411         start->policy = params.policy;
6412
6413         /* create memory encryption context */
6414         ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
6415         if (ret)
6416                 goto e_free_session;
6417
6418         /* Bind ASID to this guest */
6419         ret = sev_bind_asid(kvm, start->handle, error);
6420         if (ret)
6421                 goto e_free_session;
6422
6423         /* return handle to userspace */
6424         params.handle = start->handle;
6425         if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
6426                 sev_unbind_asid(kvm, start->handle);
6427                 ret = -EFAULT;
6428                 goto e_free_session;
6429         }
6430
6431         sev->handle = start->handle;
6432         sev->fd = argp->sev_fd;
6433
6434 e_free_session:
6435         kfree(session_blob);
6436 e_free_dh:
6437         kfree(dh_blob);
6438 e_free:
6439         kfree(start);
6440         return ret;
6441 }
6442
6443 static unsigned long get_num_contig_pages(unsigned long idx,
6444                                 struct page **inpages, unsigned long npages)
6445 {
6446         unsigned long paddr, next_paddr;
6447         unsigned long i = idx + 1, pages = 1;
6448
6449         /* find the number of contiguous pages starting from idx */
6450         paddr = __sme_page_pa(inpages[idx]);
6451         while (i < npages) {
6452                 next_paddr = __sme_page_pa(inpages[i++]);
6453                 if ((paddr + PAGE_SIZE) == next_paddr) {
6454                         pages++;
6455                         paddr = next_paddr;
6456                         continue;
6457                 }
6458                 break;
6459         }
6460
6461         return pages;
6462 }
6463
6464 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
6465 {
6466         unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
6467         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6468         struct kvm_sev_launch_update_data params;
6469         struct sev_data_launch_update_data *data;
6470         struct page **inpages;
6471         int ret;
6472
6473         if (!sev_guest(kvm))
6474                 return -ENOTTY;
6475
6476         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6477                 return -EFAULT;
6478
6479         data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6480         if (!data)
6481                 return -ENOMEM;
6482
6483         vaddr = params.uaddr;
6484         size = params.len;
6485         vaddr_end = vaddr + size;
6486
6487         /* Lock the user memory. */
6488         inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
6489         if (!inpages) {
6490                 ret = -ENOMEM;
6491                 goto e_free;
6492         }
6493
6494         /*
6495          * The LAUNCH_UPDATE command will perform in-place encryption of the
6496          * memory content (i.e it will write the same memory region with C=1).
6497          * It's possible that the cache may contain the data with C=0, i.e.,
6498          * unencrypted so invalidate it first.
6499          */
6500         sev_clflush_pages(inpages, npages);
6501
6502         for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
6503                 int offset, len;
6504
6505                 /*
6506                  * If the user buffer is not page-aligned, calculate the offset
6507                  * within the page.
6508                  */
6509                 offset = vaddr & (PAGE_SIZE - 1);
6510
6511                 /* Calculate the number of pages that can be encrypted in one go. */
6512                 pages = get_num_contig_pages(i, inpages, npages);
6513
6514                 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
6515
6516                 data->handle = sev->handle;
6517                 data->len = len;
6518                 data->address = __sme_page_pa(inpages[i]) + offset;
6519                 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
6520                 if (ret)
6521                         goto e_unpin;
6522
6523                 size -= len;
6524                 next_vaddr = vaddr + len;
6525         }
6526
6527 e_unpin:
6528         /* content of memory is updated, mark pages dirty */
6529         for (i = 0; i < npages; i++) {
6530                 set_page_dirty_lock(inpages[i]);
6531                 mark_page_accessed(inpages[i]);
6532         }
6533         /* unlock the user pages */
6534         sev_unpin_memory(kvm, inpages, npages);
6535 e_free:
6536         kfree(data);
6537         return ret;
6538 }
6539
6540 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
6541 {
6542         void __user *measure = (void __user *)(uintptr_t)argp->data;
6543         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6544         struct sev_data_launch_measure *data;
6545         struct kvm_sev_launch_measure params;
6546         void __user *p = NULL;
6547         void *blob = NULL;
6548         int ret;
6549
6550         if (!sev_guest(kvm))
6551                 return -ENOTTY;
6552
6553         if (copy_from_user(&params, measure, sizeof(params)))
6554                 return -EFAULT;
6555
6556         data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6557         if (!data)
6558                 return -ENOMEM;
6559
6560         /* User wants to query the blob length */
6561         if (!params.len)
6562                 goto cmd;
6563
6564         p = (void __user *)(uintptr_t)params.uaddr;
6565         if (p) {
6566                 if (params.len > SEV_FW_BLOB_MAX_SIZE) {
6567                         ret = -EINVAL;
6568                         goto e_free;
6569                 }
6570
6571                 ret = -ENOMEM;
6572                 blob = kmalloc(params.len, GFP_KERNEL);
6573                 if (!blob)
6574                         goto e_free;
6575
6576                 data->address = __psp_pa(blob);
6577                 data->len = params.len;
6578         }
6579
6580 cmd:
6581         data->handle = sev->handle;
6582         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);
6583
6584         /*
6585          * If we query the session length, FW responded with expected data.
6586          */
6587         if (!params.len)
6588                 goto done;
6589
6590         if (ret)
6591                 goto e_free_blob;
6592
6593         if (blob) {
6594                 if (copy_to_user(p, blob, params.len))
6595                         ret = -EFAULT;
6596         }
6597
6598 done:
6599         params.len = data->len;
6600         if (copy_to_user(measure, &params, sizeof(params)))
6601                 ret = -EFAULT;
6602 e_free_blob:
6603         kfree(blob);
6604 e_free:
6605         kfree(data);
6606         return ret;
6607 }
6608
6609 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
6610 {
6611         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6612         struct sev_data_launch_finish *data;
6613         int ret;
6614
6615         if (!sev_guest(kvm))
6616                 return -ENOTTY;
6617
6618         data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6619         if (!data)
6620                 return -ENOMEM;
6621
6622         data->handle = sev->handle;
6623         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);
6624
6625         kfree(data);
6626         return ret;
6627 }
6628
6629 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
6630 {
6631         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6632         struct kvm_sev_guest_status params;
6633         struct sev_data_guest_status *data;
6634         int ret;
6635
6636         if (!sev_guest(kvm))
6637                 return -ENOTTY;
6638
6639         data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6640         if (!data)
6641                 return -ENOMEM;
6642
6643         data->handle = sev->handle;
6644         ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
6645         if (ret)
6646                 goto e_free;
6647
6648         params.policy = data->policy;
6649         params.state = data->state;
6650         params.handle = data->handle;
6651
6652         if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
6653                 ret = -EFAULT;
6654 e_free:
6655         kfree(data);
6656         return ret;
6657 }
6658
6659 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
6660                                unsigned long dst, int size,
6661                                int *error, bool enc)
6662 {
6663         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6664         struct sev_data_dbg *data;
6665         int ret;
6666
6667         data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6668         if (!data)
6669                 return -ENOMEM;
6670
6671         data->handle = sev->handle;
6672         data->dst_addr = dst;
6673         data->src_addr = src;
6674         data->len = size;
6675
6676         ret = sev_issue_cmd(kvm,
6677                             enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
6678                             data, error);
6679         kfree(data);
6680         return ret;
6681 }
6682
6683 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
6684                              unsigned long dst_paddr, int sz, int *err)
6685 {
6686         int offset;
6687
6688         /*
6689          * Its safe to read more than we are asked, caller should ensure that
6690          * destination has enough space.
6691          */
6692         src_paddr = round_down(src_paddr, 16);
6693         offset = src_paddr & 15;
6694         sz = round_up(sz + offset, 16);
6695
6696         return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
6697 }
6698
6699 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
6700                                   unsigned long __user dst_uaddr,
6701                                   unsigned long dst_paddr,
6702                                   int size, int *err)
6703 {
6704         struct page *tpage = NULL;
6705         int ret, offset;
6706
6707         /* if inputs are not 16-byte then use intermediate buffer */
6708         if (!IS_ALIGNED(dst_paddr, 16) ||
6709             !IS_ALIGNED(paddr,     16) ||
6710             !IS_ALIGNED(size,      16)) {
6711                 tpage = (void *)alloc_page(GFP_KERNEL);
6712                 if (!tpage)
6713                         return -ENOMEM;
6714
6715                 dst_paddr = __sme_page_pa(tpage);
6716         }
6717
6718         ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
6719         if (ret)
6720                 goto e_free;
6721
6722         if (tpage) {
6723                 offset = paddr & 15;
6724                 if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
6725                                  page_address(tpage) + offset, size))
6726                         ret = -EFAULT;
6727         }
6728
6729 e_free:
6730         if (tpage)
6731                 __free_page(tpage);
6732
6733         return ret;
6734 }
6735
6736 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
6737                                   unsigned long __user vaddr,
6738                                   unsigned long dst_paddr,
6739                                   unsigned long __user dst_vaddr,
6740                                   int size, int *error)
6741 {
6742         struct page *src_tpage = NULL;
6743         struct page *dst_tpage = NULL;
6744         int ret, len = size;
6745
6746         /* If source buffer is not aligned then use an intermediate buffer */
6747         if (!IS_ALIGNED(vaddr, 16)) {
6748                 src_tpage = alloc_page(GFP_KERNEL);
6749                 if (!src_tpage)
6750                         return -ENOMEM;
6751
6752                 if (copy_from_user(page_address(src_tpage),
6753                                 (void __user *)(uintptr_t)vaddr, size)) {
6754                         __free_page(src_tpage);
6755                         return -EFAULT;
6756                 }
6757
6758                 paddr = __sme_page_pa(src_tpage);
6759         }
6760
6761         /*
6762          *  If destination buffer or length is not aligned then do read-modify-write:
6763          *   - decrypt destination in an intermediate buffer
6764          *   - copy the source buffer in an intermediate buffer
6765          *   - use the intermediate buffer as source buffer
6766          */
6767         if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
6768                 int dst_offset;
6769
6770                 dst_tpage = alloc_page(GFP_KERNEL);
6771                 if (!dst_tpage) {
6772                         ret = -ENOMEM;
6773                         goto e_free;
6774                 }
6775
6776                 ret = __sev_dbg_decrypt(kvm, dst_paddr,
6777                                         __sme_page_pa(dst_tpage), size, error);
6778                 if (ret)
6779                         goto e_free;
6780
6781                 /*
6782                  *  If source is kernel buffer then use memcpy() otherwise
6783                  *  copy_from_user().
6784                  */
6785                 dst_offset = dst_paddr & 15;
6786
6787                 if (src_tpage)
6788                         memcpy(page_address(dst_tpage) + dst_offset,
6789                                page_address(src_tpage), size);
6790                 else {
6791                         if (copy_from_user(page_address(dst_tpage) + dst_offset,
6792                                            (void __user *)(uintptr_t)vaddr, size)) {
6793                                 ret = -EFAULT;
6794                                 goto e_free;
6795                         }
6796                 }
6797
6798                 paddr = __sme_page_pa(dst_tpage);
6799                 dst_paddr = round_down(dst_paddr, 16);
6800                 len = round_up(size, 16);
6801         }
6802
6803         ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
6804
6805 e_free:
6806         if (src_tpage)
6807                 __free_page(src_tpage);
6808         if (dst_tpage)
6809                 __free_page(dst_tpage);
6810         return ret;
6811 }
6812
6813 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
6814 {
6815         unsigned long vaddr, vaddr_end, next_vaddr;
6816         unsigned long dst_vaddr;
6817         struct page **src_p, **dst_p;
6818         struct kvm_sev_dbg debug;
6819         unsigned long n;
6820         unsigned int size;
6821         int ret;
6822
6823         if (!sev_guest(kvm))
6824                 return -ENOTTY;
6825
6826         if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
6827                 return -EFAULT;
6828
6829         if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
6830                 return -EINVAL;
6831         if (!debug.dst_uaddr)
6832                 return -EINVAL;
6833
6834         vaddr = debug.src_uaddr;
6835         size = debug.len;
6836         vaddr_end = vaddr + size;
6837         dst_vaddr = debug.dst_uaddr;
6838
6839         for (; vaddr < vaddr_end; vaddr = next_vaddr) {
6840                 int len, s_off, d_off;
6841
6842                 /* lock userspace source and destination page */
6843                 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
6844                 if (!src_p)
6845                         return -EFAULT;
6846
6847                 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
6848                 if (!dst_p) {
6849                         sev_unpin_memory(kvm, src_p, n);
6850                         return -EFAULT;
6851                 }
6852
6853                 /*
6854                  * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the
6855                  * memory content (i.e it will write the same memory region with C=1).
6856                  * It's possible that the cache may contain the data with C=0, i.e.,
6857                  * unencrypted so invalidate it first.
6858                  */
6859                 sev_clflush_pages(src_p, 1);
6860                 sev_clflush_pages(dst_p, 1);
6861
6862                 /*
6863                  * Since user buffer may not be page aligned, calculate the
6864                  * offset within the page.
6865                  */
6866                 s_off = vaddr & ~PAGE_MASK;
6867                 d_off = dst_vaddr & ~PAGE_MASK;
6868                 len = min_t(size_t, (PAGE_SIZE - s_off), size);
6869
6870                 if (dec)
6871                         ret = __sev_dbg_decrypt_user(kvm,
6872                                                      __sme_page_pa(src_p[0]) + s_off,
6873                                                      dst_vaddr,
6874                                                      __sme_page_pa(dst_p[0]) + d_off,
6875                                                      len, &argp->error);
6876                 else
6877                         ret = __sev_dbg_encrypt_user(kvm,
6878                                                      __sme_page_pa(src_p[0]) + s_off,
6879                                                      vaddr,
6880                                                      __sme_page_pa(dst_p[0]) + d_off,
6881                                                      dst_vaddr,
6882                                                      len, &argp->error);
6883
6884                 sev_unpin_memory(kvm, src_p, n);
6885                 sev_unpin_memory(kvm, dst_p, n);
6886
6887                 if (ret)
6888                         goto err;
6889
6890                 next_vaddr = vaddr + len;
6891                 dst_vaddr = dst_vaddr + len;
6892                 size -= len;
6893         }
6894 err:
6895         return ret;
6896 }
6897
6898 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
6899 {
6900         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6901         struct sev_data_launch_secret *data;
6902         struct kvm_sev_launch_secret params;
6903         struct page **pages;
6904         void *blob, *hdr;
6905         unsigned long n;
6906         int ret, offset;
6907
6908         if (!sev_guest(kvm))
6909                 return -ENOTTY;
6910
6911         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6912                 return -EFAULT;
6913
6914         pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
6915         if (!pages)
6916                 return -ENOMEM;
6917
6918         /*
6919          * The secret must be copied into contiguous memory region, lets verify
6920          * that userspace memory pages are contiguous before we issue command.
6921          */
6922         if (get_num_contig_pages(0, pages, n) != n) {
6923                 ret = -EINVAL;
6924                 goto e_unpin_memory;
6925         }
6926
6927         ret = -ENOMEM;
6928         data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6929         if (!data)
6930                 goto e_unpin_memory;
6931
6932         offset = params.guest_uaddr & (PAGE_SIZE - 1);
6933         data->guest_address = __sme_page_pa(pages[0]) + offset;
6934         data->guest_len = params.guest_len;
6935
6936         blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
6937         if (IS_ERR(blob)) {
6938                 ret = PTR_ERR(blob);
6939                 goto e_free;
6940         }
6941
6942         data->trans_address = __psp_pa(blob);
6943         data->trans_len = params.trans_len;
6944
6945         hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
6946         if (IS_ERR(hdr)) {
6947                 ret = PTR_ERR(hdr);
6948                 goto e_free_blob;
6949         }
6950         data->hdr_address = __psp_pa(hdr);
6951         data->hdr_len = params.hdr_len;
6952
6953         data->handle = sev->handle;
6954         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);
6955
6956         kfree(hdr);
6957
6958 e_free_blob:
6959         kfree(blob);
6960 e_free:
6961         kfree(data);
6962 e_unpin_memory:
6963         sev_unpin_memory(kvm, pages, n);
6964         return ret;
6965 }
6966
6967 static int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
6968 {
6969         struct kvm_sev_cmd sev_cmd;
6970         int r;
6971
6972         if (!svm_sev_enabled())
6973                 return -ENOTTY;
6974
6975         if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
6976                 return -EFAULT;
6977
6978         mutex_lock(&kvm->lock);
6979
6980         switch (sev_cmd.id) {
6981         case KVM_SEV_INIT:
6982                 r = sev_guest_init(kvm, &sev_cmd);
6983                 break;
6984         case KVM_SEV_LAUNCH_START:
6985                 r = sev_launch_start(kvm, &sev_cmd);
6986                 break;
6987         case KVM_SEV_LAUNCH_UPDATE_DATA:
6988                 r = sev_launch_update_data(kvm, &sev_cmd);
6989                 break;
6990         case KVM_SEV_LAUNCH_MEASURE:
6991                 r = sev_launch_measure(kvm, &sev_cmd);
6992                 break;
6993         case KVM_SEV_LAUNCH_FINISH:
6994                 r = sev_launch_finish(kvm, &sev_cmd);
6995                 break;
6996         case KVM_SEV_GUEST_STATUS:
6997                 r = sev_guest_status(kvm, &sev_cmd);
6998                 break;
6999         case KVM_SEV_DBG_DECRYPT:
7000                 r = sev_dbg_crypt(kvm, &sev_cmd, true);
7001                 break;
7002         case KVM_SEV_DBG_ENCRYPT:
7003                 r = sev_dbg_crypt(kvm, &sev_cmd, false);
7004                 break;
7005         case KVM_SEV_LAUNCH_SECRET:
7006                 r = sev_launch_secret(kvm, &sev_cmd);
7007                 break;
7008         default:
7009                 r = -EINVAL;
7010                 goto out;
7011         }
7012
7013         if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
7014                 r = -EFAULT;
7015
7016 out:
7017         mutex_unlock(&kvm->lock);
7018         return r;
7019 }
7020
7021 static int svm_register_enc_region(struct kvm *kvm,
7022                                    struct kvm_enc_region *range)
7023 {
7024         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
7025         struct enc_region *region;
7026         int ret = 0;
7027
7028         if (!sev_guest(kvm))
7029                 return -ENOTTY;
7030
7031         if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
7032                 return -EINVAL;
7033
7034         region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
7035         if (!region)
7036                 return -ENOMEM;
7037
7038         region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
7039         if (!region->pages) {
7040                 ret = -ENOMEM;
7041                 goto e_free;
7042         }
7043
7044         /*
7045          * The guest may change the memory encryption attribute from C=0 -> C=1
7046          * or vice versa for this memory range. Lets make sure caches are
7047          * flushed to ensure that guest data gets written into memory with
7048          * correct C-bit.
7049          */
7050         sev_clflush_pages(region->pages, region->npages);
7051
7052         region->uaddr = range->addr;
7053         region->size = range->size;
7054
7055         mutex_lock(&kvm->lock);
7056         list_add_tail(&region->list, &sev->regions_list);
7057         mutex_unlock(&kvm->lock);
7058
7059         return ret;
7060
7061 e_free:
7062         kfree(region);
7063         return ret;
7064 }
7065
7066 static struct enc_region *
7067 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
7068 {
7069         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
7070         struct list_head *head = &sev->regions_list;
7071         struct enc_region *i;
7072
7073         list_for_each_entry(i, head, list) {
7074                 if (i->uaddr == range->addr &&
7075                     i->size == range->size)
7076                         return i;
7077         }
7078
7079         return NULL;
7080 }
7081
7082
7083 static int svm_unregister_enc_region(struct kvm *kvm,
7084                                      struct kvm_enc_region *range)
7085 {
7086         struct enc_region *region;
7087         int ret;
7088
7089         mutex_lock(&kvm->lock);
7090
7091         if (!sev_guest(kvm)) {
7092                 ret = -ENOTTY;
7093                 goto failed;
7094         }
7095
7096         region = find_enc_region(kvm, range);
7097         if (!region) {
7098                 ret = -EINVAL;
7099                 goto failed;
7100         }
7101
7102         __unregister_enc_region_locked(kvm, region);
7103
7104         mutex_unlock(&kvm->lock);
7105         return 0;
7106
7107 failed:
7108         mutex_unlock(&kvm->lock);
7109         return ret;
7110 }
7111
7112 static bool svm_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7113 {
7114         unsigned long cr4 = kvm_read_cr4(vcpu);
7115         bool smep = cr4 & X86_CR4_SMEP;
7116         bool smap = cr4 & X86_CR4_SMAP;
7117         bool is_user = svm_get_cpl(vcpu) == 3;
7118
7119         /*
7120          * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
7121          *
7122          * Errata:
7123          * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
7124          * possible that CPU microcode implementing DecodeAssist will fail
7125          * to read bytes of instruction which caused #NPF. In this case,
7126          * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
7127          * return 0 instead of the correct guest instruction bytes.
7128          *
7129          * This happens because CPU microcode reading instruction bytes
7130          * uses a special opcode which attempts to read data using CPL=0
7131          * priviledges. The microcode reads CS:RIP and if it hits a SMAP
7132          * fault, it gives up and returns no instruction bytes.
7133          *
7134          * Detection:
7135          * We reach here in case CPU supports DecodeAssist, raised #NPF and
7136          * returned 0 in GuestIntrBytes field of the VMCB.
7137          * First, errata can only be triggered in case vCPU CR4.SMAP=1.
7138          * Second, if vCPU CR4.SMEP=1, errata could only be triggered
7139          * in case vCPU CPL==3 (Because otherwise guest would have triggered
7140          * a SMEP fault instead of #NPF).
7141          * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
7142          * As most guests enable SMAP if they have also enabled SMEP, use above
7143          * logic in order to attempt minimize false-positive of detecting errata
7144          * while still preserving all cases semantic correctness.
7145          *
7146          * Workaround:
7147          * To determine what instruction the guest was executing, the hypervisor
7148          * will have to decode the instruction at the instruction pointer.
7149          *
7150          * In non SEV guest, hypervisor will be able to read the guest
7151          * memory to decode the instruction pointer when insn_len is zero
7152          * so we return true to indicate that decoding is possible.
7153          *
7154          * But in the SEV guest, the guest memory is encrypted with the
7155          * guest specific key and hypervisor will not be able to decode the
7156          * instruction pointer so we will not able to workaround it. Lets
7157          * print the error and request to kill the guest.
7158          */
7159         if (smap && (!smep || is_user)) {
7160                 if (!sev_guest(vcpu->kvm))
7161                         return true;
7162
7163                 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
7164                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7165         }
7166
7167         return false;
7168 }
7169
7170 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7171 {
7172         struct vcpu_svm *svm = to_svm(vcpu);
7173
7174         /*
7175          * TODO: Last condition latch INIT signals on vCPU when
7176          * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
7177          * To properly emulate the INIT intercept, SVM should implement
7178          * kvm_x86_ops->check_nested_events() and call nested_svm_vmexit()
7179          * there if an INIT signal is pending.
7180          */
7181         return !gif_set(svm) ||
7182                    (svm->vmcb->control.intercept & (1ULL << INTERCEPT_INIT));
7183 }
7184
7185 static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
7186         .cpu_has_kvm_support = has_svm,
7187         .disabled_by_bios = is_disabled,
7188         .hardware_setup = svm_hardware_setup,
7189         .hardware_unsetup = svm_hardware_unsetup,
7190         .check_processor_compatibility = svm_check_processor_compat,
7191         .hardware_enable = svm_hardware_enable,
7192         .hardware_disable = svm_hardware_disable,
7193         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
7194         .has_emulated_msr = svm_has_emulated_msr,
7195
7196         .vcpu_create = svm_create_vcpu,
7197         .vcpu_free = svm_free_vcpu,
7198         .vcpu_reset = svm_vcpu_reset,
7199
7200         .vm_alloc = svm_vm_alloc,
7201         .vm_free = svm_vm_free,
7202         .vm_init = avic_vm_init,
7203         .vm_destroy = svm_vm_destroy,
7204
7205         .prepare_guest_switch = svm_prepare_guest_switch,
7206         .vcpu_load = svm_vcpu_load,
7207         .vcpu_put = svm_vcpu_put,
7208         .vcpu_blocking = svm_vcpu_blocking,
7209         .vcpu_unblocking = svm_vcpu_unblocking,
7210
7211         .update_bp_intercept = update_bp_intercept,
7212         .get_msr_feature = svm_get_msr_feature,
7213         .get_msr = svm_get_msr,
7214         .set_msr = svm_set_msr,
7215         .get_segment_base = svm_get_segment_base,
7216         .get_segment = svm_get_segment,
7217         .set_segment = svm_set_segment,
7218         .get_cpl = svm_get_cpl,
7219         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
7220         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
7221         .decache_cr3 = svm_decache_cr3,
7222         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
7223         .set_cr0 = svm_set_cr0,
7224         .set_cr3 = svm_set_cr3,
7225         .set_cr4 = svm_set_cr4,
7226         .set_efer = svm_set_efer,
7227         .get_idt = svm_get_idt,
7228         .set_idt = svm_set_idt,
7229         .get_gdt = svm_get_gdt,
7230         .set_gdt = svm_set_gdt,
7231         .get_dr6 = svm_get_dr6,
7232         .set_dr6 = svm_set_dr6,
7233         .set_dr7 = svm_set_dr7,
7234         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
7235         .cache_reg = svm_cache_reg,
7236         .get_rflags = svm_get_rflags,
7237         .set_rflags = svm_set_rflags,
7238
7239         .tlb_flush = svm_flush_tlb,
7240         .tlb_flush_gva = svm_flush_tlb_gva,
7241
7242         .run = svm_vcpu_run,
7243         .handle_exit = handle_exit,
7244         .skip_emulated_instruction = skip_emulated_instruction,
7245         .set_interrupt_shadow = svm_set_interrupt_shadow,
7246         .get_interrupt_shadow = svm_get_interrupt_shadow,
7247         .patch_hypercall = svm_patch_hypercall,
7248         .set_irq = svm_set_irq,
7249         .set_nmi = svm_inject_nmi,
7250         .queue_exception = svm_queue_exception,
7251         .cancel_injection = svm_cancel_injection,
7252         .interrupt_allowed = svm_interrupt_allowed,
7253         .nmi_allowed = svm_nmi_allowed,
7254         .get_nmi_mask = svm_get_nmi_mask,
7255         .set_nmi_mask = svm_set_nmi_mask,
7256         .enable_nmi_window = enable_nmi_window,
7257         .enable_irq_window = enable_irq_window,
7258         .update_cr8_intercept = update_cr8_intercept,
7259         .set_virtual_apic_mode = svm_set_virtual_apic_mode,
7260         .get_enable_apicv = svm_get_enable_apicv,
7261         .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
7262         .load_eoi_exitmap = svm_load_eoi_exitmap,
7263         .hwapic_irr_update = svm_hwapic_irr_update,
7264         .hwapic_isr_update = svm_hwapic_isr_update,
7265         .sync_pir_to_irr = kvm_lapic_find_highest_irr,
7266         .apicv_post_state_restore = avic_post_state_restore,
7267
7268         .set_tss_addr = svm_set_tss_addr,
7269         .set_identity_map_addr = svm_set_identity_map_addr,
7270         .get_tdp_level = get_npt_level,
7271         .get_mt_mask = svm_get_mt_mask,
7272
7273         .get_exit_info = svm_get_exit_info,
7274
7275         .get_lpage_level = svm_get_lpage_level,
7276
7277         .cpuid_update = svm_cpuid_update,
7278
7279         .rdtscp_supported = svm_rdtscp_supported,
7280         .invpcid_supported = svm_invpcid_supported,
7281         .mpx_supported = svm_mpx_supported,
7282         .xsaves_supported = svm_xsaves_supported,
7283         .umip_emulated = svm_umip_emulated,
7284         .pt_supported = svm_pt_supported,
7285
7286         .set_supported_cpuid = svm_set_supported_cpuid,
7287
7288         .has_wbinvd_exit = svm_has_wbinvd_exit,
7289
7290         .read_l1_tsc_offset = svm_read_l1_tsc_offset,
7291         .write_l1_tsc_offset = svm_write_l1_tsc_offset,
7292
7293         .set_tdp_cr3 = set_tdp_cr3,
7294
7295         .check_intercept = svm_check_intercept,
7296         .handle_exit_irqoff = svm_handle_exit_irqoff,
7297
7298         .request_immediate_exit = __kvm_request_immediate_exit,
7299
7300         .sched_in = svm_sched_in,
7301
7302         .pmu_ops = &amd_pmu_ops,
7303         .deliver_posted_interrupt = svm_deliver_avic_intr,
7304         .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
7305         .update_pi_irte = svm_update_pi_irte,
7306         .setup_mce = svm_setup_mce,
7307
7308         .smi_allowed = svm_smi_allowed,
7309         .pre_enter_smm = svm_pre_enter_smm,
7310         .pre_leave_smm = svm_pre_leave_smm,
7311         .enable_smi_window = enable_smi_window,
7312
7313         .mem_enc_op = svm_mem_enc_op,
7314         .mem_enc_reg_region = svm_register_enc_region,
7315         .mem_enc_unreg_region = svm_unregister_enc_region,
7316
7317         .nested_enable_evmcs = NULL,
7318         .nested_get_evmcs_version = NULL,
7319
7320         .need_emulation_on_page_fault = svm_need_emulation_on_page_fault,
7321
7322         .apic_init_signal_blocked = svm_apic_init_signal_blocked,
7323 };
7324
7325 static int __init svm_init(void)
7326 {
7327         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
7328                         __alignof__(struct vcpu_svm), THIS_MODULE);
7329 }
7330
7331 static void __exit svm_exit(void)
7332 {
7333         kvm_exit();
7334 }
7335
7336 module_init(svm_init)
7337 module_exit(svm_exit)