]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/svm.c
kvm: x86: Dynamically allocate guest_fpu
[linux.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #define pr_fmt(fmt) "SVM: " fmt
19
20 #include <linux/kvm_host.h>
21
22 #include "irq.h"
23 #include "mmu.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
28
29 #include <linux/module.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/kernel.h>
32 #include <linux/vmalloc.h>
33 #include <linux/highmem.h>
34 #include <linux/sched.h>
35 #include <linux/trace_events.h>
36 #include <linux/slab.h>
37 #include <linux/amd-iommu.h>
38 #include <linux/hashtable.h>
39 #include <linux/frame.h>
40 #include <linux/psp-sev.h>
41 #include <linux/file.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44
45 #include <asm/apic.h>
46 #include <asm/perf_event.h>
47 #include <asm/tlbflush.h>
48 #include <asm/desc.h>
49 #include <asm/debugreg.h>
50 #include <asm/kvm_para.h>
51 #include <asm/irq_remapping.h>
52 #include <asm/spec-ctrl.h>
53
54 #include <asm/virtext.h>
55 #include "trace.h"
56
57 #define __ex(x) __kvm_handle_fault_on_reboot(x)
58
59 MODULE_AUTHOR("Qumranet");
60 MODULE_LICENSE("GPL");
61
62 static const struct x86_cpu_id svm_cpu_id[] = {
63         X86_FEATURE_MATCH(X86_FEATURE_SVM),
64         {}
65 };
66 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
67
68 #define IOPM_ALLOC_ORDER 2
69 #define MSRPM_ALLOC_ORDER 1
70
71 #define SEG_TYPE_LDT 2
72 #define SEG_TYPE_BUSY_TSS16 3
73
74 #define SVM_FEATURE_NPT            (1 <<  0)
75 #define SVM_FEATURE_LBRV           (1 <<  1)
76 #define SVM_FEATURE_SVML           (1 <<  2)
77 #define SVM_FEATURE_NRIP           (1 <<  3)
78 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
79 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
80 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
81 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
82 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
83
84 #define SVM_AVIC_DOORBELL       0xc001011b
85
86 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
87 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
88 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
89
90 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
91
92 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
93 #define TSC_RATIO_MIN           0x0000000000000001ULL
94 #define TSC_RATIO_MAX           0x000000ffffffffffULL
95
96 #define AVIC_HPA_MASK   ~((0xFFFULL << 52) | 0xFFF)
97
98 /*
99  * 0xff is broadcast, so the max index allowed for physical APIC ID
100  * table is 0xfe.  APIC IDs above 0xff are reserved.
101  */
102 #define AVIC_MAX_PHYSICAL_ID_COUNT      255
103
104 #define AVIC_UNACCEL_ACCESS_WRITE_MASK          1
105 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK         0xFF0
106 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK         0xFFFFFFFF
107
108 /* AVIC GATAG is encoded using VM and VCPU IDs */
109 #define AVIC_VCPU_ID_BITS               8
110 #define AVIC_VCPU_ID_MASK               ((1 << AVIC_VCPU_ID_BITS) - 1)
111
112 #define AVIC_VM_ID_BITS                 24
113 #define AVIC_VM_ID_NR                   (1 << AVIC_VM_ID_BITS)
114 #define AVIC_VM_ID_MASK                 ((1 << AVIC_VM_ID_BITS) - 1)
115
116 #define AVIC_GATAG(x, y)                (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
117                                                 (y & AVIC_VCPU_ID_MASK))
118 #define AVIC_GATAG_TO_VMID(x)           ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
119 #define AVIC_GATAG_TO_VCPUID(x)         (x & AVIC_VCPU_ID_MASK)
120
121 static bool erratum_383_found __read_mostly;
122
123 static const u32 host_save_user_msrs[] = {
124 #ifdef CONFIG_X86_64
125         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
126         MSR_FS_BASE,
127 #endif
128         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
129         MSR_TSC_AUX,
130 };
131
132 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
133
134 struct kvm_sev_info {
135         bool active;            /* SEV enabled guest */
136         unsigned int asid;      /* ASID used for this guest */
137         unsigned int handle;    /* SEV firmware handle */
138         int fd;                 /* SEV device fd */
139         unsigned long pages_locked; /* Number of pages locked */
140         struct list_head regions_list;  /* List of registered regions */
141 };
142
143 struct kvm_svm {
144         struct kvm kvm;
145
146         /* Struct members for AVIC */
147         u32 avic_vm_id;
148         u32 ldr_mode;
149         struct page *avic_logical_id_table_page;
150         struct page *avic_physical_id_table_page;
151         struct hlist_node hnode;
152
153         struct kvm_sev_info sev_info;
154 };
155
156 struct kvm_vcpu;
157
158 struct nested_state {
159         struct vmcb *hsave;
160         u64 hsave_msr;
161         u64 vm_cr_msr;
162         u64 vmcb;
163
164         /* These are the merged vectors */
165         u32 *msrpm;
166
167         /* gpa pointers to the real vectors */
168         u64 vmcb_msrpm;
169         u64 vmcb_iopm;
170
171         /* A VMEXIT is required but not yet emulated */
172         bool exit_required;
173
174         /* cache for intercepts of the guest */
175         u32 intercept_cr;
176         u32 intercept_dr;
177         u32 intercept_exceptions;
178         u64 intercept;
179
180         /* Nested Paging related state */
181         u64 nested_cr3;
182 };
183
184 #define MSRPM_OFFSETS   16
185 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
186
187 /*
188  * Set osvw_len to higher value when updated Revision Guides
189  * are published and we know what the new status bits are
190  */
191 static uint64_t osvw_len = 4, osvw_status;
192
193 struct vcpu_svm {
194         struct kvm_vcpu vcpu;
195         struct vmcb *vmcb;
196         unsigned long vmcb_pa;
197         struct svm_cpu_data *svm_data;
198         uint64_t asid_generation;
199         uint64_t sysenter_esp;
200         uint64_t sysenter_eip;
201         uint64_t tsc_aux;
202
203         u64 msr_decfg;
204
205         u64 next_rip;
206
207         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
208         struct {
209                 u16 fs;
210                 u16 gs;
211                 u16 ldt;
212                 u64 gs_base;
213         } host;
214
215         u64 spec_ctrl;
216         /*
217          * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be
218          * translated into the appropriate L2_CFG bits on the host to
219          * perform speculative control.
220          */
221         u64 virt_spec_ctrl;
222
223         u32 *msrpm;
224
225         ulong nmi_iret_rip;
226
227         struct nested_state nested;
228
229         bool nmi_singlestep;
230         u64 nmi_singlestep_guest_rflags;
231
232         unsigned int3_injected;
233         unsigned long int3_rip;
234
235         /* cached guest cpuid flags for faster access */
236         bool nrips_enabled      : 1;
237
238         u32 ldr_reg;
239         struct page *avic_backing_page;
240         u64 *avic_physical_id_cache;
241         bool avic_is_running;
242
243         /*
244          * Per-vcpu list of struct amd_svm_iommu_ir:
245          * This is used mainly to store interrupt remapping information used
246          * when update the vcpu affinity. This avoids the need to scan for
247          * IRTE and try to match ga_tag in the IOMMU driver.
248          */
249         struct list_head ir_list;
250         spinlock_t ir_list_lock;
251
252         /* which host CPU was used for running this vcpu */
253         unsigned int last_cpu;
254 };
255
256 /*
257  * This is a wrapper of struct amd_iommu_ir_data.
258  */
259 struct amd_svm_iommu_ir {
260         struct list_head node;  /* Used by SVM for per-vcpu ir_list */
261         void *data;             /* Storing pointer to struct amd_ir_data */
262 };
263
264 #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK    (0xFF)
265 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK                (1 << 31)
266
267 #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK    (0xFFULL)
268 #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK        (0xFFFFFFFFFFULL << 12)
269 #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK          (1ULL << 62)
270 #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK               (1ULL << 63)
271
272 static DEFINE_PER_CPU(u64, current_tsc_ratio);
273 #define TSC_RATIO_DEFAULT       0x0100000000ULL
274
275 #define MSR_INVALID                     0xffffffffU
276
277 static const struct svm_direct_access_msrs {
278         u32 index;   /* Index of the MSR */
279         bool always; /* True if intercept is always on */
280 } direct_access_msrs[] = {
281         { .index = MSR_STAR,                            .always = true  },
282         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
283 #ifdef CONFIG_X86_64
284         { .index = MSR_GS_BASE,                         .always = true  },
285         { .index = MSR_FS_BASE,                         .always = true  },
286         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
287         { .index = MSR_LSTAR,                           .always = true  },
288         { .index = MSR_CSTAR,                           .always = true  },
289         { .index = MSR_SYSCALL_MASK,                    .always = true  },
290 #endif
291         { .index = MSR_IA32_SPEC_CTRL,                  .always = false },
292         { .index = MSR_IA32_PRED_CMD,                   .always = false },
293         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
294         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
295         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
296         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
297         { .index = MSR_INVALID,                         .always = false },
298 };
299
300 /* enable NPT for AMD64 and X86 with PAE */
301 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
302 static bool npt_enabled = true;
303 #else
304 static bool npt_enabled;
305 #endif
306
307 /*
308  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
309  * pause_filter_count: On processors that support Pause filtering(indicated
310  *      by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
311  *      count value. On VMRUN this value is loaded into an internal counter.
312  *      Each time a pause instruction is executed, this counter is decremented
313  *      until it reaches zero at which time a #VMEXIT is generated if pause
314  *      intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
315  *      Intercept Filtering for more details.
316  *      This also indicate if ple logic enabled.
317  *
318  * pause_filter_thresh: In addition, some processor families support advanced
319  *      pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
320  *      the amount of time a guest is allowed to execute in a pause loop.
321  *      In this mode, a 16-bit pause filter threshold field is added in the
322  *      VMCB. The threshold value is a cycle count that is used to reset the
323  *      pause counter. As with simple pause filtering, VMRUN loads the pause
324  *      count value from VMCB into an internal counter. Then, on each pause
325  *      instruction the hardware checks the elapsed number of cycles since
326  *      the most recent pause instruction against the pause filter threshold.
327  *      If the elapsed cycle count is greater than the pause filter threshold,
328  *      then the internal pause count is reloaded from the VMCB and execution
329  *      continues. If the elapsed cycle count is less than the pause filter
330  *      threshold, then the internal pause count is decremented. If the count
331  *      value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
332  *      triggered. If advanced pause filtering is supported and pause filter
333  *      threshold field is set to zero, the filter will operate in the simpler,
334  *      count only mode.
335  */
336
337 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
338 module_param(pause_filter_thresh, ushort, 0444);
339
340 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
341 module_param(pause_filter_count, ushort, 0444);
342
343 /* Default doubles per-vcpu window every exit. */
344 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
345 module_param(pause_filter_count_grow, ushort, 0444);
346
347 /* Default resets per-vcpu window every exit to pause_filter_count. */
348 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
349 module_param(pause_filter_count_shrink, ushort, 0444);
350
351 /* Default is to compute the maximum so we can never overflow. */
352 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
353 module_param(pause_filter_count_max, ushort, 0444);
354
355 /* allow nested paging (virtualized MMU) for all guests */
356 static int npt = true;
357 module_param(npt, int, S_IRUGO);
358
359 /* allow nested virtualization in KVM/SVM */
360 static int nested = true;
361 module_param(nested, int, S_IRUGO);
362
363 /* enable / disable AVIC */
364 static int avic;
365 #ifdef CONFIG_X86_LOCAL_APIC
366 module_param(avic, int, S_IRUGO);
367 #endif
368
369 /* enable/disable Virtual VMLOAD VMSAVE */
370 static int vls = true;
371 module_param(vls, int, 0444);
372
373 /* enable/disable Virtual GIF */
374 static int vgif = true;
375 module_param(vgif, int, 0444);
376
377 /* enable/disable SEV support */
378 static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
379 module_param(sev, int, 0444);
380
381 static u8 rsm_ins_bytes[] = "\x0f\xaa";
382
383 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
384 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa);
385 static void svm_complete_interrupts(struct vcpu_svm *svm);
386
387 static int nested_svm_exit_handled(struct vcpu_svm *svm);
388 static int nested_svm_intercept(struct vcpu_svm *svm);
389 static int nested_svm_vmexit(struct vcpu_svm *svm);
390 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
391                                       bool has_error_code, u32 error_code);
392
393 enum {
394         VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
395                             pause filter count */
396         VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
397         VMCB_ASID,       /* ASID */
398         VMCB_INTR,       /* int_ctl, int_vector */
399         VMCB_NPT,        /* npt_en, nCR3, gPAT */
400         VMCB_CR,         /* CR0, CR3, CR4, EFER */
401         VMCB_DR,         /* DR6, DR7 */
402         VMCB_DT,         /* GDT, IDT */
403         VMCB_SEG,        /* CS, DS, SS, ES, CPL */
404         VMCB_CR2,        /* CR2 only */
405         VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
406         VMCB_AVIC,       /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
407                           * AVIC PHYSICAL_TABLE pointer,
408                           * AVIC LOGICAL_TABLE pointer
409                           */
410         VMCB_DIRTY_MAX,
411 };
412
413 /* TPR and CR2 are always written before VMRUN */
414 #define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
415
416 #define VMCB_AVIC_APIC_BAR_MASK         0xFFFFFFFFFF000ULL
417
418 static unsigned int max_sev_asid;
419 static unsigned int min_sev_asid;
420 static unsigned long *sev_asid_bitmap;
421 #define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT)
422
423 struct enc_region {
424         struct list_head list;
425         unsigned long npages;
426         struct page **pages;
427         unsigned long uaddr;
428         unsigned long size;
429 };
430
431
432 static inline struct kvm_svm *to_kvm_svm(struct kvm *kvm)
433 {
434         return container_of(kvm, struct kvm_svm, kvm);
435 }
436
437 static inline bool svm_sev_enabled(void)
438 {
439         return IS_ENABLED(CONFIG_KVM_AMD_SEV) ? max_sev_asid : 0;
440 }
441
442 static inline bool sev_guest(struct kvm *kvm)
443 {
444 #ifdef CONFIG_KVM_AMD_SEV
445         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
446
447         return sev->active;
448 #else
449         return false;
450 #endif
451 }
452
453 static inline int sev_get_asid(struct kvm *kvm)
454 {
455         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
456
457         return sev->asid;
458 }
459
460 static inline void mark_all_dirty(struct vmcb *vmcb)
461 {
462         vmcb->control.clean = 0;
463 }
464
465 static inline void mark_all_clean(struct vmcb *vmcb)
466 {
467         vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
468                                & ~VMCB_ALWAYS_DIRTY_MASK;
469 }
470
471 static inline void mark_dirty(struct vmcb *vmcb, int bit)
472 {
473         vmcb->control.clean &= ~(1 << bit);
474 }
475
476 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
477 {
478         return container_of(vcpu, struct vcpu_svm, vcpu);
479 }
480
481 static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
482 {
483         svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
484         mark_dirty(svm->vmcb, VMCB_AVIC);
485 }
486
487 static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
488 {
489         struct vcpu_svm *svm = to_svm(vcpu);
490         u64 *entry = svm->avic_physical_id_cache;
491
492         if (!entry)
493                 return false;
494
495         return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
496 }
497
498 static void recalc_intercepts(struct vcpu_svm *svm)
499 {
500         struct vmcb_control_area *c, *h;
501         struct nested_state *g;
502
503         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
504
505         if (!is_guest_mode(&svm->vcpu))
506                 return;
507
508         c = &svm->vmcb->control;
509         h = &svm->nested.hsave->control;
510         g = &svm->nested;
511
512         c->intercept_cr = h->intercept_cr | g->intercept_cr;
513         c->intercept_dr = h->intercept_dr | g->intercept_dr;
514         c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
515         c->intercept = h->intercept | g->intercept;
516 }
517
518 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
519 {
520         if (is_guest_mode(&svm->vcpu))
521                 return svm->nested.hsave;
522         else
523                 return svm->vmcb;
524 }
525
526 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
527 {
528         struct vmcb *vmcb = get_host_vmcb(svm);
529
530         vmcb->control.intercept_cr |= (1U << bit);
531
532         recalc_intercepts(svm);
533 }
534
535 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
536 {
537         struct vmcb *vmcb = get_host_vmcb(svm);
538
539         vmcb->control.intercept_cr &= ~(1U << bit);
540
541         recalc_intercepts(svm);
542 }
543
544 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
545 {
546         struct vmcb *vmcb = get_host_vmcb(svm);
547
548         return vmcb->control.intercept_cr & (1U << bit);
549 }
550
551 static inline void set_dr_intercepts(struct vcpu_svm *svm)
552 {
553         struct vmcb *vmcb = get_host_vmcb(svm);
554
555         vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
556                 | (1 << INTERCEPT_DR1_READ)
557                 | (1 << INTERCEPT_DR2_READ)
558                 | (1 << INTERCEPT_DR3_READ)
559                 | (1 << INTERCEPT_DR4_READ)
560                 | (1 << INTERCEPT_DR5_READ)
561                 | (1 << INTERCEPT_DR6_READ)
562                 | (1 << INTERCEPT_DR7_READ)
563                 | (1 << INTERCEPT_DR0_WRITE)
564                 | (1 << INTERCEPT_DR1_WRITE)
565                 | (1 << INTERCEPT_DR2_WRITE)
566                 | (1 << INTERCEPT_DR3_WRITE)
567                 | (1 << INTERCEPT_DR4_WRITE)
568                 | (1 << INTERCEPT_DR5_WRITE)
569                 | (1 << INTERCEPT_DR6_WRITE)
570                 | (1 << INTERCEPT_DR7_WRITE);
571
572         recalc_intercepts(svm);
573 }
574
575 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
576 {
577         struct vmcb *vmcb = get_host_vmcb(svm);
578
579         vmcb->control.intercept_dr = 0;
580
581         recalc_intercepts(svm);
582 }
583
584 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
585 {
586         struct vmcb *vmcb = get_host_vmcb(svm);
587
588         vmcb->control.intercept_exceptions |= (1U << bit);
589
590         recalc_intercepts(svm);
591 }
592
593 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
594 {
595         struct vmcb *vmcb = get_host_vmcb(svm);
596
597         vmcb->control.intercept_exceptions &= ~(1U << bit);
598
599         recalc_intercepts(svm);
600 }
601
602 static inline void set_intercept(struct vcpu_svm *svm, int bit)
603 {
604         struct vmcb *vmcb = get_host_vmcb(svm);
605
606         vmcb->control.intercept |= (1ULL << bit);
607
608         recalc_intercepts(svm);
609 }
610
611 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
612 {
613         struct vmcb *vmcb = get_host_vmcb(svm);
614
615         vmcb->control.intercept &= ~(1ULL << bit);
616
617         recalc_intercepts(svm);
618 }
619
620 static inline bool vgif_enabled(struct vcpu_svm *svm)
621 {
622         return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK);
623 }
624
625 static inline void enable_gif(struct vcpu_svm *svm)
626 {
627         if (vgif_enabled(svm))
628                 svm->vmcb->control.int_ctl |= V_GIF_MASK;
629         else
630                 svm->vcpu.arch.hflags |= HF_GIF_MASK;
631 }
632
633 static inline void disable_gif(struct vcpu_svm *svm)
634 {
635         if (vgif_enabled(svm))
636                 svm->vmcb->control.int_ctl &= ~V_GIF_MASK;
637         else
638                 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
639 }
640
641 static inline bool gif_set(struct vcpu_svm *svm)
642 {
643         if (vgif_enabled(svm))
644                 return !!(svm->vmcb->control.int_ctl & V_GIF_MASK);
645         else
646                 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
647 }
648
649 static unsigned long iopm_base;
650
651 struct kvm_ldttss_desc {
652         u16 limit0;
653         u16 base0;
654         unsigned base1:8, type:5, dpl:2, p:1;
655         unsigned limit1:4, zero0:3, g:1, base2:8;
656         u32 base3;
657         u32 zero1;
658 } __attribute__((packed));
659
660 struct svm_cpu_data {
661         int cpu;
662
663         u64 asid_generation;
664         u32 max_asid;
665         u32 next_asid;
666         u32 min_asid;
667         struct kvm_ldttss_desc *tss_desc;
668
669         struct page *save_area;
670         struct vmcb *current_vmcb;
671
672         /* index = sev_asid, value = vmcb pointer */
673         struct vmcb **sev_vmcbs;
674 };
675
676 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
677
678 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
679
680 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
681 #define MSRS_RANGE_SIZE 2048
682 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
683
684 static u32 svm_msrpm_offset(u32 msr)
685 {
686         u32 offset;
687         int i;
688
689         for (i = 0; i < NUM_MSR_MAPS; i++) {
690                 if (msr < msrpm_ranges[i] ||
691                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
692                         continue;
693
694                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
695                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
696
697                 /* Now we have the u8 offset - but need the u32 offset */
698                 return offset / 4;
699         }
700
701         /* MSR not in any range */
702         return MSR_INVALID;
703 }
704
705 #define MAX_INST_SIZE 15
706
707 static inline void clgi(void)
708 {
709         asm volatile (__ex(SVM_CLGI));
710 }
711
712 static inline void stgi(void)
713 {
714         asm volatile (__ex(SVM_STGI));
715 }
716
717 static inline void invlpga(unsigned long addr, u32 asid)
718 {
719         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
720 }
721
722 static int get_npt_level(struct kvm_vcpu *vcpu)
723 {
724 #ifdef CONFIG_X86_64
725         return PT64_ROOT_4LEVEL;
726 #else
727         return PT32E_ROOT_LEVEL;
728 #endif
729 }
730
731 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
732 {
733         vcpu->arch.efer = efer;
734         if (!npt_enabled && !(efer & EFER_LMA))
735                 efer &= ~EFER_LME;
736
737         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
738         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
739 }
740
741 static int is_external_interrupt(u32 info)
742 {
743         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
744         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
745 }
746
747 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
748 {
749         struct vcpu_svm *svm = to_svm(vcpu);
750         u32 ret = 0;
751
752         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
753                 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
754         return ret;
755 }
756
757 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
758 {
759         struct vcpu_svm *svm = to_svm(vcpu);
760
761         if (mask == 0)
762                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
763         else
764                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
765
766 }
767
768 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
769 {
770         struct vcpu_svm *svm = to_svm(vcpu);
771
772         if (svm->vmcb->control.next_rip != 0) {
773                 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
774                 svm->next_rip = svm->vmcb->control.next_rip;
775         }
776
777         if (!svm->next_rip) {
778                 if (kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) !=
779                                 EMULATE_DONE)
780                         printk(KERN_DEBUG "%s: NOP\n", __func__);
781                 return;
782         }
783         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
784                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
785                        __func__, kvm_rip_read(vcpu), svm->next_rip);
786
787         kvm_rip_write(vcpu, svm->next_rip);
788         svm_set_interrupt_shadow(vcpu, 0);
789 }
790
791 static void svm_queue_exception(struct kvm_vcpu *vcpu)
792 {
793         struct vcpu_svm *svm = to_svm(vcpu);
794         unsigned nr = vcpu->arch.exception.nr;
795         bool has_error_code = vcpu->arch.exception.has_error_code;
796         bool reinject = vcpu->arch.exception.injected;
797         u32 error_code = vcpu->arch.exception.error_code;
798
799         /*
800          * If we are within a nested VM we'd better #VMEXIT and let the guest
801          * handle the exception
802          */
803         if (!reinject &&
804             nested_svm_check_exception(svm, nr, has_error_code, error_code))
805                 return;
806
807         kvm_deliver_exception_payload(&svm->vcpu);
808
809         if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
810                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
811
812                 /*
813                  * For guest debugging where we have to reinject #BP if some
814                  * INT3 is guest-owned:
815                  * Emulate nRIP by moving RIP forward. Will fail if injection
816                  * raises a fault that is not intercepted. Still better than
817                  * failing in all cases.
818                  */
819                 skip_emulated_instruction(&svm->vcpu);
820                 rip = kvm_rip_read(&svm->vcpu);
821                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
822                 svm->int3_injected = rip - old_rip;
823         }
824
825         svm->vmcb->control.event_inj = nr
826                 | SVM_EVTINJ_VALID
827                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
828                 | SVM_EVTINJ_TYPE_EXEPT;
829         svm->vmcb->control.event_inj_err = error_code;
830 }
831
832 static void svm_init_erratum_383(void)
833 {
834         u32 low, high;
835         int err;
836         u64 val;
837
838         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
839                 return;
840
841         /* Use _safe variants to not break nested virtualization */
842         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
843         if (err)
844                 return;
845
846         val |= (1ULL << 47);
847
848         low  = lower_32_bits(val);
849         high = upper_32_bits(val);
850
851         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
852
853         erratum_383_found = true;
854 }
855
856 static void svm_init_osvw(struct kvm_vcpu *vcpu)
857 {
858         /*
859          * Guests should see errata 400 and 415 as fixed (assuming that
860          * HLT and IO instructions are intercepted).
861          */
862         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
863         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
864
865         /*
866          * By increasing VCPU's osvw.length to 3 we are telling the guest that
867          * all osvw.status bits inside that length, including bit 0 (which is
868          * reserved for erratum 298), are valid. However, if host processor's
869          * osvw_len is 0 then osvw_status[0] carries no information. We need to
870          * be conservative here and therefore we tell the guest that erratum 298
871          * is present (because we really don't know).
872          */
873         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
874                 vcpu->arch.osvw.status |= 1;
875 }
876
877 static int has_svm(void)
878 {
879         const char *msg;
880
881         if (!cpu_has_svm(&msg)) {
882                 printk(KERN_INFO "has_svm: %s\n", msg);
883                 return 0;
884         }
885
886         return 1;
887 }
888
889 static void svm_hardware_disable(void)
890 {
891         /* Make sure we clean up behind us */
892         if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
893                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
894
895         cpu_svm_disable();
896
897         amd_pmu_disable_virt();
898 }
899
900 static int svm_hardware_enable(void)
901 {
902
903         struct svm_cpu_data *sd;
904         uint64_t efer;
905         struct desc_struct *gdt;
906         int me = raw_smp_processor_id();
907
908         rdmsrl(MSR_EFER, efer);
909         if (efer & EFER_SVME)
910                 return -EBUSY;
911
912         if (!has_svm()) {
913                 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
914                 return -EINVAL;
915         }
916         sd = per_cpu(svm_data, me);
917         if (!sd) {
918                 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
919                 return -EINVAL;
920         }
921
922         sd->asid_generation = 1;
923         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
924         sd->next_asid = sd->max_asid + 1;
925         sd->min_asid = max_sev_asid + 1;
926
927         gdt = get_current_gdt_rw();
928         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
929
930         wrmsrl(MSR_EFER, efer | EFER_SVME);
931
932         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
933
934         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
935                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
936                 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
937         }
938
939
940         /*
941          * Get OSVW bits.
942          *
943          * Note that it is possible to have a system with mixed processor
944          * revisions and therefore different OSVW bits. If bits are not the same
945          * on different processors then choose the worst case (i.e. if erratum
946          * is present on one processor and not on another then assume that the
947          * erratum is present everywhere).
948          */
949         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
950                 uint64_t len, status = 0;
951                 int err;
952
953                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
954                 if (!err)
955                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
956                                                       &err);
957
958                 if (err)
959                         osvw_status = osvw_len = 0;
960                 else {
961                         if (len < osvw_len)
962                                 osvw_len = len;
963                         osvw_status |= status;
964                         osvw_status &= (1ULL << osvw_len) - 1;
965                 }
966         } else
967                 osvw_status = osvw_len = 0;
968
969         svm_init_erratum_383();
970
971         amd_pmu_enable_virt();
972
973         return 0;
974 }
975
976 static void svm_cpu_uninit(int cpu)
977 {
978         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
979
980         if (!sd)
981                 return;
982
983         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
984         kfree(sd->sev_vmcbs);
985         __free_page(sd->save_area);
986         kfree(sd);
987 }
988
989 static int svm_cpu_init(int cpu)
990 {
991         struct svm_cpu_data *sd;
992         int r;
993
994         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
995         if (!sd)
996                 return -ENOMEM;
997         sd->cpu = cpu;
998         r = -ENOMEM;
999         sd->save_area = alloc_page(GFP_KERNEL);
1000         if (!sd->save_area)
1001                 goto err_1;
1002
1003         if (svm_sev_enabled()) {
1004                 r = -ENOMEM;
1005                 sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
1006                                               sizeof(void *),
1007                                               GFP_KERNEL);
1008                 if (!sd->sev_vmcbs)
1009                         goto err_1;
1010         }
1011
1012         per_cpu(svm_data, cpu) = sd;
1013
1014         return 0;
1015
1016 err_1:
1017         kfree(sd);
1018         return r;
1019
1020 }
1021
1022 static bool valid_msr_intercept(u32 index)
1023 {
1024         int i;
1025
1026         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
1027                 if (direct_access_msrs[i].index == index)
1028                         return true;
1029
1030         return false;
1031 }
1032
1033 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr)
1034 {
1035         u8 bit_write;
1036         unsigned long tmp;
1037         u32 offset;
1038         u32 *msrpm;
1039
1040         msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
1041                                       to_svm(vcpu)->msrpm;
1042
1043         offset    = svm_msrpm_offset(msr);
1044         bit_write = 2 * (msr & 0x0f) + 1;
1045         tmp       = msrpm[offset];
1046
1047         BUG_ON(offset == MSR_INVALID);
1048
1049         return !!test_bit(bit_write,  &tmp);
1050 }
1051
1052 static void set_msr_interception(u32 *msrpm, unsigned msr,
1053                                  int read, int write)
1054 {
1055         u8 bit_read, bit_write;
1056         unsigned long tmp;
1057         u32 offset;
1058
1059         /*
1060          * If this warning triggers extend the direct_access_msrs list at the
1061          * beginning of the file
1062          */
1063         WARN_ON(!valid_msr_intercept(msr));
1064
1065         offset    = svm_msrpm_offset(msr);
1066         bit_read  = 2 * (msr & 0x0f);
1067         bit_write = 2 * (msr & 0x0f) + 1;
1068         tmp       = msrpm[offset];
1069
1070         BUG_ON(offset == MSR_INVALID);
1071
1072         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
1073         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
1074
1075         msrpm[offset] = tmp;
1076 }
1077
1078 static void svm_vcpu_init_msrpm(u32 *msrpm)
1079 {
1080         int i;
1081
1082         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
1083
1084         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1085                 if (!direct_access_msrs[i].always)
1086                         continue;
1087
1088                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
1089         }
1090 }
1091
1092 static void add_msr_offset(u32 offset)
1093 {
1094         int i;
1095
1096         for (i = 0; i < MSRPM_OFFSETS; ++i) {
1097
1098                 /* Offset already in list? */
1099                 if (msrpm_offsets[i] == offset)
1100                         return;
1101
1102                 /* Slot used by another offset? */
1103                 if (msrpm_offsets[i] != MSR_INVALID)
1104                         continue;
1105
1106                 /* Add offset to list */
1107                 msrpm_offsets[i] = offset;
1108
1109                 return;
1110         }
1111
1112         /*
1113          * If this BUG triggers the msrpm_offsets table has an overflow. Just
1114          * increase MSRPM_OFFSETS in this case.
1115          */
1116         BUG();
1117 }
1118
1119 static void init_msrpm_offsets(void)
1120 {
1121         int i;
1122
1123         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
1124
1125         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1126                 u32 offset;
1127
1128                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
1129                 BUG_ON(offset == MSR_INVALID);
1130
1131                 add_msr_offset(offset);
1132         }
1133 }
1134
1135 static void svm_enable_lbrv(struct vcpu_svm *svm)
1136 {
1137         u32 *msrpm = svm->msrpm;
1138
1139         svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1140         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1141         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1142         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1143         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1144 }
1145
1146 static void svm_disable_lbrv(struct vcpu_svm *svm)
1147 {
1148         u32 *msrpm = svm->msrpm;
1149
1150         svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1151         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1152         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1153         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1154         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1155 }
1156
1157 static void disable_nmi_singlestep(struct vcpu_svm *svm)
1158 {
1159         svm->nmi_singlestep = false;
1160
1161         if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1162                 /* Clear our flags if they were not set by the guest */
1163                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1164                         svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1165                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1166                         svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1167         }
1168 }
1169
1170 /* Note:
1171  * This hash table is used to map VM_ID to a struct kvm_svm,
1172  * when handling AMD IOMMU GALOG notification to schedule in
1173  * a particular vCPU.
1174  */
1175 #define SVM_VM_DATA_HASH_BITS   8
1176 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
1177 static u32 next_vm_id = 0;
1178 static bool next_vm_id_wrapped = 0;
1179 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
1180
1181 /* Note:
1182  * This function is called from IOMMU driver to notify
1183  * SVM to schedule in a particular vCPU of a particular VM.
1184  */
1185 static int avic_ga_log_notifier(u32 ga_tag)
1186 {
1187         unsigned long flags;
1188         struct kvm_svm *kvm_svm;
1189         struct kvm_vcpu *vcpu = NULL;
1190         u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
1191         u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
1192
1193         pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
1194
1195         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1196         hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
1197                 if (kvm_svm->avic_vm_id != vm_id)
1198                         continue;
1199                 vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
1200                 break;
1201         }
1202         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1203
1204         /* Note:
1205          * At this point, the IOMMU should have already set the pending
1206          * bit in the vAPIC backing page. So, we just need to schedule
1207          * in the vcpu.
1208          */
1209         if (vcpu)
1210                 kvm_vcpu_wake_up(vcpu);
1211
1212         return 0;
1213 }
1214
1215 static __init int sev_hardware_setup(void)
1216 {
1217         struct sev_user_data_status *status;
1218         int rc;
1219
1220         /* Maximum number of encrypted guests supported simultaneously */
1221         max_sev_asid = cpuid_ecx(0x8000001F);
1222
1223         if (!max_sev_asid)
1224                 return 1;
1225
1226         /* Minimum ASID value that should be used for SEV guest */
1227         min_sev_asid = cpuid_edx(0x8000001F);
1228
1229         /* Initialize SEV ASID bitmap */
1230         sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1231         if (!sev_asid_bitmap)
1232                 return 1;
1233
1234         status = kmalloc(sizeof(*status), GFP_KERNEL);
1235         if (!status)
1236                 return 1;
1237
1238         /*
1239          * Check SEV platform status.
1240          *
1241          * PLATFORM_STATUS can be called in any state, if we failed to query
1242          * the PLATFORM status then either PSP firmware does not support SEV
1243          * feature or SEV firmware is dead.
1244          */
1245         rc = sev_platform_status(status, NULL);
1246         if (rc)
1247                 goto err;
1248
1249         pr_info("SEV supported\n");
1250
1251 err:
1252         kfree(status);
1253         return rc;
1254 }
1255
1256 static void grow_ple_window(struct kvm_vcpu *vcpu)
1257 {
1258         struct vcpu_svm *svm = to_svm(vcpu);
1259         struct vmcb_control_area *control = &svm->vmcb->control;
1260         int old = control->pause_filter_count;
1261
1262         control->pause_filter_count = __grow_ple_window(old,
1263                                                         pause_filter_count,
1264                                                         pause_filter_count_grow,
1265                                                         pause_filter_count_max);
1266
1267         if (control->pause_filter_count != old)
1268                 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1269
1270         trace_kvm_ple_window_grow(vcpu->vcpu_id,
1271                                   control->pause_filter_count, old);
1272 }
1273
1274 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1275 {
1276         struct vcpu_svm *svm = to_svm(vcpu);
1277         struct vmcb_control_area *control = &svm->vmcb->control;
1278         int old = control->pause_filter_count;
1279
1280         control->pause_filter_count =
1281                                 __shrink_ple_window(old,
1282                                                     pause_filter_count,
1283                                                     pause_filter_count_shrink,
1284                                                     pause_filter_count);
1285         if (control->pause_filter_count != old)
1286                 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1287
1288         trace_kvm_ple_window_shrink(vcpu->vcpu_id,
1289                                     control->pause_filter_count, old);
1290 }
1291
1292 static __init int svm_hardware_setup(void)
1293 {
1294         int cpu;
1295         struct page *iopm_pages;
1296         void *iopm_va;
1297         int r;
1298
1299         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1300
1301         if (!iopm_pages)
1302                 return -ENOMEM;
1303
1304         iopm_va = page_address(iopm_pages);
1305         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1306         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1307
1308         init_msrpm_offsets();
1309
1310         if (boot_cpu_has(X86_FEATURE_NX))
1311                 kvm_enable_efer_bits(EFER_NX);
1312
1313         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1314                 kvm_enable_efer_bits(EFER_FFXSR);
1315
1316         if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1317                 kvm_has_tsc_control = true;
1318                 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1319                 kvm_tsc_scaling_ratio_frac_bits = 32;
1320         }
1321
1322         /* Check for pause filtering support */
1323         if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1324                 pause_filter_count = 0;
1325                 pause_filter_thresh = 0;
1326         } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
1327                 pause_filter_thresh = 0;
1328         }
1329
1330         if (nested) {
1331                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1332                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1333         }
1334
1335         if (sev) {
1336                 if (boot_cpu_has(X86_FEATURE_SEV) &&
1337                     IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
1338                         r = sev_hardware_setup();
1339                         if (r)
1340                                 sev = false;
1341                 } else {
1342                         sev = false;
1343                 }
1344         }
1345
1346         for_each_possible_cpu(cpu) {
1347                 r = svm_cpu_init(cpu);
1348                 if (r)
1349                         goto err;
1350         }
1351
1352         if (!boot_cpu_has(X86_FEATURE_NPT))
1353                 npt_enabled = false;
1354
1355         if (npt_enabled && !npt) {
1356                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
1357                 npt_enabled = false;
1358         }
1359
1360         if (npt_enabled) {
1361                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
1362                 kvm_enable_tdp();
1363         } else
1364                 kvm_disable_tdp();
1365
1366         if (avic) {
1367                 if (!npt_enabled ||
1368                     !boot_cpu_has(X86_FEATURE_AVIC) ||
1369                     !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1370                         avic = false;
1371                 } else {
1372                         pr_info("AVIC enabled\n");
1373
1374                         amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1375                 }
1376         }
1377
1378         if (vls) {
1379                 if (!npt_enabled ||
1380                     !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1381                     !IS_ENABLED(CONFIG_X86_64)) {
1382                         vls = false;
1383                 } else {
1384                         pr_info("Virtual VMLOAD VMSAVE supported\n");
1385                 }
1386         }
1387
1388         if (vgif) {
1389                 if (!boot_cpu_has(X86_FEATURE_VGIF))
1390                         vgif = false;
1391                 else
1392                         pr_info("Virtual GIF supported\n");
1393         }
1394
1395         return 0;
1396
1397 err:
1398         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1399         iopm_base = 0;
1400         return r;
1401 }
1402
1403 static __exit void svm_hardware_unsetup(void)
1404 {
1405         int cpu;
1406
1407         if (svm_sev_enabled())
1408                 bitmap_free(sev_asid_bitmap);
1409
1410         for_each_possible_cpu(cpu)
1411                 svm_cpu_uninit(cpu);
1412
1413         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1414         iopm_base = 0;
1415 }
1416
1417 static void init_seg(struct vmcb_seg *seg)
1418 {
1419         seg->selector = 0;
1420         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1421                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1422         seg->limit = 0xffff;
1423         seg->base = 0;
1424 }
1425
1426 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1427 {
1428         seg->selector = 0;
1429         seg->attrib = SVM_SELECTOR_P_MASK | type;
1430         seg->limit = 0xffff;
1431         seg->base = 0;
1432 }
1433
1434 static u64 svm_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1435 {
1436         struct vcpu_svm *svm = to_svm(vcpu);
1437
1438         if (is_guest_mode(vcpu))
1439                 return svm->nested.hsave->control.tsc_offset;
1440
1441         return vcpu->arch.tsc_offset;
1442 }
1443
1444 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1445 {
1446         struct vcpu_svm *svm = to_svm(vcpu);
1447         u64 g_tsc_offset = 0;
1448
1449         if (is_guest_mode(vcpu)) {
1450                 /* Write L1's TSC offset.  */
1451                 g_tsc_offset = svm->vmcb->control.tsc_offset -
1452                                svm->nested.hsave->control.tsc_offset;
1453                 svm->nested.hsave->control.tsc_offset = offset;
1454         }
1455
1456         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1457                                    svm->vmcb->control.tsc_offset - g_tsc_offset,
1458                                    offset);
1459
1460         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1461
1462         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1463         return svm->vmcb->control.tsc_offset;
1464 }
1465
1466 static void avic_init_vmcb(struct vcpu_svm *svm)
1467 {
1468         struct vmcb *vmcb = svm->vmcb;
1469         struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
1470         phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
1471         phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
1472         phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
1473
1474         vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1475         vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1476         vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1477         vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1478         vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1479 }
1480
1481 static void init_vmcb(struct vcpu_svm *svm)
1482 {
1483         struct vmcb_control_area *control = &svm->vmcb->control;
1484         struct vmcb_save_area *save = &svm->vmcb->save;
1485
1486         svm->vcpu.arch.hflags = 0;
1487
1488         set_cr_intercept(svm, INTERCEPT_CR0_READ);
1489         set_cr_intercept(svm, INTERCEPT_CR3_READ);
1490         set_cr_intercept(svm, INTERCEPT_CR4_READ);
1491         set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1492         set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1493         set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1494         if (!kvm_vcpu_apicv_active(&svm->vcpu))
1495                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1496
1497         set_dr_intercepts(svm);
1498
1499         set_exception_intercept(svm, PF_VECTOR);
1500         set_exception_intercept(svm, UD_VECTOR);
1501         set_exception_intercept(svm, MC_VECTOR);
1502         set_exception_intercept(svm, AC_VECTOR);
1503         set_exception_intercept(svm, DB_VECTOR);
1504         /*
1505          * Guest access to VMware backdoor ports could legitimately
1506          * trigger #GP because of TSS I/O permission bitmap.
1507          * We intercept those #GP and allow access to them anyway
1508          * as VMware does.
1509          */
1510         if (enable_vmware_backdoor)
1511                 set_exception_intercept(svm, GP_VECTOR);
1512
1513         set_intercept(svm, INTERCEPT_INTR);
1514         set_intercept(svm, INTERCEPT_NMI);
1515         set_intercept(svm, INTERCEPT_SMI);
1516         set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1517         set_intercept(svm, INTERCEPT_RDPMC);
1518         set_intercept(svm, INTERCEPT_CPUID);
1519         set_intercept(svm, INTERCEPT_INVD);
1520         set_intercept(svm, INTERCEPT_INVLPG);
1521         set_intercept(svm, INTERCEPT_INVLPGA);
1522         set_intercept(svm, INTERCEPT_IOIO_PROT);
1523         set_intercept(svm, INTERCEPT_MSR_PROT);
1524         set_intercept(svm, INTERCEPT_TASK_SWITCH);
1525         set_intercept(svm, INTERCEPT_SHUTDOWN);
1526         set_intercept(svm, INTERCEPT_VMRUN);
1527         set_intercept(svm, INTERCEPT_VMMCALL);
1528         set_intercept(svm, INTERCEPT_VMLOAD);
1529         set_intercept(svm, INTERCEPT_VMSAVE);
1530         set_intercept(svm, INTERCEPT_STGI);
1531         set_intercept(svm, INTERCEPT_CLGI);
1532         set_intercept(svm, INTERCEPT_SKINIT);
1533         set_intercept(svm, INTERCEPT_WBINVD);
1534         set_intercept(svm, INTERCEPT_XSETBV);
1535         set_intercept(svm, INTERCEPT_RSM);
1536
1537         if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1538                 set_intercept(svm, INTERCEPT_MONITOR);
1539                 set_intercept(svm, INTERCEPT_MWAIT);
1540         }
1541
1542         if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1543                 set_intercept(svm, INTERCEPT_HLT);
1544
1545         control->iopm_base_pa = __sme_set(iopm_base);
1546         control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1547         control->int_ctl = V_INTR_MASKING_MASK;
1548
1549         init_seg(&save->es);
1550         init_seg(&save->ss);
1551         init_seg(&save->ds);
1552         init_seg(&save->fs);
1553         init_seg(&save->gs);
1554
1555         save->cs.selector = 0xf000;
1556         save->cs.base = 0xffff0000;
1557         /* Executable/Readable Code Segment */
1558         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1559                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1560         save->cs.limit = 0xffff;
1561
1562         save->gdtr.limit = 0xffff;
1563         save->idtr.limit = 0xffff;
1564
1565         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1566         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1567
1568         svm_set_efer(&svm->vcpu, 0);
1569         save->dr6 = 0xffff0ff0;
1570         kvm_set_rflags(&svm->vcpu, 2);
1571         save->rip = 0x0000fff0;
1572         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1573
1574         /*
1575          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1576          * It also updates the guest-visible cr0 value.
1577          */
1578         svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1579         kvm_mmu_reset_context(&svm->vcpu);
1580
1581         save->cr4 = X86_CR4_PAE;
1582         /* rdx = ?? */
1583
1584         if (npt_enabled) {
1585                 /* Setup VMCB for Nested Paging */
1586                 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1587                 clr_intercept(svm, INTERCEPT_INVLPG);
1588                 clr_exception_intercept(svm, PF_VECTOR);
1589                 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1590                 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1591                 save->g_pat = svm->vcpu.arch.pat;
1592                 save->cr3 = 0;
1593                 save->cr4 = 0;
1594         }
1595         svm->asid_generation = 0;
1596
1597         svm->nested.vmcb = 0;
1598         svm->vcpu.arch.hflags = 0;
1599
1600         if (pause_filter_count) {
1601                 control->pause_filter_count = pause_filter_count;
1602                 if (pause_filter_thresh)
1603                         control->pause_filter_thresh = pause_filter_thresh;
1604                 set_intercept(svm, INTERCEPT_PAUSE);
1605         } else {
1606                 clr_intercept(svm, INTERCEPT_PAUSE);
1607         }
1608
1609         if (kvm_vcpu_apicv_active(&svm->vcpu))
1610                 avic_init_vmcb(svm);
1611
1612         /*
1613          * If hardware supports Virtual VMLOAD VMSAVE then enable it
1614          * in VMCB and clear intercepts to avoid #VMEXIT.
1615          */
1616         if (vls) {
1617                 clr_intercept(svm, INTERCEPT_VMLOAD);
1618                 clr_intercept(svm, INTERCEPT_VMSAVE);
1619                 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1620         }
1621
1622         if (vgif) {
1623                 clr_intercept(svm, INTERCEPT_STGI);
1624                 clr_intercept(svm, INTERCEPT_CLGI);
1625                 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1626         }
1627
1628         if (sev_guest(svm->vcpu.kvm)) {
1629                 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1630                 clr_exception_intercept(svm, UD_VECTOR);
1631         }
1632
1633         mark_all_dirty(svm->vmcb);
1634
1635         enable_gif(svm);
1636
1637 }
1638
1639 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
1640                                        unsigned int index)
1641 {
1642         u64 *avic_physical_id_table;
1643         struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
1644
1645         if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1646                 return NULL;
1647
1648         avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
1649
1650         return &avic_physical_id_table[index];
1651 }
1652
1653 /**
1654  * Note:
1655  * AVIC hardware walks the nested page table to check permissions,
1656  * but does not use the SPA address specified in the leaf page
1657  * table entry since it uses  address in the AVIC_BACKING_PAGE pointer
1658  * field of the VMCB. Therefore, we set up the
1659  * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1660  */
1661 static int avic_init_access_page(struct kvm_vcpu *vcpu)
1662 {
1663         struct kvm *kvm = vcpu->kvm;
1664         int ret = 0;
1665
1666         mutex_lock(&kvm->slots_lock);
1667         if (kvm->arch.apic_access_page_done)
1668                 goto out;
1669
1670         ret = __x86_set_memory_region(kvm,
1671                                       APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1672                                       APIC_DEFAULT_PHYS_BASE,
1673                                       PAGE_SIZE);
1674         if (ret)
1675                 goto out;
1676
1677         kvm->arch.apic_access_page_done = true;
1678 out:
1679         mutex_unlock(&kvm->slots_lock);
1680         return ret;
1681 }
1682
1683 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1684 {
1685         int ret;
1686         u64 *entry, new_entry;
1687         int id = vcpu->vcpu_id;
1688         struct vcpu_svm *svm = to_svm(vcpu);
1689
1690         ret = avic_init_access_page(vcpu);
1691         if (ret)
1692                 return ret;
1693
1694         if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1695                 return -EINVAL;
1696
1697         if (!svm->vcpu.arch.apic->regs)
1698                 return -EINVAL;
1699
1700         svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1701
1702         /* Setting AVIC backing page address in the phy APIC ID table */
1703         entry = avic_get_physical_id_entry(vcpu, id);
1704         if (!entry)
1705                 return -EINVAL;
1706
1707         new_entry = READ_ONCE(*entry);
1708         new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
1709                               AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1710                               AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
1711         WRITE_ONCE(*entry, new_entry);
1712
1713         svm->avic_physical_id_cache = entry;
1714
1715         return 0;
1716 }
1717
1718 static void __sev_asid_free(int asid)
1719 {
1720         struct svm_cpu_data *sd;
1721         int cpu, pos;
1722
1723         pos = asid - 1;
1724         clear_bit(pos, sev_asid_bitmap);
1725
1726         for_each_possible_cpu(cpu) {
1727                 sd = per_cpu(svm_data, cpu);
1728                 sd->sev_vmcbs[pos] = NULL;
1729         }
1730 }
1731
1732 static void sev_asid_free(struct kvm *kvm)
1733 {
1734         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1735
1736         __sev_asid_free(sev->asid);
1737 }
1738
1739 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
1740 {
1741         struct sev_data_decommission *decommission;
1742         struct sev_data_deactivate *data;
1743
1744         if (!handle)
1745                 return;
1746
1747         data = kzalloc(sizeof(*data), GFP_KERNEL);
1748         if (!data)
1749                 return;
1750
1751         /* deactivate handle */
1752         data->handle = handle;
1753         sev_guest_deactivate(data, NULL);
1754
1755         wbinvd_on_all_cpus();
1756         sev_guest_df_flush(NULL);
1757         kfree(data);
1758
1759         decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
1760         if (!decommission)
1761                 return;
1762
1763         /* decommission handle */
1764         decommission->handle = handle;
1765         sev_guest_decommission(decommission, NULL);
1766
1767         kfree(decommission);
1768 }
1769
1770 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
1771                                     unsigned long ulen, unsigned long *n,
1772                                     int write)
1773 {
1774         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1775         unsigned long npages, npinned, size;
1776         unsigned long locked, lock_limit;
1777         struct page **pages;
1778         unsigned long first, last;
1779
1780         if (ulen == 0 || uaddr + ulen < uaddr)
1781                 return NULL;
1782
1783         /* Calculate number of pages. */
1784         first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
1785         last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
1786         npages = (last - first + 1);
1787
1788         locked = sev->pages_locked + npages;
1789         lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1790         if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
1791                 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
1792                 return NULL;
1793         }
1794
1795         /* Avoid using vmalloc for smaller buffers. */
1796         size = npages * sizeof(struct page *);
1797         if (size > PAGE_SIZE)
1798                 pages = vmalloc(size);
1799         else
1800                 pages = kmalloc(size, GFP_KERNEL);
1801
1802         if (!pages)
1803                 return NULL;
1804
1805         /* Pin the user virtual address. */
1806         npinned = get_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
1807         if (npinned != npages) {
1808                 pr_err("SEV: Failure locking %lu pages.\n", npages);
1809                 goto err;
1810         }
1811
1812         *n = npages;
1813         sev->pages_locked = locked;
1814
1815         return pages;
1816
1817 err:
1818         if (npinned > 0)
1819                 release_pages(pages, npinned);
1820
1821         kvfree(pages);
1822         return NULL;
1823 }
1824
1825 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
1826                              unsigned long npages)
1827 {
1828         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1829
1830         release_pages(pages, npages);
1831         kvfree(pages);
1832         sev->pages_locked -= npages;
1833 }
1834
1835 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
1836 {
1837         uint8_t *page_virtual;
1838         unsigned long i;
1839
1840         if (npages == 0 || pages == NULL)
1841                 return;
1842
1843         for (i = 0; i < npages; i++) {
1844                 page_virtual = kmap_atomic(pages[i]);
1845                 clflush_cache_range(page_virtual, PAGE_SIZE);
1846                 kunmap_atomic(page_virtual);
1847         }
1848 }
1849
1850 static void __unregister_enc_region_locked(struct kvm *kvm,
1851                                            struct enc_region *region)
1852 {
1853         /*
1854          * The guest may change the memory encryption attribute from C=0 -> C=1
1855          * or vice versa for this memory range. Lets make sure caches are
1856          * flushed to ensure that guest data gets written into memory with
1857          * correct C-bit.
1858          */
1859         sev_clflush_pages(region->pages, region->npages);
1860
1861         sev_unpin_memory(kvm, region->pages, region->npages);
1862         list_del(&region->list);
1863         kfree(region);
1864 }
1865
1866 static struct kvm *svm_vm_alloc(void)
1867 {
1868         struct kvm_svm *kvm_svm = vzalloc(sizeof(struct kvm_svm));
1869         return &kvm_svm->kvm;
1870 }
1871
1872 static void svm_vm_free(struct kvm *kvm)
1873 {
1874         vfree(to_kvm_svm(kvm));
1875 }
1876
1877 static void sev_vm_destroy(struct kvm *kvm)
1878 {
1879         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1880         struct list_head *head = &sev->regions_list;
1881         struct list_head *pos, *q;
1882
1883         if (!sev_guest(kvm))
1884                 return;
1885
1886         mutex_lock(&kvm->lock);
1887
1888         /*
1889          * if userspace was terminated before unregistering the memory regions
1890          * then lets unpin all the registered memory.
1891          */
1892         if (!list_empty(head)) {
1893                 list_for_each_safe(pos, q, head) {
1894                         __unregister_enc_region_locked(kvm,
1895                                 list_entry(pos, struct enc_region, list));
1896                 }
1897         }
1898
1899         mutex_unlock(&kvm->lock);
1900
1901         sev_unbind_asid(kvm, sev->handle);
1902         sev_asid_free(kvm);
1903 }
1904
1905 static void avic_vm_destroy(struct kvm *kvm)
1906 {
1907         unsigned long flags;
1908         struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1909
1910         if (!avic)
1911                 return;
1912
1913         if (kvm_svm->avic_logical_id_table_page)
1914                 __free_page(kvm_svm->avic_logical_id_table_page);
1915         if (kvm_svm->avic_physical_id_table_page)
1916                 __free_page(kvm_svm->avic_physical_id_table_page);
1917
1918         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1919         hash_del(&kvm_svm->hnode);
1920         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1921 }
1922
1923 static void svm_vm_destroy(struct kvm *kvm)
1924 {
1925         avic_vm_destroy(kvm);
1926         sev_vm_destroy(kvm);
1927 }
1928
1929 static int avic_vm_init(struct kvm *kvm)
1930 {
1931         unsigned long flags;
1932         int err = -ENOMEM;
1933         struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1934         struct kvm_svm *k2;
1935         struct page *p_page;
1936         struct page *l_page;
1937         u32 vm_id;
1938
1939         if (!avic)
1940                 return 0;
1941
1942         /* Allocating physical APIC ID table (4KB) */
1943         p_page = alloc_page(GFP_KERNEL);
1944         if (!p_page)
1945                 goto free_avic;
1946
1947         kvm_svm->avic_physical_id_table_page = p_page;
1948         clear_page(page_address(p_page));
1949
1950         /* Allocating logical APIC ID table (4KB) */
1951         l_page = alloc_page(GFP_KERNEL);
1952         if (!l_page)
1953                 goto free_avic;
1954
1955         kvm_svm->avic_logical_id_table_page = l_page;
1956         clear_page(page_address(l_page));
1957
1958         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1959  again:
1960         vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
1961         if (vm_id == 0) { /* id is 1-based, zero is not okay */
1962                 next_vm_id_wrapped = 1;
1963                 goto again;
1964         }
1965         /* Is it still in use? Only possible if wrapped at least once */
1966         if (next_vm_id_wrapped) {
1967                 hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
1968                         if (k2->avic_vm_id == vm_id)
1969                                 goto again;
1970                 }
1971         }
1972         kvm_svm->avic_vm_id = vm_id;
1973         hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
1974         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1975
1976         return 0;
1977
1978 free_avic:
1979         avic_vm_destroy(kvm);
1980         return err;
1981 }
1982
1983 static inline int
1984 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1985 {
1986         int ret = 0;
1987         unsigned long flags;
1988         struct amd_svm_iommu_ir *ir;
1989         struct vcpu_svm *svm = to_svm(vcpu);
1990
1991         if (!kvm_arch_has_assigned_device(vcpu->kvm))
1992                 return 0;
1993
1994         /*
1995          * Here, we go through the per-vcpu ir_list to update all existing
1996          * interrupt remapping table entry targeting this vcpu.
1997          */
1998         spin_lock_irqsave(&svm->ir_list_lock, flags);
1999
2000         if (list_empty(&svm->ir_list))
2001                 goto out;
2002
2003         list_for_each_entry(ir, &svm->ir_list, node) {
2004                 ret = amd_iommu_update_ga(cpu, r, ir->data);
2005                 if (ret)
2006                         break;
2007         }
2008 out:
2009         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
2010         return ret;
2011 }
2012
2013 static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2014 {
2015         u64 entry;
2016         /* ID = 0xff (broadcast), ID > 0xff (reserved) */
2017         int h_physical_id = kvm_cpu_get_apicid(cpu);
2018         struct vcpu_svm *svm = to_svm(vcpu);
2019
2020         if (!kvm_vcpu_apicv_active(vcpu))
2021                 return;
2022
2023         if (WARN_ON(h_physical_id >= AVIC_MAX_PHYSICAL_ID_COUNT))
2024                 return;
2025
2026         entry = READ_ONCE(*(svm->avic_physical_id_cache));
2027         WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
2028
2029         entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
2030         entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
2031
2032         entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2033         if (svm->avic_is_running)
2034                 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2035
2036         WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2037         avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
2038                                         svm->avic_is_running);
2039 }
2040
2041 static void avic_vcpu_put(struct kvm_vcpu *vcpu)
2042 {
2043         u64 entry;
2044         struct vcpu_svm *svm = to_svm(vcpu);
2045
2046         if (!kvm_vcpu_apicv_active(vcpu))
2047                 return;
2048
2049         entry = READ_ONCE(*(svm->avic_physical_id_cache));
2050         if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
2051                 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
2052
2053         entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2054         WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2055 }
2056
2057 /**
2058  * This function is called during VCPU halt/unhalt.
2059  */
2060 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
2061 {
2062         struct vcpu_svm *svm = to_svm(vcpu);
2063
2064         svm->avic_is_running = is_run;
2065         if (is_run)
2066                 avic_vcpu_load(vcpu, vcpu->cpu);
2067         else
2068                 avic_vcpu_put(vcpu);
2069 }
2070
2071 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
2072 {
2073         struct vcpu_svm *svm = to_svm(vcpu);
2074         u32 dummy;
2075         u32 eax = 1;
2076
2077         vcpu->arch.microcode_version = 0x01000065;
2078         svm->spec_ctrl = 0;
2079         svm->virt_spec_ctrl = 0;
2080
2081         if (!init_event) {
2082                 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
2083                                            MSR_IA32_APICBASE_ENABLE;
2084                 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
2085                         svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
2086         }
2087         init_vmcb(svm);
2088
2089         kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true);
2090         kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
2091
2092         if (kvm_vcpu_apicv_active(vcpu) && !init_event)
2093                 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
2094 }
2095
2096 static int avic_init_vcpu(struct vcpu_svm *svm)
2097 {
2098         int ret;
2099
2100         if (!kvm_vcpu_apicv_active(&svm->vcpu))
2101                 return 0;
2102
2103         ret = avic_init_backing_page(&svm->vcpu);
2104         if (ret)
2105                 return ret;
2106
2107         INIT_LIST_HEAD(&svm->ir_list);
2108         spin_lock_init(&svm->ir_list_lock);
2109
2110         return ret;
2111 }
2112
2113 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
2114 {
2115         struct vcpu_svm *svm;
2116         struct page *page;
2117         struct page *msrpm_pages;
2118         struct page *hsave_page;
2119         struct page *nested_msrpm_pages;
2120         int err;
2121
2122         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2123         if (!svm) {
2124                 err = -ENOMEM;
2125                 goto out;
2126         }
2127
2128         svm->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache, GFP_KERNEL);
2129         if (!svm->vcpu.arch.guest_fpu) {
2130                 printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
2131                 err = -ENOMEM;
2132                 goto free_partial_svm;
2133         }
2134
2135         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
2136         if (err)
2137                 goto free_svm;
2138
2139         err = -ENOMEM;
2140         page = alloc_page(GFP_KERNEL);
2141         if (!page)
2142                 goto uninit;
2143
2144         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
2145         if (!msrpm_pages)
2146                 goto free_page1;
2147
2148         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
2149         if (!nested_msrpm_pages)
2150                 goto free_page2;
2151
2152         hsave_page = alloc_page(GFP_KERNEL);
2153         if (!hsave_page)
2154                 goto free_page3;
2155
2156         err = avic_init_vcpu(svm);
2157         if (err)
2158                 goto free_page4;
2159
2160         /* We initialize this flag to true to make sure that the is_running
2161          * bit would be set the first time the vcpu is loaded.
2162          */
2163         svm->avic_is_running = true;
2164
2165         svm->nested.hsave = page_address(hsave_page);
2166
2167         svm->msrpm = page_address(msrpm_pages);
2168         svm_vcpu_init_msrpm(svm->msrpm);
2169
2170         svm->nested.msrpm = page_address(nested_msrpm_pages);
2171         svm_vcpu_init_msrpm(svm->nested.msrpm);
2172
2173         svm->vmcb = page_address(page);
2174         clear_page(svm->vmcb);
2175         svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
2176         svm->asid_generation = 0;
2177         init_vmcb(svm);
2178
2179         svm_init_osvw(&svm->vcpu);
2180
2181         return &svm->vcpu;
2182
2183 free_page4:
2184         __free_page(hsave_page);
2185 free_page3:
2186         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
2187 free_page2:
2188         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
2189 free_page1:
2190         __free_page(page);
2191 uninit:
2192         kvm_vcpu_uninit(&svm->vcpu);
2193 free_svm:
2194         kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu);
2195 free_partial_svm:
2196         kmem_cache_free(kvm_vcpu_cache, svm);
2197 out:
2198         return ERR_PTR(err);
2199 }
2200
2201 static void svm_clear_current_vmcb(struct vmcb *vmcb)
2202 {
2203         int i;
2204
2205         for_each_online_cpu(i)
2206                 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
2207 }
2208
2209 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
2210 {
2211         struct vcpu_svm *svm = to_svm(vcpu);
2212
2213         /*
2214          * The vmcb page can be recycled, causing a false negative in
2215          * svm_vcpu_load(). So, ensure that no logical CPU has this
2216          * vmcb page recorded as its current vmcb.
2217          */
2218         svm_clear_current_vmcb(svm->vmcb);
2219
2220         __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
2221         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
2222         __free_page(virt_to_page(svm->nested.hsave));
2223         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
2224         kvm_vcpu_uninit(vcpu);
2225         kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu);
2226         kmem_cache_free(kvm_vcpu_cache, svm);
2227 }
2228
2229 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2230 {
2231         struct vcpu_svm *svm = to_svm(vcpu);
2232         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2233         int i;
2234
2235         if (unlikely(cpu != vcpu->cpu)) {
2236                 svm->asid_generation = 0;
2237                 mark_all_dirty(svm->vmcb);
2238         }
2239
2240 #ifdef CONFIG_X86_64
2241         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
2242 #endif
2243         savesegment(fs, svm->host.fs);
2244         savesegment(gs, svm->host.gs);
2245         svm->host.ldt = kvm_read_ldt();
2246
2247         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2248                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2249
2250         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
2251                 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2252                 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
2253                         __this_cpu_write(current_tsc_ratio, tsc_ratio);
2254                         wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
2255                 }
2256         }
2257         /* This assumes that the kernel never uses MSR_TSC_AUX */
2258         if (static_cpu_has(X86_FEATURE_RDTSCP))
2259                 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2260
2261         if (sd->current_vmcb != svm->vmcb) {
2262                 sd->current_vmcb = svm->vmcb;
2263                 indirect_branch_prediction_barrier();
2264         }
2265         avic_vcpu_load(vcpu, cpu);
2266 }
2267
2268 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
2269 {
2270         struct vcpu_svm *svm = to_svm(vcpu);
2271         int i;
2272
2273         avic_vcpu_put(vcpu);
2274
2275         ++vcpu->stat.host_state_reload;
2276         kvm_load_ldt(svm->host.ldt);
2277 #ifdef CONFIG_X86_64
2278         loadsegment(fs, svm->host.fs);
2279         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
2280         load_gs_index(svm->host.gs);
2281 #else
2282 #ifdef CONFIG_X86_32_LAZY_GS
2283         loadsegment(gs, svm->host.gs);
2284 #endif
2285 #endif
2286         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2287                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2288 }
2289
2290 static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
2291 {
2292         avic_set_running(vcpu, false);
2293 }
2294
2295 static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
2296 {
2297         avic_set_running(vcpu, true);
2298 }
2299
2300 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
2301 {
2302         struct vcpu_svm *svm = to_svm(vcpu);
2303         unsigned long rflags = svm->vmcb->save.rflags;
2304
2305         if (svm->nmi_singlestep) {
2306                 /* Hide our flags if they were not set by the guest */
2307                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
2308                         rflags &= ~X86_EFLAGS_TF;
2309                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
2310                         rflags &= ~X86_EFLAGS_RF;
2311         }
2312         return rflags;
2313 }
2314
2315 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2316 {
2317         if (to_svm(vcpu)->nmi_singlestep)
2318                 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2319
2320        /*
2321         * Any change of EFLAGS.VM is accompanied by a reload of SS
2322         * (caused by either a task switch or an inter-privilege IRET),
2323         * so we do not need to update the CPL here.
2324         */
2325         to_svm(vcpu)->vmcb->save.rflags = rflags;
2326 }
2327
2328 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2329 {
2330         switch (reg) {
2331         case VCPU_EXREG_PDPTR:
2332                 BUG_ON(!npt_enabled);
2333                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
2334                 break;
2335         default:
2336                 BUG();
2337         }
2338 }
2339
2340 static void svm_set_vintr(struct vcpu_svm *svm)
2341 {
2342         set_intercept(svm, INTERCEPT_VINTR);
2343 }
2344
2345 static void svm_clear_vintr(struct vcpu_svm *svm)
2346 {
2347         clr_intercept(svm, INTERCEPT_VINTR);
2348 }
2349
2350 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
2351 {
2352         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2353
2354         switch (seg) {
2355         case VCPU_SREG_CS: return &save->cs;
2356         case VCPU_SREG_DS: return &save->ds;
2357         case VCPU_SREG_ES: return &save->es;
2358         case VCPU_SREG_FS: return &save->fs;
2359         case VCPU_SREG_GS: return &save->gs;
2360         case VCPU_SREG_SS: return &save->ss;
2361         case VCPU_SREG_TR: return &save->tr;
2362         case VCPU_SREG_LDTR: return &save->ldtr;
2363         }
2364         BUG();
2365         return NULL;
2366 }
2367
2368 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2369 {
2370         struct vmcb_seg *s = svm_seg(vcpu, seg);
2371
2372         return s->base;
2373 }
2374
2375 static void svm_get_segment(struct kvm_vcpu *vcpu,
2376                             struct kvm_segment *var, int seg)
2377 {
2378         struct vmcb_seg *s = svm_seg(vcpu, seg);
2379
2380         var->base = s->base;
2381         var->limit = s->limit;
2382         var->selector = s->selector;
2383         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
2384         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
2385         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
2386         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
2387         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
2388         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
2389         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
2390
2391         /*
2392          * AMD CPUs circa 2014 track the G bit for all segments except CS.
2393          * However, the SVM spec states that the G bit is not observed by the
2394          * CPU, and some VMware virtual CPUs drop the G bit for all segments.
2395          * So let's synthesize a legal G bit for all segments, this helps
2396          * running KVM nested. It also helps cross-vendor migration, because
2397          * Intel's vmentry has a check on the 'G' bit.
2398          */
2399         var->g = s->limit > 0xfffff;
2400
2401         /*
2402          * AMD's VMCB does not have an explicit unusable field, so emulate it
2403          * for cross vendor migration purposes by "not present"
2404          */
2405         var->unusable = !var->present;
2406
2407         switch (seg) {
2408         case VCPU_SREG_TR:
2409                 /*
2410                  * Work around a bug where the busy flag in the tr selector
2411                  * isn't exposed
2412                  */
2413                 var->type |= 0x2;
2414                 break;
2415         case VCPU_SREG_DS:
2416         case VCPU_SREG_ES:
2417         case VCPU_SREG_FS:
2418         case VCPU_SREG_GS:
2419                 /*
2420                  * The accessed bit must always be set in the segment
2421                  * descriptor cache, although it can be cleared in the
2422                  * descriptor, the cached bit always remains at 1. Since
2423                  * Intel has a check on this, set it here to support
2424                  * cross-vendor migration.
2425                  */
2426                 if (!var->unusable)
2427                         var->type |= 0x1;
2428                 break;
2429         case VCPU_SREG_SS:
2430                 /*
2431                  * On AMD CPUs sometimes the DB bit in the segment
2432                  * descriptor is left as 1, although the whole segment has
2433                  * been made unusable. Clear it here to pass an Intel VMX
2434                  * entry check when cross vendor migrating.
2435                  */
2436                 if (var->unusable)
2437                         var->db = 0;
2438                 /* This is symmetric with svm_set_segment() */
2439                 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
2440                 break;
2441         }
2442 }
2443
2444 static int svm_get_cpl(struct kvm_vcpu *vcpu)
2445 {
2446         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2447
2448         return save->cpl;
2449 }
2450
2451 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2452 {
2453         struct vcpu_svm *svm = to_svm(vcpu);
2454
2455         dt->size = svm->vmcb->save.idtr.limit;
2456         dt->address = svm->vmcb->save.idtr.base;
2457 }
2458
2459 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2460 {
2461         struct vcpu_svm *svm = to_svm(vcpu);
2462
2463         svm->vmcb->save.idtr.limit = dt->size;
2464         svm->vmcb->save.idtr.base = dt->address ;
2465         mark_dirty(svm->vmcb, VMCB_DT);
2466 }
2467
2468 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2469 {
2470         struct vcpu_svm *svm = to_svm(vcpu);
2471
2472         dt->size = svm->vmcb->save.gdtr.limit;
2473         dt->address = svm->vmcb->save.gdtr.base;
2474 }
2475
2476 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2477 {
2478         struct vcpu_svm *svm = to_svm(vcpu);
2479
2480         svm->vmcb->save.gdtr.limit = dt->size;
2481         svm->vmcb->save.gdtr.base = dt->address ;
2482         mark_dirty(svm->vmcb, VMCB_DT);
2483 }
2484
2485 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2486 {
2487 }
2488
2489 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
2490 {
2491 }
2492
2493 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2494 {
2495 }
2496
2497 static void update_cr0_intercept(struct vcpu_svm *svm)
2498 {
2499         ulong gcr0 = svm->vcpu.arch.cr0;
2500         u64 *hcr0 = &svm->vmcb->save.cr0;
2501
2502         *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
2503                 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
2504
2505         mark_dirty(svm->vmcb, VMCB_CR);
2506
2507         if (gcr0 == *hcr0) {
2508                 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
2509                 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2510         } else {
2511                 set_cr_intercept(svm, INTERCEPT_CR0_READ);
2512                 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2513         }
2514 }
2515
2516 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2517 {
2518         struct vcpu_svm *svm = to_svm(vcpu);
2519
2520 #ifdef CONFIG_X86_64
2521         if (vcpu->arch.efer & EFER_LME) {
2522                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
2523                         vcpu->arch.efer |= EFER_LMA;
2524                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
2525                 }
2526
2527                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
2528                         vcpu->arch.efer &= ~EFER_LMA;
2529                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
2530                 }
2531         }
2532 #endif
2533         vcpu->arch.cr0 = cr0;
2534
2535         if (!npt_enabled)
2536                 cr0 |= X86_CR0_PG | X86_CR0_WP;
2537
2538         /*
2539          * re-enable caching here because the QEMU bios
2540          * does not do it - this results in some delay at
2541          * reboot
2542          */
2543         if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
2544                 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
2545         svm->vmcb->save.cr0 = cr0;
2546         mark_dirty(svm->vmcb, VMCB_CR);
2547         update_cr0_intercept(svm);
2548 }
2549
2550 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2551 {
2552         unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
2553         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
2554
2555         if (cr4 & X86_CR4_VMXE)
2556                 return 1;
2557
2558         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
2559                 svm_flush_tlb(vcpu, true);
2560
2561         vcpu->arch.cr4 = cr4;
2562         if (!npt_enabled)
2563                 cr4 |= X86_CR4_PAE;
2564         cr4 |= host_cr4_mce;
2565         to_svm(vcpu)->vmcb->save.cr4 = cr4;
2566         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
2567         return 0;
2568 }
2569
2570 static void svm_set_segment(struct kvm_vcpu *vcpu,
2571                             struct kvm_segment *var, int seg)
2572 {
2573         struct vcpu_svm *svm = to_svm(vcpu);
2574         struct vmcb_seg *s = svm_seg(vcpu, seg);
2575
2576         s->base = var->base;
2577         s->limit = var->limit;
2578         s->selector = var->selector;
2579         s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2580         s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2581         s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2582         s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2583         s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2584         s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2585         s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2586         s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2587
2588         /*
2589          * This is always accurate, except if SYSRET returned to a segment
2590          * with SS.DPL != 3.  Intel does not have this quirk, and always
2591          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2592          * would entail passing the CPL to userspace and back.
2593          */
2594         if (seg == VCPU_SREG_SS)
2595                 /* This is symmetric with svm_get_segment() */
2596                 svm->vmcb->save.cpl = (var->dpl & 3);
2597
2598         mark_dirty(svm->vmcb, VMCB_SEG);
2599 }
2600
2601 static void update_bp_intercept(struct kvm_vcpu *vcpu)
2602 {
2603         struct vcpu_svm *svm = to_svm(vcpu);
2604
2605         clr_exception_intercept(svm, BP_VECTOR);
2606
2607         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2608                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2609                         set_exception_intercept(svm, BP_VECTOR);
2610         } else
2611                 vcpu->guest_debug = 0;
2612 }
2613
2614 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2615 {
2616         if (sd->next_asid > sd->max_asid) {
2617                 ++sd->asid_generation;
2618                 sd->next_asid = sd->min_asid;
2619                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2620         }
2621
2622         svm->asid_generation = sd->asid_generation;
2623         svm->vmcb->control.asid = sd->next_asid++;
2624
2625         mark_dirty(svm->vmcb, VMCB_ASID);
2626 }
2627
2628 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2629 {
2630         return to_svm(vcpu)->vmcb->save.dr6;
2631 }
2632
2633 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2634 {
2635         struct vcpu_svm *svm = to_svm(vcpu);
2636
2637         svm->vmcb->save.dr6 = value;
2638         mark_dirty(svm->vmcb, VMCB_DR);
2639 }
2640
2641 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2642 {
2643         struct vcpu_svm *svm = to_svm(vcpu);
2644
2645         get_debugreg(vcpu->arch.db[0], 0);
2646         get_debugreg(vcpu->arch.db[1], 1);
2647         get_debugreg(vcpu->arch.db[2], 2);
2648         get_debugreg(vcpu->arch.db[3], 3);
2649         vcpu->arch.dr6 = svm_get_dr6(vcpu);
2650         vcpu->arch.dr7 = svm->vmcb->save.dr7;
2651
2652         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2653         set_dr_intercepts(svm);
2654 }
2655
2656 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2657 {
2658         struct vcpu_svm *svm = to_svm(vcpu);
2659
2660         svm->vmcb->save.dr7 = value;
2661         mark_dirty(svm->vmcb, VMCB_DR);
2662 }
2663
2664 static int pf_interception(struct vcpu_svm *svm)
2665 {
2666         u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2667         u64 error_code = svm->vmcb->control.exit_info_1;
2668
2669         return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
2670                         static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2671                         svm->vmcb->control.insn_bytes : NULL,
2672                         svm->vmcb->control.insn_len);
2673 }
2674
2675 static int npf_interception(struct vcpu_svm *svm)
2676 {
2677         u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2678         u64 error_code = svm->vmcb->control.exit_info_1;
2679
2680         trace_kvm_page_fault(fault_address, error_code);
2681         return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
2682                         static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2683                         svm->vmcb->control.insn_bytes : NULL,
2684                         svm->vmcb->control.insn_len);
2685 }
2686
2687 static int db_interception(struct vcpu_svm *svm)
2688 {
2689         struct kvm_run *kvm_run = svm->vcpu.run;
2690
2691         if (!(svm->vcpu.guest_debug &
2692               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2693                 !svm->nmi_singlestep) {
2694                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2695                 return 1;
2696         }
2697
2698         if (svm->nmi_singlestep) {
2699                 disable_nmi_singlestep(svm);
2700         }
2701
2702         if (svm->vcpu.guest_debug &
2703             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2704                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2705                 kvm_run->debug.arch.pc =
2706                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2707                 kvm_run->debug.arch.exception = DB_VECTOR;
2708                 return 0;
2709         }
2710
2711         return 1;
2712 }
2713
2714 static int bp_interception(struct vcpu_svm *svm)
2715 {
2716         struct kvm_run *kvm_run = svm->vcpu.run;
2717
2718         kvm_run->exit_reason = KVM_EXIT_DEBUG;
2719         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2720         kvm_run->debug.arch.exception = BP_VECTOR;
2721         return 0;
2722 }
2723
2724 static int ud_interception(struct vcpu_svm *svm)
2725 {
2726         return handle_ud(&svm->vcpu);
2727 }
2728
2729 static int ac_interception(struct vcpu_svm *svm)
2730 {
2731         kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2732         return 1;
2733 }
2734
2735 static int gp_interception(struct vcpu_svm *svm)
2736 {
2737         struct kvm_vcpu *vcpu = &svm->vcpu;
2738         u32 error_code = svm->vmcb->control.exit_info_1;
2739         int er;
2740
2741         WARN_ON_ONCE(!enable_vmware_backdoor);
2742
2743         er = kvm_emulate_instruction(vcpu,
2744                 EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
2745         if (er == EMULATE_USER_EXIT)
2746                 return 0;
2747         else if (er != EMULATE_DONE)
2748                 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2749         return 1;
2750 }
2751
2752 static bool is_erratum_383(void)
2753 {
2754         int err, i;
2755         u64 value;
2756
2757         if (!erratum_383_found)
2758                 return false;
2759
2760         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2761         if (err)
2762                 return false;
2763
2764         /* Bit 62 may or may not be set for this mce */
2765         value &= ~(1ULL << 62);
2766
2767         if (value != 0xb600000000010015ULL)
2768                 return false;
2769
2770         /* Clear MCi_STATUS registers */
2771         for (i = 0; i < 6; ++i)
2772                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2773
2774         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2775         if (!err) {
2776                 u32 low, high;
2777
2778                 value &= ~(1ULL << 2);
2779                 low    = lower_32_bits(value);
2780                 high   = upper_32_bits(value);
2781
2782                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2783         }
2784
2785         /* Flush tlb to evict multi-match entries */
2786         __flush_tlb_all();
2787
2788         return true;
2789 }
2790
2791 static void svm_handle_mce(struct vcpu_svm *svm)
2792 {
2793         if (is_erratum_383()) {
2794                 /*
2795                  * Erratum 383 triggered. Guest state is corrupt so kill the
2796                  * guest.
2797                  */
2798                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2799
2800                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2801
2802                 return;
2803         }
2804
2805         /*
2806          * On an #MC intercept the MCE handler is not called automatically in
2807          * the host. So do it by hand here.
2808          */
2809         asm volatile (
2810                 "int $0x12\n");
2811         /* not sure if we ever come back to this point */
2812
2813         return;
2814 }
2815
2816 static int mc_interception(struct vcpu_svm *svm)
2817 {
2818         return 1;
2819 }
2820
2821 static int shutdown_interception(struct vcpu_svm *svm)
2822 {
2823         struct kvm_run *kvm_run = svm->vcpu.run;
2824
2825         /*
2826          * VMCB is undefined after a SHUTDOWN intercept
2827          * so reinitialize it.
2828          */
2829         clear_page(svm->vmcb);
2830         init_vmcb(svm);
2831
2832         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2833         return 0;
2834 }
2835
2836 static int io_interception(struct vcpu_svm *svm)
2837 {
2838         struct kvm_vcpu *vcpu = &svm->vcpu;
2839         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2840         int size, in, string;
2841         unsigned port;
2842
2843         ++svm->vcpu.stat.io_exits;
2844         string = (io_info & SVM_IOIO_STR_MASK) != 0;
2845         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2846         if (string)
2847                 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
2848
2849         port = io_info >> 16;
2850         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2851         svm->next_rip = svm->vmcb->control.exit_info_2;
2852
2853         return kvm_fast_pio(&svm->vcpu, size, port, in);
2854 }
2855
2856 static int nmi_interception(struct vcpu_svm *svm)
2857 {
2858         return 1;
2859 }
2860
2861 static int intr_interception(struct vcpu_svm *svm)
2862 {
2863         ++svm->vcpu.stat.irq_exits;
2864         return 1;
2865 }
2866
2867 static int nop_on_interception(struct vcpu_svm *svm)
2868 {
2869         return 1;
2870 }
2871
2872 static int halt_interception(struct vcpu_svm *svm)
2873 {
2874         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2875         return kvm_emulate_halt(&svm->vcpu);
2876 }
2877
2878 static int vmmcall_interception(struct vcpu_svm *svm)
2879 {
2880         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2881         return kvm_emulate_hypercall(&svm->vcpu);
2882 }
2883
2884 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2885 {
2886         struct vcpu_svm *svm = to_svm(vcpu);
2887
2888         return svm->nested.nested_cr3;
2889 }
2890
2891 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2892 {
2893         struct vcpu_svm *svm = to_svm(vcpu);
2894         u64 cr3 = svm->nested.nested_cr3;
2895         u64 pdpte;
2896         int ret;
2897
2898         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
2899                                        offset_in_page(cr3) + index * 8, 8);
2900         if (ret)
2901                 return 0;
2902         return pdpte;
2903 }
2904
2905 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2906                                    unsigned long root)
2907 {
2908         struct vcpu_svm *svm = to_svm(vcpu);
2909
2910         svm->vmcb->control.nested_cr3 = __sme_set(root);
2911         mark_dirty(svm->vmcb, VMCB_NPT);
2912 }
2913
2914 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2915                                        struct x86_exception *fault)
2916 {
2917         struct vcpu_svm *svm = to_svm(vcpu);
2918
2919         if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2920                 /*
2921                  * TODO: track the cause of the nested page fault, and
2922                  * correctly fill in the high bits of exit_info_1.
2923                  */
2924                 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2925                 svm->vmcb->control.exit_code_hi = 0;
2926                 svm->vmcb->control.exit_info_1 = (1ULL << 32);
2927                 svm->vmcb->control.exit_info_2 = fault->address;
2928         }
2929
2930         svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2931         svm->vmcb->control.exit_info_1 |= fault->error_code;
2932
2933         /*
2934          * The present bit is always zero for page structure faults on real
2935          * hardware.
2936          */
2937         if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2938                 svm->vmcb->control.exit_info_1 &= ~1;
2939
2940         nested_svm_vmexit(svm);
2941 }
2942
2943 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2944 {
2945         WARN_ON(mmu_is_nested(vcpu));
2946         kvm_init_shadow_mmu(vcpu);
2947         vcpu->arch.mmu->set_cr3           = nested_svm_set_tdp_cr3;
2948         vcpu->arch.mmu->get_cr3           = nested_svm_get_tdp_cr3;
2949         vcpu->arch.mmu->get_pdptr         = nested_svm_get_tdp_pdptr;
2950         vcpu->arch.mmu->inject_page_fault = nested_svm_inject_npf_exit;
2951         vcpu->arch.mmu->shadow_root_level = get_npt_level(vcpu);
2952         reset_shadow_zero_bits_mask(vcpu, vcpu->arch.mmu);
2953         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
2954 }
2955
2956 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2957 {
2958         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
2959 }
2960
2961 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2962 {
2963         if (!(svm->vcpu.arch.efer & EFER_SVME) ||
2964             !is_paging(&svm->vcpu)) {
2965                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2966                 return 1;
2967         }
2968
2969         if (svm->vmcb->save.cpl) {
2970                 kvm_inject_gp(&svm->vcpu, 0);
2971                 return 1;
2972         }
2973
2974         return 0;
2975 }
2976
2977 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2978                                       bool has_error_code, u32 error_code)
2979 {
2980         int vmexit;
2981
2982         if (!is_guest_mode(&svm->vcpu))
2983                 return 0;
2984
2985         vmexit = nested_svm_intercept(svm);
2986         if (vmexit != NESTED_EXIT_DONE)
2987                 return 0;
2988
2989         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2990         svm->vmcb->control.exit_code_hi = 0;
2991         svm->vmcb->control.exit_info_1 = error_code;
2992
2993         /*
2994          * EXITINFO2 is undefined for all exception intercepts other
2995          * than #PF.
2996          */
2997         if (svm->vcpu.arch.exception.nested_apf)
2998                 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
2999         else if (svm->vcpu.arch.exception.has_payload)
3000                 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.exception.payload;
3001         else
3002                 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
3003
3004         svm->nested.exit_required = true;
3005         return vmexit;
3006 }
3007
3008 /* This function returns true if it is save to enable the irq window */
3009 static inline bool nested_svm_intr(struct vcpu_svm *svm)
3010 {
3011         if (!is_guest_mode(&svm->vcpu))
3012                 return true;
3013
3014         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3015                 return true;
3016
3017         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
3018                 return false;
3019
3020         /*
3021          * if vmexit was already requested (by intercepted exception
3022          * for instance) do not overwrite it with "external interrupt"
3023          * vmexit.
3024          */
3025         if (svm->nested.exit_required)
3026                 return false;
3027
3028         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
3029         svm->vmcb->control.exit_info_1 = 0;
3030         svm->vmcb->control.exit_info_2 = 0;
3031
3032         if (svm->nested.intercept & 1ULL) {
3033                 /*
3034                  * The #vmexit can't be emulated here directly because this
3035                  * code path runs with irqs and preemption disabled. A
3036                  * #vmexit emulation might sleep. Only signal request for
3037                  * the #vmexit here.
3038                  */
3039                 svm->nested.exit_required = true;
3040                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
3041                 return false;
3042         }
3043
3044         return true;
3045 }
3046
3047 /* This function returns true if it is save to enable the nmi window */
3048 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
3049 {
3050         if (!is_guest_mode(&svm->vcpu))
3051                 return true;
3052
3053         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
3054                 return true;
3055
3056         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
3057         svm->nested.exit_required = true;
3058
3059         return false;
3060 }
3061
3062 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
3063 {
3064         struct page *page;
3065
3066         might_sleep();
3067
3068         page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
3069         if (is_error_page(page))
3070                 goto error;
3071
3072         *_page = page;
3073
3074         return kmap(page);
3075
3076 error:
3077         kvm_inject_gp(&svm->vcpu, 0);
3078
3079         return NULL;
3080 }
3081
3082 static void nested_svm_unmap(struct page *page)
3083 {
3084         kunmap(page);
3085         kvm_release_page_dirty(page);
3086 }
3087
3088 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
3089 {
3090         unsigned port, size, iopm_len;
3091         u16 val, mask;
3092         u8 start_bit;
3093         u64 gpa;
3094
3095         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
3096                 return NESTED_EXIT_HOST;
3097
3098         port = svm->vmcb->control.exit_info_1 >> 16;
3099         size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
3100                 SVM_IOIO_SIZE_SHIFT;
3101         gpa  = svm->nested.vmcb_iopm + (port / 8);
3102         start_bit = port % 8;
3103         iopm_len = (start_bit + size > 8) ? 2 : 1;
3104         mask = (0xf >> (4 - size)) << start_bit;
3105         val = 0;
3106
3107         if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
3108                 return NESTED_EXIT_DONE;
3109
3110         return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3111 }
3112
3113 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
3114 {
3115         u32 offset, msr, value;
3116         int write, mask;
3117
3118         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3119                 return NESTED_EXIT_HOST;
3120
3121         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3122         offset = svm_msrpm_offset(msr);
3123         write  = svm->vmcb->control.exit_info_1 & 1;
3124         mask   = 1 << ((2 * (msr & 0xf)) + write);
3125
3126         if (offset == MSR_INVALID)
3127                 return NESTED_EXIT_DONE;
3128
3129         /* Offset is in 32 bit units but need in 8 bit units */
3130         offset *= 4;
3131
3132         if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
3133                 return NESTED_EXIT_DONE;
3134
3135         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3136 }
3137
3138 /* DB exceptions for our internal use must not cause vmexit */
3139 static int nested_svm_intercept_db(struct vcpu_svm *svm)
3140 {
3141         unsigned long dr6;
3142
3143         /* if we're not singlestepping, it's not ours */
3144         if (!svm->nmi_singlestep)
3145                 return NESTED_EXIT_DONE;
3146
3147         /* if it's not a singlestep exception, it's not ours */
3148         if (kvm_get_dr(&svm->vcpu, 6, &dr6))
3149                 return NESTED_EXIT_DONE;
3150         if (!(dr6 & DR6_BS))
3151                 return NESTED_EXIT_DONE;
3152
3153         /* if the guest is singlestepping, it should get the vmexit */
3154         if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
3155                 disable_nmi_singlestep(svm);
3156                 return NESTED_EXIT_DONE;
3157         }
3158
3159         /* it's ours, the nested hypervisor must not see this one */
3160         return NESTED_EXIT_HOST;
3161 }
3162
3163 static int nested_svm_exit_special(struct vcpu_svm *svm)
3164 {
3165         u32 exit_code = svm->vmcb->control.exit_code;
3166
3167         switch (exit_code) {
3168         case SVM_EXIT_INTR:
3169         case SVM_EXIT_NMI:
3170         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
3171                 return NESTED_EXIT_HOST;
3172         case SVM_EXIT_NPF:
3173                 /* For now we are always handling NPFs when using them */
3174                 if (npt_enabled)
3175                         return NESTED_EXIT_HOST;
3176                 break;
3177         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
3178                 /* When we're shadowing, trap PFs, but not async PF */
3179                 if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0)
3180                         return NESTED_EXIT_HOST;
3181                 break;
3182         default:
3183                 break;
3184         }
3185
3186         return NESTED_EXIT_CONTINUE;
3187 }
3188
3189 /*
3190  * If this function returns true, this #vmexit was already handled
3191  */
3192 static int nested_svm_intercept(struct vcpu_svm *svm)
3193 {
3194         u32 exit_code = svm->vmcb->control.exit_code;
3195         int vmexit = NESTED_EXIT_HOST;
3196
3197         switch (exit_code) {
3198         case SVM_EXIT_MSR:
3199                 vmexit = nested_svm_exit_handled_msr(svm);
3200                 break;
3201         case SVM_EXIT_IOIO:
3202                 vmexit = nested_svm_intercept_ioio(svm);
3203                 break;
3204         case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
3205                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
3206                 if (svm->nested.intercept_cr & bit)
3207                         vmexit = NESTED_EXIT_DONE;
3208                 break;
3209         }
3210         case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
3211                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
3212                 if (svm->nested.intercept_dr & bit)
3213                         vmexit = NESTED_EXIT_DONE;
3214                 break;
3215         }
3216         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
3217                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
3218                 if (svm->nested.intercept_exceptions & excp_bits) {
3219                         if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
3220                                 vmexit = nested_svm_intercept_db(svm);
3221                         else
3222                                 vmexit = NESTED_EXIT_DONE;
3223                 }
3224                 /* async page fault always cause vmexit */
3225                 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
3226                          svm->vcpu.arch.exception.nested_apf != 0)
3227                         vmexit = NESTED_EXIT_DONE;
3228                 break;
3229         }
3230         case SVM_EXIT_ERR: {
3231                 vmexit = NESTED_EXIT_DONE;
3232                 break;
3233         }
3234         default: {
3235                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
3236                 if (svm->nested.intercept & exit_bits)
3237                         vmexit = NESTED_EXIT_DONE;
3238         }
3239         }
3240
3241         return vmexit;
3242 }
3243
3244 static int nested_svm_exit_handled(struct vcpu_svm *svm)
3245 {
3246         int vmexit;
3247
3248         vmexit = nested_svm_intercept(svm);
3249
3250         if (vmexit == NESTED_EXIT_DONE)
3251                 nested_svm_vmexit(svm);
3252
3253         return vmexit;
3254 }
3255
3256 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
3257 {
3258         struct vmcb_control_area *dst  = &dst_vmcb->control;
3259         struct vmcb_control_area *from = &from_vmcb->control;
3260
3261         dst->intercept_cr         = from->intercept_cr;
3262         dst->intercept_dr         = from->intercept_dr;
3263         dst->intercept_exceptions = from->intercept_exceptions;
3264         dst->intercept            = from->intercept;
3265         dst->iopm_base_pa         = from->iopm_base_pa;
3266         dst->msrpm_base_pa        = from->msrpm_base_pa;
3267         dst->tsc_offset           = from->tsc_offset;
3268         dst->asid                 = from->asid;
3269         dst->tlb_ctl              = from->tlb_ctl;
3270         dst->int_ctl              = from->int_ctl;
3271         dst->int_vector           = from->int_vector;
3272         dst->int_state            = from->int_state;
3273         dst->exit_code            = from->exit_code;
3274         dst->exit_code_hi         = from->exit_code_hi;
3275         dst->exit_info_1          = from->exit_info_1;
3276         dst->exit_info_2          = from->exit_info_2;
3277         dst->exit_int_info        = from->exit_int_info;
3278         dst->exit_int_info_err    = from->exit_int_info_err;
3279         dst->nested_ctl           = from->nested_ctl;
3280         dst->event_inj            = from->event_inj;
3281         dst->event_inj_err        = from->event_inj_err;
3282         dst->nested_cr3           = from->nested_cr3;
3283         dst->virt_ext              = from->virt_ext;
3284 }
3285
3286 static int nested_svm_vmexit(struct vcpu_svm *svm)
3287 {
3288         struct vmcb *nested_vmcb;
3289         struct vmcb *hsave = svm->nested.hsave;
3290         struct vmcb *vmcb = svm->vmcb;
3291         struct page *page;
3292
3293         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
3294                                        vmcb->control.exit_info_1,
3295                                        vmcb->control.exit_info_2,
3296                                        vmcb->control.exit_int_info,
3297                                        vmcb->control.exit_int_info_err,
3298                                        KVM_ISA_SVM);
3299
3300         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
3301         if (!nested_vmcb)
3302                 return 1;
3303
3304         /* Exit Guest-Mode */
3305         leave_guest_mode(&svm->vcpu);
3306         svm->nested.vmcb = 0;
3307
3308         /* Give the current vmcb to the guest */
3309         disable_gif(svm);
3310
3311         nested_vmcb->save.es     = vmcb->save.es;
3312         nested_vmcb->save.cs     = vmcb->save.cs;
3313         nested_vmcb->save.ss     = vmcb->save.ss;
3314         nested_vmcb->save.ds     = vmcb->save.ds;
3315         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
3316         nested_vmcb->save.idtr   = vmcb->save.idtr;
3317         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
3318         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
3319         nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
3320         nested_vmcb->save.cr2    = vmcb->save.cr2;
3321         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
3322         nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
3323         nested_vmcb->save.rip    = vmcb->save.rip;
3324         nested_vmcb->save.rsp    = vmcb->save.rsp;
3325         nested_vmcb->save.rax    = vmcb->save.rax;
3326         nested_vmcb->save.dr7    = vmcb->save.dr7;
3327         nested_vmcb->save.dr6    = vmcb->save.dr6;
3328         nested_vmcb->save.cpl    = vmcb->save.cpl;
3329
3330         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
3331         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
3332         nested_vmcb->control.int_state         = vmcb->control.int_state;
3333         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
3334         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
3335         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
3336         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
3337         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
3338         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
3339
3340         if (svm->nrips_enabled)
3341                 nested_vmcb->control.next_rip  = vmcb->control.next_rip;
3342
3343         /*
3344          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
3345          * to make sure that we do not lose injected events. So check event_inj
3346          * here and copy it to exit_int_info if it is valid.
3347          * Exit_int_info and event_inj can't be both valid because the case
3348          * below only happens on a VMRUN instruction intercept which has
3349          * no valid exit_int_info set.
3350          */
3351         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
3352                 struct vmcb_control_area *nc = &nested_vmcb->control;
3353
3354                 nc->exit_int_info     = vmcb->control.event_inj;
3355                 nc->exit_int_info_err = vmcb->control.event_inj_err;
3356         }
3357
3358         nested_vmcb->control.tlb_ctl           = 0;
3359         nested_vmcb->control.event_inj         = 0;
3360         nested_vmcb->control.event_inj_err     = 0;
3361
3362         /* We always set V_INTR_MASKING and remember the old value in hflags */
3363         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3364                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
3365
3366         /* Restore the original control entries */
3367         copy_vmcb_control_area(vmcb, hsave);
3368
3369         svm->vcpu.arch.tsc_offset = svm->vmcb->control.tsc_offset;
3370         kvm_clear_exception_queue(&svm->vcpu);
3371         kvm_clear_interrupt_queue(&svm->vcpu);
3372
3373         svm->nested.nested_cr3 = 0;
3374
3375         /* Restore selected save entries */
3376         svm->vmcb->save.es = hsave->save.es;
3377         svm->vmcb->save.cs = hsave->save.cs;
3378         svm->vmcb->save.ss = hsave->save.ss;
3379         svm->vmcb->save.ds = hsave->save.ds;
3380         svm->vmcb->save.gdtr = hsave->save.gdtr;
3381         svm->vmcb->save.idtr = hsave->save.idtr;
3382         kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
3383         svm_set_efer(&svm->vcpu, hsave->save.efer);
3384         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
3385         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
3386         if (npt_enabled) {
3387                 svm->vmcb->save.cr3 = hsave->save.cr3;
3388                 svm->vcpu.arch.cr3 = hsave->save.cr3;
3389         } else {
3390                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
3391         }
3392         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
3393         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
3394         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
3395         svm->vmcb->save.dr7 = 0;
3396         svm->vmcb->save.cpl = 0;
3397         svm->vmcb->control.exit_int_info = 0;
3398
3399         mark_all_dirty(svm->vmcb);
3400
3401         nested_svm_unmap(page);
3402
3403         nested_svm_uninit_mmu_context(&svm->vcpu);
3404         kvm_mmu_reset_context(&svm->vcpu);
3405         kvm_mmu_load(&svm->vcpu);
3406
3407         return 0;
3408 }
3409
3410 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
3411 {
3412         /*
3413          * This function merges the msr permission bitmaps of kvm and the
3414          * nested vmcb. It is optimized in that it only merges the parts where
3415          * the kvm msr permission bitmap may contain zero bits
3416          */
3417         int i;
3418
3419         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3420                 return true;
3421
3422         for (i = 0; i < MSRPM_OFFSETS; i++) {
3423                 u32 value, p;
3424                 u64 offset;
3425
3426                 if (msrpm_offsets[i] == 0xffffffff)
3427                         break;
3428
3429                 p      = msrpm_offsets[i];
3430                 offset = svm->nested.vmcb_msrpm + (p * 4);
3431
3432                 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
3433                         return false;
3434
3435                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
3436         }
3437
3438         svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
3439
3440         return true;
3441 }
3442
3443 static bool nested_vmcb_checks(struct vmcb *vmcb)
3444 {
3445         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
3446                 return false;
3447
3448         if (vmcb->control.asid == 0)
3449                 return false;
3450
3451         if ((vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) &&
3452             !npt_enabled)
3453                 return false;
3454
3455         return true;
3456 }
3457
3458 static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
3459                                  struct vmcb *nested_vmcb, struct page *page)
3460 {
3461         if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
3462                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
3463         else
3464                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
3465
3466         if (nested_vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) {
3467                 kvm_mmu_unload(&svm->vcpu);
3468                 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
3469                 nested_svm_init_mmu_context(&svm->vcpu);
3470         }
3471
3472         /* Load the nested guest state */
3473         svm->vmcb->save.es = nested_vmcb->save.es;
3474         svm->vmcb->save.cs = nested_vmcb->save.cs;
3475         svm->vmcb->save.ss = nested_vmcb->save.ss;
3476         svm->vmcb->save.ds = nested_vmcb->save.ds;
3477         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
3478         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
3479         kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
3480         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
3481         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
3482         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
3483         if (npt_enabled) {
3484                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
3485                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
3486         } else
3487                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
3488
3489         /* Guest paging mode is active - reset mmu */
3490         kvm_mmu_reset_context(&svm->vcpu);
3491
3492         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
3493         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
3494         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
3495         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
3496
3497         /* In case we don't even reach vcpu_run, the fields are not updated */
3498         svm->vmcb->save.rax = nested_vmcb->save.rax;
3499         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
3500         svm->vmcb->save.rip = nested_vmcb->save.rip;
3501         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
3502         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
3503         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
3504
3505         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
3506         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
3507
3508         /* cache intercepts */
3509         svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
3510         svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
3511         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
3512         svm->nested.intercept            = nested_vmcb->control.intercept;
3513
3514         svm_flush_tlb(&svm->vcpu, true);
3515         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
3516         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
3517                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
3518         else
3519                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
3520
3521         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
3522                 /* We only want the cr8 intercept bits of the guest */
3523                 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
3524                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3525         }
3526
3527         /* We don't want to see VMMCALLs from a nested guest */
3528         clr_intercept(svm, INTERCEPT_VMMCALL);
3529
3530         svm->vcpu.arch.tsc_offset += nested_vmcb->control.tsc_offset;
3531         svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset;
3532
3533         svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
3534         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
3535         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
3536         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
3537         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
3538
3539         nested_svm_unmap(page);
3540
3541         /* Enter Guest-Mode */
3542         enter_guest_mode(&svm->vcpu);
3543
3544         /*
3545          * Merge guest and host intercepts - must be called  with vcpu in
3546          * guest-mode to take affect here
3547          */
3548         recalc_intercepts(svm);
3549
3550         svm->nested.vmcb = vmcb_gpa;
3551
3552         enable_gif(svm);
3553
3554         mark_all_dirty(svm->vmcb);
3555 }
3556
3557 static bool nested_svm_vmrun(struct vcpu_svm *svm)
3558 {
3559         struct vmcb *nested_vmcb;
3560         struct vmcb *hsave = svm->nested.hsave;
3561         struct vmcb *vmcb = svm->vmcb;
3562         struct page *page;
3563         u64 vmcb_gpa;
3564
3565         vmcb_gpa = svm->vmcb->save.rax;
3566
3567         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3568         if (!nested_vmcb)
3569                 return false;
3570
3571         if (!nested_vmcb_checks(nested_vmcb)) {
3572                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
3573                 nested_vmcb->control.exit_code_hi = 0;
3574                 nested_vmcb->control.exit_info_1  = 0;
3575                 nested_vmcb->control.exit_info_2  = 0;
3576
3577                 nested_svm_unmap(page);
3578
3579                 return false;
3580         }
3581
3582         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
3583                                nested_vmcb->save.rip,
3584                                nested_vmcb->control.int_ctl,
3585                                nested_vmcb->control.event_inj,
3586                                nested_vmcb->control.nested_ctl);
3587
3588         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
3589                                     nested_vmcb->control.intercept_cr >> 16,
3590                                     nested_vmcb->control.intercept_exceptions,
3591                                     nested_vmcb->control.intercept);
3592
3593         /* Clear internal status */
3594         kvm_clear_exception_queue(&svm->vcpu);
3595         kvm_clear_interrupt_queue(&svm->vcpu);
3596
3597         /*
3598          * Save the old vmcb, so we don't need to pick what we save, but can
3599          * restore everything when a VMEXIT occurs
3600          */
3601         hsave->save.es     = vmcb->save.es;
3602         hsave->save.cs     = vmcb->save.cs;
3603         hsave->save.ss     = vmcb->save.ss;
3604         hsave->save.ds     = vmcb->save.ds;
3605         hsave->save.gdtr   = vmcb->save.gdtr;
3606         hsave->save.idtr   = vmcb->save.idtr;
3607         hsave->save.efer   = svm->vcpu.arch.efer;
3608         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
3609         hsave->save.cr4    = svm->vcpu.arch.cr4;
3610         hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
3611         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
3612         hsave->save.rsp    = vmcb->save.rsp;
3613         hsave->save.rax    = vmcb->save.rax;
3614         if (npt_enabled)
3615                 hsave->save.cr3    = vmcb->save.cr3;
3616         else
3617                 hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
3618
3619         copy_vmcb_control_area(hsave, vmcb);
3620
3621         enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, page);
3622
3623         return true;
3624 }
3625
3626 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3627 {
3628         to_vmcb->save.fs = from_vmcb->save.fs;
3629         to_vmcb->save.gs = from_vmcb->save.gs;
3630         to_vmcb->save.tr = from_vmcb->save.tr;
3631         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3632         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3633         to_vmcb->save.star = from_vmcb->save.star;
3634         to_vmcb->save.lstar = from_vmcb->save.lstar;
3635         to_vmcb->save.cstar = from_vmcb->save.cstar;
3636         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3637         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3638         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3639         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3640 }
3641
3642 static int vmload_interception(struct vcpu_svm *svm)
3643 {
3644         struct vmcb *nested_vmcb;
3645         struct page *page;
3646         int ret;
3647
3648         if (nested_svm_check_permissions(svm))
3649                 return 1;
3650
3651         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3652         if (!nested_vmcb)
3653                 return 1;
3654
3655         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3656         ret = kvm_skip_emulated_instruction(&svm->vcpu);
3657
3658         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3659         nested_svm_unmap(page);
3660
3661         return ret;
3662 }
3663
3664 static int vmsave_interception(struct vcpu_svm *svm)
3665 {
3666         struct vmcb *nested_vmcb;
3667         struct page *page;
3668         int ret;
3669
3670         if (nested_svm_check_permissions(svm))
3671                 return 1;
3672
3673         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3674         if (!nested_vmcb)
3675                 return 1;
3676
3677         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3678         ret = kvm_skip_emulated_instruction(&svm->vcpu);
3679
3680         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3681         nested_svm_unmap(page);
3682
3683         return ret;
3684 }
3685
3686 static int vmrun_interception(struct vcpu_svm *svm)
3687 {
3688         if (nested_svm_check_permissions(svm))
3689                 return 1;
3690
3691         /* Save rip after vmrun instruction */
3692         kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
3693
3694         if (!nested_svm_vmrun(svm))
3695                 return 1;
3696
3697         if (!nested_svm_vmrun_msrpm(svm))
3698                 goto failed;
3699
3700         return 1;
3701
3702 failed:
3703
3704         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
3705         svm->vmcb->control.exit_code_hi = 0;
3706         svm->vmcb->control.exit_info_1  = 0;
3707         svm->vmcb->control.exit_info_2  = 0;
3708
3709         nested_svm_vmexit(svm);
3710
3711         return 1;
3712 }
3713
3714 static int stgi_interception(struct vcpu_svm *svm)
3715 {
3716         int ret;
3717
3718         if (nested_svm_check_permissions(svm))
3719                 return 1;
3720
3721         /*
3722          * If VGIF is enabled, the STGI intercept is only added to
3723          * detect the opening of the SMI/NMI window; remove it now.
3724          */
3725         if (vgif_enabled(svm))
3726                 clr_intercept(svm, INTERCEPT_STGI);
3727
3728         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3729         ret = kvm_skip_emulated_instruction(&svm->vcpu);
3730         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3731
3732         enable_gif(svm);
3733
3734         return ret;
3735 }
3736
3737 static int clgi_interception(struct vcpu_svm *svm)
3738 {
3739         int ret;
3740
3741         if (nested_svm_check_permissions(svm))
3742                 return 1;
3743
3744         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3745         ret = kvm_skip_emulated_instruction(&svm->vcpu);
3746
3747         disable_gif(svm);
3748
3749         /* After a CLGI no interrupts should come */
3750         if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3751                 svm_clear_vintr(svm);
3752                 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3753                 mark_dirty(svm->vmcb, VMCB_INTR);
3754         }
3755
3756         return ret;
3757 }
3758
3759 static int invlpga_interception(struct vcpu_svm *svm)
3760 {
3761         struct kvm_vcpu *vcpu = &svm->vcpu;
3762
3763         trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
3764                           kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3765
3766         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3767         kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3768
3769         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3770         return kvm_skip_emulated_instruction(&svm->vcpu);
3771 }
3772
3773 static int skinit_interception(struct vcpu_svm *svm)
3774 {
3775         trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3776
3777         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3778         return 1;
3779 }
3780
3781 static int wbinvd_interception(struct vcpu_svm *svm)
3782 {
3783         return kvm_emulate_wbinvd(&svm->vcpu);
3784 }
3785
3786 static int xsetbv_interception(struct vcpu_svm *svm)
3787 {
3788         u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3789         u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3790
3791         if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3792                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3793                 return kvm_skip_emulated_instruction(&svm->vcpu);
3794         }
3795
3796         return 1;
3797 }
3798
3799 static int task_switch_interception(struct vcpu_svm *svm)
3800 {
3801         u16 tss_selector;
3802         int reason;
3803         int int_type = svm->vmcb->control.exit_int_info &
3804                 SVM_EXITINTINFO_TYPE_MASK;
3805         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3806         uint32_t type =
3807                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3808         uint32_t idt_v =
3809                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3810         bool has_error_code = false;
3811         u32 error_code = 0;
3812
3813         tss_selector = (u16)svm->vmcb->control.exit_info_1;
3814
3815         if (svm->vmcb->control.exit_info_2 &
3816             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3817                 reason = TASK_SWITCH_IRET;
3818         else if (svm->vmcb->control.exit_info_2 &
3819                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3820                 reason = TASK_SWITCH_JMP;
3821         else if (idt_v)
3822                 reason = TASK_SWITCH_GATE;
3823         else
3824                 reason = TASK_SWITCH_CALL;
3825
3826         if (reason == TASK_SWITCH_GATE) {
3827                 switch (type) {
3828                 case SVM_EXITINTINFO_TYPE_NMI:
3829                         svm->vcpu.arch.nmi_injected = false;
3830                         break;
3831                 case SVM_EXITINTINFO_TYPE_EXEPT:
3832                         if (svm->vmcb->control.exit_info_2 &
3833                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3834                                 has_error_code = true;
3835                                 error_code =
3836                                         (u32)svm->vmcb->control.exit_info_2;
3837                         }
3838                         kvm_clear_exception_queue(&svm->vcpu);
3839                         break;
3840                 case SVM_EXITINTINFO_TYPE_INTR:
3841                         kvm_clear_interrupt_queue(&svm->vcpu);
3842                         break;
3843                 default:
3844                         break;
3845                 }
3846         }
3847
3848         if (reason != TASK_SWITCH_GATE ||
3849             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3850             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3851              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
3852                 skip_emulated_instruction(&svm->vcpu);
3853
3854         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3855                 int_vec = -1;
3856
3857         if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3858                                 has_error_code, error_code) == EMULATE_FAIL) {
3859                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3860                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3861                 svm->vcpu.run->internal.ndata = 0;
3862                 return 0;
3863         }
3864         return 1;
3865 }
3866
3867 static int cpuid_interception(struct vcpu_svm *svm)
3868 {
3869         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3870         return kvm_emulate_cpuid(&svm->vcpu);
3871 }
3872
3873 static int iret_interception(struct vcpu_svm *svm)
3874 {
3875         ++svm->vcpu.stat.nmi_window_exits;
3876         clr_intercept(svm, INTERCEPT_IRET);
3877         svm->vcpu.arch.hflags |= HF_IRET_MASK;
3878         svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3879         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3880         return 1;
3881 }
3882
3883 static int invlpg_interception(struct vcpu_svm *svm)
3884 {
3885         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3886                 return kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3887
3888         kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3889         return kvm_skip_emulated_instruction(&svm->vcpu);
3890 }
3891
3892 static int emulate_on_interception(struct vcpu_svm *svm)
3893 {
3894         return kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3895 }
3896
3897 static int rsm_interception(struct vcpu_svm *svm)
3898 {
3899         return kvm_emulate_instruction_from_buffer(&svm->vcpu,
3900                                         rsm_ins_bytes, 2) == EMULATE_DONE;
3901 }
3902
3903 static int rdpmc_interception(struct vcpu_svm *svm)
3904 {
3905         int err;
3906
3907         if (!static_cpu_has(X86_FEATURE_NRIPS))
3908                 return emulate_on_interception(svm);
3909
3910         err = kvm_rdpmc(&svm->vcpu);
3911         return kvm_complete_insn_gp(&svm->vcpu, err);
3912 }
3913
3914 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3915                                             unsigned long val)
3916 {
3917         unsigned long cr0 = svm->vcpu.arch.cr0;
3918         bool ret = false;
3919         u64 intercept;
3920
3921         intercept = svm->nested.intercept;
3922
3923         if (!is_guest_mode(&svm->vcpu) ||
3924             (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3925                 return false;
3926
3927         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3928         val &= ~SVM_CR0_SELECTIVE_MASK;
3929
3930         if (cr0 ^ val) {
3931                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3932                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3933         }
3934
3935         return ret;
3936 }
3937
3938 #define CR_VALID (1ULL << 63)
3939
3940 static int cr_interception(struct vcpu_svm *svm)
3941 {
3942         int reg, cr;
3943         unsigned long val;
3944         int err;
3945
3946         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3947                 return emulate_on_interception(svm);
3948
3949         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3950                 return emulate_on_interception(svm);
3951
3952         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3953         if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3954                 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3955         else
3956                 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3957
3958         err = 0;
3959         if (cr >= 16) { /* mov to cr */
3960                 cr -= 16;
3961                 val = kvm_register_read(&svm->vcpu, reg);
3962                 switch (cr) {
3963                 case 0:
3964                         if (!check_selective_cr0_intercepted(svm, val))
3965                                 err = kvm_set_cr0(&svm->vcpu, val);
3966                         else
3967                                 return 1;
3968
3969                         break;
3970                 case 3:
3971                         err = kvm_set_cr3(&svm->vcpu, val);
3972                         break;
3973                 case 4:
3974                         err = kvm_set_cr4(&svm->vcpu, val);
3975                         break;
3976                 case 8:
3977                         err = kvm_set_cr8(&svm->vcpu, val);
3978                         break;
3979                 default:
3980                         WARN(1, "unhandled write to CR%d", cr);
3981                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3982                         return 1;
3983                 }
3984         } else { /* mov from cr */
3985                 switch (cr) {
3986                 case 0:
3987                         val = kvm_read_cr0(&svm->vcpu);
3988                         break;
3989                 case 2:
3990                         val = svm->vcpu.arch.cr2;
3991                         break;
3992                 case 3:
3993                         val = kvm_read_cr3(&svm->vcpu);
3994                         break;
3995                 case 4:
3996                         val = kvm_read_cr4(&svm->vcpu);
3997                         break;
3998                 case 8:
3999                         val = kvm_get_cr8(&svm->vcpu);
4000                         break;
4001                 default:
4002                         WARN(1, "unhandled read from CR%d", cr);
4003                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
4004                         return 1;
4005                 }
4006                 kvm_register_write(&svm->vcpu, reg, val);
4007         }
4008         return kvm_complete_insn_gp(&svm->vcpu, err);
4009 }
4010
4011 static int dr_interception(struct vcpu_svm *svm)
4012 {
4013         int reg, dr;
4014         unsigned long val;
4015
4016         if (svm->vcpu.guest_debug == 0) {
4017                 /*
4018                  * No more DR vmexits; force a reload of the debug registers
4019                  * and reenter on this instruction.  The next vmexit will
4020                  * retrieve the full state of the debug registers.
4021                  */
4022                 clr_dr_intercepts(svm);
4023                 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4024                 return 1;
4025         }
4026
4027         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
4028                 return emulate_on_interception(svm);
4029
4030         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
4031         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
4032
4033         if (dr >= 16) { /* mov to DRn */
4034                 if (!kvm_require_dr(&svm->vcpu, dr - 16))
4035                         return 1;
4036                 val = kvm_register_read(&svm->vcpu, reg);
4037                 kvm_set_dr(&svm->vcpu, dr - 16, val);
4038         } else {
4039                 if (!kvm_require_dr(&svm->vcpu, dr))
4040                         return 1;
4041                 kvm_get_dr(&svm->vcpu, dr, &val);
4042                 kvm_register_write(&svm->vcpu, reg, val);
4043         }
4044
4045         return kvm_skip_emulated_instruction(&svm->vcpu);
4046 }
4047
4048 static int cr8_write_interception(struct vcpu_svm *svm)
4049 {
4050         struct kvm_run *kvm_run = svm->vcpu.run;
4051         int r;
4052
4053         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
4054         /* instruction emulation calls kvm_set_cr8() */
4055         r = cr_interception(svm);
4056         if (lapic_in_kernel(&svm->vcpu))
4057                 return r;
4058         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
4059                 return r;
4060         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
4061         return 0;
4062 }
4063
4064 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
4065 {
4066         msr->data = 0;
4067
4068         switch (msr->index) {
4069         case MSR_F10H_DECFG:
4070                 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
4071                         msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
4072                 break;
4073         default:
4074                 return 1;
4075         }
4076
4077         return 0;
4078 }
4079
4080 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4081 {
4082         struct vcpu_svm *svm = to_svm(vcpu);
4083
4084         switch (msr_info->index) {
4085         case MSR_STAR:
4086                 msr_info->data = svm->vmcb->save.star;
4087                 break;
4088 #ifdef CONFIG_X86_64
4089         case MSR_LSTAR:
4090                 msr_info->data = svm->vmcb->save.lstar;
4091                 break;
4092         case MSR_CSTAR:
4093                 msr_info->data = svm->vmcb->save.cstar;
4094                 break;
4095         case MSR_KERNEL_GS_BASE:
4096                 msr_info->data = svm->vmcb->save.kernel_gs_base;
4097                 break;
4098         case MSR_SYSCALL_MASK:
4099                 msr_info->data = svm->vmcb->save.sfmask;
4100                 break;
4101 #endif
4102         case MSR_IA32_SYSENTER_CS:
4103                 msr_info->data = svm->vmcb->save.sysenter_cs;
4104                 break;
4105         case MSR_IA32_SYSENTER_EIP:
4106                 msr_info->data = svm->sysenter_eip;
4107                 break;
4108         case MSR_IA32_SYSENTER_ESP:
4109                 msr_info->data = svm->sysenter_esp;
4110                 break;
4111         case MSR_TSC_AUX:
4112                 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4113                         return 1;
4114                 msr_info->data = svm->tsc_aux;
4115                 break;
4116         /*
4117          * Nobody will change the following 5 values in the VMCB so we can
4118          * safely return them on rdmsr. They will always be 0 until LBRV is
4119          * implemented.
4120          */
4121         case MSR_IA32_DEBUGCTLMSR:
4122                 msr_info->data = svm->vmcb->save.dbgctl;
4123                 break;
4124         case MSR_IA32_LASTBRANCHFROMIP:
4125                 msr_info->data = svm->vmcb->save.br_from;
4126                 break;
4127         case MSR_IA32_LASTBRANCHTOIP:
4128                 msr_info->data = svm->vmcb->save.br_to;
4129                 break;
4130         case MSR_IA32_LASTINTFROMIP:
4131                 msr_info->data = svm->vmcb->save.last_excp_from;
4132                 break;
4133         case MSR_IA32_LASTINTTOIP:
4134                 msr_info->data = svm->vmcb->save.last_excp_to;
4135                 break;
4136         case MSR_VM_HSAVE_PA:
4137                 msr_info->data = svm->nested.hsave_msr;
4138                 break;
4139         case MSR_VM_CR:
4140                 msr_info->data = svm->nested.vm_cr_msr;
4141                 break;
4142         case MSR_IA32_SPEC_CTRL:
4143                 if (!msr_info->host_initiated &&
4144                     !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4145                     !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4146                         return 1;
4147
4148                 msr_info->data = svm->spec_ctrl;
4149                 break;
4150         case MSR_AMD64_VIRT_SPEC_CTRL:
4151                 if (!msr_info->host_initiated &&
4152                     !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4153                         return 1;
4154
4155                 msr_info->data = svm->virt_spec_ctrl;
4156                 break;
4157         case MSR_F15H_IC_CFG: {
4158
4159                 int family, model;
4160
4161                 family = guest_cpuid_family(vcpu);
4162                 model  = guest_cpuid_model(vcpu);
4163
4164                 if (family < 0 || model < 0)
4165                         return kvm_get_msr_common(vcpu, msr_info);
4166
4167                 msr_info->data = 0;
4168
4169                 if (family == 0x15 &&
4170                     (model >= 0x2 && model < 0x20))
4171                         msr_info->data = 0x1E;
4172                 }
4173                 break;
4174         case MSR_F10H_DECFG:
4175                 msr_info->data = svm->msr_decfg;
4176                 break;
4177         default:
4178                 return kvm_get_msr_common(vcpu, msr_info);
4179         }
4180         return 0;
4181 }
4182
4183 static int rdmsr_interception(struct vcpu_svm *svm)
4184 {
4185         u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
4186         struct msr_data msr_info;
4187
4188         msr_info.index = ecx;
4189         msr_info.host_initiated = false;
4190         if (svm_get_msr(&svm->vcpu, &msr_info)) {
4191                 trace_kvm_msr_read_ex(ecx);
4192                 kvm_inject_gp(&svm->vcpu, 0);
4193                 return 1;
4194         } else {
4195                 trace_kvm_msr_read(ecx, msr_info.data);
4196
4197                 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
4198                                    msr_info.data & 0xffffffff);
4199                 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
4200                                    msr_info.data >> 32);
4201                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
4202                 return kvm_skip_emulated_instruction(&svm->vcpu);
4203         }
4204 }
4205
4206 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
4207 {
4208         struct vcpu_svm *svm = to_svm(vcpu);
4209         int svm_dis, chg_mask;
4210
4211         if (data & ~SVM_VM_CR_VALID_MASK)
4212                 return 1;
4213
4214         chg_mask = SVM_VM_CR_VALID_MASK;
4215
4216         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
4217                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
4218
4219         svm->nested.vm_cr_msr &= ~chg_mask;
4220         svm->nested.vm_cr_msr |= (data & chg_mask);
4221
4222         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
4223
4224         /* check for svm_disable while efer.svme is set */
4225         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
4226                 return 1;
4227
4228         return 0;
4229 }
4230
4231 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
4232 {
4233         struct vcpu_svm *svm = to_svm(vcpu);
4234
4235         u32 ecx = msr->index;
4236         u64 data = msr->data;
4237         switch (ecx) {
4238         case MSR_IA32_CR_PAT:
4239                 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
4240                         return 1;
4241                 vcpu->arch.pat = data;
4242                 svm->vmcb->save.g_pat = data;
4243                 mark_dirty(svm->vmcb, VMCB_NPT);
4244                 break;
4245         case MSR_IA32_SPEC_CTRL:
4246                 if (!msr->host_initiated &&
4247                     !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4248                     !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4249                         return 1;
4250
4251                 /* The STIBP bit doesn't fault even if it's not advertised */
4252                 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
4253                         return 1;
4254
4255                 svm->spec_ctrl = data;
4256
4257                 if (!data)
4258                         break;
4259
4260                 /*
4261                  * For non-nested:
4262                  * When it's written (to non-zero) for the first time, pass
4263                  * it through.
4264                  *
4265                  * For nested:
4266                  * The handling of the MSR bitmap for L2 guests is done in
4267                  * nested_svm_vmrun_msrpm.
4268                  * We update the L1 MSR bit as well since it will end up
4269                  * touching the MSR anyway now.
4270                  */
4271                 set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
4272                 break;
4273         case MSR_IA32_PRED_CMD:
4274                 if (!msr->host_initiated &&
4275                     !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
4276                         return 1;
4277
4278                 if (data & ~PRED_CMD_IBPB)
4279                         return 1;
4280
4281                 if (!data)
4282                         break;
4283
4284                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
4285                 if (is_guest_mode(vcpu))
4286                         break;
4287                 set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
4288                 break;
4289         case MSR_AMD64_VIRT_SPEC_CTRL:
4290                 if (!msr->host_initiated &&
4291                     !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4292                         return 1;
4293
4294                 if (data & ~SPEC_CTRL_SSBD)
4295                         return 1;
4296
4297                 svm->virt_spec_ctrl = data;
4298                 break;
4299         case MSR_STAR:
4300                 svm->vmcb->save.star = data;
4301                 break;
4302 #ifdef CONFIG_X86_64
4303         case MSR_LSTAR:
4304                 svm->vmcb->save.lstar = data;
4305                 break;
4306         case MSR_CSTAR:
4307                 svm->vmcb->save.cstar = data;
4308                 break;
4309         case MSR_KERNEL_GS_BASE:
4310                 svm->vmcb->save.kernel_gs_base = data;
4311                 break;
4312         case MSR_SYSCALL_MASK:
4313                 svm->vmcb->save.sfmask = data;
4314                 break;
4315 #endif
4316         case MSR_IA32_SYSENTER_CS:
4317                 svm->vmcb->save.sysenter_cs = data;
4318                 break;
4319         case MSR_IA32_SYSENTER_EIP:
4320                 svm->sysenter_eip = data;
4321                 svm->vmcb->save.sysenter_eip = data;
4322                 break;
4323         case MSR_IA32_SYSENTER_ESP:
4324                 svm->sysenter_esp = data;
4325                 svm->vmcb->save.sysenter_esp = data;
4326                 break;
4327         case MSR_TSC_AUX:
4328                 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4329                         return 1;
4330
4331                 /*
4332                  * This is rare, so we update the MSR here instead of using
4333                  * direct_access_msrs.  Doing that would require a rdmsr in
4334                  * svm_vcpu_put.
4335                  */
4336                 svm->tsc_aux = data;
4337                 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
4338                 break;
4339         case MSR_IA32_DEBUGCTLMSR:
4340                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
4341                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
4342                                     __func__, data);
4343                         break;
4344                 }
4345                 if (data & DEBUGCTL_RESERVED_BITS)
4346                         return 1;
4347
4348                 svm->vmcb->save.dbgctl = data;
4349                 mark_dirty(svm->vmcb, VMCB_LBR);
4350                 if (data & (1ULL<<0))
4351                         svm_enable_lbrv(svm);
4352                 else
4353                         svm_disable_lbrv(svm);
4354                 break;
4355         case MSR_VM_HSAVE_PA:
4356                 svm->nested.hsave_msr = data;
4357                 break;
4358         case MSR_VM_CR:
4359                 return svm_set_vm_cr(vcpu, data);
4360         case MSR_VM_IGNNE:
4361                 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
4362                 break;
4363         case MSR_F10H_DECFG: {
4364                 struct kvm_msr_entry msr_entry;
4365
4366                 msr_entry.index = msr->index;
4367                 if (svm_get_msr_feature(&msr_entry))
4368                         return 1;
4369
4370                 /* Check the supported bits */
4371                 if (data & ~msr_entry.data)
4372                         return 1;
4373
4374                 /* Don't allow the guest to change a bit, #GP */
4375                 if (!msr->host_initiated && (data ^ msr_entry.data))
4376                         return 1;
4377
4378                 svm->msr_decfg = data;
4379                 break;
4380         }
4381         case MSR_IA32_APICBASE:
4382                 if (kvm_vcpu_apicv_active(vcpu))
4383                         avic_update_vapic_bar(to_svm(vcpu), data);
4384                 /* Follow through */
4385         default:
4386                 return kvm_set_msr_common(vcpu, msr);
4387         }
4388         return 0;
4389 }
4390
4391 static int wrmsr_interception(struct vcpu_svm *svm)
4392 {
4393         struct msr_data msr;
4394         u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
4395         u64 data = kvm_read_edx_eax(&svm->vcpu);
4396
4397         msr.data = data;
4398         msr.index = ecx;
4399         msr.host_initiated = false;
4400
4401         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
4402         if (kvm_set_msr(&svm->vcpu, &msr)) {
4403                 trace_kvm_msr_write_ex(ecx, data);
4404                 kvm_inject_gp(&svm->vcpu, 0);
4405                 return 1;
4406         } else {
4407                 trace_kvm_msr_write(ecx, data);
4408                 return kvm_skip_emulated_instruction(&svm->vcpu);
4409         }
4410 }
4411
4412 static int msr_interception(struct vcpu_svm *svm)
4413 {
4414         if (svm->vmcb->control.exit_info_1)
4415                 return wrmsr_interception(svm);
4416         else
4417                 return rdmsr_interception(svm);
4418 }
4419
4420 static int interrupt_window_interception(struct vcpu_svm *svm)
4421 {
4422         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4423         svm_clear_vintr(svm);
4424         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
4425         mark_dirty(svm->vmcb, VMCB_INTR);
4426         ++svm->vcpu.stat.irq_window_exits;
4427         return 1;
4428 }
4429
4430 static int pause_interception(struct vcpu_svm *svm)
4431 {
4432         struct kvm_vcpu *vcpu = &svm->vcpu;
4433         bool in_kernel = (svm_get_cpl(vcpu) == 0);
4434
4435         if (pause_filter_thresh)
4436                 grow_ple_window(vcpu);
4437
4438         kvm_vcpu_on_spin(vcpu, in_kernel);
4439         return 1;
4440 }
4441
4442 static int nop_interception(struct vcpu_svm *svm)
4443 {
4444         return kvm_skip_emulated_instruction(&(svm->vcpu));
4445 }
4446
4447 static int monitor_interception(struct vcpu_svm *svm)
4448 {
4449         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
4450         return nop_interception(svm);
4451 }
4452
4453 static int mwait_interception(struct vcpu_svm *svm)
4454 {
4455         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
4456         return nop_interception(svm);
4457 }
4458
4459 enum avic_ipi_failure_cause {
4460         AVIC_IPI_FAILURE_INVALID_INT_TYPE,
4461         AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
4462         AVIC_IPI_FAILURE_INVALID_TARGET,
4463         AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
4464 };
4465
4466 static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
4467 {
4468         u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
4469         u32 icrl = svm->vmcb->control.exit_info_1;
4470         u32 id = svm->vmcb->control.exit_info_2 >> 32;
4471         u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
4472         struct kvm_lapic *apic = svm->vcpu.arch.apic;
4473
4474         trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
4475
4476         switch (id) {
4477         case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
4478                 /*
4479                  * AVIC hardware handles the generation of
4480                  * IPIs when the specified Message Type is Fixed
4481                  * (also known as fixed delivery mode) and
4482                  * the Trigger Mode is edge-triggered. The hardware
4483                  * also supports self and broadcast delivery modes
4484                  * specified via the Destination Shorthand(DSH)
4485                  * field of the ICRL. Logical and physical APIC ID
4486                  * formats are supported. All other IPI types cause
4487                  * a #VMEXIT, which needs to emulated.
4488                  */
4489                 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
4490                 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
4491                 break;
4492         case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
4493                 int i;
4494                 struct kvm_vcpu *vcpu;
4495                 struct kvm *kvm = svm->vcpu.kvm;
4496                 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4497
4498                 /*
4499                  * At this point, we expect that the AVIC HW has already
4500                  * set the appropriate IRR bits on the valid target
4501                  * vcpus. So, we just need to kick the appropriate vcpu.
4502                  */
4503                 kvm_for_each_vcpu(i, vcpu, kvm) {
4504                         bool m = kvm_apic_match_dest(vcpu, apic,
4505                                                      icrl & KVM_APIC_SHORT_MASK,
4506                                                      GET_APIC_DEST_FIELD(icrh),
4507                                                      icrl & KVM_APIC_DEST_MASK);
4508
4509                         if (m && !avic_vcpu_is_running(vcpu))
4510                                 kvm_vcpu_wake_up(vcpu);
4511                 }
4512                 break;
4513         }
4514         case AVIC_IPI_FAILURE_INVALID_TARGET:
4515                 break;
4516         case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
4517                 WARN_ONCE(1, "Invalid backing page\n");
4518                 break;
4519         default:
4520                 pr_err("Unknown IPI interception\n");
4521         }
4522
4523         return 1;
4524 }
4525
4526 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
4527 {
4528         struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
4529         int index;
4530         u32 *logical_apic_id_table;
4531         int dlid = GET_APIC_LOGICAL_ID(ldr);
4532
4533         if (!dlid)
4534                 return NULL;
4535
4536         if (flat) { /* flat */
4537                 index = ffs(dlid) - 1;
4538                 if (index > 7)
4539                         return NULL;
4540         } else { /* cluster */
4541                 int cluster = (dlid & 0xf0) >> 4;
4542                 int apic = ffs(dlid & 0x0f) - 1;
4543
4544                 if ((apic < 0) || (apic > 7) ||
4545                     (cluster >= 0xf))
4546                         return NULL;
4547                 index = (cluster << 2) + apic;
4548         }
4549
4550         logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
4551
4552         return &logical_apic_id_table[index];
4553 }
4554
4555 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr,
4556                           bool valid)
4557 {
4558         bool flat;
4559         u32 *entry, new_entry;
4560
4561         flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
4562         entry = avic_get_logical_id_entry(vcpu, ldr, flat);
4563         if (!entry)
4564                 return -EINVAL;
4565
4566         new_entry = READ_ONCE(*entry);
4567         new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
4568         new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
4569         if (valid)
4570                 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4571         else
4572                 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4573         WRITE_ONCE(*entry, new_entry);
4574
4575         return 0;
4576 }
4577
4578 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
4579 {
4580         int ret;
4581         struct vcpu_svm *svm = to_svm(vcpu);
4582         u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
4583
4584         if (!ldr)
4585                 return 1;
4586
4587         ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr, true);
4588         if (ret && svm->ldr_reg) {
4589                 avic_ldr_write(vcpu, 0, svm->ldr_reg, false);
4590                 svm->ldr_reg = 0;
4591         } else {
4592                 svm->ldr_reg = ldr;
4593         }
4594         return ret;
4595 }
4596
4597 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
4598 {
4599         u64 *old, *new;
4600         struct vcpu_svm *svm = to_svm(vcpu);
4601         u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID);
4602         u32 id = (apic_id_reg >> 24) & 0xff;
4603
4604         if (vcpu->vcpu_id == id)
4605                 return 0;
4606
4607         old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
4608         new = avic_get_physical_id_entry(vcpu, id);
4609         if (!new || !old)
4610                 return 1;
4611
4612         /* We need to move physical_id_entry to new offset */
4613         *new = *old;
4614         *old = 0ULL;
4615         to_svm(vcpu)->avic_physical_id_cache = new;
4616
4617         /*
4618          * Also update the guest physical APIC ID in the logical
4619          * APIC ID table entry if already setup the LDR.
4620          */
4621         if (svm->ldr_reg)
4622                 avic_handle_ldr_update(vcpu);
4623
4624         return 0;
4625 }
4626
4627 static int avic_handle_dfr_update(struct kvm_vcpu *vcpu)
4628 {
4629         struct vcpu_svm *svm = to_svm(vcpu);
4630         struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
4631         u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
4632         u32 mod = (dfr >> 28) & 0xf;
4633
4634         /*
4635          * We assume that all local APICs are using the same type.
4636          * If this changes, we need to flush the AVIC logical
4637          * APID id table.
4638          */
4639         if (kvm_svm->ldr_mode == mod)
4640                 return 0;
4641
4642         clear_page(page_address(kvm_svm->avic_logical_id_table_page));
4643         kvm_svm->ldr_mode = mod;
4644
4645         if (svm->ldr_reg)
4646                 avic_handle_ldr_update(vcpu);
4647         return 0;
4648 }
4649
4650 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
4651 {
4652         struct kvm_lapic *apic = svm->vcpu.arch.apic;
4653         u32 offset = svm->vmcb->control.exit_info_1 &
4654                                 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4655
4656         switch (offset) {
4657         case APIC_ID:
4658                 if (avic_handle_apic_id_update(&svm->vcpu))
4659                         return 0;
4660                 break;
4661         case APIC_LDR:
4662                 if (avic_handle_ldr_update(&svm->vcpu))
4663                         return 0;
4664                 break;
4665         case APIC_DFR:
4666                 avic_handle_dfr_update(&svm->vcpu);
4667                 break;
4668         default:
4669                 break;
4670         }
4671
4672         kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
4673
4674         return 1;
4675 }
4676
4677 static bool is_avic_unaccelerated_access_trap(u32 offset)
4678 {
4679         bool ret = false;
4680
4681         switch (offset) {
4682         case APIC_ID:
4683         case APIC_EOI:
4684         case APIC_RRR:
4685         case APIC_LDR:
4686         case APIC_DFR:
4687         case APIC_SPIV:
4688         case APIC_ESR:
4689         case APIC_ICR:
4690         case APIC_LVTT:
4691         case APIC_LVTTHMR:
4692         case APIC_LVTPC:
4693         case APIC_LVT0:
4694         case APIC_LVT1:
4695         case APIC_LVTERR:
4696         case APIC_TMICT:
4697         case APIC_TDCR:
4698                 ret = true;
4699                 break;
4700         default:
4701                 break;
4702         }
4703         return ret;
4704 }
4705
4706 static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
4707 {
4708         int ret = 0;
4709         u32 offset = svm->vmcb->control.exit_info_1 &
4710                      AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4711         u32 vector = svm->vmcb->control.exit_info_2 &
4712                      AVIC_UNACCEL_ACCESS_VECTOR_MASK;
4713         bool write = (svm->vmcb->control.exit_info_1 >> 32) &
4714                      AVIC_UNACCEL_ACCESS_WRITE_MASK;
4715         bool trap = is_avic_unaccelerated_access_trap(offset);
4716
4717         trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
4718                                             trap, write, vector);
4719         if (trap) {
4720                 /* Handling Trap */
4721                 WARN_ONCE(!write, "svm: Handling trap read.\n");
4722                 ret = avic_unaccel_trap_write(svm);
4723         } else {
4724                 /* Handling Fault */
4725                 ret = (kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE);
4726         }
4727
4728         return ret;
4729 }
4730
4731 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
4732         [SVM_EXIT_READ_CR0]                     = cr_interception,
4733         [SVM_EXIT_READ_CR3]                     = cr_interception,
4734         [SVM_EXIT_READ_CR4]                     = cr_interception,
4735         [SVM_EXIT_READ_CR8]                     = cr_interception,
4736         [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
4737         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
4738         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
4739         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
4740         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
4741         [SVM_EXIT_READ_DR0]                     = dr_interception,
4742         [SVM_EXIT_READ_DR1]                     = dr_interception,
4743         [SVM_EXIT_READ_DR2]                     = dr_interception,
4744         [SVM_EXIT_READ_DR3]                     = dr_interception,
4745         [SVM_EXIT_READ_DR4]                     = dr_interception,
4746         [SVM_EXIT_READ_DR5]                     = dr_interception,
4747         [SVM_EXIT_READ_DR6]                     = dr_interception,
4748         [SVM_EXIT_READ_DR7]                     = dr_interception,
4749         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
4750         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
4751         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
4752         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
4753         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
4754         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
4755         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
4756         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
4757         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
4758         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
4759         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
4760         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
4761         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
4762         [SVM_EXIT_EXCP_BASE + AC_VECTOR]        = ac_interception,
4763         [SVM_EXIT_EXCP_BASE + GP_VECTOR]        = gp_interception,
4764         [SVM_EXIT_INTR]                         = intr_interception,
4765         [SVM_EXIT_NMI]                          = nmi_interception,
4766         [SVM_EXIT_SMI]                          = nop_on_interception,
4767         [SVM_EXIT_INIT]                         = nop_on_interception,
4768         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
4769         [SVM_EXIT_RDPMC]                        = rdpmc_interception,
4770         [SVM_EXIT_CPUID]                        = cpuid_interception,
4771         [SVM_EXIT_IRET]                         = iret_interception,
4772         [SVM_EXIT_INVD]                         = emulate_on_interception,
4773         [SVM_EXIT_PAUSE]                        = pause_interception,
4774         [SVM_EXIT_HLT]                          = halt_interception,
4775         [SVM_EXIT_INVLPG]                       = invlpg_interception,
4776         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
4777         [SVM_EXIT_IOIO]                         = io_interception,
4778         [SVM_EXIT_MSR]                          = msr_interception,
4779         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
4780         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
4781         [SVM_EXIT_VMRUN]                        = vmrun_interception,
4782         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
4783         [SVM_EXIT_VMLOAD]                       = vmload_interception,
4784         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
4785         [SVM_EXIT_STGI]                         = stgi_interception,
4786         [SVM_EXIT_CLGI]                         = clgi_interception,
4787         [SVM_EXIT_SKINIT]                       = skinit_interception,
4788         [SVM_EXIT_WBINVD]                       = wbinvd_interception,
4789         [SVM_EXIT_MONITOR]                      = monitor_interception,
4790         [SVM_EXIT_MWAIT]                        = mwait_interception,
4791         [SVM_EXIT_XSETBV]                       = xsetbv_interception,
4792         [SVM_EXIT_NPF]                          = npf_interception,
4793         [SVM_EXIT_RSM]                          = rsm_interception,
4794         [SVM_EXIT_AVIC_INCOMPLETE_IPI]          = avic_incomplete_ipi_interception,
4795         [SVM_EXIT_AVIC_UNACCELERATED_ACCESS]    = avic_unaccelerated_access_interception,
4796 };
4797
4798 static void dump_vmcb(struct kvm_vcpu *vcpu)
4799 {
4800         struct vcpu_svm *svm = to_svm(vcpu);
4801         struct vmcb_control_area *control = &svm->vmcb->control;
4802         struct vmcb_save_area *save = &svm->vmcb->save;
4803
4804         pr_err("VMCB Control Area:\n");
4805         pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4806         pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4807         pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4808         pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4809         pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4810         pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4811         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4812         pr_err("%-20s%d\n", "pause filter threshold:",
4813                control->pause_filter_thresh);
4814         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4815         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4816         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4817         pr_err("%-20s%d\n", "asid:", control->asid);
4818         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4819         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4820         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4821         pr_err("%-20s%08x\n", "int_state:", control->int_state);
4822         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4823         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4824         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4825         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4826         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4827         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4828         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4829         pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4830         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4831         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4832         pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
4833         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4834         pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4835         pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4836         pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4837         pr_err("VMCB State Save Area:\n");
4838         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4839                "es:",
4840                save->es.selector, save->es.attrib,
4841                save->es.limit, save->es.base);
4842         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4843                "cs:",
4844                save->cs.selector, save->cs.attrib,
4845                save->cs.limit, save->cs.base);
4846         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4847                "ss:",
4848                save->ss.selector, save->ss.attrib,
4849                save->ss.limit, save->ss.base);
4850         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4851                "ds:",
4852                save->ds.selector, save->ds.attrib,
4853                save->ds.limit, save->ds.base);
4854         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4855                "fs:",
4856                save->fs.selector, save->fs.attrib,
4857                save->fs.limit, save->fs.base);
4858         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4859                "gs:",
4860                save->gs.selector, save->gs.attrib,
4861                save->gs.limit, save->gs.base);
4862         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4863                "gdtr:",
4864                save->gdtr.selector, save->gdtr.attrib,
4865                save->gdtr.limit, save->gdtr.base);
4866         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4867                "ldtr:",
4868                save->ldtr.selector, save->ldtr.attrib,
4869                save->ldtr.limit, save->ldtr.base);
4870         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4871                "idtr:",
4872                save->idtr.selector, save->idtr.attrib,
4873                save->idtr.limit, save->idtr.base);
4874         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4875                "tr:",
4876                save->tr.selector, save->tr.attrib,
4877                save->tr.limit, save->tr.base);
4878         pr_err("cpl:            %d                efer:         %016llx\n",
4879                 save->cpl, save->efer);
4880         pr_err("%-15s %016llx %-13s %016llx\n",
4881                "cr0:", save->cr0, "cr2:", save->cr2);
4882         pr_err("%-15s %016llx %-13s %016llx\n",
4883                "cr3:", save->cr3, "cr4:", save->cr4);
4884         pr_err("%-15s %016llx %-13s %016llx\n",
4885                "dr6:", save->dr6, "dr7:", save->dr7);
4886         pr_err("%-15s %016llx %-13s %016llx\n",
4887                "rip:", save->rip, "rflags:", save->rflags);
4888         pr_err("%-15s %016llx %-13s %016llx\n",
4889                "rsp:", save->rsp, "rax:", save->rax);
4890         pr_err("%-15s %016llx %-13s %016llx\n",
4891                "star:", save->star, "lstar:", save->lstar);
4892         pr_err("%-15s %016llx %-13s %016llx\n",
4893                "cstar:", save->cstar, "sfmask:", save->sfmask);
4894         pr_err("%-15s %016llx %-13s %016llx\n",
4895                "kernel_gs_base:", save->kernel_gs_base,
4896                "sysenter_cs:", save->sysenter_cs);
4897         pr_err("%-15s %016llx %-13s %016llx\n",
4898                "sysenter_esp:", save->sysenter_esp,
4899                "sysenter_eip:", save->sysenter_eip);
4900         pr_err("%-15s %016llx %-13s %016llx\n",
4901                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4902         pr_err("%-15s %016llx %-13s %016llx\n",
4903                "br_from:", save->br_from, "br_to:", save->br_to);
4904         pr_err("%-15s %016llx %-13s %016llx\n",
4905                "excp_from:", save->last_excp_from,
4906                "excp_to:", save->last_excp_to);
4907 }
4908
4909 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4910 {
4911         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4912
4913         *info1 = control->exit_info_1;
4914         *info2 = control->exit_info_2;
4915 }
4916
4917 static int handle_exit(struct kvm_vcpu *vcpu)
4918 {
4919         struct vcpu_svm *svm = to_svm(vcpu);
4920         struct kvm_run *kvm_run = vcpu->run;
4921         u32 exit_code = svm->vmcb->control.exit_code;
4922
4923         trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4924
4925         if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4926                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
4927         if (npt_enabled)
4928                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
4929
4930         if (unlikely(svm->nested.exit_required)) {
4931                 nested_svm_vmexit(svm);
4932                 svm->nested.exit_required = false;
4933
4934                 return 1;
4935         }
4936
4937         if (is_guest_mode(vcpu)) {
4938                 int vmexit;
4939
4940                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4941                                         svm->vmcb->control.exit_info_1,
4942                                         svm->vmcb->control.exit_info_2,
4943                                         svm->vmcb->control.exit_int_info,
4944                                         svm->vmcb->control.exit_int_info_err,
4945                                         KVM_ISA_SVM);
4946
4947                 vmexit = nested_svm_exit_special(svm);
4948
4949                 if (vmexit == NESTED_EXIT_CONTINUE)
4950                         vmexit = nested_svm_exit_handled(svm);
4951
4952                 if (vmexit == NESTED_EXIT_DONE)
4953                         return 1;
4954         }
4955
4956         svm_complete_interrupts(svm);
4957
4958         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4959                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4960                 kvm_run->fail_entry.hardware_entry_failure_reason
4961                         = svm->vmcb->control.exit_code;
4962                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
4963                 dump_vmcb(vcpu);
4964                 return 0;
4965         }
4966
4967         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4968             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4969             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4970             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4971                 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4972                        "exit_code 0x%x\n",
4973                        __func__, svm->vmcb->control.exit_int_info,
4974                        exit_code);
4975
4976         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
4977             || !svm_exit_handlers[exit_code]) {
4978                 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
4979                 kvm_queue_exception(vcpu, UD_VECTOR);
4980                 return 1;
4981         }
4982
4983         return svm_exit_handlers[exit_code](svm);
4984 }
4985
4986 static void reload_tss(struct kvm_vcpu *vcpu)
4987 {
4988         int cpu = raw_smp_processor_id();
4989
4990         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4991         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
4992         load_TR_desc();
4993 }
4994
4995 static void pre_sev_run(struct vcpu_svm *svm, int cpu)
4996 {
4997         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4998         int asid = sev_get_asid(svm->vcpu.kvm);
4999
5000         /* Assign the asid allocated with this SEV guest */
5001         svm->vmcb->control.asid = asid;
5002
5003         /*
5004          * Flush guest TLB:
5005          *
5006          * 1) when different VMCB for the same ASID is to be run on the same host CPU.
5007          * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
5008          */
5009         if (sd->sev_vmcbs[asid] == svm->vmcb &&
5010             svm->last_cpu == cpu)
5011                 return;
5012
5013         svm->last_cpu = cpu;
5014         sd->sev_vmcbs[asid] = svm->vmcb;
5015         svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5016         mark_dirty(svm->vmcb, VMCB_ASID);
5017 }
5018
5019 static void pre_svm_run(struct vcpu_svm *svm)
5020 {
5021         int cpu = raw_smp_processor_id();
5022
5023         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5024
5025         if (sev_guest(svm->vcpu.kvm))
5026                 return pre_sev_run(svm, cpu);
5027
5028         /* FIXME: handle wraparound of asid_generation */
5029         if (svm->asid_generation != sd->asid_generation)
5030                 new_asid(svm, sd);
5031 }
5032
5033 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
5034 {
5035         struct vcpu_svm *svm = to_svm(vcpu);
5036
5037         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
5038         vcpu->arch.hflags |= HF_NMI_MASK;
5039         set_intercept(svm, INTERCEPT_IRET);
5040         ++vcpu->stat.nmi_injections;
5041 }
5042
5043 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
5044 {
5045         struct vmcb_control_area *control;
5046
5047         /* The following fields are ignored when AVIC is enabled */
5048         control = &svm->vmcb->control;
5049         control->int_vector = irq;
5050         control->int_ctl &= ~V_INTR_PRIO_MASK;
5051         control->int_ctl |= V_IRQ_MASK |
5052                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
5053         mark_dirty(svm->vmcb, VMCB_INTR);
5054 }
5055
5056 static void svm_set_irq(struct kvm_vcpu *vcpu)
5057 {
5058         struct vcpu_svm *svm = to_svm(vcpu);
5059
5060         BUG_ON(!(gif_set(svm)));
5061
5062         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
5063         ++vcpu->stat.irq_injections;
5064
5065         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
5066                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
5067 }
5068
5069 static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
5070 {
5071         return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
5072 }
5073
5074 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5075 {
5076         struct vcpu_svm *svm = to_svm(vcpu);
5077
5078         if (svm_nested_virtualize_tpr(vcpu) ||
5079             kvm_vcpu_apicv_active(vcpu))
5080                 return;
5081
5082         clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5083
5084         if (irr == -1)
5085                 return;
5086
5087         if (tpr >= irr)
5088                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5089 }
5090
5091 static void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
5092 {
5093         return;
5094 }
5095
5096 static bool svm_get_enable_apicv(struct kvm_vcpu *vcpu)
5097 {
5098         return avic && irqchip_split(vcpu->kvm);
5099 }
5100
5101 static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
5102 {
5103 }
5104
5105 static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
5106 {
5107 }
5108
5109 /* Note: Currently only used by Hyper-V. */
5110 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5111 {
5112         struct vcpu_svm *svm = to_svm(vcpu);
5113         struct vmcb *vmcb = svm->vmcb;
5114
5115         if (!kvm_vcpu_apicv_active(&svm->vcpu))
5116                 return;
5117
5118         vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
5119         mark_dirty(vmcb, VMCB_INTR);
5120 }
5121
5122 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
5123 {
5124         return;
5125 }
5126
5127 static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
5128 {
5129         kvm_lapic_set_irr(vec, vcpu->arch.apic);
5130         smp_mb__after_atomic();
5131
5132         if (avic_vcpu_is_running(vcpu))
5133                 wrmsrl(SVM_AVIC_DOORBELL,
5134                        kvm_cpu_get_apicid(vcpu->cpu));
5135         else
5136                 kvm_vcpu_wake_up(vcpu);
5137 }
5138
5139 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5140 {
5141         unsigned long flags;
5142         struct amd_svm_iommu_ir *cur;
5143
5144         spin_lock_irqsave(&svm->ir_list_lock, flags);
5145         list_for_each_entry(cur, &svm->ir_list, node) {
5146                 if (cur->data != pi->ir_data)
5147                         continue;
5148                 list_del(&cur->node);
5149                 kfree(cur);
5150                 break;
5151         }
5152         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5153 }
5154
5155 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5156 {
5157         int ret = 0;
5158         unsigned long flags;
5159         struct amd_svm_iommu_ir *ir;
5160
5161         /**
5162          * In some cases, the existing irte is updaed and re-set,
5163          * so we need to check here if it's already been * added
5164          * to the ir_list.
5165          */
5166         if (pi->ir_data && (pi->prev_ga_tag != 0)) {
5167                 struct kvm *kvm = svm->vcpu.kvm;
5168                 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
5169                 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
5170                 struct vcpu_svm *prev_svm;
5171
5172                 if (!prev_vcpu) {
5173                         ret = -EINVAL;
5174                         goto out;
5175                 }
5176
5177                 prev_svm = to_svm(prev_vcpu);
5178                 svm_ir_list_del(prev_svm, pi);
5179         }
5180
5181         /**
5182          * Allocating new amd_iommu_pi_data, which will get
5183          * add to the per-vcpu ir_list.
5184          */
5185         ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL);
5186         if (!ir) {
5187                 ret = -ENOMEM;
5188                 goto out;
5189         }
5190         ir->data = pi->ir_data;
5191
5192         spin_lock_irqsave(&svm->ir_list_lock, flags);
5193         list_add(&ir->node, &svm->ir_list);
5194         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5195 out:
5196         return ret;
5197 }
5198
5199 /**
5200  * Note:
5201  * The HW cannot support posting multicast/broadcast
5202  * interrupts to a vCPU. So, we still use legacy interrupt
5203  * remapping for these kind of interrupts.
5204  *
5205  * For lowest-priority interrupts, we only support
5206  * those with single CPU as the destination, e.g. user
5207  * configures the interrupts via /proc/irq or uses
5208  * irqbalance to make the interrupts single-CPU.
5209  */
5210 static int
5211 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
5212                  struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
5213 {
5214         struct kvm_lapic_irq irq;
5215         struct kvm_vcpu *vcpu = NULL;
5216
5217         kvm_set_msi_irq(kvm, e, &irq);
5218
5219         if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
5220                 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
5221                          __func__, irq.vector);
5222                 return -1;
5223         }
5224
5225         pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
5226                  irq.vector);
5227         *svm = to_svm(vcpu);
5228         vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
5229         vcpu_info->vector = irq.vector;
5230
5231         return 0;
5232 }
5233
5234 /*
5235  * svm_update_pi_irte - set IRTE for Posted-Interrupts
5236  *
5237  * @kvm: kvm
5238  * @host_irq: host irq of the interrupt
5239  * @guest_irq: gsi of the interrupt
5240  * @set: set or unset PI
5241  * returns 0 on success, < 0 on failure
5242  */
5243 static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
5244                               uint32_t guest_irq, bool set)
5245 {
5246         struct kvm_kernel_irq_routing_entry *e;
5247         struct kvm_irq_routing_table *irq_rt;
5248         int idx, ret = -EINVAL;
5249
5250         if (!kvm_arch_has_assigned_device(kvm) ||
5251             !irq_remapping_cap(IRQ_POSTING_CAP))
5252                 return 0;
5253
5254         pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
5255                  __func__, host_irq, guest_irq, set);
5256
5257         idx = srcu_read_lock(&kvm->irq_srcu);
5258         irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
5259         WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
5260
5261         hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
5262                 struct vcpu_data vcpu_info;
5263                 struct vcpu_svm *svm = NULL;
5264
5265                 if (e->type != KVM_IRQ_ROUTING_MSI)
5266                         continue;
5267
5268                 /**
5269                  * Here, we setup with legacy mode in the following cases:
5270                  * 1. When cannot target interrupt to a specific vcpu.
5271                  * 2. Unsetting posted interrupt.
5272                  * 3. APIC virtialization is disabled for the vcpu.
5273                  */
5274                 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
5275                     kvm_vcpu_apicv_active(&svm->vcpu)) {
5276                         struct amd_iommu_pi_data pi;
5277
5278                         /* Try to enable guest_mode in IRTE */
5279                         pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
5280                                             AVIC_HPA_MASK);
5281                         pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
5282                                                      svm->vcpu.vcpu_id);
5283                         pi.is_guest_mode = true;
5284                         pi.vcpu_data = &vcpu_info;
5285                         ret = irq_set_vcpu_affinity(host_irq, &pi);
5286
5287                         /**
5288                          * Here, we successfully setting up vcpu affinity in
5289                          * IOMMU guest mode. Now, we need to store the posted
5290                          * interrupt information in a per-vcpu ir_list so that
5291                          * we can reference to them directly when we update vcpu
5292                          * scheduling information in IOMMU irte.
5293                          */
5294                         if (!ret && pi.is_guest_mode)
5295                                 svm_ir_list_add(svm, &pi);
5296                 } else {
5297                         /* Use legacy mode in IRTE */
5298                         struct amd_iommu_pi_data pi;
5299
5300                         /**
5301                          * Here, pi is used to:
5302                          * - Tell IOMMU to use legacy mode for this interrupt.
5303                          * - Retrieve ga_tag of prior interrupt remapping data.
5304                          */
5305                         pi.is_guest_mode = false;
5306                         ret = irq_set_vcpu_affinity(host_irq, &pi);
5307
5308                         /**
5309                          * Check if the posted interrupt was previously
5310                          * setup with the guest_mode by checking if the ga_tag
5311                          * was cached. If so, we need to clean up the per-vcpu
5312                          * ir_list.
5313                          */
5314                         if (!ret && pi.prev_ga_tag) {
5315                                 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
5316                                 struct kvm_vcpu *vcpu;
5317
5318                                 vcpu = kvm_get_vcpu_by_id(kvm, id);
5319                                 if (vcpu)
5320                                         svm_ir_list_del(to_svm(vcpu), &pi);
5321                         }
5322                 }
5323
5324                 if (!ret && svm) {
5325                         trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
5326                                                  e->gsi, vcpu_info.vector,
5327                                                  vcpu_info.pi_desc_addr, set);
5328                 }
5329
5330                 if (ret < 0) {
5331                         pr_err("%s: failed to update PI IRTE\n", __func__);
5332                         goto out;
5333                 }
5334         }
5335
5336         ret = 0;
5337 out:
5338         srcu_read_unlock(&kvm->irq_srcu, idx);
5339         return ret;
5340 }
5341
5342 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
5343 {
5344         struct vcpu_svm *svm = to_svm(vcpu);
5345         struct vmcb *vmcb = svm->vmcb;
5346         int ret;
5347         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
5348               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
5349         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
5350
5351         return ret;
5352 }
5353
5354 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
5355 {
5356         struct vcpu_svm *svm = to_svm(vcpu);
5357
5358         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
5359 }
5360
5361 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5362 {
5363         struct vcpu_svm *svm = to_svm(vcpu);
5364
5365         if (masked) {
5366                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
5367                 set_intercept(svm, INTERCEPT_IRET);
5368         } else {
5369                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
5370                 clr_intercept(svm, INTERCEPT_IRET);
5371         }
5372 }
5373
5374 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
5375 {
5376         struct vcpu_svm *svm = to_svm(vcpu);
5377         struct vmcb *vmcb = svm->vmcb;
5378         int ret;
5379
5380         if (!gif_set(svm) ||
5381              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
5382                 return 0;
5383
5384         ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
5385
5386         if (is_guest_mode(vcpu))
5387                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
5388
5389         return ret;
5390 }
5391
5392 static void enable_irq_window(struct kvm_vcpu *vcpu)
5393 {
5394         struct vcpu_svm *svm = to_svm(vcpu);
5395
5396         if (kvm_vcpu_apicv_active(vcpu))
5397                 return;
5398
5399         /*
5400          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
5401          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
5402          * get that intercept, this function will be called again though and
5403          * we'll get the vintr intercept. However, if the vGIF feature is
5404          * enabled, the STGI interception will not occur. Enable the irq
5405          * window under the assumption that the hardware will set the GIF.
5406          */
5407         if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) {
5408                 svm_set_vintr(svm);
5409                 svm_inject_irq(svm, 0x0);
5410         }
5411 }
5412
5413 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5414 {
5415         struct vcpu_svm *svm = to_svm(vcpu);
5416
5417         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
5418             == HF_NMI_MASK)
5419                 return; /* IRET will cause a vm exit */
5420
5421         if (!gif_set(svm)) {
5422                 if (vgif_enabled(svm))
5423                         set_intercept(svm, INTERCEPT_STGI);
5424                 return; /* STGI will cause a vm exit */
5425         }
5426
5427         if (svm->nested.exit_required)
5428                 return; /* we're not going to run the guest yet */
5429
5430         /*
5431          * Something prevents NMI from been injected. Single step over possible
5432          * problem (IRET or exception injection or interrupt shadow)
5433          */
5434         svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
5435         svm->nmi_singlestep = true;
5436         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
5437 }
5438
5439 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
5440 {
5441         return 0;
5442 }
5443
5444 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5445 {
5446         return 0;
5447 }
5448
5449 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
5450 {
5451         struct vcpu_svm *svm = to_svm(vcpu);
5452
5453         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
5454                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5455         else
5456                 svm->asid_generation--;
5457 }
5458
5459 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
5460 {
5461         struct vcpu_svm *svm = to_svm(vcpu);
5462
5463         invlpga(gva, svm->vmcb->control.asid);
5464 }
5465
5466 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
5467 {
5468 }
5469
5470 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
5471 {
5472         struct vcpu_svm *svm = to_svm(vcpu);
5473
5474         if (svm_nested_virtualize_tpr(vcpu))
5475                 return;
5476
5477         if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
5478                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
5479                 kvm_set_cr8(vcpu, cr8);
5480         }
5481 }
5482
5483 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
5484 {
5485         struct vcpu_svm *svm = to_svm(vcpu);
5486         u64 cr8;
5487
5488         if (svm_nested_virtualize_tpr(vcpu) ||
5489             kvm_vcpu_apicv_active(vcpu))
5490                 return;
5491
5492         cr8 = kvm_get_cr8(vcpu);
5493         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
5494         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
5495 }
5496
5497 static void svm_complete_interrupts(struct vcpu_svm *svm)
5498 {
5499         u8 vector;
5500         int type;
5501         u32 exitintinfo = svm->vmcb->control.exit_int_info;
5502         unsigned int3_injected = svm->int3_injected;
5503
5504         svm->int3_injected = 0;
5505
5506         /*
5507          * If we've made progress since setting HF_IRET_MASK, we've
5508          * executed an IRET and can allow NMI injection.
5509          */
5510         if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
5511             && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
5512                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
5513                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5514         }
5515
5516         svm->vcpu.arch.nmi_injected = false;
5517         kvm_clear_exception_queue(&svm->vcpu);
5518         kvm_clear_interrupt_queue(&svm->vcpu);
5519
5520         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
5521                 return;
5522
5523         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5524
5525         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
5526         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
5527
5528         switch (type) {
5529         case SVM_EXITINTINFO_TYPE_NMI:
5530                 svm->vcpu.arch.nmi_injected = true;
5531                 break;
5532         case SVM_EXITINTINFO_TYPE_EXEPT:
5533                 /*
5534                  * In case of software exceptions, do not reinject the vector,
5535                  * but re-execute the instruction instead. Rewind RIP first
5536                  * if we emulated INT3 before.
5537                  */
5538                 if (kvm_exception_is_soft(vector)) {
5539                         if (vector == BP_VECTOR && int3_injected &&
5540                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
5541                                 kvm_rip_write(&svm->vcpu,
5542                                               kvm_rip_read(&svm->vcpu) -
5543                                               int3_injected);
5544                         break;
5545                 }
5546                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
5547                         u32 err = svm->vmcb->control.exit_int_info_err;
5548                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
5549
5550                 } else
5551                         kvm_requeue_exception(&svm->vcpu, vector);
5552                 break;
5553         case SVM_EXITINTINFO_TYPE_INTR:
5554                 kvm_queue_interrupt(&svm->vcpu, vector, false);
5555                 break;
5556         default:
5557                 break;
5558         }
5559 }
5560
5561 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
5562 {
5563         struct vcpu_svm *svm = to_svm(vcpu);
5564         struct vmcb_control_area *control = &svm->vmcb->control;
5565
5566         control->exit_int_info = control->event_inj;
5567         control->exit_int_info_err = control->event_inj_err;
5568         control->event_inj = 0;
5569         svm_complete_interrupts(svm);
5570 }
5571
5572 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
5573 {
5574         struct vcpu_svm *svm = to_svm(vcpu);
5575
5576         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
5577         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
5578         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
5579
5580         /*
5581          * A vmexit emulation is required before the vcpu can be executed
5582          * again.
5583          */
5584         if (unlikely(svm->nested.exit_required))
5585                 return;
5586
5587         /*
5588          * Disable singlestep if we're injecting an interrupt/exception.
5589          * We don't want our modified rflags to be pushed on the stack where
5590          * we might not be able to easily reset them if we disabled NMI
5591          * singlestep later.
5592          */
5593         if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
5594                 /*
5595                  * Event injection happens before external interrupts cause a
5596                  * vmexit and interrupts are disabled here, so smp_send_reschedule
5597                  * is enough to force an immediate vmexit.
5598                  */
5599                 disable_nmi_singlestep(svm);
5600                 smp_send_reschedule(vcpu->cpu);
5601         }
5602
5603         pre_svm_run(svm);
5604
5605         sync_lapic_to_cr8(vcpu);
5606
5607         svm->vmcb->save.cr2 = vcpu->arch.cr2;
5608
5609         clgi();
5610
5611         /*
5612          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
5613          * it's non-zero. Since vmentry is serialising on affected CPUs, there
5614          * is no need to worry about the conditional branch over the wrmsr
5615          * being speculatively taken.
5616          */
5617         x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
5618
5619         local_irq_enable();
5620
5621         asm volatile (
5622                 "push %%" _ASM_BP "; \n\t"
5623                 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
5624                 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
5625                 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
5626                 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
5627                 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
5628                 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
5629 #ifdef CONFIG_X86_64
5630                 "mov %c[r8](%[svm]),  %%r8  \n\t"
5631                 "mov %c[r9](%[svm]),  %%r9  \n\t"
5632                 "mov %c[r10](%[svm]), %%r10 \n\t"
5633                 "mov %c[r11](%[svm]), %%r11 \n\t"
5634                 "mov %c[r12](%[svm]), %%r12 \n\t"
5635                 "mov %c[r13](%[svm]), %%r13 \n\t"
5636                 "mov %c[r14](%[svm]), %%r14 \n\t"
5637                 "mov %c[r15](%[svm]), %%r15 \n\t"
5638 #endif
5639
5640                 /* Enter guest mode */
5641                 "push %%" _ASM_AX " \n\t"
5642                 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
5643                 __ex(SVM_VMLOAD) "\n\t"
5644                 __ex(SVM_VMRUN) "\n\t"
5645                 __ex(SVM_VMSAVE) "\n\t"
5646                 "pop %%" _ASM_AX " \n\t"
5647
5648                 /* Save guest registers, load host registers */
5649                 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
5650                 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
5651                 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
5652                 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
5653                 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
5654                 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
5655 #ifdef CONFIG_X86_64
5656                 "mov %%r8,  %c[r8](%[svm]) \n\t"
5657                 "mov %%r9,  %c[r9](%[svm]) \n\t"
5658                 "mov %%r10, %c[r10](%[svm]) \n\t"
5659                 "mov %%r11, %c[r11](%[svm]) \n\t"
5660                 "mov %%r12, %c[r12](%[svm]) \n\t"
5661                 "mov %%r13, %c[r13](%[svm]) \n\t"
5662                 "mov %%r14, %c[r14](%[svm]) \n\t"
5663                 "mov %%r15, %c[r15](%[svm]) \n\t"
5664                 /*
5665                 * Clear host registers marked as clobbered to prevent
5666                 * speculative use.
5667                 */
5668                 "xor %%r8d, %%r8d \n\t"
5669                 "xor %%r9d, %%r9d \n\t"
5670                 "xor %%r10d, %%r10d \n\t"
5671                 "xor %%r11d, %%r11d \n\t"
5672                 "xor %%r12d, %%r12d \n\t"
5673                 "xor %%r13d, %%r13d \n\t"
5674                 "xor %%r14d, %%r14d \n\t"
5675                 "xor %%r15d, %%r15d \n\t"
5676 #endif
5677                 "xor %%ebx, %%ebx \n\t"
5678                 "xor %%ecx, %%ecx \n\t"
5679                 "xor %%edx, %%edx \n\t"
5680                 "xor %%esi, %%esi \n\t"
5681                 "xor %%edi, %%edi \n\t"
5682                 "pop %%" _ASM_BP
5683                 :
5684                 : [svm]"a"(svm),
5685                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
5686                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
5687                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
5688                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
5689                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
5690                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
5691                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
5692 #ifdef CONFIG_X86_64
5693                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
5694                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
5695                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
5696                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
5697                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
5698                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
5699                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
5700                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
5701 #endif
5702                 : "cc", "memory"
5703 #ifdef CONFIG_X86_64
5704                 , "rbx", "rcx", "rdx", "rsi", "rdi"
5705                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
5706 #else
5707                 , "ebx", "ecx", "edx", "esi", "edi"
5708 #endif
5709                 );
5710
5711         /* Eliminate branch target predictions from guest mode */
5712         vmexit_fill_RSB();
5713
5714 #ifdef CONFIG_X86_64
5715         wrmsrl(MSR_GS_BASE, svm->host.gs_base);
5716 #else
5717         loadsegment(fs, svm->host.fs);
5718 #ifndef CONFIG_X86_32_LAZY_GS
5719         loadsegment(gs, svm->host.gs);
5720 #endif
5721 #endif
5722
5723         /*
5724          * We do not use IBRS in the kernel. If this vCPU has used the
5725          * SPEC_CTRL MSR it may have left it on; save the value and
5726          * turn it off. This is much more efficient than blindly adding
5727          * it to the atomic save/restore list. Especially as the former
5728          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
5729          *
5730          * For non-nested case:
5731          * If the L01 MSR bitmap does not intercept the MSR, then we need to
5732          * save it.
5733          *
5734          * For nested case:
5735          * If the L02 MSR bitmap does not intercept the MSR, then we need to
5736          * save it.
5737          */
5738         if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
5739                 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
5740
5741         reload_tss(vcpu);
5742
5743         local_irq_disable();
5744
5745         x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
5746
5747         vcpu->arch.cr2 = svm->vmcb->save.cr2;
5748         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
5749         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
5750         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
5751
5752         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5753                 kvm_before_interrupt(&svm->vcpu);
5754
5755         stgi();
5756
5757         /* Any pending NMI will happen here */
5758
5759         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5760                 kvm_after_interrupt(&svm->vcpu);
5761
5762         sync_cr8_to_lapic(vcpu);
5763
5764         svm->next_rip = 0;
5765
5766         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
5767
5768         /* if exit due to PF check for async PF */
5769         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
5770                 svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
5771
5772         if (npt_enabled) {
5773                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
5774                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
5775         }
5776
5777         /*
5778          * We need to handle MC intercepts here before the vcpu has a chance to
5779          * change the physical cpu
5780          */
5781         if (unlikely(svm->vmcb->control.exit_code ==
5782                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
5783                 svm_handle_mce(svm);
5784
5785         mark_all_clean(svm->vmcb);
5786 }
5787 STACK_FRAME_NON_STANDARD(svm_vcpu_run);
5788
5789 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5790 {
5791         struct vcpu_svm *svm = to_svm(vcpu);
5792
5793         svm->vmcb->save.cr3 = __sme_set(root);
5794         mark_dirty(svm->vmcb, VMCB_CR);
5795 }
5796
5797 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5798 {
5799         struct vcpu_svm *svm = to_svm(vcpu);
5800
5801         svm->vmcb->control.nested_cr3 = __sme_set(root);
5802         mark_dirty(svm->vmcb, VMCB_NPT);
5803
5804         /* Also sync guest cr3 here in case we live migrate */
5805         svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
5806         mark_dirty(svm->vmcb, VMCB_CR);
5807 }
5808
5809 static int is_disabled(void)
5810 {
5811         u64 vm_cr;
5812
5813         rdmsrl(MSR_VM_CR, vm_cr);
5814         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
5815                 return 1;
5816
5817         return 0;
5818 }
5819
5820 static void
5821 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5822 {
5823         /*
5824          * Patch in the VMMCALL instruction:
5825          */
5826         hypercall[0] = 0x0f;
5827         hypercall[1] = 0x01;
5828         hypercall[2] = 0xd9;
5829 }
5830
5831 static void svm_check_processor_compat(void *rtn)
5832 {
5833         *(int *)rtn = 0;
5834 }
5835
5836 static bool svm_cpu_has_accelerated_tpr(void)
5837 {
5838         return false;
5839 }
5840
5841 static bool svm_has_emulated_msr(int index)
5842 {
5843         return true;
5844 }
5845
5846 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5847 {
5848         return 0;
5849 }
5850
5851 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5852 {
5853         struct vcpu_svm *svm = to_svm(vcpu);
5854
5855         /* Update nrips enabled cache */
5856         svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
5857
5858         if (!kvm_vcpu_apicv_active(vcpu))
5859                 return;
5860
5861         guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC);
5862 }
5863
5864 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5865 {
5866         switch (func) {
5867         case 0x1:
5868                 if (avic)
5869                         entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5870                 break;
5871         case 0x80000001:
5872                 if (nested)
5873                         entry->ecx |= (1 << 2); /* Set SVM bit */
5874                 break;
5875         case 0x8000000A:
5876                 entry->eax = 1; /* SVM revision 1 */
5877                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5878                                    ASID emulation to nested SVM */
5879                 entry->ecx = 0; /* Reserved */
5880                 entry->edx = 0; /* Per default do not support any
5881                                    additional features */
5882
5883                 /* Support next_rip if host supports it */
5884                 if (boot_cpu_has(X86_FEATURE_NRIPS))
5885                         entry->edx |= SVM_FEATURE_NRIP;
5886
5887                 /* Support NPT for the guest if enabled */
5888                 if (npt_enabled)
5889                         entry->edx |= SVM_FEATURE_NPT;
5890
5891                 break;
5892         case 0x8000001F:
5893                 /* Support memory encryption cpuid if host supports it */
5894                 if (boot_cpu_has(X86_FEATURE_SEV))
5895                         cpuid(0x8000001f, &entry->eax, &entry->ebx,
5896                                 &entry->ecx, &entry->edx);
5897
5898         }
5899 }
5900
5901 static int svm_get_lpage_level(void)
5902 {
5903         return PT_PDPE_LEVEL;
5904 }
5905
5906 static bool svm_rdtscp_supported(void)
5907 {
5908         return boot_cpu_has(X86_FEATURE_RDTSCP);
5909 }
5910
5911 static bool svm_invpcid_supported(void)
5912 {
5913         return false;
5914 }
5915
5916 static bool svm_mpx_supported(void)
5917 {
5918         return false;
5919 }
5920
5921 static bool svm_xsaves_supported(void)
5922 {
5923         return false;
5924 }
5925
5926 static bool svm_umip_emulated(void)
5927 {
5928         return false;
5929 }
5930
5931 static bool svm_has_wbinvd_exit(void)
5932 {
5933         return true;
5934 }
5935
5936 #define PRE_EX(exit)  { .exit_code = (exit), \
5937                         .stage = X86_ICPT_PRE_EXCEPT, }
5938 #define POST_EX(exit) { .exit_code = (exit), \
5939                         .stage = X86_ICPT_POST_EXCEPT, }
5940 #define POST_MEM(exit) { .exit_code = (exit), \
5941                         .stage = X86_ICPT_POST_MEMACCESS, }
5942
5943 static const struct __x86_intercept {
5944         u32 exit_code;
5945         enum x86_intercept_stage stage;
5946 } x86_intercept_map[] = {
5947         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
5948         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
5949         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
5950         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
5951         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
5952         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
5953         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
5954         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
5955         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
5956         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
5957         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
5958         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
5959         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
5960         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
5961         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
5962         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
5963         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
5964         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
5965         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
5966         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
5967         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
5968         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
5969         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
5970         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
5971         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
5972         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
5973         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
5974         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
5975         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
5976         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
5977         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
5978         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
5979         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
5980         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
5981         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
5982         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
5983         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
5984         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
5985         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
5986         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
5987         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
5988         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
5989         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
5990         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
5991         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
5992         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
5993 };
5994
5995 #undef PRE_EX
5996 #undef POST_EX
5997 #undef POST_MEM
5998
5999 static int svm_check_intercept(struct kvm_vcpu *vcpu,
6000                                struct x86_instruction_info *info,
6001                                enum x86_intercept_stage stage)
6002 {
6003         struct vcpu_svm *svm = to_svm(vcpu);
6004         int vmexit, ret = X86EMUL_CONTINUE;
6005         struct __x86_intercept icpt_info;
6006         struct vmcb *vmcb = svm->vmcb;
6007
6008         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
6009                 goto out;
6010
6011         icpt_info = x86_intercept_map[info->intercept];
6012
6013         if (stage != icpt_info.stage)
6014                 goto out;
6015
6016         switch (icpt_info.exit_code) {
6017         case SVM_EXIT_READ_CR0:
6018                 if (info->intercept == x86_intercept_cr_read)
6019                         icpt_info.exit_code += info->modrm_reg;
6020                 break;
6021         case SVM_EXIT_WRITE_CR0: {
6022                 unsigned long cr0, val;
6023                 u64 intercept;
6024
6025                 if (info->intercept == x86_intercept_cr_write)
6026                         icpt_info.exit_code += info->modrm_reg;
6027
6028                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
6029                     info->intercept == x86_intercept_clts)
6030                         break;
6031
6032                 intercept = svm->nested.intercept;
6033
6034                 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
6035                         break;
6036
6037                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
6038                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
6039
6040                 if (info->intercept == x86_intercept_lmsw) {
6041                         cr0 &= 0xfUL;
6042                         val &= 0xfUL;
6043                         /* lmsw can't clear PE - catch this here */
6044                         if (cr0 & X86_CR0_PE)
6045                                 val |= X86_CR0_PE;
6046                 }
6047
6048                 if (cr0 ^ val)
6049                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
6050
6051                 break;
6052         }
6053         case SVM_EXIT_READ_DR0:
6054         case SVM_EXIT_WRITE_DR0:
6055                 icpt_info.exit_code += info->modrm_reg;
6056                 break;
6057         case SVM_EXIT_MSR:
6058                 if (info->intercept == x86_intercept_wrmsr)
6059                         vmcb->control.exit_info_1 = 1;
6060                 else
6061                         vmcb->control.exit_info_1 = 0;
6062                 break;
6063         case SVM_EXIT_PAUSE:
6064                 /*
6065                  * We get this for NOP only, but pause
6066                  * is rep not, check this here
6067                  */
6068                 if (info->rep_prefix != REPE_PREFIX)
6069                         goto out;
6070                 break;
6071         case SVM_EXIT_IOIO: {
6072                 u64 exit_info;
6073                 u32 bytes;
6074
6075                 if (info->intercept == x86_intercept_in ||
6076                     info->intercept == x86_intercept_ins) {
6077                         exit_info = ((info->src_val & 0xffff) << 16) |
6078                                 SVM_IOIO_TYPE_MASK;
6079                         bytes = info->dst_bytes;
6080                 } else {
6081                         exit_info = (info->dst_val & 0xffff) << 16;
6082                         bytes = info->src_bytes;
6083                 }
6084
6085                 if (info->intercept == x86_intercept_outs ||
6086                     info->intercept == x86_intercept_ins)
6087                         exit_info |= SVM_IOIO_STR_MASK;
6088
6089                 if (info->rep_prefix)
6090                         exit_info |= SVM_IOIO_REP_MASK;
6091
6092                 bytes = min(bytes, 4u);
6093
6094                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
6095
6096                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
6097
6098                 vmcb->control.exit_info_1 = exit_info;
6099                 vmcb->control.exit_info_2 = info->next_rip;
6100
6101                 break;
6102         }
6103         default:
6104                 break;
6105         }
6106
6107         /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
6108         if (static_cpu_has(X86_FEATURE_NRIPS))
6109                 vmcb->control.next_rip  = info->next_rip;
6110         vmcb->control.exit_code = icpt_info.exit_code;
6111         vmexit = nested_svm_exit_handled(svm);
6112
6113         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
6114                                            : X86EMUL_CONTINUE;
6115
6116 out:
6117         return ret;
6118 }
6119
6120 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
6121 {
6122         local_irq_enable();
6123         /*
6124          * We must have an instruction with interrupts enabled, so
6125          * the timer interrupt isn't delayed by the interrupt shadow.
6126          */
6127         asm("nop");
6128         local_irq_disable();
6129 }
6130
6131 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
6132 {
6133         if (pause_filter_thresh)
6134                 shrink_ple_window(vcpu);
6135 }
6136
6137 static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
6138 {
6139         if (avic_handle_apic_id_update(vcpu) != 0)
6140                 return;
6141         if (avic_handle_dfr_update(vcpu) != 0)
6142                 return;
6143         avic_handle_ldr_update(vcpu);
6144 }
6145
6146 static void svm_setup_mce(struct kvm_vcpu *vcpu)
6147 {
6148         /* [63:9] are reserved. */
6149         vcpu->arch.mcg_cap &= 0x1ff;
6150 }
6151
6152 static int svm_smi_allowed(struct kvm_vcpu *vcpu)
6153 {
6154         struct vcpu_svm *svm = to_svm(vcpu);
6155
6156         /* Per APM Vol.2 15.22.2 "Response to SMI" */
6157         if (!gif_set(svm))
6158                 return 0;
6159
6160         if (is_guest_mode(&svm->vcpu) &&
6161             svm->nested.intercept & (1ULL << INTERCEPT_SMI)) {
6162                 /* TODO: Might need to set exit_info_1 and exit_info_2 here */
6163                 svm->vmcb->control.exit_code = SVM_EXIT_SMI;
6164                 svm->nested.exit_required = true;
6165                 return 0;
6166         }
6167
6168         return 1;
6169 }
6170
6171 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
6172 {
6173         struct vcpu_svm *svm = to_svm(vcpu);
6174         int ret;
6175
6176         if (is_guest_mode(vcpu)) {
6177                 /* FED8h - SVM Guest */
6178                 put_smstate(u64, smstate, 0x7ed8, 1);
6179                 /* FEE0h - SVM Guest VMCB Physical Address */
6180                 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
6181
6182                 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
6183                 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
6184                 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
6185
6186                 ret = nested_svm_vmexit(svm);
6187                 if (ret)
6188                         return ret;
6189         }
6190         return 0;
6191 }
6192
6193 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
6194 {
6195         struct vcpu_svm *svm = to_svm(vcpu);
6196         struct vmcb *nested_vmcb;
6197         struct page *page;
6198         struct {
6199                 u64 guest;
6200                 u64 vmcb;
6201         } svm_state_save;
6202         int ret;
6203
6204         ret = kvm_vcpu_read_guest(vcpu, smbase + 0xfed8, &svm_state_save,
6205                                   sizeof(svm_state_save));
6206         if (ret)
6207                 return ret;
6208
6209         if (svm_state_save.guest) {
6210                 vcpu->arch.hflags &= ~HF_SMM_MASK;
6211                 nested_vmcb = nested_svm_map(svm, svm_state_save.vmcb, &page);
6212                 if (nested_vmcb)
6213                         enter_svm_guest_mode(svm, svm_state_save.vmcb, nested_vmcb, page);
6214                 else
6215                         ret = 1;
6216                 vcpu->arch.hflags |= HF_SMM_MASK;
6217         }
6218         return ret;
6219 }
6220
6221 static int enable_smi_window(struct kvm_vcpu *vcpu)
6222 {
6223         struct vcpu_svm *svm = to_svm(vcpu);
6224
6225         if (!gif_set(svm)) {
6226                 if (vgif_enabled(svm))
6227                         set_intercept(svm, INTERCEPT_STGI);
6228                 /* STGI will cause a vm exit */
6229                 return 1;
6230         }
6231         return 0;
6232 }
6233
6234 static int sev_asid_new(void)
6235 {
6236         int pos;
6237
6238         /*
6239          * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid.
6240          */
6241         pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1);
6242         if (pos >= max_sev_asid)
6243                 return -EBUSY;
6244
6245         set_bit(pos, sev_asid_bitmap);
6246         return pos + 1;
6247 }
6248
6249 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
6250 {
6251         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6252         int asid, ret;
6253
6254         ret = -EBUSY;
6255         asid = sev_asid_new();
6256         if (asid < 0)
6257                 return ret;
6258
6259         ret = sev_platform_init(&argp->error);
6260         if (ret)
6261                 goto e_free;
6262
6263         sev->active = true;
6264         sev->asid = asid;
6265         INIT_LIST_HEAD(&sev->regions_list);
6266
6267         return 0;
6268
6269 e_free:
6270         __sev_asid_free(asid);
6271         return ret;
6272 }
6273
6274 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
6275 {
6276         struct sev_data_activate *data;
6277         int asid = sev_get_asid(kvm);
6278         int ret;
6279
6280         wbinvd_on_all_cpus();
6281
6282         ret = sev_guest_df_flush(error);
6283         if (ret)
6284                 return ret;
6285
6286         data = kzalloc(sizeof(*data), GFP_KERNEL);
6287         if (!data)
6288                 return -ENOMEM;
6289
6290         /* activate ASID on the given handle */
6291         data->handle = handle;
6292         data->asid   = asid;
6293         ret = sev_guest_activate(data, error);
6294         kfree(data);
6295
6296         return ret;
6297 }
6298
6299 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
6300 {
6301         struct fd f;
6302         int ret;
6303
6304         f = fdget(fd);
6305         if (!f.file)
6306                 return -EBADF;
6307
6308         ret = sev_issue_cmd_external_user(f.file, id, data, error);
6309
6310         fdput(f);
6311         return ret;
6312 }
6313
6314 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
6315 {
6316         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6317
6318         return __sev_issue_cmd(sev->fd, id, data, error);
6319 }
6320
6321 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
6322 {
6323         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6324         struct sev_data_launch_start *start;
6325         struct kvm_sev_launch_start params;
6326         void *dh_blob, *session_blob;
6327         int *error = &argp->error;
6328         int ret;
6329
6330         if (!sev_guest(kvm))
6331                 return -ENOTTY;
6332
6333         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6334                 return -EFAULT;
6335
6336         start = kzalloc(sizeof(*start), GFP_KERNEL);
6337         if (!start)
6338                 return -ENOMEM;
6339
6340         dh_blob = NULL;
6341         if (params.dh_uaddr) {
6342                 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
6343                 if (IS_ERR(dh_blob)) {
6344                         ret = PTR_ERR(dh_blob);
6345                         goto e_free;
6346                 }
6347
6348                 start->dh_cert_address = __sme_set(__pa(dh_blob));
6349                 start->dh_cert_len = params.dh_len;
6350         }
6351
6352         session_blob = NULL;
6353         if (params.session_uaddr) {
6354                 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
6355                 if (IS_ERR(session_blob)) {
6356                         ret = PTR_ERR(session_blob);
6357                         goto e_free_dh;
6358                 }
6359
6360                 start->session_address = __sme_set(__pa(session_blob));
6361                 start->session_len = params.session_len;
6362         }
6363
6364         start->handle = params.handle;
6365         start->policy = params.policy;
6366
6367         /* create memory encryption context */
6368         ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
6369         if (ret)
6370                 goto e_free_session;
6371
6372         /* Bind ASID to this guest */
6373         ret = sev_bind_asid(kvm, start->handle, error);
6374         if (ret)
6375                 goto e_free_session;
6376
6377         /* return handle to userspace */
6378         params.handle = start->handle;
6379         if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
6380                 sev_unbind_asid(kvm, start->handle);
6381                 ret = -EFAULT;
6382                 goto e_free_session;
6383         }
6384
6385         sev->handle = start->handle;
6386         sev->fd = argp->sev_fd;
6387
6388 e_free_session:
6389         kfree(session_blob);
6390 e_free_dh:
6391         kfree(dh_blob);
6392 e_free:
6393         kfree(start);
6394         return ret;
6395 }
6396
6397 static int get_num_contig_pages(int idx, struct page **inpages,
6398                                 unsigned long npages)
6399 {
6400         unsigned long paddr, next_paddr;
6401         int i = idx + 1, pages = 1;
6402
6403         /* find the number of contiguous pages starting from idx */
6404         paddr = __sme_page_pa(inpages[idx]);
6405         while (i < npages) {
6406                 next_paddr = __sme_page_pa(inpages[i++]);
6407                 if ((paddr + PAGE_SIZE) == next_paddr) {
6408                         pages++;
6409                         paddr = next_paddr;
6410                         continue;
6411                 }
6412                 break;
6413         }
6414
6415         return pages;
6416 }
6417
6418 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
6419 {
6420         unsigned long vaddr, vaddr_end, next_vaddr, npages, size;
6421         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6422         struct kvm_sev_launch_update_data params;
6423         struct sev_data_launch_update_data *data;
6424         struct page **inpages;
6425         int i, ret, pages;
6426
6427         if (!sev_guest(kvm))
6428                 return -ENOTTY;
6429
6430         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6431                 return -EFAULT;
6432
6433         data = kzalloc(sizeof(*data), GFP_KERNEL);
6434         if (!data)
6435                 return -ENOMEM;
6436
6437         vaddr = params.uaddr;
6438         size = params.len;
6439         vaddr_end = vaddr + size;
6440
6441         /* Lock the user memory. */
6442         inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
6443         if (!inpages) {
6444                 ret = -ENOMEM;
6445                 goto e_free;
6446         }
6447
6448         /*
6449          * The LAUNCH_UPDATE command will perform in-place encryption of the
6450          * memory content (i.e it will write the same memory region with C=1).
6451          * It's possible that the cache may contain the data with C=0, i.e.,
6452          * unencrypted so invalidate it first.
6453          */
6454         sev_clflush_pages(inpages, npages);
6455
6456         for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
6457                 int offset, len;
6458
6459                 /*
6460                  * If the user buffer is not page-aligned, calculate the offset
6461                  * within the page.
6462                  */
6463                 offset = vaddr & (PAGE_SIZE - 1);
6464
6465                 /* Calculate the number of pages that can be encrypted in one go. */
6466                 pages = get_num_contig_pages(i, inpages, npages);
6467
6468                 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
6469
6470                 data->handle = sev->handle;
6471                 data->len = len;
6472                 data->address = __sme_page_pa(inpages[i]) + offset;
6473                 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
6474                 if (ret)
6475                         goto e_unpin;
6476
6477                 size -= len;
6478                 next_vaddr = vaddr + len;
6479         }
6480
6481 e_unpin:
6482         /* content of memory is updated, mark pages dirty */
6483         for (i = 0; i < npages; i++) {
6484                 set_page_dirty_lock(inpages[i]);
6485                 mark_page_accessed(inpages[i]);
6486         }
6487         /* unlock the user pages */
6488         sev_unpin_memory(kvm, inpages, npages);
6489 e_free:
6490         kfree(data);
6491         return ret;
6492 }
6493
6494 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
6495 {
6496         void __user *measure = (void __user *)(uintptr_t)argp->data;
6497         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6498         struct sev_data_launch_measure *data;
6499         struct kvm_sev_launch_measure params;
6500         void __user *p = NULL;
6501         void *blob = NULL;
6502         int ret;
6503
6504         if (!sev_guest(kvm))
6505                 return -ENOTTY;
6506
6507         if (copy_from_user(&params, measure, sizeof(params)))
6508                 return -EFAULT;
6509
6510         data = kzalloc(sizeof(*data), GFP_KERNEL);
6511         if (!data)
6512                 return -ENOMEM;
6513
6514         /* User wants to query the blob length */
6515         if (!params.len)
6516                 goto cmd;
6517
6518         p = (void __user *)(uintptr_t)params.uaddr;
6519         if (p) {
6520                 if (params.len > SEV_FW_BLOB_MAX_SIZE) {
6521                         ret = -EINVAL;
6522                         goto e_free;
6523                 }
6524
6525                 ret = -ENOMEM;
6526                 blob = kmalloc(params.len, GFP_KERNEL);
6527                 if (!blob)
6528                         goto e_free;
6529
6530                 data->address = __psp_pa(blob);
6531                 data->len = params.len;
6532         }
6533
6534 cmd:
6535         data->handle = sev->handle;
6536         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);
6537
6538         /*
6539          * If we query the session length, FW responded with expected data.
6540          */
6541         if (!params.len)
6542                 goto done;
6543
6544         if (ret)
6545                 goto e_free_blob;
6546
6547         if (blob) {
6548                 if (copy_to_user(p, blob, params.len))
6549                         ret = -EFAULT;
6550         }
6551
6552 done:
6553         params.len = data->len;
6554         if (copy_to_user(measure, &params, sizeof(params)))
6555                 ret = -EFAULT;
6556 e_free_blob:
6557         kfree(blob);
6558 e_free:
6559         kfree(data);
6560         return ret;
6561 }
6562
6563 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
6564 {
6565         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6566         struct sev_data_launch_finish *data;
6567         int ret;
6568
6569         if (!sev_guest(kvm))
6570                 return -ENOTTY;
6571
6572         data = kzalloc(sizeof(*data), GFP_KERNEL);
6573         if (!data)
6574                 return -ENOMEM;
6575
6576         data->handle = sev->handle;
6577         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);
6578
6579         kfree(data);
6580         return ret;
6581 }
6582
6583 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
6584 {
6585         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6586         struct kvm_sev_guest_status params;
6587         struct sev_data_guest_status *data;
6588         int ret;
6589
6590         if (!sev_guest(kvm))
6591                 return -ENOTTY;
6592
6593         data = kzalloc(sizeof(*data), GFP_KERNEL);
6594         if (!data)
6595                 return -ENOMEM;
6596
6597         data->handle = sev->handle;
6598         ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
6599         if (ret)
6600                 goto e_free;
6601
6602         params.policy = data->policy;
6603         params.state = data->state;
6604         params.handle = data->handle;
6605
6606         if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
6607                 ret = -EFAULT;
6608 e_free:
6609         kfree(data);
6610         return ret;
6611 }
6612
6613 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
6614                                unsigned long dst, int size,
6615                                int *error, bool enc)
6616 {
6617         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6618         struct sev_data_dbg *data;
6619         int ret;
6620
6621         data = kzalloc(sizeof(*data), GFP_KERNEL);
6622         if (!data)
6623                 return -ENOMEM;
6624
6625         data->handle = sev->handle;
6626         data->dst_addr = dst;
6627         data->src_addr = src;
6628         data->len = size;
6629
6630         ret = sev_issue_cmd(kvm,
6631                             enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
6632                             data, error);
6633         kfree(data);
6634         return ret;
6635 }
6636
6637 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
6638                              unsigned long dst_paddr, int sz, int *err)
6639 {
6640         int offset;
6641
6642         /*
6643          * Its safe to read more than we are asked, caller should ensure that
6644          * destination has enough space.
6645          */
6646         src_paddr = round_down(src_paddr, 16);
6647         offset = src_paddr & 15;
6648         sz = round_up(sz + offset, 16);
6649
6650         return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
6651 }
6652
6653 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
6654                                   unsigned long __user dst_uaddr,
6655                                   unsigned long dst_paddr,
6656                                   int size, int *err)
6657 {
6658         struct page *tpage = NULL;
6659         int ret, offset;
6660
6661         /* if inputs are not 16-byte then use intermediate buffer */
6662         if (!IS_ALIGNED(dst_paddr, 16) ||
6663             !IS_ALIGNED(paddr,     16) ||
6664             !IS_ALIGNED(size,      16)) {
6665                 tpage = (void *)alloc_page(GFP_KERNEL);
6666                 if (!tpage)
6667                         return -ENOMEM;
6668
6669                 dst_paddr = __sme_page_pa(tpage);
6670         }
6671
6672         ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
6673         if (ret)
6674                 goto e_free;
6675
6676         if (tpage) {
6677                 offset = paddr & 15;
6678                 if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
6679                                  page_address(tpage) + offset, size))
6680                         ret = -EFAULT;
6681         }
6682
6683 e_free:
6684         if (tpage)
6685                 __free_page(tpage);
6686
6687         return ret;
6688 }
6689
6690 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
6691                                   unsigned long __user vaddr,
6692                                   unsigned long dst_paddr,
6693                                   unsigned long __user dst_vaddr,
6694                                   int size, int *error)
6695 {
6696         struct page *src_tpage = NULL;
6697         struct page *dst_tpage = NULL;
6698         int ret, len = size;
6699
6700         /* If source buffer is not aligned then use an intermediate buffer */
6701         if (!IS_ALIGNED(vaddr, 16)) {
6702                 src_tpage = alloc_page(GFP_KERNEL);
6703                 if (!src_tpage)
6704                         return -ENOMEM;
6705
6706                 if (copy_from_user(page_address(src_tpage),
6707                                 (void __user *)(uintptr_t)vaddr, size)) {
6708                         __free_page(src_tpage);
6709                         return -EFAULT;
6710                 }
6711
6712                 paddr = __sme_page_pa(src_tpage);
6713         }
6714
6715         /*
6716          *  If destination buffer or length is not aligned then do read-modify-write:
6717          *   - decrypt destination in an intermediate buffer
6718          *   - copy the source buffer in an intermediate buffer
6719          *   - use the intermediate buffer as source buffer
6720          */
6721         if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
6722                 int dst_offset;
6723
6724                 dst_tpage = alloc_page(GFP_KERNEL);
6725                 if (!dst_tpage) {
6726                         ret = -ENOMEM;
6727                         goto e_free;
6728                 }
6729
6730                 ret = __sev_dbg_decrypt(kvm, dst_paddr,
6731                                         __sme_page_pa(dst_tpage), size, error);
6732                 if (ret)
6733                         goto e_free;
6734
6735                 /*
6736                  *  If source is kernel buffer then use memcpy() otherwise
6737                  *  copy_from_user().
6738                  */
6739                 dst_offset = dst_paddr & 15;
6740
6741                 if (src_tpage)
6742                         memcpy(page_address(dst_tpage) + dst_offset,
6743                                page_address(src_tpage), size);
6744                 else {
6745                         if (copy_from_user(page_address(dst_tpage) + dst_offset,
6746                                            (void __user *)(uintptr_t)vaddr, size)) {
6747                                 ret = -EFAULT;
6748                                 goto e_free;
6749                         }
6750                 }
6751
6752                 paddr = __sme_page_pa(dst_tpage);
6753                 dst_paddr = round_down(dst_paddr, 16);
6754                 len = round_up(size, 16);
6755         }
6756
6757         ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
6758
6759 e_free:
6760         if (src_tpage)
6761                 __free_page(src_tpage);
6762         if (dst_tpage)
6763                 __free_page(dst_tpage);
6764         return ret;
6765 }
6766
6767 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
6768 {
6769         unsigned long vaddr, vaddr_end, next_vaddr;
6770         unsigned long dst_vaddr;
6771         struct page **src_p, **dst_p;
6772         struct kvm_sev_dbg debug;
6773         unsigned long n;
6774         int ret, size;
6775
6776         if (!sev_guest(kvm))
6777                 return -ENOTTY;
6778
6779         if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
6780                 return -EFAULT;
6781
6782         vaddr = debug.src_uaddr;
6783         size = debug.len;
6784         vaddr_end = vaddr + size;
6785         dst_vaddr = debug.dst_uaddr;
6786
6787         for (; vaddr < vaddr_end; vaddr = next_vaddr) {
6788                 int len, s_off, d_off;
6789
6790                 /* lock userspace source and destination page */
6791                 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
6792                 if (!src_p)
6793                         return -EFAULT;
6794
6795                 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
6796                 if (!dst_p) {
6797                         sev_unpin_memory(kvm, src_p, n);
6798                         return -EFAULT;
6799                 }
6800
6801                 /*
6802                  * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the
6803                  * memory content (i.e it will write the same memory region with C=1).
6804                  * It's possible that the cache may contain the data with C=0, i.e.,
6805                  * unencrypted so invalidate it first.
6806                  */
6807                 sev_clflush_pages(src_p, 1);
6808                 sev_clflush_pages(dst_p, 1);
6809
6810                 /*
6811                  * Since user buffer may not be page aligned, calculate the
6812                  * offset within the page.
6813                  */
6814                 s_off = vaddr & ~PAGE_MASK;
6815                 d_off = dst_vaddr & ~PAGE_MASK;
6816                 len = min_t(size_t, (PAGE_SIZE - s_off), size);
6817
6818                 if (dec)
6819                         ret = __sev_dbg_decrypt_user(kvm,
6820                                                      __sme_page_pa(src_p[0]) + s_off,
6821                                                      dst_vaddr,
6822                                                      __sme_page_pa(dst_p[0]) + d_off,
6823                                                      len, &argp->error);
6824                 else
6825                         ret = __sev_dbg_encrypt_user(kvm,
6826                                                      __sme_page_pa(src_p[0]) + s_off,
6827                                                      vaddr,
6828                                                      __sme_page_pa(dst_p[0]) + d_off,
6829                                                      dst_vaddr,
6830                                                      len, &argp->error);
6831
6832                 sev_unpin_memory(kvm, src_p, 1);
6833                 sev_unpin_memory(kvm, dst_p, 1);
6834
6835                 if (ret)
6836                         goto err;
6837
6838                 next_vaddr = vaddr + len;
6839                 dst_vaddr = dst_vaddr + len;
6840                 size -= len;
6841         }
6842 err:
6843         return ret;
6844 }
6845
6846 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
6847 {
6848         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6849         struct sev_data_launch_secret *data;
6850         struct kvm_sev_launch_secret params;
6851         struct page **pages;
6852         void *blob, *hdr;
6853         unsigned long n;
6854         int ret, offset;
6855
6856         if (!sev_guest(kvm))
6857                 return -ENOTTY;
6858
6859         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6860                 return -EFAULT;
6861
6862         pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
6863         if (!pages)
6864                 return -ENOMEM;
6865
6866         /*
6867          * The secret must be copied into contiguous memory region, lets verify
6868          * that userspace memory pages are contiguous before we issue command.
6869          */
6870         if (get_num_contig_pages(0, pages, n) != n) {
6871                 ret = -EINVAL;
6872                 goto e_unpin_memory;
6873         }
6874
6875         ret = -ENOMEM;
6876         data = kzalloc(sizeof(*data), GFP_KERNEL);
6877         if (!data)
6878                 goto e_unpin_memory;
6879
6880         offset = params.guest_uaddr & (PAGE_SIZE - 1);
6881         data->guest_address = __sme_page_pa(pages[0]) + offset;
6882         data->guest_len = params.guest_len;
6883
6884         blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
6885         if (IS_ERR(blob)) {
6886                 ret = PTR_ERR(blob);
6887                 goto e_free;
6888         }
6889
6890         data->trans_address = __psp_pa(blob);
6891         data->trans_len = params.trans_len;
6892
6893         hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
6894         if (IS_ERR(hdr)) {
6895                 ret = PTR_ERR(hdr);
6896                 goto e_free_blob;
6897         }
6898         data->hdr_address = __psp_pa(hdr);
6899         data->hdr_len = params.hdr_len;
6900
6901         data->handle = sev->handle;
6902         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);
6903
6904         kfree(hdr);
6905
6906 e_free_blob:
6907         kfree(blob);
6908 e_free:
6909         kfree(data);
6910 e_unpin_memory:
6911         sev_unpin_memory(kvm, pages, n);
6912         return ret;
6913 }
6914
6915 static int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
6916 {
6917         struct kvm_sev_cmd sev_cmd;
6918         int r;
6919
6920         if (!svm_sev_enabled())
6921                 return -ENOTTY;
6922
6923         if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
6924                 return -EFAULT;
6925
6926         mutex_lock(&kvm->lock);
6927
6928         switch (sev_cmd.id) {
6929         case KVM_SEV_INIT:
6930                 r = sev_guest_init(kvm, &sev_cmd);
6931                 break;
6932         case KVM_SEV_LAUNCH_START:
6933                 r = sev_launch_start(kvm, &sev_cmd);
6934                 break;
6935         case KVM_SEV_LAUNCH_UPDATE_DATA:
6936                 r = sev_launch_update_data(kvm, &sev_cmd);
6937                 break;
6938         case KVM_SEV_LAUNCH_MEASURE:
6939                 r = sev_launch_measure(kvm, &sev_cmd);
6940                 break;
6941         case KVM_SEV_LAUNCH_FINISH:
6942                 r = sev_launch_finish(kvm, &sev_cmd);
6943                 break;
6944         case KVM_SEV_GUEST_STATUS:
6945                 r = sev_guest_status(kvm, &sev_cmd);
6946                 break;
6947         case KVM_SEV_DBG_DECRYPT:
6948                 r = sev_dbg_crypt(kvm, &sev_cmd, true);
6949                 break;
6950         case KVM_SEV_DBG_ENCRYPT:
6951                 r = sev_dbg_crypt(kvm, &sev_cmd, false);
6952                 break;
6953         case KVM_SEV_LAUNCH_SECRET:
6954                 r = sev_launch_secret(kvm, &sev_cmd);
6955                 break;
6956         default:
6957                 r = -EINVAL;
6958                 goto out;
6959         }
6960
6961         if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
6962                 r = -EFAULT;
6963
6964 out:
6965         mutex_unlock(&kvm->lock);
6966         return r;
6967 }
6968
6969 static int svm_register_enc_region(struct kvm *kvm,
6970                                    struct kvm_enc_region *range)
6971 {
6972         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6973         struct enc_region *region;
6974         int ret = 0;
6975
6976         if (!sev_guest(kvm))
6977                 return -ENOTTY;
6978
6979         if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
6980                 return -EINVAL;
6981
6982         region = kzalloc(sizeof(*region), GFP_KERNEL);
6983         if (!region)
6984                 return -ENOMEM;
6985
6986         region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
6987         if (!region->pages) {
6988                 ret = -ENOMEM;
6989                 goto e_free;
6990         }
6991
6992         /*
6993          * The guest may change the memory encryption attribute from C=0 -> C=1
6994          * or vice versa for this memory range. Lets make sure caches are
6995          * flushed to ensure that guest data gets written into memory with
6996          * correct C-bit.
6997          */
6998         sev_clflush_pages(region->pages, region->npages);
6999
7000         region->uaddr = range->addr;
7001         region->size = range->size;
7002
7003         mutex_lock(&kvm->lock);
7004         list_add_tail(&region->list, &sev->regions_list);
7005         mutex_unlock(&kvm->lock);
7006
7007         return ret;
7008
7009 e_free:
7010         kfree(region);
7011         return ret;
7012 }
7013
7014 static struct enc_region *
7015 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
7016 {
7017         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
7018         struct list_head *head = &sev->regions_list;
7019         struct enc_region *i;
7020
7021         list_for_each_entry(i, head, list) {
7022                 if (i->uaddr == range->addr &&
7023                     i->size == range->size)
7024                         return i;
7025         }
7026
7027         return NULL;
7028 }
7029
7030
7031 static int svm_unregister_enc_region(struct kvm *kvm,
7032                                      struct kvm_enc_region *range)
7033 {
7034         struct enc_region *region;
7035         int ret;
7036
7037         mutex_lock(&kvm->lock);
7038
7039         if (!sev_guest(kvm)) {
7040                 ret = -ENOTTY;
7041                 goto failed;
7042         }
7043
7044         region = find_enc_region(kvm, range);
7045         if (!region) {
7046                 ret = -EINVAL;
7047                 goto failed;
7048         }
7049
7050         __unregister_enc_region_locked(kvm, region);
7051
7052         mutex_unlock(&kvm->lock);
7053         return 0;
7054
7055 failed:
7056         mutex_unlock(&kvm->lock);
7057         return ret;
7058 }
7059
7060 static uint16_t nested_get_evmcs_version(struct kvm_vcpu *vcpu)
7061 {
7062         /* Not supported */
7063         return 0;
7064 }
7065
7066 static int nested_enable_evmcs(struct kvm_vcpu *vcpu,
7067                                    uint16_t *vmcs_version)
7068 {
7069         /* Intel-only feature */
7070         return -ENODEV;
7071 }
7072
7073 static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
7074         .cpu_has_kvm_support = has_svm,
7075         .disabled_by_bios = is_disabled,
7076         .hardware_setup = svm_hardware_setup,
7077         .hardware_unsetup = svm_hardware_unsetup,
7078         .check_processor_compatibility = svm_check_processor_compat,
7079         .hardware_enable = svm_hardware_enable,
7080         .hardware_disable = svm_hardware_disable,
7081         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
7082         .has_emulated_msr = svm_has_emulated_msr,
7083
7084         .vcpu_create = svm_create_vcpu,
7085         .vcpu_free = svm_free_vcpu,
7086         .vcpu_reset = svm_vcpu_reset,
7087
7088         .vm_alloc = svm_vm_alloc,
7089         .vm_free = svm_vm_free,
7090         .vm_init = avic_vm_init,
7091         .vm_destroy = svm_vm_destroy,
7092
7093         .prepare_guest_switch = svm_prepare_guest_switch,
7094         .vcpu_load = svm_vcpu_load,
7095         .vcpu_put = svm_vcpu_put,
7096         .vcpu_blocking = svm_vcpu_blocking,
7097         .vcpu_unblocking = svm_vcpu_unblocking,
7098
7099         .update_bp_intercept = update_bp_intercept,
7100         .get_msr_feature = svm_get_msr_feature,
7101         .get_msr = svm_get_msr,
7102         .set_msr = svm_set_msr,
7103         .get_segment_base = svm_get_segment_base,
7104         .get_segment = svm_get_segment,
7105         .set_segment = svm_set_segment,
7106         .get_cpl = svm_get_cpl,
7107         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
7108         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
7109         .decache_cr3 = svm_decache_cr3,
7110         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
7111         .set_cr0 = svm_set_cr0,
7112         .set_cr3 = svm_set_cr3,
7113         .set_cr4 = svm_set_cr4,
7114         .set_efer = svm_set_efer,
7115         .get_idt = svm_get_idt,
7116         .set_idt = svm_set_idt,
7117         .get_gdt = svm_get_gdt,
7118         .set_gdt = svm_set_gdt,
7119         .get_dr6 = svm_get_dr6,
7120         .set_dr6 = svm_set_dr6,
7121         .set_dr7 = svm_set_dr7,
7122         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
7123         .cache_reg = svm_cache_reg,
7124         .get_rflags = svm_get_rflags,
7125         .set_rflags = svm_set_rflags,
7126
7127         .tlb_flush = svm_flush_tlb,
7128         .tlb_flush_gva = svm_flush_tlb_gva,
7129
7130         .run = svm_vcpu_run,
7131         .handle_exit = handle_exit,
7132         .skip_emulated_instruction = skip_emulated_instruction,
7133         .set_interrupt_shadow = svm_set_interrupt_shadow,
7134         .get_interrupt_shadow = svm_get_interrupt_shadow,
7135         .patch_hypercall = svm_patch_hypercall,
7136         .set_irq = svm_set_irq,
7137         .set_nmi = svm_inject_nmi,
7138         .queue_exception = svm_queue_exception,
7139         .cancel_injection = svm_cancel_injection,
7140         .interrupt_allowed = svm_interrupt_allowed,
7141         .nmi_allowed = svm_nmi_allowed,
7142         .get_nmi_mask = svm_get_nmi_mask,
7143         .set_nmi_mask = svm_set_nmi_mask,
7144         .enable_nmi_window = enable_nmi_window,
7145         .enable_irq_window = enable_irq_window,
7146         .update_cr8_intercept = update_cr8_intercept,
7147         .set_virtual_apic_mode = svm_set_virtual_apic_mode,
7148         .get_enable_apicv = svm_get_enable_apicv,
7149         .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
7150         .load_eoi_exitmap = svm_load_eoi_exitmap,
7151         .hwapic_irr_update = svm_hwapic_irr_update,
7152         .hwapic_isr_update = svm_hwapic_isr_update,
7153         .sync_pir_to_irr = kvm_lapic_find_highest_irr,
7154         .apicv_post_state_restore = avic_post_state_restore,
7155
7156         .set_tss_addr = svm_set_tss_addr,
7157         .set_identity_map_addr = svm_set_identity_map_addr,
7158         .get_tdp_level = get_npt_level,
7159         .get_mt_mask = svm_get_mt_mask,
7160
7161         .get_exit_info = svm_get_exit_info,
7162
7163         .get_lpage_level = svm_get_lpage_level,
7164
7165         .cpuid_update = svm_cpuid_update,
7166
7167         .rdtscp_supported = svm_rdtscp_supported,
7168         .invpcid_supported = svm_invpcid_supported,
7169         .mpx_supported = svm_mpx_supported,
7170         .xsaves_supported = svm_xsaves_supported,
7171         .umip_emulated = svm_umip_emulated,
7172
7173         .set_supported_cpuid = svm_set_supported_cpuid,
7174
7175         .has_wbinvd_exit = svm_has_wbinvd_exit,
7176
7177         .read_l1_tsc_offset = svm_read_l1_tsc_offset,
7178         .write_l1_tsc_offset = svm_write_l1_tsc_offset,
7179
7180         .set_tdp_cr3 = set_tdp_cr3,
7181
7182         .check_intercept = svm_check_intercept,
7183         .handle_external_intr = svm_handle_external_intr,
7184
7185         .request_immediate_exit = __kvm_request_immediate_exit,
7186
7187         .sched_in = svm_sched_in,
7188
7189         .pmu_ops = &amd_pmu_ops,
7190         .deliver_posted_interrupt = svm_deliver_avic_intr,
7191         .update_pi_irte = svm_update_pi_irte,
7192         .setup_mce = svm_setup_mce,
7193
7194         .smi_allowed = svm_smi_allowed,
7195         .pre_enter_smm = svm_pre_enter_smm,
7196         .pre_leave_smm = svm_pre_leave_smm,
7197         .enable_smi_window = enable_smi_window,
7198
7199         .mem_enc_op = svm_mem_enc_op,
7200         .mem_enc_reg_region = svm_register_enc_region,
7201         .mem_enc_unreg_region = svm_unregister_enc_region,
7202
7203         .nested_enable_evmcs = nested_enable_evmcs,
7204         .nested_get_evmcs_version = nested_get_evmcs_version,
7205 };
7206
7207 static int __init svm_init(void)
7208 {
7209         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
7210                         __alignof__(struct vcpu_svm), THIS_MODULE);
7211 }
7212
7213 static void __exit svm_exit(void)
7214 {
7215         kvm_exit();
7216 }
7217
7218 module_init(svm_init)
7219 module_exit(svm_exit)