]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/svm.c
imx: thermal: use CPU temperature grade info for thresholds
[linux.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23 #include "cpuid.h"
24 #include "pmu.h"
25
26 #include <linux/module.h>
27 #include <linux/mod_devicetable.h>
28 #include <linux/kernel.h>
29 #include <linux/vmalloc.h>
30 #include <linux/highmem.h>
31 #include <linux/sched.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34
35 #include <asm/perf_event.h>
36 #include <asm/tlbflush.h>
37 #include <asm/desc.h>
38 #include <asm/debugreg.h>
39 #include <asm/kvm_para.h>
40
41 #include <asm/virtext.h>
42 #include "trace.h"
43
44 #define __ex(x) __kvm_handle_fault_on_reboot(x)
45
46 MODULE_AUTHOR("Qumranet");
47 MODULE_LICENSE("GPL");
48
49 static const struct x86_cpu_id svm_cpu_id[] = {
50         X86_FEATURE_MATCH(X86_FEATURE_SVM),
51         {}
52 };
53 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
54
55 #define IOPM_ALLOC_ORDER 2
56 #define MSRPM_ALLOC_ORDER 1
57
58 #define SEG_TYPE_LDT 2
59 #define SEG_TYPE_BUSY_TSS16 3
60
61 #define SVM_FEATURE_NPT            (1 <<  0)
62 #define SVM_FEATURE_LBRV           (1 <<  1)
63 #define SVM_FEATURE_SVML           (1 <<  2)
64 #define SVM_FEATURE_NRIP           (1 <<  3)
65 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
66 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
67 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
68 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
69 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
70
71 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
72 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
73 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
74
75 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
76
77 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
78 #define TSC_RATIO_MIN           0x0000000000000001ULL
79 #define TSC_RATIO_MAX           0x000000ffffffffffULL
80
81 static bool erratum_383_found __read_mostly;
82
83 static const u32 host_save_user_msrs[] = {
84 #ifdef CONFIG_X86_64
85         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
86         MSR_FS_BASE,
87 #endif
88         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
89 };
90
91 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
92
93 struct kvm_vcpu;
94
95 struct nested_state {
96         struct vmcb *hsave;
97         u64 hsave_msr;
98         u64 vm_cr_msr;
99         u64 vmcb;
100
101         /* These are the merged vectors */
102         u32 *msrpm;
103
104         /* gpa pointers to the real vectors */
105         u64 vmcb_msrpm;
106         u64 vmcb_iopm;
107
108         /* A VMEXIT is required but not yet emulated */
109         bool exit_required;
110
111         /* cache for intercepts of the guest */
112         u32 intercept_cr;
113         u32 intercept_dr;
114         u32 intercept_exceptions;
115         u64 intercept;
116
117         /* Nested Paging related state */
118         u64 nested_cr3;
119 };
120
121 #define MSRPM_OFFSETS   16
122 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
123
124 /*
125  * Set osvw_len to higher value when updated Revision Guides
126  * are published and we know what the new status bits are
127  */
128 static uint64_t osvw_len = 4, osvw_status;
129
130 struct vcpu_svm {
131         struct kvm_vcpu vcpu;
132         struct vmcb *vmcb;
133         unsigned long vmcb_pa;
134         struct svm_cpu_data *svm_data;
135         uint64_t asid_generation;
136         uint64_t sysenter_esp;
137         uint64_t sysenter_eip;
138
139         u64 next_rip;
140
141         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
142         struct {
143                 u16 fs;
144                 u16 gs;
145                 u16 ldt;
146                 u64 gs_base;
147         } host;
148
149         u32 *msrpm;
150
151         ulong nmi_iret_rip;
152
153         struct nested_state nested;
154
155         bool nmi_singlestep;
156
157         unsigned int3_injected;
158         unsigned long int3_rip;
159         u32 apf_reason;
160
161         u64  tsc_ratio;
162
163         /* cached guest cpuid flags for faster access */
164         bool nrips_enabled      : 1;
165 };
166
167 static DEFINE_PER_CPU(u64, current_tsc_ratio);
168 #define TSC_RATIO_DEFAULT       0x0100000000ULL
169
170 #define MSR_INVALID                     0xffffffffU
171
172 static const struct svm_direct_access_msrs {
173         u32 index;   /* Index of the MSR */
174         bool always; /* True if intercept is always on */
175 } direct_access_msrs[] = {
176         { .index = MSR_STAR,                            .always = true  },
177         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
178 #ifdef CONFIG_X86_64
179         { .index = MSR_GS_BASE,                         .always = true  },
180         { .index = MSR_FS_BASE,                         .always = true  },
181         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
182         { .index = MSR_LSTAR,                           .always = true  },
183         { .index = MSR_CSTAR,                           .always = true  },
184         { .index = MSR_SYSCALL_MASK,                    .always = true  },
185 #endif
186         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
187         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
188         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
189         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
190         { .index = MSR_INVALID,                         .always = false },
191 };
192
193 /* enable NPT for AMD64 and X86 with PAE */
194 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
195 static bool npt_enabled = true;
196 #else
197 static bool npt_enabled;
198 #endif
199
200 /* allow nested paging (virtualized MMU) for all guests */
201 static int npt = true;
202 module_param(npt, int, S_IRUGO);
203
204 /* allow nested virtualization in KVM/SVM */
205 static int nested = true;
206 module_param(nested, int, S_IRUGO);
207
208 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
209 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
210 static void svm_complete_interrupts(struct vcpu_svm *svm);
211
212 static int nested_svm_exit_handled(struct vcpu_svm *svm);
213 static int nested_svm_intercept(struct vcpu_svm *svm);
214 static int nested_svm_vmexit(struct vcpu_svm *svm);
215 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
216                                       bool has_error_code, u32 error_code);
217 static u64 __scale_tsc(u64 ratio, u64 tsc);
218
219 enum {
220         VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
221                             pause filter count */
222         VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
223         VMCB_ASID,       /* ASID */
224         VMCB_INTR,       /* int_ctl, int_vector */
225         VMCB_NPT,        /* npt_en, nCR3, gPAT */
226         VMCB_CR,         /* CR0, CR3, CR4, EFER */
227         VMCB_DR,         /* DR6, DR7 */
228         VMCB_DT,         /* GDT, IDT */
229         VMCB_SEG,        /* CS, DS, SS, ES, CPL */
230         VMCB_CR2,        /* CR2 only */
231         VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
232         VMCB_DIRTY_MAX,
233 };
234
235 /* TPR and CR2 are always written before VMRUN */
236 #define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
237
238 static inline void mark_all_dirty(struct vmcb *vmcb)
239 {
240         vmcb->control.clean = 0;
241 }
242
243 static inline void mark_all_clean(struct vmcb *vmcb)
244 {
245         vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
246                                & ~VMCB_ALWAYS_DIRTY_MASK;
247 }
248
249 static inline void mark_dirty(struct vmcb *vmcb, int bit)
250 {
251         vmcb->control.clean &= ~(1 << bit);
252 }
253
254 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
255 {
256         return container_of(vcpu, struct vcpu_svm, vcpu);
257 }
258
259 static void recalc_intercepts(struct vcpu_svm *svm)
260 {
261         struct vmcb_control_area *c, *h;
262         struct nested_state *g;
263
264         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
265
266         if (!is_guest_mode(&svm->vcpu))
267                 return;
268
269         c = &svm->vmcb->control;
270         h = &svm->nested.hsave->control;
271         g = &svm->nested;
272
273         c->intercept_cr = h->intercept_cr | g->intercept_cr;
274         c->intercept_dr = h->intercept_dr | g->intercept_dr;
275         c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
276         c->intercept = h->intercept | g->intercept;
277 }
278
279 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
280 {
281         if (is_guest_mode(&svm->vcpu))
282                 return svm->nested.hsave;
283         else
284                 return svm->vmcb;
285 }
286
287 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
288 {
289         struct vmcb *vmcb = get_host_vmcb(svm);
290
291         vmcb->control.intercept_cr |= (1U << bit);
292
293         recalc_intercepts(svm);
294 }
295
296 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
297 {
298         struct vmcb *vmcb = get_host_vmcb(svm);
299
300         vmcb->control.intercept_cr &= ~(1U << bit);
301
302         recalc_intercepts(svm);
303 }
304
305 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
306 {
307         struct vmcb *vmcb = get_host_vmcb(svm);
308
309         return vmcb->control.intercept_cr & (1U << bit);
310 }
311
312 static inline void set_dr_intercepts(struct vcpu_svm *svm)
313 {
314         struct vmcb *vmcb = get_host_vmcb(svm);
315
316         vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
317                 | (1 << INTERCEPT_DR1_READ)
318                 | (1 << INTERCEPT_DR2_READ)
319                 | (1 << INTERCEPT_DR3_READ)
320                 | (1 << INTERCEPT_DR4_READ)
321                 | (1 << INTERCEPT_DR5_READ)
322                 | (1 << INTERCEPT_DR6_READ)
323                 | (1 << INTERCEPT_DR7_READ)
324                 | (1 << INTERCEPT_DR0_WRITE)
325                 | (1 << INTERCEPT_DR1_WRITE)
326                 | (1 << INTERCEPT_DR2_WRITE)
327                 | (1 << INTERCEPT_DR3_WRITE)
328                 | (1 << INTERCEPT_DR4_WRITE)
329                 | (1 << INTERCEPT_DR5_WRITE)
330                 | (1 << INTERCEPT_DR6_WRITE)
331                 | (1 << INTERCEPT_DR7_WRITE);
332
333         recalc_intercepts(svm);
334 }
335
336 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
337 {
338         struct vmcb *vmcb = get_host_vmcb(svm);
339
340         vmcb->control.intercept_dr = 0;
341
342         recalc_intercepts(svm);
343 }
344
345 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
346 {
347         struct vmcb *vmcb = get_host_vmcb(svm);
348
349         vmcb->control.intercept_exceptions |= (1U << bit);
350
351         recalc_intercepts(svm);
352 }
353
354 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
355 {
356         struct vmcb *vmcb = get_host_vmcb(svm);
357
358         vmcb->control.intercept_exceptions &= ~(1U << bit);
359
360         recalc_intercepts(svm);
361 }
362
363 static inline void set_intercept(struct vcpu_svm *svm, int bit)
364 {
365         struct vmcb *vmcb = get_host_vmcb(svm);
366
367         vmcb->control.intercept |= (1ULL << bit);
368
369         recalc_intercepts(svm);
370 }
371
372 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
373 {
374         struct vmcb *vmcb = get_host_vmcb(svm);
375
376         vmcb->control.intercept &= ~(1ULL << bit);
377
378         recalc_intercepts(svm);
379 }
380
381 static inline void enable_gif(struct vcpu_svm *svm)
382 {
383         svm->vcpu.arch.hflags |= HF_GIF_MASK;
384 }
385
386 static inline void disable_gif(struct vcpu_svm *svm)
387 {
388         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
389 }
390
391 static inline bool gif_set(struct vcpu_svm *svm)
392 {
393         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
394 }
395
396 static unsigned long iopm_base;
397
398 struct kvm_ldttss_desc {
399         u16 limit0;
400         u16 base0;
401         unsigned base1:8, type:5, dpl:2, p:1;
402         unsigned limit1:4, zero0:3, g:1, base2:8;
403         u32 base3;
404         u32 zero1;
405 } __attribute__((packed));
406
407 struct svm_cpu_data {
408         int cpu;
409
410         u64 asid_generation;
411         u32 max_asid;
412         u32 next_asid;
413         struct kvm_ldttss_desc *tss_desc;
414
415         struct page *save_area;
416 };
417
418 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
419
420 struct svm_init_data {
421         int cpu;
422         int r;
423 };
424
425 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
426
427 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
428 #define MSRS_RANGE_SIZE 2048
429 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
430
431 static u32 svm_msrpm_offset(u32 msr)
432 {
433         u32 offset;
434         int i;
435
436         for (i = 0; i < NUM_MSR_MAPS; i++) {
437                 if (msr < msrpm_ranges[i] ||
438                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
439                         continue;
440
441                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
442                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
443
444                 /* Now we have the u8 offset - but need the u32 offset */
445                 return offset / 4;
446         }
447
448         /* MSR not in any range */
449         return MSR_INVALID;
450 }
451
452 #define MAX_INST_SIZE 15
453
454 static inline void clgi(void)
455 {
456         asm volatile (__ex(SVM_CLGI));
457 }
458
459 static inline void stgi(void)
460 {
461         asm volatile (__ex(SVM_STGI));
462 }
463
464 static inline void invlpga(unsigned long addr, u32 asid)
465 {
466         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
467 }
468
469 static int get_npt_level(void)
470 {
471 #ifdef CONFIG_X86_64
472         return PT64_ROOT_LEVEL;
473 #else
474         return PT32E_ROOT_LEVEL;
475 #endif
476 }
477
478 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
479 {
480         vcpu->arch.efer = efer;
481         if (!npt_enabled && !(efer & EFER_LMA))
482                 efer &= ~EFER_LME;
483
484         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
485         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
486 }
487
488 static int is_external_interrupt(u32 info)
489 {
490         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
491         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
492 }
493
494 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
495 {
496         struct vcpu_svm *svm = to_svm(vcpu);
497         u32 ret = 0;
498
499         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
500                 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
501         return ret;
502 }
503
504 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
505 {
506         struct vcpu_svm *svm = to_svm(vcpu);
507
508         if (mask == 0)
509                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
510         else
511                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
512
513 }
514
515 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
516 {
517         struct vcpu_svm *svm = to_svm(vcpu);
518
519         if (svm->vmcb->control.next_rip != 0) {
520                 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
521                 svm->next_rip = svm->vmcb->control.next_rip;
522         }
523
524         if (!svm->next_rip) {
525                 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
526                                 EMULATE_DONE)
527                         printk(KERN_DEBUG "%s: NOP\n", __func__);
528                 return;
529         }
530         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
531                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
532                        __func__, kvm_rip_read(vcpu), svm->next_rip);
533
534         kvm_rip_write(vcpu, svm->next_rip);
535         svm_set_interrupt_shadow(vcpu, 0);
536 }
537
538 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
539                                 bool has_error_code, u32 error_code,
540                                 bool reinject)
541 {
542         struct vcpu_svm *svm = to_svm(vcpu);
543
544         /*
545          * If we are within a nested VM we'd better #VMEXIT and let the guest
546          * handle the exception
547          */
548         if (!reinject &&
549             nested_svm_check_exception(svm, nr, has_error_code, error_code))
550                 return;
551
552         if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
553                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
554
555                 /*
556                  * For guest debugging where we have to reinject #BP if some
557                  * INT3 is guest-owned:
558                  * Emulate nRIP by moving RIP forward. Will fail if injection
559                  * raises a fault that is not intercepted. Still better than
560                  * failing in all cases.
561                  */
562                 skip_emulated_instruction(&svm->vcpu);
563                 rip = kvm_rip_read(&svm->vcpu);
564                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
565                 svm->int3_injected = rip - old_rip;
566         }
567
568         svm->vmcb->control.event_inj = nr
569                 | SVM_EVTINJ_VALID
570                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
571                 | SVM_EVTINJ_TYPE_EXEPT;
572         svm->vmcb->control.event_inj_err = error_code;
573 }
574
575 static void svm_init_erratum_383(void)
576 {
577         u32 low, high;
578         int err;
579         u64 val;
580
581         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
582                 return;
583
584         /* Use _safe variants to not break nested virtualization */
585         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
586         if (err)
587                 return;
588
589         val |= (1ULL << 47);
590
591         low  = lower_32_bits(val);
592         high = upper_32_bits(val);
593
594         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
595
596         erratum_383_found = true;
597 }
598
599 static void svm_init_osvw(struct kvm_vcpu *vcpu)
600 {
601         /*
602          * Guests should see errata 400 and 415 as fixed (assuming that
603          * HLT and IO instructions are intercepted).
604          */
605         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
606         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
607
608         /*
609          * By increasing VCPU's osvw.length to 3 we are telling the guest that
610          * all osvw.status bits inside that length, including bit 0 (which is
611          * reserved for erratum 298), are valid. However, if host processor's
612          * osvw_len is 0 then osvw_status[0] carries no information. We need to
613          * be conservative here and therefore we tell the guest that erratum 298
614          * is present (because we really don't know).
615          */
616         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
617                 vcpu->arch.osvw.status |= 1;
618 }
619
620 static int has_svm(void)
621 {
622         const char *msg;
623
624         if (!cpu_has_svm(&msg)) {
625                 printk(KERN_INFO "has_svm: %s\n", msg);
626                 return 0;
627         }
628
629         return 1;
630 }
631
632 static void svm_hardware_disable(void)
633 {
634         /* Make sure we clean up behind us */
635         if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
636                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
637
638         cpu_svm_disable();
639
640         amd_pmu_disable_virt();
641 }
642
643 static int svm_hardware_enable(void)
644 {
645
646         struct svm_cpu_data *sd;
647         uint64_t efer;
648         struct desc_ptr gdt_descr;
649         struct desc_struct *gdt;
650         int me = raw_smp_processor_id();
651
652         rdmsrl(MSR_EFER, efer);
653         if (efer & EFER_SVME)
654                 return -EBUSY;
655
656         if (!has_svm()) {
657                 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
658                 return -EINVAL;
659         }
660         sd = per_cpu(svm_data, me);
661         if (!sd) {
662                 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
663                 return -EINVAL;
664         }
665
666         sd->asid_generation = 1;
667         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
668         sd->next_asid = sd->max_asid + 1;
669
670         native_store_gdt(&gdt_descr);
671         gdt = (struct desc_struct *)gdt_descr.address;
672         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
673
674         wrmsrl(MSR_EFER, efer | EFER_SVME);
675
676         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
677
678         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
679                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
680                 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
681         }
682
683
684         /*
685          * Get OSVW bits.
686          *
687          * Note that it is possible to have a system with mixed processor
688          * revisions and therefore different OSVW bits. If bits are not the same
689          * on different processors then choose the worst case (i.e. if erratum
690          * is present on one processor and not on another then assume that the
691          * erratum is present everywhere).
692          */
693         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
694                 uint64_t len, status = 0;
695                 int err;
696
697                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
698                 if (!err)
699                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
700                                                       &err);
701
702                 if (err)
703                         osvw_status = osvw_len = 0;
704                 else {
705                         if (len < osvw_len)
706                                 osvw_len = len;
707                         osvw_status |= status;
708                         osvw_status &= (1ULL << osvw_len) - 1;
709                 }
710         } else
711                 osvw_status = osvw_len = 0;
712
713         svm_init_erratum_383();
714
715         amd_pmu_enable_virt();
716
717         return 0;
718 }
719
720 static void svm_cpu_uninit(int cpu)
721 {
722         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
723
724         if (!sd)
725                 return;
726
727         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
728         __free_page(sd->save_area);
729         kfree(sd);
730 }
731
732 static int svm_cpu_init(int cpu)
733 {
734         struct svm_cpu_data *sd;
735         int r;
736
737         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
738         if (!sd)
739                 return -ENOMEM;
740         sd->cpu = cpu;
741         sd->save_area = alloc_page(GFP_KERNEL);
742         r = -ENOMEM;
743         if (!sd->save_area)
744                 goto err_1;
745
746         per_cpu(svm_data, cpu) = sd;
747
748         return 0;
749
750 err_1:
751         kfree(sd);
752         return r;
753
754 }
755
756 static bool valid_msr_intercept(u32 index)
757 {
758         int i;
759
760         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
761                 if (direct_access_msrs[i].index == index)
762                         return true;
763
764         return false;
765 }
766
767 static void set_msr_interception(u32 *msrpm, unsigned msr,
768                                  int read, int write)
769 {
770         u8 bit_read, bit_write;
771         unsigned long tmp;
772         u32 offset;
773
774         /*
775          * If this warning triggers extend the direct_access_msrs list at the
776          * beginning of the file
777          */
778         WARN_ON(!valid_msr_intercept(msr));
779
780         offset    = svm_msrpm_offset(msr);
781         bit_read  = 2 * (msr & 0x0f);
782         bit_write = 2 * (msr & 0x0f) + 1;
783         tmp       = msrpm[offset];
784
785         BUG_ON(offset == MSR_INVALID);
786
787         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
788         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
789
790         msrpm[offset] = tmp;
791 }
792
793 static void svm_vcpu_init_msrpm(u32 *msrpm)
794 {
795         int i;
796
797         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
798
799         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
800                 if (!direct_access_msrs[i].always)
801                         continue;
802
803                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
804         }
805 }
806
807 static void add_msr_offset(u32 offset)
808 {
809         int i;
810
811         for (i = 0; i < MSRPM_OFFSETS; ++i) {
812
813                 /* Offset already in list? */
814                 if (msrpm_offsets[i] == offset)
815                         return;
816
817                 /* Slot used by another offset? */
818                 if (msrpm_offsets[i] != MSR_INVALID)
819                         continue;
820
821                 /* Add offset to list */
822                 msrpm_offsets[i] = offset;
823
824                 return;
825         }
826
827         /*
828          * If this BUG triggers the msrpm_offsets table has an overflow. Just
829          * increase MSRPM_OFFSETS in this case.
830          */
831         BUG();
832 }
833
834 static void init_msrpm_offsets(void)
835 {
836         int i;
837
838         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
839
840         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
841                 u32 offset;
842
843                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
844                 BUG_ON(offset == MSR_INVALID);
845
846                 add_msr_offset(offset);
847         }
848 }
849
850 static void svm_enable_lbrv(struct vcpu_svm *svm)
851 {
852         u32 *msrpm = svm->msrpm;
853
854         svm->vmcb->control.lbr_ctl = 1;
855         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
856         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
857         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
858         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
859 }
860
861 static void svm_disable_lbrv(struct vcpu_svm *svm)
862 {
863         u32 *msrpm = svm->msrpm;
864
865         svm->vmcb->control.lbr_ctl = 0;
866         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
867         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
868         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
869         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
870 }
871
872 static __init int svm_hardware_setup(void)
873 {
874         int cpu;
875         struct page *iopm_pages;
876         void *iopm_va;
877         int r;
878
879         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
880
881         if (!iopm_pages)
882                 return -ENOMEM;
883
884         iopm_va = page_address(iopm_pages);
885         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
886         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
887
888         init_msrpm_offsets();
889
890         if (boot_cpu_has(X86_FEATURE_NX))
891                 kvm_enable_efer_bits(EFER_NX);
892
893         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
894                 kvm_enable_efer_bits(EFER_FFXSR);
895
896         if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
897                 u64 max;
898
899                 kvm_has_tsc_control = true;
900
901                 /*
902                  * Make sure the user can only configure tsc_khz values that
903                  * fit into a signed integer.
904                  * A min value is not calculated needed because it will always
905                  * be 1 on all machines and a value of 0 is used to disable
906                  * tsc-scaling for the vcpu.
907                  */
908                 max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));
909
910                 kvm_max_guest_tsc_khz = max;
911         }
912
913         if (nested) {
914                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
915                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
916         }
917
918         for_each_possible_cpu(cpu) {
919                 r = svm_cpu_init(cpu);
920                 if (r)
921                         goto err;
922         }
923
924         if (!boot_cpu_has(X86_FEATURE_NPT))
925                 npt_enabled = false;
926
927         if (npt_enabled && !npt) {
928                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
929                 npt_enabled = false;
930         }
931
932         if (npt_enabled) {
933                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
934                 kvm_enable_tdp();
935         } else
936                 kvm_disable_tdp();
937
938         return 0;
939
940 err:
941         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
942         iopm_base = 0;
943         return r;
944 }
945
946 static __exit void svm_hardware_unsetup(void)
947 {
948         int cpu;
949
950         for_each_possible_cpu(cpu)
951                 svm_cpu_uninit(cpu);
952
953         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
954         iopm_base = 0;
955 }
956
957 static void init_seg(struct vmcb_seg *seg)
958 {
959         seg->selector = 0;
960         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
961                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
962         seg->limit = 0xffff;
963         seg->base = 0;
964 }
965
966 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
967 {
968         seg->selector = 0;
969         seg->attrib = SVM_SELECTOR_P_MASK | type;
970         seg->limit = 0xffff;
971         seg->base = 0;
972 }
973
974 static u64 __scale_tsc(u64 ratio, u64 tsc)
975 {
976         u64 mult, frac, _tsc;
977
978         mult  = ratio >> 32;
979         frac  = ratio & ((1ULL << 32) - 1);
980
981         _tsc  = tsc;
982         _tsc *= mult;
983         _tsc += (tsc >> 32) * frac;
984         _tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;
985
986         return _tsc;
987 }
988
989 static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
990 {
991         struct vcpu_svm *svm = to_svm(vcpu);
992         u64 _tsc = tsc;
993
994         if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
995                 _tsc = __scale_tsc(svm->tsc_ratio, tsc);
996
997         return _tsc;
998 }
999
1000 static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1001 {
1002         struct vcpu_svm *svm = to_svm(vcpu);
1003         u64 ratio;
1004         u64 khz;
1005
1006         /* Guest TSC same frequency as host TSC? */
1007         if (!scale) {
1008                 svm->tsc_ratio = TSC_RATIO_DEFAULT;
1009                 return;
1010         }
1011
1012         /* TSC scaling supported? */
1013         if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1014                 if (user_tsc_khz > tsc_khz) {
1015                         vcpu->arch.tsc_catchup = 1;
1016                         vcpu->arch.tsc_always_catchup = 1;
1017                 } else
1018                         WARN(1, "user requested TSC rate below hardware speed\n");
1019                 return;
1020         }
1021
1022         khz = user_tsc_khz;
1023
1024         /* TSC scaling required  - calculate ratio */
1025         ratio = khz << 32;
1026         do_div(ratio, tsc_khz);
1027
1028         if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
1029                 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
1030                                 user_tsc_khz);
1031                 return;
1032         }
1033         svm->tsc_ratio             = ratio;
1034 }
1035
1036 static u64 svm_read_tsc_offset(struct kvm_vcpu *vcpu)
1037 {
1038         struct vcpu_svm *svm = to_svm(vcpu);
1039
1040         return svm->vmcb->control.tsc_offset;
1041 }
1042
1043 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1044 {
1045         struct vcpu_svm *svm = to_svm(vcpu);
1046         u64 g_tsc_offset = 0;
1047
1048         if (is_guest_mode(vcpu)) {
1049                 g_tsc_offset = svm->vmcb->control.tsc_offset -
1050                                svm->nested.hsave->control.tsc_offset;
1051                 svm->nested.hsave->control.tsc_offset = offset;
1052         } else
1053                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1054                                            svm->vmcb->control.tsc_offset,
1055                                            offset);
1056
1057         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1058
1059         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1060 }
1061
1062 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1063 {
1064         struct vcpu_svm *svm = to_svm(vcpu);
1065
1066         if (host) {
1067                 if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
1068                         WARN_ON(adjustment < 0);
1069                 adjustment = svm_scale_tsc(vcpu, (u64)adjustment);
1070         }
1071
1072         svm->vmcb->control.tsc_offset += adjustment;
1073         if (is_guest_mode(vcpu))
1074                 svm->nested.hsave->control.tsc_offset += adjustment;
1075         else
1076                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1077                                      svm->vmcb->control.tsc_offset - adjustment,
1078                                      svm->vmcb->control.tsc_offset);
1079
1080         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1081 }
1082
1083 static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1084 {
1085         u64 tsc;
1086
1087         tsc = svm_scale_tsc(vcpu, rdtsc());
1088
1089         return target_tsc - tsc;
1090 }
1091
1092 static void init_vmcb(struct vcpu_svm *svm)
1093 {
1094         struct vmcb_control_area *control = &svm->vmcb->control;
1095         struct vmcb_save_area *save = &svm->vmcb->save;
1096
1097         svm->vcpu.fpu_active = 1;
1098         svm->vcpu.arch.hflags = 0;
1099
1100         set_cr_intercept(svm, INTERCEPT_CR0_READ);
1101         set_cr_intercept(svm, INTERCEPT_CR3_READ);
1102         set_cr_intercept(svm, INTERCEPT_CR4_READ);
1103         set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1104         set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1105         set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1106         set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1107
1108         set_dr_intercepts(svm);
1109
1110         set_exception_intercept(svm, PF_VECTOR);
1111         set_exception_intercept(svm, UD_VECTOR);
1112         set_exception_intercept(svm, MC_VECTOR);
1113
1114         set_intercept(svm, INTERCEPT_INTR);
1115         set_intercept(svm, INTERCEPT_NMI);
1116         set_intercept(svm, INTERCEPT_SMI);
1117         set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1118         set_intercept(svm, INTERCEPT_RDPMC);
1119         set_intercept(svm, INTERCEPT_CPUID);
1120         set_intercept(svm, INTERCEPT_INVD);
1121         set_intercept(svm, INTERCEPT_HLT);
1122         set_intercept(svm, INTERCEPT_INVLPG);
1123         set_intercept(svm, INTERCEPT_INVLPGA);
1124         set_intercept(svm, INTERCEPT_IOIO_PROT);
1125         set_intercept(svm, INTERCEPT_MSR_PROT);
1126         set_intercept(svm, INTERCEPT_TASK_SWITCH);
1127         set_intercept(svm, INTERCEPT_SHUTDOWN);
1128         set_intercept(svm, INTERCEPT_VMRUN);
1129         set_intercept(svm, INTERCEPT_VMMCALL);
1130         set_intercept(svm, INTERCEPT_VMLOAD);
1131         set_intercept(svm, INTERCEPT_VMSAVE);
1132         set_intercept(svm, INTERCEPT_STGI);
1133         set_intercept(svm, INTERCEPT_CLGI);
1134         set_intercept(svm, INTERCEPT_SKINIT);
1135         set_intercept(svm, INTERCEPT_WBINVD);
1136         set_intercept(svm, INTERCEPT_MONITOR);
1137         set_intercept(svm, INTERCEPT_MWAIT);
1138         set_intercept(svm, INTERCEPT_XSETBV);
1139
1140         control->iopm_base_pa = iopm_base;
1141         control->msrpm_base_pa = __pa(svm->msrpm);
1142         control->int_ctl = V_INTR_MASKING_MASK;
1143
1144         init_seg(&save->es);
1145         init_seg(&save->ss);
1146         init_seg(&save->ds);
1147         init_seg(&save->fs);
1148         init_seg(&save->gs);
1149
1150         save->cs.selector = 0xf000;
1151         save->cs.base = 0xffff0000;
1152         /* Executable/Readable Code Segment */
1153         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1154                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1155         save->cs.limit = 0xffff;
1156
1157         save->gdtr.limit = 0xffff;
1158         save->idtr.limit = 0xffff;
1159
1160         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1161         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1162
1163         svm_set_efer(&svm->vcpu, 0);
1164         save->dr6 = 0xffff0ff0;
1165         kvm_set_rflags(&svm->vcpu, 2);
1166         save->rip = 0x0000fff0;
1167         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1168
1169         /*
1170          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1171          * It also updates the guest-visible cr0 value.
1172          */
1173         svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1174         kvm_mmu_reset_context(&svm->vcpu);
1175
1176         save->cr4 = X86_CR4_PAE;
1177         /* rdx = ?? */
1178
1179         if (npt_enabled) {
1180                 /* Setup VMCB for Nested Paging */
1181                 control->nested_ctl = 1;
1182                 clr_intercept(svm, INTERCEPT_INVLPG);
1183                 clr_exception_intercept(svm, PF_VECTOR);
1184                 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1185                 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1186                 save->g_pat = svm->vcpu.arch.pat;
1187                 save->cr3 = 0;
1188                 save->cr4 = 0;
1189         }
1190         svm->asid_generation = 0;
1191
1192         svm->nested.vmcb = 0;
1193         svm->vcpu.arch.hflags = 0;
1194
1195         if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1196                 control->pause_filter_count = 3000;
1197                 set_intercept(svm, INTERCEPT_PAUSE);
1198         }
1199
1200         mark_all_dirty(svm->vmcb);
1201
1202         enable_gif(svm);
1203 }
1204
1205 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1206 {
1207         struct vcpu_svm *svm = to_svm(vcpu);
1208         u32 dummy;
1209         u32 eax = 1;
1210
1211         if (!init_event) {
1212                 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1213                                            MSR_IA32_APICBASE_ENABLE;
1214                 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1215                         svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1216         }
1217         init_vmcb(svm);
1218
1219         kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1220         kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1221 }
1222
1223 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1224 {
1225         struct vcpu_svm *svm;
1226         struct page *page;
1227         struct page *msrpm_pages;
1228         struct page *hsave_page;
1229         struct page *nested_msrpm_pages;
1230         int err;
1231
1232         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1233         if (!svm) {
1234                 err = -ENOMEM;
1235                 goto out;
1236         }
1237
1238         svm->tsc_ratio = TSC_RATIO_DEFAULT;
1239
1240         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1241         if (err)
1242                 goto free_svm;
1243
1244         err = -ENOMEM;
1245         page = alloc_page(GFP_KERNEL);
1246         if (!page)
1247                 goto uninit;
1248
1249         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1250         if (!msrpm_pages)
1251                 goto free_page1;
1252
1253         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1254         if (!nested_msrpm_pages)
1255                 goto free_page2;
1256
1257         hsave_page = alloc_page(GFP_KERNEL);
1258         if (!hsave_page)
1259                 goto free_page3;
1260
1261         svm->nested.hsave = page_address(hsave_page);
1262
1263         svm->msrpm = page_address(msrpm_pages);
1264         svm_vcpu_init_msrpm(svm->msrpm);
1265
1266         svm->nested.msrpm = page_address(nested_msrpm_pages);
1267         svm_vcpu_init_msrpm(svm->nested.msrpm);
1268
1269         svm->vmcb = page_address(page);
1270         clear_page(svm->vmcb);
1271         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1272         svm->asid_generation = 0;
1273         init_vmcb(svm);
1274
1275         svm_init_osvw(&svm->vcpu);
1276
1277         return &svm->vcpu;
1278
1279 free_page3:
1280         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1281 free_page2:
1282         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1283 free_page1:
1284         __free_page(page);
1285 uninit:
1286         kvm_vcpu_uninit(&svm->vcpu);
1287 free_svm:
1288         kmem_cache_free(kvm_vcpu_cache, svm);
1289 out:
1290         return ERR_PTR(err);
1291 }
1292
1293 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1294 {
1295         struct vcpu_svm *svm = to_svm(vcpu);
1296
1297         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1298         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1299         __free_page(virt_to_page(svm->nested.hsave));
1300         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1301         kvm_vcpu_uninit(vcpu);
1302         kmem_cache_free(kvm_vcpu_cache, svm);
1303 }
1304
1305 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1306 {
1307         struct vcpu_svm *svm = to_svm(vcpu);
1308         int i;
1309
1310         if (unlikely(cpu != vcpu->cpu)) {
1311                 svm->asid_generation = 0;
1312                 mark_all_dirty(svm->vmcb);
1313         }
1314
1315 #ifdef CONFIG_X86_64
1316         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1317 #endif
1318         savesegment(fs, svm->host.fs);
1319         savesegment(gs, svm->host.gs);
1320         svm->host.ldt = kvm_read_ldt();
1321
1322         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1323                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1324
1325         if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
1326             svm->tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1327                 __this_cpu_write(current_tsc_ratio, svm->tsc_ratio);
1328                 wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
1329         }
1330 }
1331
1332 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1333 {
1334         struct vcpu_svm *svm = to_svm(vcpu);
1335         int i;
1336
1337         ++vcpu->stat.host_state_reload;
1338         kvm_load_ldt(svm->host.ldt);
1339 #ifdef CONFIG_X86_64
1340         loadsegment(fs, svm->host.fs);
1341         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1342         load_gs_index(svm->host.gs);
1343 #else
1344 #ifdef CONFIG_X86_32_LAZY_GS
1345         loadsegment(gs, svm->host.gs);
1346 #endif
1347 #endif
1348         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1349                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1350 }
1351
1352 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1353 {
1354         return to_svm(vcpu)->vmcb->save.rflags;
1355 }
1356
1357 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1358 {
1359        /*
1360         * Any change of EFLAGS.VM is accompained by a reload of SS
1361         * (caused by either a task switch or an inter-privilege IRET),
1362         * so we do not need to update the CPL here.
1363         */
1364         to_svm(vcpu)->vmcb->save.rflags = rflags;
1365 }
1366
1367 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1368 {
1369         switch (reg) {
1370         case VCPU_EXREG_PDPTR:
1371                 BUG_ON(!npt_enabled);
1372                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1373                 break;
1374         default:
1375                 BUG();
1376         }
1377 }
1378
1379 static void svm_set_vintr(struct vcpu_svm *svm)
1380 {
1381         set_intercept(svm, INTERCEPT_VINTR);
1382 }
1383
1384 static void svm_clear_vintr(struct vcpu_svm *svm)
1385 {
1386         clr_intercept(svm, INTERCEPT_VINTR);
1387 }
1388
1389 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1390 {
1391         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1392
1393         switch (seg) {
1394         case VCPU_SREG_CS: return &save->cs;
1395         case VCPU_SREG_DS: return &save->ds;
1396         case VCPU_SREG_ES: return &save->es;
1397         case VCPU_SREG_FS: return &save->fs;
1398         case VCPU_SREG_GS: return &save->gs;
1399         case VCPU_SREG_SS: return &save->ss;
1400         case VCPU_SREG_TR: return &save->tr;
1401         case VCPU_SREG_LDTR: return &save->ldtr;
1402         }
1403         BUG();
1404         return NULL;
1405 }
1406
1407 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1408 {
1409         struct vmcb_seg *s = svm_seg(vcpu, seg);
1410
1411         return s->base;
1412 }
1413
1414 static void svm_get_segment(struct kvm_vcpu *vcpu,
1415                             struct kvm_segment *var, int seg)
1416 {
1417         struct vmcb_seg *s = svm_seg(vcpu, seg);
1418
1419         var->base = s->base;
1420         var->limit = s->limit;
1421         var->selector = s->selector;
1422         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1423         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1424         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1425         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1426         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1427         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1428         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1429
1430         /*
1431          * AMD CPUs circa 2014 track the G bit for all segments except CS.
1432          * However, the SVM spec states that the G bit is not observed by the
1433          * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1434          * So let's synthesize a legal G bit for all segments, this helps
1435          * running KVM nested. It also helps cross-vendor migration, because
1436          * Intel's vmentry has a check on the 'G' bit.
1437          */
1438         var->g = s->limit > 0xfffff;
1439
1440         /*
1441          * AMD's VMCB does not have an explicit unusable field, so emulate it
1442          * for cross vendor migration purposes by "not present"
1443          */
1444         var->unusable = !var->present || (var->type == 0);
1445
1446         switch (seg) {
1447         case VCPU_SREG_TR:
1448                 /*
1449                  * Work around a bug where the busy flag in the tr selector
1450                  * isn't exposed
1451                  */
1452                 var->type |= 0x2;
1453                 break;
1454         case VCPU_SREG_DS:
1455         case VCPU_SREG_ES:
1456         case VCPU_SREG_FS:
1457         case VCPU_SREG_GS:
1458                 /*
1459                  * The accessed bit must always be set in the segment
1460                  * descriptor cache, although it can be cleared in the
1461                  * descriptor, the cached bit always remains at 1. Since
1462                  * Intel has a check on this, set it here to support
1463                  * cross-vendor migration.
1464                  */
1465                 if (!var->unusable)
1466                         var->type |= 0x1;
1467                 break;
1468         case VCPU_SREG_SS:
1469                 /*
1470                  * On AMD CPUs sometimes the DB bit in the segment
1471                  * descriptor is left as 1, although the whole segment has
1472                  * been made unusable. Clear it here to pass an Intel VMX
1473                  * entry check when cross vendor migrating.
1474                  */
1475                 if (var->unusable)
1476                         var->db = 0;
1477                 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1478                 break;
1479         }
1480 }
1481
1482 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1483 {
1484         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1485
1486         return save->cpl;
1487 }
1488
1489 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1490 {
1491         struct vcpu_svm *svm = to_svm(vcpu);
1492
1493         dt->size = svm->vmcb->save.idtr.limit;
1494         dt->address = svm->vmcb->save.idtr.base;
1495 }
1496
1497 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1498 {
1499         struct vcpu_svm *svm = to_svm(vcpu);
1500
1501         svm->vmcb->save.idtr.limit = dt->size;
1502         svm->vmcb->save.idtr.base = dt->address ;
1503         mark_dirty(svm->vmcb, VMCB_DT);
1504 }
1505
1506 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1507 {
1508         struct vcpu_svm *svm = to_svm(vcpu);
1509
1510         dt->size = svm->vmcb->save.gdtr.limit;
1511         dt->address = svm->vmcb->save.gdtr.base;
1512 }
1513
1514 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1515 {
1516         struct vcpu_svm *svm = to_svm(vcpu);
1517
1518         svm->vmcb->save.gdtr.limit = dt->size;
1519         svm->vmcb->save.gdtr.base = dt->address ;
1520         mark_dirty(svm->vmcb, VMCB_DT);
1521 }
1522
1523 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1524 {
1525 }
1526
1527 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1528 {
1529 }
1530
1531 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1532 {
1533 }
1534
1535 static void update_cr0_intercept(struct vcpu_svm *svm)
1536 {
1537         ulong gcr0 = svm->vcpu.arch.cr0;
1538         u64 *hcr0 = &svm->vmcb->save.cr0;
1539
1540         if (!svm->vcpu.fpu_active)
1541                 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1542         else
1543                 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1544                         | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1545
1546         mark_dirty(svm->vmcb, VMCB_CR);
1547
1548         if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1549                 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1550                 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1551         } else {
1552                 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1553                 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1554         }
1555 }
1556
1557 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1558 {
1559         struct vcpu_svm *svm = to_svm(vcpu);
1560
1561 #ifdef CONFIG_X86_64
1562         if (vcpu->arch.efer & EFER_LME) {
1563                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1564                         vcpu->arch.efer |= EFER_LMA;
1565                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1566                 }
1567
1568                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1569                         vcpu->arch.efer &= ~EFER_LMA;
1570                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1571                 }
1572         }
1573 #endif
1574         vcpu->arch.cr0 = cr0;
1575
1576         if (!npt_enabled)
1577                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1578
1579         if (!vcpu->fpu_active)
1580                 cr0 |= X86_CR0_TS;
1581         /*
1582          * re-enable caching here because the QEMU bios
1583          * does not do it - this results in some delay at
1584          * reboot
1585          */
1586         if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1587                 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1588         svm->vmcb->save.cr0 = cr0;
1589         mark_dirty(svm->vmcb, VMCB_CR);
1590         update_cr0_intercept(svm);
1591 }
1592
1593 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1594 {
1595         unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1596         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1597
1598         if (cr4 & X86_CR4_VMXE)
1599                 return 1;
1600
1601         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1602                 svm_flush_tlb(vcpu);
1603
1604         vcpu->arch.cr4 = cr4;
1605         if (!npt_enabled)
1606                 cr4 |= X86_CR4_PAE;
1607         cr4 |= host_cr4_mce;
1608         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1609         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1610         return 0;
1611 }
1612
1613 static void svm_set_segment(struct kvm_vcpu *vcpu,
1614                             struct kvm_segment *var, int seg)
1615 {
1616         struct vcpu_svm *svm = to_svm(vcpu);
1617         struct vmcb_seg *s = svm_seg(vcpu, seg);
1618
1619         s->base = var->base;
1620         s->limit = var->limit;
1621         s->selector = var->selector;
1622         if (var->unusable)
1623                 s->attrib = 0;
1624         else {
1625                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1626                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1627                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1628                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1629                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1630                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1631                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1632                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1633         }
1634
1635         /*
1636          * This is always accurate, except if SYSRET returned to a segment
1637          * with SS.DPL != 3.  Intel does not have this quirk, and always
1638          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1639          * would entail passing the CPL to userspace and back.
1640          */
1641         if (seg == VCPU_SREG_SS)
1642                 svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1643
1644         mark_dirty(svm->vmcb, VMCB_SEG);
1645 }
1646
1647 static void update_db_bp_intercept(struct kvm_vcpu *vcpu)
1648 {
1649         struct vcpu_svm *svm = to_svm(vcpu);
1650
1651         clr_exception_intercept(svm, DB_VECTOR);
1652         clr_exception_intercept(svm, BP_VECTOR);
1653
1654         if (svm->nmi_singlestep)
1655                 set_exception_intercept(svm, DB_VECTOR);
1656
1657         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1658                 if (vcpu->guest_debug &
1659                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1660                         set_exception_intercept(svm, DB_VECTOR);
1661                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1662                         set_exception_intercept(svm, BP_VECTOR);
1663         } else
1664                 vcpu->guest_debug = 0;
1665 }
1666
1667 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1668 {
1669         if (sd->next_asid > sd->max_asid) {
1670                 ++sd->asid_generation;
1671                 sd->next_asid = 1;
1672                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1673         }
1674
1675         svm->asid_generation = sd->asid_generation;
1676         svm->vmcb->control.asid = sd->next_asid++;
1677
1678         mark_dirty(svm->vmcb, VMCB_ASID);
1679 }
1680
1681 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
1682 {
1683         return to_svm(vcpu)->vmcb->save.dr6;
1684 }
1685
1686 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1687 {
1688         struct vcpu_svm *svm = to_svm(vcpu);
1689
1690         svm->vmcb->save.dr6 = value;
1691         mark_dirty(svm->vmcb, VMCB_DR);
1692 }
1693
1694 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1695 {
1696         struct vcpu_svm *svm = to_svm(vcpu);
1697
1698         get_debugreg(vcpu->arch.db[0], 0);
1699         get_debugreg(vcpu->arch.db[1], 1);
1700         get_debugreg(vcpu->arch.db[2], 2);
1701         get_debugreg(vcpu->arch.db[3], 3);
1702         vcpu->arch.dr6 = svm_get_dr6(vcpu);
1703         vcpu->arch.dr7 = svm->vmcb->save.dr7;
1704
1705         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1706         set_dr_intercepts(svm);
1707 }
1708
1709 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1710 {
1711         struct vcpu_svm *svm = to_svm(vcpu);
1712
1713         svm->vmcb->save.dr7 = value;
1714         mark_dirty(svm->vmcb, VMCB_DR);
1715 }
1716
1717 static int pf_interception(struct vcpu_svm *svm)
1718 {
1719         u64 fault_address = svm->vmcb->control.exit_info_2;
1720         u32 error_code;
1721         int r = 1;
1722
1723         switch (svm->apf_reason) {
1724         default:
1725                 error_code = svm->vmcb->control.exit_info_1;
1726
1727                 trace_kvm_page_fault(fault_address, error_code);
1728                 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1729                         kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1730                 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1731                         svm->vmcb->control.insn_bytes,
1732                         svm->vmcb->control.insn_len);
1733                 break;
1734         case KVM_PV_REASON_PAGE_NOT_PRESENT:
1735                 svm->apf_reason = 0;
1736                 local_irq_disable();
1737                 kvm_async_pf_task_wait(fault_address);
1738                 local_irq_enable();
1739                 break;
1740         case KVM_PV_REASON_PAGE_READY:
1741                 svm->apf_reason = 0;
1742                 local_irq_disable();
1743                 kvm_async_pf_task_wake(fault_address);
1744                 local_irq_enable();
1745                 break;
1746         }
1747         return r;
1748 }
1749
1750 static int db_interception(struct vcpu_svm *svm)
1751 {
1752         struct kvm_run *kvm_run = svm->vcpu.run;
1753
1754         if (!(svm->vcpu.guest_debug &
1755               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1756                 !svm->nmi_singlestep) {
1757                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1758                 return 1;
1759         }
1760
1761         if (svm->nmi_singlestep) {
1762                 svm->nmi_singlestep = false;
1763                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1764                         svm->vmcb->save.rflags &=
1765                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1766                 update_db_bp_intercept(&svm->vcpu);
1767         }
1768
1769         if (svm->vcpu.guest_debug &
1770             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1771                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1772                 kvm_run->debug.arch.pc =
1773                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1774                 kvm_run->debug.arch.exception = DB_VECTOR;
1775                 return 0;
1776         }
1777
1778         return 1;
1779 }
1780
1781 static int bp_interception(struct vcpu_svm *svm)
1782 {
1783         struct kvm_run *kvm_run = svm->vcpu.run;
1784
1785         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1786         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1787         kvm_run->debug.arch.exception = BP_VECTOR;
1788         return 0;
1789 }
1790
1791 static int ud_interception(struct vcpu_svm *svm)
1792 {
1793         int er;
1794
1795         er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1796         if (er != EMULATE_DONE)
1797                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1798         return 1;
1799 }
1800
1801 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1802 {
1803         struct vcpu_svm *svm = to_svm(vcpu);
1804
1805         clr_exception_intercept(svm, NM_VECTOR);
1806
1807         svm->vcpu.fpu_active = 1;
1808         update_cr0_intercept(svm);
1809 }
1810
1811 static int nm_interception(struct vcpu_svm *svm)
1812 {
1813         svm_fpu_activate(&svm->vcpu);
1814         return 1;
1815 }
1816
1817 static bool is_erratum_383(void)
1818 {
1819         int err, i;
1820         u64 value;
1821
1822         if (!erratum_383_found)
1823                 return false;
1824
1825         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1826         if (err)
1827                 return false;
1828
1829         /* Bit 62 may or may not be set for this mce */
1830         value &= ~(1ULL << 62);
1831
1832         if (value != 0xb600000000010015ULL)
1833                 return false;
1834
1835         /* Clear MCi_STATUS registers */
1836         for (i = 0; i < 6; ++i)
1837                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1838
1839         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1840         if (!err) {
1841                 u32 low, high;
1842
1843                 value &= ~(1ULL << 2);
1844                 low    = lower_32_bits(value);
1845                 high   = upper_32_bits(value);
1846
1847                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1848         }
1849
1850         /* Flush tlb to evict multi-match entries */
1851         __flush_tlb_all();
1852
1853         return true;
1854 }
1855
1856 static void svm_handle_mce(struct vcpu_svm *svm)
1857 {
1858         if (is_erratum_383()) {
1859                 /*
1860                  * Erratum 383 triggered. Guest state is corrupt so kill the
1861                  * guest.
1862                  */
1863                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1864
1865                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1866
1867                 return;
1868         }
1869
1870         /*
1871          * On an #MC intercept the MCE handler is not called automatically in
1872          * the host. So do it by hand here.
1873          */
1874         asm volatile (
1875                 "int $0x12\n");
1876         /* not sure if we ever come back to this point */
1877
1878         return;
1879 }
1880
1881 static int mc_interception(struct vcpu_svm *svm)
1882 {
1883         return 1;
1884 }
1885
1886 static int shutdown_interception(struct vcpu_svm *svm)
1887 {
1888         struct kvm_run *kvm_run = svm->vcpu.run;
1889
1890         /*
1891          * VMCB is undefined after a SHUTDOWN intercept
1892          * so reinitialize it.
1893          */
1894         clear_page(svm->vmcb);
1895         init_vmcb(svm);
1896
1897         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1898         return 0;
1899 }
1900
1901 static int io_interception(struct vcpu_svm *svm)
1902 {
1903         struct kvm_vcpu *vcpu = &svm->vcpu;
1904         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1905         int size, in, string;
1906         unsigned port;
1907
1908         ++svm->vcpu.stat.io_exits;
1909         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1910         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1911         if (string || in)
1912                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1913
1914         port = io_info >> 16;
1915         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1916         svm->next_rip = svm->vmcb->control.exit_info_2;
1917         skip_emulated_instruction(&svm->vcpu);
1918
1919         return kvm_fast_pio_out(vcpu, size, port);
1920 }
1921
1922 static int nmi_interception(struct vcpu_svm *svm)
1923 {
1924         return 1;
1925 }
1926
1927 static int intr_interception(struct vcpu_svm *svm)
1928 {
1929         ++svm->vcpu.stat.irq_exits;
1930         return 1;
1931 }
1932
1933 static int nop_on_interception(struct vcpu_svm *svm)
1934 {
1935         return 1;
1936 }
1937
1938 static int halt_interception(struct vcpu_svm *svm)
1939 {
1940         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1941         return kvm_emulate_halt(&svm->vcpu);
1942 }
1943
1944 static int vmmcall_interception(struct vcpu_svm *svm)
1945 {
1946         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1947         kvm_emulate_hypercall(&svm->vcpu);
1948         return 1;
1949 }
1950
1951 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1952 {
1953         struct vcpu_svm *svm = to_svm(vcpu);
1954
1955         return svm->nested.nested_cr3;
1956 }
1957
1958 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
1959 {
1960         struct vcpu_svm *svm = to_svm(vcpu);
1961         u64 cr3 = svm->nested.nested_cr3;
1962         u64 pdpte;
1963         int ret;
1964
1965         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte,
1966                                        offset_in_page(cr3) + index * 8, 8);
1967         if (ret)
1968                 return 0;
1969         return pdpte;
1970 }
1971
1972 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1973                                    unsigned long root)
1974 {
1975         struct vcpu_svm *svm = to_svm(vcpu);
1976
1977         svm->vmcb->control.nested_cr3 = root;
1978         mark_dirty(svm->vmcb, VMCB_NPT);
1979         svm_flush_tlb(vcpu);
1980 }
1981
1982 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1983                                        struct x86_exception *fault)
1984 {
1985         struct vcpu_svm *svm = to_svm(vcpu);
1986
1987         if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
1988                 /*
1989                  * TODO: track the cause of the nested page fault, and
1990                  * correctly fill in the high bits of exit_info_1.
1991                  */
1992                 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1993                 svm->vmcb->control.exit_code_hi = 0;
1994                 svm->vmcb->control.exit_info_1 = (1ULL << 32);
1995                 svm->vmcb->control.exit_info_2 = fault->address;
1996         }
1997
1998         svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
1999         svm->vmcb->control.exit_info_1 |= fault->error_code;
2000
2001         /*
2002          * The present bit is always zero for page structure faults on real
2003          * hardware.
2004          */
2005         if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2006                 svm->vmcb->control.exit_info_1 &= ~1;
2007
2008         nested_svm_vmexit(svm);
2009 }
2010
2011 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2012 {
2013         WARN_ON(mmu_is_nested(vcpu));
2014         kvm_init_shadow_mmu(vcpu);
2015         vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
2016         vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
2017         vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
2018         vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2019         vcpu->arch.mmu.shadow_root_level = get_npt_level();
2020         reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
2021         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
2022 }
2023
2024 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2025 {
2026         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2027 }
2028
2029 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2030 {
2031         if (!(svm->vcpu.arch.efer & EFER_SVME)
2032             || !is_paging(&svm->vcpu)) {
2033                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2034                 return 1;
2035         }
2036
2037         if (svm->vmcb->save.cpl) {
2038                 kvm_inject_gp(&svm->vcpu, 0);
2039                 return 1;
2040         }
2041
2042        return 0;
2043 }
2044
2045 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2046                                       bool has_error_code, u32 error_code)
2047 {
2048         int vmexit;
2049
2050         if (!is_guest_mode(&svm->vcpu))
2051                 return 0;
2052
2053         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2054         svm->vmcb->control.exit_code_hi = 0;
2055         svm->vmcb->control.exit_info_1 = error_code;
2056         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2057
2058         vmexit = nested_svm_intercept(svm);
2059         if (vmexit == NESTED_EXIT_DONE)
2060                 svm->nested.exit_required = true;
2061
2062         return vmexit;
2063 }
2064
2065 /* This function returns true if it is save to enable the irq window */
2066 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2067 {
2068         if (!is_guest_mode(&svm->vcpu))
2069                 return true;
2070
2071         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2072                 return true;
2073
2074         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2075                 return false;
2076
2077         /*
2078          * if vmexit was already requested (by intercepted exception
2079          * for instance) do not overwrite it with "external interrupt"
2080          * vmexit.
2081          */
2082         if (svm->nested.exit_required)
2083                 return false;
2084
2085         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
2086         svm->vmcb->control.exit_info_1 = 0;
2087         svm->vmcb->control.exit_info_2 = 0;
2088
2089         if (svm->nested.intercept & 1ULL) {
2090                 /*
2091                  * The #vmexit can't be emulated here directly because this
2092                  * code path runs with irqs and preemption disabled. A
2093                  * #vmexit emulation might sleep. Only signal request for
2094                  * the #vmexit here.
2095                  */
2096                 svm->nested.exit_required = true;
2097                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2098                 return false;
2099         }
2100
2101         return true;
2102 }
2103
2104 /* This function returns true if it is save to enable the nmi window */
2105 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2106 {
2107         if (!is_guest_mode(&svm->vcpu))
2108                 return true;
2109
2110         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2111                 return true;
2112
2113         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2114         svm->nested.exit_required = true;
2115
2116         return false;
2117 }
2118
2119 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2120 {
2121         struct page *page;
2122
2123         might_sleep();
2124
2125         page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
2126         if (is_error_page(page))
2127                 goto error;
2128
2129         *_page = page;
2130
2131         return kmap(page);
2132
2133 error:
2134         kvm_inject_gp(&svm->vcpu, 0);
2135
2136         return NULL;
2137 }
2138
2139 static void nested_svm_unmap(struct page *page)
2140 {
2141         kunmap(page);
2142         kvm_release_page_dirty(page);
2143 }
2144
2145 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2146 {
2147         unsigned port, size, iopm_len;
2148         u16 val, mask;
2149         u8 start_bit;
2150         u64 gpa;
2151
2152         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2153                 return NESTED_EXIT_HOST;
2154
2155         port = svm->vmcb->control.exit_info_1 >> 16;
2156         size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2157                 SVM_IOIO_SIZE_SHIFT;
2158         gpa  = svm->nested.vmcb_iopm + (port / 8);
2159         start_bit = port % 8;
2160         iopm_len = (start_bit + size > 8) ? 2 : 1;
2161         mask = (0xf >> (4 - size)) << start_bit;
2162         val = 0;
2163
2164         if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
2165                 return NESTED_EXIT_DONE;
2166
2167         return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2168 }
2169
2170 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2171 {
2172         u32 offset, msr, value;
2173         int write, mask;
2174
2175         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2176                 return NESTED_EXIT_HOST;
2177
2178         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2179         offset = svm_msrpm_offset(msr);
2180         write  = svm->vmcb->control.exit_info_1 & 1;
2181         mask   = 1 << ((2 * (msr & 0xf)) + write);
2182
2183         if (offset == MSR_INVALID)
2184                 return NESTED_EXIT_DONE;
2185
2186         /* Offset is in 32 bit units but need in 8 bit units */
2187         offset *= 4;
2188
2189         if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
2190                 return NESTED_EXIT_DONE;
2191
2192         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2193 }
2194
2195 static int nested_svm_exit_special(struct vcpu_svm *svm)
2196 {
2197         u32 exit_code = svm->vmcb->control.exit_code;
2198
2199         switch (exit_code) {
2200         case SVM_EXIT_INTR:
2201         case SVM_EXIT_NMI:
2202         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2203                 return NESTED_EXIT_HOST;
2204         case SVM_EXIT_NPF:
2205                 /* For now we are always handling NPFs when using them */
2206                 if (npt_enabled)
2207                         return NESTED_EXIT_HOST;
2208                 break;
2209         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2210                 /* When we're shadowing, trap PFs, but not async PF */
2211                 if (!npt_enabled && svm->apf_reason == 0)
2212                         return NESTED_EXIT_HOST;
2213                 break;
2214         case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2215                 nm_interception(svm);
2216                 break;
2217         default:
2218                 break;
2219         }
2220
2221         return NESTED_EXIT_CONTINUE;
2222 }
2223
2224 /*
2225  * If this function returns true, this #vmexit was already handled
2226  */
2227 static int nested_svm_intercept(struct vcpu_svm *svm)
2228 {
2229         u32 exit_code = svm->vmcb->control.exit_code;
2230         int vmexit = NESTED_EXIT_HOST;
2231
2232         switch (exit_code) {
2233         case SVM_EXIT_MSR:
2234                 vmexit = nested_svm_exit_handled_msr(svm);
2235                 break;
2236         case SVM_EXIT_IOIO:
2237                 vmexit = nested_svm_intercept_ioio(svm);
2238                 break;
2239         case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2240                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2241                 if (svm->nested.intercept_cr & bit)
2242                         vmexit = NESTED_EXIT_DONE;
2243                 break;
2244         }
2245         case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2246                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2247                 if (svm->nested.intercept_dr & bit)
2248                         vmexit = NESTED_EXIT_DONE;
2249                 break;
2250         }
2251         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2252                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2253                 if (svm->nested.intercept_exceptions & excp_bits)
2254                         vmexit = NESTED_EXIT_DONE;
2255                 /* async page fault always cause vmexit */
2256                 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2257                          svm->apf_reason != 0)
2258                         vmexit = NESTED_EXIT_DONE;
2259                 break;
2260         }
2261         case SVM_EXIT_ERR: {
2262                 vmexit = NESTED_EXIT_DONE;
2263                 break;
2264         }
2265         default: {
2266                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2267                 if (svm->nested.intercept & exit_bits)
2268                         vmexit = NESTED_EXIT_DONE;
2269         }
2270         }
2271
2272         return vmexit;
2273 }
2274
2275 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2276 {
2277         int vmexit;
2278
2279         vmexit = nested_svm_intercept(svm);
2280
2281         if (vmexit == NESTED_EXIT_DONE)
2282                 nested_svm_vmexit(svm);
2283
2284         return vmexit;
2285 }
2286
2287 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2288 {
2289         struct vmcb_control_area *dst  = &dst_vmcb->control;
2290         struct vmcb_control_area *from = &from_vmcb->control;
2291
2292         dst->intercept_cr         = from->intercept_cr;
2293         dst->intercept_dr         = from->intercept_dr;
2294         dst->intercept_exceptions = from->intercept_exceptions;
2295         dst->intercept            = from->intercept;
2296         dst->iopm_base_pa         = from->iopm_base_pa;
2297         dst->msrpm_base_pa        = from->msrpm_base_pa;
2298         dst->tsc_offset           = from->tsc_offset;
2299         dst->asid                 = from->asid;
2300         dst->tlb_ctl              = from->tlb_ctl;
2301         dst->int_ctl              = from->int_ctl;
2302         dst->int_vector           = from->int_vector;
2303         dst->int_state            = from->int_state;
2304         dst->exit_code            = from->exit_code;
2305         dst->exit_code_hi         = from->exit_code_hi;
2306         dst->exit_info_1          = from->exit_info_1;
2307         dst->exit_info_2          = from->exit_info_2;
2308         dst->exit_int_info        = from->exit_int_info;
2309         dst->exit_int_info_err    = from->exit_int_info_err;
2310         dst->nested_ctl           = from->nested_ctl;
2311         dst->event_inj            = from->event_inj;
2312         dst->event_inj_err        = from->event_inj_err;
2313         dst->nested_cr3           = from->nested_cr3;
2314         dst->lbr_ctl              = from->lbr_ctl;
2315 }
2316
2317 static int nested_svm_vmexit(struct vcpu_svm *svm)
2318 {
2319         struct vmcb *nested_vmcb;
2320         struct vmcb *hsave = svm->nested.hsave;
2321         struct vmcb *vmcb = svm->vmcb;
2322         struct page *page;
2323
2324         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2325                                        vmcb->control.exit_info_1,
2326                                        vmcb->control.exit_info_2,
2327                                        vmcb->control.exit_int_info,
2328                                        vmcb->control.exit_int_info_err,
2329                                        KVM_ISA_SVM);
2330
2331         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2332         if (!nested_vmcb)
2333                 return 1;
2334
2335         /* Exit Guest-Mode */
2336         leave_guest_mode(&svm->vcpu);
2337         svm->nested.vmcb = 0;
2338
2339         /* Give the current vmcb to the guest */
2340         disable_gif(svm);
2341
2342         nested_vmcb->save.es     = vmcb->save.es;
2343         nested_vmcb->save.cs     = vmcb->save.cs;
2344         nested_vmcb->save.ss     = vmcb->save.ss;
2345         nested_vmcb->save.ds     = vmcb->save.ds;
2346         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2347         nested_vmcb->save.idtr   = vmcb->save.idtr;
2348         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2349         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2350         nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
2351         nested_vmcb->save.cr2    = vmcb->save.cr2;
2352         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2353         nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2354         nested_vmcb->save.rip    = vmcb->save.rip;
2355         nested_vmcb->save.rsp    = vmcb->save.rsp;
2356         nested_vmcb->save.rax    = vmcb->save.rax;
2357         nested_vmcb->save.dr7    = vmcb->save.dr7;
2358         nested_vmcb->save.dr6    = vmcb->save.dr6;
2359         nested_vmcb->save.cpl    = vmcb->save.cpl;
2360
2361         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2362         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2363         nested_vmcb->control.int_state         = vmcb->control.int_state;
2364         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2365         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2366         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2367         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2368         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2369         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2370
2371         if (svm->nrips_enabled)
2372                 nested_vmcb->control.next_rip  = vmcb->control.next_rip;
2373
2374         /*
2375          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2376          * to make sure that we do not lose injected events. So check event_inj
2377          * here and copy it to exit_int_info if it is valid.
2378          * Exit_int_info and event_inj can't be both valid because the case
2379          * below only happens on a VMRUN instruction intercept which has
2380          * no valid exit_int_info set.
2381          */
2382         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2383                 struct vmcb_control_area *nc = &nested_vmcb->control;
2384
2385                 nc->exit_int_info     = vmcb->control.event_inj;
2386                 nc->exit_int_info_err = vmcb->control.event_inj_err;
2387         }
2388
2389         nested_vmcb->control.tlb_ctl           = 0;
2390         nested_vmcb->control.event_inj         = 0;
2391         nested_vmcb->control.event_inj_err     = 0;
2392
2393         /* We always set V_INTR_MASKING and remember the old value in hflags */
2394         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2395                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2396
2397         /* Restore the original control entries */
2398         copy_vmcb_control_area(vmcb, hsave);
2399
2400         kvm_clear_exception_queue(&svm->vcpu);
2401         kvm_clear_interrupt_queue(&svm->vcpu);
2402
2403         svm->nested.nested_cr3 = 0;
2404
2405         /* Restore selected save entries */
2406         svm->vmcb->save.es = hsave->save.es;
2407         svm->vmcb->save.cs = hsave->save.cs;
2408         svm->vmcb->save.ss = hsave->save.ss;
2409         svm->vmcb->save.ds = hsave->save.ds;
2410         svm->vmcb->save.gdtr = hsave->save.gdtr;
2411         svm->vmcb->save.idtr = hsave->save.idtr;
2412         kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2413         svm_set_efer(&svm->vcpu, hsave->save.efer);
2414         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2415         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2416         if (npt_enabled) {
2417                 svm->vmcb->save.cr3 = hsave->save.cr3;
2418                 svm->vcpu.arch.cr3 = hsave->save.cr3;
2419         } else {
2420                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2421         }
2422         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2423         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2424         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2425         svm->vmcb->save.dr7 = 0;
2426         svm->vmcb->save.cpl = 0;
2427         svm->vmcb->control.exit_int_info = 0;
2428
2429         mark_all_dirty(svm->vmcb);
2430
2431         nested_svm_unmap(page);
2432
2433         nested_svm_uninit_mmu_context(&svm->vcpu);
2434         kvm_mmu_reset_context(&svm->vcpu);
2435         kvm_mmu_load(&svm->vcpu);
2436
2437         return 0;
2438 }
2439
2440 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2441 {
2442         /*
2443          * This function merges the msr permission bitmaps of kvm and the
2444          * nested vmcb. It is optimized in that it only merges the parts where
2445          * the kvm msr permission bitmap may contain zero bits
2446          */
2447         int i;
2448
2449         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2450                 return true;
2451
2452         for (i = 0; i < MSRPM_OFFSETS; i++) {
2453                 u32 value, p;
2454                 u64 offset;
2455
2456                 if (msrpm_offsets[i] == 0xffffffff)
2457                         break;
2458
2459                 p      = msrpm_offsets[i];
2460                 offset = svm->nested.vmcb_msrpm + (p * 4);
2461
2462                 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
2463                         return false;
2464
2465                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2466         }
2467
2468         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2469
2470         return true;
2471 }
2472
2473 static bool nested_vmcb_checks(struct vmcb *vmcb)
2474 {
2475         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2476                 return false;
2477
2478         if (vmcb->control.asid == 0)
2479                 return false;
2480
2481         if (vmcb->control.nested_ctl && !npt_enabled)
2482                 return false;
2483
2484         return true;
2485 }
2486
2487 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2488 {
2489         struct vmcb *nested_vmcb;
2490         struct vmcb *hsave = svm->nested.hsave;
2491         struct vmcb *vmcb = svm->vmcb;
2492         struct page *page;
2493         u64 vmcb_gpa;
2494
2495         vmcb_gpa = svm->vmcb->save.rax;
2496
2497         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2498         if (!nested_vmcb)
2499                 return false;
2500
2501         if (!nested_vmcb_checks(nested_vmcb)) {
2502                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2503                 nested_vmcb->control.exit_code_hi = 0;
2504                 nested_vmcb->control.exit_info_1  = 0;
2505                 nested_vmcb->control.exit_info_2  = 0;
2506
2507                 nested_svm_unmap(page);
2508
2509                 return false;
2510         }
2511
2512         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2513                                nested_vmcb->save.rip,
2514                                nested_vmcb->control.int_ctl,
2515                                nested_vmcb->control.event_inj,
2516                                nested_vmcb->control.nested_ctl);
2517
2518         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2519                                     nested_vmcb->control.intercept_cr >> 16,
2520                                     nested_vmcb->control.intercept_exceptions,
2521                                     nested_vmcb->control.intercept);
2522
2523         /* Clear internal status */
2524         kvm_clear_exception_queue(&svm->vcpu);
2525         kvm_clear_interrupt_queue(&svm->vcpu);
2526
2527         /*
2528          * Save the old vmcb, so we don't need to pick what we save, but can
2529          * restore everything when a VMEXIT occurs
2530          */
2531         hsave->save.es     = vmcb->save.es;
2532         hsave->save.cs     = vmcb->save.cs;
2533         hsave->save.ss     = vmcb->save.ss;
2534         hsave->save.ds     = vmcb->save.ds;
2535         hsave->save.gdtr   = vmcb->save.gdtr;
2536         hsave->save.idtr   = vmcb->save.idtr;
2537         hsave->save.efer   = svm->vcpu.arch.efer;
2538         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2539         hsave->save.cr4    = svm->vcpu.arch.cr4;
2540         hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2541         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2542         hsave->save.rsp    = vmcb->save.rsp;
2543         hsave->save.rax    = vmcb->save.rax;
2544         if (npt_enabled)
2545                 hsave->save.cr3    = vmcb->save.cr3;
2546         else
2547                 hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
2548
2549         copy_vmcb_control_area(hsave, vmcb);
2550
2551         if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2552                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2553         else
2554                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2555
2556         if (nested_vmcb->control.nested_ctl) {
2557                 kvm_mmu_unload(&svm->vcpu);
2558                 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2559                 nested_svm_init_mmu_context(&svm->vcpu);
2560         }
2561
2562         /* Load the nested guest state */
2563         svm->vmcb->save.es = nested_vmcb->save.es;
2564         svm->vmcb->save.cs = nested_vmcb->save.cs;
2565         svm->vmcb->save.ss = nested_vmcb->save.ss;
2566         svm->vmcb->save.ds = nested_vmcb->save.ds;
2567         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2568         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2569         kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2570         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2571         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2572         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2573         if (npt_enabled) {
2574                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2575                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2576         } else
2577                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2578
2579         /* Guest paging mode is active - reset mmu */
2580         kvm_mmu_reset_context(&svm->vcpu);
2581
2582         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2583         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2584         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2585         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2586
2587         /* In case we don't even reach vcpu_run, the fields are not updated */
2588         svm->vmcb->save.rax = nested_vmcb->save.rax;
2589         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2590         svm->vmcb->save.rip = nested_vmcb->save.rip;
2591         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2592         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2593         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2594
2595         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2596         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2597
2598         /* cache intercepts */
2599         svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
2600         svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
2601         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2602         svm->nested.intercept            = nested_vmcb->control.intercept;
2603
2604         svm_flush_tlb(&svm->vcpu);
2605         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2606         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2607                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2608         else
2609                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2610
2611         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2612                 /* We only want the cr8 intercept bits of the guest */
2613                 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2614                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2615         }
2616
2617         /* We don't want to see VMMCALLs from a nested guest */
2618         clr_intercept(svm, INTERCEPT_VMMCALL);
2619
2620         svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2621         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2622         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2623         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2624         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2625         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2626
2627         nested_svm_unmap(page);
2628
2629         /* Enter Guest-Mode */
2630         enter_guest_mode(&svm->vcpu);
2631
2632         /*
2633          * Merge guest and host intercepts - must be called  with vcpu in
2634          * guest-mode to take affect here
2635          */
2636         recalc_intercepts(svm);
2637
2638         svm->nested.vmcb = vmcb_gpa;
2639
2640         enable_gif(svm);
2641
2642         mark_all_dirty(svm->vmcb);
2643
2644         return true;
2645 }
2646
2647 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2648 {
2649         to_vmcb->save.fs = from_vmcb->save.fs;
2650         to_vmcb->save.gs = from_vmcb->save.gs;
2651         to_vmcb->save.tr = from_vmcb->save.tr;
2652         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2653         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2654         to_vmcb->save.star = from_vmcb->save.star;
2655         to_vmcb->save.lstar = from_vmcb->save.lstar;
2656         to_vmcb->save.cstar = from_vmcb->save.cstar;
2657         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2658         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2659         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2660         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2661 }
2662
2663 static int vmload_interception(struct vcpu_svm *svm)
2664 {
2665         struct vmcb *nested_vmcb;
2666         struct page *page;
2667
2668         if (nested_svm_check_permissions(svm))
2669                 return 1;
2670
2671         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2672         if (!nested_vmcb)
2673                 return 1;
2674
2675         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2676         skip_emulated_instruction(&svm->vcpu);
2677
2678         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2679         nested_svm_unmap(page);
2680
2681         return 1;
2682 }
2683
2684 static int vmsave_interception(struct vcpu_svm *svm)
2685 {
2686         struct vmcb *nested_vmcb;
2687         struct page *page;
2688
2689         if (nested_svm_check_permissions(svm))
2690                 return 1;
2691
2692         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2693         if (!nested_vmcb)
2694                 return 1;
2695
2696         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2697         skip_emulated_instruction(&svm->vcpu);
2698
2699         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2700         nested_svm_unmap(page);
2701
2702         return 1;
2703 }
2704
2705 static int vmrun_interception(struct vcpu_svm *svm)
2706 {
2707         if (nested_svm_check_permissions(svm))
2708                 return 1;
2709
2710         /* Save rip after vmrun instruction */
2711         kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2712
2713         if (!nested_svm_vmrun(svm))
2714                 return 1;
2715
2716         if (!nested_svm_vmrun_msrpm(svm))
2717                 goto failed;
2718
2719         return 1;
2720
2721 failed:
2722
2723         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2724         svm->vmcb->control.exit_code_hi = 0;
2725         svm->vmcb->control.exit_info_1  = 0;
2726         svm->vmcb->control.exit_info_2  = 0;
2727
2728         nested_svm_vmexit(svm);
2729
2730         return 1;
2731 }
2732
2733 static int stgi_interception(struct vcpu_svm *svm)
2734 {
2735         if (nested_svm_check_permissions(svm))
2736                 return 1;
2737
2738         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2739         skip_emulated_instruction(&svm->vcpu);
2740         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2741
2742         enable_gif(svm);
2743
2744         return 1;
2745 }
2746
2747 static int clgi_interception(struct vcpu_svm *svm)
2748 {
2749         if (nested_svm_check_permissions(svm))
2750                 return 1;
2751
2752         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2753         skip_emulated_instruction(&svm->vcpu);
2754
2755         disable_gif(svm);
2756
2757         /* After a CLGI no interrupts should come */
2758         svm_clear_vintr(svm);
2759         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2760
2761         mark_dirty(svm->vmcb, VMCB_INTR);
2762
2763         return 1;
2764 }
2765
2766 static int invlpga_interception(struct vcpu_svm *svm)
2767 {
2768         struct kvm_vcpu *vcpu = &svm->vcpu;
2769
2770         trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
2771                           kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2772
2773         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2774         kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2775
2776         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2777         skip_emulated_instruction(&svm->vcpu);
2778         return 1;
2779 }
2780
2781 static int skinit_interception(struct vcpu_svm *svm)
2782 {
2783         trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2784
2785         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2786         return 1;
2787 }
2788
2789 static int wbinvd_interception(struct vcpu_svm *svm)
2790 {
2791         kvm_emulate_wbinvd(&svm->vcpu);
2792         return 1;
2793 }
2794
2795 static int xsetbv_interception(struct vcpu_svm *svm)
2796 {
2797         u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2798         u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2799
2800         if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2801                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2802                 skip_emulated_instruction(&svm->vcpu);
2803         }
2804
2805         return 1;
2806 }
2807
2808 static int task_switch_interception(struct vcpu_svm *svm)
2809 {
2810         u16 tss_selector;
2811         int reason;
2812         int int_type = svm->vmcb->control.exit_int_info &
2813                 SVM_EXITINTINFO_TYPE_MASK;
2814         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2815         uint32_t type =
2816                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2817         uint32_t idt_v =
2818                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2819         bool has_error_code = false;
2820         u32 error_code = 0;
2821
2822         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2823
2824         if (svm->vmcb->control.exit_info_2 &
2825             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2826                 reason = TASK_SWITCH_IRET;
2827         else if (svm->vmcb->control.exit_info_2 &
2828                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2829                 reason = TASK_SWITCH_JMP;
2830         else if (idt_v)
2831                 reason = TASK_SWITCH_GATE;
2832         else
2833                 reason = TASK_SWITCH_CALL;
2834
2835         if (reason == TASK_SWITCH_GATE) {
2836                 switch (type) {
2837                 case SVM_EXITINTINFO_TYPE_NMI:
2838                         svm->vcpu.arch.nmi_injected = false;
2839                         break;
2840                 case SVM_EXITINTINFO_TYPE_EXEPT:
2841                         if (svm->vmcb->control.exit_info_2 &
2842                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2843                                 has_error_code = true;
2844                                 error_code =
2845                                         (u32)svm->vmcb->control.exit_info_2;
2846                         }
2847                         kvm_clear_exception_queue(&svm->vcpu);
2848                         break;
2849                 case SVM_EXITINTINFO_TYPE_INTR:
2850                         kvm_clear_interrupt_queue(&svm->vcpu);
2851                         break;
2852                 default:
2853                         break;
2854                 }
2855         }
2856
2857         if (reason != TASK_SWITCH_GATE ||
2858             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2859             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2860              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2861                 skip_emulated_instruction(&svm->vcpu);
2862
2863         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2864                 int_vec = -1;
2865
2866         if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2867                                 has_error_code, error_code) == EMULATE_FAIL) {
2868                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2869                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2870                 svm->vcpu.run->internal.ndata = 0;
2871                 return 0;
2872         }
2873         return 1;
2874 }
2875
2876 static int cpuid_interception(struct vcpu_svm *svm)
2877 {
2878         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2879         kvm_emulate_cpuid(&svm->vcpu);
2880         return 1;
2881 }
2882
2883 static int iret_interception(struct vcpu_svm *svm)
2884 {
2885         ++svm->vcpu.stat.nmi_window_exits;
2886         clr_intercept(svm, INTERCEPT_IRET);
2887         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2888         svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2889         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2890         return 1;
2891 }
2892
2893 static int invlpg_interception(struct vcpu_svm *svm)
2894 {
2895         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2896                 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2897
2898         kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2899         skip_emulated_instruction(&svm->vcpu);
2900         return 1;
2901 }
2902
2903 static int emulate_on_interception(struct vcpu_svm *svm)
2904 {
2905         return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2906 }
2907
2908 static int rdpmc_interception(struct vcpu_svm *svm)
2909 {
2910         int err;
2911
2912         if (!static_cpu_has(X86_FEATURE_NRIPS))
2913                 return emulate_on_interception(svm);
2914
2915         err = kvm_rdpmc(&svm->vcpu);
2916         kvm_complete_insn_gp(&svm->vcpu, err);
2917
2918         return 1;
2919 }
2920
2921 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
2922                                             unsigned long val)
2923 {
2924         unsigned long cr0 = svm->vcpu.arch.cr0;
2925         bool ret = false;
2926         u64 intercept;
2927
2928         intercept = svm->nested.intercept;
2929
2930         if (!is_guest_mode(&svm->vcpu) ||
2931             (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2932                 return false;
2933
2934         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2935         val &= ~SVM_CR0_SELECTIVE_MASK;
2936
2937         if (cr0 ^ val) {
2938                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2939                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2940         }
2941
2942         return ret;
2943 }
2944
2945 #define CR_VALID (1ULL << 63)
2946
2947 static int cr_interception(struct vcpu_svm *svm)
2948 {
2949         int reg, cr;
2950         unsigned long val;
2951         int err;
2952
2953         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2954                 return emulate_on_interception(svm);
2955
2956         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2957                 return emulate_on_interception(svm);
2958
2959         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2960         if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2961                 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2962         else
2963                 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2964
2965         err = 0;
2966         if (cr >= 16) { /* mov to cr */
2967                 cr -= 16;
2968                 val = kvm_register_read(&svm->vcpu, reg);
2969                 switch (cr) {
2970                 case 0:
2971                         if (!check_selective_cr0_intercepted(svm, val))
2972                                 err = kvm_set_cr0(&svm->vcpu, val);
2973                         else
2974                                 return 1;
2975
2976                         break;
2977                 case 3:
2978                         err = kvm_set_cr3(&svm->vcpu, val);
2979                         break;
2980                 case 4:
2981                         err = kvm_set_cr4(&svm->vcpu, val);
2982                         break;
2983                 case 8:
2984                         err = kvm_set_cr8(&svm->vcpu, val);
2985                         break;
2986                 default:
2987                         WARN(1, "unhandled write to CR%d", cr);
2988                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2989                         return 1;
2990                 }
2991         } else { /* mov from cr */
2992                 switch (cr) {
2993                 case 0:
2994                         val = kvm_read_cr0(&svm->vcpu);
2995                         break;
2996                 case 2:
2997                         val = svm->vcpu.arch.cr2;
2998                         break;
2999                 case 3:
3000                         val = kvm_read_cr3(&svm->vcpu);
3001                         break;
3002                 case 4:
3003                         val = kvm_read_cr4(&svm->vcpu);
3004                         break;
3005                 case 8:
3006                         val = kvm_get_cr8(&svm->vcpu);
3007                         break;
3008                 default:
3009                         WARN(1, "unhandled read from CR%d", cr);
3010                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3011                         return 1;
3012                 }
3013                 kvm_register_write(&svm->vcpu, reg, val);
3014         }
3015         kvm_complete_insn_gp(&svm->vcpu, err);
3016
3017         return 1;
3018 }
3019
3020 static int dr_interception(struct vcpu_svm *svm)
3021 {
3022         int reg, dr;
3023         unsigned long val;
3024
3025         if (svm->vcpu.guest_debug == 0) {
3026                 /*
3027                  * No more DR vmexits; force a reload of the debug registers
3028                  * and reenter on this instruction.  The next vmexit will
3029                  * retrieve the full state of the debug registers.
3030                  */
3031                 clr_dr_intercepts(svm);
3032                 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3033                 return 1;
3034         }
3035
3036         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3037                 return emulate_on_interception(svm);
3038
3039         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3040         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3041
3042         if (dr >= 16) { /* mov to DRn */
3043                 if (!kvm_require_dr(&svm->vcpu, dr - 16))
3044                         return 1;
3045                 val = kvm_register_read(&svm->vcpu, reg);
3046                 kvm_set_dr(&svm->vcpu, dr - 16, val);
3047         } else {
3048                 if (!kvm_require_dr(&svm->vcpu, dr))
3049                         return 1;
3050                 kvm_get_dr(&svm->vcpu, dr, &val);
3051                 kvm_register_write(&svm->vcpu, reg, val);
3052         }
3053
3054         skip_emulated_instruction(&svm->vcpu);
3055
3056         return 1;
3057 }
3058
3059 static int cr8_write_interception(struct vcpu_svm *svm)
3060 {
3061         struct kvm_run *kvm_run = svm->vcpu.run;
3062         int r;
3063
3064         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3065         /* instruction emulation calls kvm_set_cr8() */
3066         r = cr_interception(svm);
3067         if (lapic_in_kernel(&svm->vcpu))
3068                 return r;
3069         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3070                 return r;
3071         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3072         return 0;
3073 }
3074
3075 static u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
3076 {
3077         struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
3078         return vmcb->control.tsc_offset +
3079                 svm_scale_tsc(vcpu, host_tsc);
3080 }
3081
3082 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3083 {
3084         struct vcpu_svm *svm = to_svm(vcpu);
3085
3086         switch (msr_info->index) {
3087         case MSR_IA32_TSC: {
3088                 msr_info->data = svm->vmcb->control.tsc_offset +
3089                         svm_scale_tsc(vcpu, rdtsc());
3090
3091                 break;
3092         }
3093         case MSR_STAR:
3094                 msr_info->data = svm->vmcb->save.star;
3095                 break;
3096 #ifdef CONFIG_X86_64
3097         case MSR_LSTAR:
3098                 msr_info->data = svm->vmcb->save.lstar;
3099                 break;
3100         case MSR_CSTAR:
3101                 msr_info->data = svm->vmcb->save.cstar;
3102                 break;
3103         case MSR_KERNEL_GS_BASE:
3104                 msr_info->data = svm->vmcb->save.kernel_gs_base;
3105                 break;
3106         case MSR_SYSCALL_MASK:
3107                 msr_info->data = svm->vmcb->save.sfmask;
3108                 break;
3109 #endif
3110         case MSR_IA32_SYSENTER_CS:
3111                 msr_info->data = svm->vmcb->save.sysenter_cs;
3112                 break;
3113         case MSR_IA32_SYSENTER_EIP:
3114                 msr_info->data = svm->sysenter_eip;
3115                 break;
3116         case MSR_IA32_SYSENTER_ESP:
3117                 msr_info->data = svm->sysenter_esp;
3118                 break;
3119         /*
3120          * Nobody will change the following 5 values in the VMCB so we can
3121          * safely return them on rdmsr. They will always be 0 until LBRV is
3122          * implemented.
3123          */
3124         case MSR_IA32_DEBUGCTLMSR:
3125                 msr_info->data = svm->vmcb->save.dbgctl;
3126                 break;
3127         case MSR_IA32_LASTBRANCHFROMIP:
3128                 msr_info->data = svm->vmcb->save.br_from;
3129                 break;
3130         case MSR_IA32_LASTBRANCHTOIP:
3131                 msr_info->data = svm->vmcb->save.br_to;
3132                 break;
3133         case MSR_IA32_LASTINTFROMIP:
3134                 msr_info->data = svm->vmcb->save.last_excp_from;
3135                 break;
3136         case MSR_IA32_LASTINTTOIP:
3137                 msr_info->data = svm->vmcb->save.last_excp_to;
3138                 break;
3139         case MSR_VM_HSAVE_PA:
3140                 msr_info->data = svm->nested.hsave_msr;
3141                 break;
3142         case MSR_VM_CR:
3143                 msr_info->data = svm->nested.vm_cr_msr;
3144                 break;
3145         case MSR_IA32_UCODE_REV:
3146                 msr_info->data = 0x01000065;
3147                 break;
3148         default:
3149                 return kvm_get_msr_common(vcpu, msr_info);
3150         }
3151         return 0;
3152 }
3153
3154 static int rdmsr_interception(struct vcpu_svm *svm)
3155 {
3156         u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3157         struct msr_data msr_info;
3158
3159         msr_info.index = ecx;
3160         msr_info.host_initiated = false;
3161         if (svm_get_msr(&svm->vcpu, &msr_info)) {
3162                 trace_kvm_msr_read_ex(ecx);
3163                 kvm_inject_gp(&svm->vcpu, 0);
3164         } else {
3165                 trace_kvm_msr_read(ecx, msr_info.data);
3166
3167                 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
3168                                    msr_info.data & 0xffffffff);
3169                 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
3170                                    msr_info.data >> 32);
3171                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3172                 skip_emulated_instruction(&svm->vcpu);
3173         }
3174         return 1;
3175 }
3176
3177 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3178 {
3179         struct vcpu_svm *svm = to_svm(vcpu);
3180         int svm_dis, chg_mask;
3181
3182         if (data & ~SVM_VM_CR_VALID_MASK)
3183                 return 1;
3184
3185         chg_mask = SVM_VM_CR_VALID_MASK;
3186
3187         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3188                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3189
3190         svm->nested.vm_cr_msr &= ~chg_mask;
3191         svm->nested.vm_cr_msr |= (data & chg_mask);
3192
3193         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3194
3195         /* check for svm_disable while efer.svme is set */
3196         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3197                 return 1;
3198
3199         return 0;
3200 }
3201
3202 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3203 {
3204         struct vcpu_svm *svm = to_svm(vcpu);
3205
3206         u32 ecx = msr->index;
3207         u64 data = msr->data;
3208         switch (ecx) {
3209         case MSR_IA32_TSC:
3210                 kvm_write_tsc(vcpu, msr);
3211                 break;
3212         case MSR_STAR:
3213                 svm->vmcb->save.star = data;
3214                 break;
3215 #ifdef CONFIG_X86_64
3216         case MSR_LSTAR:
3217                 svm->vmcb->save.lstar = data;
3218                 break;
3219         case MSR_CSTAR:
3220                 svm->vmcb->save.cstar = data;
3221                 break;
3222         case MSR_KERNEL_GS_BASE:
3223                 svm->vmcb->save.kernel_gs_base = data;
3224                 break;
3225         case MSR_SYSCALL_MASK:
3226                 svm->vmcb->save.sfmask = data;
3227                 break;
3228 #endif
3229         case MSR_IA32_SYSENTER_CS:
3230                 svm->vmcb->save.sysenter_cs = data;
3231                 break;
3232         case MSR_IA32_SYSENTER_EIP:
3233                 svm->sysenter_eip = data;
3234                 svm->vmcb->save.sysenter_eip = data;
3235                 break;
3236         case MSR_IA32_SYSENTER_ESP:
3237                 svm->sysenter_esp = data;
3238                 svm->vmcb->save.sysenter_esp = data;
3239                 break;
3240         case MSR_IA32_DEBUGCTLMSR:
3241                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3242                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3243                                     __func__, data);
3244                         break;
3245                 }
3246                 if (data & DEBUGCTL_RESERVED_BITS)
3247                         return 1;
3248
3249                 svm->vmcb->save.dbgctl = data;
3250                 mark_dirty(svm->vmcb, VMCB_LBR);
3251                 if (data & (1ULL<<0))
3252                         svm_enable_lbrv(svm);
3253                 else
3254                         svm_disable_lbrv(svm);
3255                 break;
3256         case MSR_VM_HSAVE_PA:
3257                 svm->nested.hsave_msr = data;
3258                 break;
3259         case MSR_VM_CR:
3260                 return svm_set_vm_cr(vcpu, data);
3261         case MSR_VM_IGNNE:
3262                 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3263                 break;
3264         default:
3265                 return kvm_set_msr_common(vcpu, msr);
3266         }
3267         return 0;
3268 }
3269
3270 static int wrmsr_interception(struct vcpu_svm *svm)
3271 {
3272         struct msr_data msr;
3273         u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3274         u64 data = kvm_read_edx_eax(&svm->vcpu);
3275
3276         msr.data = data;
3277         msr.index = ecx;
3278         msr.host_initiated = false;
3279
3280         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3281         if (kvm_set_msr(&svm->vcpu, &msr)) {
3282                 trace_kvm_msr_write_ex(ecx, data);
3283                 kvm_inject_gp(&svm->vcpu, 0);
3284         } else {
3285                 trace_kvm_msr_write(ecx, data);
3286                 skip_emulated_instruction(&svm->vcpu);
3287         }
3288         return 1;
3289 }
3290
3291 static int msr_interception(struct vcpu_svm *svm)
3292 {
3293         if (svm->vmcb->control.exit_info_1)
3294                 return wrmsr_interception(svm);
3295         else
3296                 return rdmsr_interception(svm);
3297 }
3298
3299 static int interrupt_window_interception(struct vcpu_svm *svm)
3300 {
3301         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3302         svm_clear_vintr(svm);
3303         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3304         mark_dirty(svm->vmcb, VMCB_INTR);
3305         ++svm->vcpu.stat.irq_window_exits;
3306         return 1;
3307 }
3308
3309 static int pause_interception(struct vcpu_svm *svm)
3310 {
3311         kvm_vcpu_on_spin(&(svm->vcpu));
3312         return 1;
3313 }
3314
3315 static int nop_interception(struct vcpu_svm *svm)
3316 {
3317         skip_emulated_instruction(&(svm->vcpu));
3318         return 1;
3319 }
3320
3321 static int monitor_interception(struct vcpu_svm *svm)
3322 {
3323         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3324         return nop_interception(svm);
3325 }
3326
3327 static int mwait_interception(struct vcpu_svm *svm)
3328 {
3329         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3330         return nop_interception(svm);
3331 }
3332
3333 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3334         [SVM_EXIT_READ_CR0]                     = cr_interception,
3335         [SVM_EXIT_READ_CR3]                     = cr_interception,
3336         [SVM_EXIT_READ_CR4]                     = cr_interception,
3337         [SVM_EXIT_READ_CR8]                     = cr_interception,
3338         [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
3339         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
3340         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
3341         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
3342         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
3343         [SVM_EXIT_READ_DR0]                     = dr_interception,
3344         [SVM_EXIT_READ_DR1]                     = dr_interception,
3345         [SVM_EXIT_READ_DR2]                     = dr_interception,
3346         [SVM_EXIT_READ_DR3]                     = dr_interception,
3347         [SVM_EXIT_READ_DR4]                     = dr_interception,
3348         [SVM_EXIT_READ_DR5]                     = dr_interception,
3349         [SVM_EXIT_READ_DR6]                     = dr_interception,
3350         [SVM_EXIT_READ_DR7]                     = dr_interception,
3351         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
3352         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
3353         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
3354         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
3355         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
3356         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
3357         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
3358         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
3359         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
3360         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
3361         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
3362         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
3363         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
3364         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
3365         [SVM_EXIT_INTR]                         = intr_interception,
3366         [SVM_EXIT_NMI]                          = nmi_interception,
3367         [SVM_EXIT_SMI]                          = nop_on_interception,
3368         [SVM_EXIT_INIT]                         = nop_on_interception,
3369         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
3370         [SVM_EXIT_RDPMC]                        = rdpmc_interception,
3371         [SVM_EXIT_CPUID]                        = cpuid_interception,
3372         [SVM_EXIT_IRET]                         = iret_interception,
3373         [SVM_EXIT_INVD]                         = emulate_on_interception,
3374         [SVM_EXIT_PAUSE]                        = pause_interception,
3375         [SVM_EXIT_HLT]                          = halt_interception,
3376         [SVM_EXIT_INVLPG]                       = invlpg_interception,
3377         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
3378         [SVM_EXIT_IOIO]                         = io_interception,
3379         [SVM_EXIT_MSR]                          = msr_interception,
3380         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
3381         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
3382         [SVM_EXIT_VMRUN]                        = vmrun_interception,
3383         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
3384         [SVM_EXIT_VMLOAD]                       = vmload_interception,
3385         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
3386         [SVM_EXIT_STGI]                         = stgi_interception,
3387         [SVM_EXIT_CLGI]                         = clgi_interception,
3388         [SVM_EXIT_SKINIT]                       = skinit_interception,
3389         [SVM_EXIT_WBINVD]                       = wbinvd_interception,
3390         [SVM_EXIT_MONITOR]                      = monitor_interception,
3391         [SVM_EXIT_MWAIT]                        = mwait_interception,
3392         [SVM_EXIT_XSETBV]                       = xsetbv_interception,
3393         [SVM_EXIT_NPF]                          = pf_interception,
3394         [SVM_EXIT_RSM]                          = emulate_on_interception,
3395 };
3396
3397 static void dump_vmcb(struct kvm_vcpu *vcpu)
3398 {
3399         struct vcpu_svm *svm = to_svm(vcpu);
3400         struct vmcb_control_area *control = &svm->vmcb->control;
3401         struct vmcb_save_area *save = &svm->vmcb->save;
3402
3403         pr_err("VMCB Control Area:\n");
3404         pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3405         pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3406         pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3407         pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3408         pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3409         pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3410         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3411         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3412         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3413         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3414         pr_err("%-20s%d\n", "asid:", control->asid);
3415         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3416         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3417         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3418         pr_err("%-20s%08x\n", "int_state:", control->int_state);
3419         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3420         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3421         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3422         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3423         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3424         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3425         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3426         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3427         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3428         pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3429         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3430         pr_err("VMCB State Save Area:\n");
3431         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3432                "es:",
3433                save->es.selector, save->es.attrib,
3434                save->es.limit, save->es.base);
3435         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3436                "cs:",
3437                save->cs.selector, save->cs.attrib,
3438                save->cs.limit, save->cs.base);
3439         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3440                "ss:",
3441                save->ss.selector, save->ss.attrib,
3442                save->ss.limit, save->ss.base);
3443         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3444                "ds:",
3445                save->ds.selector, save->ds.attrib,
3446                save->ds.limit, save->ds.base);
3447         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3448                "fs:",
3449                save->fs.selector, save->fs.attrib,
3450                save->fs.limit, save->fs.base);
3451         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3452                "gs:",
3453                save->gs.selector, save->gs.attrib,
3454                save->gs.limit, save->gs.base);
3455         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3456                "gdtr:",
3457                save->gdtr.selector, save->gdtr.attrib,
3458                save->gdtr.limit, save->gdtr.base);
3459         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3460                "ldtr:",
3461                save->ldtr.selector, save->ldtr.attrib,
3462                save->ldtr.limit, save->ldtr.base);
3463         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3464                "idtr:",
3465                save->idtr.selector, save->idtr.attrib,
3466                save->idtr.limit, save->idtr.base);
3467         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3468                "tr:",
3469                save->tr.selector, save->tr.attrib,
3470                save->tr.limit, save->tr.base);
3471         pr_err("cpl:            %d                efer:         %016llx\n",
3472                 save->cpl, save->efer);
3473         pr_err("%-15s %016llx %-13s %016llx\n",
3474                "cr0:", save->cr0, "cr2:", save->cr2);
3475         pr_err("%-15s %016llx %-13s %016llx\n",
3476                "cr3:", save->cr3, "cr4:", save->cr4);
3477         pr_err("%-15s %016llx %-13s %016llx\n",
3478                "dr6:", save->dr6, "dr7:", save->dr7);
3479         pr_err("%-15s %016llx %-13s %016llx\n",
3480                "rip:", save->rip, "rflags:", save->rflags);
3481         pr_err("%-15s %016llx %-13s %016llx\n",
3482                "rsp:", save->rsp, "rax:", save->rax);
3483         pr_err("%-15s %016llx %-13s %016llx\n",
3484                "star:", save->star, "lstar:", save->lstar);
3485         pr_err("%-15s %016llx %-13s %016llx\n",
3486                "cstar:", save->cstar, "sfmask:", save->sfmask);
3487         pr_err("%-15s %016llx %-13s %016llx\n",
3488                "kernel_gs_base:", save->kernel_gs_base,
3489                "sysenter_cs:", save->sysenter_cs);
3490         pr_err("%-15s %016llx %-13s %016llx\n",
3491                "sysenter_esp:", save->sysenter_esp,
3492                "sysenter_eip:", save->sysenter_eip);
3493         pr_err("%-15s %016llx %-13s %016llx\n",
3494                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3495         pr_err("%-15s %016llx %-13s %016llx\n",
3496                "br_from:", save->br_from, "br_to:", save->br_to);
3497         pr_err("%-15s %016llx %-13s %016llx\n",
3498                "excp_from:", save->last_excp_from,
3499                "excp_to:", save->last_excp_to);
3500 }
3501
3502 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3503 {
3504         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3505
3506         *info1 = control->exit_info_1;
3507         *info2 = control->exit_info_2;
3508 }
3509
3510 static int handle_exit(struct kvm_vcpu *vcpu)
3511 {
3512         struct vcpu_svm *svm = to_svm(vcpu);
3513         struct kvm_run *kvm_run = vcpu->run;
3514         u32 exit_code = svm->vmcb->control.exit_code;
3515
3516         if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3517                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3518         if (npt_enabled)
3519                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3520
3521         if (unlikely(svm->nested.exit_required)) {
3522                 nested_svm_vmexit(svm);
3523                 svm->nested.exit_required = false;
3524
3525                 return 1;
3526         }
3527
3528         if (is_guest_mode(vcpu)) {
3529                 int vmexit;
3530
3531                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3532                                         svm->vmcb->control.exit_info_1,
3533                                         svm->vmcb->control.exit_info_2,
3534                                         svm->vmcb->control.exit_int_info,
3535                                         svm->vmcb->control.exit_int_info_err,
3536                                         KVM_ISA_SVM);
3537
3538                 vmexit = nested_svm_exit_special(svm);
3539
3540                 if (vmexit == NESTED_EXIT_CONTINUE)
3541                         vmexit = nested_svm_exit_handled(svm);
3542
3543                 if (vmexit == NESTED_EXIT_DONE)
3544                         return 1;
3545         }
3546
3547         svm_complete_interrupts(svm);
3548
3549         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3550                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3551                 kvm_run->fail_entry.hardware_entry_failure_reason
3552                         = svm->vmcb->control.exit_code;
3553                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3554                 dump_vmcb(vcpu);
3555                 return 0;
3556         }
3557
3558         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3559             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3560             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3561             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3562                 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3563                        "exit_code 0x%x\n",
3564                        __func__, svm->vmcb->control.exit_int_info,
3565                        exit_code);
3566
3567         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3568             || !svm_exit_handlers[exit_code]) {
3569                 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
3570                 kvm_queue_exception(vcpu, UD_VECTOR);
3571                 return 1;
3572         }
3573
3574         return svm_exit_handlers[exit_code](svm);
3575 }
3576
3577 static void reload_tss(struct kvm_vcpu *vcpu)
3578 {
3579         int cpu = raw_smp_processor_id();
3580
3581         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3582         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3583         load_TR_desc();
3584 }
3585
3586 static void pre_svm_run(struct vcpu_svm *svm)
3587 {
3588         int cpu = raw_smp_processor_id();
3589
3590         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3591
3592         /* FIXME: handle wraparound of asid_generation */
3593         if (svm->asid_generation != sd->asid_generation)
3594                 new_asid(svm, sd);
3595 }
3596
3597 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3598 {
3599         struct vcpu_svm *svm = to_svm(vcpu);
3600
3601         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3602         vcpu->arch.hflags |= HF_NMI_MASK;
3603         set_intercept(svm, INTERCEPT_IRET);
3604         ++vcpu->stat.nmi_injections;
3605 }
3606
3607 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3608 {
3609         struct vmcb_control_area *control;
3610
3611         control = &svm->vmcb->control;
3612         control->int_vector = irq;
3613         control->int_ctl &= ~V_INTR_PRIO_MASK;
3614         control->int_ctl |= V_IRQ_MASK |
3615                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3616         mark_dirty(svm->vmcb, VMCB_INTR);
3617 }
3618
3619 static void svm_set_irq(struct kvm_vcpu *vcpu)
3620 {
3621         struct vcpu_svm *svm = to_svm(vcpu);
3622
3623         BUG_ON(!(gif_set(svm)));
3624
3625         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3626         ++vcpu->stat.irq_injections;
3627
3628         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3629                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3630 }
3631
3632 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3633 {
3634         struct vcpu_svm *svm = to_svm(vcpu);
3635
3636         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3637                 return;
3638
3639         clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3640
3641         if (irr == -1)
3642                 return;
3643
3644         if (tpr >= irr)
3645                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3646 }
3647
3648 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
3649 {
3650         return;
3651 }
3652
3653 static int svm_cpu_uses_apicv(struct kvm_vcpu *vcpu)
3654 {
3655         return 0;
3656 }
3657
3658 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu)
3659 {
3660         return;
3661 }
3662
3663 static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
3664 {
3665         return;
3666 }
3667
3668 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3669 {
3670         struct vcpu_svm *svm = to_svm(vcpu);
3671         struct vmcb *vmcb = svm->vmcb;
3672         int ret;
3673         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3674               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3675         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3676
3677         return ret;
3678 }
3679
3680 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3681 {
3682         struct vcpu_svm *svm = to_svm(vcpu);
3683
3684         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3685 }
3686
3687 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3688 {
3689         struct vcpu_svm *svm = to_svm(vcpu);
3690
3691         if (masked) {
3692                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3693                 set_intercept(svm, INTERCEPT_IRET);
3694         } else {
3695                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3696                 clr_intercept(svm, INTERCEPT_IRET);
3697         }
3698 }
3699
3700 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3701 {
3702         struct vcpu_svm *svm = to_svm(vcpu);
3703         struct vmcb *vmcb = svm->vmcb;
3704         int ret;
3705
3706         if (!gif_set(svm) ||
3707              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3708                 return 0;
3709
3710         ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3711
3712         if (is_guest_mode(vcpu))
3713                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3714
3715         return ret;
3716 }
3717
3718 static void enable_irq_window(struct kvm_vcpu *vcpu)
3719 {
3720         struct vcpu_svm *svm = to_svm(vcpu);
3721
3722         /*
3723          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3724          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3725          * get that intercept, this function will be called again though and
3726          * we'll get the vintr intercept.
3727          */
3728         if (gif_set(svm) && nested_svm_intr(svm)) {
3729                 svm_set_vintr(svm);
3730                 svm_inject_irq(svm, 0x0);
3731         }
3732 }
3733
3734 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3735 {
3736         struct vcpu_svm *svm = to_svm(vcpu);
3737
3738         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3739             == HF_NMI_MASK)
3740                 return; /* IRET will cause a vm exit */
3741
3742         /*
3743          * Something prevents NMI from been injected. Single step over possible
3744          * problem (IRET or exception injection or interrupt shadow)
3745          */
3746         svm->nmi_singlestep = true;
3747         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3748         update_db_bp_intercept(vcpu);
3749 }
3750
3751 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3752 {
3753         return 0;
3754 }
3755
3756 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3757 {
3758         struct vcpu_svm *svm = to_svm(vcpu);
3759
3760         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3761                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3762         else
3763                 svm->asid_generation--;
3764 }
3765
3766 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3767 {
3768 }
3769
3770 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3771 {
3772         struct vcpu_svm *svm = to_svm(vcpu);
3773
3774         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3775                 return;
3776
3777         if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3778                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3779                 kvm_set_cr8(vcpu, cr8);
3780         }
3781 }
3782
3783 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3784 {
3785         struct vcpu_svm *svm = to_svm(vcpu);
3786         u64 cr8;
3787
3788         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3789                 return;
3790
3791         cr8 = kvm_get_cr8(vcpu);
3792         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3793         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3794 }
3795
3796 static void svm_complete_interrupts(struct vcpu_svm *svm)
3797 {
3798         u8 vector;
3799         int type;
3800         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3801         unsigned int3_injected = svm->int3_injected;
3802
3803         svm->int3_injected = 0;
3804
3805         /*
3806          * If we've made progress since setting HF_IRET_MASK, we've
3807          * executed an IRET and can allow NMI injection.
3808          */
3809         if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3810             && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3811                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3812                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3813         }
3814
3815         svm->vcpu.arch.nmi_injected = false;
3816         kvm_clear_exception_queue(&svm->vcpu);
3817         kvm_clear_interrupt_queue(&svm->vcpu);
3818
3819         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3820                 return;
3821
3822         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3823
3824         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3825         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3826
3827         switch (type) {
3828         case SVM_EXITINTINFO_TYPE_NMI:
3829                 svm->vcpu.arch.nmi_injected = true;
3830                 break;
3831         case SVM_EXITINTINFO_TYPE_EXEPT:
3832                 /*
3833                  * In case of software exceptions, do not reinject the vector,
3834                  * but re-execute the instruction instead. Rewind RIP first
3835                  * if we emulated INT3 before.
3836                  */
3837                 if (kvm_exception_is_soft(vector)) {
3838                         if (vector == BP_VECTOR && int3_injected &&
3839                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3840                                 kvm_rip_write(&svm->vcpu,
3841                                               kvm_rip_read(&svm->vcpu) -
3842                                               int3_injected);
3843                         break;
3844                 }
3845                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3846                         u32 err = svm->vmcb->control.exit_int_info_err;
3847                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
3848
3849                 } else
3850                         kvm_requeue_exception(&svm->vcpu, vector);
3851                 break;
3852         case SVM_EXITINTINFO_TYPE_INTR:
3853                 kvm_queue_interrupt(&svm->vcpu, vector, false);
3854                 break;
3855         default:
3856                 break;
3857         }
3858 }
3859
3860 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3861 {
3862         struct vcpu_svm *svm = to_svm(vcpu);
3863         struct vmcb_control_area *control = &svm->vmcb->control;
3864
3865         control->exit_int_info = control->event_inj;
3866         control->exit_int_info_err = control->event_inj_err;
3867         control->event_inj = 0;
3868         svm_complete_interrupts(svm);
3869 }
3870
3871 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3872 {
3873         struct vcpu_svm *svm = to_svm(vcpu);
3874
3875         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3876         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3877         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3878
3879         /*
3880          * A vmexit emulation is required before the vcpu can be executed
3881          * again.
3882          */
3883         if (unlikely(svm->nested.exit_required))
3884                 return;
3885
3886         pre_svm_run(svm);
3887
3888         sync_lapic_to_cr8(vcpu);
3889
3890         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3891
3892         clgi();
3893
3894         local_irq_enable();
3895
3896         asm volatile (
3897                 "push %%" _ASM_BP "; \n\t"
3898                 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
3899                 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
3900                 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
3901                 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
3902                 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
3903                 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
3904 #ifdef CONFIG_X86_64
3905                 "mov %c[r8](%[svm]),  %%r8  \n\t"
3906                 "mov %c[r9](%[svm]),  %%r9  \n\t"
3907                 "mov %c[r10](%[svm]), %%r10 \n\t"
3908                 "mov %c[r11](%[svm]), %%r11 \n\t"
3909                 "mov %c[r12](%[svm]), %%r12 \n\t"
3910                 "mov %c[r13](%[svm]), %%r13 \n\t"
3911                 "mov %c[r14](%[svm]), %%r14 \n\t"
3912                 "mov %c[r15](%[svm]), %%r15 \n\t"
3913 #endif
3914
3915                 /* Enter guest mode */
3916                 "push %%" _ASM_AX " \n\t"
3917                 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
3918                 __ex(SVM_VMLOAD) "\n\t"
3919                 __ex(SVM_VMRUN) "\n\t"
3920                 __ex(SVM_VMSAVE) "\n\t"
3921                 "pop %%" _ASM_AX " \n\t"
3922
3923                 /* Save guest registers, load host registers */
3924                 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
3925                 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
3926                 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
3927                 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
3928                 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
3929                 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
3930 #ifdef CONFIG_X86_64
3931                 "mov %%r8,  %c[r8](%[svm]) \n\t"
3932                 "mov %%r9,  %c[r9](%[svm]) \n\t"
3933                 "mov %%r10, %c[r10](%[svm]) \n\t"
3934                 "mov %%r11, %c[r11](%[svm]) \n\t"
3935                 "mov %%r12, %c[r12](%[svm]) \n\t"
3936                 "mov %%r13, %c[r13](%[svm]) \n\t"
3937                 "mov %%r14, %c[r14](%[svm]) \n\t"
3938                 "mov %%r15, %c[r15](%[svm]) \n\t"
3939 #endif
3940                 "pop %%" _ASM_BP
3941                 :
3942                 : [svm]"a"(svm),
3943                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3944                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3945                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3946                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3947                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3948                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3949                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3950 #ifdef CONFIG_X86_64
3951                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3952                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3953                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3954                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3955                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3956                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3957                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3958                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3959 #endif
3960                 : "cc", "memory"
3961 #ifdef CONFIG_X86_64
3962                 , "rbx", "rcx", "rdx", "rsi", "rdi"
3963                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3964 #else
3965                 , "ebx", "ecx", "edx", "esi", "edi"
3966 #endif
3967                 );
3968
3969 #ifdef CONFIG_X86_64
3970         wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3971 #else
3972         loadsegment(fs, svm->host.fs);
3973 #ifndef CONFIG_X86_32_LAZY_GS
3974         loadsegment(gs, svm->host.gs);
3975 #endif
3976 #endif
3977
3978         reload_tss(vcpu);
3979
3980         local_irq_disable();
3981
3982         vcpu->arch.cr2 = svm->vmcb->save.cr2;
3983         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3984         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3985         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3986
3987         trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
3988
3989         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3990                 kvm_before_handle_nmi(&svm->vcpu);
3991
3992         stgi();
3993
3994         /* Any pending NMI will happen here */
3995
3996         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3997                 kvm_after_handle_nmi(&svm->vcpu);
3998
3999         sync_cr8_to_lapic(vcpu);
4000
4001         svm->next_rip = 0;
4002
4003         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4004
4005         /* if exit due to PF check for async PF */
4006         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4007                 svm->apf_reason = kvm_read_and_reset_pf_reason();
4008
4009         if (npt_enabled) {
4010                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
4011                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
4012         }
4013
4014         /*
4015          * We need to handle MC intercepts here before the vcpu has a chance to
4016          * change the physical cpu
4017          */
4018         if (unlikely(svm->vmcb->control.exit_code ==
4019                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
4020                 svm_handle_mce(svm);
4021
4022         mark_all_clean(svm->vmcb);
4023 }
4024
4025 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4026 {
4027         struct vcpu_svm *svm = to_svm(vcpu);
4028
4029         svm->vmcb->save.cr3 = root;
4030         mark_dirty(svm->vmcb, VMCB_CR);
4031         svm_flush_tlb(vcpu);
4032 }
4033
4034 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4035 {
4036         struct vcpu_svm *svm = to_svm(vcpu);
4037
4038         svm->vmcb->control.nested_cr3 = root;
4039         mark_dirty(svm->vmcb, VMCB_NPT);
4040
4041         /* Also sync guest cr3 here in case we live migrate */
4042         svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
4043         mark_dirty(svm->vmcb, VMCB_CR);
4044
4045         svm_flush_tlb(vcpu);
4046 }
4047
4048 static int is_disabled(void)
4049 {
4050         u64 vm_cr;
4051
4052         rdmsrl(MSR_VM_CR, vm_cr);
4053         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4054                 return 1;
4055
4056         return 0;
4057 }
4058
4059 static void
4060 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4061 {
4062         /*
4063          * Patch in the VMMCALL instruction:
4064          */
4065         hypercall[0] = 0x0f;
4066         hypercall[1] = 0x01;
4067         hypercall[2] = 0xd9;
4068 }
4069
4070 static void svm_check_processor_compat(void *rtn)
4071 {
4072         *(int *)rtn = 0;
4073 }
4074
4075 static bool svm_cpu_has_accelerated_tpr(void)
4076 {
4077         return false;
4078 }
4079
4080 static bool svm_has_high_real_mode_segbase(void)
4081 {
4082         return true;
4083 }
4084
4085 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4086 {
4087         return 0;
4088 }
4089
4090 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
4091 {
4092         struct vcpu_svm *svm = to_svm(vcpu);
4093
4094         /* Update nrips enabled cache */
4095         svm->nrips_enabled = !!guest_cpuid_has_nrips(&svm->vcpu);
4096 }
4097
4098 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4099 {
4100         switch (func) {
4101         case 0x80000001:
4102                 if (nested)
4103                         entry->ecx |= (1 << 2); /* Set SVM bit */
4104                 break;
4105         case 0x8000000A:
4106                 entry->eax = 1; /* SVM revision 1 */
4107                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
4108                                    ASID emulation to nested SVM */
4109                 entry->ecx = 0; /* Reserved */
4110                 entry->edx = 0; /* Per default do not support any
4111                                    additional features */
4112
4113                 /* Support next_rip if host supports it */
4114                 if (boot_cpu_has(X86_FEATURE_NRIPS))
4115                         entry->edx |= SVM_FEATURE_NRIP;
4116
4117                 /* Support NPT for the guest if enabled */
4118                 if (npt_enabled)
4119                         entry->edx |= SVM_FEATURE_NPT;
4120
4121                 break;
4122         }
4123 }
4124
4125 static int svm_get_lpage_level(void)
4126 {
4127         return PT_PDPE_LEVEL;
4128 }
4129
4130 static bool svm_rdtscp_supported(void)
4131 {
4132         return false;
4133 }
4134
4135 static bool svm_invpcid_supported(void)
4136 {
4137         return false;
4138 }
4139
4140 static bool svm_mpx_supported(void)
4141 {
4142         return false;
4143 }
4144
4145 static bool svm_xsaves_supported(void)
4146 {
4147         return false;
4148 }
4149
4150 static bool svm_has_wbinvd_exit(void)
4151 {
4152         return true;
4153 }
4154
4155 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4156 {
4157         struct vcpu_svm *svm = to_svm(vcpu);
4158
4159         set_exception_intercept(svm, NM_VECTOR);
4160         update_cr0_intercept(svm);
4161 }
4162
4163 #define PRE_EX(exit)  { .exit_code = (exit), \
4164                         .stage = X86_ICPT_PRE_EXCEPT, }
4165 #define POST_EX(exit) { .exit_code = (exit), \
4166                         .stage = X86_ICPT_POST_EXCEPT, }
4167 #define POST_MEM(exit) { .exit_code = (exit), \
4168                         .stage = X86_ICPT_POST_MEMACCESS, }
4169
4170 static const struct __x86_intercept {
4171         u32 exit_code;
4172         enum x86_intercept_stage stage;
4173 } x86_intercept_map[] = {
4174         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
4175         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
4176         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
4177         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
4178         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
4179         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
4180         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
4181         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
4182         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
4183         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
4184         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
4185         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
4186         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
4187         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
4188         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
4189         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
4190         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
4191         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
4192         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
4193         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
4194         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
4195         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
4196         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
4197         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
4198         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
4199         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
4200         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
4201         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
4202         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
4203         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
4204         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
4205         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
4206         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
4207         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
4208         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
4209         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
4210         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
4211         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
4212         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
4213         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
4214         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
4215         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
4216         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
4217         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
4218         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
4219         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
4220 };
4221
4222 #undef PRE_EX
4223 #undef POST_EX
4224 #undef POST_MEM
4225
4226 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4227                                struct x86_instruction_info *info,
4228                                enum x86_intercept_stage stage)
4229 {
4230         struct vcpu_svm *svm = to_svm(vcpu);
4231         int vmexit, ret = X86EMUL_CONTINUE;
4232         struct __x86_intercept icpt_info;
4233         struct vmcb *vmcb = svm->vmcb;
4234
4235         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4236                 goto out;
4237
4238         icpt_info = x86_intercept_map[info->intercept];
4239
4240         if (stage != icpt_info.stage)
4241                 goto out;
4242
4243         switch (icpt_info.exit_code) {
4244         case SVM_EXIT_READ_CR0:
4245                 if (info->intercept == x86_intercept_cr_read)
4246                         icpt_info.exit_code += info->modrm_reg;
4247                 break;
4248         case SVM_EXIT_WRITE_CR0: {
4249                 unsigned long cr0, val;
4250                 u64 intercept;
4251
4252                 if (info->intercept == x86_intercept_cr_write)
4253                         icpt_info.exit_code += info->modrm_reg;
4254
4255                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4256                     info->intercept == x86_intercept_clts)
4257                         break;
4258
4259                 intercept = svm->nested.intercept;
4260
4261                 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4262                         break;
4263
4264                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4265                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4266
4267                 if (info->intercept == x86_intercept_lmsw) {
4268                         cr0 &= 0xfUL;
4269                         val &= 0xfUL;
4270                         /* lmsw can't clear PE - catch this here */
4271                         if (cr0 & X86_CR0_PE)
4272                                 val |= X86_CR0_PE;
4273                 }
4274
4275                 if (cr0 ^ val)
4276                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4277
4278                 break;
4279         }
4280         case SVM_EXIT_READ_DR0:
4281         case SVM_EXIT_WRITE_DR0:
4282                 icpt_info.exit_code += info->modrm_reg;
4283                 break;
4284         case SVM_EXIT_MSR:
4285                 if (info->intercept == x86_intercept_wrmsr)
4286                         vmcb->control.exit_info_1 = 1;
4287                 else
4288                         vmcb->control.exit_info_1 = 0;
4289                 break;
4290         case SVM_EXIT_PAUSE:
4291                 /*
4292                  * We get this for NOP only, but pause
4293                  * is rep not, check this here
4294                  */
4295                 if (info->rep_prefix != REPE_PREFIX)
4296                         goto out;
4297         case SVM_EXIT_IOIO: {
4298                 u64 exit_info;
4299                 u32 bytes;
4300
4301                 if (info->intercept == x86_intercept_in ||
4302                     info->intercept == x86_intercept_ins) {
4303                         exit_info = ((info->src_val & 0xffff) << 16) |
4304                                 SVM_IOIO_TYPE_MASK;
4305                         bytes = info->dst_bytes;
4306                 } else {
4307                         exit_info = (info->dst_val & 0xffff) << 16;
4308                         bytes = info->src_bytes;
4309                 }
4310
4311                 if (info->intercept == x86_intercept_outs ||
4312                     info->intercept == x86_intercept_ins)
4313                         exit_info |= SVM_IOIO_STR_MASK;
4314
4315                 if (info->rep_prefix)
4316                         exit_info |= SVM_IOIO_REP_MASK;
4317
4318                 bytes = min(bytes, 4u);
4319
4320                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4321
4322                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4323
4324                 vmcb->control.exit_info_1 = exit_info;
4325                 vmcb->control.exit_info_2 = info->next_rip;
4326
4327                 break;
4328         }
4329         default:
4330                 break;
4331         }
4332
4333         /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4334         if (static_cpu_has(X86_FEATURE_NRIPS))
4335                 vmcb->control.next_rip  = info->next_rip;
4336         vmcb->control.exit_code = icpt_info.exit_code;
4337         vmexit = nested_svm_exit_handled(svm);
4338
4339         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4340                                            : X86EMUL_CONTINUE;
4341
4342 out:
4343         return ret;
4344 }
4345
4346 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
4347 {
4348         local_irq_enable();
4349 }
4350
4351 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4352 {
4353 }
4354
4355 static struct kvm_x86_ops svm_x86_ops = {
4356         .cpu_has_kvm_support = has_svm,
4357         .disabled_by_bios = is_disabled,
4358         .hardware_setup = svm_hardware_setup,
4359         .hardware_unsetup = svm_hardware_unsetup,
4360         .check_processor_compatibility = svm_check_processor_compat,
4361         .hardware_enable = svm_hardware_enable,
4362         .hardware_disable = svm_hardware_disable,
4363         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4364         .cpu_has_high_real_mode_segbase = svm_has_high_real_mode_segbase,
4365
4366         .vcpu_create = svm_create_vcpu,
4367         .vcpu_free = svm_free_vcpu,
4368         .vcpu_reset = svm_vcpu_reset,
4369
4370         .prepare_guest_switch = svm_prepare_guest_switch,
4371         .vcpu_load = svm_vcpu_load,
4372         .vcpu_put = svm_vcpu_put,
4373
4374         .update_db_bp_intercept = update_db_bp_intercept,
4375         .get_msr = svm_get_msr,
4376         .set_msr = svm_set_msr,
4377         .get_segment_base = svm_get_segment_base,
4378         .get_segment = svm_get_segment,
4379         .set_segment = svm_set_segment,
4380         .get_cpl = svm_get_cpl,
4381         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4382         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4383         .decache_cr3 = svm_decache_cr3,
4384         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4385         .set_cr0 = svm_set_cr0,
4386         .set_cr3 = svm_set_cr3,
4387         .set_cr4 = svm_set_cr4,
4388         .set_efer = svm_set_efer,
4389         .get_idt = svm_get_idt,
4390         .set_idt = svm_set_idt,
4391         .get_gdt = svm_get_gdt,
4392         .set_gdt = svm_set_gdt,
4393         .get_dr6 = svm_get_dr6,
4394         .set_dr6 = svm_set_dr6,
4395         .set_dr7 = svm_set_dr7,
4396         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4397         .cache_reg = svm_cache_reg,
4398         .get_rflags = svm_get_rflags,
4399         .set_rflags = svm_set_rflags,
4400         .fpu_activate = svm_fpu_activate,
4401         .fpu_deactivate = svm_fpu_deactivate,
4402
4403         .tlb_flush = svm_flush_tlb,
4404
4405         .run = svm_vcpu_run,
4406         .handle_exit = handle_exit,
4407         .skip_emulated_instruction = skip_emulated_instruction,
4408         .set_interrupt_shadow = svm_set_interrupt_shadow,
4409         .get_interrupt_shadow = svm_get_interrupt_shadow,
4410         .patch_hypercall = svm_patch_hypercall,
4411         .set_irq = svm_set_irq,
4412         .set_nmi = svm_inject_nmi,
4413         .queue_exception = svm_queue_exception,
4414         .cancel_injection = svm_cancel_injection,
4415         .interrupt_allowed = svm_interrupt_allowed,
4416         .nmi_allowed = svm_nmi_allowed,
4417         .get_nmi_mask = svm_get_nmi_mask,
4418         .set_nmi_mask = svm_set_nmi_mask,
4419         .enable_nmi_window = enable_nmi_window,
4420         .enable_irq_window = enable_irq_window,
4421         .update_cr8_intercept = update_cr8_intercept,
4422         .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
4423         .cpu_uses_apicv = svm_cpu_uses_apicv,
4424         .load_eoi_exitmap = svm_load_eoi_exitmap,
4425         .sync_pir_to_irr = svm_sync_pir_to_irr,
4426
4427         .set_tss_addr = svm_set_tss_addr,
4428         .get_tdp_level = get_npt_level,
4429         .get_mt_mask = svm_get_mt_mask,
4430
4431         .get_exit_info = svm_get_exit_info,
4432
4433         .get_lpage_level = svm_get_lpage_level,
4434
4435         .cpuid_update = svm_cpuid_update,
4436
4437         .rdtscp_supported = svm_rdtscp_supported,
4438         .invpcid_supported = svm_invpcid_supported,
4439         .mpx_supported = svm_mpx_supported,
4440         .xsaves_supported = svm_xsaves_supported,
4441
4442         .set_supported_cpuid = svm_set_supported_cpuid,
4443
4444         .has_wbinvd_exit = svm_has_wbinvd_exit,
4445
4446         .set_tsc_khz = svm_set_tsc_khz,
4447         .read_tsc_offset = svm_read_tsc_offset,
4448         .write_tsc_offset = svm_write_tsc_offset,
4449         .adjust_tsc_offset = svm_adjust_tsc_offset,
4450         .compute_tsc_offset = svm_compute_tsc_offset,
4451         .read_l1_tsc = svm_read_l1_tsc,
4452
4453         .set_tdp_cr3 = set_tdp_cr3,
4454
4455         .check_intercept = svm_check_intercept,
4456         .handle_external_intr = svm_handle_external_intr,
4457
4458         .sched_in = svm_sched_in,
4459
4460         .pmu_ops = &amd_pmu_ops,
4461 };
4462
4463 static int __init svm_init(void)
4464 {
4465         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4466                         __alignof__(struct vcpu_svm), THIS_MODULE);
4467 }
4468
4469 static void __exit svm_exit(void)
4470 {
4471         kvm_exit();
4472 }
4473
4474 module_init(svm_init)
4475 module_exit(svm_exit)