]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/vmx/nested.c
KVM: nVMX: do not start the preemption timer hrtimer unnecessarily
[linux.git] / arch / x86 / kvm / vmx / nested.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/frame.h>
4 #include <linux/percpu.h>
5
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "trace.h"
14 #include "x86.h"
15
16 static bool __read_mostly enable_shadow_vmcs = 1;
17 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
18
19 static bool __read_mostly nested_early_check = 0;
20 module_param(nested_early_check, bool, S_IRUGO);
21
22 /*
23  * Hyper-V requires all of these, so mark them as supported even though
24  * they are just treated the same as all-context.
25  */
26 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
27         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
28         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
29         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
30         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
31
32 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
33
34 enum {
35         VMX_VMREAD_BITMAP,
36         VMX_VMWRITE_BITMAP,
37         VMX_BITMAP_NR
38 };
39 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
40
41 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
42 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
43
44 static u16 shadow_read_only_fields[] = {
45 #define SHADOW_FIELD_RO(x) x,
46 #include "vmcs_shadow_fields.h"
47 };
48 static int max_shadow_read_only_fields =
49         ARRAY_SIZE(shadow_read_only_fields);
50
51 static u16 shadow_read_write_fields[] = {
52 #define SHADOW_FIELD_RW(x) x,
53 #include "vmcs_shadow_fields.h"
54 };
55 static int max_shadow_read_write_fields =
56         ARRAY_SIZE(shadow_read_write_fields);
57
58 static void init_vmcs_shadow_fields(void)
59 {
60         int i, j;
61
62         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
63         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
64
65         for (i = j = 0; i < max_shadow_read_only_fields; i++) {
66                 u16 field = shadow_read_only_fields[i];
67
68                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
69                     (i + 1 == max_shadow_read_only_fields ||
70                      shadow_read_only_fields[i + 1] != field + 1))
71                         pr_err("Missing field from shadow_read_only_field %x\n",
72                                field + 1);
73
74                 clear_bit(field, vmx_vmread_bitmap);
75 #ifdef CONFIG_X86_64
76                 if (field & 1)
77                         continue;
78 #endif
79                 if (j < i)
80                         shadow_read_only_fields[j] = field;
81                 j++;
82         }
83         max_shadow_read_only_fields = j;
84
85         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
86                 u16 field = shadow_read_write_fields[i];
87
88                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
89                     (i + 1 == max_shadow_read_write_fields ||
90                      shadow_read_write_fields[i + 1] != field + 1))
91                         pr_err("Missing field from shadow_read_write_field %x\n",
92                                field + 1);
93
94                 /*
95                  * PML and the preemption timer can be emulated, but the
96                  * processor cannot vmwrite to fields that don't exist
97                  * on bare metal.
98                  */
99                 switch (field) {
100                 case GUEST_PML_INDEX:
101                         if (!cpu_has_vmx_pml())
102                                 continue;
103                         break;
104                 case VMX_PREEMPTION_TIMER_VALUE:
105                         if (!cpu_has_vmx_preemption_timer())
106                                 continue;
107                         break;
108                 case GUEST_INTR_STATUS:
109                         if (!cpu_has_vmx_apicv())
110                                 continue;
111                         break;
112                 default:
113                         break;
114                 }
115
116                 clear_bit(field, vmx_vmwrite_bitmap);
117                 clear_bit(field, vmx_vmread_bitmap);
118 #ifdef CONFIG_X86_64
119                 if (field & 1)
120                         continue;
121 #endif
122                 if (j < i)
123                         shadow_read_write_fields[j] = field;
124                 j++;
125         }
126         max_shadow_read_write_fields = j;
127 }
128
129 /*
130  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
131  * set the success or error code of an emulated VMX instruction (as specified
132  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
133  * instruction.
134  */
135 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
136 {
137         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
138                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
139                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
140         return kvm_skip_emulated_instruction(vcpu);
141 }
142
143 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
144 {
145         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
146                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
147                             X86_EFLAGS_SF | X86_EFLAGS_OF))
148                         | X86_EFLAGS_CF);
149         return kvm_skip_emulated_instruction(vcpu);
150 }
151
152 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
153                                 u32 vm_instruction_error)
154 {
155         struct vcpu_vmx *vmx = to_vmx(vcpu);
156
157         /*
158          * failValid writes the error number to the current VMCS, which
159          * can't be done if there isn't a current VMCS.
160          */
161         if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
162                 return nested_vmx_failInvalid(vcpu);
163
164         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
165                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
166                             X86_EFLAGS_SF | X86_EFLAGS_OF))
167                         | X86_EFLAGS_ZF);
168         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
169         /*
170          * We don't need to force a shadow sync because
171          * VM_INSTRUCTION_ERROR is not shadowed
172          */
173         return kvm_skip_emulated_instruction(vcpu);
174 }
175
176 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
177 {
178         /* TODO: not to reset guest simply here. */
179         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
180         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
181 }
182
183 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
184 {
185         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
186         vmcs_write64(VMCS_LINK_POINTER, -1ull);
187 }
188
189 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
190 {
191         struct vcpu_vmx *vmx = to_vmx(vcpu);
192
193         if (!vmx->nested.hv_evmcs)
194                 return;
195
196         kunmap(vmx->nested.hv_evmcs_page);
197         kvm_release_page_dirty(vmx->nested.hv_evmcs_page);
198         vmx->nested.hv_evmcs_vmptr = -1ull;
199         vmx->nested.hv_evmcs_page = NULL;
200         vmx->nested.hv_evmcs = NULL;
201 }
202
203 /*
204  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
205  * just stops using VMX.
206  */
207 static void free_nested(struct kvm_vcpu *vcpu)
208 {
209         struct vcpu_vmx *vmx = to_vmx(vcpu);
210
211         if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
212                 return;
213
214         vmx->nested.vmxon = false;
215         vmx->nested.smm.vmxon = false;
216         free_vpid(vmx->nested.vpid02);
217         vmx->nested.posted_intr_nv = -1;
218         vmx->nested.current_vmptr = -1ull;
219         if (enable_shadow_vmcs) {
220                 vmx_disable_shadow_vmcs(vmx);
221                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
222                 free_vmcs(vmx->vmcs01.shadow_vmcs);
223                 vmx->vmcs01.shadow_vmcs = NULL;
224         }
225         kfree(vmx->nested.cached_vmcs12);
226         kfree(vmx->nested.cached_shadow_vmcs12);
227         /* Unpin physical memory we referred to in the vmcs02 */
228         if (vmx->nested.apic_access_page) {
229                 kvm_release_page_dirty(vmx->nested.apic_access_page);
230                 vmx->nested.apic_access_page = NULL;
231         }
232         if (vmx->nested.virtual_apic_page) {
233                 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
234                 vmx->nested.virtual_apic_page = NULL;
235         }
236         if (vmx->nested.pi_desc_page) {
237                 kunmap(vmx->nested.pi_desc_page);
238                 kvm_release_page_dirty(vmx->nested.pi_desc_page);
239                 vmx->nested.pi_desc_page = NULL;
240                 vmx->nested.pi_desc = NULL;
241         }
242
243         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
244
245         nested_release_evmcs(vcpu);
246
247         free_loaded_vmcs(&vmx->nested.vmcs02);
248 }
249
250 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
251 {
252         struct vcpu_vmx *vmx = to_vmx(vcpu);
253         int cpu;
254
255         if (vmx->loaded_vmcs == vmcs)
256                 return;
257
258         cpu = get_cpu();
259         vmx_vcpu_put(vcpu);
260         vmx->loaded_vmcs = vmcs;
261         vmx_vcpu_load(vcpu, cpu);
262         put_cpu();
263
264         vm_entry_controls_reset_shadow(vmx);
265         vm_exit_controls_reset_shadow(vmx);
266         vmx_segment_cache_clear(vmx);
267 }
268
269 /*
270  * Ensure that the current vmcs of the logical processor is the
271  * vmcs01 of the vcpu before calling free_nested().
272  */
273 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
274 {
275         vcpu_load(vcpu);
276         vmx_leave_nested(vcpu);
277         vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
278         free_nested(vcpu);
279         vcpu_put(vcpu);
280 }
281
282 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
283                 struct x86_exception *fault)
284 {
285         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
286         struct vcpu_vmx *vmx = to_vmx(vcpu);
287         u32 exit_reason;
288         unsigned long exit_qualification = vcpu->arch.exit_qualification;
289
290         if (vmx->nested.pml_full) {
291                 exit_reason = EXIT_REASON_PML_FULL;
292                 vmx->nested.pml_full = false;
293                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
294         } else if (fault->error_code & PFERR_RSVD_MASK)
295                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
296         else
297                 exit_reason = EXIT_REASON_EPT_VIOLATION;
298
299         nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
300         vmcs12->guest_physical_address = fault->address;
301 }
302
303 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
304 {
305         WARN_ON(mmu_is_nested(vcpu));
306
307         vcpu->arch.mmu = &vcpu->arch.guest_mmu;
308         kvm_init_shadow_ept_mmu(vcpu,
309                         to_vmx(vcpu)->nested.msrs.ept_caps &
310                         VMX_EPT_EXECUTE_ONLY_BIT,
311                         nested_ept_ad_enabled(vcpu),
312                         nested_ept_get_cr3(vcpu));
313         vcpu->arch.mmu->set_cr3           = vmx_set_cr3;
314         vcpu->arch.mmu->get_cr3           = nested_ept_get_cr3;
315         vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
316         vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
317
318         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
319 }
320
321 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
322 {
323         vcpu->arch.mmu = &vcpu->arch.root_mmu;
324         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
325 }
326
327 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
328                                             u16 error_code)
329 {
330         bool inequality, bit;
331
332         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
333         inequality =
334                 (error_code & vmcs12->page_fault_error_code_mask) !=
335                  vmcs12->page_fault_error_code_match;
336         return inequality ^ bit;
337 }
338
339
340 /*
341  * KVM wants to inject page-faults which it got to the guest. This function
342  * checks whether in a nested guest, we need to inject them to L1 or L2.
343  */
344 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
345 {
346         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
347         unsigned int nr = vcpu->arch.exception.nr;
348         bool has_payload = vcpu->arch.exception.has_payload;
349         unsigned long payload = vcpu->arch.exception.payload;
350
351         if (nr == PF_VECTOR) {
352                 if (vcpu->arch.exception.nested_apf) {
353                         *exit_qual = vcpu->arch.apf.nested_apf_token;
354                         return 1;
355                 }
356                 if (nested_vmx_is_page_fault_vmexit(vmcs12,
357                                                     vcpu->arch.exception.error_code)) {
358                         *exit_qual = has_payload ? payload : vcpu->arch.cr2;
359                         return 1;
360                 }
361         } else if (vmcs12->exception_bitmap & (1u << nr)) {
362                 if (nr == DB_VECTOR) {
363                         if (!has_payload) {
364                                 payload = vcpu->arch.dr6;
365                                 payload &= ~(DR6_FIXED_1 | DR6_BT);
366                                 payload ^= DR6_RTM;
367                         }
368                         *exit_qual = payload;
369                 } else
370                         *exit_qual = 0;
371                 return 1;
372         }
373
374         return 0;
375 }
376
377
378 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
379                 struct x86_exception *fault)
380 {
381         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
382
383         WARN_ON(!is_guest_mode(vcpu));
384
385         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
386                 !to_vmx(vcpu)->nested.nested_run_pending) {
387                 vmcs12->vm_exit_intr_error_code = fault->error_code;
388                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
389                                   PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
390                                   INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
391                                   fault->address);
392         } else {
393                 kvm_inject_page_fault(vcpu, fault);
394         }
395 }
396
397 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
398 {
399         return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
400 }
401
402 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
403                                                struct vmcs12 *vmcs12)
404 {
405         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
406                 return 0;
407
408         if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
409             !page_address_valid(vcpu, vmcs12->io_bitmap_b))
410                 return -EINVAL;
411
412         return 0;
413 }
414
415 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
416                                                 struct vmcs12 *vmcs12)
417 {
418         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
419                 return 0;
420
421         if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
422                 return -EINVAL;
423
424         return 0;
425 }
426
427 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
428                                                 struct vmcs12 *vmcs12)
429 {
430         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
431                 return 0;
432
433         if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
434                 return -EINVAL;
435
436         return 0;
437 }
438
439 /*
440  * Check if MSR is intercepted for L01 MSR bitmap.
441  */
442 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
443 {
444         unsigned long *msr_bitmap;
445         int f = sizeof(unsigned long);
446
447         if (!cpu_has_vmx_msr_bitmap())
448                 return true;
449
450         msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
451
452         if (msr <= 0x1fff) {
453                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
454         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
455                 msr &= 0x1fff;
456                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
457         }
458
459         return true;
460 }
461
462 /*
463  * If a msr is allowed by L0, we should check whether it is allowed by L1.
464  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
465  */
466 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
467                                                unsigned long *msr_bitmap_nested,
468                                                u32 msr, int type)
469 {
470         int f = sizeof(unsigned long);
471
472         /*
473          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
474          * have the write-low and read-high bitmap offsets the wrong way round.
475          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
476          */
477         if (msr <= 0x1fff) {
478                 if (type & MSR_TYPE_R &&
479                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
480                         /* read-low */
481                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
482
483                 if (type & MSR_TYPE_W &&
484                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
485                         /* write-low */
486                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
487
488         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
489                 msr &= 0x1fff;
490                 if (type & MSR_TYPE_R &&
491                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
492                         /* read-high */
493                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
494
495                 if (type & MSR_TYPE_W &&
496                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
497                         /* write-high */
498                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
499
500         }
501 }
502
503 /*
504  * Merge L0's and L1's MSR bitmap, return false to indicate that
505  * we do not use the hardware.
506  */
507 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
508                                                  struct vmcs12 *vmcs12)
509 {
510         int msr;
511         struct page *page;
512         unsigned long *msr_bitmap_l1;
513         unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
514         /*
515          * pred_cmd & spec_ctrl are trying to verify two things:
516          *
517          * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
518          *    ensures that we do not accidentally generate an L02 MSR bitmap
519          *    from the L12 MSR bitmap that is too permissive.
520          * 2. That L1 or L2s have actually used the MSR. This avoids
521          *    unnecessarily merging of the bitmap if the MSR is unused. This
522          *    works properly because we only update the L01 MSR bitmap lazily.
523          *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
524          *    updated to reflect this when L1 (or its L2s) actually write to
525          *    the MSR.
526          */
527         bool pred_cmd = !msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD);
528         bool spec_ctrl = !msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL);
529
530         /* Nothing to do if the MSR bitmap is not in use.  */
531         if (!cpu_has_vmx_msr_bitmap() ||
532             !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
533                 return false;
534
535         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
536             !pred_cmd && !spec_ctrl)
537                 return false;
538
539         page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
540         if (is_error_page(page))
541                 return false;
542
543         msr_bitmap_l1 = (unsigned long *)kmap(page);
544         if (nested_cpu_has_apic_reg_virt(vmcs12)) {
545                 /*
546                  * L0 need not intercept reads for MSRs between 0x800 and 0x8ff, it
547                  * just lets the processor take the value from the virtual-APIC page;
548                  * take those 256 bits directly from the L1 bitmap.
549                  */
550                 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
551                         unsigned word = msr / BITS_PER_LONG;
552                         msr_bitmap_l0[word] = msr_bitmap_l1[word];
553                         msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
554                 }
555         } else {
556                 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
557                         unsigned word = msr / BITS_PER_LONG;
558                         msr_bitmap_l0[word] = ~0;
559                         msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
560                 }
561         }
562
563         nested_vmx_disable_intercept_for_msr(
564                 msr_bitmap_l1, msr_bitmap_l0,
565                 X2APIC_MSR(APIC_TASKPRI),
566                 MSR_TYPE_W);
567
568         if (nested_cpu_has_vid(vmcs12)) {
569                 nested_vmx_disable_intercept_for_msr(
570                         msr_bitmap_l1, msr_bitmap_l0,
571                         X2APIC_MSR(APIC_EOI),
572                         MSR_TYPE_W);
573                 nested_vmx_disable_intercept_for_msr(
574                         msr_bitmap_l1, msr_bitmap_l0,
575                         X2APIC_MSR(APIC_SELF_IPI),
576                         MSR_TYPE_W);
577         }
578
579         if (spec_ctrl)
580                 nested_vmx_disable_intercept_for_msr(
581                                         msr_bitmap_l1, msr_bitmap_l0,
582                                         MSR_IA32_SPEC_CTRL,
583                                         MSR_TYPE_R | MSR_TYPE_W);
584
585         if (pred_cmd)
586                 nested_vmx_disable_intercept_for_msr(
587                                         msr_bitmap_l1, msr_bitmap_l0,
588                                         MSR_IA32_PRED_CMD,
589                                         MSR_TYPE_W);
590
591         kunmap(page);
592         kvm_release_page_clean(page);
593
594         return true;
595 }
596
597 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
598                                        struct vmcs12 *vmcs12)
599 {
600         struct vmcs12 *shadow;
601         struct page *page;
602
603         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
604             vmcs12->vmcs_link_pointer == -1ull)
605                 return;
606
607         shadow = get_shadow_vmcs12(vcpu);
608         page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
609
610         memcpy(shadow, kmap(page), VMCS12_SIZE);
611
612         kunmap(page);
613         kvm_release_page_clean(page);
614 }
615
616 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
617                                               struct vmcs12 *vmcs12)
618 {
619         struct vcpu_vmx *vmx = to_vmx(vcpu);
620
621         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
622             vmcs12->vmcs_link_pointer == -1ull)
623                 return;
624
625         kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
626                         get_shadow_vmcs12(vcpu), VMCS12_SIZE);
627 }
628
629 /*
630  * In nested virtualization, check if L1 has set
631  * VM_EXIT_ACK_INTR_ON_EXIT
632  */
633 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
634 {
635         return get_vmcs12(vcpu)->vm_exit_controls &
636                 VM_EXIT_ACK_INTR_ON_EXIT;
637 }
638
639 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
640 {
641         return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
642 }
643
644 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
645                                           struct vmcs12 *vmcs12)
646 {
647         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
648             !page_address_valid(vcpu, vmcs12->apic_access_addr))
649                 return -EINVAL;
650         else
651                 return 0;
652 }
653
654 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
655                                            struct vmcs12 *vmcs12)
656 {
657         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
658             !nested_cpu_has_apic_reg_virt(vmcs12) &&
659             !nested_cpu_has_vid(vmcs12) &&
660             !nested_cpu_has_posted_intr(vmcs12))
661                 return 0;
662
663         /*
664          * If virtualize x2apic mode is enabled,
665          * virtualize apic access must be disabled.
666          */
667         if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
668             nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
669                 return -EINVAL;
670
671         /*
672          * If virtual interrupt delivery is enabled,
673          * we must exit on external interrupts.
674          */
675         if (nested_cpu_has_vid(vmcs12) &&
676            !nested_exit_on_intr(vcpu))
677                 return -EINVAL;
678
679         /*
680          * bits 15:8 should be zero in posted_intr_nv,
681          * the descriptor address has been already checked
682          * in nested_get_vmcs12_pages.
683          *
684          * bits 5:0 of posted_intr_desc_addr should be zero.
685          */
686         if (nested_cpu_has_posted_intr(vmcs12) &&
687            (!nested_cpu_has_vid(vmcs12) ||
688             !nested_exit_intr_ack_set(vcpu) ||
689             (vmcs12->posted_intr_nv & 0xff00) ||
690             (vmcs12->posted_intr_desc_addr & 0x3f) ||
691             (vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu))))
692                 return -EINVAL;
693
694         /* tpr shadow is needed by all apicv features. */
695         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
696                 return -EINVAL;
697
698         return 0;
699 }
700
701 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
702                                        u32 count, u64 addr)
703 {
704         int maxphyaddr;
705
706         if (count == 0)
707                 return 0;
708         maxphyaddr = cpuid_maxphyaddr(vcpu);
709         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
710             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
711                 return -EINVAL;
712
713         return 0;
714 }
715
716 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
717                                                      struct vmcs12 *vmcs12)
718 {
719         if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_load_count,
720                                         vmcs12->vm_exit_msr_load_addr) ||
721             nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_store_count,
722                                         vmcs12->vm_exit_msr_store_addr))
723                 return -EINVAL;
724
725         return 0;
726 }
727
728 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
729                                                       struct vmcs12 *vmcs12)
730 {
731         if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_entry_msr_load_count,
732                                         vmcs12->vm_entry_msr_load_addr))
733                 return -EINVAL;
734
735         return 0;
736 }
737
738 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
739                                          struct vmcs12 *vmcs12)
740 {
741         if (!nested_cpu_has_pml(vmcs12))
742                 return 0;
743
744         if (!nested_cpu_has_ept(vmcs12) ||
745             !page_address_valid(vcpu, vmcs12->pml_address))
746                 return -EINVAL;
747
748         return 0;
749 }
750
751 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
752                                                         struct vmcs12 *vmcs12)
753 {
754         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
755             !nested_cpu_has_ept(vmcs12))
756                 return -EINVAL;
757         return 0;
758 }
759
760 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
761                                                          struct vmcs12 *vmcs12)
762 {
763         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
764             !nested_cpu_has_ept(vmcs12))
765                 return -EINVAL;
766         return 0;
767 }
768
769 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
770                                                  struct vmcs12 *vmcs12)
771 {
772         if (!nested_cpu_has_shadow_vmcs(vmcs12))
773                 return 0;
774
775         if (!page_address_valid(vcpu, vmcs12->vmread_bitmap) ||
776             !page_address_valid(vcpu, vmcs12->vmwrite_bitmap))
777                 return -EINVAL;
778
779         return 0;
780 }
781
782 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
783                                        struct vmx_msr_entry *e)
784 {
785         /* x2APIC MSR accesses are not allowed */
786         if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
787                 return -EINVAL;
788         if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
789             e->index == MSR_IA32_UCODE_REV)
790                 return -EINVAL;
791         if (e->reserved != 0)
792                 return -EINVAL;
793         return 0;
794 }
795
796 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
797                                      struct vmx_msr_entry *e)
798 {
799         if (e->index == MSR_FS_BASE ||
800             e->index == MSR_GS_BASE ||
801             e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
802             nested_vmx_msr_check_common(vcpu, e))
803                 return -EINVAL;
804         return 0;
805 }
806
807 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
808                                       struct vmx_msr_entry *e)
809 {
810         if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
811             nested_vmx_msr_check_common(vcpu, e))
812                 return -EINVAL;
813         return 0;
814 }
815
816 /*
817  * Load guest's/host's msr at nested entry/exit.
818  * return 0 for success, entry index for failure.
819  */
820 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
821 {
822         u32 i;
823         struct vmx_msr_entry e;
824         struct msr_data msr;
825
826         msr.host_initiated = false;
827         for (i = 0; i < count; i++) {
828                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
829                                         &e, sizeof(e))) {
830                         pr_debug_ratelimited(
831                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
832                                 __func__, i, gpa + i * sizeof(e));
833                         goto fail;
834                 }
835                 if (nested_vmx_load_msr_check(vcpu, &e)) {
836                         pr_debug_ratelimited(
837                                 "%s check failed (%u, 0x%x, 0x%x)\n",
838                                 __func__, i, e.index, e.reserved);
839                         goto fail;
840                 }
841                 msr.index = e.index;
842                 msr.data = e.value;
843                 if (kvm_set_msr(vcpu, &msr)) {
844                         pr_debug_ratelimited(
845                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
846                                 __func__, i, e.index, e.value);
847                         goto fail;
848                 }
849         }
850         return 0;
851 fail:
852         return i + 1;
853 }
854
855 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
856 {
857         u32 i;
858         struct vmx_msr_entry e;
859
860         for (i = 0; i < count; i++) {
861                 struct msr_data msr_info;
862                 if (kvm_vcpu_read_guest(vcpu,
863                                         gpa + i * sizeof(e),
864                                         &e, 2 * sizeof(u32))) {
865                         pr_debug_ratelimited(
866                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
867                                 __func__, i, gpa + i * sizeof(e));
868                         return -EINVAL;
869                 }
870                 if (nested_vmx_store_msr_check(vcpu, &e)) {
871                         pr_debug_ratelimited(
872                                 "%s check failed (%u, 0x%x, 0x%x)\n",
873                                 __func__, i, e.index, e.reserved);
874                         return -EINVAL;
875                 }
876                 msr_info.host_initiated = false;
877                 msr_info.index = e.index;
878                 if (kvm_get_msr(vcpu, &msr_info)) {
879                         pr_debug_ratelimited(
880                                 "%s cannot read MSR (%u, 0x%x)\n",
881                                 __func__, i, e.index);
882                         return -EINVAL;
883                 }
884                 if (kvm_vcpu_write_guest(vcpu,
885                                          gpa + i * sizeof(e) +
886                                              offsetof(struct vmx_msr_entry, value),
887                                          &msr_info.data, sizeof(msr_info.data))) {
888                         pr_debug_ratelimited(
889                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
890                                 __func__, i, e.index, msr_info.data);
891                         return -EINVAL;
892                 }
893         }
894         return 0;
895 }
896
897 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
898 {
899         unsigned long invalid_mask;
900
901         invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
902         return (val & invalid_mask) == 0;
903 }
904
905 /*
906  * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
907  * emulating VM entry into a guest with EPT enabled.
908  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
909  * is assigned to entry_failure_code on failure.
910  */
911 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
912                                u32 *entry_failure_code)
913 {
914         if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
915                 if (!nested_cr3_valid(vcpu, cr3)) {
916                         *entry_failure_code = ENTRY_FAIL_DEFAULT;
917                         return 1;
918                 }
919
920                 /*
921                  * If PAE paging and EPT are both on, CR3 is not used by the CPU and
922                  * must not be dereferenced.
923                  */
924                 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
925                     !nested_ept) {
926                         if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
927                                 *entry_failure_code = ENTRY_FAIL_PDPTE;
928                                 return 1;
929                         }
930                 }
931         }
932
933         if (!nested_ept)
934                 kvm_mmu_new_cr3(vcpu, cr3, false);
935
936         vcpu->arch.cr3 = cr3;
937         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
938
939         kvm_init_mmu(vcpu, false);
940
941         return 0;
942 }
943
944 /*
945  * Returns if KVM is able to config CPU to tag TLB entries
946  * populated by L2 differently than TLB entries populated
947  * by L1.
948  *
949  * If L1 uses EPT, then TLB entries are tagged with different EPTP.
950  *
951  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
952  * with different VPID (L1 entries are tagged with vmx->vpid
953  * while L2 entries are tagged with vmx->nested.vpid02).
954  */
955 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
956 {
957         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
958
959         return nested_cpu_has_ept(vmcs12) ||
960                (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
961 }
962
963 static u16 nested_get_vpid02(struct kvm_vcpu *vcpu)
964 {
965         struct vcpu_vmx *vmx = to_vmx(vcpu);
966
967         return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid;
968 }
969
970
971 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
972 {
973         return fixed_bits_valid(control, low, high);
974 }
975
976 static inline u64 vmx_control_msr(u32 low, u32 high)
977 {
978         return low | ((u64)high << 32);
979 }
980
981 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
982 {
983         superset &= mask;
984         subset &= mask;
985
986         return (superset | subset) == superset;
987 }
988
989 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
990 {
991         const u64 feature_and_reserved =
992                 /* feature (except bit 48; see below) */
993                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
994                 /* reserved */
995                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
996         u64 vmx_basic = vmx->nested.msrs.basic;
997
998         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
999                 return -EINVAL;
1000
1001         /*
1002          * KVM does not emulate a version of VMX that constrains physical
1003          * addresses of VMX structures (e.g. VMCS) to 32-bits.
1004          */
1005         if (data & BIT_ULL(48))
1006                 return -EINVAL;
1007
1008         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1009             vmx_basic_vmcs_revision_id(data))
1010                 return -EINVAL;
1011
1012         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1013                 return -EINVAL;
1014
1015         vmx->nested.msrs.basic = data;
1016         return 0;
1017 }
1018
1019 static int
1020 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1021 {
1022         u64 supported;
1023         u32 *lowp, *highp;
1024
1025         switch (msr_index) {
1026         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1027                 lowp = &vmx->nested.msrs.pinbased_ctls_low;
1028                 highp = &vmx->nested.msrs.pinbased_ctls_high;
1029                 break;
1030         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1031                 lowp = &vmx->nested.msrs.procbased_ctls_low;
1032                 highp = &vmx->nested.msrs.procbased_ctls_high;
1033                 break;
1034         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1035                 lowp = &vmx->nested.msrs.exit_ctls_low;
1036                 highp = &vmx->nested.msrs.exit_ctls_high;
1037                 break;
1038         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1039                 lowp = &vmx->nested.msrs.entry_ctls_low;
1040                 highp = &vmx->nested.msrs.entry_ctls_high;
1041                 break;
1042         case MSR_IA32_VMX_PROCBASED_CTLS2:
1043                 lowp = &vmx->nested.msrs.secondary_ctls_low;
1044                 highp = &vmx->nested.msrs.secondary_ctls_high;
1045                 break;
1046         default:
1047                 BUG();
1048         }
1049
1050         supported = vmx_control_msr(*lowp, *highp);
1051
1052         /* Check must-be-1 bits are still 1. */
1053         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1054                 return -EINVAL;
1055
1056         /* Check must-be-0 bits are still 0. */
1057         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1058                 return -EINVAL;
1059
1060         *lowp = data;
1061         *highp = data >> 32;
1062         return 0;
1063 }
1064
1065 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1066 {
1067         const u64 feature_and_reserved_bits =
1068                 /* feature */
1069                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1070                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1071                 /* reserved */
1072                 GENMASK_ULL(13, 9) | BIT_ULL(31);
1073         u64 vmx_misc;
1074
1075         vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1076                                    vmx->nested.msrs.misc_high);
1077
1078         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1079                 return -EINVAL;
1080
1081         if ((vmx->nested.msrs.pinbased_ctls_high &
1082              PIN_BASED_VMX_PREEMPTION_TIMER) &&
1083             vmx_misc_preemption_timer_rate(data) !=
1084             vmx_misc_preemption_timer_rate(vmx_misc))
1085                 return -EINVAL;
1086
1087         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1088                 return -EINVAL;
1089
1090         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1091                 return -EINVAL;
1092
1093         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1094                 return -EINVAL;
1095
1096         vmx->nested.msrs.misc_low = data;
1097         vmx->nested.msrs.misc_high = data >> 32;
1098
1099         /*
1100          * If L1 has read-only VM-exit information fields, use the
1101          * less permissive vmx_vmwrite_bitmap to specify write
1102          * permissions for the shadow VMCS.
1103          */
1104         if (enable_shadow_vmcs && !nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
1105                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
1106
1107         return 0;
1108 }
1109
1110 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1111 {
1112         u64 vmx_ept_vpid_cap;
1113
1114         vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1115                                            vmx->nested.msrs.vpid_caps);
1116
1117         /* Every bit is either reserved or a feature bit. */
1118         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1119                 return -EINVAL;
1120
1121         vmx->nested.msrs.ept_caps = data;
1122         vmx->nested.msrs.vpid_caps = data >> 32;
1123         return 0;
1124 }
1125
1126 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1127 {
1128         u64 *msr;
1129
1130         switch (msr_index) {
1131         case MSR_IA32_VMX_CR0_FIXED0:
1132                 msr = &vmx->nested.msrs.cr0_fixed0;
1133                 break;
1134         case MSR_IA32_VMX_CR4_FIXED0:
1135                 msr = &vmx->nested.msrs.cr4_fixed0;
1136                 break;
1137         default:
1138                 BUG();
1139         }
1140
1141         /*
1142          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1143          * must be 1 in the restored value.
1144          */
1145         if (!is_bitwise_subset(data, *msr, -1ULL))
1146                 return -EINVAL;
1147
1148         *msr = data;
1149         return 0;
1150 }
1151
1152 /*
1153  * Called when userspace is restoring VMX MSRs.
1154  *
1155  * Returns 0 on success, non-0 otherwise.
1156  */
1157 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1158 {
1159         struct vcpu_vmx *vmx = to_vmx(vcpu);
1160
1161         /*
1162          * Don't allow changes to the VMX capability MSRs while the vCPU
1163          * is in VMX operation.
1164          */
1165         if (vmx->nested.vmxon)
1166                 return -EBUSY;
1167
1168         switch (msr_index) {
1169         case MSR_IA32_VMX_BASIC:
1170                 return vmx_restore_vmx_basic(vmx, data);
1171         case MSR_IA32_VMX_PINBASED_CTLS:
1172         case MSR_IA32_VMX_PROCBASED_CTLS:
1173         case MSR_IA32_VMX_EXIT_CTLS:
1174         case MSR_IA32_VMX_ENTRY_CTLS:
1175                 /*
1176                  * The "non-true" VMX capability MSRs are generated from the
1177                  * "true" MSRs, so we do not support restoring them directly.
1178                  *
1179                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1180                  * should restore the "true" MSRs with the must-be-1 bits
1181                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1182                  * DEFAULT SETTINGS".
1183                  */
1184                 return -EINVAL;
1185         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1186         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1187         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1188         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1189         case MSR_IA32_VMX_PROCBASED_CTLS2:
1190                 return vmx_restore_control_msr(vmx, msr_index, data);
1191         case MSR_IA32_VMX_MISC:
1192                 return vmx_restore_vmx_misc(vmx, data);
1193         case MSR_IA32_VMX_CR0_FIXED0:
1194         case MSR_IA32_VMX_CR4_FIXED0:
1195                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1196         case MSR_IA32_VMX_CR0_FIXED1:
1197         case MSR_IA32_VMX_CR4_FIXED1:
1198                 /*
1199                  * These MSRs are generated based on the vCPU's CPUID, so we
1200                  * do not support restoring them directly.
1201                  */
1202                 return -EINVAL;
1203         case MSR_IA32_VMX_EPT_VPID_CAP:
1204                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1205         case MSR_IA32_VMX_VMCS_ENUM:
1206                 vmx->nested.msrs.vmcs_enum = data;
1207                 return 0;
1208         default:
1209                 /*
1210                  * The rest of the VMX capability MSRs do not support restore.
1211                  */
1212                 return -EINVAL;
1213         }
1214 }
1215
1216 /* Returns 0 on success, non-0 otherwise. */
1217 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1218 {
1219         switch (msr_index) {
1220         case MSR_IA32_VMX_BASIC:
1221                 *pdata = msrs->basic;
1222                 break;
1223         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1224         case MSR_IA32_VMX_PINBASED_CTLS:
1225                 *pdata = vmx_control_msr(
1226                         msrs->pinbased_ctls_low,
1227                         msrs->pinbased_ctls_high);
1228                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1229                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1230                 break;
1231         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1232         case MSR_IA32_VMX_PROCBASED_CTLS:
1233                 *pdata = vmx_control_msr(
1234                         msrs->procbased_ctls_low,
1235                         msrs->procbased_ctls_high);
1236                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1237                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1238                 break;
1239         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1240         case MSR_IA32_VMX_EXIT_CTLS:
1241                 *pdata = vmx_control_msr(
1242                         msrs->exit_ctls_low,
1243                         msrs->exit_ctls_high);
1244                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1245                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1246                 break;
1247         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1248         case MSR_IA32_VMX_ENTRY_CTLS:
1249                 *pdata = vmx_control_msr(
1250                         msrs->entry_ctls_low,
1251                         msrs->entry_ctls_high);
1252                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1253                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1254                 break;
1255         case MSR_IA32_VMX_MISC:
1256                 *pdata = vmx_control_msr(
1257                         msrs->misc_low,
1258                         msrs->misc_high);
1259                 break;
1260         case MSR_IA32_VMX_CR0_FIXED0:
1261                 *pdata = msrs->cr0_fixed0;
1262                 break;
1263         case MSR_IA32_VMX_CR0_FIXED1:
1264                 *pdata = msrs->cr0_fixed1;
1265                 break;
1266         case MSR_IA32_VMX_CR4_FIXED0:
1267                 *pdata = msrs->cr4_fixed0;
1268                 break;
1269         case MSR_IA32_VMX_CR4_FIXED1:
1270                 *pdata = msrs->cr4_fixed1;
1271                 break;
1272         case MSR_IA32_VMX_VMCS_ENUM:
1273                 *pdata = msrs->vmcs_enum;
1274                 break;
1275         case MSR_IA32_VMX_PROCBASED_CTLS2:
1276                 *pdata = vmx_control_msr(
1277                         msrs->secondary_ctls_low,
1278                         msrs->secondary_ctls_high);
1279                 break;
1280         case MSR_IA32_VMX_EPT_VPID_CAP:
1281                 *pdata = msrs->ept_caps |
1282                         ((u64)msrs->vpid_caps << 32);
1283                 break;
1284         case MSR_IA32_VMX_VMFUNC:
1285                 *pdata = msrs->vmfunc_controls;
1286                 break;
1287         default:
1288                 return 1;
1289         }
1290
1291         return 0;
1292 }
1293
1294 /*
1295  * Copy the writable VMCS shadow fields back to the VMCS12, in case
1296  * they have been modified by the L1 guest. Note that the "read-only"
1297  * VM-exit information fields are actually writable if the vCPU is
1298  * configured to support "VMWRITE to any supported field in the VMCS."
1299  */
1300 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1301 {
1302         const u16 *fields[] = {
1303                 shadow_read_write_fields,
1304                 shadow_read_only_fields
1305         };
1306         const int max_fields[] = {
1307                 max_shadow_read_write_fields,
1308                 max_shadow_read_only_fields
1309         };
1310         int i, q;
1311         unsigned long field;
1312         u64 field_value;
1313         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1314
1315         preempt_disable();
1316
1317         vmcs_load(shadow_vmcs);
1318
1319         for (q = 0; q < ARRAY_SIZE(fields); q++) {
1320                 for (i = 0; i < max_fields[q]; i++) {
1321                         field = fields[q][i];
1322                         field_value = __vmcs_readl(field);
1323                         vmcs12_write_any(get_vmcs12(&vmx->vcpu), field, field_value);
1324                 }
1325                 /*
1326                  * Skip the VM-exit information fields if they are read-only.
1327                  */
1328                 if (!nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
1329                         break;
1330         }
1331
1332         vmcs_clear(shadow_vmcs);
1333         vmcs_load(vmx->loaded_vmcs->vmcs);
1334
1335         preempt_enable();
1336 }
1337
1338 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1339 {
1340         const u16 *fields[] = {
1341                 shadow_read_write_fields,
1342                 shadow_read_only_fields
1343         };
1344         const int max_fields[] = {
1345                 max_shadow_read_write_fields,
1346                 max_shadow_read_only_fields
1347         };
1348         int i, q;
1349         unsigned long field;
1350         u64 field_value = 0;
1351         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1352
1353         vmcs_load(shadow_vmcs);
1354
1355         for (q = 0; q < ARRAY_SIZE(fields); q++) {
1356                 for (i = 0; i < max_fields[q]; i++) {
1357                         field = fields[q][i];
1358                         vmcs12_read_any(get_vmcs12(&vmx->vcpu), field, &field_value);
1359                         __vmcs_writel(field, field_value);
1360                 }
1361         }
1362
1363         vmcs_clear(shadow_vmcs);
1364         vmcs_load(vmx->loaded_vmcs->vmcs);
1365 }
1366
1367 static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1368 {
1369         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1370         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1371
1372         /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1373         vmcs12->tpr_threshold = evmcs->tpr_threshold;
1374         vmcs12->guest_rip = evmcs->guest_rip;
1375
1376         if (unlikely(!(evmcs->hv_clean_fields &
1377                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1378                 vmcs12->guest_rsp = evmcs->guest_rsp;
1379                 vmcs12->guest_rflags = evmcs->guest_rflags;
1380                 vmcs12->guest_interruptibility_info =
1381                         evmcs->guest_interruptibility_info;
1382         }
1383
1384         if (unlikely(!(evmcs->hv_clean_fields &
1385                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1386                 vmcs12->cpu_based_vm_exec_control =
1387                         evmcs->cpu_based_vm_exec_control;
1388         }
1389
1390         if (unlikely(!(evmcs->hv_clean_fields &
1391                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1392                 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1393         }
1394
1395         if (unlikely(!(evmcs->hv_clean_fields &
1396                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1397                 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1398         }
1399
1400         if (unlikely(!(evmcs->hv_clean_fields &
1401                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1402                 vmcs12->vm_entry_intr_info_field =
1403                         evmcs->vm_entry_intr_info_field;
1404                 vmcs12->vm_entry_exception_error_code =
1405                         evmcs->vm_entry_exception_error_code;
1406                 vmcs12->vm_entry_instruction_len =
1407                         evmcs->vm_entry_instruction_len;
1408         }
1409
1410         if (unlikely(!(evmcs->hv_clean_fields &
1411                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1412                 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1413                 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1414                 vmcs12->host_cr0 = evmcs->host_cr0;
1415                 vmcs12->host_cr3 = evmcs->host_cr3;
1416                 vmcs12->host_cr4 = evmcs->host_cr4;
1417                 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1418                 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1419                 vmcs12->host_rip = evmcs->host_rip;
1420                 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1421                 vmcs12->host_es_selector = evmcs->host_es_selector;
1422                 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1423                 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1424                 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1425                 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1426                 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1427                 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1428         }
1429
1430         if (unlikely(!(evmcs->hv_clean_fields &
1431                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1432                 vmcs12->pin_based_vm_exec_control =
1433                         evmcs->pin_based_vm_exec_control;
1434                 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1435                 vmcs12->secondary_vm_exec_control =
1436                         evmcs->secondary_vm_exec_control;
1437         }
1438
1439         if (unlikely(!(evmcs->hv_clean_fields &
1440                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1441                 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1442                 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1443         }
1444
1445         if (unlikely(!(evmcs->hv_clean_fields &
1446                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1447                 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1448         }
1449
1450         if (unlikely(!(evmcs->hv_clean_fields &
1451                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1452                 vmcs12->guest_es_base = evmcs->guest_es_base;
1453                 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1454                 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1455                 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1456                 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1457                 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1458                 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1459                 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1460                 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1461                 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1462                 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1463                 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1464                 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1465                 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1466                 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1467                 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1468                 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1469                 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1470                 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1471                 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1472                 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1473                 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1474                 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1475                 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1476                 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1477                 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1478                 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1479                 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1480                 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1481                 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1482                 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1483                 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1484                 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1485                 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1486                 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1487                 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1488         }
1489
1490         if (unlikely(!(evmcs->hv_clean_fields &
1491                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1492                 vmcs12->tsc_offset = evmcs->tsc_offset;
1493                 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1494                 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1495         }
1496
1497         if (unlikely(!(evmcs->hv_clean_fields &
1498                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1499                 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1500                 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1501                 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1502                 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1503                 vmcs12->guest_cr0 = evmcs->guest_cr0;
1504                 vmcs12->guest_cr3 = evmcs->guest_cr3;
1505                 vmcs12->guest_cr4 = evmcs->guest_cr4;
1506                 vmcs12->guest_dr7 = evmcs->guest_dr7;
1507         }
1508
1509         if (unlikely(!(evmcs->hv_clean_fields &
1510                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1511                 vmcs12->host_fs_base = evmcs->host_fs_base;
1512                 vmcs12->host_gs_base = evmcs->host_gs_base;
1513                 vmcs12->host_tr_base = evmcs->host_tr_base;
1514                 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1515                 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1516                 vmcs12->host_rsp = evmcs->host_rsp;
1517         }
1518
1519         if (unlikely(!(evmcs->hv_clean_fields &
1520                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1521                 vmcs12->ept_pointer = evmcs->ept_pointer;
1522                 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1523         }
1524
1525         if (unlikely(!(evmcs->hv_clean_fields &
1526                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1527                 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1528                 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1529                 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1530                 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1531                 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1532                 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1533                 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1534                 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1535                 vmcs12->guest_pending_dbg_exceptions =
1536                         evmcs->guest_pending_dbg_exceptions;
1537                 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1538                 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1539                 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1540                 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1541                 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1542         }
1543
1544         /*
1545          * Not used?
1546          * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1547          * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1548          * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1549          * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0;
1550          * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1;
1551          * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2;
1552          * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3;
1553          * vmcs12->page_fault_error_code_mask =
1554          *              evmcs->page_fault_error_code_mask;
1555          * vmcs12->page_fault_error_code_match =
1556          *              evmcs->page_fault_error_code_match;
1557          * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1558          * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1559          * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1560          * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1561          */
1562
1563         /*
1564          * Read only fields:
1565          * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1566          * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1567          * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1568          * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1569          * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1570          * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1571          * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1572          * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1573          * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1574          * vmcs12->exit_qualification = evmcs->exit_qualification;
1575          * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1576          *
1577          * Not present in struct vmcs12:
1578          * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1579          * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1580          * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1581          * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1582          */
1583
1584         return 0;
1585 }
1586
1587 static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1588 {
1589         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1590         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1591
1592         /*
1593          * Should not be changed by KVM:
1594          *
1595          * evmcs->host_es_selector = vmcs12->host_es_selector;
1596          * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1597          * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1598          * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1599          * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1600          * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1601          * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1602          * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1603          * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1604          * evmcs->host_cr0 = vmcs12->host_cr0;
1605          * evmcs->host_cr3 = vmcs12->host_cr3;
1606          * evmcs->host_cr4 = vmcs12->host_cr4;
1607          * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1608          * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1609          * evmcs->host_rip = vmcs12->host_rip;
1610          * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1611          * evmcs->host_fs_base = vmcs12->host_fs_base;
1612          * evmcs->host_gs_base = vmcs12->host_gs_base;
1613          * evmcs->host_tr_base = vmcs12->host_tr_base;
1614          * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1615          * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1616          * evmcs->host_rsp = vmcs12->host_rsp;
1617          * sync_vmcs12() doesn't read these:
1618          * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1619          * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1620          * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1621          * evmcs->ept_pointer = vmcs12->ept_pointer;
1622          * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1623          * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1624          * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1625          * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1626          * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0;
1627          * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1;
1628          * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2;
1629          * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3;
1630          * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1631          * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1632          * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1633          * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1634          * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1635          * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1636          * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1637          * evmcs->page_fault_error_code_mask =
1638          *              vmcs12->page_fault_error_code_mask;
1639          * evmcs->page_fault_error_code_match =
1640          *              vmcs12->page_fault_error_code_match;
1641          * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1642          * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1643          * evmcs->tsc_offset = vmcs12->tsc_offset;
1644          * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1645          * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1646          * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1647          * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1648          * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1649          * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1650          * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1651          * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1652          *
1653          * Not present in struct vmcs12:
1654          * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1655          * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1656          * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1657          * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1658          */
1659
1660         evmcs->guest_es_selector = vmcs12->guest_es_selector;
1661         evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1662         evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1663         evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1664         evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1665         evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1666         evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1667         evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1668
1669         evmcs->guest_es_limit = vmcs12->guest_es_limit;
1670         evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1671         evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1672         evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1673         evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1674         evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1675         evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1676         evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1677         evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1678         evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1679
1680         evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1681         evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1682         evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1683         evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1684         evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1685         evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1686         evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1687         evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1688
1689         evmcs->guest_es_base = vmcs12->guest_es_base;
1690         evmcs->guest_cs_base = vmcs12->guest_cs_base;
1691         evmcs->guest_ss_base = vmcs12->guest_ss_base;
1692         evmcs->guest_ds_base = vmcs12->guest_ds_base;
1693         evmcs->guest_fs_base = vmcs12->guest_fs_base;
1694         evmcs->guest_gs_base = vmcs12->guest_gs_base;
1695         evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1696         evmcs->guest_tr_base = vmcs12->guest_tr_base;
1697         evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1698         evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1699
1700         evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1701         evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1702
1703         evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1704         evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1705         evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1706         evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1707
1708         evmcs->guest_pending_dbg_exceptions =
1709                 vmcs12->guest_pending_dbg_exceptions;
1710         evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1711         evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1712
1713         evmcs->guest_activity_state = vmcs12->guest_activity_state;
1714         evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1715
1716         evmcs->guest_cr0 = vmcs12->guest_cr0;
1717         evmcs->guest_cr3 = vmcs12->guest_cr3;
1718         evmcs->guest_cr4 = vmcs12->guest_cr4;
1719         evmcs->guest_dr7 = vmcs12->guest_dr7;
1720
1721         evmcs->guest_physical_address = vmcs12->guest_physical_address;
1722
1723         evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1724         evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1725         evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1726         evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1727         evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1728         evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1729         evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1730         evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1731
1732         evmcs->exit_qualification = vmcs12->exit_qualification;
1733
1734         evmcs->guest_linear_address = vmcs12->guest_linear_address;
1735         evmcs->guest_rsp = vmcs12->guest_rsp;
1736         evmcs->guest_rflags = vmcs12->guest_rflags;
1737
1738         evmcs->guest_interruptibility_info =
1739                 vmcs12->guest_interruptibility_info;
1740         evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1741         evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1742         evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1743         evmcs->vm_entry_exception_error_code =
1744                 vmcs12->vm_entry_exception_error_code;
1745         evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1746
1747         evmcs->guest_rip = vmcs12->guest_rip;
1748
1749         evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1750
1751         return 0;
1752 }
1753
1754 /*
1755  * This is an equivalent of the nested hypervisor executing the vmptrld
1756  * instruction.
1757  */
1758 static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu,
1759                                                  bool from_launch)
1760 {
1761         struct vcpu_vmx *vmx = to_vmx(vcpu);
1762         struct hv_vp_assist_page assist_page;
1763
1764         if (likely(!vmx->nested.enlightened_vmcs_enabled))
1765                 return 1;
1766
1767         if (unlikely(!kvm_hv_get_assist_page(vcpu, &assist_page)))
1768                 return 1;
1769
1770         if (unlikely(!assist_page.enlighten_vmentry))
1771                 return 1;
1772
1773         if (unlikely(assist_page.current_nested_vmcs !=
1774                      vmx->nested.hv_evmcs_vmptr)) {
1775
1776                 if (!vmx->nested.hv_evmcs)
1777                         vmx->nested.current_vmptr = -1ull;
1778
1779                 nested_release_evmcs(vcpu);
1780
1781                 vmx->nested.hv_evmcs_page = kvm_vcpu_gpa_to_page(
1782                         vcpu, assist_page.current_nested_vmcs);
1783
1784                 if (unlikely(is_error_page(vmx->nested.hv_evmcs_page)))
1785                         return 0;
1786
1787                 vmx->nested.hv_evmcs = kmap(vmx->nested.hv_evmcs_page);
1788
1789                 /*
1790                  * Currently, KVM only supports eVMCS version 1
1791                  * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
1792                  * value to first u32 field of eVMCS which should specify eVMCS
1793                  * VersionNumber.
1794                  *
1795                  * Guest should be aware of supported eVMCS versions by host by
1796                  * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
1797                  * expected to set this CPUID leaf according to the value
1798                  * returned in vmcs_version from nested_enable_evmcs().
1799                  *
1800                  * However, it turns out that Microsoft Hyper-V fails to comply
1801                  * to their own invented interface: When Hyper-V use eVMCS, it
1802                  * just sets first u32 field of eVMCS to revision_id specified
1803                  * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
1804                  * which is one of the supported versions specified in
1805                  * CPUID.0x4000000A.EAX[0:15].
1806                  *
1807                  * To overcome Hyper-V bug, we accept here either a supported
1808                  * eVMCS version or VMCS12 revision_id as valid values for first
1809                  * u32 field of eVMCS.
1810                  */
1811                 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
1812                     (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
1813                         nested_release_evmcs(vcpu);
1814                         return 0;
1815                 }
1816
1817                 vmx->nested.dirty_vmcs12 = true;
1818                 /*
1819                  * As we keep L2 state for one guest only 'hv_clean_fields' mask
1820                  * can't be used when we switch between them. Reset it here for
1821                  * simplicity.
1822                  */
1823                 vmx->nested.hv_evmcs->hv_clean_fields &=
1824                         ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1825                 vmx->nested.hv_evmcs_vmptr = assist_page.current_nested_vmcs;
1826
1827                 /*
1828                  * Unlike normal vmcs12, enlightened vmcs12 is not fully
1829                  * reloaded from guest's memory (read only fields, fields not
1830                  * present in struct hv_enlightened_vmcs, ...). Make sure there
1831                  * are no leftovers.
1832                  */
1833                 if (from_launch) {
1834                         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1835                         memset(vmcs12, 0, sizeof(*vmcs12));
1836                         vmcs12->hdr.revision_id = VMCS12_REVISION;
1837                 }
1838
1839         }
1840         return 1;
1841 }
1842
1843 void nested_sync_from_vmcs12(struct kvm_vcpu *vcpu)
1844 {
1845         struct vcpu_vmx *vmx = to_vmx(vcpu);
1846
1847         /*
1848          * hv_evmcs may end up being not mapped after migration (when
1849          * L2 was running), map it here to make sure vmcs12 changes are
1850          * properly reflected.
1851          */
1852         if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs)
1853                 nested_vmx_handle_enlightened_vmptrld(vcpu, false);
1854
1855         if (vmx->nested.hv_evmcs) {
1856                 copy_vmcs12_to_enlightened(vmx);
1857                 /* All fields are clean */
1858                 vmx->nested.hv_evmcs->hv_clean_fields |=
1859                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1860         } else {
1861                 copy_vmcs12_to_shadow(vmx);
1862         }
1863
1864         vmx->nested.need_vmcs12_sync = false;
1865 }
1866
1867 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
1868 {
1869         struct vcpu_vmx *vmx =
1870                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
1871
1872         vmx->nested.preemption_timer_expired = true;
1873         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
1874         kvm_vcpu_kick(&vmx->vcpu);
1875
1876         return HRTIMER_NORESTART;
1877 }
1878
1879 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
1880 {
1881         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
1882         struct vcpu_vmx *vmx = to_vmx(vcpu);
1883
1884         /*
1885          * A timer value of zero is architecturally guaranteed to cause
1886          * a VMExit prior to executing any instructions in the guest.
1887          */
1888         if (preemption_timeout == 0) {
1889                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
1890                 return;
1891         }
1892
1893         if (vcpu->arch.virtual_tsc_khz == 0)
1894                 return;
1895
1896         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
1897         preemption_timeout *= 1000000;
1898         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
1899         hrtimer_start(&vmx->nested.preemption_timer,
1900                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
1901 }
1902
1903 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
1904 {
1905         if (vmx->nested.nested_run_pending &&
1906             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
1907                 return vmcs12->guest_ia32_efer;
1908         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
1909                 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
1910         else
1911                 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
1912 }
1913
1914 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
1915 {
1916         /*
1917          * If vmcs02 hasn't been initialized, set the constant vmcs02 state
1918          * according to L0's settings (vmcs12 is irrelevant here).  Host
1919          * fields that come from L0 and are not constant, e.g. HOST_CR3,
1920          * will be set as needed prior to VMLAUNCH/VMRESUME.
1921          */
1922         if (vmx->nested.vmcs02_initialized)
1923                 return;
1924         vmx->nested.vmcs02_initialized = true;
1925
1926         /*
1927          * We don't care what the EPTP value is we just need to guarantee
1928          * it's valid so we don't get a false positive when doing early
1929          * consistency checks.
1930          */
1931         if (enable_ept && nested_early_check)
1932                 vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
1933
1934         /* All VMFUNCs are currently emulated through L0 vmexits.  */
1935         if (cpu_has_vmx_vmfunc())
1936                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
1937
1938         if (cpu_has_vmx_posted_intr())
1939                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
1940
1941         if (cpu_has_vmx_msr_bitmap())
1942                 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
1943
1944         if (enable_pml)
1945                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
1946
1947         /*
1948          * Set the MSR load/store lists to match L0's settings.  Only the
1949          * addresses are constant (for vmcs02), the counts can change based
1950          * on L2's behavior, e.g. switching to/from long mode.
1951          */
1952         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1953         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
1954         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
1955
1956         vmx_set_constant_host_state(vmx);
1957 }
1958
1959 static void prepare_vmcs02_early_full(struct vcpu_vmx *vmx,
1960                                       struct vmcs12 *vmcs12)
1961 {
1962         prepare_vmcs02_constant_state(vmx);
1963
1964         vmcs_write64(VMCS_LINK_POINTER, -1ull);
1965
1966         if (enable_vpid) {
1967                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
1968                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
1969                 else
1970                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
1971         }
1972 }
1973
1974 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
1975 {
1976         u32 exec_control, vmcs12_exec_ctrl;
1977         u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
1978
1979         if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
1980                 prepare_vmcs02_early_full(vmx, vmcs12);
1981
1982         /*
1983          * PIN CONTROLS
1984          */
1985         exec_control = vmcs12->pin_based_vm_exec_control;
1986
1987         /* Preemption timer setting is computed directly in vmx_vcpu_run.  */
1988         exec_control |= vmcs_config.pin_based_exec_ctrl;
1989         exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
1990         vmx->loaded_vmcs->hv_timer_armed = false;
1991
1992         /* Posted interrupts setting is only taken from vmcs12.  */
1993         if (nested_cpu_has_posted_intr(vmcs12)) {
1994                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
1995                 vmx->nested.pi_pending = false;
1996         } else {
1997                 exec_control &= ~PIN_BASED_POSTED_INTR;
1998         }
1999         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
2000
2001         /*
2002          * EXEC CONTROLS
2003          */
2004         exec_control = vmx_exec_control(vmx); /* L0's desires */
2005         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2006         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
2007         exec_control &= ~CPU_BASED_TPR_SHADOW;
2008         exec_control |= vmcs12->cpu_based_vm_exec_control;
2009
2010         /*
2011          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
2012          * nested_get_vmcs12_pages can't fix it up, the illegal value
2013          * will result in a VM entry failure.
2014          */
2015         if (exec_control & CPU_BASED_TPR_SHADOW) {
2016                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
2017                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2018         } else {
2019 #ifdef CONFIG_X86_64
2020                 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2021                                 CPU_BASED_CR8_STORE_EXITING;
2022 #endif
2023         }
2024
2025         /*
2026          * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2027          * for I/O port accesses.
2028          */
2029         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2030         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2031         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2032
2033         /*
2034          * SECONDARY EXEC CONTROLS
2035          */
2036         if (cpu_has_secondary_exec_ctrls()) {
2037                 exec_control = vmx->secondary_exec_control;
2038
2039                 /* Take the following fields only from vmcs12 */
2040                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2041                                   SECONDARY_EXEC_ENABLE_INVPCID |
2042                                   SECONDARY_EXEC_RDTSCP |
2043                                   SECONDARY_EXEC_XSAVES |
2044                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2045                                   SECONDARY_EXEC_APIC_REGISTER_VIRT |
2046                                   SECONDARY_EXEC_ENABLE_VMFUNC);
2047                 if (nested_cpu_has(vmcs12,
2048                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
2049                         vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
2050                                 ~SECONDARY_EXEC_ENABLE_PML;
2051                         exec_control |= vmcs12_exec_ctrl;
2052                 }
2053
2054                 /* VMCS shadowing for L2 is emulated for now */
2055                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2056
2057                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2058                         vmcs_write16(GUEST_INTR_STATUS,
2059                                 vmcs12->guest_intr_status);
2060
2061                 /*
2062                  * Write an illegal value to APIC_ACCESS_ADDR. Later,
2063                  * nested_get_vmcs12_pages will either fix it up or
2064                  * remove the VM execution control.
2065                  */
2066                 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
2067                         vmcs_write64(APIC_ACCESS_ADDR, -1ull);
2068
2069                 if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2070                         vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2071
2072                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2073         }
2074
2075         /*
2076          * ENTRY CONTROLS
2077          *
2078          * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2079          * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2080          * on the related bits (if supported by the CPU) in the hope that
2081          * we can avoid VMWrites during vmx_set_efer().
2082          */
2083         exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2084                         ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2085         if (cpu_has_load_ia32_efer()) {
2086                 if (guest_efer & EFER_LMA)
2087                         exec_control |= VM_ENTRY_IA32E_MODE;
2088                 if (guest_efer != host_efer)
2089                         exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2090         }
2091         vm_entry_controls_init(vmx, exec_control);
2092
2093         /*
2094          * EXIT CONTROLS
2095          *
2096          * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2097          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2098          * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2099          */
2100         exec_control = vmx_vmexit_ctrl();
2101         if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2102                 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2103         vm_exit_controls_init(vmx, exec_control);
2104
2105         /*
2106          * Conceptually we want to copy the PML address and index from
2107          * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
2108          * since we always flush the log on each vmexit and never change
2109          * the PML address (once set), this happens to be equivalent to
2110          * simply resetting the index in vmcs02.
2111          */
2112         if (enable_pml)
2113                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
2114
2115         /*
2116          * Interrupt/Exception Fields
2117          */
2118         if (vmx->nested.nested_run_pending) {
2119                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2120                              vmcs12->vm_entry_intr_info_field);
2121                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2122                              vmcs12->vm_entry_exception_error_code);
2123                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2124                              vmcs12->vm_entry_instruction_len);
2125                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2126                              vmcs12->guest_interruptibility_info);
2127                 vmx->loaded_vmcs->nmi_known_unmasked =
2128                         !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2129         } else {
2130                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2131         }
2132 }
2133
2134 static void prepare_vmcs02_full(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2135 {
2136         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2137
2138         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2139                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2140                 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2141                 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2142                 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2143                 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2144                 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2145                 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2146                 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2147                 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2148                 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2149                 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2150                 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2151                 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2152                 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2153                 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2154                 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2155                 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2156                 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2157                 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2158                 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2159                 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2160                 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2161                 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2162                 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2163                 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2164                 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2165                 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2166                 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2167                 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2168                 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2169                 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2170                 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2171                 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2172                 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2173                 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2174         }
2175
2176         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2177                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2178                 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2179                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2180                             vmcs12->guest_pending_dbg_exceptions);
2181                 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2182                 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2183
2184                 /*
2185                  * L1 may access the L2's PDPTR, so save them to construct
2186                  * vmcs12
2187                  */
2188                 if (enable_ept) {
2189                         vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2190                         vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2191                         vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2192                         vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2193                 }
2194         }
2195
2196         if (nested_cpu_has_xsaves(vmcs12))
2197                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2198
2199         /*
2200          * Whether page-faults are trapped is determined by a combination of
2201          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
2202          * If enable_ept, L0 doesn't care about page faults and we should
2203          * set all of these to L1's desires. However, if !enable_ept, L0 does
2204          * care about (at least some) page faults, and because it is not easy
2205          * (if at all possible?) to merge L0 and L1's desires, we simply ask
2206          * to exit on each and every L2 page fault. This is done by setting
2207          * MASK=MATCH=0 and (see below) EB.PF=1.
2208          * Note that below we don't need special code to set EB.PF beyond the
2209          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2210          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2211          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2212          */
2213         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
2214                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
2215         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
2216                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
2217
2218         if (cpu_has_vmx_apicv()) {
2219                 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2220                 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2221                 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2222                 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2223         }
2224
2225         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2226         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2227
2228         set_cr4_guest_host_mask(vmx);
2229
2230         if (kvm_mpx_supported()) {
2231                 if (vmx->nested.nested_run_pending &&
2232                         (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2233                         vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2234                 else
2235                         vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2236         }
2237 }
2238
2239 /*
2240  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2241  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2242  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2243  * guest in a way that will both be appropriate to L1's requests, and our
2244  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2245  * function also has additional necessary side-effects, like setting various
2246  * vcpu->arch fields.
2247  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2248  * is assigned to entry_failure_code on failure.
2249  */
2250 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2251                           u32 *entry_failure_code)
2252 {
2253         struct vcpu_vmx *vmx = to_vmx(vcpu);
2254         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2255
2256         if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs) {
2257                 prepare_vmcs02_full(vmx, vmcs12);
2258                 vmx->nested.dirty_vmcs12 = false;
2259         }
2260
2261         /*
2262          * First, the fields that are shadowed.  This must be kept in sync
2263          * with vmcs_shadow_fields.h.
2264          */
2265         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2266                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2267                 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2268                 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2269         }
2270
2271         if (vmx->nested.nested_run_pending &&
2272             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2273                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2274                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2275         } else {
2276                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2277                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2278         }
2279         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2280
2281         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2282          * bitwise-or of what L1 wants to trap for L2, and what we want to
2283          * trap. Note that CR0.TS also needs updating - we do this later.
2284          */
2285         update_exception_bitmap(vcpu);
2286         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2287         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2288
2289         if (vmx->nested.nested_run_pending &&
2290             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2291                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2292                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2293         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2294                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2295         }
2296
2297         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2298
2299         if (kvm_has_tsc_control)
2300                 decache_tsc_multiplier(vmx);
2301
2302         if (enable_vpid) {
2303                 /*
2304                  * There is no direct mapping between vpid02 and vpid12, the
2305                  * vpid02 is per-vCPU for L0 and reused while the value of
2306                  * vpid12 is changed w/ one invvpid during nested vmentry.
2307                  * The vpid12 is allocated by L1 for L2, so it will not
2308                  * influence global bitmap(for vpid01 and vpid02 allocation)
2309                  * even if spawn a lot of nested vCPUs.
2310                  */
2311                 if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) {
2312                         if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
2313                                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
2314                                 __vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false);
2315                         }
2316                 } else {
2317                         /*
2318                          * If L1 use EPT, then L0 needs to execute INVEPT on
2319                          * EPTP02 instead of EPTP01. Therefore, delay TLB
2320                          * flush until vmcs02->eptp is fully updated by
2321                          * KVM_REQ_LOAD_CR3. Note that this assumes
2322                          * KVM_REQ_TLB_FLUSH is evaluated after
2323                          * KVM_REQ_LOAD_CR3 in vcpu_enter_guest().
2324                          */
2325                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2326                 }
2327         }
2328
2329         if (nested_cpu_has_ept(vmcs12))
2330                 nested_ept_init_mmu_context(vcpu);
2331         else if (nested_cpu_has2(vmcs12,
2332                                  SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2333                 vmx_flush_tlb(vcpu, true);
2334
2335         /*
2336          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2337          * bits which we consider mandatory enabled.
2338          * The CR0_READ_SHADOW is what L2 should have expected to read given
2339          * the specifications by L1; It's not enough to take
2340          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2341          * have more bits than L1 expected.
2342          */
2343         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2344         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2345
2346         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2347         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2348
2349         vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2350         /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2351         vmx_set_efer(vcpu, vcpu->arch.efer);
2352
2353         /*
2354          * Guest state is invalid and unrestricted guest is disabled,
2355          * which means L1 attempted VMEntry to L2 with invalid state.
2356          * Fail the VMEntry.
2357          */
2358         if (vmx->emulation_required) {
2359                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2360                 return 1;
2361         }
2362
2363         /* Shadow page tables on either EPT or shadow page tables. */
2364         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2365                                 entry_failure_code))
2366                 return 1;
2367
2368         if (!enable_ept)
2369                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2370
2371         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
2372         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
2373         return 0;
2374 }
2375
2376 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2377 {
2378         if (!nested_cpu_has_nmi_exiting(vmcs12) &&
2379             nested_cpu_has_virtual_nmis(vmcs12))
2380                 return -EINVAL;
2381
2382         if (!nested_cpu_has_virtual_nmis(vmcs12) &&
2383             nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING))
2384                 return -EINVAL;
2385
2386         return 0;
2387 }
2388
2389 static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
2390 {
2391         struct vcpu_vmx *vmx = to_vmx(vcpu);
2392         int maxphyaddr = cpuid_maxphyaddr(vcpu);
2393
2394         /* Check for memory type validity */
2395         switch (address & VMX_EPTP_MT_MASK) {
2396         case VMX_EPTP_MT_UC:
2397                 if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT))
2398                         return false;
2399                 break;
2400         case VMX_EPTP_MT_WB:
2401                 if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT))
2402                         return false;
2403                 break;
2404         default:
2405                 return false;
2406         }
2407
2408         /* only 4 levels page-walk length are valid */
2409         if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
2410                 return false;
2411
2412         /* Reserved bits should not be set */
2413         if (address >> maxphyaddr || ((address >> 7) & 0x1f))
2414                 return false;
2415
2416         /* AD, if set, should be supported */
2417         if (address & VMX_EPTP_AD_ENABLE_BIT) {
2418                 if (!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT))
2419                         return false;
2420         }
2421
2422         return true;
2423 }
2424
2425 /*
2426  * Checks related to VM-Execution Control Fields
2427  */
2428 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2429                                               struct vmcs12 *vmcs12)
2430 {
2431         struct vcpu_vmx *vmx = to_vmx(vcpu);
2432
2433         if (!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2434                                 vmx->nested.msrs.pinbased_ctls_low,
2435                                 vmx->nested.msrs.pinbased_ctls_high) ||
2436             !vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2437                                 vmx->nested.msrs.procbased_ctls_low,
2438                                 vmx->nested.msrs.procbased_ctls_high))
2439                 return -EINVAL;
2440
2441         if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2442             !vmx_control_verify(vmcs12->secondary_vm_exec_control,
2443                                  vmx->nested.msrs.secondary_ctls_low,
2444                                  vmx->nested.msrs.secondary_ctls_high))
2445                 return -EINVAL;
2446
2447         if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu) ||
2448             nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2449             nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2450             nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2451             nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2452             nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2453             nested_vmx_check_nmi_controls(vmcs12) ||
2454             nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2455             nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2456             nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2457             nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2458             (nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2459                 return -EINVAL;
2460
2461         if (nested_cpu_has_ept(vmcs12) &&
2462             !valid_ept_address(vcpu, vmcs12->ept_pointer))
2463                 return -EINVAL;
2464
2465         if (nested_cpu_has_vmfunc(vmcs12)) {
2466                 if (vmcs12->vm_function_control &
2467                     ~vmx->nested.msrs.vmfunc_controls)
2468                         return -EINVAL;
2469
2470                 if (nested_cpu_has_eptp_switching(vmcs12)) {
2471                         if (!nested_cpu_has_ept(vmcs12) ||
2472                             !page_address_valid(vcpu, vmcs12->eptp_list_address))
2473                                 return -EINVAL;
2474                 }
2475         }
2476
2477         return 0;
2478 }
2479
2480 /*
2481  * Checks related to VM-Exit Control Fields
2482  */
2483 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2484                                          struct vmcs12 *vmcs12)
2485 {
2486         struct vcpu_vmx *vmx = to_vmx(vcpu);
2487
2488         if (!vmx_control_verify(vmcs12->vm_exit_controls,
2489                                 vmx->nested.msrs.exit_ctls_low,
2490                                 vmx->nested.msrs.exit_ctls_high) ||
2491             nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12))
2492                 return -EINVAL;
2493
2494         return 0;
2495 }
2496
2497 /*
2498  * Checks related to VM-Entry Control Fields
2499  */
2500 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2501                                           struct vmcs12 *vmcs12)
2502 {
2503         struct vcpu_vmx *vmx = to_vmx(vcpu);
2504
2505         if (!vmx_control_verify(vmcs12->vm_entry_controls,
2506                                 vmx->nested.msrs.entry_ctls_low,
2507                                 vmx->nested.msrs.entry_ctls_high))
2508                 return -EINVAL;
2509
2510         /*
2511          * From the Intel SDM, volume 3:
2512          * Fields relevant to VM-entry event injection must be set properly.
2513          * These fields are the VM-entry interruption-information field, the
2514          * VM-entry exception error code, and the VM-entry instruction length.
2515          */
2516         if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2517                 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2518                 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2519                 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2520                 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2521                 bool should_have_error_code;
2522                 bool urg = nested_cpu_has2(vmcs12,
2523                                            SECONDARY_EXEC_UNRESTRICTED_GUEST);
2524                 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2525
2526                 /* VM-entry interruption-info field: interruption type */
2527                 if (intr_type == INTR_TYPE_RESERVED ||
2528                     (intr_type == INTR_TYPE_OTHER_EVENT &&
2529                      !nested_cpu_supports_monitor_trap_flag(vcpu)))
2530                         return -EINVAL;
2531
2532                 /* VM-entry interruption-info field: vector */
2533                 if ((intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2534                     (intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2535                     (intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2536                         return -EINVAL;
2537
2538                 /* VM-entry interruption-info field: deliver error code */
2539                 should_have_error_code =
2540                         intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2541                         x86_exception_has_error_code(vector);
2542                 if (has_error_code != should_have_error_code)
2543                         return -EINVAL;
2544
2545                 /* VM-entry exception error code */
2546                 if (has_error_code &&
2547                     vmcs12->vm_entry_exception_error_code & GENMASK(31, 15))
2548                         return -EINVAL;
2549
2550                 /* VM-entry interruption-info field: reserved bits */
2551                 if (intr_info & INTR_INFO_RESVD_BITS_MASK)
2552                         return -EINVAL;
2553
2554                 /* VM-entry instruction length */
2555                 switch (intr_type) {
2556                 case INTR_TYPE_SOFT_EXCEPTION:
2557                 case INTR_TYPE_SOFT_INTR:
2558                 case INTR_TYPE_PRIV_SW_EXCEPTION:
2559                         if ((vmcs12->vm_entry_instruction_len > 15) ||
2560                             (vmcs12->vm_entry_instruction_len == 0 &&
2561                              !nested_cpu_has_zero_length_injection(vcpu)))
2562                                 return -EINVAL;
2563                 }
2564         }
2565
2566         if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2567                 return -EINVAL;
2568
2569         return 0;
2570 }
2571
2572 /*
2573  * Checks related to Host Control Registers and MSRs
2574  */
2575 static int nested_check_host_control_regs(struct kvm_vcpu *vcpu,
2576                                           struct vmcs12 *vmcs12)
2577 {
2578         bool ia32e;
2579
2580         if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
2581             !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
2582             !nested_cr3_valid(vcpu, vmcs12->host_cr3))
2583                 return -EINVAL;
2584         /*
2585          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2586          * IA32_EFER MSR must be 0 in the field for that register. In addition,
2587          * the values of the LMA and LME bits in the field must each be that of
2588          * the host address-space size VM-exit control.
2589          */
2590         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2591                 ia32e = (vmcs12->vm_exit_controls &
2592                          VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
2593                 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
2594                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
2595                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
2596                         return -EINVAL;
2597         }
2598
2599         return 0;
2600 }
2601
2602 /*
2603  * Checks related to Guest Non-register State
2604  */
2605 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2606 {
2607         if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2608             vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
2609                 return -EINVAL;
2610
2611         return 0;
2612 }
2613
2614 static int nested_vmx_check_vmentry_prereqs(struct kvm_vcpu *vcpu,
2615                                             struct vmcs12 *vmcs12)
2616 {
2617         if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2618             nested_check_vm_exit_controls(vcpu, vmcs12) ||
2619             nested_check_vm_entry_controls(vcpu, vmcs12))
2620                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
2621
2622         if (nested_check_host_control_regs(vcpu, vmcs12))
2623                 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
2624
2625         if (nested_check_guest_non_reg_state(vmcs12))
2626                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
2627
2628         return 0;
2629 }
2630
2631 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2632                                           struct vmcs12 *vmcs12)
2633 {
2634         int r;
2635         struct page *page;
2636         struct vmcs12 *shadow;
2637
2638         if (vmcs12->vmcs_link_pointer == -1ull)
2639                 return 0;
2640
2641         if (!page_address_valid(vcpu, vmcs12->vmcs_link_pointer))
2642                 return -EINVAL;
2643
2644         page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
2645         if (is_error_page(page))
2646                 return -EINVAL;
2647
2648         r = 0;
2649         shadow = kmap(page);
2650         if (shadow->hdr.revision_id != VMCS12_REVISION ||
2651             shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12))
2652                 r = -EINVAL;
2653         kunmap(page);
2654         kvm_release_page_clean(page);
2655         return r;
2656 }
2657
2658 static int nested_vmx_check_vmentry_postreqs(struct kvm_vcpu *vcpu,
2659                                              struct vmcs12 *vmcs12,
2660                                              u32 *exit_qual)
2661 {
2662         bool ia32e;
2663
2664         *exit_qual = ENTRY_FAIL_DEFAULT;
2665
2666         if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
2667             !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
2668                 return 1;
2669
2670         if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2671                 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
2672                 return 1;
2673         }
2674
2675         /*
2676          * If the load IA32_EFER VM-entry control is 1, the following checks
2677          * are performed on the field for the IA32_EFER MSR:
2678          * - Bits reserved in the IA32_EFER MSR must be 0.
2679          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
2680          *   the IA-32e mode guest VM-exit control. It must also be identical
2681          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
2682          *   CR0.PG) is 1.
2683          */
2684         if (to_vmx(vcpu)->nested.nested_run_pending &&
2685             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
2686                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
2687                 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
2688                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
2689                     ((vmcs12->guest_cr0 & X86_CR0_PG) &&
2690                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
2691                         return 1;
2692         }
2693
2694         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
2695                 (is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) ||
2696                 (vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD)))
2697                         return 1;
2698
2699         return 0;
2700 }
2701
2702 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
2703 {
2704         struct vcpu_vmx *vmx = to_vmx(vcpu);
2705         unsigned long cr3, cr4;
2706         bool vm_fail;
2707
2708         if (!nested_early_check)
2709                 return 0;
2710
2711         if (vmx->msr_autoload.host.nr)
2712                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2713         if (vmx->msr_autoload.guest.nr)
2714                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2715
2716         preempt_disable();
2717
2718         vmx_prepare_switch_to_guest(vcpu);
2719
2720         /*
2721          * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
2722          * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
2723          * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e.
2724          * there is no need to preserve other bits or save/restore the field.
2725          */
2726         vmcs_writel(GUEST_RFLAGS, 0);
2727
2728         cr3 = __get_current_cr3_fast();
2729         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
2730                 vmcs_writel(HOST_CR3, cr3);
2731                 vmx->loaded_vmcs->host_state.cr3 = cr3;
2732         }
2733
2734         cr4 = cr4_read_shadow();
2735         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
2736                 vmcs_writel(HOST_CR4, cr4);
2737                 vmx->loaded_vmcs->host_state.cr4 = cr4;
2738         }
2739
2740         asm(
2741                 "sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
2742                 "cmp %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2743                 "je 1f \n\t"
2744                 __ex("vmwrite %%" _ASM_SP ", %[HOST_RSP]") "\n\t"
2745                 "mov %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2746                 "1: \n\t"
2747                 "add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
2748
2749                 /* Check if vmlaunch or vmresume is needed */
2750                 "cmpb $0, %c[launched](%[loaded_vmcs])\n\t"
2751
2752                 /*
2753                  * VMLAUNCH and VMRESUME clear RFLAGS.{CF,ZF} on VM-Exit, set
2754                  * RFLAGS.CF on VM-Fail Invalid and set RFLAGS.ZF on VM-Fail
2755                  * Valid.  vmx_vmenter() directly "returns" RFLAGS, and so the
2756                  * results of VM-Enter is captured via CC_{SET,OUT} to vm_fail.
2757                  */
2758                 "call vmx_vmenter\n\t"
2759
2760                 CC_SET(be)
2761               : ASM_CALL_CONSTRAINT, CC_OUT(be) (vm_fail)
2762               : [HOST_RSP]"r"((unsigned long)HOST_RSP),
2763                 [loaded_vmcs]"r"(vmx->loaded_vmcs),
2764                 [launched]"i"(offsetof(struct loaded_vmcs, launched)),
2765                 [host_state_rsp]"i"(offsetof(struct loaded_vmcs, host_state.rsp)),
2766                 [wordsize]"i"(sizeof(ulong))
2767               : "cc", "memory"
2768         );
2769
2770         preempt_enable();
2771
2772         if (vmx->msr_autoload.host.nr)
2773                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2774         if (vmx->msr_autoload.guest.nr)
2775                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2776
2777         if (vm_fail) {
2778                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
2779                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
2780                 return 1;
2781         }
2782
2783         /*
2784          * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
2785          */
2786         local_irq_enable();
2787         if (hw_breakpoint_active())
2788                 set_debugreg(__this_cpu_read(cpu_dr7), 7);
2789
2790         /*
2791          * A non-failing VMEntry means we somehow entered guest mode with
2792          * an illegal RIP, and that's just the tip of the iceberg.  There
2793          * is no telling what memory has been modified or what state has
2794          * been exposed to unknown code.  Hitting this all but guarantees
2795          * a (very critical) hardware issue.
2796          */
2797         WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
2798                 VMX_EXIT_REASONS_FAILED_VMENTRY));
2799
2800         return 0;
2801 }
2802
2803 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
2804                                                  struct vmcs12 *vmcs12);
2805
2806 static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
2807 {
2808         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2809         struct vcpu_vmx *vmx = to_vmx(vcpu);
2810         struct page *page;
2811         u64 hpa;
2812
2813         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
2814                 /*
2815                  * Translate L1 physical address to host physical
2816                  * address for vmcs02. Keep the page pinned, so this
2817                  * physical address remains valid. We keep a reference
2818                  * to it so we can release it later.
2819                  */
2820                 if (vmx->nested.apic_access_page) { /* shouldn't happen */
2821                         kvm_release_page_dirty(vmx->nested.apic_access_page);
2822                         vmx->nested.apic_access_page = NULL;
2823                 }
2824                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
2825                 /*
2826                  * If translation failed, no matter: This feature asks
2827                  * to exit when accessing the given address, and if it
2828                  * can never be accessed, this feature won't do
2829                  * anything anyway.
2830                  */
2831                 if (!is_error_page(page)) {
2832                         vmx->nested.apic_access_page = page;
2833                         hpa = page_to_phys(vmx->nested.apic_access_page);
2834                         vmcs_write64(APIC_ACCESS_ADDR, hpa);
2835                 } else {
2836                         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
2837                                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
2838                 }
2839         }
2840
2841         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
2842                 if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
2843                         kvm_release_page_dirty(vmx->nested.virtual_apic_page);
2844                         vmx->nested.virtual_apic_page = NULL;
2845                 }
2846                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
2847
2848                 /*
2849                  * If translation failed, VM entry will fail because
2850                  * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
2851                  * Failing the vm entry is _not_ what the processor
2852                  * does but it's basically the only possibility we
2853                  * have.  We could still enter the guest if CR8 load
2854                  * exits are enabled, CR8 store exits are enabled, and
2855                  * virtualize APIC access is disabled; in this case
2856                  * the processor would never use the TPR shadow and we
2857                  * could simply clear the bit from the execution
2858                  * control.  But such a configuration is useless, so
2859                  * let's keep the code simple.
2860                  */
2861                 if (!is_error_page(page)) {
2862                         vmx->nested.virtual_apic_page = page;
2863                         hpa = page_to_phys(vmx->nested.virtual_apic_page);
2864                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
2865                 }
2866         }
2867
2868         if (nested_cpu_has_posted_intr(vmcs12)) {
2869                 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
2870                         kunmap(vmx->nested.pi_desc_page);
2871                         kvm_release_page_dirty(vmx->nested.pi_desc_page);
2872                         vmx->nested.pi_desc_page = NULL;
2873                         vmx->nested.pi_desc = NULL;
2874                         vmcs_write64(POSTED_INTR_DESC_ADDR, -1ull);
2875                 }
2876                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
2877                 if (is_error_page(page))
2878                         return;
2879                 vmx->nested.pi_desc_page = page;
2880                 vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
2881                 vmx->nested.pi_desc =
2882                         (struct pi_desc *)((void *)vmx->nested.pi_desc +
2883                         (unsigned long)(vmcs12->posted_intr_desc_addr &
2884                         (PAGE_SIZE - 1)));
2885                 vmcs_write64(POSTED_INTR_DESC_ADDR,
2886                         page_to_phys(vmx->nested.pi_desc_page) +
2887                         (unsigned long)(vmcs12->posted_intr_desc_addr &
2888                         (PAGE_SIZE - 1)));
2889         }
2890         if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
2891                 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
2892                               CPU_BASED_USE_MSR_BITMAPS);
2893         else
2894                 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
2895                                 CPU_BASED_USE_MSR_BITMAPS);
2896 }
2897
2898 /*
2899  * Intel's VMX Instruction Reference specifies a common set of prerequisites
2900  * for running VMX instructions (except VMXON, whose prerequisites are
2901  * slightly different). It also specifies what exception to inject otherwise.
2902  * Note that many of these exceptions have priority over VM exits, so they
2903  * don't have to be checked again here.
2904  */
2905 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
2906 {
2907         if (!to_vmx(vcpu)->nested.vmxon) {
2908                 kvm_queue_exception(vcpu, UD_VECTOR);
2909                 return 0;
2910         }
2911
2912         if (vmx_get_cpl(vcpu)) {
2913                 kvm_inject_gp(vcpu, 0);
2914                 return 0;
2915         }
2916
2917         return 1;
2918 }
2919
2920 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
2921 {
2922         u8 rvi = vmx_get_rvi();
2923         u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
2924
2925         return ((rvi & 0xf0) > (vppr & 0xf0));
2926 }
2927
2928 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
2929                                    struct vmcs12 *vmcs12);
2930
2931 /*
2932  * If from_vmentry is false, this is being called from state restore (either RSM
2933  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
2934 + *
2935 + * Returns:
2936 + *   0 - success, i.e. proceed with actual VMEnter
2937 + *   1 - consistency check VMExit
2938 + *  -1 - consistency check VMFail
2939  */
2940 int nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
2941 {
2942         struct vcpu_vmx *vmx = to_vmx(vcpu);
2943         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2944         bool evaluate_pending_interrupts;
2945         u32 exit_reason = EXIT_REASON_INVALID_STATE;
2946         u32 exit_qual;
2947
2948         evaluate_pending_interrupts = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
2949                 (CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING);
2950         if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
2951                 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
2952
2953         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
2954                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
2955         if (kvm_mpx_supported() &&
2956                 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2957                 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
2958
2959         vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
2960
2961         prepare_vmcs02_early(vmx, vmcs12);
2962
2963         if (from_vmentry) {
2964                 nested_get_vmcs12_pages(vcpu);
2965
2966                 if (nested_vmx_check_vmentry_hw(vcpu)) {
2967                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
2968                         return -1;
2969                 }
2970
2971                 if (nested_vmx_check_vmentry_postreqs(vcpu, vmcs12, &exit_qual))
2972                         goto vmentry_fail_vmexit;
2973         }
2974
2975         enter_guest_mode(vcpu);
2976         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
2977                 vcpu->arch.tsc_offset += vmcs12->tsc_offset;
2978
2979         if (prepare_vmcs02(vcpu, vmcs12, &exit_qual))
2980                 goto vmentry_fail_vmexit_guest_mode;
2981
2982         if (from_vmentry) {
2983                 exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
2984                 exit_qual = nested_vmx_load_msr(vcpu,
2985                                                 vmcs12->vm_entry_msr_load_addr,
2986                                                 vmcs12->vm_entry_msr_load_count);
2987                 if (exit_qual)
2988                         goto vmentry_fail_vmexit_guest_mode;
2989         } else {
2990                 /*
2991                  * The MMU is not initialized to point at the right entities yet and
2992                  * "get pages" would need to read data from the guest (i.e. we will
2993                  * need to perform gpa to hpa translation). Request a call
2994                  * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
2995                  * have already been set at vmentry time and should not be reset.
2996                  */
2997                 kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
2998         }
2999
3000         /*
3001          * If L1 had a pending IRQ/NMI until it executed
3002          * VMLAUNCH/VMRESUME which wasn't delivered because it was
3003          * disallowed (e.g. interrupts disabled), L0 needs to
3004          * evaluate if this pending event should cause an exit from L2
3005          * to L1 or delivered directly to L2 (e.g. In case L1 don't
3006          * intercept EXTERNAL_INTERRUPT).
3007          *
3008          * Usually this would be handled by the processor noticing an
3009          * IRQ/NMI window request, or checking RVI during evaluation of
3010          * pending virtual interrupts.  However, this setting was done
3011          * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3012          * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3013          */
3014         if (unlikely(evaluate_pending_interrupts))
3015                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3016
3017         /*
3018          * Do not start the preemption timer hrtimer until after we know
3019          * we are successful, so that only nested_vmx_vmexit needs to cancel
3020          * the timer.
3021          */
3022         vmx->nested.preemption_timer_expired = false;
3023         if (nested_cpu_has_preemption_timer(vmcs12))
3024                 vmx_start_preemption_timer(vcpu);
3025
3026         /*
3027          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3028          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3029          * returned as far as L1 is concerned. It will only return (and set
3030          * the success flag) when L2 exits (see nested_vmx_vmexit()).
3031          */
3032         return 0;
3033
3034         /*
3035          * A failed consistency check that leads to a VMExit during L1's
3036          * VMEnter to L2 is a variation of a normal VMexit, as explained in
3037          * 26.7 "VM-entry failures during or after loading guest state".
3038          */
3039 vmentry_fail_vmexit_guest_mode:
3040         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3041                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3042         leave_guest_mode(vcpu);
3043
3044 vmentry_fail_vmexit:
3045         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3046
3047         if (!from_vmentry)
3048                 return 1;
3049
3050         load_vmcs12_host_state(vcpu, vmcs12);
3051         vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
3052         vmcs12->exit_qualification = exit_qual;
3053         if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3054                 vmx->nested.need_vmcs12_sync = true;
3055         return 1;
3056 }
3057
3058 /*
3059  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3060  * for running an L2 nested guest.
3061  */
3062 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3063 {
3064         struct vmcs12 *vmcs12;
3065         struct vcpu_vmx *vmx = to_vmx(vcpu);
3066         u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3067         int ret;
3068
3069         if (!nested_vmx_check_permission(vcpu))
3070                 return 1;
3071
3072         if (!nested_vmx_handle_enlightened_vmptrld(vcpu, true))
3073                 return 1;
3074
3075         if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
3076                 return nested_vmx_failInvalid(vcpu);
3077
3078         vmcs12 = get_vmcs12(vcpu);
3079
3080         /*
3081          * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3082          * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3083          * rather than RFLAGS.ZF, and no error number is stored to the
3084          * VM-instruction error field.
3085          */
3086         if (vmcs12->hdr.shadow_vmcs)
3087                 return nested_vmx_failInvalid(vcpu);
3088
3089         if (vmx->nested.hv_evmcs) {
3090                 copy_enlightened_to_vmcs12(vmx);
3091                 /* Enlightened VMCS doesn't have launch state */
3092                 vmcs12->launch_state = !launch;
3093         } else if (enable_shadow_vmcs) {
3094                 copy_shadow_to_vmcs12(vmx);
3095         }
3096
3097         /*
3098          * The nested entry process starts with enforcing various prerequisites
3099          * on vmcs12 as required by the Intel SDM, and act appropriately when
3100          * they fail: As the SDM explains, some conditions should cause the
3101          * instruction to fail, while others will cause the instruction to seem
3102          * to succeed, but return an EXIT_REASON_INVALID_STATE.
3103          * To speed up the normal (success) code path, we should avoid checking
3104          * for misconfigurations which will anyway be caught by the processor
3105          * when using the merged vmcs02.
3106          */
3107         if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
3108                 return nested_vmx_failValid(vcpu,
3109                         VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3110
3111         if (vmcs12->launch_state == launch)
3112                 return nested_vmx_failValid(vcpu,
3113                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3114                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3115
3116         ret = nested_vmx_check_vmentry_prereqs(vcpu, vmcs12);
3117         if (ret)
3118                 return nested_vmx_failValid(vcpu, ret);
3119
3120         /*
3121          * We're finally done with prerequisite checking, and can start with
3122          * the nested entry.
3123          */
3124         vmx->nested.nested_run_pending = 1;
3125         ret = nested_vmx_enter_non_root_mode(vcpu, true);
3126         vmx->nested.nested_run_pending = !ret;
3127         if (ret > 0)
3128                 return 1;
3129         else if (ret)
3130                 return nested_vmx_failValid(vcpu,
3131                         VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3132
3133         /* Hide L1D cache contents from the nested guest.  */
3134         vmx->vcpu.arch.l1tf_flush_l1d = true;
3135
3136         /*
3137          * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3138          * also be used as part of restoring nVMX state for
3139          * snapshot restore (migration).
3140          *
3141          * In this flow, it is assumed that vmcs12 cache was
3142          * trasferred as part of captured nVMX state and should
3143          * therefore not be read from guest memory (which may not
3144          * exist on destination host yet).
3145          */
3146         nested_cache_shadow_vmcs12(vcpu, vmcs12);
3147
3148         /*
3149          * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3150          * awakened by event injection or by an NMI-window VM-exit or
3151          * by an interrupt-window VM-exit, halt the vcpu.
3152          */
3153         if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
3154             !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3155             !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_NMI_PENDING) &&
3156             !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_INTR_PENDING) &&
3157               (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3158                 vmx->nested.nested_run_pending = 0;
3159                 return kvm_vcpu_halt(vcpu);
3160         }
3161         return 1;
3162 }
3163
3164 /*
3165  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3166  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
3167  * This function returns the new value we should put in vmcs12.guest_cr0.
3168  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3169  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3170  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3171  *     didn't trap the bit, because if L1 did, so would L0).
3172  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3173  *     been modified by L2, and L1 knows it. So just leave the old value of
3174  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3175  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3176  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3177  *     changed these bits, and therefore they need to be updated, but L0
3178  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3179  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3180  */
3181 static inline unsigned long
3182 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3183 {
3184         return
3185         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3186         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3187         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3188                         vcpu->arch.cr0_guest_owned_bits));
3189 }
3190
3191 static inline unsigned long
3192 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3193 {
3194         return
3195         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3196         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3197         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3198                         vcpu->arch.cr4_guest_owned_bits));
3199 }
3200
3201 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3202                                       struct vmcs12 *vmcs12)
3203 {
3204         u32 idt_vectoring;
3205         unsigned int nr;
3206
3207         if (vcpu->arch.exception.injected) {
3208                 nr = vcpu->arch.exception.nr;
3209                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3210
3211                 if (kvm_exception_is_soft(nr)) {
3212                         vmcs12->vm_exit_instruction_len =
3213                                 vcpu->arch.event_exit_inst_len;
3214                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3215                 } else
3216                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3217
3218                 if (vcpu->arch.exception.has_error_code) {
3219                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3220                         vmcs12->idt_vectoring_error_code =
3221                                 vcpu->arch.exception.error_code;
3222                 }
3223
3224                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3225         } else if (vcpu->arch.nmi_injected) {
3226                 vmcs12->idt_vectoring_info_field =
3227                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3228         } else if (vcpu->arch.interrupt.injected) {
3229                 nr = vcpu->arch.interrupt.nr;
3230                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3231
3232                 if (vcpu->arch.interrupt.soft) {
3233                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
3234                         vmcs12->vm_entry_instruction_len =
3235                                 vcpu->arch.event_exit_inst_len;
3236                 } else
3237                         idt_vectoring |= INTR_TYPE_EXT_INTR;
3238
3239                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3240         }
3241 }
3242
3243
3244 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3245 {
3246         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3247         gfn_t gfn;
3248
3249         /*
3250          * Don't need to mark the APIC access page dirty; it is never
3251          * written to by the CPU during APIC virtualization.
3252          */
3253
3254         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3255                 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3256                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3257         }
3258
3259         if (nested_cpu_has_posted_intr(vmcs12)) {
3260                 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3261                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3262         }
3263 }
3264
3265 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3266 {
3267         struct vcpu_vmx *vmx = to_vmx(vcpu);
3268         int max_irr;
3269         void *vapic_page;
3270         u16 status;
3271
3272         if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3273                 return;
3274
3275         vmx->nested.pi_pending = false;
3276         if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3277                 return;
3278
3279         max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3280         if (max_irr != 256) {
3281                 vapic_page = kmap(vmx->nested.virtual_apic_page);
3282                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3283                         vapic_page, &max_irr);
3284                 kunmap(vmx->nested.virtual_apic_page);
3285
3286                 status = vmcs_read16(GUEST_INTR_STATUS);
3287                 if ((u8)max_irr > ((u8)status & 0xff)) {
3288                         status &= ~0xff;
3289                         status |= (u8)max_irr;
3290                         vmcs_write16(GUEST_INTR_STATUS, status);
3291                 }
3292         }
3293
3294         nested_mark_vmcs12_pages_dirty(vcpu);
3295 }
3296
3297 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3298                                                unsigned long exit_qual)
3299 {
3300         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3301         unsigned int nr = vcpu->arch.exception.nr;
3302         u32 intr_info = nr | INTR_INFO_VALID_MASK;
3303
3304         if (vcpu->arch.exception.has_error_code) {
3305                 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3306                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3307         }
3308
3309         if (kvm_exception_is_soft(nr))
3310                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3311         else
3312                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3313
3314         if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3315             vmx_get_nmi_mask(vcpu))
3316                 intr_info |= INTR_INFO_UNBLOCK_NMI;
3317
3318         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3319 }
3320
3321 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
3322 {
3323         struct vcpu_vmx *vmx = to_vmx(vcpu);
3324         unsigned long exit_qual;
3325         bool block_nested_events =
3326             vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3327
3328         if (vcpu->arch.exception.pending &&
3329                 nested_vmx_check_exception(vcpu, &exit_qual)) {
3330                 if (block_nested_events)
3331                         return -EBUSY;
3332                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3333                 return 0;
3334         }
3335
3336         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3337             vmx->nested.preemption_timer_expired) {
3338                 if (block_nested_events)
3339                         return -EBUSY;
3340                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3341                 return 0;
3342         }
3343
3344         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
3345                 if (block_nested_events)
3346                         return -EBUSY;
3347                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3348                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
3349                                   INTR_INFO_VALID_MASK, 0);
3350                 /*
3351                  * The NMI-triggered VM exit counts as injection:
3352                  * clear this one and block further NMIs.
3353                  */
3354                 vcpu->arch.nmi_pending = 0;
3355                 vmx_set_nmi_mask(vcpu, true);
3356                 return 0;
3357         }
3358
3359         if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
3360             nested_exit_on_intr(vcpu)) {
3361                 if (block_nested_events)
3362                         return -EBUSY;
3363                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3364                 return 0;
3365         }
3366
3367         vmx_complete_nested_posted_interrupt(vcpu);
3368         return 0;
3369 }
3370
3371 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3372 {
3373         ktime_t remaining =
3374                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3375         u64 value;
3376
3377         if (ktime_to_ns(remaining) <= 0)
3378                 return 0;
3379
3380         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3381         do_div(value, 1000000);
3382         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3383 }
3384
3385 /*
3386  * Update the guest state fields of vmcs12 to reflect changes that
3387  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
3388  * VM-entry controls is also updated, since this is really a guest
3389  * state bit.)
3390  */
3391 static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3392 {
3393         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
3394         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
3395
3396         vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3397         vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
3398         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
3399
3400         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
3401         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
3402         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
3403         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
3404         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
3405         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
3406         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
3407         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
3408         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
3409         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
3410         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
3411         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
3412         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
3413         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
3414         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
3415         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
3416         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
3417         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
3418         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
3419         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
3420         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
3421         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
3422         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
3423         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
3424         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
3425         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
3426         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
3427         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
3428         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
3429         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
3430         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
3431         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
3432         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
3433         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
3434         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
3435         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
3436
3437         vmcs12->guest_interruptibility_info =
3438                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
3439         vmcs12->guest_pending_dbg_exceptions =
3440                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3441         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3442                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
3443         else
3444                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
3445
3446         if (nested_cpu_has_preemption_timer(vmcs12) &&
3447             vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
3448                         vmcs12->vmx_preemption_timer_value =
3449                                 vmx_get_preemption_timer_value(vcpu);
3450
3451         /*
3452          * In some cases (usually, nested EPT), L2 is allowed to change its
3453          * own CR3 without exiting. If it has changed it, we must keep it.
3454          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
3455          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
3456          *
3457          * Additionally, restore L2's PDPTR to vmcs12.
3458          */
3459         if (enable_ept) {
3460                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3461                 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
3462                 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
3463                 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
3464                 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
3465         }
3466
3467         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
3468
3469         if (nested_cpu_has_vid(vmcs12))
3470                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
3471
3472         vmcs12->vm_entry_controls =
3473                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
3474                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
3475
3476         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
3477                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
3478                 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3479         }
3480
3481         /* TODO: These cannot have changed unless we have MSR bitmaps and
3482          * the relevant bit asks not to trap the change */
3483         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
3484                 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
3485         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
3486                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
3487         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
3488         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
3489         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
3490         if (kvm_mpx_supported())
3491                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3492 }
3493
3494 /*
3495  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
3496  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
3497  * and this function updates it to reflect the changes to the guest state while
3498  * L2 was running (and perhaps made some exits which were handled directly by L0
3499  * without going back to L1), and to reflect the exit reason.
3500  * Note that we do not have to copy here all VMCS fields, just those that
3501  * could have changed by the L2 guest or the exit - i.e., the guest-state and
3502  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
3503  * which already writes to vmcs12 directly.
3504  */
3505 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
3506                            u32 exit_reason, u32 exit_intr_info,
3507                            unsigned long exit_qualification)
3508 {
3509         /* update guest state fields: */
3510         sync_vmcs12(vcpu, vmcs12);
3511
3512         /* update exit information fields: */
3513
3514         vmcs12->vm_exit_reason = exit_reason;
3515         vmcs12->exit_qualification = exit_qualification;
3516         vmcs12->vm_exit_intr_info = exit_intr_info;
3517
3518         vmcs12->idt_vectoring_info_field = 0;
3519         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3520         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
3521
3522         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
3523                 vmcs12->launch_state = 1;
3524
3525                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
3526                  * instead of reading the real value. */
3527                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
3528
3529                 /*
3530                  * Transfer the event that L0 or L1 may wanted to inject into
3531                  * L2 to IDT_VECTORING_INFO_FIELD.
3532                  */
3533                 vmcs12_save_pending_event(vcpu, vmcs12);
3534
3535                 /*
3536                  * According to spec, there's no need to store the guest's
3537                  * MSRs if the exit is due to a VM-entry failure that occurs
3538                  * during or after loading the guest state. Since this exit
3539                  * does not fall in that category, we need to save the MSRs.
3540                  */
3541                 if (nested_vmx_store_msr(vcpu,
3542                                          vmcs12->vm_exit_msr_store_addr,
3543                                          vmcs12->vm_exit_msr_store_count))
3544                         nested_vmx_abort(vcpu,
3545                                          VMX_ABORT_SAVE_GUEST_MSR_FAIL);
3546         }
3547
3548         /*
3549          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
3550          * preserved above and would only end up incorrectly in L1.
3551          */
3552         vcpu->arch.nmi_injected = false;
3553         kvm_clear_exception_queue(vcpu);
3554         kvm_clear_interrupt_queue(vcpu);
3555 }
3556
3557 /*
3558  * A part of what we need to when the nested L2 guest exits and we want to
3559  * run its L1 parent, is to reset L1's guest state to the host state specified
3560  * in vmcs12.
3561  * This function is to be called not only on normal nested exit, but also on
3562  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
3563  * Failures During or After Loading Guest State").
3564  * This function should be called when the active VMCS is L1's (vmcs01).
3565  */
3566 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3567                                    struct vmcs12 *vmcs12)
3568 {
3569         struct kvm_segment seg;
3570         u32 entry_failure_code;
3571
3572         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
3573                 vcpu->arch.efer = vmcs12->host_ia32_efer;
3574         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3575                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
3576         else
3577                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
3578         vmx_set_efer(vcpu, vcpu->arch.efer);
3579
3580         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
3581         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
3582         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
3583         vmx_set_interrupt_shadow(vcpu, 0);
3584
3585         /*
3586          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
3587          * actually changed, because vmx_set_cr0 refers to efer set above.
3588          *
3589          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
3590          * (KVM doesn't change it);
3591          */
3592         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3593         vmx_set_cr0(vcpu, vmcs12->host_cr0);
3594
3595         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
3596         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3597         vmx_set_cr4(vcpu, vmcs12->host_cr4);
3598
3599         nested_ept_uninit_mmu_context(vcpu);
3600
3601         /*
3602          * Only PDPTE load can fail as the value of cr3 was checked on entry and
3603          * couldn't have changed.
3604          */
3605         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
3606                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
3607
3608         if (!enable_ept)
3609                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3610
3611         /*
3612          * If vmcs01 doesn't use VPID, CPU flushes TLB on every
3613          * VMEntry/VMExit. Thus, no need to flush TLB.
3614          *
3615          * If vmcs12 doesn't use VPID, L1 expects TLB to be
3616          * flushed on every VMEntry/VMExit.
3617          *
3618          * Otherwise, we can preserve TLB entries as long as we are
3619          * able to tag L1 TLB entries differently than L2 TLB entries.
3620          *
3621          * If vmcs12 uses EPT, we need to execute this flush on EPTP01
3622          * and therefore we request the TLB flush to happen only after VMCS EPTP
3623          * has been set by KVM_REQ_LOAD_CR3.
3624          */
3625         if (enable_vpid &&
3626             (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) {
3627                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3628         }
3629
3630         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
3631         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
3632         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
3633         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
3634         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
3635         vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
3636         vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
3637
3638         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
3639         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
3640                 vmcs_write64(GUEST_BNDCFGS, 0);
3641
3642         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
3643                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
3644                 vcpu->arch.pat = vmcs12->host_ia32_pat;
3645         }
3646         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
3647                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
3648                         vmcs12->host_ia32_perf_global_ctrl);
3649
3650         /* Set L1 segment info according to Intel SDM
3651             27.5.2 Loading Host Segment and Descriptor-Table Registers */
3652         seg = (struct kvm_segment) {
3653                 .base = 0,
3654                 .limit = 0xFFFFFFFF,
3655                 .selector = vmcs12->host_cs_selector,
3656                 .type = 11,
3657                 .present = 1,
3658                 .s = 1,
3659                 .g = 1
3660         };
3661         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3662                 seg.l = 1;
3663         else
3664                 seg.db = 1;
3665         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
3666         seg = (struct kvm_segment) {
3667                 .base = 0,
3668                 .limit = 0xFFFFFFFF,
3669                 .type = 3,
3670                 .present = 1,
3671                 .s = 1,
3672                 .db = 1,
3673                 .g = 1
3674         };
3675         seg.selector = vmcs12->host_ds_selector;
3676         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
3677         seg.selector = vmcs12->host_es_selector;
3678         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
3679         seg.selector = vmcs12->host_ss_selector;
3680         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
3681         seg.selector = vmcs12->host_fs_selector;
3682         seg.base = vmcs12->host_fs_base;
3683         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
3684         seg.selector = vmcs12->host_gs_selector;
3685         seg.base = vmcs12->host_gs_base;
3686         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
3687         seg = (struct kvm_segment) {
3688                 .base = vmcs12->host_tr_base,
3689                 .limit = 0x67,
3690                 .selector = vmcs12->host_tr_selector,
3691                 .type = 11,
3692                 .present = 1
3693         };
3694         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
3695
3696         kvm_set_dr(vcpu, 7, 0x400);
3697         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3698
3699         if (cpu_has_vmx_msr_bitmap())
3700                 vmx_update_msr_bitmap(vcpu);
3701
3702         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
3703                                 vmcs12->vm_exit_msr_load_count))
3704                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
3705 }
3706
3707 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
3708 {
3709         struct shared_msr_entry *efer_msr;
3710         unsigned int i;
3711
3712         if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
3713                 return vmcs_read64(GUEST_IA32_EFER);
3714
3715         if (cpu_has_load_ia32_efer())
3716                 return host_efer;
3717
3718         for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
3719                 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
3720                         return vmx->msr_autoload.guest.val[i].value;
3721         }
3722
3723         efer_msr = find_msr_entry(vmx, MSR_EFER);
3724         if (efer_msr)
3725                 return efer_msr->data;
3726
3727         return host_efer;
3728 }
3729
3730 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
3731 {
3732         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3733         struct vcpu_vmx *vmx = to_vmx(vcpu);
3734         struct vmx_msr_entry g, h;
3735         struct msr_data msr;
3736         gpa_t gpa;
3737         u32 i, j;
3738
3739         vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
3740
3741         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
3742                 /*
3743                  * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
3744                  * as vmcs01.GUEST_DR7 contains a userspace defined value
3745                  * and vcpu->arch.dr7 is not squirreled away before the
3746                  * nested VMENTER (not worth adding a variable in nested_vmx).
3747                  */
3748                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
3749                         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
3750                 else
3751                         WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
3752         }
3753
3754         /*
3755          * Note that calling vmx_set_{efer,cr0,cr4} is important as they
3756          * handle a variety of side effects to KVM's software model.
3757          */
3758         vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
3759
3760         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3761         vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
3762
3763         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3764         vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
3765
3766         nested_ept_uninit_mmu_context(vcpu);
3767         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3768         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3769
3770         /*
3771          * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
3772          * from vmcs01 (if necessary).  The PDPTRs are not loaded on
3773          * VMFail, like everything else we just need to ensure our
3774          * software model is up-to-date.
3775          */
3776         ept_save_pdptrs(vcpu);
3777
3778         kvm_mmu_reset_context(vcpu);
3779
3780         if (cpu_has_vmx_msr_bitmap())
3781                 vmx_update_msr_bitmap(vcpu);
3782
3783         /*
3784          * This nasty bit of open coding is a compromise between blindly
3785          * loading L1's MSRs using the exit load lists (incorrect emulation
3786          * of VMFail), leaving the nested VM's MSRs in the software model
3787          * (incorrect behavior) and snapshotting the modified MSRs (too
3788          * expensive since the lists are unbound by hardware).  For each
3789          * MSR that was (prematurely) loaded from the nested VMEntry load
3790          * list, reload it from the exit load list if it exists and differs
3791          * from the guest value.  The intent is to stuff host state as
3792          * silently as possible, not to fully process the exit load list.
3793          */
3794         msr.host_initiated = false;
3795         for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
3796                 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
3797                 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
3798                         pr_debug_ratelimited(
3799                                 "%s read MSR index failed (%u, 0x%08llx)\n",
3800                                 __func__, i, gpa);
3801                         goto vmabort;
3802                 }
3803
3804                 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
3805                         gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
3806                         if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
3807                                 pr_debug_ratelimited(
3808                                         "%s read MSR failed (%u, 0x%08llx)\n",
3809                                         __func__, j, gpa);
3810                                 goto vmabort;
3811                         }
3812                         if (h.index != g.index)
3813                                 continue;
3814                         if (h.value == g.value)
3815                                 break;
3816
3817                         if (nested_vmx_load_msr_check(vcpu, &h)) {
3818                                 pr_debug_ratelimited(
3819                                         "%s check failed (%u, 0x%x, 0x%x)\n",
3820                                         __func__, j, h.index, h.reserved);
3821                                 goto vmabort;
3822                         }
3823
3824                         msr.index = h.index;
3825                         msr.data = h.value;
3826                         if (kvm_set_msr(vcpu, &msr)) {
3827                                 pr_debug_ratelimited(
3828                                         "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
3829                                         __func__, j, h.index, h.value);
3830                                 goto vmabort;
3831                         }
3832                 }
3833         }
3834
3835         return;
3836
3837 vmabort:
3838         nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
3839 }
3840
3841 /*
3842  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
3843  * and modify vmcs12 to make it see what it would expect to see there if
3844  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
3845  */
3846 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
3847                        u32 exit_intr_info, unsigned long exit_qualification)
3848 {
3849         struct vcpu_vmx *vmx = to_vmx(vcpu);
3850         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3851
3852         /* trying to cancel vmlaunch/vmresume is a bug */
3853         WARN_ON_ONCE(vmx->nested.nested_run_pending);
3854
3855         leave_guest_mode(vcpu);
3856
3857         if (nested_cpu_has_preemption_timer(vmcs12))
3858                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
3859
3860         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3861                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3862
3863         if (likely(!vmx->fail)) {
3864                 if (exit_reason == -1)
3865                         sync_vmcs12(vcpu, vmcs12);
3866                 else
3867                         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
3868                                        exit_qualification);
3869
3870                 /*
3871                  * Must happen outside of sync_vmcs12() as it will
3872                  * also be used to capture vmcs12 cache as part of
3873                  * capturing nVMX state for snapshot (migration).
3874                  *
3875                  * Otherwise, this flush will dirty guest memory at a
3876                  * point it is already assumed by user-space to be
3877                  * immutable.
3878                  */
3879                 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
3880         } else {
3881                 /*
3882                  * The only expected VM-instruction error is "VM entry with
3883                  * invalid control field(s)." Anything else indicates a
3884                  * problem with L0.  And we should never get here with a
3885                  * VMFail of any type if early consistency checks are enabled.
3886                  */
3887                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
3888                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3889                 WARN_ON_ONCE(nested_early_check);
3890         }
3891
3892         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3893
3894         /* Update any VMCS fields that might have changed while L2 ran */
3895         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3896         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3897         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
3898
3899         if (kvm_has_tsc_control)
3900                 decache_tsc_multiplier(vmx);
3901
3902         if (vmx->nested.change_vmcs01_virtual_apic_mode) {
3903                 vmx->nested.change_vmcs01_virtual_apic_mode = false;
3904                 vmx_set_virtual_apic_mode(vcpu);
3905         } else if (!nested_cpu_has_ept(vmcs12) &&
3906                    nested_cpu_has2(vmcs12,
3907                                    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3908                 vmx_flush_tlb(vcpu, true);
3909         }
3910
3911         /* Unpin physical memory we referred to in vmcs02 */
3912         if (vmx->nested.apic_access_page) {
3913                 kvm_release_page_dirty(vmx->nested.apic_access_page);
3914                 vmx->nested.apic_access_page = NULL;
3915         }
3916         if (vmx->nested.virtual_apic_page) {
3917                 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
3918                 vmx->nested.virtual_apic_page = NULL;
3919         }
3920         if (vmx->nested.pi_desc_page) {
3921                 kunmap(vmx->nested.pi_desc_page);
3922                 kvm_release_page_dirty(vmx->nested.pi_desc_page);
3923                 vmx->nested.pi_desc_page = NULL;
3924                 vmx->nested.pi_desc = NULL;
3925         }
3926
3927         /*
3928          * We are now running in L2, mmu_notifier will force to reload the
3929          * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
3930          */
3931         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
3932
3933         if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs))
3934                 vmx->nested.need_vmcs12_sync = true;
3935
3936         /* in case we halted in L2 */
3937         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3938
3939         if (likely(!vmx->fail)) {
3940                 /*
3941                  * TODO: SDM says that with acknowledge interrupt on
3942                  * exit, bit 31 of the VM-exit interrupt information
3943                  * (valid interrupt) is always set to 1 on
3944                  * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
3945                  * need kvm_cpu_has_interrupt().  See the commit
3946                  * message for details.
3947                  */
3948                 if (nested_exit_intr_ack_set(vcpu) &&
3949                     exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
3950                     kvm_cpu_has_interrupt(vcpu)) {
3951                         int irq = kvm_cpu_get_interrupt(vcpu);
3952                         WARN_ON(irq < 0);
3953                         vmcs12->vm_exit_intr_info = irq |
3954                                 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
3955                 }
3956
3957                 if (exit_reason != -1)
3958                         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
3959                                                        vmcs12->exit_qualification,
3960                                                        vmcs12->idt_vectoring_info_field,
3961                                                        vmcs12->vm_exit_intr_info,
3962                                                        vmcs12->vm_exit_intr_error_code,
3963                                                        KVM_ISA_VMX);
3964
3965                 load_vmcs12_host_state(vcpu, vmcs12);
3966
3967                 return;
3968         }
3969
3970         /*
3971          * After an early L2 VM-entry failure, we're now back
3972          * in L1 which thinks it just finished a VMLAUNCH or
3973          * VMRESUME instruction, so we need to set the failure
3974          * flag and the VM-instruction error field of the VMCS
3975          * accordingly, and skip the emulated instruction.
3976          */
3977         (void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3978
3979         /*
3980          * Restore L1's host state to KVM's software model.  We're here
3981          * because a consistency check was caught by hardware, which
3982          * means some amount of guest state has been propagated to KVM's
3983          * model and needs to be unwound to the host's state.
3984          */
3985         nested_vmx_restore_host_state(vcpu);
3986
3987         vmx->fail = 0;
3988 }
3989
3990 /*
3991  * Decode the memory-address operand of a vmx instruction, as recorded on an
3992  * exit caused by such an instruction (run by a guest hypervisor).
3993  * On success, returns 0. When the operand is invalid, returns 1 and throws
3994  * #UD or #GP.
3995  */
3996 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
3997                         u32 vmx_instruction_info, bool wr, gva_t *ret)
3998 {
3999         gva_t off;
4000         bool exn;
4001         struct kvm_segment s;
4002
4003         /*
4004          * According to Vol. 3B, "Information for VM Exits Due to Instruction
4005          * Execution", on an exit, vmx_instruction_info holds most of the
4006          * addressing components of the operand. Only the displacement part
4007          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4008          * For how an actual address is calculated from all these components,
4009          * refer to Vol. 1, "Operand Addressing".
4010          */
4011         int  scaling = vmx_instruction_info & 3;
4012         int  addr_size = (vmx_instruction_info >> 7) & 7;
4013         bool is_reg = vmx_instruction_info & (1u << 10);
4014         int  seg_reg = (vmx_instruction_info >> 15) & 7;
4015         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4016         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4017         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4018         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4019
4020         if (is_reg) {
4021                 kvm_queue_exception(vcpu, UD_VECTOR);
4022                 return 1;
4023         }
4024
4025         /* Addr = segment_base + offset */
4026         /* offset = base + [index * scale] + displacement */
4027         off = exit_qualification; /* holds the displacement */
4028         if (addr_size == 1)
4029                 off = (gva_t)sign_extend64(off, 31);
4030         else if (addr_size == 0)
4031                 off = (gva_t)sign_extend64(off, 15);
4032         if (base_is_valid)
4033                 off += kvm_register_read(vcpu, base_reg);
4034         if (index_is_valid)
4035                 off += kvm_register_read(vcpu, index_reg)<<scaling;
4036         vmx_get_segment(vcpu, &s, seg_reg);
4037
4038         /*
4039          * The effective address, i.e. @off, of a memory operand is truncated
4040          * based on the address size of the instruction.  Note that this is
4041          * the *effective address*, i.e. the address prior to accounting for
4042          * the segment's base.
4043          */
4044         if (addr_size == 1) /* 32 bit */
4045                 off &= 0xffffffff;
4046         else if (addr_size == 0) /* 16 bit */
4047                 off &= 0xffff;
4048
4049         /* Checks for #GP/#SS exceptions. */
4050         exn = false;
4051         if (is_long_mode(vcpu)) {
4052                 /*
4053                  * The virtual/linear address is never truncated in 64-bit
4054                  * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4055                  * address when using FS/GS with a non-zero base.
4056                  */
4057                 *ret = s.base + off;
4058
4059                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4060                  * non-canonical form. This is the only check on the memory
4061                  * destination for long mode!
4062                  */
4063                 exn = is_noncanonical_address(*ret, vcpu);
4064         } else {
4065                 /*
4066                  * When not in long mode, the virtual/linear address is
4067                  * unconditionally truncated to 32 bits regardless of the
4068                  * address size.
4069                  */
4070                 *ret = (s.base + off) & 0xffffffff;
4071
4072                 /* Protected mode: apply checks for segment validity in the
4073                  * following order:
4074                  * - segment type check (#GP(0) may be thrown)
4075                  * - usability check (#GP(0)/#SS(0))
4076                  * - limit check (#GP(0)/#SS(0))
4077                  */
4078                 if (wr)
4079                         /* #GP(0) if the destination operand is located in a
4080                          * read-only data segment or any code segment.
4081                          */
4082                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
4083                 else
4084                         /* #GP(0) if the source operand is located in an
4085                          * execute-only code segment
4086                          */
4087                         exn = ((s.type & 0xa) == 8);
4088                 if (exn) {
4089                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4090                         return 1;
4091                 }
4092                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4093                  */
4094                 exn = (s.unusable != 0);
4095
4096                 /*
4097                  * Protected mode: #GP(0)/#SS(0) if the memory operand is
4098                  * outside the segment limit.  All CPUs that support VMX ignore
4099                  * limit checks for flat segments, i.e. segments with base==0,
4100                  * limit==0xffffffff and of type expand-up data or code.
4101                  */
4102                 if (!(s.base == 0 && s.limit == 0xffffffff &&
4103                      ((s.type & 8) || !(s.type & 4))))
4104                         exn = exn || (off + sizeof(u64) > s.limit);
4105         }
4106         if (exn) {
4107                 kvm_queue_exception_e(vcpu,
4108                                       seg_reg == VCPU_SREG_SS ?
4109                                                 SS_VECTOR : GP_VECTOR,
4110                                       0);
4111                 return 1;
4112         }
4113
4114         return 0;
4115 }
4116
4117 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
4118 {
4119         gva_t gva;
4120         struct x86_exception e;
4121
4122         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4123                         vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
4124                 return 1;
4125
4126         if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
4127                 kvm_inject_page_fault(vcpu, &e);
4128                 return 1;
4129         }
4130
4131         return 0;
4132 }
4133
4134 /*
4135  * Allocate a shadow VMCS and associate it with the currently loaded
4136  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4137  * VMCS is also VMCLEARed, so that it is ready for use.
4138  */
4139 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4140 {
4141         struct vcpu_vmx *vmx = to_vmx(vcpu);
4142         struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4143
4144         /*
4145          * We should allocate a shadow vmcs for vmcs01 only when L1
4146          * executes VMXON and free it when L1 executes VMXOFF.
4147          * As it is invalid to execute VMXON twice, we shouldn't reach
4148          * here when vmcs01 already have an allocated shadow vmcs.
4149          */
4150         WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4151
4152         if (!loaded_vmcs->shadow_vmcs) {
4153                 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4154                 if (loaded_vmcs->shadow_vmcs)
4155                         vmcs_clear(loaded_vmcs->shadow_vmcs);
4156         }
4157         return loaded_vmcs->shadow_vmcs;
4158 }
4159
4160 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4161 {
4162         struct vcpu_vmx *vmx = to_vmx(vcpu);
4163         int r;
4164
4165         r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4166         if (r < 0)
4167                 goto out_vmcs02;
4168
4169         vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL);
4170         if (!vmx->nested.cached_vmcs12)
4171                 goto out_cached_vmcs12;
4172
4173         vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL);
4174         if (!vmx->nested.cached_shadow_vmcs12)
4175                 goto out_cached_shadow_vmcs12;
4176
4177         if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4178                 goto out_shadow_vmcs;
4179
4180         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4181                      HRTIMER_MODE_REL_PINNED);
4182         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4183
4184         vmx->nested.vpid02 = allocate_vpid();
4185
4186         vmx->nested.vmcs02_initialized = false;
4187         vmx->nested.vmxon = true;
4188
4189         if (pt_mode == PT_MODE_HOST_GUEST) {
4190                 vmx->pt_desc.guest.ctl = 0;
4191                 pt_update_intercept_for_msr(vmx);
4192         }
4193
4194         return 0;
4195
4196 out_shadow_vmcs:
4197         kfree(vmx->nested.cached_shadow_vmcs12);
4198
4199 out_cached_shadow_vmcs12:
4200         kfree(vmx->nested.cached_vmcs12);
4201
4202 out_cached_vmcs12:
4203         free_loaded_vmcs(&vmx->nested.vmcs02);
4204
4205 out_vmcs02:
4206         return -ENOMEM;
4207 }
4208
4209 /*
4210  * Emulate the VMXON instruction.
4211  * Currently, we just remember that VMX is active, and do not save or even
4212  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4213  * do not currently need to store anything in that guest-allocated memory
4214  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4215  * argument is different from the VMXON pointer (which the spec says they do).
4216  */
4217 static int handle_vmon(struct kvm_vcpu *vcpu)
4218 {
4219         int ret;
4220         gpa_t vmptr;
4221         struct page *page;
4222         struct vcpu_vmx *vmx = to_vmx(vcpu);
4223         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
4224                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
4225
4226         /*
4227          * The Intel VMX Instruction Reference lists a bunch of bits that are
4228          * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4229          * 1 (see vmx_set_cr4() for when we allow the guest to set this).
4230          * Otherwise, we should fail with #UD.  But most faulting conditions
4231          * have already been checked by hardware, prior to the VM-exit for
4232          * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4233          * that bit set to 1 in non-root mode.
4234          */
4235         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4236                 kvm_queue_exception(vcpu, UD_VECTOR);
4237                 return 1;
4238         }
4239
4240         /* CPL=0 must be checked manually. */
4241         if (vmx_get_cpl(vcpu)) {
4242                 kvm_inject_gp(vcpu, 0);
4243                 return 1;
4244         }
4245
4246         if (vmx->nested.vmxon)
4247                 return nested_vmx_failValid(vcpu,
4248                         VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4249
4250         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4251                         != VMXON_NEEDED_FEATURES) {
4252                 kvm_inject_gp(vcpu, 0);
4253                 return 1;
4254         }
4255
4256         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4257                 return 1;
4258
4259         /*
4260          * SDM 3: 24.11.5
4261          * The first 4 bytes of VMXON region contain the supported
4262          * VMCS revision identifier
4263          *
4264          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4265          * which replaces physical address width with 32
4266          */
4267         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
4268                 return nested_vmx_failInvalid(vcpu);
4269
4270         page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
4271         if (is_error_page(page))
4272                 return nested_vmx_failInvalid(vcpu);
4273
4274         if (*(u32 *)kmap(page) != VMCS12_REVISION) {
4275                 kunmap(page);
4276                 kvm_release_page_clean(page);
4277                 return nested_vmx_failInvalid(vcpu);
4278         }
4279         kunmap(page);
4280         kvm_release_page_clean(page);
4281
4282         vmx->nested.vmxon_ptr = vmptr;
4283         ret = enter_vmx_operation(vcpu);
4284         if (ret)
4285                 return ret;
4286
4287         return nested_vmx_succeed(vcpu);
4288 }
4289
4290 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4291 {
4292         struct vcpu_vmx *vmx = to_vmx(vcpu);
4293
4294         if (vmx->nested.current_vmptr == -1ull)
4295                 return;
4296
4297         if (enable_shadow_vmcs) {
4298                 /* copy to memory all shadowed fields in case
4299                    they were modified */
4300                 copy_shadow_to_vmcs12(vmx);
4301                 vmx->nested.need_vmcs12_sync = false;
4302                 vmx_disable_shadow_vmcs(vmx);
4303         }
4304         vmx->nested.posted_intr_nv = -1;
4305
4306         /* Flush VMCS12 to guest memory */
4307         kvm_vcpu_write_guest_page(vcpu,
4308                                   vmx->nested.current_vmptr >> PAGE_SHIFT,
4309                                   vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4310
4311         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4312
4313         vmx->nested.current_vmptr = -1ull;
4314 }
4315
4316 /* Emulate the VMXOFF instruction */
4317 static int handle_vmoff(struct kvm_vcpu *vcpu)
4318 {
4319         if (!nested_vmx_check_permission(vcpu))
4320                 return 1;
4321         free_nested(vcpu);
4322         return nested_vmx_succeed(vcpu);
4323 }
4324
4325 /* Emulate the VMCLEAR instruction */
4326 static int handle_vmclear(struct kvm_vcpu *vcpu)
4327 {
4328         struct vcpu_vmx *vmx = to_vmx(vcpu);
4329         u32 zero = 0;
4330         gpa_t vmptr;
4331
4332         if (!nested_vmx_check_permission(vcpu))
4333                 return 1;
4334
4335         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4336                 return 1;
4337
4338         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
4339                 return nested_vmx_failValid(vcpu,
4340                         VMXERR_VMCLEAR_INVALID_ADDRESS);
4341
4342         if (vmptr == vmx->nested.vmxon_ptr)
4343                 return nested_vmx_failValid(vcpu,
4344                         VMXERR_VMCLEAR_VMXON_POINTER);
4345
4346         if (vmx->nested.hv_evmcs_page) {
4347                 if (vmptr == vmx->nested.hv_evmcs_vmptr)
4348                         nested_release_evmcs(vcpu);
4349         } else {
4350                 if (vmptr == vmx->nested.current_vmptr)
4351                         nested_release_vmcs12(vcpu);
4352
4353                 kvm_vcpu_write_guest(vcpu,
4354                                      vmptr + offsetof(struct vmcs12,
4355                                                       launch_state),
4356                                      &zero, sizeof(zero));
4357         }
4358
4359         return nested_vmx_succeed(vcpu);
4360 }
4361
4362 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
4363
4364 /* Emulate the VMLAUNCH instruction */
4365 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
4366 {
4367         return nested_vmx_run(vcpu, true);
4368 }
4369
4370 /* Emulate the VMRESUME instruction */
4371 static int handle_vmresume(struct kvm_vcpu *vcpu)
4372 {
4373
4374         return nested_vmx_run(vcpu, false);
4375 }
4376
4377 static int handle_vmread(struct kvm_vcpu *vcpu)
4378 {
4379         unsigned long field;
4380         u64 field_value;
4381         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4382         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4383         gva_t gva = 0;
4384         struct vmcs12 *vmcs12;
4385
4386         if (!nested_vmx_check_permission(vcpu))
4387                 return 1;
4388
4389         if (to_vmx(vcpu)->nested.current_vmptr == -1ull)
4390                 return nested_vmx_failInvalid(vcpu);
4391
4392         if (!is_guest_mode(vcpu))
4393                 vmcs12 = get_vmcs12(vcpu);
4394         else {
4395                 /*
4396                  * When vmcs->vmcs_link_pointer is -1ull, any VMREAD
4397                  * to shadowed-field sets the ALU flags for VMfailInvalid.
4398                  */
4399                 if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4400                         return nested_vmx_failInvalid(vcpu);
4401                 vmcs12 = get_shadow_vmcs12(vcpu);
4402         }
4403
4404         /* Decode instruction info and find the field to read */
4405         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4406         /* Read the field, zero-extended to a u64 field_value */
4407         if (vmcs12_read_any(vmcs12, field, &field_value) < 0)
4408                 return nested_vmx_failValid(vcpu,
4409                         VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4410
4411         /*
4412          * Now copy part of this value to register or memory, as requested.
4413          * Note that the number of bits actually copied is 32 or 64 depending
4414          * on the guest's mode (32 or 64 bit), not on the given field's length.
4415          */
4416         if (vmx_instruction_info & (1u << 10)) {
4417                 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
4418                         field_value);
4419         } else {
4420                 if (get_vmx_mem_address(vcpu, exit_qualification,
4421                                 vmx_instruction_info, true, &gva))
4422                         return 1;
4423                 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
4424                 kvm_write_guest_virt_system(vcpu, gva, &field_value,
4425                                             (is_long_mode(vcpu) ? 8 : 4), NULL);
4426         }
4427
4428         return nested_vmx_succeed(vcpu);
4429 }
4430
4431
4432 static int handle_vmwrite(struct kvm_vcpu *vcpu)
4433 {
4434         unsigned long field;
4435         gva_t gva;
4436         struct vcpu_vmx *vmx = to_vmx(vcpu);
4437         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4438         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4439
4440         /* The value to write might be 32 or 64 bits, depending on L1's long
4441          * mode, and eventually we need to write that into a field of several
4442          * possible lengths. The code below first zero-extends the value to 64
4443          * bit (field_value), and then copies only the appropriate number of
4444          * bits into the vmcs12 field.
4445          */
4446         u64 field_value = 0;
4447         struct x86_exception e;
4448         struct vmcs12 *vmcs12;
4449
4450         if (!nested_vmx_check_permission(vcpu))
4451                 return 1;
4452
4453         if (vmx->nested.current_vmptr == -1ull)
4454                 return nested_vmx_failInvalid(vcpu);
4455
4456         if (vmx_instruction_info & (1u << 10))
4457                 field_value = kvm_register_readl(vcpu,
4458                         (((vmx_instruction_info) >> 3) & 0xf));
4459         else {
4460                 if (get_vmx_mem_address(vcpu, exit_qualification,
4461                                 vmx_instruction_info, false, &gva))
4462                         return 1;
4463                 if (kvm_read_guest_virt(vcpu, gva, &field_value,
4464                                         (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
4465                         kvm_inject_page_fault(vcpu, &e);
4466                         return 1;
4467                 }
4468         }
4469
4470
4471         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4472         /*
4473          * If the vCPU supports "VMWRITE to any supported field in the
4474          * VMCS," then the "read-only" fields are actually read/write.
4475          */
4476         if (vmcs_field_readonly(field) &&
4477             !nested_cpu_has_vmwrite_any_field(vcpu))
4478                 return nested_vmx_failValid(vcpu,
4479                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
4480
4481         if (!is_guest_mode(vcpu))
4482                 vmcs12 = get_vmcs12(vcpu);
4483         else {
4484                 /*
4485                  * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE
4486                  * to shadowed-field sets the ALU flags for VMfailInvalid.
4487                  */
4488                 if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4489                         return nested_vmx_failInvalid(vcpu);
4490                 vmcs12 = get_shadow_vmcs12(vcpu);
4491         }
4492
4493         if (vmcs12_write_any(vmcs12, field, field_value) < 0)
4494                 return nested_vmx_failValid(vcpu,
4495                         VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4496
4497         /*
4498          * Do not track vmcs12 dirty-state if in guest-mode
4499          * as we actually dirty shadow vmcs12 instead of vmcs12.
4500          */
4501         if (!is_guest_mode(vcpu)) {
4502                 switch (field) {
4503 #define SHADOW_FIELD_RW(x) case x:
4504 #include "vmcs_shadow_fields.h"
4505                         /*
4506                          * The fields that can be updated by L1 without a vmexit are
4507                          * always updated in the vmcs02, the others go down the slow
4508                          * path of prepare_vmcs02.
4509                          */
4510                         break;
4511                 default:
4512                         vmx->nested.dirty_vmcs12 = true;
4513                         break;
4514                 }
4515         }
4516
4517         return nested_vmx_succeed(vcpu);
4518 }
4519
4520 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
4521 {
4522         vmx->nested.current_vmptr = vmptr;
4523         if (enable_shadow_vmcs) {
4524                 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
4525                               SECONDARY_EXEC_SHADOW_VMCS);
4526                 vmcs_write64(VMCS_LINK_POINTER,
4527                              __pa(vmx->vmcs01.shadow_vmcs));
4528                 vmx->nested.need_vmcs12_sync = true;
4529         }
4530         vmx->nested.dirty_vmcs12 = true;
4531 }
4532
4533 /* Emulate the VMPTRLD instruction */
4534 static int handle_vmptrld(struct kvm_vcpu *vcpu)
4535 {
4536         struct vcpu_vmx *vmx = to_vmx(vcpu);
4537         gpa_t vmptr;
4538
4539         if (!nested_vmx_check_permission(vcpu))
4540                 return 1;
4541
4542         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4543                 return 1;
4544
4545         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
4546                 return nested_vmx_failValid(vcpu,
4547                         VMXERR_VMPTRLD_INVALID_ADDRESS);
4548
4549         if (vmptr == vmx->nested.vmxon_ptr)
4550                 return nested_vmx_failValid(vcpu,
4551                         VMXERR_VMPTRLD_VMXON_POINTER);
4552
4553         /* Forbid normal VMPTRLD if Enlightened version was used */
4554         if (vmx->nested.hv_evmcs)
4555                 return 1;
4556
4557         if (vmx->nested.current_vmptr != vmptr) {
4558                 struct vmcs12 *new_vmcs12;
4559                 struct page *page;
4560
4561                 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
4562                 if (is_error_page(page)) {
4563                         /*
4564                          * Reads from an unbacked page return all 1s,
4565                          * which means that the 32 bits located at the
4566                          * given physical address won't match the required
4567                          * VMCS12_REVISION identifier.
4568                          */
4569                         return nested_vmx_failValid(vcpu,
4570                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4571                 }
4572                 new_vmcs12 = kmap(page);
4573                 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
4574                     (new_vmcs12->hdr.shadow_vmcs &&
4575                      !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
4576                         kunmap(page);
4577                         kvm_release_page_clean(page);
4578                         return nested_vmx_failValid(vcpu,
4579                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4580                 }
4581
4582                 nested_release_vmcs12(vcpu);
4583
4584                 /*
4585                  * Load VMCS12 from guest memory since it is not already
4586                  * cached.
4587                  */
4588                 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
4589                 kunmap(page);
4590                 kvm_release_page_clean(page);
4591
4592                 set_current_vmptr(vmx, vmptr);
4593         }
4594
4595         return nested_vmx_succeed(vcpu);
4596 }
4597
4598 /* Emulate the VMPTRST instruction */
4599 static int handle_vmptrst(struct kvm_vcpu *vcpu)
4600 {
4601         unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
4602         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4603         gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
4604         struct x86_exception e;
4605         gva_t gva;
4606
4607         if (!nested_vmx_check_permission(vcpu))
4608                 return 1;
4609
4610         if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
4611                 return 1;
4612
4613         if (get_vmx_mem_address(vcpu, exit_qual, instr_info, true, &gva))
4614                 return 1;
4615         /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
4616         if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
4617                                         sizeof(gpa_t), &e)) {
4618                 kvm_inject_page_fault(vcpu, &e);
4619                 return 1;
4620         }
4621         return nested_vmx_succeed(vcpu);
4622 }
4623
4624 /* Emulate the INVEPT instruction */
4625 static int handle_invept(struct kvm_vcpu *vcpu)
4626 {
4627         struct vcpu_vmx *vmx = to_vmx(vcpu);
4628         u32 vmx_instruction_info, types;
4629         unsigned long type;
4630         gva_t gva;
4631         struct x86_exception e;
4632         struct {
4633                 u64 eptp, gpa;
4634         } operand;
4635
4636         if (!(vmx->nested.msrs.secondary_ctls_high &
4637               SECONDARY_EXEC_ENABLE_EPT) ||
4638             !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
4639                 kvm_queue_exception(vcpu, UD_VECTOR);
4640                 return 1;
4641         }
4642
4643         if (!nested_vmx_check_permission(vcpu))
4644                 return 1;
4645
4646         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4647         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4648
4649         types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
4650
4651         if (type >= 32 || !(types & (1 << type)))
4652                 return nested_vmx_failValid(vcpu,
4653                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4654
4655         /* According to the Intel VMX instruction reference, the memory
4656          * operand is read even if it isn't needed (e.g., for type==global)
4657          */
4658         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4659                         vmx_instruction_info, false, &gva))
4660                 return 1;
4661         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
4662                 kvm_inject_page_fault(vcpu, &e);
4663                 return 1;
4664         }
4665
4666         switch (type) {
4667         case VMX_EPT_EXTENT_GLOBAL:
4668         /*
4669          * TODO: track mappings and invalidate
4670          * single context requests appropriately
4671          */
4672         case VMX_EPT_EXTENT_CONTEXT:
4673                 kvm_mmu_sync_roots(vcpu);
4674                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4675                 break;
4676         default:
4677                 BUG_ON(1);
4678                 break;
4679         }
4680
4681         return nested_vmx_succeed(vcpu);
4682 }
4683
4684 static int handle_invvpid(struct kvm_vcpu *vcpu)
4685 {
4686         struct vcpu_vmx *vmx = to_vmx(vcpu);
4687         u32 vmx_instruction_info;
4688         unsigned long type, types;
4689         gva_t gva;
4690         struct x86_exception e;
4691         struct {
4692                 u64 vpid;
4693                 u64 gla;
4694         } operand;
4695         u16 vpid02;
4696
4697         if (!(vmx->nested.msrs.secondary_ctls_high &
4698               SECONDARY_EXEC_ENABLE_VPID) ||
4699                         !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
4700                 kvm_queue_exception(vcpu, UD_VECTOR);
4701                 return 1;
4702         }
4703
4704         if (!nested_vmx_check_permission(vcpu))
4705                 return 1;
4706
4707         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4708         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4709
4710         types = (vmx->nested.msrs.vpid_caps &
4711                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
4712
4713         if (type >= 32 || !(types & (1 << type)))
4714                 return nested_vmx_failValid(vcpu,
4715                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4716
4717         /* according to the intel vmx instruction reference, the memory
4718          * operand is read even if it isn't needed (e.g., for type==global)
4719          */
4720         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4721                         vmx_instruction_info, false, &gva))
4722                 return 1;
4723         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
4724                 kvm_inject_page_fault(vcpu, &e);
4725                 return 1;
4726         }
4727         if (operand.vpid >> 16)
4728                 return nested_vmx_failValid(vcpu,
4729                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4730
4731         vpid02 = nested_get_vpid02(vcpu);
4732         switch (type) {
4733         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
4734                 if (!operand.vpid ||
4735                     is_noncanonical_address(operand.gla, vcpu))
4736                         return nested_vmx_failValid(vcpu,
4737                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4738                 if (cpu_has_vmx_invvpid_individual_addr()) {
4739                         __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
4740                                 vpid02, operand.gla);
4741                 } else
4742                         __vmx_flush_tlb(vcpu, vpid02, false);
4743                 break;
4744         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
4745         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
4746                 if (!operand.vpid)
4747                         return nested_vmx_failValid(vcpu,
4748                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4749                 __vmx_flush_tlb(vcpu, vpid02, false);
4750                 break;
4751         case VMX_VPID_EXTENT_ALL_CONTEXT:
4752                 __vmx_flush_tlb(vcpu, vpid02, false);
4753                 break;
4754         default:
4755                 WARN_ON_ONCE(1);
4756                 return kvm_skip_emulated_instruction(vcpu);
4757         }
4758
4759         return nested_vmx_succeed(vcpu);
4760 }
4761
4762 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
4763                                      struct vmcs12 *vmcs12)
4764 {
4765         u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
4766         u64 address;
4767         bool accessed_dirty;
4768         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4769
4770         if (!nested_cpu_has_eptp_switching(vmcs12) ||
4771             !nested_cpu_has_ept(vmcs12))
4772                 return 1;
4773
4774         if (index >= VMFUNC_EPTP_ENTRIES)
4775                 return 1;
4776
4777
4778         if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
4779                                      &address, index * 8, 8))
4780                 return 1;
4781
4782         accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
4783
4784         /*
4785          * If the (L2) guest does a vmfunc to the currently
4786          * active ept pointer, we don't have to do anything else
4787          */
4788         if (vmcs12->ept_pointer != address) {
4789                 if (!valid_ept_address(vcpu, address))
4790                         return 1;
4791
4792                 kvm_mmu_unload(vcpu);
4793                 mmu->ept_ad = accessed_dirty;
4794                 mmu->mmu_role.base.ad_disabled = !accessed_dirty;
4795                 vmcs12->ept_pointer = address;
4796                 /*
4797                  * TODO: Check what's the correct approach in case
4798                  * mmu reload fails. Currently, we just let the next
4799                  * reload potentially fail
4800                  */
4801                 kvm_mmu_reload(vcpu);
4802         }
4803
4804         return 0;
4805 }
4806
4807 static int handle_vmfunc(struct kvm_vcpu *vcpu)
4808 {
4809         struct vcpu_vmx *vmx = to_vmx(vcpu);
4810         struct vmcs12 *vmcs12;
4811         u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
4812
4813         /*
4814          * VMFUNC is only supported for nested guests, but we always enable the
4815          * secondary control for simplicity; for non-nested mode, fake that we
4816          * didn't by injecting #UD.
4817          */
4818         if (!is_guest_mode(vcpu)) {
4819                 kvm_queue_exception(vcpu, UD_VECTOR);
4820                 return 1;
4821         }
4822
4823         vmcs12 = get_vmcs12(vcpu);
4824         if ((vmcs12->vm_function_control & (1 << function)) == 0)
4825                 goto fail;
4826
4827         switch (function) {
4828         case 0:
4829                 if (nested_vmx_eptp_switching(vcpu, vmcs12))
4830                         goto fail;
4831                 break;
4832         default:
4833                 goto fail;
4834         }
4835         return kvm_skip_emulated_instruction(vcpu);
4836
4837 fail:
4838         nested_vmx_vmexit(vcpu, vmx->exit_reason,
4839                           vmcs_read32(VM_EXIT_INTR_INFO),
4840                           vmcs_readl(EXIT_QUALIFICATION));
4841         return 1;
4842 }
4843
4844
4845 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
4846                                        struct vmcs12 *vmcs12)
4847 {
4848         unsigned long exit_qualification;
4849         gpa_t bitmap, last_bitmap;
4850         unsigned int port;
4851         int size;
4852         u8 b;
4853
4854         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
4855                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
4856
4857         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4858
4859         port = exit_qualification >> 16;
4860         size = (exit_qualification & 7) + 1;
4861
4862         last_bitmap = (gpa_t)-1;
4863         b = -1;
4864
4865         while (size > 0) {
4866                 if (port < 0x8000)
4867                         bitmap = vmcs12->io_bitmap_a;
4868                 else if (port < 0x10000)
4869                         bitmap = vmcs12->io_bitmap_b;
4870                 else
4871                         return true;
4872                 bitmap += (port & 0x7fff) / 8;
4873
4874                 if (last_bitmap != bitmap)
4875                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
4876                                 return true;
4877                 if (b & (1 << (port & 7)))
4878                         return true;
4879
4880                 port++;
4881                 size--;
4882                 last_bitmap = bitmap;
4883         }
4884
4885         return false;
4886 }
4887
4888 /*
4889  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
4890  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
4891  * disinterest in the current event (read or write a specific MSR) by using an
4892  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
4893  */
4894 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
4895         struct vmcs12 *vmcs12, u32 exit_reason)
4896 {
4897         u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
4898         gpa_t bitmap;
4899
4900         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
4901                 return true;
4902
4903         /*
4904          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
4905          * for the four combinations of read/write and low/high MSR numbers.
4906          * First we need to figure out which of the four to use:
4907          */
4908         bitmap = vmcs12->msr_bitmap;
4909         if (exit_reason == EXIT_REASON_MSR_WRITE)
4910                 bitmap += 2048;
4911         if (msr_index >= 0xc0000000) {
4912                 msr_index -= 0xc0000000;
4913                 bitmap += 1024;
4914         }
4915
4916         /* Then read the msr_index'th bit from this bitmap: */
4917         if (msr_index < 1024*8) {
4918                 unsigned char b;
4919                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
4920                         return true;
4921                 return 1 & (b >> (msr_index & 7));
4922         } else
4923                 return true; /* let L1 handle the wrong parameter */
4924 }
4925
4926 /*
4927  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
4928  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
4929  * intercept (via guest_host_mask etc.) the current event.
4930  */
4931 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
4932         struct vmcs12 *vmcs12)
4933 {
4934         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4935         int cr = exit_qualification & 15;
4936         int reg;
4937         unsigned long val;
4938
4939         switch ((exit_qualification >> 4) & 3) {
4940         case 0: /* mov to cr */
4941                 reg = (exit_qualification >> 8) & 15;
4942                 val = kvm_register_readl(vcpu, reg);
4943                 switch (cr) {
4944                 case 0:
4945                         if (vmcs12->cr0_guest_host_mask &
4946                             (val ^ vmcs12->cr0_read_shadow))
4947                                 return true;
4948                         break;
4949                 case 3:
4950                         if ((vmcs12->cr3_target_count >= 1 &&
4951                                         vmcs12->cr3_target_value0 == val) ||
4952                                 (vmcs12->cr3_target_count >= 2 &&
4953                                         vmcs12->cr3_target_value1 == val) ||
4954                                 (vmcs12->cr3_target_count >= 3 &&
4955                                         vmcs12->cr3_target_value2 == val) ||
4956                                 (vmcs12->cr3_target_count >= 4 &&
4957                                         vmcs12->cr3_target_value3 == val))
4958                                 return false;
4959                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
4960                                 return true;
4961                         break;
4962                 case 4:
4963                         if (vmcs12->cr4_guest_host_mask &
4964                             (vmcs12->cr4_read_shadow ^ val))
4965                                 return true;
4966                         break;
4967                 case 8:
4968                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
4969                                 return true;
4970                         break;
4971                 }
4972                 break;
4973         case 2: /* clts */
4974                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
4975                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
4976                         return true;
4977                 break;
4978         case 1: /* mov from cr */
4979                 switch (cr) {
4980                 case 3:
4981                         if (vmcs12->cpu_based_vm_exec_control &
4982                             CPU_BASED_CR3_STORE_EXITING)
4983                                 return true;
4984                         break;
4985                 case 8:
4986                         if (vmcs12->cpu_based_vm_exec_control &
4987                             CPU_BASED_CR8_STORE_EXITING)
4988                                 return true;
4989                         break;
4990                 }
4991                 break;
4992         case 3: /* lmsw */
4993                 /*
4994                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
4995                  * cr0. Other attempted changes are ignored, with no exit.
4996                  */
4997                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4998                 if (vmcs12->cr0_guest_host_mask & 0xe &
4999                     (val ^ vmcs12->cr0_read_shadow))
5000                         return true;
5001                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5002                     !(vmcs12->cr0_read_shadow & 0x1) &&
5003                     (val & 0x1))
5004                         return true;
5005                 break;
5006         }
5007         return false;
5008 }
5009
5010 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5011         struct vmcs12 *vmcs12, gpa_t bitmap)
5012 {
5013         u32 vmx_instruction_info;
5014         unsigned long field;
5015         u8 b;
5016
5017         if (!nested_cpu_has_shadow_vmcs(vmcs12))
5018                 return true;
5019
5020         /* Decode instruction info and find the field to access */
5021         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5022         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5023
5024         /* Out-of-range fields always cause a VM exit from L2 to L1 */
5025         if (field >> 15)
5026                 return true;
5027
5028         if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5029                 return true;
5030
5031         return 1 & (b >> (field & 7));
5032 }
5033
5034 /*
5035  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5036  * should handle it ourselves in L0 (and then continue L2). Only call this
5037  * when in is_guest_mode (L2).
5038  */
5039 bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
5040 {
5041         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5042         struct vcpu_vmx *vmx = to_vmx(vcpu);
5043         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5044
5045         if (vmx->nested.nested_run_pending)
5046                 return false;
5047
5048         if (unlikely(vmx->fail)) {
5049                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
5050                                     vmcs_read32(VM_INSTRUCTION_ERROR));
5051                 return true;
5052         }
5053
5054         /*
5055          * The host physical addresses of some pages of guest memory
5056          * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5057          * Page). The CPU may write to these pages via their host
5058          * physical address while L2 is running, bypassing any
5059          * address-translation-based dirty tracking (e.g. EPT write
5060          * protection).
5061          *
5062          * Mark them dirty on every exit from L2 to prevent them from
5063          * getting out of sync with dirty tracking.
5064          */
5065         nested_mark_vmcs12_pages_dirty(vcpu);
5066
5067         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
5068                                 vmcs_readl(EXIT_QUALIFICATION),
5069                                 vmx->idt_vectoring_info,
5070                                 intr_info,
5071                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5072                                 KVM_ISA_VMX);
5073
5074         switch (exit_reason) {
5075         case EXIT_REASON_EXCEPTION_NMI:
5076                 if (is_nmi(intr_info))
5077                         return false;
5078                 else if (is_page_fault(intr_info))
5079                         return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
5080                 else if (is_debug(intr_info) &&
5081                          vcpu->guest_debug &
5082                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5083                         return false;
5084                 else if (is_breakpoint(intr_info) &&
5085                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5086                         return false;
5087                 return vmcs12->exception_bitmap &
5088                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5089         case EXIT_REASON_EXTERNAL_INTERRUPT:
5090                 return false;
5091         case EXIT_REASON_TRIPLE_FAULT:
5092                 return true;
5093         case EXIT_REASON_PENDING_INTERRUPT:
5094                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
5095         case EXIT_REASON_NMI_WINDOW:
5096                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
5097         case EXIT_REASON_TASK_SWITCH:
5098                 return true;
5099         case EXIT_REASON_CPUID:
5100                 return true;
5101         case EXIT_REASON_HLT:
5102                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5103         case EXIT_REASON_INVD:
5104                 return true;
5105         case EXIT_REASON_INVLPG:
5106                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5107         case EXIT_REASON_RDPMC:
5108                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5109         case EXIT_REASON_RDRAND:
5110                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5111         case EXIT_REASON_RDSEED:
5112                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5113         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5114                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5115         case EXIT_REASON_VMREAD:
5116                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5117                         vmcs12->vmread_bitmap);
5118         case EXIT_REASON_VMWRITE:
5119                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5120                         vmcs12->vmwrite_bitmap);
5121         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5122         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5123         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5124         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5125         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5126                 /*
5127                  * VMX instructions trap unconditionally. This allows L1 to
5128                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
5129                  */
5130                 return true;
5131         case EXIT_REASON_CR_ACCESS:
5132                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5133         case EXIT_REASON_DR_ACCESS:
5134                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5135         case EXIT_REASON_IO_INSTRUCTION:
5136                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
5137         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5138                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5139         case EXIT_REASON_MSR_READ:
5140         case EXIT_REASON_MSR_WRITE:
5141                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5142         case EXIT_REASON_INVALID_STATE:
5143                 return true;
5144         case EXIT_REASON_MWAIT_INSTRUCTION:
5145                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5146         case EXIT_REASON_MONITOR_TRAP_FLAG:
5147                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
5148         case EXIT_REASON_MONITOR_INSTRUCTION:
5149                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5150         case EXIT_REASON_PAUSE_INSTRUCTION:
5151                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5152                         nested_cpu_has2(vmcs12,
5153                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5154         case EXIT_REASON_MCE_DURING_VMENTRY:
5155                 return false;
5156         case EXIT_REASON_TPR_BELOW_THRESHOLD:
5157                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5158         case EXIT_REASON_APIC_ACCESS:
5159         case EXIT_REASON_APIC_WRITE:
5160         case EXIT_REASON_EOI_INDUCED:
5161                 /*
5162                  * The controls for "virtualize APIC accesses," "APIC-
5163                  * register virtualization," and "virtual-interrupt
5164                  * delivery" only come from vmcs12.
5165                  */
5166                 return true;
5167         case EXIT_REASON_EPT_VIOLATION:
5168                 /*
5169                  * L0 always deals with the EPT violation. If nested EPT is
5170                  * used, and the nested mmu code discovers that the address is
5171                  * missing in the guest EPT table (EPT12), the EPT violation
5172                  * will be injected with nested_ept_inject_page_fault()
5173                  */
5174                 return false;
5175         case EXIT_REASON_EPT_MISCONFIG:
5176                 /*
5177                  * L2 never uses directly L1's EPT, but rather L0's own EPT
5178                  * table (shadow on EPT) or a merged EPT table that L0 built
5179                  * (EPT on EPT). So any problems with the structure of the
5180                  * table is L0's fault.
5181                  */
5182                 return false;
5183         case EXIT_REASON_INVPCID:
5184                 return
5185                         nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5186                         nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5187         case EXIT_REASON_WBINVD:
5188                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5189         case EXIT_REASON_XSETBV:
5190                 return true;
5191         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5192                 /*
5193                  * This should never happen, since it is not possible to
5194                  * set XSS to a non-zero value---neither in L1 nor in L2.
5195                  * If if it were, XSS would have to be checked against
5196                  * the XSS exit bitmap in vmcs12.
5197                  */
5198                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5199         case EXIT_REASON_PREEMPTION_TIMER:
5200                 return false;
5201         case EXIT_REASON_PML_FULL:
5202                 /* We emulate PML support to L1. */
5203                 return false;
5204         case EXIT_REASON_VMFUNC:
5205                 /* VM functions are emulated through L2->L0 vmexits. */
5206                 return false;
5207         case EXIT_REASON_ENCLS:
5208                 /* SGX is never exposed to L1 */
5209                 return false;
5210         default:
5211                 return true;
5212         }
5213 }
5214
5215
5216 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
5217                                 struct kvm_nested_state __user *user_kvm_nested_state,
5218                                 u32 user_data_size)
5219 {
5220         struct vcpu_vmx *vmx;
5221         struct vmcs12 *vmcs12;
5222         struct kvm_nested_state kvm_state = {
5223                 .flags = 0,
5224                 .format = 0,
5225                 .size = sizeof(kvm_state),
5226                 .vmx.vmxon_pa = -1ull,
5227                 .vmx.vmcs_pa = -1ull,
5228         };
5229
5230         if (!vcpu)
5231                 return kvm_state.size + 2 * VMCS12_SIZE;
5232
5233         vmx = to_vmx(vcpu);
5234         vmcs12 = get_vmcs12(vcpu);
5235
5236         if (nested_vmx_allowed(vcpu) && vmx->nested.enlightened_vmcs_enabled)
5237                 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
5238
5239         if (nested_vmx_allowed(vcpu) &&
5240             (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
5241                 kvm_state.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
5242                 kvm_state.vmx.vmcs_pa = vmx->nested.current_vmptr;
5243
5244                 if (vmx_has_valid_vmcs12(vcpu)) {
5245                         kvm_state.size += VMCS12_SIZE;
5246
5247                         if (is_guest_mode(vcpu) &&
5248                             nested_cpu_has_shadow_vmcs(vmcs12) &&
5249                             vmcs12->vmcs_link_pointer != -1ull)
5250                                 kvm_state.size += VMCS12_SIZE;
5251                 }
5252
5253                 if (vmx->nested.smm.vmxon)
5254                         kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
5255
5256                 if (vmx->nested.smm.guest_mode)
5257                         kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
5258
5259                 if (is_guest_mode(vcpu)) {
5260                         kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
5261
5262                         if (vmx->nested.nested_run_pending)
5263                                 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
5264                 }
5265         }
5266
5267         if (user_data_size < kvm_state.size)
5268                 goto out;
5269
5270         if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
5271                 return -EFAULT;
5272
5273         if (!vmx_has_valid_vmcs12(vcpu))
5274                 goto out;
5275
5276         /*
5277          * When running L2, the authoritative vmcs12 state is in the
5278          * vmcs02. When running L1, the authoritative vmcs12 state is
5279          * in the shadow or enlightened vmcs linked to vmcs01, unless
5280          * need_vmcs12_sync is set, in which case, the authoritative
5281          * vmcs12 state is in the vmcs12 already.
5282          */
5283         if (is_guest_mode(vcpu)) {
5284                 sync_vmcs12(vcpu, vmcs12);
5285         } else if (!vmx->nested.need_vmcs12_sync) {
5286                 if (vmx->nested.hv_evmcs)
5287                         copy_enlightened_to_vmcs12(vmx);
5288                 else if (enable_shadow_vmcs)
5289                         copy_shadow_to_vmcs12(vmx);
5290         }
5291
5292         /*
5293          * Copy over the full allocated size of vmcs12 rather than just the size
5294          * of the struct.
5295          */
5296         if (copy_to_user(user_kvm_nested_state->data, vmcs12, VMCS12_SIZE))
5297                 return -EFAULT;
5298
5299         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5300             vmcs12->vmcs_link_pointer != -1ull) {
5301                 if (copy_to_user(user_kvm_nested_state->data + VMCS12_SIZE,
5302                                  get_shadow_vmcs12(vcpu), VMCS12_SIZE))
5303                         return -EFAULT;
5304         }
5305
5306 out:
5307         return kvm_state.size;
5308 }
5309
5310 /*
5311  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
5312  */
5313 void vmx_leave_nested(struct kvm_vcpu *vcpu)
5314 {
5315         if (is_guest_mode(vcpu)) {
5316                 to_vmx(vcpu)->nested.nested_run_pending = 0;
5317                 nested_vmx_vmexit(vcpu, -1, 0, 0);
5318         }
5319         free_nested(vcpu);
5320 }
5321
5322 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
5323                                 struct kvm_nested_state __user *user_kvm_nested_state,
5324                                 struct kvm_nested_state *kvm_state)
5325 {
5326         struct vcpu_vmx *vmx = to_vmx(vcpu);
5327         struct vmcs12 *vmcs12;
5328         u32 exit_qual;
5329         int ret;
5330
5331         if (kvm_state->format != 0)
5332                 return -EINVAL;
5333
5334         if (kvm_state->flags & KVM_STATE_NESTED_EVMCS)
5335                 nested_enable_evmcs(vcpu, NULL);
5336
5337         if (!nested_vmx_allowed(vcpu))
5338                 return kvm_state->vmx.vmxon_pa == -1ull ? 0 : -EINVAL;
5339
5340         if (kvm_state->vmx.vmxon_pa == -1ull) {
5341                 if (kvm_state->vmx.smm.flags)
5342                         return -EINVAL;
5343
5344                 if (kvm_state->vmx.vmcs_pa != -1ull)
5345                         return -EINVAL;
5346
5347                 vmx_leave_nested(vcpu);
5348                 return 0;
5349         }
5350
5351         if (!page_address_valid(vcpu, kvm_state->vmx.vmxon_pa))
5352                 return -EINVAL;
5353
5354         if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5355             (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5356                 return -EINVAL;
5357
5358         if (kvm_state->vmx.smm.flags &
5359             ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
5360                 return -EINVAL;
5361
5362         /*
5363          * SMM temporarily disables VMX, so we cannot be in guest mode,
5364          * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
5365          * must be zero.
5366          */
5367         if (is_smm(vcpu) ? kvm_state->flags : kvm_state->vmx.smm.flags)
5368                 return -EINVAL;
5369
5370         if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5371             !(kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
5372                 return -EINVAL;
5373
5374         vmx_leave_nested(vcpu);
5375         if (kvm_state->vmx.vmxon_pa == -1ull)
5376                 return 0;
5377
5378         vmx->nested.vmxon_ptr = kvm_state->vmx.vmxon_pa;
5379         ret = enter_vmx_operation(vcpu);
5380         if (ret)
5381                 return ret;
5382
5383         /* Empty 'VMXON' state is permitted */
5384         if (kvm_state->size < sizeof(kvm_state) + sizeof(*vmcs12))
5385                 return 0;
5386
5387         if (kvm_state->vmx.vmcs_pa != -1ull) {
5388                 if (kvm_state->vmx.vmcs_pa == kvm_state->vmx.vmxon_pa ||
5389                     !page_address_valid(vcpu, kvm_state->vmx.vmcs_pa))
5390                         return -EINVAL;
5391
5392                 set_current_vmptr(vmx, kvm_state->vmx.vmcs_pa);
5393         } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
5394                 /*
5395                  * Sync eVMCS upon entry as we may not have
5396                  * HV_X64_MSR_VP_ASSIST_PAGE set up yet.
5397                  */
5398                 vmx->nested.need_vmcs12_sync = true;
5399         } else {
5400                 return -EINVAL;
5401         }
5402
5403         if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
5404                 vmx->nested.smm.vmxon = true;
5405                 vmx->nested.vmxon = false;
5406
5407                 if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
5408                         vmx->nested.smm.guest_mode = true;
5409         }
5410
5411         vmcs12 = get_vmcs12(vcpu);
5412         if (copy_from_user(vmcs12, user_kvm_nested_state->data, sizeof(*vmcs12)))
5413                 return -EFAULT;
5414
5415         if (vmcs12->hdr.revision_id != VMCS12_REVISION)
5416                 return -EINVAL;
5417
5418         if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5419                 return 0;
5420
5421         vmx->nested.nested_run_pending =
5422                 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
5423
5424         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5425             vmcs12->vmcs_link_pointer != -1ull) {
5426                 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
5427
5428                 if (kvm_state->size < sizeof(kvm_state) + 2 * sizeof(*vmcs12))
5429                         return -EINVAL;
5430
5431                 if (copy_from_user(shadow_vmcs12,
5432                                    user_kvm_nested_state->data + VMCS12_SIZE,
5433                                    sizeof(*vmcs12)))
5434                         return -EFAULT;
5435
5436                 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5437                     !shadow_vmcs12->hdr.shadow_vmcs)
5438                         return -EINVAL;
5439         }
5440
5441         if (nested_vmx_check_vmentry_prereqs(vcpu, vmcs12) ||
5442             nested_vmx_check_vmentry_postreqs(vcpu, vmcs12, &exit_qual))
5443                 return -EINVAL;
5444
5445         vmx->nested.dirty_vmcs12 = true;
5446         ret = nested_vmx_enter_non_root_mode(vcpu, false);
5447         if (ret)
5448                 return -EINVAL;
5449
5450         return 0;
5451 }
5452
5453 void nested_vmx_vcpu_setup(void)
5454 {
5455         if (enable_shadow_vmcs) {
5456                 /*
5457                  * At vCPU creation, "VMWRITE to any supported field
5458                  * in the VMCS" is supported, so use the more
5459                  * permissive vmx_vmread_bitmap to specify both read
5460                  * and write permissions for the shadow VMCS.
5461                  */
5462                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5463                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmread_bitmap));
5464         }
5465 }
5466
5467 /*
5468  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
5469  * returned for the various VMX controls MSRs when nested VMX is enabled.
5470  * The same values should also be used to verify that vmcs12 control fields are
5471  * valid during nested entry from L1 to L2.
5472  * Each of these control msrs has a low and high 32-bit half: A low bit is on
5473  * if the corresponding bit in the (32-bit) control field *must* be on, and a
5474  * bit in the high half is on if the corresponding bit in the control field
5475  * may be on. See also vmx_control_verify().
5476  */
5477 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps,
5478                                 bool apicv)
5479 {
5480         /*
5481          * Note that as a general rule, the high half of the MSRs (bits in
5482          * the control fields which may be 1) should be initialized by the
5483          * intersection of the underlying hardware's MSR (i.e., features which
5484          * can be supported) and the list of features we want to expose -
5485          * because they are known to be properly supported in our code.
5486          * Also, usually, the low half of the MSRs (bits which must be 1) can
5487          * be set to 0, meaning that L1 may turn off any of these bits. The
5488          * reason is that if one of these bits is necessary, it will appear
5489          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
5490          * fields of vmcs01 and vmcs02, will turn these bits off - and
5491          * nested_vmx_exit_reflected() will not pass related exits to L1.
5492          * These rules have exceptions below.
5493          */
5494
5495         /* pin-based controls */
5496         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
5497                 msrs->pinbased_ctls_low,
5498                 msrs->pinbased_ctls_high);
5499         msrs->pinbased_ctls_low |=
5500                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5501         msrs->pinbased_ctls_high &=
5502                 PIN_BASED_EXT_INTR_MASK |
5503                 PIN_BASED_NMI_EXITING |
5504                 PIN_BASED_VIRTUAL_NMIS |
5505                 (apicv ? PIN_BASED_POSTED_INTR : 0);
5506         msrs->pinbased_ctls_high |=
5507                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5508                 PIN_BASED_VMX_PREEMPTION_TIMER;
5509
5510         /* exit controls */
5511         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
5512                 msrs->exit_ctls_low,
5513                 msrs->exit_ctls_high);
5514         msrs->exit_ctls_low =
5515                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
5516
5517         msrs->exit_ctls_high &=
5518 #ifdef CONFIG_X86_64
5519                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
5520 #endif
5521                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
5522         msrs->exit_ctls_high |=
5523                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
5524                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
5525                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
5526
5527         /* We support free control of debug control saving. */
5528         msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
5529
5530         /* entry controls */
5531         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
5532                 msrs->entry_ctls_low,
5533                 msrs->entry_ctls_high);
5534         msrs->entry_ctls_low =
5535                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
5536         msrs->entry_ctls_high &=
5537 #ifdef CONFIG_X86_64
5538                 VM_ENTRY_IA32E_MODE |
5539 #endif
5540                 VM_ENTRY_LOAD_IA32_PAT;
5541         msrs->entry_ctls_high |=
5542                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
5543
5544         /* We support free control of debug control loading. */
5545         msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
5546
5547         /* cpu-based controls */
5548         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
5549                 msrs->procbased_ctls_low,
5550                 msrs->procbased_ctls_high);
5551         msrs->procbased_ctls_low =
5552                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5553         msrs->procbased_ctls_high &=
5554                 CPU_BASED_VIRTUAL_INTR_PENDING |
5555                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
5556                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
5557                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
5558                 CPU_BASED_CR3_STORE_EXITING |
5559 #ifdef CONFIG_X86_64
5560                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
5561 #endif
5562                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5563                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
5564                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
5565                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
5566                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
5567         /*
5568          * We can allow some features even when not supported by the
5569          * hardware. For example, L1 can specify an MSR bitmap - and we
5570          * can use it to avoid exits to L1 - even when L0 runs L2
5571          * without MSR bitmaps.
5572          */
5573         msrs->procbased_ctls_high |=
5574                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5575                 CPU_BASED_USE_MSR_BITMAPS;
5576
5577         /* We support free control of CR3 access interception. */
5578         msrs->procbased_ctls_low &=
5579                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
5580
5581         /*
5582          * secondary cpu-based controls.  Do not include those that
5583          * depend on CPUID bits, they are added later by vmx_cpuid_update.
5584          */
5585         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
5586                 msrs->secondary_ctls_low,
5587                 msrs->secondary_ctls_high);
5588         msrs->secondary_ctls_low = 0;
5589         msrs->secondary_ctls_high &=
5590                 SECONDARY_EXEC_DESC |
5591                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
5592                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5593                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
5594                 SECONDARY_EXEC_WBINVD_EXITING;
5595
5596         /*
5597          * We can emulate "VMCS shadowing," even if the hardware
5598          * doesn't support it.
5599          */
5600         msrs->secondary_ctls_high |=
5601                 SECONDARY_EXEC_SHADOW_VMCS;
5602
5603         if (enable_ept) {
5604                 /* nested EPT: emulate EPT also to L1 */
5605                 msrs->secondary_ctls_high |=
5606                         SECONDARY_EXEC_ENABLE_EPT;
5607                 msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
5608                          VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
5609                 if (cpu_has_vmx_ept_execute_only())
5610                         msrs->ept_caps |=
5611                                 VMX_EPT_EXECUTE_ONLY_BIT;
5612                 msrs->ept_caps &= ept_caps;
5613                 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
5614                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
5615                         VMX_EPT_1GB_PAGE_BIT;
5616                 if (enable_ept_ad_bits) {
5617                         msrs->secondary_ctls_high |=
5618                                 SECONDARY_EXEC_ENABLE_PML;
5619                         msrs->ept_caps |= VMX_EPT_AD_BIT;
5620                 }
5621         }
5622
5623         if (cpu_has_vmx_vmfunc()) {
5624                 msrs->secondary_ctls_high |=
5625                         SECONDARY_EXEC_ENABLE_VMFUNC;
5626                 /*
5627                  * Advertise EPTP switching unconditionally
5628                  * since we emulate it
5629                  */
5630                 if (enable_ept)
5631                         msrs->vmfunc_controls =
5632                                 VMX_VMFUNC_EPTP_SWITCHING;
5633         }
5634
5635         /*
5636          * Old versions of KVM use the single-context version without
5637          * checking for support, so declare that it is supported even
5638          * though it is treated as global context.  The alternative is
5639          * not failing the single-context invvpid, and it is worse.
5640          */
5641         if (enable_vpid) {
5642                 msrs->secondary_ctls_high |=
5643                         SECONDARY_EXEC_ENABLE_VPID;
5644                 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
5645                         VMX_VPID_EXTENT_SUPPORTED_MASK;
5646         }
5647
5648         if (enable_unrestricted_guest)
5649                 msrs->secondary_ctls_high |=
5650                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
5651
5652         if (flexpriority_enabled)
5653                 msrs->secondary_ctls_high |=
5654                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5655
5656         /* miscellaneous data */
5657         rdmsr(MSR_IA32_VMX_MISC,
5658                 msrs->misc_low,
5659                 msrs->misc_high);
5660         msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
5661         msrs->misc_low |=
5662                 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
5663                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
5664                 VMX_MISC_ACTIVITY_HLT;
5665         msrs->misc_high = 0;
5666
5667         /*
5668          * This MSR reports some information about VMX support. We
5669          * should return information about the VMX we emulate for the
5670          * guest, and the VMCS structure we give it - not about the
5671          * VMX support of the underlying hardware.
5672          */
5673         msrs->basic =
5674                 VMCS12_REVISION |
5675                 VMX_BASIC_TRUE_CTLS |
5676                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
5677                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
5678
5679         if (cpu_has_vmx_basic_inout())
5680                 msrs->basic |= VMX_BASIC_INOUT;
5681
5682         /*
5683          * These MSRs specify bits which the guest must keep fixed on
5684          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
5685          * We picked the standard core2 setting.
5686          */
5687 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
5688 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
5689         msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
5690         msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
5691
5692         /* These MSRs specify bits which the guest must keep fixed off. */
5693         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
5694         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
5695
5696         /* highest index: VMX_PREEMPTION_TIMER_VALUE */
5697         msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
5698 }
5699
5700 void nested_vmx_hardware_unsetup(void)
5701 {
5702         int i;
5703
5704         if (enable_shadow_vmcs) {
5705                 for (i = 0; i < VMX_BITMAP_NR; i++)
5706                         free_page((unsigned long)vmx_bitmap[i]);
5707         }
5708 }
5709
5710 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
5711 {
5712         int i;
5713
5714         if (!cpu_has_vmx_shadow_vmcs())
5715                 enable_shadow_vmcs = 0;
5716         if (enable_shadow_vmcs) {
5717                 for (i = 0; i < VMX_BITMAP_NR; i++) {
5718                         vmx_bitmap[i] = (unsigned long *)
5719                                 __get_free_page(GFP_KERNEL);
5720                         if (!vmx_bitmap[i]) {
5721                                 nested_vmx_hardware_unsetup();
5722                                 return -ENOMEM;
5723                         }
5724                 }
5725
5726                 init_vmcs_shadow_fields();
5727         }
5728
5729         exit_handlers[EXIT_REASON_VMCLEAR]      = handle_vmclear,
5730         exit_handlers[EXIT_REASON_VMLAUNCH]     = handle_vmlaunch,
5731         exit_handlers[EXIT_REASON_VMPTRLD]      = handle_vmptrld,
5732         exit_handlers[EXIT_REASON_VMPTRST]      = handle_vmptrst,
5733         exit_handlers[EXIT_REASON_VMREAD]       = handle_vmread,
5734         exit_handlers[EXIT_REASON_VMRESUME]     = handle_vmresume,
5735         exit_handlers[EXIT_REASON_VMWRITE]      = handle_vmwrite,
5736         exit_handlers[EXIT_REASON_VMOFF]        = handle_vmoff,
5737         exit_handlers[EXIT_REASON_VMON]         = handle_vmon,
5738         exit_handlers[EXIT_REASON_INVEPT]       = handle_invept,
5739         exit_handlers[EXIT_REASON_INVVPID]      = handle_invvpid,
5740         exit_handlers[EXIT_REASON_VMFUNC]       = handle_vmfunc,
5741
5742         kvm_x86_ops->check_nested_events = vmx_check_nested_events;
5743         kvm_x86_ops->get_nested_state = vmx_get_nested_state;
5744         kvm_x86_ops->set_nested_state = vmx_set_nested_state;
5745         kvm_x86_ops->get_vmcs12_pages = nested_get_vmcs12_pages,
5746         kvm_x86_ops->nested_enable_evmcs = nested_enable_evmcs;
5747         kvm_x86_ops->nested_get_evmcs_version = nested_get_evmcs_version;
5748
5749         return 0;
5750 }