]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/vmx/nested.c
1a10cd3519402d7c82dfe137e30d5e86c78aa66f
[linux.git] / arch / x86 / kvm / vmx / nested.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/frame.h>
4 #include <linux/percpu.h>
5
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "trace.h"
14 #include "x86.h"
15
16 static bool __read_mostly enable_shadow_vmcs = 1;
17 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
18
19 static bool __read_mostly nested_early_check = 0;
20 module_param(nested_early_check, bool, S_IRUGO);
21
22 #define CC(consistency_check)                                           \
23 ({                                                                      \
24         bool failed = (consistency_check);                              \
25         if (failed)                                                     \
26                 trace_kvm_nested_vmenter_failed(#consistency_check, 0); \
27         failed;                                                         \
28 })
29
30 /*
31  * Hyper-V requires all of these, so mark them as supported even though
32  * they are just treated the same as all-context.
33  */
34 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
35         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
36         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
37         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
38         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
39
40 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
41
42 enum {
43         VMX_VMREAD_BITMAP,
44         VMX_VMWRITE_BITMAP,
45         VMX_BITMAP_NR
46 };
47 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
48
49 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
50 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
51
52 struct shadow_vmcs_field {
53         u16     encoding;
54         u16     offset;
55 };
56 static struct shadow_vmcs_field shadow_read_only_fields[] = {
57 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
58 #include "vmcs_shadow_fields.h"
59 };
60 static int max_shadow_read_only_fields =
61         ARRAY_SIZE(shadow_read_only_fields);
62
63 static struct shadow_vmcs_field shadow_read_write_fields[] = {
64 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
65 #include "vmcs_shadow_fields.h"
66 };
67 static int max_shadow_read_write_fields =
68         ARRAY_SIZE(shadow_read_write_fields);
69
70 static void init_vmcs_shadow_fields(void)
71 {
72         int i, j;
73
74         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
75         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
76
77         for (i = j = 0; i < max_shadow_read_only_fields; i++) {
78                 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
79                 u16 field = entry.encoding;
80
81                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
82                     (i + 1 == max_shadow_read_only_fields ||
83                      shadow_read_only_fields[i + 1].encoding != field + 1))
84                         pr_err("Missing field from shadow_read_only_field %x\n",
85                                field + 1);
86
87                 clear_bit(field, vmx_vmread_bitmap);
88                 if (field & 1)
89 #ifdef CONFIG_X86_64
90                         continue;
91 #else
92                         entry.offset += sizeof(u32);
93 #endif
94                 shadow_read_only_fields[j++] = entry;
95         }
96         max_shadow_read_only_fields = j;
97
98         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
99                 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
100                 u16 field = entry.encoding;
101
102                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
103                     (i + 1 == max_shadow_read_write_fields ||
104                      shadow_read_write_fields[i + 1].encoding != field + 1))
105                         pr_err("Missing field from shadow_read_write_field %x\n",
106                                field + 1);
107
108                 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
109                           field <= GUEST_TR_AR_BYTES,
110                           "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
111
112                 /*
113                  * PML and the preemption timer can be emulated, but the
114                  * processor cannot vmwrite to fields that don't exist
115                  * on bare metal.
116                  */
117                 switch (field) {
118                 case GUEST_PML_INDEX:
119                         if (!cpu_has_vmx_pml())
120                                 continue;
121                         break;
122                 case VMX_PREEMPTION_TIMER_VALUE:
123                         if (!cpu_has_vmx_preemption_timer())
124                                 continue;
125                         break;
126                 case GUEST_INTR_STATUS:
127                         if (!cpu_has_vmx_apicv())
128                                 continue;
129                         break;
130                 default:
131                         break;
132                 }
133
134                 clear_bit(field, vmx_vmwrite_bitmap);
135                 clear_bit(field, vmx_vmread_bitmap);
136                 if (field & 1)
137 #ifdef CONFIG_X86_64
138                         continue;
139 #else
140                         entry.offset += sizeof(u32);
141 #endif
142                 shadow_read_write_fields[j++] = entry;
143         }
144         max_shadow_read_write_fields = j;
145 }
146
147 /*
148  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
149  * set the success or error code of an emulated VMX instruction (as specified
150  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
151  * instruction.
152  */
153 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
154 {
155         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
156                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
157                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
158         return kvm_skip_emulated_instruction(vcpu);
159 }
160
161 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
162 {
163         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
164                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
165                             X86_EFLAGS_SF | X86_EFLAGS_OF))
166                         | X86_EFLAGS_CF);
167         return kvm_skip_emulated_instruction(vcpu);
168 }
169
170 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
171                                 u32 vm_instruction_error)
172 {
173         struct vcpu_vmx *vmx = to_vmx(vcpu);
174
175         /*
176          * failValid writes the error number to the current VMCS, which
177          * can't be done if there isn't a current VMCS.
178          */
179         if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
180                 return nested_vmx_failInvalid(vcpu);
181
182         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
183                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
184                             X86_EFLAGS_SF | X86_EFLAGS_OF))
185                         | X86_EFLAGS_ZF);
186         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
187         /*
188          * We don't need to force a shadow sync because
189          * VM_INSTRUCTION_ERROR is not shadowed
190          */
191         return kvm_skip_emulated_instruction(vcpu);
192 }
193
194 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
195 {
196         /* TODO: not to reset guest simply here. */
197         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
198         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
199 }
200
201 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
202 {
203         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
204         vmcs_write64(VMCS_LINK_POINTER, -1ull);
205         vmx->nested.need_vmcs12_to_shadow_sync = false;
206 }
207
208 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
209 {
210         struct vcpu_vmx *vmx = to_vmx(vcpu);
211
212         if (!vmx->nested.hv_evmcs)
213                 return;
214
215         kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
216         vmx->nested.hv_evmcs_vmptr = -1ull;
217         vmx->nested.hv_evmcs = NULL;
218 }
219
220 /*
221  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
222  * just stops using VMX.
223  */
224 static void free_nested(struct kvm_vcpu *vcpu)
225 {
226         struct vcpu_vmx *vmx = to_vmx(vcpu);
227
228         if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
229                 return;
230
231         kvm_clear_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
232
233         vmx->nested.vmxon = false;
234         vmx->nested.smm.vmxon = false;
235         free_vpid(vmx->nested.vpid02);
236         vmx->nested.posted_intr_nv = -1;
237         vmx->nested.current_vmptr = -1ull;
238         if (enable_shadow_vmcs) {
239                 vmx_disable_shadow_vmcs(vmx);
240                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
241                 free_vmcs(vmx->vmcs01.shadow_vmcs);
242                 vmx->vmcs01.shadow_vmcs = NULL;
243         }
244         kfree(vmx->nested.cached_vmcs12);
245         vmx->nested.cached_vmcs12 = NULL;
246         kfree(vmx->nested.cached_shadow_vmcs12);
247         vmx->nested.cached_shadow_vmcs12 = NULL;
248         /* Unpin physical memory we referred to in the vmcs02 */
249         if (vmx->nested.apic_access_page) {
250                 kvm_release_page_dirty(vmx->nested.apic_access_page);
251                 vmx->nested.apic_access_page = NULL;
252         }
253         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
254         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
255         vmx->nested.pi_desc = NULL;
256
257         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
258
259         nested_release_evmcs(vcpu);
260
261         free_loaded_vmcs(&vmx->nested.vmcs02);
262 }
263
264 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
265                                      struct loaded_vmcs *prev)
266 {
267         struct vmcs_host_state *dest, *src;
268
269         if (unlikely(!vmx->guest_state_loaded))
270                 return;
271
272         src = &prev->host_state;
273         dest = &vmx->loaded_vmcs->host_state;
274
275         vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
276         dest->ldt_sel = src->ldt_sel;
277 #ifdef CONFIG_X86_64
278         dest->ds_sel = src->ds_sel;
279         dest->es_sel = src->es_sel;
280 #endif
281 }
282
283 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
284 {
285         struct vcpu_vmx *vmx = to_vmx(vcpu);
286         struct loaded_vmcs *prev;
287         int cpu;
288
289         if (vmx->loaded_vmcs == vmcs)
290                 return;
291
292         cpu = get_cpu();
293         prev = vmx->loaded_vmcs;
294         vmx->loaded_vmcs = vmcs;
295         vmx_vcpu_load_vmcs(vcpu, cpu);
296         vmx_sync_vmcs_host_state(vmx, prev);
297         put_cpu();
298
299         vmx_segment_cache_clear(vmx);
300 }
301
302 /*
303  * Ensure that the current vmcs of the logical processor is the
304  * vmcs01 of the vcpu before calling free_nested().
305  */
306 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
307 {
308         vcpu_load(vcpu);
309         vmx_leave_nested(vcpu);
310         vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
311         free_nested(vcpu);
312         vcpu_put(vcpu);
313 }
314
315 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
316                 struct x86_exception *fault)
317 {
318         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
319         struct vcpu_vmx *vmx = to_vmx(vcpu);
320         u32 exit_reason;
321         unsigned long exit_qualification = vcpu->arch.exit_qualification;
322
323         if (vmx->nested.pml_full) {
324                 exit_reason = EXIT_REASON_PML_FULL;
325                 vmx->nested.pml_full = false;
326                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
327         } else if (fault->error_code & PFERR_RSVD_MASK)
328                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
329         else
330                 exit_reason = EXIT_REASON_EPT_VIOLATION;
331
332         nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
333         vmcs12->guest_physical_address = fault->address;
334 }
335
336 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
337 {
338         WARN_ON(mmu_is_nested(vcpu));
339
340         vcpu->arch.mmu = &vcpu->arch.guest_mmu;
341         kvm_init_shadow_ept_mmu(vcpu,
342                         to_vmx(vcpu)->nested.msrs.ept_caps &
343                         VMX_EPT_EXECUTE_ONLY_BIT,
344                         nested_ept_ad_enabled(vcpu),
345                         nested_ept_get_cr3(vcpu));
346         vcpu->arch.mmu->set_cr3           = vmx_set_cr3;
347         vcpu->arch.mmu->get_cr3           = nested_ept_get_cr3;
348         vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
349         vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
350
351         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
352 }
353
354 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
355 {
356         vcpu->arch.mmu = &vcpu->arch.root_mmu;
357         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
358 }
359
360 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
361                                             u16 error_code)
362 {
363         bool inequality, bit;
364
365         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
366         inequality =
367                 (error_code & vmcs12->page_fault_error_code_mask) !=
368                  vmcs12->page_fault_error_code_match;
369         return inequality ^ bit;
370 }
371
372
373 /*
374  * KVM wants to inject page-faults which it got to the guest. This function
375  * checks whether in a nested guest, we need to inject them to L1 or L2.
376  */
377 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
378 {
379         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
380         unsigned int nr = vcpu->arch.exception.nr;
381         bool has_payload = vcpu->arch.exception.has_payload;
382         unsigned long payload = vcpu->arch.exception.payload;
383
384         if (nr == PF_VECTOR) {
385                 if (vcpu->arch.exception.nested_apf) {
386                         *exit_qual = vcpu->arch.apf.nested_apf_token;
387                         return 1;
388                 }
389                 if (nested_vmx_is_page_fault_vmexit(vmcs12,
390                                                     vcpu->arch.exception.error_code)) {
391                         *exit_qual = has_payload ? payload : vcpu->arch.cr2;
392                         return 1;
393                 }
394         } else if (vmcs12->exception_bitmap & (1u << nr)) {
395                 if (nr == DB_VECTOR) {
396                         if (!has_payload) {
397                                 payload = vcpu->arch.dr6;
398                                 payload &= ~(DR6_FIXED_1 | DR6_BT);
399                                 payload ^= DR6_RTM;
400                         }
401                         *exit_qual = payload;
402                 } else
403                         *exit_qual = 0;
404                 return 1;
405         }
406
407         return 0;
408 }
409
410
411 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
412                 struct x86_exception *fault)
413 {
414         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
415
416         WARN_ON(!is_guest_mode(vcpu));
417
418         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
419                 !to_vmx(vcpu)->nested.nested_run_pending) {
420                 vmcs12->vm_exit_intr_error_code = fault->error_code;
421                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
422                                   PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
423                                   INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
424                                   fault->address);
425         } else {
426                 kvm_inject_page_fault(vcpu, fault);
427         }
428 }
429
430 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
431 {
432         return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
433 }
434
435 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
436                                                struct vmcs12 *vmcs12)
437 {
438         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
439                 return 0;
440
441         if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
442             CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
443                 return -EINVAL;
444
445         return 0;
446 }
447
448 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
449                                                 struct vmcs12 *vmcs12)
450 {
451         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
452                 return 0;
453
454         if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
455                 return -EINVAL;
456
457         return 0;
458 }
459
460 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
461                                                 struct vmcs12 *vmcs12)
462 {
463         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
464                 return 0;
465
466         if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
467                 return -EINVAL;
468
469         return 0;
470 }
471
472 /*
473  * Check if MSR is intercepted for L01 MSR bitmap.
474  */
475 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
476 {
477         unsigned long *msr_bitmap;
478         int f = sizeof(unsigned long);
479
480         if (!cpu_has_vmx_msr_bitmap())
481                 return true;
482
483         msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
484
485         if (msr <= 0x1fff) {
486                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
487         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
488                 msr &= 0x1fff;
489                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
490         }
491
492         return true;
493 }
494
495 /*
496  * If a msr is allowed by L0, we should check whether it is allowed by L1.
497  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
498  */
499 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
500                                                unsigned long *msr_bitmap_nested,
501                                                u32 msr, int type)
502 {
503         int f = sizeof(unsigned long);
504
505         /*
506          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
507          * have the write-low and read-high bitmap offsets the wrong way round.
508          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
509          */
510         if (msr <= 0x1fff) {
511                 if (type & MSR_TYPE_R &&
512                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
513                         /* read-low */
514                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
515
516                 if (type & MSR_TYPE_W &&
517                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
518                         /* write-low */
519                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
520
521         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
522                 msr &= 0x1fff;
523                 if (type & MSR_TYPE_R &&
524                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
525                         /* read-high */
526                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
527
528                 if (type & MSR_TYPE_W &&
529                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
530                         /* write-high */
531                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
532
533         }
534 }
535
536 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap) {
537         int msr;
538
539         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
540                 unsigned word = msr / BITS_PER_LONG;
541
542                 msr_bitmap[word] = ~0;
543                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
544         }
545 }
546
547 /*
548  * Merge L0's and L1's MSR bitmap, return false to indicate that
549  * we do not use the hardware.
550  */
551 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
552                                                  struct vmcs12 *vmcs12)
553 {
554         int msr;
555         unsigned long *msr_bitmap_l1;
556         unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
557         struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
558
559         /* Nothing to do if the MSR bitmap is not in use.  */
560         if (!cpu_has_vmx_msr_bitmap() ||
561             !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
562                 return false;
563
564         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
565                 return false;
566
567         msr_bitmap_l1 = (unsigned long *)map->hva;
568
569         /*
570          * To keep the control flow simple, pay eight 8-byte writes (sixteen
571          * 4-byte writes on 32-bit systems) up front to enable intercepts for
572          * the x2APIC MSR range and selectively disable them below.
573          */
574         enable_x2apic_msr_intercepts(msr_bitmap_l0);
575
576         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
577                 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
578                         /*
579                          * L0 need not intercept reads for MSRs between 0x800
580                          * and 0x8ff, it just lets the processor take the value
581                          * from the virtual-APIC page; take those 256 bits
582                          * directly from the L1 bitmap.
583                          */
584                         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
585                                 unsigned word = msr / BITS_PER_LONG;
586
587                                 msr_bitmap_l0[word] = msr_bitmap_l1[word];
588                         }
589                 }
590
591                 nested_vmx_disable_intercept_for_msr(
592                         msr_bitmap_l1, msr_bitmap_l0,
593                         X2APIC_MSR(APIC_TASKPRI),
594                         MSR_TYPE_R | MSR_TYPE_W);
595
596                 if (nested_cpu_has_vid(vmcs12)) {
597                         nested_vmx_disable_intercept_for_msr(
598                                 msr_bitmap_l1, msr_bitmap_l0,
599                                 X2APIC_MSR(APIC_EOI),
600                                 MSR_TYPE_W);
601                         nested_vmx_disable_intercept_for_msr(
602                                 msr_bitmap_l1, msr_bitmap_l0,
603                                 X2APIC_MSR(APIC_SELF_IPI),
604                                 MSR_TYPE_W);
605                 }
606         }
607
608         /* KVM unconditionally exposes the FS/GS base MSRs to L1. */
609         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
610                                              MSR_FS_BASE, MSR_TYPE_RW);
611
612         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
613                                              MSR_GS_BASE, MSR_TYPE_RW);
614
615         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
616                                              MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
617
618         /*
619          * Checking the L0->L1 bitmap is trying to verify two things:
620          *
621          * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
622          *    ensures that we do not accidentally generate an L02 MSR bitmap
623          *    from the L12 MSR bitmap that is too permissive.
624          * 2. That L1 or L2s have actually used the MSR. This avoids
625          *    unnecessarily merging of the bitmap if the MSR is unused. This
626          *    works properly because we only update the L01 MSR bitmap lazily.
627          *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
628          *    updated to reflect this when L1 (or its L2s) actually write to
629          *    the MSR.
630          */
631         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
632                 nested_vmx_disable_intercept_for_msr(
633                                         msr_bitmap_l1, msr_bitmap_l0,
634                                         MSR_IA32_SPEC_CTRL,
635                                         MSR_TYPE_R | MSR_TYPE_W);
636
637         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
638                 nested_vmx_disable_intercept_for_msr(
639                                         msr_bitmap_l1, msr_bitmap_l0,
640                                         MSR_IA32_PRED_CMD,
641                                         MSR_TYPE_W);
642
643         kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
644
645         return true;
646 }
647
648 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
649                                        struct vmcs12 *vmcs12)
650 {
651         struct kvm_host_map map;
652         struct vmcs12 *shadow;
653
654         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
655             vmcs12->vmcs_link_pointer == -1ull)
656                 return;
657
658         shadow = get_shadow_vmcs12(vcpu);
659
660         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
661                 return;
662
663         memcpy(shadow, map.hva, VMCS12_SIZE);
664         kvm_vcpu_unmap(vcpu, &map, false);
665 }
666
667 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
668                                               struct vmcs12 *vmcs12)
669 {
670         struct vcpu_vmx *vmx = to_vmx(vcpu);
671
672         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
673             vmcs12->vmcs_link_pointer == -1ull)
674                 return;
675
676         kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
677                         get_shadow_vmcs12(vcpu), VMCS12_SIZE);
678 }
679
680 /*
681  * In nested virtualization, check if L1 has set
682  * VM_EXIT_ACK_INTR_ON_EXIT
683  */
684 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
685 {
686         return get_vmcs12(vcpu)->vm_exit_controls &
687                 VM_EXIT_ACK_INTR_ON_EXIT;
688 }
689
690 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
691 {
692         return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
693 }
694
695 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
696                                           struct vmcs12 *vmcs12)
697 {
698         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
699             CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
700                 return -EINVAL;
701         else
702                 return 0;
703 }
704
705 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
706                                            struct vmcs12 *vmcs12)
707 {
708         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
709             !nested_cpu_has_apic_reg_virt(vmcs12) &&
710             !nested_cpu_has_vid(vmcs12) &&
711             !nested_cpu_has_posted_intr(vmcs12))
712                 return 0;
713
714         /*
715          * If virtualize x2apic mode is enabled,
716          * virtualize apic access must be disabled.
717          */
718         if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
719                nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
720                 return -EINVAL;
721
722         /*
723          * If virtual interrupt delivery is enabled,
724          * we must exit on external interrupts.
725          */
726         if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
727                 return -EINVAL;
728
729         /*
730          * bits 15:8 should be zero in posted_intr_nv,
731          * the descriptor address has been already checked
732          * in nested_get_vmcs12_pages.
733          *
734          * bits 5:0 of posted_intr_desc_addr should be zero.
735          */
736         if (nested_cpu_has_posted_intr(vmcs12) &&
737            (CC(!nested_cpu_has_vid(vmcs12)) ||
738             CC(!nested_exit_intr_ack_set(vcpu)) ||
739             CC((vmcs12->posted_intr_nv & 0xff00)) ||
740             CC((vmcs12->posted_intr_desc_addr & 0x3f)) ||
741             CC((vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu)))))
742                 return -EINVAL;
743
744         /* tpr shadow is needed by all apicv features. */
745         if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
746                 return -EINVAL;
747
748         return 0;
749 }
750
751 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
752                                        u32 count, u64 addr)
753 {
754         int maxphyaddr;
755
756         if (count == 0)
757                 return 0;
758         maxphyaddr = cpuid_maxphyaddr(vcpu);
759         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
760             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
761                 return -EINVAL;
762
763         return 0;
764 }
765
766 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
767                                                      struct vmcs12 *vmcs12)
768 {
769         if (CC(nested_vmx_check_msr_switch(vcpu,
770                                            vmcs12->vm_exit_msr_load_count,
771                                            vmcs12->vm_exit_msr_load_addr)) ||
772             CC(nested_vmx_check_msr_switch(vcpu,
773                                            vmcs12->vm_exit_msr_store_count,
774                                            vmcs12->vm_exit_msr_store_addr)))
775                 return -EINVAL;
776
777         return 0;
778 }
779
780 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
781                                                       struct vmcs12 *vmcs12)
782 {
783         if (CC(nested_vmx_check_msr_switch(vcpu,
784                                            vmcs12->vm_entry_msr_load_count,
785                                            vmcs12->vm_entry_msr_load_addr)))
786                 return -EINVAL;
787
788         return 0;
789 }
790
791 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
792                                          struct vmcs12 *vmcs12)
793 {
794         if (!nested_cpu_has_pml(vmcs12))
795                 return 0;
796
797         if (CC(!nested_cpu_has_ept(vmcs12)) ||
798             CC(!page_address_valid(vcpu, vmcs12->pml_address)))
799                 return -EINVAL;
800
801         return 0;
802 }
803
804 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
805                                                         struct vmcs12 *vmcs12)
806 {
807         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
808                !nested_cpu_has_ept(vmcs12)))
809                 return -EINVAL;
810         return 0;
811 }
812
813 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
814                                                          struct vmcs12 *vmcs12)
815 {
816         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
817                !nested_cpu_has_ept(vmcs12)))
818                 return -EINVAL;
819         return 0;
820 }
821
822 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
823                                                  struct vmcs12 *vmcs12)
824 {
825         if (!nested_cpu_has_shadow_vmcs(vmcs12))
826                 return 0;
827
828         if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
829             CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
830                 return -EINVAL;
831
832         return 0;
833 }
834
835 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
836                                        struct vmx_msr_entry *e)
837 {
838         /* x2APIC MSR accesses are not allowed */
839         if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
840                 return -EINVAL;
841         if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
842             CC(e->index == MSR_IA32_UCODE_REV))
843                 return -EINVAL;
844         if (CC(e->reserved != 0))
845                 return -EINVAL;
846         return 0;
847 }
848
849 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
850                                      struct vmx_msr_entry *e)
851 {
852         if (CC(e->index == MSR_FS_BASE) ||
853             CC(e->index == MSR_GS_BASE) ||
854             CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
855             nested_vmx_msr_check_common(vcpu, e))
856                 return -EINVAL;
857         return 0;
858 }
859
860 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
861                                       struct vmx_msr_entry *e)
862 {
863         if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
864             nested_vmx_msr_check_common(vcpu, e))
865                 return -EINVAL;
866         return 0;
867 }
868
869 /*
870  * Load guest's/host's msr at nested entry/exit.
871  * return 0 for success, entry index for failure.
872  */
873 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
874 {
875         u32 i;
876         struct vmx_msr_entry e;
877
878         for (i = 0; i < count; i++) {
879                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
880                                         &e, sizeof(e))) {
881                         pr_debug_ratelimited(
882                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
883                                 __func__, i, gpa + i * sizeof(e));
884                         goto fail;
885                 }
886                 if (nested_vmx_load_msr_check(vcpu, &e)) {
887                         pr_debug_ratelimited(
888                                 "%s check failed (%u, 0x%x, 0x%x)\n",
889                                 __func__, i, e.index, e.reserved);
890                         goto fail;
891                 }
892                 if (kvm_set_msr(vcpu, e.index, e.value)) {
893                         pr_debug_ratelimited(
894                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
895                                 __func__, i, e.index, e.value);
896                         goto fail;
897                 }
898         }
899         return 0;
900 fail:
901         return i + 1;
902 }
903
904 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
905 {
906         u64 data;
907         u32 i;
908         struct vmx_msr_entry e;
909
910         for (i = 0; i < count; i++) {
911                 if (kvm_vcpu_read_guest(vcpu,
912                                         gpa + i * sizeof(e),
913                                         &e, 2 * sizeof(u32))) {
914                         pr_debug_ratelimited(
915                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
916                                 __func__, i, gpa + i * sizeof(e));
917                         return -EINVAL;
918                 }
919                 if (nested_vmx_store_msr_check(vcpu, &e)) {
920                         pr_debug_ratelimited(
921                                 "%s check failed (%u, 0x%x, 0x%x)\n",
922                                 __func__, i, e.index, e.reserved);
923                         return -EINVAL;
924                 }
925                 if (kvm_get_msr(vcpu, e.index, &data)) {
926                         pr_debug_ratelimited(
927                                 "%s cannot read MSR (%u, 0x%x)\n",
928                                 __func__, i, e.index);
929                         return -EINVAL;
930                 }
931                 if (kvm_vcpu_write_guest(vcpu,
932                                          gpa + i * sizeof(e) +
933                                              offsetof(struct vmx_msr_entry, value),
934                                          &data, sizeof(data))) {
935                         pr_debug_ratelimited(
936                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
937                                 __func__, i, e.index, data);
938                         return -EINVAL;
939                 }
940         }
941         return 0;
942 }
943
944 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
945 {
946         unsigned long invalid_mask;
947
948         invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
949         return (val & invalid_mask) == 0;
950 }
951
952 /*
953  * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
954  * emulating VM entry into a guest with EPT enabled.
955  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
956  * is assigned to entry_failure_code on failure.
957  */
958 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
959                                u32 *entry_failure_code)
960 {
961         if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
962                 if (CC(!nested_cr3_valid(vcpu, cr3))) {
963                         *entry_failure_code = ENTRY_FAIL_DEFAULT;
964                         return -EINVAL;
965                 }
966
967                 /*
968                  * If PAE paging and EPT are both on, CR3 is not used by the CPU and
969                  * must not be dereferenced.
970                  */
971                 if (is_pae_paging(vcpu) && !nested_ept) {
972                         if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
973                                 *entry_failure_code = ENTRY_FAIL_PDPTE;
974                                 return -EINVAL;
975                         }
976                 }
977         }
978
979         if (!nested_ept)
980                 kvm_mmu_new_cr3(vcpu, cr3, false);
981
982         vcpu->arch.cr3 = cr3;
983         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
984
985         kvm_init_mmu(vcpu, false);
986
987         return 0;
988 }
989
990 /*
991  * Returns if KVM is able to config CPU to tag TLB entries
992  * populated by L2 differently than TLB entries populated
993  * by L1.
994  *
995  * If L1 uses EPT, then TLB entries are tagged with different EPTP.
996  *
997  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
998  * with different VPID (L1 entries are tagged with vmx->vpid
999  * while L2 entries are tagged with vmx->nested.vpid02).
1000  */
1001 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1002 {
1003         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1004
1005         return nested_cpu_has_ept(vmcs12) ||
1006                (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1007 }
1008
1009 static u16 nested_get_vpid02(struct kvm_vcpu *vcpu)
1010 {
1011         struct vcpu_vmx *vmx = to_vmx(vcpu);
1012
1013         return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid;
1014 }
1015
1016
1017 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
1018 {
1019         return fixed_bits_valid(control, low, high);
1020 }
1021
1022 static inline u64 vmx_control_msr(u32 low, u32 high)
1023 {
1024         return low | ((u64)high << 32);
1025 }
1026
1027 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1028 {
1029         superset &= mask;
1030         subset &= mask;
1031
1032         return (superset | subset) == superset;
1033 }
1034
1035 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1036 {
1037         const u64 feature_and_reserved =
1038                 /* feature (except bit 48; see below) */
1039                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1040                 /* reserved */
1041                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1042         u64 vmx_basic = vmx->nested.msrs.basic;
1043
1044         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1045                 return -EINVAL;
1046
1047         /*
1048          * KVM does not emulate a version of VMX that constrains physical
1049          * addresses of VMX structures (e.g. VMCS) to 32-bits.
1050          */
1051         if (data & BIT_ULL(48))
1052                 return -EINVAL;
1053
1054         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1055             vmx_basic_vmcs_revision_id(data))
1056                 return -EINVAL;
1057
1058         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1059                 return -EINVAL;
1060
1061         vmx->nested.msrs.basic = data;
1062         return 0;
1063 }
1064
1065 static int
1066 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1067 {
1068         u64 supported;
1069         u32 *lowp, *highp;
1070
1071         switch (msr_index) {
1072         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1073                 lowp = &vmx->nested.msrs.pinbased_ctls_low;
1074                 highp = &vmx->nested.msrs.pinbased_ctls_high;
1075                 break;
1076         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1077                 lowp = &vmx->nested.msrs.procbased_ctls_low;
1078                 highp = &vmx->nested.msrs.procbased_ctls_high;
1079                 break;
1080         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1081                 lowp = &vmx->nested.msrs.exit_ctls_low;
1082                 highp = &vmx->nested.msrs.exit_ctls_high;
1083                 break;
1084         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1085                 lowp = &vmx->nested.msrs.entry_ctls_low;
1086                 highp = &vmx->nested.msrs.entry_ctls_high;
1087                 break;
1088         case MSR_IA32_VMX_PROCBASED_CTLS2:
1089                 lowp = &vmx->nested.msrs.secondary_ctls_low;
1090                 highp = &vmx->nested.msrs.secondary_ctls_high;
1091                 break;
1092         default:
1093                 BUG();
1094         }
1095
1096         supported = vmx_control_msr(*lowp, *highp);
1097
1098         /* Check must-be-1 bits are still 1. */
1099         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1100                 return -EINVAL;
1101
1102         /* Check must-be-0 bits are still 0. */
1103         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1104                 return -EINVAL;
1105
1106         *lowp = data;
1107         *highp = data >> 32;
1108         return 0;
1109 }
1110
1111 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1112 {
1113         const u64 feature_and_reserved_bits =
1114                 /* feature */
1115                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1116                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1117                 /* reserved */
1118                 GENMASK_ULL(13, 9) | BIT_ULL(31);
1119         u64 vmx_misc;
1120
1121         vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1122                                    vmx->nested.msrs.misc_high);
1123
1124         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1125                 return -EINVAL;
1126
1127         if ((vmx->nested.msrs.pinbased_ctls_high &
1128              PIN_BASED_VMX_PREEMPTION_TIMER) &&
1129             vmx_misc_preemption_timer_rate(data) !=
1130             vmx_misc_preemption_timer_rate(vmx_misc))
1131                 return -EINVAL;
1132
1133         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1134                 return -EINVAL;
1135
1136         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1137                 return -EINVAL;
1138
1139         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1140                 return -EINVAL;
1141
1142         vmx->nested.msrs.misc_low = data;
1143         vmx->nested.msrs.misc_high = data >> 32;
1144
1145         return 0;
1146 }
1147
1148 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1149 {
1150         u64 vmx_ept_vpid_cap;
1151
1152         vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1153                                            vmx->nested.msrs.vpid_caps);
1154
1155         /* Every bit is either reserved or a feature bit. */
1156         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1157                 return -EINVAL;
1158
1159         vmx->nested.msrs.ept_caps = data;
1160         vmx->nested.msrs.vpid_caps = data >> 32;
1161         return 0;
1162 }
1163
1164 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1165 {
1166         u64 *msr;
1167
1168         switch (msr_index) {
1169         case MSR_IA32_VMX_CR0_FIXED0:
1170                 msr = &vmx->nested.msrs.cr0_fixed0;
1171                 break;
1172         case MSR_IA32_VMX_CR4_FIXED0:
1173                 msr = &vmx->nested.msrs.cr4_fixed0;
1174                 break;
1175         default:
1176                 BUG();
1177         }
1178
1179         /*
1180          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1181          * must be 1 in the restored value.
1182          */
1183         if (!is_bitwise_subset(data, *msr, -1ULL))
1184                 return -EINVAL;
1185
1186         *msr = data;
1187         return 0;
1188 }
1189
1190 /*
1191  * Called when userspace is restoring VMX MSRs.
1192  *
1193  * Returns 0 on success, non-0 otherwise.
1194  */
1195 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1196 {
1197         struct vcpu_vmx *vmx = to_vmx(vcpu);
1198
1199         /*
1200          * Don't allow changes to the VMX capability MSRs while the vCPU
1201          * is in VMX operation.
1202          */
1203         if (vmx->nested.vmxon)
1204                 return -EBUSY;
1205
1206         switch (msr_index) {
1207         case MSR_IA32_VMX_BASIC:
1208                 return vmx_restore_vmx_basic(vmx, data);
1209         case MSR_IA32_VMX_PINBASED_CTLS:
1210         case MSR_IA32_VMX_PROCBASED_CTLS:
1211         case MSR_IA32_VMX_EXIT_CTLS:
1212         case MSR_IA32_VMX_ENTRY_CTLS:
1213                 /*
1214                  * The "non-true" VMX capability MSRs are generated from the
1215                  * "true" MSRs, so we do not support restoring them directly.
1216                  *
1217                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1218                  * should restore the "true" MSRs with the must-be-1 bits
1219                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1220                  * DEFAULT SETTINGS".
1221                  */
1222                 return -EINVAL;
1223         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1224         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1225         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1226         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1227         case MSR_IA32_VMX_PROCBASED_CTLS2:
1228                 return vmx_restore_control_msr(vmx, msr_index, data);
1229         case MSR_IA32_VMX_MISC:
1230                 return vmx_restore_vmx_misc(vmx, data);
1231         case MSR_IA32_VMX_CR0_FIXED0:
1232         case MSR_IA32_VMX_CR4_FIXED0:
1233                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1234         case MSR_IA32_VMX_CR0_FIXED1:
1235         case MSR_IA32_VMX_CR4_FIXED1:
1236                 /*
1237                  * These MSRs are generated based on the vCPU's CPUID, so we
1238                  * do not support restoring them directly.
1239                  */
1240                 return -EINVAL;
1241         case MSR_IA32_VMX_EPT_VPID_CAP:
1242                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1243         case MSR_IA32_VMX_VMCS_ENUM:
1244                 vmx->nested.msrs.vmcs_enum = data;
1245                 return 0;
1246         case MSR_IA32_VMX_VMFUNC:
1247                 if (data & ~vmx->nested.msrs.vmfunc_controls)
1248                         return -EINVAL;
1249                 vmx->nested.msrs.vmfunc_controls = data;
1250                 return 0;
1251         default:
1252                 /*
1253                  * The rest of the VMX capability MSRs do not support restore.
1254                  */
1255                 return -EINVAL;
1256         }
1257 }
1258
1259 /* Returns 0 on success, non-0 otherwise. */
1260 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1261 {
1262         switch (msr_index) {
1263         case MSR_IA32_VMX_BASIC:
1264                 *pdata = msrs->basic;
1265                 break;
1266         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1267         case MSR_IA32_VMX_PINBASED_CTLS:
1268                 *pdata = vmx_control_msr(
1269                         msrs->pinbased_ctls_low,
1270                         msrs->pinbased_ctls_high);
1271                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1272                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1273                 break;
1274         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1275         case MSR_IA32_VMX_PROCBASED_CTLS:
1276                 *pdata = vmx_control_msr(
1277                         msrs->procbased_ctls_low,
1278                         msrs->procbased_ctls_high);
1279                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1280                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1281                 break;
1282         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1283         case MSR_IA32_VMX_EXIT_CTLS:
1284                 *pdata = vmx_control_msr(
1285                         msrs->exit_ctls_low,
1286                         msrs->exit_ctls_high);
1287                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1288                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1289                 break;
1290         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1291         case MSR_IA32_VMX_ENTRY_CTLS:
1292                 *pdata = vmx_control_msr(
1293                         msrs->entry_ctls_low,
1294                         msrs->entry_ctls_high);
1295                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1296                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1297                 break;
1298         case MSR_IA32_VMX_MISC:
1299                 *pdata = vmx_control_msr(
1300                         msrs->misc_low,
1301                         msrs->misc_high);
1302                 break;
1303         case MSR_IA32_VMX_CR0_FIXED0:
1304                 *pdata = msrs->cr0_fixed0;
1305                 break;
1306         case MSR_IA32_VMX_CR0_FIXED1:
1307                 *pdata = msrs->cr0_fixed1;
1308                 break;
1309         case MSR_IA32_VMX_CR4_FIXED0:
1310                 *pdata = msrs->cr4_fixed0;
1311                 break;
1312         case MSR_IA32_VMX_CR4_FIXED1:
1313                 *pdata = msrs->cr4_fixed1;
1314                 break;
1315         case MSR_IA32_VMX_VMCS_ENUM:
1316                 *pdata = msrs->vmcs_enum;
1317                 break;
1318         case MSR_IA32_VMX_PROCBASED_CTLS2:
1319                 *pdata = vmx_control_msr(
1320                         msrs->secondary_ctls_low,
1321                         msrs->secondary_ctls_high);
1322                 break;
1323         case MSR_IA32_VMX_EPT_VPID_CAP:
1324                 *pdata = msrs->ept_caps |
1325                         ((u64)msrs->vpid_caps << 32);
1326                 break;
1327         case MSR_IA32_VMX_VMFUNC:
1328                 *pdata = msrs->vmfunc_controls;
1329                 break;
1330         default:
1331                 return 1;
1332         }
1333
1334         return 0;
1335 }
1336
1337 /*
1338  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1339  * been modified by the L1 guest.  Note, "writable" in this context means
1340  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1341  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1342  * VM-exit information fields (which are actually writable if the vCPU is
1343  * configured to support "VMWRITE to any supported field in the VMCS").
1344  */
1345 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1346 {
1347         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1348         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1349         struct shadow_vmcs_field field;
1350         unsigned long val;
1351         int i;
1352
1353         if (WARN_ON(!shadow_vmcs))
1354                 return;
1355
1356         preempt_disable();
1357
1358         vmcs_load(shadow_vmcs);
1359
1360         for (i = 0; i < max_shadow_read_write_fields; i++) {
1361                 field = shadow_read_write_fields[i];
1362                 val = __vmcs_readl(field.encoding);
1363                 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1364         }
1365
1366         vmcs_clear(shadow_vmcs);
1367         vmcs_load(vmx->loaded_vmcs->vmcs);
1368
1369         preempt_enable();
1370 }
1371
1372 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1373 {
1374         const struct shadow_vmcs_field *fields[] = {
1375                 shadow_read_write_fields,
1376                 shadow_read_only_fields
1377         };
1378         const int max_fields[] = {
1379                 max_shadow_read_write_fields,
1380                 max_shadow_read_only_fields
1381         };
1382         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1383         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1384         struct shadow_vmcs_field field;
1385         unsigned long val;
1386         int i, q;
1387
1388         if (WARN_ON(!shadow_vmcs))
1389                 return;
1390
1391         vmcs_load(shadow_vmcs);
1392
1393         for (q = 0; q < ARRAY_SIZE(fields); q++) {
1394                 for (i = 0; i < max_fields[q]; i++) {
1395                         field = fields[q][i];
1396                         val = vmcs12_read_any(vmcs12, field.encoding,
1397                                               field.offset);
1398                         __vmcs_writel(field.encoding, val);
1399                 }
1400         }
1401
1402         vmcs_clear(shadow_vmcs);
1403         vmcs_load(vmx->loaded_vmcs->vmcs);
1404 }
1405
1406 static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1407 {
1408         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1409         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1410
1411         /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1412         vmcs12->tpr_threshold = evmcs->tpr_threshold;
1413         vmcs12->guest_rip = evmcs->guest_rip;
1414
1415         if (unlikely(!(evmcs->hv_clean_fields &
1416                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1417                 vmcs12->guest_rsp = evmcs->guest_rsp;
1418                 vmcs12->guest_rflags = evmcs->guest_rflags;
1419                 vmcs12->guest_interruptibility_info =
1420                         evmcs->guest_interruptibility_info;
1421         }
1422
1423         if (unlikely(!(evmcs->hv_clean_fields &
1424                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1425                 vmcs12->cpu_based_vm_exec_control =
1426                         evmcs->cpu_based_vm_exec_control;
1427         }
1428
1429         if (unlikely(!(evmcs->hv_clean_fields &
1430                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1431                 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1432         }
1433
1434         if (unlikely(!(evmcs->hv_clean_fields &
1435                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1436                 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1437         }
1438
1439         if (unlikely(!(evmcs->hv_clean_fields &
1440                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1441                 vmcs12->vm_entry_intr_info_field =
1442                         evmcs->vm_entry_intr_info_field;
1443                 vmcs12->vm_entry_exception_error_code =
1444                         evmcs->vm_entry_exception_error_code;
1445                 vmcs12->vm_entry_instruction_len =
1446                         evmcs->vm_entry_instruction_len;
1447         }
1448
1449         if (unlikely(!(evmcs->hv_clean_fields &
1450                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1451                 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1452                 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1453                 vmcs12->host_cr0 = evmcs->host_cr0;
1454                 vmcs12->host_cr3 = evmcs->host_cr3;
1455                 vmcs12->host_cr4 = evmcs->host_cr4;
1456                 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1457                 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1458                 vmcs12->host_rip = evmcs->host_rip;
1459                 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1460                 vmcs12->host_es_selector = evmcs->host_es_selector;
1461                 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1462                 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1463                 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1464                 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1465                 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1466                 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1467         }
1468
1469         if (unlikely(!(evmcs->hv_clean_fields &
1470                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1471                 vmcs12->pin_based_vm_exec_control =
1472                         evmcs->pin_based_vm_exec_control;
1473                 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1474                 vmcs12->secondary_vm_exec_control =
1475                         evmcs->secondary_vm_exec_control;
1476         }
1477
1478         if (unlikely(!(evmcs->hv_clean_fields &
1479                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1480                 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1481                 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1482         }
1483
1484         if (unlikely(!(evmcs->hv_clean_fields &
1485                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1486                 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1487         }
1488
1489         if (unlikely(!(evmcs->hv_clean_fields &
1490                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1491                 vmcs12->guest_es_base = evmcs->guest_es_base;
1492                 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1493                 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1494                 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1495                 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1496                 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1497                 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1498                 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1499                 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1500                 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1501                 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1502                 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1503                 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1504                 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1505                 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1506                 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1507                 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1508                 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1509                 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1510                 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1511                 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1512                 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1513                 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1514                 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1515                 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1516                 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1517                 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1518                 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1519                 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1520                 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1521                 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1522                 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1523                 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1524                 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1525                 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1526                 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1527         }
1528
1529         if (unlikely(!(evmcs->hv_clean_fields &
1530                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1531                 vmcs12->tsc_offset = evmcs->tsc_offset;
1532                 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1533                 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1534         }
1535
1536         if (unlikely(!(evmcs->hv_clean_fields &
1537                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1538                 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1539                 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1540                 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1541                 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1542                 vmcs12->guest_cr0 = evmcs->guest_cr0;
1543                 vmcs12->guest_cr3 = evmcs->guest_cr3;
1544                 vmcs12->guest_cr4 = evmcs->guest_cr4;
1545                 vmcs12->guest_dr7 = evmcs->guest_dr7;
1546         }
1547
1548         if (unlikely(!(evmcs->hv_clean_fields &
1549                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1550                 vmcs12->host_fs_base = evmcs->host_fs_base;
1551                 vmcs12->host_gs_base = evmcs->host_gs_base;
1552                 vmcs12->host_tr_base = evmcs->host_tr_base;
1553                 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1554                 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1555                 vmcs12->host_rsp = evmcs->host_rsp;
1556         }
1557
1558         if (unlikely(!(evmcs->hv_clean_fields &
1559                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1560                 vmcs12->ept_pointer = evmcs->ept_pointer;
1561                 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1562         }
1563
1564         if (unlikely(!(evmcs->hv_clean_fields &
1565                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1566                 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1567                 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1568                 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1569                 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1570                 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1571                 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1572                 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1573                 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1574                 vmcs12->guest_pending_dbg_exceptions =
1575                         evmcs->guest_pending_dbg_exceptions;
1576                 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1577                 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1578                 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1579                 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1580                 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1581         }
1582
1583         /*
1584          * Not used?
1585          * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1586          * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1587          * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1588          * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0;
1589          * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1;
1590          * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2;
1591          * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3;
1592          * vmcs12->page_fault_error_code_mask =
1593          *              evmcs->page_fault_error_code_mask;
1594          * vmcs12->page_fault_error_code_match =
1595          *              evmcs->page_fault_error_code_match;
1596          * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1597          * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1598          * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1599          * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1600          */
1601
1602         /*
1603          * Read only fields:
1604          * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1605          * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1606          * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1607          * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1608          * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1609          * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1610          * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1611          * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1612          * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1613          * vmcs12->exit_qualification = evmcs->exit_qualification;
1614          * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1615          *
1616          * Not present in struct vmcs12:
1617          * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1618          * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1619          * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1620          * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1621          */
1622
1623         return 0;
1624 }
1625
1626 static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1627 {
1628         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1629         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1630
1631         /*
1632          * Should not be changed by KVM:
1633          *
1634          * evmcs->host_es_selector = vmcs12->host_es_selector;
1635          * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1636          * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1637          * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1638          * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1639          * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1640          * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1641          * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1642          * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1643          * evmcs->host_cr0 = vmcs12->host_cr0;
1644          * evmcs->host_cr3 = vmcs12->host_cr3;
1645          * evmcs->host_cr4 = vmcs12->host_cr4;
1646          * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1647          * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1648          * evmcs->host_rip = vmcs12->host_rip;
1649          * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1650          * evmcs->host_fs_base = vmcs12->host_fs_base;
1651          * evmcs->host_gs_base = vmcs12->host_gs_base;
1652          * evmcs->host_tr_base = vmcs12->host_tr_base;
1653          * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1654          * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1655          * evmcs->host_rsp = vmcs12->host_rsp;
1656          * sync_vmcs02_to_vmcs12() doesn't read these:
1657          * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1658          * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1659          * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1660          * evmcs->ept_pointer = vmcs12->ept_pointer;
1661          * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1662          * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1663          * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1664          * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1665          * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0;
1666          * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1;
1667          * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2;
1668          * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3;
1669          * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1670          * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1671          * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1672          * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1673          * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1674          * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1675          * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1676          * evmcs->page_fault_error_code_mask =
1677          *              vmcs12->page_fault_error_code_mask;
1678          * evmcs->page_fault_error_code_match =
1679          *              vmcs12->page_fault_error_code_match;
1680          * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1681          * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1682          * evmcs->tsc_offset = vmcs12->tsc_offset;
1683          * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1684          * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1685          * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1686          * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1687          * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1688          * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1689          * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1690          * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1691          *
1692          * Not present in struct vmcs12:
1693          * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1694          * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1695          * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1696          * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1697          */
1698
1699         evmcs->guest_es_selector = vmcs12->guest_es_selector;
1700         evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1701         evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1702         evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1703         evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1704         evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1705         evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1706         evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1707
1708         evmcs->guest_es_limit = vmcs12->guest_es_limit;
1709         evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1710         evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1711         evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1712         evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1713         evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1714         evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1715         evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1716         evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1717         evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1718
1719         evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1720         evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1721         evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1722         evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1723         evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1724         evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1725         evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1726         evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1727
1728         evmcs->guest_es_base = vmcs12->guest_es_base;
1729         evmcs->guest_cs_base = vmcs12->guest_cs_base;
1730         evmcs->guest_ss_base = vmcs12->guest_ss_base;
1731         evmcs->guest_ds_base = vmcs12->guest_ds_base;
1732         evmcs->guest_fs_base = vmcs12->guest_fs_base;
1733         evmcs->guest_gs_base = vmcs12->guest_gs_base;
1734         evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1735         evmcs->guest_tr_base = vmcs12->guest_tr_base;
1736         evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1737         evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1738
1739         evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1740         evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1741
1742         evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1743         evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1744         evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1745         evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1746
1747         evmcs->guest_pending_dbg_exceptions =
1748                 vmcs12->guest_pending_dbg_exceptions;
1749         evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1750         evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1751
1752         evmcs->guest_activity_state = vmcs12->guest_activity_state;
1753         evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1754
1755         evmcs->guest_cr0 = vmcs12->guest_cr0;
1756         evmcs->guest_cr3 = vmcs12->guest_cr3;
1757         evmcs->guest_cr4 = vmcs12->guest_cr4;
1758         evmcs->guest_dr7 = vmcs12->guest_dr7;
1759
1760         evmcs->guest_physical_address = vmcs12->guest_physical_address;
1761
1762         evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1763         evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1764         evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1765         evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1766         evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1767         evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1768         evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1769         evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1770
1771         evmcs->exit_qualification = vmcs12->exit_qualification;
1772
1773         evmcs->guest_linear_address = vmcs12->guest_linear_address;
1774         evmcs->guest_rsp = vmcs12->guest_rsp;
1775         evmcs->guest_rflags = vmcs12->guest_rflags;
1776
1777         evmcs->guest_interruptibility_info =
1778                 vmcs12->guest_interruptibility_info;
1779         evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1780         evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1781         evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1782         evmcs->vm_entry_exception_error_code =
1783                 vmcs12->vm_entry_exception_error_code;
1784         evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1785
1786         evmcs->guest_rip = vmcs12->guest_rip;
1787
1788         evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1789
1790         return 0;
1791 }
1792
1793 /*
1794  * This is an equivalent of the nested hypervisor executing the vmptrld
1795  * instruction.
1796  */
1797 static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu,
1798                                                  bool from_launch)
1799 {
1800         struct vcpu_vmx *vmx = to_vmx(vcpu);
1801         bool evmcs_gpa_changed = false;
1802         u64 evmcs_gpa;
1803
1804         if (likely(!vmx->nested.enlightened_vmcs_enabled))
1805                 return 1;
1806
1807         if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa))
1808                 return 1;
1809
1810         if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1811                 if (!vmx->nested.hv_evmcs)
1812                         vmx->nested.current_vmptr = -1ull;
1813
1814                 nested_release_evmcs(vcpu);
1815
1816                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
1817                                  &vmx->nested.hv_evmcs_map))
1818                         return 0;
1819
1820                 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
1821
1822                 /*
1823                  * Currently, KVM only supports eVMCS version 1
1824                  * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
1825                  * value to first u32 field of eVMCS which should specify eVMCS
1826                  * VersionNumber.
1827                  *
1828                  * Guest should be aware of supported eVMCS versions by host by
1829                  * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
1830                  * expected to set this CPUID leaf according to the value
1831                  * returned in vmcs_version from nested_enable_evmcs().
1832                  *
1833                  * However, it turns out that Microsoft Hyper-V fails to comply
1834                  * to their own invented interface: When Hyper-V use eVMCS, it
1835                  * just sets first u32 field of eVMCS to revision_id specified
1836                  * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
1837                  * which is one of the supported versions specified in
1838                  * CPUID.0x4000000A.EAX[0:15].
1839                  *
1840                  * To overcome Hyper-V bug, we accept here either a supported
1841                  * eVMCS version or VMCS12 revision_id as valid values for first
1842                  * u32 field of eVMCS.
1843                  */
1844                 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
1845                     (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
1846                         nested_release_evmcs(vcpu);
1847                         return 0;
1848                 }
1849
1850                 vmx->nested.dirty_vmcs12 = true;
1851                 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
1852
1853                 evmcs_gpa_changed = true;
1854                 /*
1855                  * Unlike normal vmcs12, enlightened vmcs12 is not fully
1856                  * reloaded from guest's memory (read only fields, fields not
1857                  * present in struct hv_enlightened_vmcs, ...). Make sure there
1858                  * are no leftovers.
1859                  */
1860                 if (from_launch) {
1861                         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1862                         memset(vmcs12, 0, sizeof(*vmcs12));
1863                         vmcs12->hdr.revision_id = VMCS12_REVISION;
1864                 }
1865
1866         }
1867
1868         /*
1869          * Clean fields data can't de used on VMLAUNCH and when we switch
1870          * between different L2 guests as KVM keeps a single VMCS12 per L1.
1871          */
1872         if (from_launch || evmcs_gpa_changed)
1873                 vmx->nested.hv_evmcs->hv_clean_fields &=
1874                         ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1875
1876         return 1;
1877 }
1878
1879 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
1880 {
1881         struct vcpu_vmx *vmx = to_vmx(vcpu);
1882
1883         /*
1884          * hv_evmcs may end up being not mapped after migration (when
1885          * L2 was running), map it here to make sure vmcs12 changes are
1886          * properly reflected.
1887          */
1888         if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs)
1889                 nested_vmx_handle_enlightened_vmptrld(vcpu, false);
1890
1891         if (vmx->nested.hv_evmcs) {
1892                 copy_vmcs12_to_enlightened(vmx);
1893                 /* All fields are clean */
1894                 vmx->nested.hv_evmcs->hv_clean_fields |=
1895                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1896         } else {
1897                 copy_vmcs12_to_shadow(vmx);
1898         }
1899
1900         vmx->nested.need_vmcs12_to_shadow_sync = false;
1901 }
1902
1903 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
1904 {
1905         struct vcpu_vmx *vmx =
1906                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
1907
1908         vmx->nested.preemption_timer_expired = true;
1909         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
1910         kvm_vcpu_kick(&vmx->vcpu);
1911
1912         return HRTIMER_NORESTART;
1913 }
1914
1915 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
1916 {
1917         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
1918         struct vcpu_vmx *vmx = to_vmx(vcpu);
1919
1920         /*
1921          * A timer value of zero is architecturally guaranteed to cause
1922          * a VMExit prior to executing any instructions in the guest.
1923          */
1924         if (preemption_timeout == 0) {
1925                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
1926                 return;
1927         }
1928
1929         if (vcpu->arch.virtual_tsc_khz == 0)
1930                 return;
1931
1932         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
1933         preemption_timeout *= 1000000;
1934         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
1935         hrtimer_start(&vmx->nested.preemption_timer,
1936                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
1937 }
1938
1939 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
1940 {
1941         if (vmx->nested.nested_run_pending &&
1942             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
1943                 return vmcs12->guest_ia32_efer;
1944         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
1945                 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
1946         else
1947                 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
1948 }
1949
1950 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
1951 {
1952         /*
1953          * If vmcs02 hasn't been initialized, set the constant vmcs02 state
1954          * according to L0's settings (vmcs12 is irrelevant here).  Host
1955          * fields that come from L0 and are not constant, e.g. HOST_CR3,
1956          * will be set as needed prior to VMLAUNCH/VMRESUME.
1957          */
1958         if (vmx->nested.vmcs02_initialized)
1959                 return;
1960         vmx->nested.vmcs02_initialized = true;
1961
1962         /*
1963          * We don't care what the EPTP value is we just need to guarantee
1964          * it's valid so we don't get a false positive when doing early
1965          * consistency checks.
1966          */
1967         if (enable_ept && nested_early_check)
1968                 vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
1969
1970         /* All VMFUNCs are currently emulated through L0 vmexits.  */
1971         if (cpu_has_vmx_vmfunc())
1972                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
1973
1974         if (cpu_has_vmx_posted_intr())
1975                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
1976
1977         if (cpu_has_vmx_msr_bitmap())
1978                 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
1979
1980         /*
1981          * The PML address never changes, so it is constant in vmcs02.
1982          * Conceptually we want to copy the PML index from vmcs01 here,
1983          * and then back to vmcs01 on nested vmexit.  But since we flush
1984          * the log and reset GUEST_PML_INDEX on each vmexit, the PML
1985          * index is also effectively constant in vmcs02.
1986          */
1987         if (enable_pml) {
1988                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
1989                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
1990         }
1991
1992         if (cpu_has_vmx_encls_vmexit())
1993                 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
1994
1995         /*
1996          * Set the MSR load/store lists to match L0's settings.  Only the
1997          * addresses are constant (for vmcs02), the counts can change based
1998          * on L2's behavior, e.g. switching to/from long mode.
1999          */
2000         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2001         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2002         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2003
2004         vmx_set_constant_host_state(vmx);
2005 }
2006
2007 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2008                                       struct vmcs12 *vmcs12)
2009 {
2010         prepare_vmcs02_constant_state(vmx);
2011
2012         vmcs_write64(VMCS_LINK_POINTER, -1ull);
2013
2014         if (enable_vpid) {
2015                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2016                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2017                 else
2018                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2019         }
2020 }
2021
2022 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2023 {
2024         u32 exec_control, vmcs12_exec_ctrl;
2025         u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2026
2027         if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
2028                 prepare_vmcs02_early_rare(vmx, vmcs12);
2029
2030         /*
2031          * PIN CONTROLS
2032          */
2033         exec_control = vmx_pin_based_exec_ctrl(vmx);
2034         exec_control |= (vmcs12->pin_based_vm_exec_control &
2035                          ~PIN_BASED_VMX_PREEMPTION_TIMER);
2036
2037         /* Posted interrupts setting is only taken from vmcs12.  */
2038         if (nested_cpu_has_posted_intr(vmcs12)) {
2039                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2040                 vmx->nested.pi_pending = false;
2041         } else {
2042                 exec_control &= ~PIN_BASED_POSTED_INTR;
2043         }
2044         pin_controls_set(vmx, exec_control);
2045
2046         /*
2047          * EXEC CONTROLS
2048          */
2049         exec_control = vmx_exec_control(vmx); /* L0's desires */
2050         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2051         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
2052         exec_control &= ~CPU_BASED_TPR_SHADOW;
2053         exec_control |= vmcs12->cpu_based_vm_exec_control;
2054
2055         if (exec_control & CPU_BASED_TPR_SHADOW)
2056                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2057 #ifdef CONFIG_X86_64
2058         else
2059                 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2060                                 CPU_BASED_CR8_STORE_EXITING;
2061 #endif
2062
2063         /*
2064          * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2065          * for I/O port accesses.
2066          */
2067         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2068         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2069
2070         /*
2071          * This bit will be computed in nested_get_vmcs12_pages, because
2072          * we do not have access to L1's MSR bitmap yet.  For now, keep
2073          * the same bit as before, hoping to avoid multiple VMWRITEs that
2074          * only set/clear this bit.
2075          */
2076         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2077         exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2078
2079         exec_controls_set(vmx, exec_control);
2080
2081         /*
2082          * SECONDARY EXEC CONTROLS
2083          */
2084         if (cpu_has_secondary_exec_ctrls()) {
2085                 exec_control = vmx->secondary_exec_control;
2086
2087                 /* Take the following fields only from vmcs12 */
2088                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2089                                   SECONDARY_EXEC_ENABLE_INVPCID |
2090                                   SECONDARY_EXEC_RDTSCP |
2091                                   SECONDARY_EXEC_XSAVES |
2092                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2093                                   SECONDARY_EXEC_APIC_REGISTER_VIRT |
2094                                   SECONDARY_EXEC_ENABLE_VMFUNC);
2095                 if (nested_cpu_has(vmcs12,
2096                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
2097                         vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
2098                                 ~SECONDARY_EXEC_ENABLE_PML;
2099                         exec_control |= vmcs12_exec_ctrl;
2100                 }
2101
2102                 /* VMCS shadowing for L2 is emulated for now */
2103                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2104
2105                 /*
2106                  * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2107                  * will not have to rewrite the controls just for this bit.
2108                  */
2109                 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2110                     (vmcs12->guest_cr4 & X86_CR4_UMIP))
2111                         exec_control |= SECONDARY_EXEC_DESC;
2112
2113                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2114                         vmcs_write16(GUEST_INTR_STATUS,
2115                                 vmcs12->guest_intr_status);
2116
2117                 secondary_exec_controls_set(vmx, exec_control);
2118         }
2119
2120         /*
2121          * ENTRY CONTROLS
2122          *
2123          * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2124          * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2125          * on the related bits (if supported by the CPU) in the hope that
2126          * we can avoid VMWrites during vmx_set_efer().
2127          */
2128         exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2129                         ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2130         if (cpu_has_load_ia32_efer()) {
2131                 if (guest_efer & EFER_LMA)
2132                         exec_control |= VM_ENTRY_IA32E_MODE;
2133                 if (guest_efer != host_efer)
2134                         exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2135         }
2136         vm_entry_controls_set(vmx, exec_control);
2137
2138         /*
2139          * EXIT CONTROLS
2140          *
2141          * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2142          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2143          * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2144          */
2145         exec_control = vmx_vmexit_ctrl();
2146         if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2147                 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2148         vm_exit_controls_set(vmx, exec_control);
2149
2150         /*
2151          * Interrupt/Exception Fields
2152          */
2153         if (vmx->nested.nested_run_pending) {
2154                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2155                              vmcs12->vm_entry_intr_info_field);
2156                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2157                              vmcs12->vm_entry_exception_error_code);
2158                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2159                              vmcs12->vm_entry_instruction_len);
2160                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2161                              vmcs12->guest_interruptibility_info);
2162                 vmx->loaded_vmcs->nmi_known_unmasked =
2163                         !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2164         } else {
2165                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2166         }
2167 }
2168
2169 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2170 {
2171         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2172
2173         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2174                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2175                 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2176                 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2177                 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2178                 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2179                 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2180                 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2181                 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2182                 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2183                 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2184                 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2185                 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2186                 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2187                 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2188                 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2189                 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2190                 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2191                 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2192                 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2193                 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2194                 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2195                 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2196                 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2197                 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2198                 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2199                 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2200                 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2201                 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2202                 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2203                 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2204                 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2205                 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2206                 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2207                 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2208                 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2209                 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2210                 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2211         }
2212
2213         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2214                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2215                 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2216                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2217                             vmcs12->guest_pending_dbg_exceptions);
2218                 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2219                 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2220
2221                 /*
2222                  * L1 may access the L2's PDPTR, so save them to construct
2223                  * vmcs12
2224                  */
2225                 if (enable_ept) {
2226                         vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2227                         vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2228                         vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2229                         vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2230                 }
2231
2232                 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2233                     (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2234                         vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2235         }
2236
2237         if (nested_cpu_has_xsaves(vmcs12))
2238                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2239
2240         /*
2241          * Whether page-faults are trapped is determined by a combination of
2242          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
2243          * If enable_ept, L0 doesn't care about page faults and we should
2244          * set all of these to L1's desires. However, if !enable_ept, L0 does
2245          * care about (at least some) page faults, and because it is not easy
2246          * (if at all possible?) to merge L0 and L1's desires, we simply ask
2247          * to exit on each and every L2 page fault. This is done by setting
2248          * MASK=MATCH=0 and (see below) EB.PF=1.
2249          * Note that below we don't need special code to set EB.PF beyond the
2250          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2251          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2252          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2253          */
2254         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
2255                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
2256         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
2257                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
2258
2259         if (cpu_has_vmx_apicv()) {
2260                 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2261                 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2262                 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2263                 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2264         }
2265
2266         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2267         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2268
2269         set_cr4_guest_host_mask(vmx);
2270 }
2271
2272 /*
2273  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2274  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2275  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2276  * guest in a way that will both be appropriate to L1's requests, and our
2277  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2278  * function also has additional necessary side-effects, like setting various
2279  * vcpu->arch fields.
2280  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2281  * is assigned to entry_failure_code on failure.
2282  */
2283 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2284                           u32 *entry_failure_code)
2285 {
2286         struct vcpu_vmx *vmx = to_vmx(vcpu);
2287         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2288         bool load_guest_pdptrs_vmcs12 = false;
2289
2290         if (vmx->nested.dirty_vmcs12 || hv_evmcs) {
2291                 prepare_vmcs02_rare(vmx, vmcs12);
2292                 vmx->nested.dirty_vmcs12 = false;
2293
2294                 load_guest_pdptrs_vmcs12 = !hv_evmcs ||
2295                         !(hv_evmcs->hv_clean_fields &
2296                           HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2297         }
2298
2299         if (vmx->nested.nested_run_pending &&
2300             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2301                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2302                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2303         } else {
2304                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2305                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2306         }
2307         if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2308             !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2309                 vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2310         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2311
2312         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2313          * bitwise-or of what L1 wants to trap for L2, and what we want to
2314          * trap. Note that CR0.TS also needs updating - we do this later.
2315          */
2316         update_exception_bitmap(vcpu);
2317         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2318         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2319
2320         if (vmx->nested.nested_run_pending &&
2321             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2322                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2323                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2324         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2325                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2326         }
2327
2328         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2329
2330         if (kvm_has_tsc_control)
2331                 decache_tsc_multiplier(vmx);
2332
2333         if (enable_vpid) {
2334                 /*
2335                  * There is no direct mapping between vpid02 and vpid12, the
2336                  * vpid02 is per-vCPU for L0 and reused while the value of
2337                  * vpid12 is changed w/ one invvpid during nested vmentry.
2338                  * The vpid12 is allocated by L1 for L2, so it will not
2339                  * influence global bitmap(for vpid01 and vpid02 allocation)
2340                  * even if spawn a lot of nested vCPUs.
2341                  */
2342                 if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) {
2343                         if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
2344                                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
2345                                 __vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false);
2346                         }
2347                 } else {
2348                         /*
2349                          * If L1 use EPT, then L0 needs to execute INVEPT on
2350                          * EPTP02 instead of EPTP01. Therefore, delay TLB
2351                          * flush until vmcs02->eptp is fully updated by
2352                          * KVM_REQ_LOAD_CR3. Note that this assumes
2353                          * KVM_REQ_TLB_FLUSH is evaluated after
2354                          * KVM_REQ_LOAD_CR3 in vcpu_enter_guest().
2355                          */
2356                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2357                 }
2358         }
2359
2360         if (nested_cpu_has_ept(vmcs12))
2361                 nested_ept_init_mmu_context(vcpu);
2362         else if (nested_cpu_has2(vmcs12,
2363                                  SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2364                 vmx_flush_tlb(vcpu, true);
2365
2366         /*
2367          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2368          * bits which we consider mandatory enabled.
2369          * The CR0_READ_SHADOW is what L2 should have expected to read given
2370          * the specifications by L1; It's not enough to take
2371          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2372          * have more bits than L1 expected.
2373          */
2374         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2375         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2376
2377         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2378         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2379
2380         vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2381         /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2382         vmx_set_efer(vcpu, vcpu->arch.efer);
2383
2384         /*
2385          * Guest state is invalid and unrestricted guest is disabled,
2386          * which means L1 attempted VMEntry to L2 with invalid state.
2387          * Fail the VMEntry.
2388          */
2389         if (vmx->emulation_required) {
2390                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2391                 return -EINVAL;
2392         }
2393
2394         /* Shadow page tables on either EPT or shadow page tables. */
2395         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2396                                 entry_failure_code))
2397                 return -EINVAL;
2398
2399         /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2400         if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2401             is_pae_paging(vcpu)) {
2402                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2403                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2404                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2405                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2406         }
2407
2408         if (!enable_ept)
2409                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2410
2411         kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2412         kvm_rip_write(vcpu, vmcs12->guest_rip);
2413         return 0;
2414 }
2415
2416 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2417 {
2418         if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2419                nested_cpu_has_virtual_nmis(vmcs12)))
2420                 return -EINVAL;
2421
2422         if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2423                nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING)))
2424                 return -EINVAL;
2425
2426         return 0;
2427 }
2428
2429 static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
2430 {
2431         struct vcpu_vmx *vmx = to_vmx(vcpu);
2432         int maxphyaddr = cpuid_maxphyaddr(vcpu);
2433
2434         /* Check for memory type validity */
2435         switch (address & VMX_EPTP_MT_MASK) {
2436         case VMX_EPTP_MT_UC:
2437                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2438                         return false;
2439                 break;
2440         case VMX_EPTP_MT_WB:
2441                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2442                         return false;
2443                 break;
2444         default:
2445                 return false;
2446         }
2447
2448         /* only 4 levels page-walk length are valid */
2449         if (CC((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4))
2450                 return false;
2451
2452         /* Reserved bits should not be set */
2453         if (CC(address >> maxphyaddr || ((address >> 7) & 0x1f)))
2454                 return false;
2455
2456         /* AD, if set, should be supported */
2457         if (address & VMX_EPTP_AD_ENABLE_BIT) {
2458                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2459                         return false;
2460         }
2461
2462         return true;
2463 }
2464
2465 /*
2466  * Checks related to VM-Execution Control Fields
2467  */
2468 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2469                                               struct vmcs12 *vmcs12)
2470 {
2471         struct vcpu_vmx *vmx = to_vmx(vcpu);
2472
2473         if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2474                                    vmx->nested.msrs.pinbased_ctls_low,
2475                                    vmx->nested.msrs.pinbased_ctls_high)) ||
2476             CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2477                                    vmx->nested.msrs.procbased_ctls_low,
2478                                    vmx->nested.msrs.procbased_ctls_high)))
2479                 return -EINVAL;
2480
2481         if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2482             CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2483                                    vmx->nested.msrs.secondary_ctls_low,
2484                                    vmx->nested.msrs.secondary_ctls_high)))
2485                 return -EINVAL;
2486
2487         if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2488             nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2489             nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2490             nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2491             nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2492             nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2493             nested_vmx_check_nmi_controls(vmcs12) ||
2494             nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2495             nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2496             nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2497             nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2498             CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2499                 return -EINVAL;
2500
2501         if (!nested_cpu_has_preemption_timer(vmcs12) &&
2502             nested_cpu_has_save_preemption_timer(vmcs12))
2503                 return -EINVAL;
2504
2505         if (nested_cpu_has_ept(vmcs12) &&
2506             CC(!valid_ept_address(vcpu, vmcs12->ept_pointer)))
2507                 return -EINVAL;
2508
2509         if (nested_cpu_has_vmfunc(vmcs12)) {
2510                 if (CC(vmcs12->vm_function_control &
2511                        ~vmx->nested.msrs.vmfunc_controls))
2512                         return -EINVAL;
2513
2514                 if (nested_cpu_has_eptp_switching(vmcs12)) {
2515                         if (CC(!nested_cpu_has_ept(vmcs12)) ||
2516                             CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2517                                 return -EINVAL;
2518                 }
2519         }
2520
2521         return 0;
2522 }
2523
2524 /*
2525  * Checks related to VM-Exit Control Fields
2526  */
2527 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2528                                          struct vmcs12 *vmcs12)
2529 {
2530         struct vcpu_vmx *vmx = to_vmx(vcpu);
2531
2532         if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2533                                     vmx->nested.msrs.exit_ctls_low,
2534                                     vmx->nested.msrs.exit_ctls_high)) ||
2535             CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2536                 return -EINVAL;
2537
2538         return 0;
2539 }
2540
2541 /*
2542  * Checks related to VM-Entry Control Fields
2543  */
2544 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2545                                           struct vmcs12 *vmcs12)
2546 {
2547         struct vcpu_vmx *vmx = to_vmx(vcpu);
2548
2549         if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2550                                     vmx->nested.msrs.entry_ctls_low,
2551                                     vmx->nested.msrs.entry_ctls_high)))
2552                 return -EINVAL;
2553
2554         /*
2555          * From the Intel SDM, volume 3:
2556          * Fields relevant to VM-entry event injection must be set properly.
2557          * These fields are the VM-entry interruption-information field, the
2558          * VM-entry exception error code, and the VM-entry instruction length.
2559          */
2560         if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2561                 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2562                 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2563                 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2564                 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2565                 bool should_have_error_code;
2566                 bool urg = nested_cpu_has2(vmcs12,
2567                                            SECONDARY_EXEC_UNRESTRICTED_GUEST);
2568                 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2569
2570                 /* VM-entry interruption-info field: interruption type */
2571                 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2572                     CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2573                        !nested_cpu_supports_monitor_trap_flag(vcpu)))
2574                         return -EINVAL;
2575
2576                 /* VM-entry interruption-info field: vector */
2577                 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2578                     CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2579                     CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2580                         return -EINVAL;
2581
2582                 /* VM-entry interruption-info field: deliver error code */
2583                 should_have_error_code =
2584                         intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2585                         x86_exception_has_error_code(vector);
2586                 if (CC(has_error_code != should_have_error_code))
2587                         return -EINVAL;
2588
2589                 /* VM-entry exception error code */
2590                 if (CC(has_error_code &&
2591                        vmcs12->vm_entry_exception_error_code & GENMASK(31, 15)))
2592                         return -EINVAL;
2593
2594                 /* VM-entry interruption-info field: reserved bits */
2595                 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2596                         return -EINVAL;
2597
2598                 /* VM-entry instruction length */
2599                 switch (intr_type) {
2600                 case INTR_TYPE_SOFT_EXCEPTION:
2601                 case INTR_TYPE_SOFT_INTR:
2602                 case INTR_TYPE_PRIV_SW_EXCEPTION:
2603                         if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2604                             CC(vmcs12->vm_entry_instruction_len == 0 &&
2605                             CC(!nested_cpu_has_zero_length_injection(vcpu))))
2606                                 return -EINVAL;
2607                 }
2608         }
2609
2610         if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2611                 return -EINVAL;
2612
2613         return 0;
2614 }
2615
2616 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2617                                      struct vmcs12 *vmcs12)
2618 {
2619         if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2620             nested_check_vm_exit_controls(vcpu, vmcs12) ||
2621             nested_check_vm_entry_controls(vcpu, vmcs12))
2622                 return -EINVAL;
2623
2624         return 0;
2625 }
2626
2627 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2628                                        struct vmcs12 *vmcs12)
2629 {
2630         bool ia32e;
2631
2632         if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2633             CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2634             CC(!nested_cr3_valid(vcpu, vmcs12->host_cr3)))
2635                 return -EINVAL;
2636
2637         if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2638             CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2639                 return -EINVAL;
2640
2641         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2642             CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2643                 return -EINVAL;
2644
2645         ia32e = (vmcs12->vm_exit_controls &
2646                  VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
2647
2648         if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2649             CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2650             CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2651             CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2652             CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2653             CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2654             CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2655             CC(vmcs12->host_cs_selector == 0) ||
2656             CC(vmcs12->host_tr_selector == 0) ||
2657             CC(vmcs12->host_ss_selector == 0 && !ia32e))
2658                 return -EINVAL;
2659
2660 #ifdef CONFIG_X86_64
2661         if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2662             CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2663             CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2664             CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2665             CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)))
2666                 return -EINVAL;
2667 #endif
2668
2669         /*
2670          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2671          * IA32_EFER MSR must be 0 in the field for that register. In addition,
2672          * the values of the LMA and LME bits in the field must each be that of
2673          * the host address-space size VM-exit control.
2674          */
2675         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2676                 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2677                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2678                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2679                         return -EINVAL;
2680         }
2681
2682         return 0;
2683 }
2684
2685 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2686                                           struct vmcs12 *vmcs12)
2687 {
2688         int r = 0;
2689         struct vmcs12 *shadow;
2690         struct kvm_host_map map;
2691
2692         if (vmcs12->vmcs_link_pointer == -1ull)
2693                 return 0;
2694
2695         if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2696                 return -EINVAL;
2697
2698         if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
2699                 return -EINVAL;
2700
2701         shadow = map.hva;
2702
2703         if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
2704             CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2705                 r = -EINVAL;
2706
2707         kvm_vcpu_unmap(vcpu, &map, false);
2708         return r;
2709 }
2710
2711 /*
2712  * Checks related to Guest Non-register State
2713  */
2714 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2715 {
2716         if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2717                vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT))
2718                 return -EINVAL;
2719
2720         return 0;
2721 }
2722
2723 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2724                                         struct vmcs12 *vmcs12,
2725                                         u32 *exit_qual)
2726 {
2727         bool ia32e;
2728
2729         *exit_qual = ENTRY_FAIL_DEFAULT;
2730
2731         if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
2732             CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
2733                 return -EINVAL;
2734
2735         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
2736             CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
2737                 return -EINVAL;
2738
2739         if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2740                 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
2741                 return -EINVAL;
2742         }
2743
2744         /*
2745          * If the load IA32_EFER VM-entry control is 1, the following checks
2746          * are performed on the field for the IA32_EFER MSR:
2747          * - Bits reserved in the IA32_EFER MSR must be 0.
2748          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
2749          *   the IA-32e mode guest VM-exit control. It must also be identical
2750          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
2751          *   CR0.PG) is 1.
2752          */
2753         if (to_vmx(vcpu)->nested.nested_run_pending &&
2754             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
2755                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
2756                 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
2757                     CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
2758                     CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
2759                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
2760                         return -EINVAL;
2761         }
2762
2763         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
2764             (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
2765              CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
2766                 return -EINVAL;
2767
2768         if (nested_check_guest_non_reg_state(vmcs12))
2769                 return -EINVAL;
2770
2771         return 0;
2772 }
2773
2774 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
2775 {
2776         struct vcpu_vmx *vmx = to_vmx(vcpu);
2777         unsigned long cr3, cr4;
2778         bool vm_fail;
2779
2780         if (!nested_early_check)
2781                 return 0;
2782
2783         if (vmx->msr_autoload.host.nr)
2784                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2785         if (vmx->msr_autoload.guest.nr)
2786                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2787
2788         preempt_disable();
2789
2790         vmx_prepare_switch_to_guest(vcpu);
2791
2792         /*
2793          * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
2794          * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
2795          * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e.
2796          * there is no need to preserve other bits or save/restore the field.
2797          */
2798         vmcs_writel(GUEST_RFLAGS, 0);
2799
2800         cr3 = __get_current_cr3_fast();
2801         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
2802                 vmcs_writel(HOST_CR3, cr3);
2803                 vmx->loaded_vmcs->host_state.cr3 = cr3;
2804         }
2805
2806         cr4 = cr4_read_shadow();
2807         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
2808                 vmcs_writel(HOST_CR4, cr4);
2809                 vmx->loaded_vmcs->host_state.cr4 = cr4;
2810         }
2811
2812         asm(
2813                 "sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
2814                 "cmp %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2815                 "je 1f \n\t"
2816                 __ex("vmwrite %%" _ASM_SP ", %[HOST_RSP]") "\n\t"
2817                 "mov %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2818                 "1: \n\t"
2819                 "add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
2820
2821                 /* Check if vmlaunch or vmresume is needed */
2822                 "cmpb $0, %c[launched](%[loaded_vmcs])\n\t"
2823
2824                 /*
2825                  * VMLAUNCH and VMRESUME clear RFLAGS.{CF,ZF} on VM-Exit, set
2826                  * RFLAGS.CF on VM-Fail Invalid and set RFLAGS.ZF on VM-Fail
2827                  * Valid.  vmx_vmenter() directly "returns" RFLAGS, and so the
2828                  * results of VM-Enter is captured via CC_{SET,OUT} to vm_fail.
2829                  */
2830                 "call vmx_vmenter\n\t"
2831
2832                 CC_SET(be)
2833               : ASM_CALL_CONSTRAINT, CC_OUT(be) (vm_fail)
2834               : [HOST_RSP]"r"((unsigned long)HOST_RSP),
2835                 [loaded_vmcs]"r"(vmx->loaded_vmcs),
2836                 [launched]"i"(offsetof(struct loaded_vmcs, launched)),
2837                 [host_state_rsp]"i"(offsetof(struct loaded_vmcs, host_state.rsp)),
2838                 [wordsize]"i"(sizeof(ulong))
2839               : "memory"
2840         );
2841
2842         if (vmx->msr_autoload.host.nr)
2843                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2844         if (vmx->msr_autoload.guest.nr)
2845                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2846
2847         if (vm_fail) {
2848                 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
2849
2850                 preempt_enable();
2851
2852                 trace_kvm_nested_vmenter_failed(
2853                         "early hardware check VM-instruction error: ", error);
2854                 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
2855                 return 1;
2856         }
2857
2858         /*
2859          * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
2860          */
2861         local_irq_enable();
2862         if (hw_breakpoint_active())
2863                 set_debugreg(__this_cpu_read(cpu_dr7), 7);
2864         preempt_enable();
2865
2866         /*
2867          * A non-failing VMEntry means we somehow entered guest mode with
2868          * an illegal RIP, and that's just the tip of the iceberg.  There
2869          * is no telling what memory has been modified or what state has
2870          * been exposed to unknown code.  Hitting this all but guarantees
2871          * a (very critical) hardware issue.
2872          */
2873         WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
2874                 VMX_EXIT_REASONS_FAILED_VMENTRY));
2875
2876         return 0;
2877 }
2878
2879 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
2880                                                  struct vmcs12 *vmcs12);
2881
2882 static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
2883 {
2884         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2885         struct vcpu_vmx *vmx = to_vmx(vcpu);
2886         struct kvm_host_map *map;
2887         struct page *page;
2888         u64 hpa;
2889
2890         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
2891                 /*
2892                  * Translate L1 physical address to host physical
2893                  * address for vmcs02. Keep the page pinned, so this
2894                  * physical address remains valid. We keep a reference
2895                  * to it so we can release it later.
2896                  */
2897                 if (vmx->nested.apic_access_page) { /* shouldn't happen */
2898                         kvm_release_page_dirty(vmx->nested.apic_access_page);
2899                         vmx->nested.apic_access_page = NULL;
2900                 }
2901                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
2902                 /*
2903                  * If translation failed, no matter: This feature asks
2904                  * to exit when accessing the given address, and if it
2905                  * can never be accessed, this feature won't do
2906                  * anything anyway.
2907                  */
2908                 if (!is_error_page(page)) {
2909                         vmx->nested.apic_access_page = page;
2910                         hpa = page_to_phys(vmx->nested.apic_access_page);
2911                         vmcs_write64(APIC_ACCESS_ADDR, hpa);
2912                 } else {
2913                         secondary_exec_controls_clearbit(vmx,
2914                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
2915                 }
2916         }
2917
2918         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
2919                 map = &vmx->nested.virtual_apic_map;
2920
2921                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
2922                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
2923                 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
2924                            nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
2925                            !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
2926                         /*
2927                          * The processor will never use the TPR shadow, simply
2928                          * clear the bit from the execution control.  Such a
2929                          * configuration is useless, but it happens in tests.
2930                          * For any other configuration, failing the vm entry is
2931                          * _not_ what the processor does but it's basically the
2932                          * only possibility we have.
2933                          */
2934                         exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
2935                 } else {
2936                         /*
2937                          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
2938                          * force VM-Entry to fail.
2939                          */
2940                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
2941                 }
2942         }
2943
2944         if (nested_cpu_has_posted_intr(vmcs12)) {
2945                 map = &vmx->nested.pi_desc_map;
2946
2947                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
2948                         vmx->nested.pi_desc =
2949                                 (struct pi_desc *)(((void *)map->hva) +
2950                                 offset_in_page(vmcs12->posted_intr_desc_addr));
2951                         vmcs_write64(POSTED_INTR_DESC_ADDR,
2952                                      pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
2953                 }
2954         }
2955         if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
2956                 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
2957         else
2958                 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
2959 }
2960
2961 /*
2962  * Intel's VMX Instruction Reference specifies a common set of prerequisites
2963  * for running VMX instructions (except VMXON, whose prerequisites are
2964  * slightly different). It also specifies what exception to inject otherwise.
2965  * Note that many of these exceptions have priority over VM exits, so they
2966  * don't have to be checked again here.
2967  */
2968 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
2969 {
2970         if (!to_vmx(vcpu)->nested.vmxon) {
2971                 kvm_queue_exception(vcpu, UD_VECTOR);
2972                 return 0;
2973         }
2974
2975         if (vmx_get_cpl(vcpu)) {
2976                 kvm_inject_gp(vcpu, 0);
2977                 return 0;
2978         }
2979
2980         return 1;
2981 }
2982
2983 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
2984 {
2985         u8 rvi = vmx_get_rvi();
2986         u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
2987
2988         return ((rvi & 0xf0) > (vppr & 0xf0));
2989 }
2990
2991 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
2992                                    struct vmcs12 *vmcs12);
2993
2994 /*
2995  * If from_vmentry is false, this is being called from state restore (either RSM
2996  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
2997 + *
2998 + * Returns:
2999 + *   0 - success, i.e. proceed with actual VMEnter
3000 + *   1 - consistency check VMExit
3001 + *  -1 - consistency check VMFail
3002  */
3003 int nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
3004 {
3005         struct vcpu_vmx *vmx = to_vmx(vcpu);
3006         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3007         bool evaluate_pending_interrupts;
3008         u32 exit_reason = EXIT_REASON_INVALID_STATE;
3009         u32 exit_qual;
3010
3011         evaluate_pending_interrupts = exec_controls_get(vmx) &
3012                 (CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING);
3013         if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3014                 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3015
3016         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3017                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3018         if (kvm_mpx_supported() &&
3019                 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3020                 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3021
3022         /*
3023          * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3024          * nested early checks are disabled.  In the event of a "late" VM-Fail,
3025          * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3026          * software model to the pre-VMEntry host state.  When EPT is disabled,
3027          * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3028          * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3029          * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3030          * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3031          * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3032          * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3033          * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3034          * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3035          * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3036          * path would need to manually save/restore vmcs01.GUEST_CR3.
3037          */
3038         if (!enable_ept && !nested_early_check)
3039                 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3040
3041         vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3042
3043         prepare_vmcs02_early(vmx, vmcs12);
3044
3045         if (from_vmentry) {
3046                 nested_get_vmcs12_pages(vcpu);
3047
3048                 if (nested_vmx_check_vmentry_hw(vcpu)) {
3049                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3050                         return -1;
3051                 }
3052
3053                 if (nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
3054                         goto vmentry_fail_vmexit;
3055         }
3056
3057         enter_guest_mode(vcpu);
3058         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3059                 vcpu->arch.tsc_offset += vmcs12->tsc_offset;
3060
3061         if (prepare_vmcs02(vcpu, vmcs12, &exit_qual))
3062                 goto vmentry_fail_vmexit_guest_mode;
3063
3064         if (from_vmentry) {
3065                 exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
3066                 exit_qual = nested_vmx_load_msr(vcpu,
3067                                                 vmcs12->vm_entry_msr_load_addr,
3068                                                 vmcs12->vm_entry_msr_load_count);
3069                 if (exit_qual)
3070                         goto vmentry_fail_vmexit_guest_mode;
3071         } else {
3072                 /*
3073                  * The MMU is not initialized to point at the right entities yet and
3074                  * "get pages" would need to read data from the guest (i.e. we will
3075                  * need to perform gpa to hpa translation). Request a call
3076                  * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3077                  * have already been set at vmentry time and should not be reset.
3078                  */
3079                 kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
3080         }
3081
3082         /*
3083          * If L1 had a pending IRQ/NMI until it executed
3084          * VMLAUNCH/VMRESUME which wasn't delivered because it was
3085          * disallowed (e.g. interrupts disabled), L0 needs to
3086          * evaluate if this pending event should cause an exit from L2
3087          * to L1 or delivered directly to L2 (e.g. In case L1 don't
3088          * intercept EXTERNAL_INTERRUPT).
3089          *
3090          * Usually this would be handled by the processor noticing an
3091          * IRQ/NMI window request, or checking RVI during evaluation of
3092          * pending virtual interrupts.  However, this setting was done
3093          * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3094          * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3095          */
3096         if (unlikely(evaluate_pending_interrupts))
3097                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3098
3099         /*
3100          * Do not start the preemption timer hrtimer until after we know
3101          * we are successful, so that only nested_vmx_vmexit needs to cancel
3102          * the timer.
3103          */
3104         vmx->nested.preemption_timer_expired = false;
3105         if (nested_cpu_has_preemption_timer(vmcs12))
3106                 vmx_start_preemption_timer(vcpu);
3107
3108         /*
3109          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3110          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3111          * returned as far as L1 is concerned. It will only return (and set
3112          * the success flag) when L2 exits (see nested_vmx_vmexit()).
3113          */
3114         return 0;
3115
3116         /*
3117          * A failed consistency check that leads to a VMExit during L1's
3118          * VMEnter to L2 is a variation of a normal VMexit, as explained in
3119          * 26.7 "VM-entry failures during or after loading guest state".
3120          */
3121 vmentry_fail_vmexit_guest_mode:
3122         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3123                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3124         leave_guest_mode(vcpu);
3125
3126 vmentry_fail_vmexit:
3127         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3128
3129         if (!from_vmentry)
3130                 return 1;
3131
3132         load_vmcs12_host_state(vcpu, vmcs12);
3133         vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
3134         vmcs12->exit_qualification = exit_qual;
3135         if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3136                 vmx->nested.need_vmcs12_to_shadow_sync = true;
3137         return 1;
3138 }
3139
3140 /*
3141  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3142  * for running an L2 nested guest.
3143  */
3144 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3145 {
3146         struct vmcs12 *vmcs12;
3147         struct vcpu_vmx *vmx = to_vmx(vcpu);
3148         u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3149         int ret;
3150
3151         if (!nested_vmx_check_permission(vcpu))
3152                 return 1;
3153
3154         if (!nested_vmx_handle_enlightened_vmptrld(vcpu, launch))
3155                 return 1;
3156
3157         if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
3158                 return nested_vmx_failInvalid(vcpu);
3159
3160         vmcs12 = get_vmcs12(vcpu);
3161
3162         /*
3163          * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3164          * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3165          * rather than RFLAGS.ZF, and no error number is stored to the
3166          * VM-instruction error field.
3167          */
3168         if (vmcs12->hdr.shadow_vmcs)
3169                 return nested_vmx_failInvalid(vcpu);
3170
3171         if (vmx->nested.hv_evmcs) {
3172                 copy_enlightened_to_vmcs12(vmx);
3173                 /* Enlightened VMCS doesn't have launch state */
3174                 vmcs12->launch_state = !launch;
3175         } else if (enable_shadow_vmcs) {
3176                 copy_shadow_to_vmcs12(vmx);
3177         }
3178
3179         /*
3180          * The nested entry process starts with enforcing various prerequisites
3181          * on vmcs12 as required by the Intel SDM, and act appropriately when
3182          * they fail: As the SDM explains, some conditions should cause the
3183          * instruction to fail, while others will cause the instruction to seem
3184          * to succeed, but return an EXIT_REASON_INVALID_STATE.
3185          * To speed up the normal (success) code path, we should avoid checking
3186          * for misconfigurations which will anyway be caught by the processor
3187          * when using the merged vmcs02.
3188          */
3189         if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
3190                 return nested_vmx_failValid(vcpu,
3191                         VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3192
3193         if (vmcs12->launch_state == launch)
3194                 return nested_vmx_failValid(vcpu,
3195                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3196                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3197
3198         if (nested_vmx_check_controls(vcpu, vmcs12))
3199                 return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3200
3201         if (nested_vmx_check_host_state(vcpu, vmcs12))
3202                 return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3203
3204         /*
3205          * We're finally done with prerequisite checking, and can start with
3206          * the nested entry.
3207          */
3208         vmx->nested.nested_run_pending = 1;
3209         ret = nested_vmx_enter_non_root_mode(vcpu, true);
3210         vmx->nested.nested_run_pending = !ret;
3211         if (ret > 0)
3212                 return 1;
3213         else if (ret)
3214                 return nested_vmx_failValid(vcpu,
3215                         VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3216
3217         /* Hide L1D cache contents from the nested guest.  */
3218         vmx->vcpu.arch.l1tf_flush_l1d = true;
3219
3220         /*
3221          * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3222          * also be used as part of restoring nVMX state for
3223          * snapshot restore (migration).
3224          *
3225          * In this flow, it is assumed that vmcs12 cache was
3226          * trasferred as part of captured nVMX state and should
3227          * therefore not be read from guest memory (which may not
3228          * exist on destination host yet).
3229          */
3230         nested_cache_shadow_vmcs12(vcpu, vmcs12);
3231
3232         /*
3233          * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3234          * awakened by event injection or by an NMI-window VM-exit or
3235          * by an interrupt-window VM-exit, halt the vcpu.
3236          */
3237         if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
3238             !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3239             !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_NMI_PENDING) &&
3240             !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_INTR_PENDING) &&
3241               (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3242                 vmx->nested.nested_run_pending = 0;
3243                 return kvm_vcpu_halt(vcpu);
3244         }
3245         return 1;
3246 }
3247
3248 /*
3249  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3250  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
3251  * This function returns the new value we should put in vmcs12.guest_cr0.
3252  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3253  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3254  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3255  *     didn't trap the bit, because if L1 did, so would L0).
3256  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3257  *     been modified by L2, and L1 knows it. So just leave the old value of
3258  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3259  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3260  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3261  *     changed these bits, and therefore they need to be updated, but L0
3262  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3263  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3264  */
3265 static inline unsigned long
3266 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3267 {
3268         return
3269         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3270         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3271         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3272                         vcpu->arch.cr0_guest_owned_bits));
3273 }
3274
3275 static inline unsigned long
3276 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3277 {
3278         return
3279         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3280         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3281         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3282                         vcpu->arch.cr4_guest_owned_bits));
3283 }
3284
3285 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3286                                       struct vmcs12 *vmcs12)
3287 {
3288         u32 idt_vectoring;
3289         unsigned int nr;
3290
3291         if (vcpu->arch.exception.injected) {
3292                 nr = vcpu->arch.exception.nr;
3293                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3294
3295                 if (kvm_exception_is_soft(nr)) {
3296                         vmcs12->vm_exit_instruction_len =
3297                                 vcpu->arch.event_exit_inst_len;
3298                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3299                 } else
3300                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3301
3302                 if (vcpu->arch.exception.has_error_code) {
3303                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3304                         vmcs12->idt_vectoring_error_code =
3305                                 vcpu->arch.exception.error_code;
3306                 }
3307
3308                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3309         } else if (vcpu->arch.nmi_injected) {
3310                 vmcs12->idt_vectoring_info_field =
3311                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3312         } else if (vcpu->arch.interrupt.injected) {
3313                 nr = vcpu->arch.interrupt.nr;
3314                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3315
3316                 if (vcpu->arch.interrupt.soft) {
3317                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
3318                         vmcs12->vm_entry_instruction_len =
3319                                 vcpu->arch.event_exit_inst_len;
3320                 } else
3321                         idt_vectoring |= INTR_TYPE_EXT_INTR;
3322
3323                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3324         }
3325 }
3326
3327
3328 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3329 {
3330         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3331         gfn_t gfn;
3332
3333         /*
3334          * Don't need to mark the APIC access page dirty; it is never
3335          * written to by the CPU during APIC virtualization.
3336          */
3337
3338         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3339                 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3340                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3341         }
3342
3343         if (nested_cpu_has_posted_intr(vmcs12)) {
3344                 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3345                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3346         }
3347 }
3348
3349 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3350 {
3351         struct vcpu_vmx *vmx = to_vmx(vcpu);
3352         int max_irr;
3353         void *vapic_page;
3354         u16 status;
3355
3356         if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3357                 return;
3358
3359         vmx->nested.pi_pending = false;
3360         if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3361                 return;
3362
3363         max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3364         if (max_irr != 256) {
3365                 vapic_page = vmx->nested.virtual_apic_map.hva;
3366                 if (!vapic_page)
3367                         return;
3368
3369                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3370                         vapic_page, &max_irr);
3371                 status = vmcs_read16(GUEST_INTR_STATUS);
3372                 if ((u8)max_irr > ((u8)status & 0xff)) {
3373                         status &= ~0xff;
3374                         status |= (u8)max_irr;
3375                         vmcs_write16(GUEST_INTR_STATUS, status);
3376                 }
3377         }
3378
3379         nested_mark_vmcs12_pages_dirty(vcpu);
3380 }
3381
3382 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3383                                                unsigned long exit_qual)
3384 {
3385         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3386         unsigned int nr = vcpu->arch.exception.nr;
3387         u32 intr_info = nr | INTR_INFO_VALID_MASK;
3388
3389         if (vcpu->arch.exception.has_error_code) {
3390                 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3391                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3392         }
3393
3394         if (kvm_exception_is_soft(nr))
3395                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3396         else
3397                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3398
3399         if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3400             vmx_get_nmi_mask(vcpu))
3401                 intr_info |= INTR_INFO_UNBLOCK_NMI;
3402
3403         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3404 }
3405
3406 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
3407 {
3408         struct vcpu_vmx *vmx = to_vmx(vcpu);
3409         unsigned long exit_qual;
3410         bool block_nested_events =
3411             vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3412         struct kvm_lapic *apic = vcpu->arch.apic;
3413
3414         if (lapic_in_kernel(vcpu) &&
3415                 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3416                 if (block_nested_events)
3417                         return -EBUSY;
3418                 nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3419                 return 0;
3420         }
3421
3422         if (vcpu->arch.exception.pending &&
3423                 nested_vmx_check_exception(vcpu, &exit_qual)) {
3424                 if (block_nested_events)
3425                         return -EBUSY;
3426                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3427                 return 0;
3428         }
3429
3430         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3431             vmx->nested.preemption_timer_expired) {
3432                 if (block_nested_events)
3433                         return -EBUSY;
3434                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3435                 return 0;
3436         }
3437
3438         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
3439                 if (block_nested_events)
3440                         return -EBUSY;
3441                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3442                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
3443                                   INTR_INFO_VALID_MASK, 0);
3444                 /*
3445                  * The NMI-triggered VM exit counts as injection:
3446                  * clear this one and block further NMIs.
3447                  */
3448                 vcpu->arch.nmi_pending = 0;
3449                 vmx_set_nmi_mask(vcpu, true);
3450                 return 0;
3451         }
3452
3453         if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
3454             nested_exit_on_intr(vcpu)) {
3455                 if (block_nested_events)
3456                         return -EBUSY;
3457                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3458                 return 0;
3459         }
3460
3461         vmx_complete_nested_posted_interrupt(vcpu);
3462         return 0;
3463 }
3464
3465 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3466 {
3467         ktime_t remaining =
3468                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3469         u64 value;
3470
3471         if (ktime_to_ns(remaining) <= 0)
3472                 return 0;
3473
3474         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3475         do_div(value, 1000000);
3476         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3477 }
3478
3479 static bool is_vmcs12_ext_field(unsigned long field)
3480 {
3481         switch (field) {
3482         case GUEST_ES_SELECTOR:
3483         case GUEST_CS_SELECTOR:
3484         case GUEST_SS_SELECTOR:
3485         case GUEST_DS_SELECTOR:
3486         case GUEST_FS_SELECTOR:
3487         case GUEST_GS_SELECTOR:
3488         case GUEST_LDTR_SELECTOR:
3489         case GUEST_TR_SELECTOR:
3490         case GUEST_ES_LIMIT:
3491         case GUEST_CS_LIMIT:
3492         case GUEST_SS_LIMIT:
3493         case GUEST_DS_LIMIT:
3494         case GUEST_FS_LIMIT:
3495         case GUEST_GS_LIMIT:
3496         case GUEST_LDTR_LIMIT:
3497         case GUEST_TR_LIMIT:
3498         case GUEST_GDTR_LIMIT:
3499         case GUEST_IDTR_LIMIT:
3500         case GUEST_ES_AR_BYTES:
3501         case GUEST_DS_AR_BYTES:
3502         case GUEST_FS_AR_BYTES:
3503         case GUEST_GS_AR_BYTES:
3504         case GUEST_LDTR_AR_BYTES:
3505         case GUEST_TR_AR_BYTES:
3506         case GUEST_ES_BASE:
3507         case GUEST_CS_BASE:
3508         case GUEST_SS_BASE:
3509         case GUEST_DS_BASE:
3510         case GUEST_FS_BASE:
3511         case GUEST_GS_BASE:
3512         case GUEST_LDTR_BASE:
3513         case GUEST_TR_BASE:
3514         case GUEST_GDTR_BASE:
3515         case GUEST_IDTR_BASE:
3516         case GUEST_PENDING_DBG_EXCEPTIONS:
3517         case GUEST_BNDCFGS:
3518                 return true;
3519         default:
3520                 break;
3521         }
3522
3523         return false;
3524 }
3525
3526 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3527                                        struct vmcs12 *vmcs12)
3528 {
3529         struct vcpu_vmx *vmx = to_vmx(vcpu);
3530
3531         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
3532         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
3533         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
3534         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
3535         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
3536         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
3537         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
3538         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
3539         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
3540         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
3541         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
3542         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
3543         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
3544         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
3545         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
3546         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
3547         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
3548         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
3549         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
3550         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
3551         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
3552         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
3553         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
3554         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
3555         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
3556         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
3557         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
3558         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
3559         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
3560         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
3561         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
3562         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
3563         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
3564         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
3565         vmcs12->guest_pending_dbg_exceptions =
3566                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3567         if (kvm_mpx_supported())
3568                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3569
3570         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
3571 }
3572
3573 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3574                                        struct vmcs12 *vmcs12)
3575 {
3576         struct vcpu_vmx *vmx = to_vmx(vcpu);
3577         int cpu;
3578
3579         if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
3580                 return;
3581
3582
3583         WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
3584
3585         cpu = get_cpu();
3586         vmx->loaded_vmcs = &vmx->nested.vmcs02;
3587         vmx_vcpu_load(&vmx->vcpu, cpu);
3588
3589         sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3590
3591         vmx->loaded_vmcs = &vmx->vmcs01;
3592         vmx_vcpu_load(&vmx->vcpu, cpu);
3593         put_cpu();
3594 }
3595
3596 /*
3597  * Update the guest state fields of vmcs12 to reflect changes that
3598  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
3599  * VM-entry controls is also updated, since this is really a guest
3600  * state bit.)
3601  */
3602 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3603 {
3604         struct vcpu_vmx *vmx = to_vmx(vcpu);
3605
3606         if (vmx->nested.hv_evmcs)
3607                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3608
3609         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = !vmx->nested.hv_evmcs;
3610
3611         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
3612         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
3613
3614         vmcs12->guest_rsp = kvm_rsp_read(vcpu);
3615         vmcs12->guest_rip = kvm_rip_read(vcpu);
3616         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
3617
3618         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
3619         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
3620
3621         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
3622         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
3623         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
3624
3625         vmcs12->guest_interruptibility_info =
3626                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
3627
3628         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3629                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
3630         else
3631                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
3632
3633         if (nested_cpu_has_preemption_timer(vmcs12) &&
3634             vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
3635                         vmcs12->vmx_preemption_timer_value =
3636                                 vmx_get_preemption_timer_value(vcpu);
3637
3638         /*
3639          * In some cases (usually, nested EPT), L2 is allowed to change its
3640          * own CR3 without exiting. If it has changed it, we must keep it.
3641          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
3642          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
3643          *
3644          * Additionally, restore L2's PDPTR to vmcs12.
3645          */
3646         if (enable_ept) {
3647                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3648                 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3649                         vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
3650                         vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
3651                         vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
3652                         vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
3653                 }
3654         }
3655
3656         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
3657
3658         if (nested_cpu_has_vid(vmcs12))
3659                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
3660
3661         vmcs12->vm_entry_controls =
3662                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
3663                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
3664
3665         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
3666                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
3667
3668         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
3669                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
3670 }
3671
3672 /*
3673  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
3674  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
3675  * and this function updates it to reflect the changes to the guest state while
3676  * L2 was running (and perhaps made some exits which were handled directly by L0
3677  * without going back to L1), and to reflect the exit reason.
3678  * Note that we do not have to copy here all VMCS fields, just those that
3679  * could have changed by the L2 guest or the exit - i.e., the guest-state and
3680  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
3681  * which already writes to vmcs12 directly.
3682  */
3683 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
3684                            u32 exit_reason, u32 exit_intr_info,
3685                            unsigned long exit_qualification)
3686 {
3687         /* update exit information fields: */
3688         vmcs12->vm_exit_reason = exit_reason;
3689         vmcs12->exit_qualification = exit_qualification;
3690         vmcs12->vm_exit_intr_info = exit_intr_info;
3691
3692         vmcs12->idt_vectoring_info_field = 0;
3693         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3694         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
3695
3696         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
3697                 vmcs12->launch_state = 1;
3698
3699                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
3700                  * instead of reading the real value. */
3701                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
3702
3703                 /*
3704                  * Transfer the event that L0 or L1 may wanted to inject into
3705                  * L2 to IDT_VECTORING_INFO_FIELD.
3706                  */
3707                 vmcs12_save_pending_event(vcpu, vmcs12);
3708
3709                 /*
3710                  * According to spec, there's no need to store the guest's
3711                  * MSRs if the exit is due to a VM-entry failure that occurs
3712                  * during or after loading the guest state. Since this exit
3713                  * does not fall in that category, we need to save the MSRs.
3714                  */
3715                 if (nested_vmx_store_msr(vcpu,
3716                                          vmcs12->vm_exit_msr_store_addr,
3717                                          vmcs12->vm_exit_msr_store_count))
3718                         nested_vmx_abort(vcpu,
3719                                          VMX_ABORT_SAVE_GUEST_MSR_FAIL);
3720         }
3721
3722         /*
3723          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
3724          * preserved above and would only end up incorrectly in L1.
3725          */
3726         vcpu->arch.nmi_injected = false;
3727         kvm_clear_exception_queue(vcpu);
3728         kvm_clear_interrupt_queue(vcpu);
3729 }
3730
3731 /*
3732  * A part of what we need to when the nested L2 guest exits and we want to
3733  * run its L1 parent, is to reset L1's guest state to the host state specified
3734  * in vmcs12.
3735  * This function is to be called not only on normal nested exit, but also on
3736  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
3737  * Failures During or After Loading Guest State").
3738  * This function should be called when the active VMCS is L1's (vmcs01).
3739  */
3740 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3741                                    struct vmcs12 *vmcs12)
3742 {
3743         struct kvm_segment seg;
3744         u32 entry_failure_code;
3745
3746         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
3747                 vcpu->arch.efer = vmcs12->host_ia32_efer;
3748         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3749                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
3750         else
3751                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
3752         vmx_set_efer(vcpu, vcpu->arch.efer);
3753
3754         kvm_rsp_write(vcpu, vmcs12->host_rsp);
3755         kvm_rip_write(vcpu, vmcs12->host_rip);
3756         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
3757         vmx_set_interrupt_shadow(vcpu, 0);
3758
3759         /*
3760          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
3761          * actually changed, because vmx_set_cr0 refers to efer set above.
3762          *
3763          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
3764          * (KVM doesn't change it);
3765          */
3766         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3767         vmx_set_cr0(vcpu, vmcs12->host_cr0);
3768
3769         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
3770         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3771         vmx_set_cr4(vcpu, vmcs12->host_cr4);
3772
3773         nested_ept_uninit_mmu_context(vcpu);
3774
3775         /*
3776          * Only PDPTE load can fail as the value of cr3 was checked on entry and
3777          * couldn't have changed.
3778          */
3779         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
3780                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
3781
3782         if (!enable_ept)
3783                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3784
3785         /*
3786          * If vmcs01 doesn't use VPID, CPU flushes TLB on every
3787          * VMEntry/VMExit. Thus, no need to flush TLB.
3788          *
3789          * If vmcs12 doesn't use VPID, L1 expects TLB to be
3790          * flushed on every VMEntry/VMExit.
3791          *
3792          * Otherwise, we can preserve TLB entries as long as we are
3793          * able to tag L1 TLB entries differently than L2 TLB entries.
3794          *
3795          * If vmcs12 uses EPT, we need to execute this flush on EPTP01
3796          * and therefore we request the TLB flush to happen only after VMCS EPTP
3797          * has been set by KVM_REQ_LOAD_CR3.
3798          */
3799         if (enable_vpid &&
3800             (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) {
3801                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3802         }
3803
3804         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
3805         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
3806         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
3807         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
3808         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
3809         vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
3810         vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
3811
3812         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
3813         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
3814                 vmcs_write64(GUEST_BNDCFGS, 0);
3815
3816         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
3817                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
3818                 vcpu->arch.pat = vmcs12->host_ia32_pat;
3819         }
3820         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
3821                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
3822                         vmcs12->host_ia32_perf_global_ctrl);
3823
3824         /* Set L1 segment info according to Intel SDM
3825             27.5.2 Loading Host Segment and Descriptor-Table Registers */
3826         seg = (struct kvm_segment) {
3827                 .base = 0,
3828                 .limit = 0xFFFFFFFF,
3829                 .selector = vmcs12->host_cs_selector,
3830                 .type = 11,
3831                 .present = 1,
3832                 .s = 1,
3833                 .g = 1
3834         };
3835         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3836                 seg.l = 1;
3837         else
3838                 seg.db = 1;
3839         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
3840         seg = (struct kvm_segment) {
3841                 .base = 0,
3842                 .limit = 0xFFFFFFFF,
3843                 .type = 3,
3844                 .present = 1,
3845                 .s = 1,
3846                 .db = 1,
3847                 .g = 1
3848         };
3849         seg.selector = vmcs12->host_ds_selector;
3850         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
3851         seg.selector = vmcs12->host_es_selector;
3852         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
3853         seg.selector = vmcs12->host_ss_selector;
3854         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
3855         seg.selector = vmcs12->host_fs_selector;
3856         seg.base = vmcs12->host_fs_base;
3857         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
3858         seg.selector = vmcs12->host_gs_selector;
3859         seg.base = vmcs12->host_gs_base;
3860         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
3861         seg = (struct kvm_segment) {
3862                 .base = vmcs12->host_tr_base,
3863                 .limit = 0x67,
3864                 .selector = vmcs12->host_tr_selector,
3865                 .type = 11,
3866                 .present = 1
3867         };
3868         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
3869
3870         kvm_set_dr(vcpu, 7, 0x400);
3871         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3872
3873         if (cpu_has_vmx_msr_bitmap())
3874                 vmx_update_msr_bitmap(vcpu);
3875
3876         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
3877                                 vmcs12->vm_exit_msr_load_count))
3878                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
3879 }
3880
3881 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
3882 {
3883         struct shared_msr_entry *efer_msr;
3884         unsigned int i;
3885
3886         if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
3887                 return vmcs_read64(GUEST_IA32_EFER);
3888
3889         if (cpu_has_load_ia32_efer())
3890                 return host_efer;
3891
3892         for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
3893                 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
3894                         return vmx->msr_autoload.guest.val[i].value;
3895         }
3896
3897         efer_msr = find_msr_entry(vmx, MSR_EFER);
3898         if (efer_msr)
3899                 return efer_msr->data;
3900
3901         return host_efer;
3902 }
3903
3904 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
3905 {
3906         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3907         struct vcpu_vmx *vmx = to_vmx(vcpu);
3908         struct vmx_msr_entry g, h;
3909         gpa_t gpa;
3910         u32 i, j;
3911
3912         vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
3913
3914         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
3915                 /*
3916                  * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
3917                  * as vmcs01.GUEST_DR7 contains a userspace defined value
3918                  * and vcpu->arch.dr7 is not squirreled away before the
3919                  * nested VMENTER (not worth adding a variable in nested_vmx).
3920                  */
3921                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
3922                         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
3923                 else
3924                         WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
3925         }
3926
3927         /*
3928          * Note that calling vmx_set_{efer,cr0,cr4} is important as they
3929          * handle a variety of side effects to KVM's software model.
3930          */
3931         vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
3932
3933         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3934         vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
3935
3936         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3937         vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
3938
3939         nested_ept_uninit_mmu_context(vcpu);
3940         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3941         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3942
3943         /*
3944          * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
3945          * from vmcs01 (if necessary).  The PDPTRs are not loaded on
3946          * VMFail, like everything else we just need to ensure our
3947          * software model is up-to-date.
3948          */
3949         if (enable_ept)
3950                 ept_save_pdptrs(vcpu);
3951
3952         kvm_mmu_reset_context(vcpu);
3953
3954         if (cpu_has_vmx_msr_bitmap())
3955                 vmx_update_msr_bitmap(vcpu);
3956
3957         /*
3958          * This nasty bit of open coding is a compromise between blindly
3959          * loading L1's MSRs using the exit load lists (incorrect emulation
3960          * of VMFail), leaving the nested VM's MSRs in the software model
3961          * (incorrect behavior) and snapshotting the modified MSRs (too
3962          * expensive since the lists are unbound by hardware).  For each
3963          * MSR that was (prematurely) loaded from the nested VMEntry load
3964          * list, reload it from the exit load list if it exists and differs
3965          * from the guest value.  The intent is to stuff host state as
3966          * silently as possible, not to fully process the exit load list.
3967          */
3968         for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
3969                 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
3970                 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
3971                         pr_debug_ratelimited(
3972                                 "%s read MSR index failed (%u, 0x%08llx)\n",
3973                                 __func__, i, gpa);
3974                         goto vmabort;
3975                 }
3976
3977                 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
3978                         gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
3979                         if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
3980                                 pr_debug_ratelimited(
3981                                         "%s read MSR failed (%u, 0x%08llx)\n",
3982                                         __func__, j, gpa);
3983                                 goto vmabort;
3984                         }
3985                         if (h.index != g.index)
3986                                 continue;
3987                         if (h.value == g.value)
3988                                 break;
3989
3990                         if (nested_vmx_load_msr_check(vcpu, &h)) {
3991                                 pr_debug_ratelimited(
3992                                         "%s check failed (%u, 0x%x, 0x%x)\n",
3993                                         __func__, j, h.index, h.reserved);
3994                                 goto vmabort;
3995                         }
3996
3997                         if (kvm_set_msr(vcpu, h.index, h.value)) {
3998                                 pr_debug_ratelimited(
3999                                         "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4000                                         __func__, j, h.index, h.value);
4001                                 goto vmabort;
4002                         }
4003                 }
4004         }
4005
4006         return;
4007
4008 vmabort:
4009         nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4010 }
4011
4012 /*
4013  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4014  * and modify vmcs12 to make it see what it would expect to see there if
4015  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4016  */
4017 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
4018                        u32 exit_intr_info, unsigned long exit_qualification)
4019 {
4020         struct vcpu_vmx *vmx = to_vmx(vcpu);
4021         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4022
4023         /* trying to cancel vmlaunch/vmresume is a bug */
4024         WARN_ON_ONCE(vmx->nested.nested_run_pending);
4025
4026         leave_guest_mode(vcpu);
4027
4028         if (nested_cpu_has_preemption_timer(vmcs12))
4029                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4030
4031         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
4032                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
4033
4034         if (likely(!vmx->fail)) {
4035                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4036
4037                 if (exit_reason != -1)
4038                         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
4039                                        exit_qualification);
4040
4041                 /*
4042                  * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4043                  * also be used to capture vmcs12 cache as part of
4044                  * capturing nVMX state for snapshot (migration).
4045                  *
4046                  * Otherwise, this flush will dirty guest memory at a
4047                  * point it is already assumed by user-space to be
4048                  * immutable.
4049                  */
4050                 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4051         } else {
4052                 /*
4053                  * The only expected VM-instruction error is "VM entry with
4054                  * invalid control field(s)." Anything else indicates a
4055                  * problem with L0.  And we should never get here with a
4056                  * VMFail of any type if early consistency checks are enabled.
4057                  */
4058                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4059                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4060                 WARN_ON_ONCE(nested_early_check);
4061         }
4062
4063         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4064
4065         /* Update any VMCS fields that might have changed while L2 ran */
4066         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4067         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4068         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4069
4070         if (kvm_has_tsc_control)
4071                 decache_tsc_multiplier(vmx);
4072
4073         if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4074                 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4075                 vmx_set_virtual_apic_mode(vcpu);
4076         } else if (!nested_cpu_has_ept(vmcs12) &&
4077                    nested_cpu_has2(vmcs12,
4078                                    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
4079                 vmx_flush_tlb(vcpu, true);
4080         }
4081
4082         /* Unpin physical memory we referred to in vmcs02 */
4083         if (vmx->nested.apic_access_page) {
4084                 kvm_release_page_dirty(vmx->nested.apic_access_page);
4085                 vmx->nested.apic_access_page = NULL;
4086         }
4087         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4088         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4089         vmx->nested.pi_desc = NULL;
4090
4091         /*
4092          * We are now running in L2, mmu_notifier will force to reload the
4093          * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
4094          */
4095         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4096
4097         if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs))
4098                 vmx->nested.need_vmcs12_to_shadow_sync = true;
4099
4100         /* in case we halted in L2 */
4101         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4102
4103         if (likely(!vmx->fail)) {
4104                 /*
4105                  * TODO: SDM says that with acknowledge interrupt on
4106                  * exit, bit 31 of the VM-exit interrupt information
4107                  * (valid interrupt) is always set to 1 on
4108                  * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
4109                  * need kvm_cpu_has_interrupt().  See the commit
4110                  * message for details.
4111                  */
4112                 if (nested_exit_intr_ack_set(vcpu) &&
4113                     exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4114                     kvm_cpu_has_interrupt(vcpu)) {
4115                         int irq = kvm_cpu_get_interrupt(vcpu);
4116                         WARN_ON(irq < 0);
4117                         vmcs12->vm_exit_intr_info = irq |
4118                                 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4119                 }
4120
4121                 if (exit_reason != -1)
4122                         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4123                                                        vmcs12->exit_qualification,
4124                                                        vmcs12->idt_vectoring_info_field,
4125                                                        vmcs12->vm_exit_intr_info,
4126                                                        vmcs12->vm_exit_intr_error_code,
4127                                                        KVM_ISA_VMX);
4128
4129                 load_vmcs12_host_state(vcpu, vmcs12);
4130
4131                 return;
4132         }
4133
4134         /*
4135          * After an early L2 VM-entry failure, we're now back
4136          * in L1 which thinks it just finished a VMLAUNCH or
4137          * VMRESUME instruction, so we need to set the failure
4138          * flag and the VM-instruction error field of the VMCS
4139          * accordingly, and skip the emulated instruction.
4140          */
4141         (void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4142
4143         /*
4144          * Restore L1's host state to KVM's software model.  We're here
4145          * because a consistency check was caught by hardware, which
4146          * means some amount of guest state has been propagated to KVM's
4147          * model and needs to be unwound to the host's state.
4148          */
4149         nested_vmx_restore_host_state(vcpu);
4150
4151         vmx->fail = 0;
4152 }
4153
4154 /*
4155  * Decode the memory-address operand of a vmx instruction, as recorded on an
4156  * exit caused by such an instruction (run by a guest hypervisor).
4157  * On success, returns 0. When the operand is invalid, returns 1 and throws
4158  * #UD or #GP.
4159  */
4160 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4161                         u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4162 {
4163         gva_t off;
4164         bool exn;
4165         struct kvm_segment s;
4166
4167         /*
4168          * According to Vol. 3B, "Information for VM Exits Due to Instruction
4169          * Execution", on an exit, vmx_instruction_info holds most of the
4170          * addressing components of the operand. Only the displacement part
4171          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4172          * For how an actual address is calculated from all these components,
4173          * refer to Vol. 1, "Operand Addressing".
4174          */
4175         int  scaling = vmx_instruction_info & 3;
4176         int  addr_size = (vmx_instruction_info >> 7) & 7;
4177         bool is_reg = vmx_instruction_info & (1u << 10);
4178         int  seg_reg = (vmx_instruction_info >> 15) & 7;
4179         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4180         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4181         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4182         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4183
4184         if (is_reg) {
4185                 kvm_queue_exception(vcpu, UD_VECTOR);
4186                 return 1;
4187         }
4188
4189         /* Addr = segment_base + offset */
4190         /* offset = base + [index * scale] + displacement */
4191         off = exit_qualification; /* holds the displacement */
4192         if (addr_size == 1)
4193                 off = (gva_t)sign_extend64(off, 31);
4194         else if (addr_size == 0)
4195                 off = (gva_t)sign_extend64(off, 15);
4196         if (base_is_valid)
4197                 off += kvm_register_read(vcpu, base_reg);
4198         if (index_is_valid)
4199                 off += kvm_register_read(vcpu, index_reg)<<scaling;
4200         vmx_get_segment(vcpu, &s, seg_reg);
4201
4202         /*
4203          * The effective address, i.e. @off, of a memory operand is truncated
4204          * based on the address size of the instruction.  Note that this is
4205          * the *effective address*, i.e. the address prior to accounting for
4206          * the segment's base.
4207          */
4208         if (addr_size == 1) /* 32 bit */
4209                 off &= 0xffffffff;
4210         else if (addr_size == 0) /* 16 bit */
4211                 off &= 0xffff;
4212
4213         /* Checks for #GP/#SS exceptions. */
4214         exn = false;
4215         if (is_long_mode(vcpu)) {
4216                 /*
4217                  * The virtual/linear address is never truncated in 64-bit
4218                  * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4219                  * address when using FS/GS with a non-zero base.
4220                  */
4221                 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4222                         *ret = s.base + off;
4223                 else
4224                         *ret = off;
4225
4226                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4227                  * non-canonical form. This is the only check on the memory
4228                  * destination for long mode!
4229                  */
4230                 exn = is_noncanonical_address(*ret, vcpu);
4231         } else {
4232                 /*
4233                  * When not in long mode, the virtual/linear address is
4234                  * unconditionally truncated to 32 bits regardless of the
4235                  * address size.
4236                  */
4237                 *ret = (s.base + off) & 0xffffffff;
4238
4239                 /* Protected mode: apply checks for segment validity in the
4240                  * following order:
4241                  * - segment type check (#GP(0) may be thrown)
4242                  * - usability check (#GP(0)/#SS(0))
4243                  * - limit check (#GP(0)/#SS(0))
4244                  */
4245                 if (wr)
4246                         /* #GP(0) if the destination operand is located in a
4247                          * read-only data segment or any code segment.
4248                          */
4249                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
4250                 else
4251                         /* #GP(0) if the source operand is located in an
4252                          * execute-only code segment
4253                          */
4254                         exn = ((s.type & 0xa) == 8);
4255                 if (exn) {
4256                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4257                         return 1;
4258                 }
4259                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4260                  */
4261                 exn = (s.unusable != 0);
4262
4263                 /*
4264                  * Protected mode: #GP(0)/#SS(0) if the memory operand is
4265                  * outside the segment limit.  All CPUs that support VMX ignore
4266                  * limit checks for flat segments, i.e. segments with base==0,
4267                  * limit==0xffffffff and of type expand-up data or code.
4268                  */
4269                 if (!(s.base == 0 && s.limit == 0xffffffff &&
4270                      ((s.type & 8) || !(s.type & 4))))
4271                         exn = exn || ((u64)off + len - 1 > s.limit);
4272         }
4273         if (exn) {
4274                 kvm_queue_exception_e(vcpu,
4275                                       seg_reg == VCPU_SREG_SS ?
4276                                                 SS_VECTOR : GP_VECTOR,
4277                                       0);
4278                 return 1;
4279         }
4280
4281         return 0;
4282 }
4283
4284 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
4285 {
4286         gva_t gva;
4287         struct x86_exception e;
4288
4289         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4290                                 vmcs_read32(VMX_INSTRUCTION_INFO), false,
4291                                 sizeof(*vmpointer), &gva))
4292                 return 1;
4293
4294         if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
4295                 kvm_inject_page_fault(vcpu, &e);
4296                 return 1;
4297         }
4298
4299         return 0;
4300 }
4301
4302 /*
4303  * Allocate a shadow VMCS and associate it with the currently loaded
4304  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4305  * VMCS is also VMCLEARed, so that it is ready for use.
4306  */
4307 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4308 {
4309         struct vcpu_vmx *vmx = to_vmx(vcpu);
4310         struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4311
4312         /*
4313          * We should allocate a shadow vmcs for vmcs01 only when L1
4314          * executes VMXON and free it when L1 executes VMXOFF.
4315          * As it is invalid to execute VMXON twice, we shouldn't reach
4316          * here when vmcs01 already have an allocated shadow vmcs.
4317          */
4318         WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4319
4320         if (!loaded_vmcs->shadow_vmcs) {
4321                 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4322                 if (loaded_vmcs->shadow_vmcs)
4323                         vmcs_clear(loaded_vmcs->shadow_vmcs);
4324         }
4325         return loaded_vmcs->shadow_vmcs;
4326 }
4327
4328 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4329 {
4330         struct vcpu_vmx *vmx = to_vmx(vcpu);
4331         int r;
4332
4333         r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4334         if (r < 0)
4335                 goto out_vmcs02;
4336
4337         vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4338         if (!vmx->nested.cached_vmcs12)
4339                 goto out_cached_vmcs12;
4340
4341         vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4342         if (!vmx->nested.cached_shadow_vmcs12)
4343                 goto out_cached_shadow_vmcs12;
4344
4345         if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4346                 goto out_shadow_vmcs;
4347
4348         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4349                      HRTIMER_MODE_REL_PINNED);
4350         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4351
4352         vmx->nested.vpid02 = allocate_vpid();
4353
4354         vmx->nested.vmcs02_initialized = false;
4355         vmx->nested.vmxon = true;
4356
4357         if (pt_mode == PT_MODE_HOST_GUEST) {
4358                 vmx->pt_desc.guest.ctl = 0;
4359                 pt_update_intercept_for_msr(vmx);
4360         }
4361
4362         return 0;
4363
4364 out_shadow_vmcs:
4365         kfree(vmx->nested.cached_shadow_vmcs12);
4366
4367 out_cached_shadow_vmcs12:
4368         kfree(vmx->nested.cached_vmcs12);
4369
4370 out_cached_vmcs12:
4371         free_loaded_vmcs(&vmx->nested.vmcs02);
4372
4373 out_vmcs02:
4374         return -ENOMEM;
4375 }
4376
4377 /*
4378  * Emulate the VMXON instruction.
4379  * Currently, we just remember that VMX is active, and do not save or even
4380  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4381  * do not currently need to store anything in that guest-allocated memory
4382  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4383  * argument is different from the VMXON pointer (which the spec says they do).
4384  */
4385 static int handle_vmon(struct kvm_vcpu *vcpu)
4386 {
4387         int ret;
4388         gpa_t vmptr;
4389         uint32_t revision;
4390         struct vcpu_vmx *vmx = to_vmx(vcpu);
4391         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
4392                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
4393
4394         /*
4395          * The Intel VMX Instruction Reference lists a bunch of bits that are
4396          * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4397          * 1 (see vmx_set_cr4() for when we allow the guest to set this).
4398          * Otherwise, we should fail with #UD.  But most faulting conditions
4399          * have already been checked by hardware, prior to the VM-exit for
4400          * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4401          * that bit set to 1 in non-root mode.
4402          */
4403         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4404                 kvm_queue_exception(vcpu, UD_VECTOR);
4405                 return 1;
4406         }
4407
4408         /* CPL=0 must be checked manually. */
4409         if (vmx_get_cpl(vcpu)) {
4410                 kvm_inject_gp(vcpu, 0);
4411                 return 1;
4412         }
4413
4414         if (vmx->nested.vmxon)
4415                 return nested_vmx_failValid(vcpu,
4416                         VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4417
4418         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4419                         != VMXON_NEEDED_FEATURES) {
4420                 kvm_inject_gp(vcpu, 0);
4421                 return 1;
4422         }
4423
4424         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4425                 return 1;
4426
4427         /*
4428          * SDM 3: 24.11.5
4429          * The first 4 bytes of VMXON region contain the supported
4430          * VMCS revision identifier
4431          *
4432          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4433          * which replaces physical address width with 32
4434          */
4435         if (!page_address_valid(vcpu, vmptr))
4436                 return nested_vmx_failInvalid(vcpu);
4437
4438         if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4439             revision != VMCS12_REVISION)
4440                 return nested_vmx_failInvalid(vcpu);
4441
4442         vmx->nested.vmxon_ptr = vmptr;
4443         ret = enter_vmx_operation(vcpu);
4444         if (ret)
4445                 return ret;
4446
4447         return nested_vmx_succeed(vcpu);
4448 }
4449
4450 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4451 {
4452         struct vcpu_vmx *vmx = to_vmx(vcpu);
4453
4454         if (vmx->nested.current_vmptr == -1ull)
4455                 return;
4456
4457         copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4458
4459         if (enable_shadow_vmcs) {
4460                 /* copy to memory all shadowed fields in case
4461                    they were modified */
4462                 copy_shadow_to_vmcs12(vmx);
4463                 vmx_disable_shadow_vmcs(vmx);
4464         }
4465         vmx->nested.posted_intr_nv = -1;
4466
4467         /* Flush VMCS12 to guest memory */
4468         kvm_vcpu_write_guest_page(vcpu,
4469                                   vmx->nested.current_vmptr >> PAGE_SHIFT,
4470                                   vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4471
4472         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4473
4474         vmx->nested.current_vmptr = -1ull;
4475 }
4476
4477 /* Emulate the VMXOFF instruction */
4478 static int handle_vmoff(struct kvm_vcpu *vcpu)
4479 {
4480         if (!nested_vmx_check_permission(vcpu))
4481                 return 1;
4482
4483         free_nested(vcpu);
4484
4485         /* Process a latched INIT during time CPU was in VMX operation */
4486         kvm_make_request(KVM_REQ_EVENT, vcpu);
4487
4488         return nested_vmx_succeed(vcpu);
4489 }
4490
4491 /* Emulate the VMCLEAR instruction */
4492 static int handle_vmclear(struct kvm_vcpu *vcpu)
4493 {
4494         struct vcpu_vmx *vmx = to_vmx(vcpu);
4495         u32 zero = 0;
4496         gpa_t vmptr;
4497         u64 evmcs_gpa;
4498
4499         if (!nested_vmx_check_permission(vcpu))
4500                 return 1;
4501
4502         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4503                 return 1;
4504
4505         if (!page_address_valid(vcpu, vmptr))
4506                 return nested_vmx_failValid(vcpu,
4507                         VMXERR_VMCLEAR_INVALID_ADDRESS);
4508
4509         if (vmptr == vmx->nested.vmxon_ptr)
4510                 return nested_vmx_failValid(vcpu,
4511                         VMXERR_VMCLEAR_VMXON_POINTER);
4512
4513         /*
4514          * When Enlightened VMEntry is enabled on the calling CPU we treat
4515          * memory area pointer by vmptr as Enlightened VMCS (as there's no good
4516          * way to distinguish it from VMCS12) and we must not corrupt it by
4517          * writing to the non-existent 'launch_state' field. The area doesn't
4518          * have to be the currently active EVMCS on the calling CPU and there's
4519          * nothing KVM has to do to transition it from 'active' to 'non-active'
4520          * state. It is possible that the area will stay mapped as
4521          * vmx->nested.hv_evmcs but this shouldn't be a problem.
4522          */
4523         if (likely(!vmx->nested.enlightened_vmcs_enabled ||
4524                    !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
4525                 if (vmptr == vmx->nested.current_vmptr)
4526                         nested_release_vmcs12(vcpu);
4527
4528                 kvm_vcpu_write_guest(vcpu,
4529                                      vmptr + offsetof(struct vmcs12,
4530                                                       launch_state),
4531                                      &zero, sizeof(zero));
4532         }
4533
4534         return nested_vmx_succeed(vcpu);
4535 }
4536
4537 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
4538
4539 /* Emulate the VMLAUNCH instruction */
4540 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
4541 {
4542         return nested_vmx_run(vcpu, true);
4543 }
4544
4545 /* Emulate the VMRESUME instruction */
4546 static int handle_vmresume(struct kvm_vcpu *vcpu)
4547 {
4548
4549         return nested_vmx_run(vcpu, false);
4550 }
4551
4552 static int handle_vmread(struct kvm_vcpu *vcpu)
4553 {
4554         unsigned long field;
4555         u64 field_value;
4556         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4557         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4558         int len;
4559         gva_t gva = 0;
4560         struct vmcs12 *vmcs12;
4561         struct x86_exception e;
4562         short offset;
4563
4564         if (!nested_vmx_check_permission(vcpu))
4565                 return 1;
4566
4567         if (to_vmx(vcpu)->nested.current_vmptr == -1ull)
4568                 return nested_vmx_failInvalid(vcpu);
4569
4570         if (!is_guest_mode(vcpu))
4571                 vmcs12 = get_vmcs12(vcpu);
4572         else {
4573                 /*
4574                  * When vmcs->vmcs_link_pointer is -1ull, any VMREAD
4575                  * to shadowed-field sets the ALU flags for VMfailInvalid.
4576                  */
4577                 if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4578                         return nested_vmx_failInvalid(vcpu);
4579                 vmcs12 = get_shadow_vmcs12(vcpu);
4580         }
4581
4582         /* Decode instruction info and find the field to read */
4583         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4584
4585         offset = vmcs_field_to_offset(field);
4586         if (offset < 0)
4587                 return nested_vmx_failValid(vcpu,
4588                         VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4589
4590         if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
4591                 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4592
4593         /* Read the field, zero-extended to a u64 field_value */
4594         field_value = vmcs12_read_any(vmcs12, field, offset);
4595
4596         /*
4597          * Now copy part of this value to register or memory, as requested.
4598          * Note that the number of bits actually copied is 32 or 64 depending
4599          * on the guest's mode (32 or 64 bit), not on the given field's length.
4600          */
4601         if (vmx_instruction_info & (1u << 10)) {
4602                 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
4603                         field_value);
4604         } else {
4605                 len = is_64_bit_mode(vcpu) ? 8 : 4;
4606                 if (get_vmx_mem_address(vcpu, exit_qualification,
4607                                 vmx_instruction_info, true, len, &gva))
4608                         return 1;
4609                 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
4610                 if (kvm_write_guest_virt_system(vcpu, gva, &field_value, len, &e))
4611                         kvm_inject_page_fault(vcpu, &e);
4612         }
4613
4614         return nested_vmx_succeed(vcpu);
4615 }
4616
4617 static bool is_shadow_field_rw(unsigned long field)
4618 {
4619         switch (field) {
4620 #define SHADOW_FIELD_RW(x, y) case x:
4621 #include "vmcs_shadow_fields.h"
4622                 return true;
4623         default:
4624                 break;
4625         }
4626         return false;
4627 }
4628
4629 static bool is_shadow_field_ro(unsigned long field)
4630 {
4631         switch (field) {
4632 #define SHADOW_FIELD_RO(x, y) case x:
4633 #include "vmcs_shadow_fields.h"
4634                 return true;
4635         default:
4636                 break;
4637         }
4638         return false;
4639 }
4640
4641 static int handle_vmwrite(struct kvm_vcpu *vcpu)
4642 {
4643         unsigned long field;
4644         int len;
4645         gva_t gva;
4646         struct vcpu_vmx *vmx = to_vmx(vcpu);
4647         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4648         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4649
4650         /* The value to write might be 32 or 64 bits, depending on L1's long
4651          * mode, and eventually we need to write that into a field of several
4652          * possible lengths. The code below first zero-extends the value to 64
4653          * bit (field_value), and then copies only the appropriate number of
4654          * bits into the vmcs12 field.
4655          */
4656         u64 field_value = 0;
4657         struct x86_exception e;
4658         struct vmcs12 *vmcs12;
4659         short offset;
4660
4661         if (!nested_vmx_check_permission(vcpu))
4662                 return 1;
4663
4664         if (vmx->nested.current_vmptr == -1ull)
4665                 return nested_vmx_failInvalid(vcpu);
4666
4667         if (vmx_instruction_info & (1u << 10))
4668                 field_value = kvm_register_readl(vcpu,
4669                         (((vmx_instruction_info) >> 3) & 0xf));
4670         else {
4671                 len = is_64_bit_mode(vcpu) ? 8 : 4;
4672                 if (get_vmx_mem_address(vcpu, exit_qualification,
4673                                 vmx_instruction_info, false, len, &gva))
4674                         return 1;
4675                 if (kvm_read_guest_virt(vcpu, gva, &field_value, len, &e)) {
4676                         kvm_inject_page_fault(vcpu, &e);
4677                         return 1;
4678                 }
4679         }
4680
4681
4682         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4683         /*
4684          * If the vCPU supports "VMWRITE to any supported field in the
4685          * VMCS," then the "read-only" fields are actually read/write.
4686          */
4687         if (vmcs_field_readonly(field) &&
4688             !nested_cpu_has_vmwrite_any_field(vcpu))
4689                 return nested_vmx_failValid(vcpu,
4690                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
4691
4692         if (!is_guest_mode(vcpu)) {
4693                 vmcs12 = get_vmcs12(vcpu);
4694
4695                 /*
4696                  * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
4697                  * vmcs12, else we may crush a field or consume a stale value.
4698                  */
4699                 if (!is_shadow_field_rw(field))
4700                         copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4701         } else {
4702                 /*
4703                  * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE
4704                  * to shadowed-field sets the ALU flags for VMfailInvalid.
4705                  */
4706                 if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4707                         return nested_vmx_failInvalid(vcpu);
4708                 vmcs12 = get_shadow_vmcs12(vcpu);
4709         }
4710
4711         offset = vmcs_field_to_offset(field);
4712         if (offset < 0)
4713                 return nested_vmx_failValid(vcpu,
4714                         VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4715
4716         /*
4717          * Some Intel CPUs intentionally drop the reserved bits of the AR byte
4718          * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
4719          * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
4720          * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
4721          * from L1 will return a different value than VMREAD from L2 (L1 sees
4722          * the stripped down value, L2 sees the full value as stored by KVM).
4723          */
4724         if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
4725                 field_value &= 0x1f0ff;
4726
4727         vmcs12_write_any(vmcs12, field, offset, field_value);
4728
4729         /*
4730          * Do not track vmcs12 dirty-state if in guest-mode as we actually
4731          * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
4732          * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
4733          * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
4734          */
4735         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
4736                 /*
4737                  * L1 can read these fields without exiting, ensure the
4738                  * shadow VMCS is up-to-date.
4739                  */
4740                 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
4741                         preempt_disable();
4742                         vmcs_load(vmx->vmcs01.shadow_vmcs);
4743
4744                         __vmcs_writel(field, field_value);
4745
4746                         vmcs_clear(vmx->vmcs01.shadow_vmcs);
4747                         vmcs_load(vmx->loaded_vmcs->vmcs);
4748                         preempt_enable();
4749                 }
4750                 vmx->nested.dirty_vmcs12 = true;
4751         }
4752
4753         return nested_vmx_succeed(vcpu);
4754 }
4755
4756 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
4757 {
4758         vmx->nested.current_vmptr = vmptr;
4759         if (enable_shadow_vmcs) {
4760                 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
4761                 vmcs_write64(VMCS_LINK_POINTER,
4762                              __pa(vmx->vmcs01.shadow_vmcs));
4763                 vmx->nested.need_vmcs12_to_shadow_sync = true;
4764         }
4765         vmx->nested.dirty_vmcs12 = true;
4766 }
4767
4768 /* Emulate the VMPTRLD instruction */
4769 static int handle_vmptrld(struct kvm_vcpu *vcpu)
4770 {
4771         struct vcpu_vmx *vmx = to_vmx(vcpu);
4772         gpa_t vmptr;
4773
4774         if (!nested_vmx_check_permission(vcpu))
4775                 return 1;
4776
4777         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4778                 return 1;
4779
4780         if (!page_address_valid(vcpu, vmptr))
4781                 return nested_vmx_failValid(vcpu,
4782                         VMXERR_VMPTRLD_INVALID_ADDRESS);
4783
4784         if (vmptr == vmx->nested.vmxon_ptr)
4785                 return nested_vmx_failValid(vcpu,
4786                         VMXERR_VMPTRLD_VMXON_POINTER);
4787
4788         /* Forbid normal VMPTRLD if Enlightened version was used */
4789         if (vmx->nested.hv_evmcs)
4790                 return 1;
4791
4792         if (vmx->nested.current_vmptr != vmptr) {
4793                 struct kvm_host_map map;
4794                 struct vmcs12 *new_vmcs12;
4795
4796                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
4797                         /*
4798                          * Reads from an unbacked page return all 1s,
4799                          * which means that the 32 bits located at the
4800                          * given physical address won't match the required
4801                          * VMCS12_REVISION identifier.
4802                          */
4803                         return nested_vmx_failValid(vcpu,
4804                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4805                 }
4806
4807                 new_vmcs12 = map.hva;
4808
4809                 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
4810                     (new_vmcs12->hdr.shadow_vmcs &&
4811                      !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
4812                         kvm_vcpu_unmap(vcpu, &map, false);
4813                         return nested_vmx_failValid(vcpu,
4814                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4815                 }
4816
4817                 nested_release_vmcs12(vcpu);
4818
4819                 /*
4820                  * Load VMCS12 from guest memory since it is not already
4821                  * cached.
4822                  */
4823                 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
4824                 kvm_vcpu_unmap(vcpu, &map, false);
4825
4826                 set_current_vmptr(vmx, vmptr);
4827         }
4828
4829         return nested_vmx_succeed(vcpu);
4830 }
4831
4832 /* Emulate the VMPTRST instruction */
4833 static int handle_vmptrst(struct kvm_vcpu *vcpu)
4834 {
4835         unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
4836         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4837         gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
4838         struct x86_exception e;
4839         gva_t gva;
4840
4841         if (!nested_vmx_check_permission(vcpu))
4842                 return 1;
4843
4844         if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
4845                 return 1;
4846
4847         if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
4848                                 true, sizeof(gpa_t), &gva))
4849                 return 1;
4850         /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
4851         if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
4852                                         sizeof(gpa_t), &e)) {
4853                 kvm_inject_page_fault(vcpu, &e);
4854                 return 1;
4855         }
4856         return nested_vmx_succeed(vcpu);
4857 }
4858
4859 /* Emulate the INVEPT instruction */
4860 static int handle_invept(struct kvm_vcpu *vcpu)
4861 {
4862         struct vcpu_vmx *vmx = to_vmx(vcpu);
4863         u32 vmx_instruction_info, types;
4864         unsigned long type;
4865         gva_t gva;
4866         struct x86_exception e;
4867         struct {
4868                 u64 eptp, gpa;
4869         } operand;
4870
4871         if (!(vmx->nested.msrs.secondary_ctls_high &
4872               SECONDARY_EXEC_ENABLE_EPT) ||
4873             !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
4874                 kvm_queue_exception(vcpu, UD_VECTOR);
4875                 return 1;
4876         }
4877
4878         if (!nested_vmx_check_permission(vcpu))
4879                 return 1;
4880
4881         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4882         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4883
4884         types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
4885
4886         if (type >= 32 || !(types & (1 << type)))
4887                 return nested_vmx_failValid(vcpu,
4888                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4889
4890         /* According to the Intel VMX instruction reference, the memory
4891          * operand is read even if it isn't needed (e.g., for type==global)
4892          */
4893         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4894                         vmx_instruction_info, false, sizeof(operand), &gva))
4895                 return 1;
4896         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
4897                 kvm_inject_page_fault(vcpu, &e);
4898                 return 1;
4899         }
4900
4901         switch (type) {
4902         case VMX_EPT_EXTENT_GLOBAL:
4903         case VMX_EPT_EXTENT_CONTEXT:
4904         /*
4905          * TODO: Sync the necessary shadow EPT roots here, rather than
4906          * at the next emulated VM-entry.
4907          */
4908                 break;
4909         default:
4910                 BUG_ON(1);
4911                 break;
4912         }
4913
4914         return nested_vmx_succeed(vcpu);
4915 }
4916
4917 static int handle_invvpid(struct kvm_vcpu *vcpu)
4918 {
4919         struct vcpu_vmx *vmx = to_vmx(vcpu);
4920         u32 vmx_instruction_info;
4921         unsigned long type, types;
4922         gva_t gva;
4923         struct x86_exception e;
4924         struct {
4925                 u64 vpid;
4926                 u64 gla;
4927         } operand;
4928         u16 vpid02;
4929
4930         if (!(vmx->nested.msrs.secondary_ctls_high &
4931               SECONDARY_EXEC_ENABLE_VPID) ||
4932                         !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
4933                 kvm_queue_exception(vcpu, UD_VECTOR);
4934                 return 1;
4935         }
4936
4937         if (!nested_vmx_check_permission(vcpu))
4938                 return 1;
4939
4940         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4941         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4942
4943         types = (vmx->nested.msrs.vpid_caps &
4944                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
4945
4946         if (type >= 32 || !(types & (1 << type)))
4947                 return nested_vmx_failValid(vcpu,
4948                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4949
4950         /* according to the intel vmx instruction reference, the memory
4951          * operand is read even if it isn't needed (e.g., for type==global)
4952          */
4953         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4954                         vmx_instruction_info, false, sizeof(operand), &gva))
4955                 return 1;
4956         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
4957                 kvm_inject_page_fault(vcpu, &e);
4958                 return 1;
4959         }
4960         if (operand.vpid >> 16)
4961                 return nested_vmx_failValid(vcpu,
4962                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4963
4964         vpid02 = nested_get_vpid02(vcpu);
4965         switch (type) {
4966         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
4967                 if (!operand.vpid ||
4968                     is_noncanonical_address(operand.gla, vcpu))
4969                         return nested_vmx_failValid(vcpu,
4970                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4971                 if (cpu_has_vmx_invvpid_individual_addr()) {
4972                         __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
4973                                 vpid02, operand.gla);
4974                 } else
4975                         __vmx_flush_tlb(vcpu, vpid02, false);
4976                 break;
4977         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
4978         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
4979                 if (!operand.vpid)
4980                         return nested_vmx_failValid(vcpu,
4981                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4982                 __vmx_flush_tlb(vcpu, vpid02, false);
4983                 break;
4984         case VMX_VPID_EXTENT_ALL_CONTEXT:
4985                 __vmx_flush_tlb(vcpu, vpid02, false);
4986                 break;
4987         default:
4988                 WARN_ON_ONCE(1);
4989                 return kvm_skip_emulated_instruction(vcpu);
4990         }
4991
4992         return nested_vmx_succeed(vcpu);
4993 }
4994
4995 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
4996                                      struct vmcs12 *vmcs12)
4997 {
4998         u32 index = kvm_rcx_read(vcpu);
4999         u64 address;
5000         bool accessed_dirty;
5001         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
5002
5003         if (!nested_cpu_has_eptp_switching(vmcs12) ||
5004             !nested_cpu_has_ept(vmcs12))
5005                 return 1;
5006
5007         if (index >= VMFUNC_EPTP_ENTRIES)
5008                 return 1;
5009
5010
5011         if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5012                                      &address, index * 8, 8))
5013                 return 1;
5014
5015         accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
5016
5017         /*
5018          * If the (L2) guest does a vmfunc to the currently
5019          * active ept pointer, we don't have to do anything else
5020          */
5021         if (vmcs12->ept_pointer != address) {
5022                 if (!valid_ept_address(vcpu, address))
5023                         return 1;
5024
5025                 kvm_mmu_unload(vcpu);
5026                 mmu->ept_ad = accessed_dirty;
5027                 mmu->mmu_role.base.ad_disabled = !accessed_dirty;
5028                 vmcs12->ept_pointer = address;
5029                 /*
5030                  * TODO: Check what's the correct approach in case
5031                  * mmu reload fails. Currently, we just let the next
5032                  * reload potentially fail
5033                  */
5034                 kvm_mmu_reload(vcpu);
5035         }
5036
5037         return 0;
5038 }
5039
5040 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5041 {
5042         struct vcpu_vmx *vmx = to_vmx(vcpu);
5043         struct vmcs12 *vmcs12;
5044         u32 function = kvm_rax_read(vcpu);
5045
5046         /*
5047          * VMFUNC is only supported for nested guests, but we always enable the
5048          * secondary control for simplicity; for non-nested mode, fake that we
5049          * didn't by injecting #UD.
5050          */
5051         if (!is_guest_mode(vcpu)) {
5052                 kvm_queue_exception(vcpu, UD_VECTOR);
5053                 return 1;
5054         }
5055
5056         vmcs12 = get_vmcs12(vcpu);
5057         if ((vmcs12->vm_function_control & (1 << function)) == 0)
5058                 goto fail;
5059
5060         switch (function) {
5061         case 0:
5062                 if (nested_vmx_eptp_switching(vcpu, vmcs12))
5063                         goto fail;
5064                 break;
5065         default:
5066                 goto fail;
5067         }
5068         return kvm_skip_emulated_instruction(vcpu);
5069
5070 fail:
5071         nested_vmx_vmexit(vcpu, vmx->exit_reason,
5072                           vmcs_read32(VM_EXIT_INTR_INFO),
5073                           vmcs_readl(EXIT_QUALIFICATION));
5074         return 1;
5075 }
5076
5077
5078 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5079                                        struct vmcs12 *vmcs12)
5080 {
5081         unsigned long exit_qualification;
5082         gpa_t bitmap, last_bitmap;
5083         unsigned int port;
5084         int size;
5085         u8 b;
5086
5087         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5088                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5089
5090         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5091
5092         port = exit_qualification >> 16;
5093         size = (exit_qualification & 7) + 1;
5094
5095         last_bitmap = (gpa_t)-1;
5096         b = -1;
5097
5098         while (size > 0) {
5099                 if (port < 0x8000)
5100                         bitmap = vmcs12->io_bitmap_a;
5101                 else if (port < 0x10000)
5102                         bitmap = vmcs12->io_bitmap_b;
5103                 else
5104                         return true;
5105                 bitmap += (port & 0x7fff) / 8;
5106
5107                 if (last_bitmap != bitmap)
5108                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5109                                 return true;
5110                 if (b & (1 << (port & 7)))
5111                         return true;
5112
5113                 port++;
5114                 size--;
5115                 last_bitmap = bitmap;
5116         }
5117
5118         return false;
5119 }
5120
5121 /*
5122  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
5123  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5124  * disinterest in the current event (read or write a specific MSR) by using an
5125  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5126  */
5127 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5128         struct vmcs12 *vmcs12, u32 exit_reason)
5129 {
5130         u32 msr_index = kvm_rcx_read(vcpu);
5131         gpa_t bitmap;
5132
5133         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5134                 return true;
5135
5136         /*
5137          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5138          * for the four combinations of read/write and low/high MSR numbers.
5139          * First we need to figure out which of the four to use:
5140          */
5141         bitmap = vmcs12->msr_bitmap;
5142         if (exit_reason == EXIT_REASON_MSR_WRITE)
5143                 bitmap += 2048;
5144         if (msr_index >= 0xc0000000) {
5145                 msr_index -= 0xc0000000;
5146                 bitmap += 1024;
5147         }
5148
5149         /* Then read the msr_index'th bit from this bitmap: */
5150         if (msr_index < 1024*8) {
5151                 unsigned char b;
5152                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5153                         return true;
5154                 return 1 & (b >> (msr_index & 7));
5155         } else
5156                 return true; /* let L1 handle the wrong parameter */
5157 }
5158
5159 /*
5160  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5161  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5162  * intercept (via guest_host_mask etc.) the current event.
5163  */
5164 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5165         struct vmcs12 *vmcs12)
5166 {
5167         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5168         int cr = exit_qualification & 15;
5169         int reg;
5170         unsigned long val;
5171
5172         switch ((exit_qualification >> 4) & 3) {
5173         case 0: /* mov to cr */
5174                 reg = (exit_qualification >> 8) & 15;
5175                 val = kvm_register_readl(vcpu, reg);
5176                 switch (cr) {
5177                 case 0:
5178                         if (vmcs12->cr0_guest_host_mask &
5179                             (val ^ vmcs12->cr0_read_shadow))
5180                                 return true;
5181                         break;
5182                 case 3:
5183                         if ((vmcs12->cr3_target_count >= 1 &&
5184                                         vmcs12->cr3_target_value0 == val) ||
5185                                 (vmcs12->cr3_target_count >= 2 &&
5186                                         vmcs12->cr3_target_value1 == val) ||
5187                                 (vmcs12->cr3_target_count >= 3 &&
5188                                         vmcs12->cr3_target_value2 == val) ||
5189                                 (vmcs12->cr3_target_count >= 4 &&
5190                                         vmcs12->cr3_target_value3 == val))
5191                                 return false;
5192                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5193                                 return true;
5194                         break;
5195                 case 4:
5196                         if (vmcs12->cr4_guest_host_mask &
5197                             (vmcs12->cr4_read_shadow ^ val))
5198                                 return true;
5199                         break;
5200                 case 8:
5201                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5202                                 return true;
5203                         break;
5204                 }
5205                 break;
5206         case 2: /* clts */
5207                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5208                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
5209                         return true;
5210                 break;
5211         case 1: /* mov from cr */
5212                 switch (cr) {
5213                 case 3:
5214                         if (vmcs12->cpu_based_vm_exec_control &
5215                             CPU_BASED_CR3_STORE_EXITING)
5216                                 return true;
5217                         break;
5218                 case 8:
5219                         if (vmcs12->cpu_based_vm_exec_control &
5220                             CPU_BASED_CR8_STORE_EXITING)
5221                                 return true;
5222                         break;
5223                 }
5224                 break;
5225         case 3: /* lmsw */
5226                 /*
5227                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5228                  * cr0. Other attempted changes are ignored, with no exit.
5229                  */
5230                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5231                 if (vmcs12->cr0_guest_host_mask & 0xe &
5232                     (val ^ vmcs12->cr0_read_shadow))
5233                         return true;
5234                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5235                     !(vmcs12->cr0_read_shadow & 0x1) &&
5236                     (val & 0x1))
5237                         return true;
5238                 break;
5239         }
5240         return false;
5241 }
5242
5243 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5244         struct vmcs12 *vmcs12, gpa_t bitmap)
5245 {
5246         u32 vmx_instruction_info;
5247         unsigned long field;
5248         u8 b;
5249
5250         if (!nested_cpu_has_shadow_vmcs(vmcs12))
5251                 return true;
5252
5253         /* Decode instruction info and find the field to access */
5254         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5255         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5256
5257         /* Out-of-range fields always cause a VM exit from L2 to L1 */
5258         if (field >> 15)
5259                 return true;
5260
5261         if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5262                 return true;
5263
5264         return 1 & (b >> (field & 7));
5265 }
5266
5267 /*
5268  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5269  * should handle it ourselves in L0 (and then continue L2). Only call this
5270  * when in is_guest_mode (L2).
5271  */
5272 bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
5273 {
5274         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5275         struct vcpu_vmx *vmx = to_vmx(vcpu);
5276         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5277
5278         if (vmx->nested.nested_run_pending)
5279                 return false;
5280
5281         if (unlikely(vmx->fail)) {
5282                 trace_kvm_nested_vmenter_failed(
5283                         "hardware VM-instruction error: ",
5284                         vmcs_read32(VM_INSTRUCTION_ERROR));
5285                 return true;
5286         }
5287
5288         /*
5289          * The host physical addresses of some pages of guest memory
5290          * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5291          * Page). The CPU may write to these pages via their host
5292          * physical address while L2 is running, bypassing any
5293          * address-translation-based dirty tracking (e.g. EPT write
5294          * protection).
5295          *
5296          * Mark them dirty on every exit from L2 to prevent them from
5297          * getting out of sync with dirty tracking.
5298          */
5299         nested_mark_vmcs12_pages_dirty(vcpu);
5300
5301         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
5302                                 vmcs_readl(EXIT_QUALIFICATION),
5303                                 vmx->idt_vectoring_info,
5304                                 intr_info,
5305                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5306                                 KVM_ISA_VMX);
5307
5308         switch (exit_reason) {
5309         case EXIT_REASON_EXCEPTION_NMI:
5310                 if (is_nmi(intr_info))
5311                         return false;
5312                 else if (is_page_fault(intr_info))
5313                         return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
5314                 else if (is_debug(intr_info) &&
5315                          vcpu->guest_debug &
5316                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5317                         return false;
5318                 else if (is_breakpoint(intr_info) &&
5319                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5320                         return false;
5321                 return vmcs12->exception_bitmap &
5322                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5323         case EXIT_REASON_EXTERNAL_INTERRUPT:
5324                 return false;
5325         case EXIT_REASON_TRIPLE_FAULT:
5326                 return true;
5327         case EXIT_REASON_PENDING_INTERRUPT:
5328                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
5329         case EXIT_REASON_NMI_WINDOW:
5330                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
5331         case EXIT_REASON_TASK_SWITCH:
5332                 return true;
5333         case EXIT_REASON_CPUID:
5334                 return true;
5335         case EXIT_REASON_HLT:
5336                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5337         case EXIT_REASON_INVD:
5338                 return true;
5339         case EXIT_REASON_INVLPG:
5340                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5341         case EXIT_REASON_RDPMC:
5342                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5343         case EXIT_REASON_RDRAND:
5344                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5345         case EXIT_REASON_RDSEED:
5346                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5347         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5348                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5349         case EXIT_REASON_VMREAD:
5350                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5351                         vmcs12->vmread_bitmap);
5352         case EXIT_REASON_VMWRITE:
5353                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5354                         vmcs12->vmwrite_bitmap);
5355         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5356         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5357         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5358         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5359         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5360                 /*
5361                  * VMX instructions trap unconditionally. This allows L1 to
5362                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
5363                  */
5364                 return true;
5365         case EXIT_REASON_CR_ACCESS:
5366                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5367         case EXIT_REASON_DR_ACCESS:
5368                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5369         case EXIT_REASON_IO_INSTRUCTION:
5370                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
5371         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5372                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5373         case EXIT_REASON_MSR_READ:
5374         case EXIT_REASON_MSR_WRITE:
5375                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5376         case EXIT_REASON_INVALID_STATE:
5377                 return true;
5378         case EXIT_REASON_MWAIT_INSTRUCTION:
5379                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5380         case EXIT_REASON_MONITOR_TRAP_FLAG:
5381                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
5382         case EXIT_REASON_MONITOR_INSTRUCTION:
5383                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5384         case EXIT_REASON_PAUSE_INSTRUCTION:
5385                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5386                         nested_cpu_has2(vmcs12,
5387                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5388         case EXIT_REASON_MCE_DURING_VMENTRY:
5389                 return false;
5390         case EXIT_REASON_TPR_BELOW_THRESHOLD:
5391                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5392         case EXIT_REASON_APIC_ACCESS:
5393         case EXIT_REASON_APIC_WRITE:
5394         case EXIT_REASON_EOI_INDUCED:
5395                 /*
5396                  * The controls for "virtualize APIC accesses," "APIC-
5397                  * register virtualization," and "virtual-interrupt
5398                  * delivery" only come from vmcs12.
5399                  */
5400                 return true;
5401         case EXIT_REASON_EPT_VIOLATION:
5402                 /*
5403                  * L0 always deals with the EPT violation. If nested EPT is
5404                  * used, and the nested mmu code discovers that the address is
5405                  * missing in the guest EPT table (EPT12), the EPT violation
5406                  * will be injected with nested_ept_inject_page_fault()
5407                  */
5408                 return false;
5409         case EXIT_REASON_EPT_MISCONFIG:
5410                 /*
5411                  * L2 never uses directly L1's EPT, but rather L0's own EPT
5412                  * table (shadow on EPT) or a merged EPT table that L0 built
5413                  * (EPT on EPT). So any problems with the structure of the
5414                  * table is L0's fault.
5415                  */
5416                 return false;
5417         case EXIT_REASON_INVPCID:
5418                 return
5419                         nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5420                         nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5421         case EXIT_REASON_WBINVD:
5422                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5423         case EXIT_REASON_XSETBV:
5424                 return true;
5425         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5426                 /*
5427                  * This should never happen, since it is not possible to
5428                  * set XSS to a non-zero value---neither in L1 nor in L2.
5429                  * If if it were, XSS would have to be checked against
5430                  * the XSS exit bitmap in vmcs12.
5431                  */
5432                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5433         case EXIT_REASON_PREEMPTION_TIMER:
5434                 return false;
5435         case EXIT_REASON_PML_FULL:
5436                 /* We emulate PML support to L1. */
5437                 return false;
5438         case EXIT_REASON_VMFUNC:
5439                 /* VM functions are emulated through L2->L0 vmexits. */
5440                 return false;
5441         case EXIT_REASON_ENCLS:
5442                 /* SGX is never exposed to L1 */
5443                 return false;
5444         default:
5445                 return true;
5446         }
5447 }
5448
5449
5450 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
5451                                 struct kvm_nested_state __user *user_kvm_nested_state,
5452                                 u32 user_data_size)
5453 {
5454         struct vcpu_vmx *vmx;
5455         struct vmcs12 *vmcs12;
5456         struct kvm_nested_state kvm_state = {
5457                 .flags = 0,
5458                 .format = KVM_STATE_NESTED_FORMAT_VMX,
5459                 .size = sizeof(kvm_state),
5460                 .hdr.vmx.vmxon_pa = -1ull,
5461                 .hdr.vmx.vmcs12_pa = -1ull,
5462         };
5463         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5464                 &user_kvm_nested_state->data.vmx[0];
5465
5466         if (!vcpu)
5467                 return kvm_state.size + sizeof(*user_vmx_nested_state);
5468
5469         vmx = to_vmx(vcpu);
5470         vmcs12 = get_vmcs12(vcpu);
5471
5472         if (nested_vmx_allowed(vcpu) &&
5473             (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
5474                 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
5475                 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
5476
5477                 if (vmx_has_valid_vmcs12(vcpu)) {
5478                         kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
5479
5480                         if (vmx->nested.hv_evmcs)
5481                                 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
5482
5483                         if (is_guest_mode(vcpu) &&
5484                             nested_cpu_has_shadow_vmcs(vmcs12) &&
5485                             vmcs12->vmcs_link_pointer != -1ull)
5486                                 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
5487                 }
5488
5489                 if (vmx->nested.smm.vmxon)
5490                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
5491
5492                 if (vmx->nested.smm.guest_mode)
5493                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
5494
5495                 if (is_guest_mode(vcpu)) {
5496                         kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
5497
5498                         if (vmx->nested.nested_run_pending)
5499                                 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
5500                 }
5501         }
5502
5503         if (user_data_size < kvm_state.size)
5504                 goto out;
5505
5506         if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
5507                 return -EFAULT;
5508
5509         if (!vmx_has_valid_vmcs12(vcpu))
5510                 goto out;
5511
5512         /*
5513          * When running L2, the authoritative vmcs12 state is in the
5514          * vmcs02. When running L1, the authoritative vmcs12 state is
5515          * in the shadow or enlightened vmcs linked to vmcs01, unless
5516          * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
5517          * vmcs12 state is in the vmcs12 already.
5518          */
5519         if (is_guest_mode(vcpu)) {
5520                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
5521                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5522         } else if (!vmx->nested.need_vmcs12_to_shadow_sync) {
5523                 if (vmx->nested.hv_evmcs)
5524                         copy_enlightened_to_vmcs12(vmx);
5525                 else if (enable_shadow_vmcs)
5526                         copy_shadow_to_vmcs12(vmx);
5527         }
5528
5529         BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
5530         BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
5531
5532         /*
5533          * Copy over the full allocated size of vmcs12 rather than just the size
5534          * of the struct.
5535          */
5536         if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
5537                 return -EFAULT;
5538
5539         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5540             vmcs12->vmcs_link_pointer != -1ull) {
5541                 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
5542                                  get_shadow_vmcs12(vcpu), VMCS12_SIZE))
5543                         return -EFAULT;
5544         }
5545
5546 out:
5547         return kvm_state.size;
5548 }
5549
5550 /*
5551  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
5552  */
5553 void vmx_leave_nested(struct kvm_vcpu *vcpu)
5554 {
5555         if (is_guest_mode(vcpu)) {
5556                 to_vmx(vcpu)->nested.nested_run_pending = 0;
5557                 nested_vmx_vmexit(vcpu, -1, 0, 0);
5558         }
5559         free_nested(vcpu);
5560 }
5561
5562 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
5563                                 struct kvm_nested_state __user *user_kvm_nested_state,
5564                                 struct kvm_nested_state *kvm_state)
5565 {
5566         struct vcpu_vmx *vmx = to_vmx(vcpu);
5567         struct vmcs12 *vmcs12;
5568         u32 exit_qual;
5569         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5570                 &user_kvm_nested_state->data.vmx[0];
5571         int ret;
5572
5573         if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
5574                 return -EINVAL;
5575
5576         if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
5577                 if (kvm_state->hdr.vmx.smm.flags)
5578                         return -EINVAL;
5579
5580                 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
5581                         return -EINVAL;
5582
5583                 /*
5584                  * KVM_STATE_NESTED_EVMCS used to signal that KVM should
5585                  * enable eVMCS capability on vCPU. However, since then
5586                  * code was changed such that flag signals vmcs12 should
5587                  * be copied into eVMCS in guest memory.
5588                  *
5589                  * To preserve backwards compatability, allow user
5590                  * to set this flag even when there is no VMXON region.
5591                  */
5592                 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
5593                         return -EINVAL;
5594         } else {
5595                 if (!nested_vmx_allowed(vcpu))
5596                         return -EINVAL;
5597
5598                 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
5599                         return -EINVAL;
5600         }
5601
5602         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5603             (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5604                 return -EINVAL;
5605
5606         if (kvm_state->hdr.vmx.smm.flags &
5607             ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
5608                 return -EINVAL;
5609
5610         /*
5611          * SMM temporarily disables VMX, so we cannot be in guest mode,
5612          * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
5613          * must be zero.
5614          */
5615         if (is_smm(vcpu) ?
5616                 (kvm_state->flags &
5617                  (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
5618                 : kvm_state->hdr.vmx.smm.flags)
5619                 return -EINVAL;
5620
5621         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5622             !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
5623                 return -EINVAL;
5624
5625         if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
5626                 (!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
5627                         return -EINVAL;
5628
5629         vmx_leave_nested(vcpu);
5630
5631         if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
5632                 return 0;
5633
5634         vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
5635         ret = enter_vmx_operation(vcpu);
5636         if (ret)
5637                 return ret;
5638
5639         /* Empty 'VMXON' state is permitted */
5640         if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12))
5641                 return 0;
5642
5643         if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
5644                 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
5645                     !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
5646                         return -EINVAL;
5647
5648                 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
5649         } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
5650                 /*
5651                  * Sync eVMCS upon entry as we may not have
5652                  * HV_X64_MSR_VP_ASSIST_PAGE set up yet.
5653                  */
5654                 vmx->nested.need_vmcs12_to_shadow_sync = true;
5655         } else {
5656                 return -EINVAL;
5657         }
5658
5659         if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
5660                 vmx->nested.smm.vmxon = true;
5661                 vmx->nested.vmxon = false;
5662
5663                 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
5664                         vmx->nested.smm.guest_mode = true;
5665         }
5666
5667         vmcs12 = get_vmcs12(vcpu);
5668         if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
5669                 return -EFAULT;
5670
5671         if (vmcs12->hdr.revision_id != VMCS12_REVISION)
5672                 return -EINVAL;
5673
5674         if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5675                 return 0;
5676
5677         vmx->nested.nested_run_pending =
5678                 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
5679
5680         ret = -EINVAL;
5681         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5682             vmcs12->vmcs_link_pointer != -1ull) {
5683                 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
5684
5685                 if (kvm_state->size <
5686                     sizeof(*kvm_state) +
5687                     sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
5688                         goto error_guest_mode;
5689
5690                 if (copy_from_user(shadow_vmcs12,
5691                                    user_vmx_nested_state->shadow_vmcs12,
5692                                    sizeof(*shadow_vmcs12))) {
5693                         ret = -EFAULT;
5694                         goto error_guest_mode;
5695                 }
5696
5697                 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5698                     !shadow_vmcs12->hdr.shadow_vmcs)
5699                         goto error_guest_mode;
5700         }
5701
5702         if (nested_vmx_check_controls(vcpu, vmcs12) ||
5703             nested_vmx_check_host_state(vcpu, vmcs12) ||
5704             nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
5705                 goto error_guest_mode;
5706
5707         vmx->nested.dirty_vmcs12 = true;
5708         ret = nested_vmx_enter_non_root_mode(vcpu, false);
5709         if (ret)
5710                 goto error_guest_mode;
5711
5712         return 0;
5713
5714 error_guest_mode:
5715         vmx->nested.nested_run_pending = 0;
5716         return ret;
5717 }
5718
5719 void nested_vmx_vcpu_setup(void)
5720 {
5721         if (enable_shadow_vmcs) {
5722                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5723                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5724         }
5725 }
5726
5727 /*
5728  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
5729  * returned for the various VMX controls MSRs when nested VMX is enabled.
5730  * The same values should also be used to verify that vmcs12 control fields are
5731  * valid during nested entry from L1 to L2.
5732  * Each of these control msrs has a low and high 32-bit half: A low bit is on
5733  * if the corresponding bit in the (32-bit) control field *must* be on, and a
5734  * bit in the high half is on if the corresponding bit in the control field
5735  * may be on. See also vmx_control_verify().
5736  */
5737 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps,
5738                                 bool apicv)
5739 {
5740         /*
5741          * Note that as a general rule, the high half of the MSRs (bits in
5742          * the control fields which may be 1) should be initialized by the
5743          * intersection of the underlying hardware's MSR (i.e., features which
5744          * can be supported) and the list of features we want to expose -
5745          * because they are known to be properly supported in our code.
5746          * Also, usually, the low half of the MSRs (bits which must be 1) can
5747          * be set to 0, meaning that L1 may turn off any of these bits. The
5748          * reason is that if one of these bits is necessary, it will appear
5749          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
5750          * fields of vmcs01 and vmcs02, will turn these bits off - and
5751          * nested_vmx_exit_reflected() will not pass related exits to L1.
5752          * These rules have exceptions below.
5753          */
5754
5755         /* pin-based controls */
5756         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
5757                 msrs->pinbased_ctls_low,
5758                 msrs->pinbased_ctls_high);
5759         msrs->pinbased_ctls_low |=
5760                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5761         msrs->pinbased_ctls_high &=
5762                 PIN_BASED_EXT_INTR_MASK |
5763                 PIN_BASED_NMI_EXITING |
5764                 PIN_BASED_VIRTUAL_NMIS |
5765                 (apicv ? PIN_BASED_POSTED_INTR : 0);
5766         msrs->pinbased_ctls_high |=
5767                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5768                 PIN_BASED_VMX_PREEMPTION_TIMER;
5769
5770         /* exit controls */
5771         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
5772                 msrs->exit_ctls_low,
5773                 msrs->exit_ctls_high);
5774         msrs->exit_ctls_low =
5775                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
5776
5777         msrs->exit_ctls_high &=
5778 #ifdef CONFIG_X86_64
5779                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
5780 #endif
5781                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
5782         msrs->exit_ctls_high |=
5783                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
5784                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
5785                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
5786
5787         /* We support free control of debug control saving. */
5788         msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
5789
5790         /* entry controls */
5791         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
5792                 msrs->entry_ctls_low,
5793                 msrs->entry_ctls_high);
5794         msrs->entry_ctls_low =
5795                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
5796         msrs->entry_ctls_high &=
5797 #ifdef CONFIG_X86_64
5798                 VM_ENTRY_IA32E_MODE |
5799 #endif
5800                 VM_ENTRY_LOAD_IA32_PAT;
5801         msrs->entry_ctls_high |=
5802                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
5803
5804         /* We support free control of debug control loading. */
5805         msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
5806
5807         /* cpu-based controls */
5808         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
5809                 msrs->procbased_ctls_low,
5810                 msrs->procbased_ctls_high);
5811         msrs->procbased_ctls_low =
5812                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5813         msrs->procbased_ctls_high &=
5814                 CPU_BASED_VIRTUAL_INTR_PENDING |
5815                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
5816                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
5817                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
5818                 CPU_BASED_CR3_STORE_EXITING |
5819 #ifdef CONFIG_X86_64
5820                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
5821 #endif
5822                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5823                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
5824                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
5825                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
5826                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
5827         /*
5828          * We can allow some features even when not supported by the
5829          * hardware. For example, L1 can specify an MSR bitmap - and we
5830          * can use it to avoid exits to L1 - even when L0 runs L2
5831          * without MSR bitmaps.
5832          */
5833         msrs->procbased_ctls_high |=
5834                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5835                 CPU_BASED_USE_MSR_BITMAPS;
5836
5837         /* We support free control of CR3 access interception. */
5838         msrs->procbased_ctls_low &=
5839                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
5840
5841         /*
5842          * secondary cpu-based controls.  Do not include those that
5843          * depend on CPUID bits, they are added later by vmx_cpuid_update.
5844          */
5845         if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
5846                 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
5847                       msrs->secondary_ctls_low,
5848                       msrs->secondary_ctls_high);
5849
5850         msrs->secondary_ctls_low = 0;
5851         msrs->secondary_ctls_high &=
5852                 SECONDARY_EXEC_DESC |
5853                 SECONDARY_EXEC_RDTSCP |
5854                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
5855                 SECONDARY_EXEC_WBINVD_EXITING |
5856                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5857                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
5858                 SECONDARY_EXEC_RDRAND_EXITING |
5859                 SECONDARY_EXEC_ENABLE_INVPCID |
5860                 SECONDARY_EXEC_RDSEED_EXITING |
5861                 SECONDARY_EXEC_XSAVES;
5862
5863         /*
5864          * We can emulate "VMCS shadowing," even if the hardware
5865          * doesn't support it.
5866          */
5867         msrs->secondary_ctls_high |=
5868                 SECONDARY_EXEC_SHADOW_VMCS;
5869
5870         if (enable_ept) {
5871                 /* nested EPT: emulate EPT also to L1 */
5872                 msrs->secondary_ctls_high |=
5873                         SECONDARY_EXEC_ENABLE_EPT;
5874                 msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
5875                          VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
5876                 if (cpu_has_vmx_ept_execute_only())
5877                         msrs->ept_caps |=
5878                                 VMX_EPT_EXECUTE_ONLY_BIT;
5879                 msrs->ept_caps &= ept_caps;
5880                 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
5881                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
5882                         VMX_EPT_1GB_PAGE_BIT;
5883                 if (enable_ept_ad_bits) {
5884                         msrs->secondary_ctls_high |=
5885                                 SECONDARY_EXEC_ENABLE_PML;
5886                         msrs->ept_caps |= VMX_EPT_AD_BIT;
5887                 }
5888         }
5889
5890         if (cpu_has_vmx_vmfunc()) {
5891                 msrs->secondary_ctls_high |=
5892                         SECONDARY_EXEC_ENABLE_VMFUNC;
5893                 /*
5894                  * Advertise EPTP switching unconditionally
5895                  * since we emulate it
5896                  */
5897                 if (enable_ept)
5898                         msrs->vmfunc_controls =
5899                                 VMX_VMFUNC_EPTP_SWITCHING;
5900         }
5901
5902         /*
5903          * Old versions of KVM use the single-context version without
5904          * checking for support, so declare that it is supported even
5905          * though it is treated as global context.  The alternative is
5906          * not failing the single-context invvpid, and it is worse.
5907          */
5908         if (enable_vpid) {
5909                 msrs->secondary_ctls_high |=
5910                         SECONDARY_EXEC_ENABLE_VPID;
5911                 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
5912                         VMX_VPID_EXTENT_SUPPORTED_MASK;
5913         }
5914
5915         if (enable_unrestricted_guest)
5916                 msrs->secondary_ctls_high |=
5917                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
5918
5919         if (flexpriority_enabled)
5920                 msrs->secondary_ctls_high |=
5921                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5922
5923         /* miscellaneous data */
5924         rdmsr(MSR_IA32_VMX_MISC,
5925                 msrs->misc_low,
5926                 msrs->misc_high);
5927         msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
5928         msrs->misc_low |=
5929                 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
5930                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
5931                 VMX_MISC_ACTIVITY_HLT;
5932         msrs->misc_high = 0;
5933
5934         /*
5935          * This MSR reports some information about VMX support. We
5936          * should return information about the VMX we emulate for the
5937          * guest, and the VMCS structure we give it - not about the
5938          * VMX support of the underlying hardware.
5939          */
5940         msrs->basic =
5941                 VMCS12_REVISION |
5942                 VMX_BASIC_TRUE_CTLS |
5943                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
5944                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
5945
5946         if (cpu_has_vmx_basic_inout())
5947                 msrs->basic |= VMX_BASIC_INOUT;
5948
5949         /*
5950          * These MSRs specify bits which the guest must keep fixed on
5951          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
5952          * We picked the standard core2 setting.
5953          */
5954 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
5955 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
5956         msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
5957         msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
5958
5959         /* These MSRs specify bits which the guest must keep fixed off. */
5960         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
5961         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
5962
5963         /* highest index: VMX_PREEMPTION_TIMER_VALUE */
5964         msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
5965 }
5966
5967 void nested_vmx_hardware_unsetup(void)
5968 {
5969         int i;
5970
5971         if (enable_shadow_vmcs) {
5972                 for (i = 0; i < VMX_BITMAP_NR; i++)
5973                         free_page((unsigned long)vmx_bitmap[i]);
5974         }
5975 }
5976
5977 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
5978 {
5979         int i;
5980
5981         if (!cpu_has_vmx_shadow_vmcs())
5982                 enable_shadow_vmcs = 0;
5983         if (enable_shadow_vmcs) {
5984                 for (i = 0; i < VMX_BITMAP_NR; i++) {
5985                         /*
5986                          * The vmx_bitmap is not tied to a VM and so should
5987                          * not be charged to a memcg.
5988                          */
5989                         vmx_bitmap[i] = (unsigned long *)
5990                                 __get_free_page(GFP_KERNEL);
5991                         if (!vmx_bitmap[i]) {
5992                                 nested_vmx_hardware_unsetup();
5993                                 return -ENOMEM;
5994                         }
5995                 }
5996
5997                 init_vmcs_shadow_fields();
5998         }
5999
6000         exit_handlers[EXIT_REASON_VMCLEAR]      = handle_vmclear,
6001         exit_handlers[EXIT_REASON_VMLAUNCH]     = handle_vmlaunch,
6002         exit_handlers[EXIT_REASON_VMPTRLD]      = handle_vmptrld,
6003         exit_handlers[EXIT_REASON_VMPTRST]      = handle_vmptrst,
6004         exit_handlers[EXIT_REASON_VMREAD]       = handle_vmread,
6005         exit_handlers[EXIT_REASON_VMRESUME]     = handle_vmresume,
6006         exit_handlers[EXIT_REASON_VMWRITE]      = handle_vmwrite,
6007         exit_handlers[EXIT_REASON_VMOFF]        = handle_vmoff,
6008         exit_handlers[EXIT_REASON_VMON]         = handle_vmon,
6009         exit_handlers[EXIT_REASON_INVEPT]       = handle_invept,
6010         exit_handlers[EXIT_REASON_INVVPID]      = handle_invvpid,
6011         exit_handlers[EXIT_REASON_VMFUNC]       = handle_vmfunc,
6012
6013         kvm_x86_ops->check_nested_events = vmx_check_nested_events;
6014         kvm_x86_ops->get_nested_state = vmx_get_nested_state;
6015         kvm_x86_ops->set_nested_state = vmx_set_nested_state;
6016         kvm_x86_ops->get_vmcs12_pages = nested_get_vmcs12_pages,
6017         kvm_x86_ops->nested_enable_evmcs = nested_enable_evmcs;
6018         kvm_x86_ops->nested_get_evmcs_version = nested_get_evmcs_version;
6019
6020         return 0;
6021 }