]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/vmx/nested.c
523d30e935e141040a1ad28c274d3cde523696ba
[linux.git] / arch / x86 / kvm / vmx / nested.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/frame.h>
4 #include <linux/percpu.h>
5
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "trace.h"
14 #include "x86.h"
15
16 static bool __read_mostly enable_shadow_vmcs = 1;
17 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
18
19 static bool __read_mostly nested_early_check = 0;
20 module_param(nested_early_check, bool, S_IRUGO);
21
22 /*
23  * Hyper-V requires all of these, so mark them as supported even though
24  * they are just treated the same as all-context.
25  */
26 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
27         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
28         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
29         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
30         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
31
32 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
33
34 enum {
35         VMX_VMREAD_BITMAP,
36         VMX_VMWRITE_BITMAP,
37         VMX_BITMAP_NR
38 };
39 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
40
41 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
42 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
43
44 static u16 shadow_read_only_fields[] = {
45 #define SHADOW_FIELD_RO(x) x,
46 #include "vmcs_shadow_fields.h"
47 };
48 static int max_shadow_read_only_fields =
49         ARRAY_SIZE(shadow_read_only_fields);
50
51 static u16 shadow_read_write_fields[] = {
52 #define SHADOW_FIELD_RW(x) x,
53 #include "vmcs_shadow_fields.h"
54 };
55 static int max_shadow_read_write_fields =
56         ARRAY_SIZE(shadow_read_write_fields);
57
58 static void init_vmcs_shadow_fields(void)
59 {
60         int i, j;
61
62         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
63         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
64
65         for (i = j = 0; i < max_shadow_read_only_fields; i++) {
66                 u16 field = shadow_read_only_fields[i];
67
68                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
69                     (i + 1 == max_shadow_read_only_fields ||
70                      shadow_read_only_fields[i + 1] != field + 1))
71                         pr_err("Missing field from shadow_read_only_field %x\n",
72                                field + 1);
73
74                 clear_bit(field, vmx_vmread_bitmap);
75 #ifdef CONFIG_X86_64
76                 if (field & 1)
77                         continue;
78 #endif
79                 if (j < i)
80                         shadow_read_only_fields[j] = field;
81                 j++;
82         }
83         max_shadow_read_only_fields = j;
84
85         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
86                 u16 field = shadow_read_write_fields[i];
87
88                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
89                     (i + 1 == max_shadow_read_write_fields ||
90                      shadow_read_write_fields[i + 1] != field + 1))
91                         pr_err("Missing field from shadow_read_write_field %x\n",
92                                field + 1);
93
94                 /*
95                  * PML and the preemption timer can be emulated, but the
96                  * processor cannot vmwrite to fields that don't exist
97                  * on bare metal.
98                  */
99                 switch (field) {
100                 case GUEST_PML_INDEX:
101                         if (!cpu_has_vmx_pml())
102                                 continue;
103                         break;
104                 case VMX_PREEMPTION_TIMER_VALUE:
105                         if (!cpu_has_vmx_preemption_timer())
106                                 continue;
107                         break;
108                 case GUEST_INTR_STATUS:
109                         if (!cpu_has_vmx_apicv())
110                                 continue;
111                         break;
112                 default:
113                         break;
114                 }
115
116                 clear_bit(field, vmx_vmwrite_bitmap);
117                 clear_bit(field, vmx_vmread_bitmap);
118 #ifdef CONFIG_X86_64
119                 if (field & 1)
120                         continue;
121 #endif
122                 if (j < i)
123                         shadow_read_write_fields[j] = field;
124                 j++;
125         }
126         max_shadow_read_write_fields = j;
127 }
128
129 /*
130  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
131  * set the success or error code of an emulated VMX instruction (as specified
132  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
133  * instruction.
134  */
135 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
136 {
137         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
138                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
139                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
140         return kvm_skip_emulated_instruction(vcpu);
141 }
142
143 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
144 {
145         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
146                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
147                             X86_EFLAGS_SF | X86_EFLAGS_OF))
148                         | X86_EFLAGS_CF);
149         return kvm_skip_emulated_instruction(vcpu);
150 }
151
152 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
153                                 u32 vm_instruction_error)
154 {
155         struct vcpu_vmx *vmx = to_vmx(vcpu);
156
157         /*
158          * failValid writes the error number to the current VMCS, which
159          * can't be done if there isn't a current VMCS.
160          */
161         if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
162                 return nested_vmx_failInvalid(vcpu);
163
164         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
165                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
166                             X86_EFLAGS_SF | X86_EFLAGS_OF))
167                         | X86_EFLAGS_ZF);
168         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
169         /*
170          * We don't need to force a shadow sync because
171          * VM_INSTRUCTION_ERROR is not shadowed
172          */
173         return kvm_skip_emulated_instruction(vcpu);
174 }
175
176 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
177 {
178         /* TODO: not to reset guest simply here. */
179         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
180         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
181 }
182
183 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
184 {
185         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
186         vmcs_write64(VMCS_LINK_POINTER, -1ull);
187 }
188
189 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
190 {
191         struct vcpu_vmx *vmx = to_vmx(vcpu);
192
193         if (!vmx->nested.hv_evmcs)
194                 return;
195
196         kunmap(vmx->nested.hv_evmcs_page);
197         kvm_release_page_dirty(vmx->nested.hv_evmcs_page);
198         vmx->nested.hv_evmcs_vmptr = -1ull;
199         vmx->nested.hv_evmcs_page = NULL;
200         vmx->nested.hv_evmcs = NULL;
201 }
202
203 /*
204  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
205  * just stops using VMX.
206  */
207 static void free_nested(struct kvm_vcpu *vcpu)
208 {
209         struct vcpu_vmx *vmx = to_vmx(vcpu);
210
211         if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
212                 return;
213
214         vmx->nested.vmxon = false;
215         vmx->nested.smm.vmxon = false;
216         free_vpid(vmx->nested.vpid02);
217         vmx->nested.posted_intr_nv = -1;
218         vmx->nested.current_vmptr = -1ull;
219         if (enable_shadow_vmcs) {
220                 vmx_disable_shadow_vmcs(vmx);
221                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
222                 free_vmcs(vmx->vmcs01.shadow_vmcs);
223                 vmx->vmcs01.shadow_vmcs = NULL;
224         }
225         kfree(vmx->nested.cached_vmcs12);
226         kfree(vmx->nested.cached_shadow_vmcs12);
227         /* Unpin physical memory we referred to in the vmcs02 */
228         if (vmx->nested.apic_access_page) {
229                 kvm_release_page_dirty(vmx->nested.apic_access_page);
230                 vmx->nested.apic_access_page = NULL;
231         }
232         if (vmx->nested.virtual_apic_page) {
233                 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
234                 vmx->nested.virtual_apic_page = NULL;
235         }
236         if (vmx->nested.pi_desc_page) {
237                 kunmap(vmx->nested.pi_desc_page);
238                 kvm_release_page_dirty(vmx->nested.pi_desc_page);
239                 vmx->nested.pi_desc_page = NULL;
240                 vmx->nested.pi_desc = NULL;
241         }
242
243         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
244
245         nested_release_evmcs(vcpu);
246
247         free_loaded_vmcs(&vmx->nested.vmcs02);
248 }
249
250 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
251 {
252         struct vcpu_vmx *vmx = to_vmx(vcpu);
253         int cpu;
254
255         if (vmx->loaded_vmcs == vmcs)
256                 return;
257
258         cpu = get_cpu();
259         vmx_vcpu_put(vcpu);
260         vmx->loaded_vmcs = vmcs;
261         vmx_vcpu_load(vcpu, cpu);
262         put_cpu();
263
264         vm_entry_controls_reset_shadow(vmx);
265         vm_exit_controls_reset_shadow(vmx);
266         vmx_segment_cache_clear(vmx);
267 }
268
269 /*
270  * Ensure that the current vmcs of the logical processor is the
271  * vmcs01 of the vcpu before calling free_nested().
272  */
273 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
274 {
275         vcpu_load(vcpu);
276         vmx_leave_nested(vcpu);
277         vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
278         free_nested(vcpu);
279         vcpu_put(vcpu);
280 }
281
282 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
283                 struct x86_exception *fault)
284 {
285         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
286         struct vcpu_vmx *vmx = to_vmx(vcpu);
287         u32 exit_reason;
288         unsigned long exit_qualification = vcpu->arch.exit_qualification;
289
290         if (vmx->nested.pml_full) {
291                 exit_reason = EXIT_REASON_PML_FULL;
292                 vmx->nested.pml_full = false;
293                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
294         } else if (fault->error_code & PFERR_RSVD_MASK)
295                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
296         else
297                 exit_reason = EXIT_REASON_EPT_VIOLATION;
298
299         nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
300         vmcs12->guest_physical_address = fault->address;
301 }
302
303 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
304 {
305         WARN_ON(mmu_is_nested(vcpu));
306
307         vcpu->arch.mmu = &vcpu->arch.guest_mmu;
308         kvm_init_shadow_ept_mmu(vcpu,
309                         to_vmx(vcpu)->nested.msrs.ept_caps &
310                         VMX_EPT_EXECUTE_ONLY_BIT,
311                         nested_ept_ad_enabled(vcpu),
312                         nested_ept_get_cr3(vcpu));
313         vcpu->arch.mmu->set_cr3           = vmx_set_cr3;
314         vcpu->arch.mmu->get_cr3           = nested_ept_get_cr3;
315         vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
316         vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
317
318         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
319 }
320
321 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
322 {
323         vcpu->arch.mmu = &vcpu->arch.root_mmu;
324         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
325 }
326
327 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
328                                             u16 error_code)
329 {
330         bool inequality, bit;
331
332         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
333         inequality =
334                 (error_code & vmcs12->page_fault_error_code_mask) !=
335                  vmcs12->page_fault_error_code_match;
336         return inequality ^ bit;
337 }
338
339
340 /*
341  * KVM wants to inject page-faults which it got to the guest. This function
342  * checks whether in a nested guest, we need to inject them to L1 or L2.
343  */
344 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
345 {
346         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
347         unsigned int nr = vcpu->arch.exception.nr;
348         bool has_payload = vcpu->arch.exception.has_payload;
349         unsigned long payload = vcpu->arch.exception.payload;
350
351         if (nr == PF_VECTOR) {
352                 if (vcpu->arch.exception.nested_apf) {
353                         *exit_qual = vcpu->arch.apf.nested_apf_token;
354                         return 1;
355                 }
356                 if (nested_vmx_is_page_fault_vmexit(vmcs12,
357                                                     vcpu->arch.exception.error_code)) {
358                         *exit_qual = has_payload ? payload : vcpu->arch.cr2;
359                         return 1;
360                 }
361         } else if (vmcs12->exception_bitmap & (1u << nr)) {
362                 if (nr == DB_VECTOR) {
363                         if (!has_payload) {
364                                 payload = vcpu->arch.dr6;
365                                 payload &= ~(DR6_FIXED_1 | DR6_BT);
366                                 payload ^= DR6_RTM;
367                         }
368                         *exit_qual = payload;
369                 } else
370                         *exit_qual = 0;
371                 return 1;
372         }
373
374         return 0;
375 }
376
377
378 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
379                 struct x86_exception *fault)
380 {
381         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
382
383         WARN_ON(!is_guest_mode(vcpu));
384
385         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
386                 !to_vmx(vcpu)->nested.nested_run_pending) {
387                 vmcs12->vm_exit_intr_error_code = fault->error_code;
388                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
389                                   PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
390                                   INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
391                                   fault->address);
392         } else {
393                 kvm_inject_page_fault(vcpu, fault);
394         }
395 }
396
397 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
398 {
399         return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
400 }
401
402 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
403                                                struct vmcs12 *vmcs12)
404 {
405         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
406                 return 0;
407
408         if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
409             !page_address_valid(vcpu, vmcs12->io_bitmap_b))
410                 return -EINVAL;
411
412         return 0;
413 }
414
415 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
416                                                 struct vmcs12 *vmcs12)
417 {
418         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
419                 return 0;
420
421         if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
422                 return -EINVAL;
423
424         return 0;
425 }
426
427 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
428                                                 struct vmcs12 *vmcs12)
429 {
430         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
431                 return 0;
432
433         if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
434                 return -EINVAL;
435
436         return 0;
437 }
438
439 /*
440  * Check if MSR is intercepted for L01 MSR bitmap.
441  */
442 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
443 {
444         unsigned long *msr_bitmap;
445         int f = sizeof(unsigned long);
446
447         if (!cpu_has_vmx_msr_bitmap())
448                 return true;
449
450         msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
451
452         if (msr <= 0x1fff) {
453                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
454         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
455                 msr &= 0x1fff;
456                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
457         }
458
459         return true;
460 }
461
462 /*
463  * If a msr is allowed by L0, we should check whether it is allowed by L1.
464  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
465  */
466 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
467                                                unsigned long *msr_bitmap_nested,
468                                                u32 msr, int type)
469 {
470         int f = sizeof(unsigned long);
471
472         /*
473          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
474          * have the write-low and read-high bitmap offsets the wrong way round.
475          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
476          */
477         if (msr <= 0x1fff) {
478                 if (type & MSR_TYPE_R &&
479                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
480                         /* read-low */
481                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
482
483                 if (type & MSR_TYPE_W &&
484                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
485                         /* write-low */
486                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
487
488         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
489                 msr &= 0x1fff;
490                 if (type & MSR_TYPE_R &&
491                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
492                         /* read-high */
493                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
494
495                 if (type & MSR_TYPE_W &&
496                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
497                         /* write-high */
498                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
499
500         }
501 }
502
503 /*
504  * Merge L0's and L1's MSR bitmap, return false to indicate that
505  * we do not use the hardware.
506  */
507 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
508                                                  struct vmcs12 *vmcs12)
509 {
510         int msr;
511         struct page *page;
512         unsigned long *msr_bitmap_l1;
513         unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
514         /*
515          * pred_cmd & spec_ctrl are trying to verify two things:
516          *
517          * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
518          *    ensures that we do not accidentally generate an L02 MSR bitmap
519          *    from the L12 MSR bitmap that is too permissive.
520          * 2. That L1 or L2s have actually used the MSR. This avoids
521          *    unnecessarily merging of the bitmap if the MSR is unused. This
522          *    works properly because we only update the L01 MSR bitmap lazily.
523          *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
524          *    updated to reflect this when L1 (or its L2s) actually write to
525          *    the MSR.
526          */
527         bool pred_cmd = !msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD);
528         bool spec_ctrl = !msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL);
529
530         /* Nothing to do if the MSR bitmap is not in use.  */
531         if (!cpu_has_vmx_msr_bitmap() ||
532             !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
533                 return false;
534
535         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
536             !pred_cmd && !spec_ctrl)
537                 return false;
538
539         page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
540         if (is_error_page(page))
541                 return false;
542
543         msr_bitmap_l1 = (unsigned long *)kmap(page);
544         if (nested_cpu_has_apic_reg_virt(vmcs12)) {
545                 /*
546                  * L0 need not intercept reads for MSRs between 0x800 and 0x8ff, it
547                  * just lets the processor take the value from the virtual-APIC page;
548                  * take those 256 bits directly from the L1 bitmap.
549                  */
550                 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
551                         unsigned word = msr / BITS_PER_LONG;
552                         msr_bitmap_l0[word] = msr_bitmap_l1[word];
553                         msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
554                 }
555         } else {
556                 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
557                         unsigned word = msr / BITS_PER_LONG;
558                         msr_bitmap_l0[word] = ~0;
559                         msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
560                 }
561         }
562
563         nested_vmx_disable_intercept_for_msr(
564                 msr_bitmap_l1, msr_bitmap_l0,
565                 X2APIC_MSR(APIC_TASKPRI),
566                 MSR_TYPE_W);
567
568         if (nested_cpu_has_vid(vmcs12)) {
569                 nested_vmx_disable_intercept_for_msr(
570                         msr_bitmap_l1, msr_bitmap_l0,
571                         X2APIC_MSR(APIC_EOI),
572                         MSR_TYPE_W);
573                 nested_vmx_disable_intercept_for_msr(
574                         msr_bitmap_l1, msr_bitmap_l0,
575                         X2APIC_MSR(APIC_SELF_IPI),
576                         MSR_TYPE_W);
577         }
578
579         if (spec_ctrl)
580                 nested_vmx_disable_intercept_for_msr(
581                                         msr_bitmap_l1, msr_bitmap_l0,
582                                         MSR_IA32_SPEC_CTRL,
583                                         MSR_TYPE_R | MSR_TYPE_W);
584
585         if (pred_cmd)
586                 nested_vmx_disable_intercept_for_msr(
587                                         msr_bitmap_l1, msr_bitmap_l0,
588                                         MSR_IA32_PRED_CMD,
589                                         MSR_TYPE_W);
590
591         kunmap(page);
592         kvm_release_page_clean(page);
593
594         return true;
595 }
596
597 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
598                                        struct vmcs12 *vmcs12)
599 {
600         struct vmcs12 *shadow;
601         struct page *page;
602
603         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
604             vmcs12->vmcs_link_pointer == -1ull)
605                 return;
606
607         shadow = get_shadow_vmcs12(vcpu);
608         page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
609
610         memcpy(shadow, kmap(page), VMCS12_SIZE);
611
612         kunmap(page);
613         kvm_release_page_clean(page);
614 }
615
616 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
617                                               struct vmcs12 *vmcs12)
618 {
619         struct vcpu_vmx *vmx = to_vmx(vcpu);
620
621         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
622             vmcs12->vmcs_link_pointer == -1ull)
623                 return;
624
625         kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
626                         get_shadow_vmcs12(vcpu), VMCS12_SIZE);
627 }
628
629 /*
630  * In nested virtualization, check if L1 has set
631  * VM_EXIT_ACK_INTR_ON_EXIT
632  */
633 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
634 {
635         return get_vmcs12(vcpu)->vm_exit_controls &
636                 VM_EXIT_ACK_INTR_ON_EXIT;
637 }
638
639 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
640 {
641         return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
642 }
643
644 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
645                                           struct vmcs12 *vmcs12)
646 {
647         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
648             !page_address_valid(vcpu, vmcs12->apic_access_addr))
649                 return -EINVAL;
650         else
651                 return 0;
652 }
653
654 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
655                                            struct vmcs12 *vmcs12)
656 {
657         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
658             !nested_cpu_has_apic_reg_virt(vmcs12) &&
659             !nested_cpu_has_vid(vmcs12) &&
660             !nested_cpu_has_posted_intr(vmcs12))
661                 return 0;
662
663         /*
664          * If virtualize x2apic mode is enabled,
665          * virtualize apic access must be disabled.
666          */
667         if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
668             nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
669                 return -EINVAL;
670
671         /*
672          * If virtual interrupt delivery is enabled,
673          * we must exit on external interrupts.
674          */
675         if (nested_cpu_has_vid(vmcs12) &&
676            !nested_exit_on_intr(vcpu))
677                 return -EINVAL;
678
679         /*
680          * bits 15:8 should be zero in posted_intr_nv,
681          * the descriptor address has been already checked
682          * in nested_get_vmcs12_pages.
683          *
684          * bits 5:0 of posted_intr_desc_addr should be zero.
685          */
686         if (nested_cpu_has_posted_intr(vmcs12) &&
687            (!nested_cpu_has_vid(vmcs12) ||
688             !nested_exit_intr_ack_set(vcpu) ||
689             (vmcs12->posted_intr_nv & 0xff00) ||
690             (vmcs12->posted_intr_desc_addr & 0x3f) ||
691             (vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu))))
692                 return -EINVAL;
693
694         /* tpr shadow is needed by all apicv features. */
695         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
696                 return -EINVAL;
697
698         return 0;
699 }
700
701 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
702                                        u32 count, u64 addr)
703 {
704         int maxphyaddr;
705
706         if (count == 0)
707                 return 0;
708         maxphyaddr = cpuid_maxphyaddr(vcpu);
709         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
710             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
711                 return -EINVAL;
712
713         return 0;
714 }
715
716 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
717                                                      struct vmcs12 *vmcs12)
718 {
719         if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_load_count,
720                                         vmcs12->vm_exit_msr_load_addr) ||
721             nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_store_count,
722                                         vmcs12->vm_exit_msr_store_addr))
723                 return -EINVAL;
724
725         return 0;
726 }
727
728 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
729                                                       struct vmcs12 *vmcs12)
730 {
731         if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_entry_msr_load_count,
732                                         vmcs12->vm_entry_msr_load_addr))
733                 return -EINVAL;
734
735         return 0;
736 }
737
738 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
739                                          struct vmcs12 *vmcs12)
740 {
741         if (!nested_cpu_has_pml(vmcs12))
742                 return 0;
743
744         if (!nested_cpu_has_ept(vmcs12) ||
745             !page_address_valid(vcpu, vmcs12->pml_address))
746                 return -EINVAL;
747
748         return 0;
749 }
750
751 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
752                                                         struct vmcs12 *vmcs12)
753 {
754         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
755             !nested_cpu_has_ept(vmcs12))
756                 return -EINVAL;
757         return 0;
758 }
759
760 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
761                                                          struct vmcs12 *vmcs12)
762 {
763         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
764             !nested_cpu_has_ept(vmcs12))
765                 return -EINVAL;
766         return 0;
767 }
768
769 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
770                                                  struct vmcs12 *vmcs12)
771 {
772         if (!nested_cpu_has_shadow_vmcs(vmcs12))
773                 return 0;
774
775         if (!page_address_valid(vcpu, vmcs12->vmread_bitmap) ||
776             !page_address_valid(vcpu, vmcs12->vmwrite_bitmap))
777                 return -EINVAL;
778
779         return 0;
780 }
781
782 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
783                                        struct vmx_msr_entry *e)
784 {
785         /* x2APIC MSR accesses are not allowed */
786         if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
787                 return -EINVAL;
788         if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
789             e->index == MSR_IA32_UCODE_REV)
790                 return -EINVAL;
791         if (e->reserved != 0)
792                 return -EINVAL;
793         return 0;
794 }
795
796 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
797                                      struct vmx_msr_entry *e)
798 {
799         if (e->index == MSR_FS_BASE ||
800             e->index == MSR_GS_BASE ||
801             e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
802             nested_vmx_msr_check_common(vcpu, e))
803                 return -EINVAL;
804         return 0;
805 }
806
807 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
808                                       struct vmx_msr_entry *e)
809 {
810         if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
811             nested_vmx_msr_check_common(vcpu, e))
812                 return -EINVAL;
813         return 0;
814 }
815
816 /*
817  * Load guest's/host's msr at nested entry/exit.
818  * return 0 for success, entry index for failure.
819  */
820 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
821 {
822         u32 i;
823         struct vmx_msr_entry e;
824         struct msr_data msr;
825
826         msr.host_initiated = false;
827         for (i = 0; i < count; i++) {
828                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
829                                         &e, sizeof(e))) {
830                         pr_debug_ratelimited(
831                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
832                                 __func__, i, gpa + i * sizeof(e));
833                         goto fail;
834                 }
835                 if (nested_vmx_load_msr_check(vcpu, &e)) {
836                         pr_debug_ratelimited(
837                                 "%s check failed (%u, 0x%x, 0x%x)\n",
838                                 __func__, i, e.index, e.reserved);
839                         goto fail;
840                 }
841                 msr.index = e.index;
842                 msr.data = e.value;
843                 if (kvm_set_msr(vcpu, &msr)) {
844                         pr_debug_ratelimited(
845                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
846                                 __func__, i, e.index, e.value);
847                         goto fail;
848                 }
849         }
850         return 0;
851 fail:
852         return i + 1;
853 }
854
855 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
856 {
857         u32 i;
858         struct vmx_msr_entry e;
859
860         for (i = 0; i < count; i++) {
861                 struct msr_data msr_info;
862                 if (kvm_vcpu_read_guest(vcpu,
863                                         gpa + i * sizeof(e),
864                                         &e, 2 * sizeof(u32))) {
865                         pr_debug_ratelimited(
866                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
867                                 __func__, i, gpa + i * sizeof(e));
868                         return -EINVAL;
869                 }
870                 if (nested_vmx_store_msr_check(vcpu, &e)) {
871                         pr_debug_ratelimited(
872                                 "%s check failed (%u, 0x%x, 0x%x)\n",
873                                 __func__, i, e.index, e.reserved);
874                         return -EINVAL;
875                 }
876                 msr_info.host_initiated = false;
877                 msr_info.index = e.index;
878                 if (kvm_get_msr(vcpu, &msr_info)) {
879                         pr_debug_ratelimited(
880                                 "%s cannot read MSR (%u, 0x%x)\n",
881                                 __func__, i, e.index);
882                         return -EINVAL;
883                 }
884                 if (kvm_vcpu_write_guest(vcpu,
885                                          gpa + i * sizeof(e) +
886                                              offsetof(struct vmx_msr_entry, value),
887                                          &msr_info.data, sizeof(msr_info.data))) {
888                         pr_debug_ratelimited(
889                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
890                                 __func__, i, e.index, msr_info.data);
891                         return -EINVAL;
892                 }
893         }
894         return 0;
895 }
896
897 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
898 {
899         unsigned long invalid_mask;
900
901         invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
902         return (val & invalid_mask) == 0;
903 }
904
905 /*
906  * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
907  * emulating VM entry into a guest with EPT enabled.
908  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
909  * is assigned to entry_failure_code on failure.
910  */
911 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
912                                u32 *entry_failure_code)
913 {
914         if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
915                 if (!nested_cr3_valid(vcpu, cr3)) {
916                         *entry_failure_code = ENTRY_FAIL_DEFAULT;
917                         return 1;
918                 }
919
920                 /*
921                  * If PAE paging and EPT are both on, CR3 is not used by the CPU and
922                  * must not be dereferenced.
923                  */
924                 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
925                     !nested_ept) {
926                         if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
927                                 *entry_failure_code = ENTRY_FAIL_PDPTE;
928                                 return 1;
929                         }
930                 }
931         }
932
933         if (!nested_ept)
934                 kvm_mmu_new_cr3(vcpu, cr3, false);
935
936         vcpu->arch.cr3 = cr3;
937         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
938
939         kvm_init_mmu(vcpu, false);
940
941         return 0;
942 }
943
944 /*
945  * Returns if KVM is able to config CPU to tag TLB entries
946  * populated by L2 differently than TLB entries populated
947  * by L1.
948  *
949  * If L1 uses EPT, then TLB entries are tagged with different EPTP.
950  *
951  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
952  * with different VPID (L1 entries are tagged with vmx->vpid
953  * while L2 entries are tagged with vmx->nested.vpid02).
954  */
955 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
956 {
957         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
958
959         return nested_cpu_has_ept(vmcs12) ||
960                (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
961 }
962
963 static u16 nested_get_vpid02(struct kvm_vcpu *vcpu)
964 {
965         struct vcpu_vmx *vmx = to_vmx(vcpu);
966
967         return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid;
968 }
969
970
971 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
972 {
973         return fixed_bits_valid(control, low, high);
974 }
975
976 static inline u64 vmx_control_msr(u32 low, u32 high)
977 {
978         return low | ((u64)high << 32);
979 }
980
981 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
982 {
983         superset &= mask;
984         subset &= mask;
985
986         return (superset | subset) == superset;
987 }
988
989 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
990 {
991         const u64 feature_and_reserved =
992                 /* feature (except bit 48; see below) */
993                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
994                 /* reserved */
995                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
996         u64 vmx_basic = vmx->nested.msrs.basic;
997
998         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
999                 return -EINVAL;
1000
1001         /*
1002          * KVM does not emulate a version of VMX that constrains physical
1003          * addresses of VMX structures (e.g. VMCS) to 32-bits.
1004          */
1005         if (data & BIT_ULL(48))
1006                 return -EINVAL;
1007
1008         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1009             vmx_basic_vmcs_revision_id(data))
1010                 return -EINVAL;
1011
1012         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1013                 return -EINVAL;
1014
1015         vmx->nested.msrs.basic = data;
1016         return 0;
1017 }
1018
1019 static int
1020 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1021 {
1022         u64 supported;
1023         u32 *lowp, *highp;
1024
1025         switch (msr_index) {
1026         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1027                 lowp = &vmx->nested.msrs.pinbased_ctls_low;
1028                 highp = &vmx->nested.msrs.pinbased_ctls_high;
1029                 break;
1030         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1031                 lowp = &vmx->nested.msrs.procbased_ctls_low;
1032                 highp = &vmx->nested.msrs.procbased_ctls_high;
1033                 break;
1034         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1035                 lowp = &vmx->nested.msrs.exit_ctls_low;
1036                 highp = &vmx->nested.msrs.exit_ctls_high;
1037                 break;
1038         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1039                 lowp = &vmx->nested.msrs.entry_ctls_low;
1040                 highp = &vmx->nested.msrs.entry_ctls_high;
1041                 break;
1042         case MSR_IA32_VMX_PROCBASED_CTLS2:
1043                 lowp = &vmx->nested.msrs.secondary_ctls_low;
1044                 highp = &vmx->nested.msrs.secondary_ctls_high;
1045                 break;
1046         default:
1047                 BUG();
1048         }
1049
1050         supported = vmx_control_msr(*lowp, *highp);
1051
1052         /* Check must-be-1 bits are still 1. */
1053         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1054                 return -EINVAL;
1055
1056         /* Check must-be-0 bits are still 0. */
1057         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1058                 return -EINVAL;
1059
1060         *lowp = data;
1061         *highp = data >> 32;
1062         return 0;
1063 }
1064
1065 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1066 {
1067         const u64 feature_and_reserved_bits =
1068                 /* feature */
1069                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1070                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1071                 /* reserved */
1072                 GENMASK_ULL(13, 9) | BIT_ULL(31);
1073         u64 vmx_misc;
1074
1075         vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1076                                    vmx->nested.msrs.misc_high);
1077
1078         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1079                 return -EINVAL;
1080
1081         if ((vmx->nested.msrs.pinbased_ctls_high &
1082              PIN_BASED_VMX_PREEMPTION_TIMER) &&
1083             vmx_misc_preemption_timer_rate(data) !=
1084             vmx_misc_preemption_timer_rate(vmx_misc))
1085                 return -EINVAL;
1086
1087         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1088                 return -EINVAL;
1089
1090         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1091                 return -EINVAL;
1092
1093         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1094                 return -EINVAL;
1095
1096         vmx->nested.msrs.misc_low = data;
1097         vmx->nested.msrs.misc_high = data >> 32;
1098
1099         /*
1100          * If L1 has read-only VM-exit information fields, use the
1101          * less permissive vmx_vmwrite_bitmap to specify write
1102          * permissions for the shadow VMCS.
1103          */
1104         if (enable_shadow_vmcs && !nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
1105                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
1106
1107         return 0;
1108 }
1109
1110 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1111 {
1112         u64 vmx_ept_vpid_cap;
1113
1114         vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1115                                            vmx->nested.msrs.vpid_caps);
1116
1117         /* Every bit is either reserved or a feature bit. */
1118         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1119                 return -EINVAL;
1120
1121         vmx->nested.msrs.ept_caps = data;
1122         vmx->nested.msrs.vpid_caps = data >> 32;
1123         return 0;
1124 }
1125
1126 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1127 {
1128         u64 *msr;
1129
1130         switch (msr_index) {
1131         case MSR_IA32_VMX_CR0_FIXED0:
1132                 msr = &vmx->nested.msrs.cr0_fixed0;
1133                 break;
1134         case MSR_IA32_VMX_CR4_FIXED0:
1135                 msr = &vmx->nested.msrs.cr4_fixed0;
1136                 break;
1137         default:
1138                 BUG();
1139         }
1140
1141         /*
1142          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1143          * must be 1 in the restored value.
1144          */
1145         if (!is_bitwise_subset(data, *msr, -1ULL))
1146                 return -EINVAL;
1147
1148         *msr = data;
1149         return 0;
1150 }
1151
1152 /*
1153  * Called when userspace is restoring VMX MSRs.
1154  *
1155  * Returns 0 on success, non-0 otherwise.
1156  */
1157 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1158 {
1159         struct vcpu_vmx *vmx = to_vmx(vcpu);
1160
1161         /*
1162          * Don't allow changes to the VMX capability MSRs while the vCPU
1163          * is in VMX operation.
1164          */
1165         if (vmx->nested.vmxon)
1166                 return -EBUSY;
1167
1168         switch (msr_index) {
1169         case MSR_IA32_VMX_BASIC:
1170                 return vmx_restore_vmx_basic(vmx, data);
1171         case MSR_IA32_VMX_PINBASED_CTLS:
1172         case MSR_IA32_VMX_PROCBASED_CTLS:
1173         case MSR_IA32_VMX_EXIT_CTLS:
1174         case MSR_IA32_VMX_ENTRY_CTLS:
1175                 /*
1176                  * The "non-true" VMX capability MSRs are generated from the
1177                  * "true" MSRs, so we do not support restoring them directly.
1178                  *
1179                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1180                  * should restore the "true" MSRs with the must-be-1 bits
1181                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1182                  * DEFAULT SETTINGS".
1183                  */
1184                 return -EINVAL;
1185         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1186         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1187         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1188         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1189         case MSR_IA32_VMX_PROCBASED_CTLS2:
1190                 return vmx_restore_control_msr(vmx, msr_index, data);
1191         case MSR_IA32_VMX_MISC:
1192                 return vmx_restore_vmx_misc(vmx, data);
1193         case MSR_IA32_VMX_CR0_FIXED0:
1194         case MSR_IA32_VMX_CR4_FIXED0:
1195                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1196         case MSR_IA32_VMX_CR0_FIXED1:
1197         case MSR_IA32_VMX_CR4_FIXED1:
1198                 /*
1199                  * These MSRs are generated based on the vCPU's CPUID, so we
1200                  * do not support restoring them directly.
1201                  */
1202                 return -EINVAL;
1203         case MSR_IA32_VMX_EPT_VPID_CAP:
1204                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1205         case MSR_IA32_VMX_VMCS_ENUM:
1206                 vmx->nested.msrs.vmcs_enum = data;
1207                 return 0;
1208         default:
1209                 /*
1210                  * The rest of the VMX capability MSRs do not support restore.
1211                  */
1212                 return -EINVAL;
1213         }
1214 }
1215
1216 /* Returns 0 on success, non-0 otherwise. */
1217 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1218 {
1219         switch (msr_index) {
1220         case MSR_IA32_VMX_BASIC:
1221                 *pdata = msrs->basic;
1222                 break;
1223         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1224         case MSR_IA32_VMX_PINBASED_CTLS:
1225                 *pdata = vmx_control_msr(
1226                         msrs->pinbased_ctls_low,
1227                         msrs->pinbased_ctls_high);
1228                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1229                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1230                 break;
1231         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1232         case MSR_IA32_VMX_PROCBASED_CTLS:
1233                 *pdata = vmx_control_msr(
1234                         msrs->procbased_ctls_low,
1235                         msrs->procbased_ctls_high);
1236                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1237                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1238                 break;
1239         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1240         case MSR_IA32_VMX_EXIT_CTLS:
1241                 *pdata = vmx_control_msr(
1242                         msrs->exit_ctls_low,
1243                         msrs->exit_ctls_high);
1244                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1245                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1246                 break;
1247         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1248         case MSR_IA32_VMX_ENTRY_CTLS:
1249                 *pdata = vmx_control_msr(
1250                         msrs->entry_ctls_low,
1251                         msrs->entry_ctls_high);
1252                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1253                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1254                 break;
1255         case MSR_IA32_VMX_MISC:
1256                 *pdata = vmx_control_msr(
1257                         msrs->misc_low,
1258                         msrs->misc_high);
1259                 break;
1260         case MSR_IA32_VMX_CR0_FIXED0:
1261                 *pdata = msrs->cr0_fixed0;
1262                 break;
1263         case MSR_IA32_VMX_CR0_FIXED1:
1264                 *pdata = msrs->cr0_fixed1;
1265                 break;
1266         case MSR_IA32_VMX_CR4_FIXED0:
1267                 *pdata = msrs->cr4_fixed0;
1268                 break;
1269         case MSR_IA32_VMX_CR4_FIXED1:
1270                 *pdata = msrs->cr4_fixed1;
1271                 break;
1272         case MSR_IA32_VMX_VMCS_ENUM:
1273                 *pdata = msrs->vmcs_enum;
1274                 break;
1275         case MSR_IA32_VMX_PROCBASED_CTLS2:
1276                 *pdata = vmx_control_msr(
1277                         msrs->secondary_ctls_low,
1278                         msrs->secondary_ctls_high);
1279                 break;
1280         case MSR_IA32_VMX_EPT_VPID_CAP:
1281                 *pdata = msrs->ept_caps |
1282                         ((u64)msrs->vpid_caps << 32);
1283                 break;
1284         case MSR_IA32_VMX_VMFUNC:
1285                 *pdata = msrs->vmfunc_controls;
1286                 break;
1287         default:
1288                 return 1;
1289         }
1290
1291         return 0;
1292 }
1293
1294 /*
1295  * Copy the writable VMCS shadow fields back to the VMCS12, in case
1296  * they have been modified by the L1 guest. Note that the "read-only"
1297  * VM-exit information fields are actually writable if the vCPU is
1298  * configured to support "VMWRITE to any supported field in the VMCS."
1299  */
1300 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1301 {
1302         const u16 *fields[] = {
1303                 shadow_read_write_fields,
1304                 shadow_read_only_fields
1305         };
1306         const int max_fields[] = {
1307                 max_shadow_read_write_fields,
1308                 max_shadow_read_only_fields
1309         };
1310         int i, q;
1311         unsigned long field;
1312         u64 field_value;
1313         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1314
1315         preempt_disable();
1316
1317         vmcs_load(shadow_vmcs);
1318
1319         for (q = 0; q < ARRAY_SIZE(fields); q++) {
1320                 for (i = 0; i < max_fields[q]; i++) {
1321                         field = fields[q][i];
1322                         field_value = __vmcs_readl(field);
1323                         vmcs12_write_any(get_vmcs12(&vmx->vcpu), field, field_value);
1324                 }
1325                 /*
1326                  * Skip the VM-exit information fields if they are read-only.
1327                  */
1328                 if (!nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
1329                         break;
1330         }
1331
1332         vmcs_clear(shadow_vmcs);
1333         vmcs_load(vmx->loaded_vmcs->vmcs);
1334
1335         preempt_enable();
1336 }
1337
1338 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1339 {
1340         const u16 *fields[] = {
1341                 shadow_read_write_fields,
1342                 shadow_read_only_fields
1343         };
1344         const int max_fields[] = {
1345                 max_shadow_read_write_fields,
1346                 max_shadow_read_only_fields
1347         };
1348         int i, q;
1349         unsigned long field;
1350         u64 field_value = 0;
1351         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1352
1353         vmcs_load(shadow_vmcs);
1354
1355         for (q = 0; q < ARRAY_SIZE(fields); q++) {
1356                 for (i = 0; i < max_fields[q]; i++) {
1357                         field = fields[q][i];
1358                         vmcs12_read_any(get_vmcs12(&vmx->vcpu), field, &field_value);
1359                         __vmcs_writel(field, field_value);
1360                 }
1361         }
1362
1363         vmcs_clear(shadow_vmcs);
1364         vmcs_load(vmx->loaded_vmcs->vmcs);
1365 }
1366
1367 static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1368 {
1369         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1370         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1371
1372         /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1373         vmcs12->tpr_threshold = evmcs->tpr_threshold;
1374         vmcs12->guest_rip = evmcs->guest_rip;
1375
1376         if (unlikely(!(evmcs->hv_clean_fields &
1377                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1378                 vmcs12->guest_rsp = evmcs->guest_rsp;
1379                 vmcs12->guest_rflags = evmcs->guest_rflags;
1380                 vmcs12->guest_interruptibility_info =
1381                         evmcs->guest_interruptibility_info;
1382         }
1383
1384         if (unlikely(!(evmcs->hv_clean_fields &
1385                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1386                 vmcs12->cpu_based_vm_exec_control =
1387                         evmcs->cpu_based_vm_exec_control;
1388         }
1389
1390         if (unlikely(!(evmcs->hv_clean_fields &
1391                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1392                 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1393         }
1394
1395         if (unlikely(!(evmcs->hv_clean_fields &
1396                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1397                 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1398         }
1399
1400         if (unlikely(!(evmcs->hv_clean_fields &
1401                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1402                 vmcs12->vm_entry_intr_info_field =
1403                         evmcs->vm_entry_intr_info_field;
1404                 vmcs12->vm_entry_exception_error_code =
1405                         evmcs->vm_entry_exception_error_code;
1406                 vmcs12->vm_entry_instruction_len =
1407                         evmcs->vm_entry_instruction_len;
1408         }
1409
1410         if (unlikely(!(evmcs->hv_clean_fields &
1411                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1412                 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1413                 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1414                 vmcs12->host_cr0 = evmcs->host_cr0;
1415                 vmcs12->host_cr3 = evmcs->host_cr3;
1416                 vmcs12->host_cr4 = evmcs->host_cr4;
1417                 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1418                 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1419                 vmcs12->host_rip = evmcs->host_rip;
1420                 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1421                 vmcs12->host_es_selector = evmcs->host_es_selector;
1422                 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1423                 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1424                 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1425                 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1426                 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1427                 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1428         }
1429
1430         if (unlikely(!(evmcs->hv_clean_fields &
1431                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1432                 vmcs12->pin_based_vm_exec_control =
1433                         evmcs->pin_based_vm_exec_control;
1434                 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1435                 vmcs12->secondary_vm_exec_control =
1436                         evmcs->secondary_vm_exec_control;
1437         }
1438
1439         if (unlikely(!(evmcs->hv_clean_fields &
1440                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1441                 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1442                 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1443         }
1444
1445         if (unlikely(!(evmcs->hv_clean_fields &
1446                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1447                 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1448         }
1449
1450         if (unlikely(!(evmcs->hv_clean_fields &
1451                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1452                 vmcs12->guest_es_base = evmcs->guest_es_base;
1453                 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1454                 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1455                 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1456                 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1457                 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1458                 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1459                 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1460                 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1461                 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1462                 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1463                 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1464                 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1465                 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1466                 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1467                 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1468                 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1469                 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1470                 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1471                 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1472                 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1473                 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1474                 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1475                 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1476                 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1477                 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1478                 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1479                 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1480                 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1481                 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1482                 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1483                 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1484                 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1485                 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1486                 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1487                 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1488         }
1489
1490         if (unlikely(!(evmcs->hv_clean_fields &
1491                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1492                 vmcs12->tsc_offset = evmcs->tsc_offset;
1493                 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1494                 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1495         }
1496
1497         if (unlikely(!(evmcs->hv_clean_fields &
1498                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1499                 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1500                 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1501                 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1502                 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1503                 vmcs12->guest_cr0 = evmcs->guest_cr0;
1504                 vmcs12->guest_cr3 = evmcs->guest_cr3;
1505                 vmcs12->guest_cr4 = evmcs->guest_cr4;
1506                 vmcs12->guest_dr7 = evmcs->guest_dr7;
1507         }
1508
1509         if (unlikely(!(evmcs->hv_clean_fields &
1510                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1511                 vmcs12->host_fs_base = evmcs->host_fs_base;
1512                 vmcs12->host_gs_base = evmcs->host_gs_base;
1513                 vmcs12->host_tr_base = evmcs->host_tr_base;
1514                 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1515                 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1516                 vmcs12->host_rsp = evmcs->host_rsp;
1517         }
1518
1519         if (unlikely(!(evmcs->hv_clean_fields &
1520                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1521                 vmcs12->ept_pointer = evmcs->ept_pointer;
1522                 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1523         }
1524
1525         if (unlikely(!(evmcs->hv_clean_fields &
1526                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1527                 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1528                 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1529                 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1530                 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1531                 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1532                 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1533                 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1534                 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1535                 vmcs12->guest_pending_dbg_exceptions =
1536                         evmcs->guest_pending_dbg_exceptions;
1537                 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1538                 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1539                 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1540                 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1541                 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1542         }
1543
1544         /*
1545          * Not used?
1546          * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1547          * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1548          * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1549          * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0;
1550          * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1;
1551          * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2;
1552          * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3;
1553          * vmcs12->page_fault_error_code_mask =
1554          *              evmcs->page_fault_error_code_mask;
1555          * vmcs12->page_fault_error_code_match =
1556          *              evmcs->page_fault_error_code_match;
1557          * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1558          * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1559          * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1560          * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1561          */
1562
1563         /*
1564          * Read only fields:
1565          * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1566          * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1567          * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1568          * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1569          * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1570          * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1571          * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1572          * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1573          * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1574          * vmcs12->exit_qualification = evmcs->exit_qualification;
1575          * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1576          *
1577          * Not present in struct vmcs12:
1578          * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1579          * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1580          * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1581          * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1582          */
1583
1584         return 0;
1585 }
1586
1587 static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1588 {
1589         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1590         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1591
1592         /*
1593          * Should not be changed by KVM:
1594          *
1595          * evmcs->host_es_selector = vmcs12->host_es_selector;
1596          * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1597          * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1598          * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1599          * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1600          * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1601          * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1602          * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1603          * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1604          * evmcs->host_cr0 = vmcs12->host_cr0;
1605          * evmcs->host_cr3 = vmcs12->host_cr3;
1606          * evmcs->host_cr4 = vmcs12->host_cr4;
1607          * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1608          * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1609          * evmcs->host_rip = vmcs12->host_rip;
1610          * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1611          * evmcs->host_fs_base = vmcs12->host_fs_base;
1612          * evmcs->host_gs_base = vmcs12->host_gs_base;
1613          * evmcs->host_tr_base = vmcs12->host_tr_base;
1614          * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1615          * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1616          * evmcs->host_rsp = vmcs12->host_rsp;
1617          * sync_vmcs12() doesn't read these:
1618          * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1619          * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1620          * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1621          * evmcs->ept_pointer = vmcs12->ept_pointer;
1622          * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1623          * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1624          * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1625          * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1626          * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0;
1627          * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1;
1628          * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2;
1629          * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3;
1630          * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1631          * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1632          * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1633          * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1634          * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1635          * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1636          * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1637          * evmcs->page_fault_error_code_mask =
1638          *              vmcs12->page_fault_error_code_mask;
1639          * evmcs->page_fault_error_code_match =
1640          *              vmcs12->page_fault_error_code_match;
1641          * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1642          * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1643          * evmcs->tsc_offset = vmcs12->tsc_offset;
1644          * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1645          * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1646          * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1647          * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1648          * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1649          * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1650          * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1651          * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1652          *
1653          * Not present in struct vmcs12:
1654          * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1655          * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1656          * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1657          * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1658          */
1659
1660         evmcs->guest_es_selector = vmcs12->guest_es_selector;
1661         evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1662         evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1663         evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1664         evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1665         evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1666         evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1667         evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1668
1669         evmcs->guest_es_limit = vmcs12->guest_es_limit;
1670         evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1671         evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1672         evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1673         evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1674         evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1675         evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1676         evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1677         evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1678         evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1679
1680         evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1681         evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1682         evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1683         evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1684         evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1685         evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1686         evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1687         evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1688
1689         evmcs->guest_es_base = vmcs12->guest_es_base;
1690         evmcs->guest_cs_base = vmcs12->guest_cs_base;
1691         evmcs->guest_ss_base = vmcs12->guest_ss_base;
1692         evmcs->guest_ds_base = vmcs12->guest_ds_base;
1693         evmcs->guest_fs_base = vmcs12->guest_fs_base;
1694         evmcs->guest_gs_base = vmcs12->guest_gs_base;
1695         evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1696         evmcs->guest_tr_base = vmcs12->guest_tr_base;
1697         evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1698         evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1699
1700         evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1701         evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1702
1703         evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1704         evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1705         evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1706         evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1707
1708         evmcs->guest_pending_dbg_exceptions =
1709                 vmcs12->guest_pending_dbg_exceptions;
1710         evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1711         evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1712
1713         evmcs->guest_activity_state = vmcs12->guest_activity_state;
1714         evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1715
1716         evmcs->guest_cr0 = vmcs12->guest_cr0;
1717         evmcs->guest_cr3 = vmcs12->guest_cr3;
1718         evmcs->guest_cr4 = vmcs12->guest_cr4;
1719         evmcs->guest_dr7 = vmcs12->guest_dr7;
1720
1721         evmcs->guest_physical_address = vmcs12->guest_physical_address;
1722
1723         evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1724         evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1725         evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1726         evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1727         evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1728         evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1729         evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1730         evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1731
1732         evmcs->exit_qualification = vmcs12->exit_qualification;
1733
1734         evmcs->guest_linear_address = vmcs12->guest_linear_address;
1735         evmcs->guest_rsp = vmcs12->guest_rsp;
1736         evmcs->guest_rflags = vmcs12->guest_rflags;
1737
1738         evmcs->guest_interruptibility_info =
1739                 vmcs12->guest_interruptibility_info;
1740         evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1741         evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1742         evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1743         evmcs->vm_entry_exception_error_code =
1744                 vmcs12->vm_entry_exception_error_code;
1745         evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1746
1747         evmcs->guest_rip = vmcs12->guest_rip;
1748
1749         evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1750
1751         return 0;
1752 }
1753
1754 /*
1755  * This is an equivalent of the nested hypervisor executing the vmptrld
1756  * instruction.
1757  */
1758 static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu,
1759                                                  bool from_launch)
1760 {
1761         struct vcpu_vmx *vmx = to_vmx(vcpu);
1762         struct hv_vp_assist_page assist_page;
1763
1764         if (likely(!vmx->nested.enlightened_vmcs_enabled))
1765                 return 1;
1766
1767         if (unlikely(!kvm_hv_get_assist_page(vcpu, &assist_page)))
1768                 return 1;
1769
1770         if (unlikely(!assist_page.enlighten_vmentry))
1771                 return 1;
1772
1773         if (unlikely(assist_page.current_nested_vmcs !=
1774                      vmx->nested.hv_evmcs_vmptr)) {
1775
1776                 if (!vmx->nested.hv_evmcs)
1777                         vmx->nested.current_vmptr = -1ull;
1778
1779                 nested_release_evmcs(vcpu);
1780
1781                 vmx->nested.hv_evmcs_page = kvm_vcpu_gpa_to_page(
1782                         vcpu, assist_page.current_nested_vmcs);
1783
1784                 if (unlikely(is_error_page(vmx->nested.hv_evmcs_page)))
1785                         return 0;
1786
1787                 vmx->nested.hv_evmcs = kmap(vmx->nested.hv_evmcs_page);
1788
1789                 /*
1790                  * Currently, KVM only supports eVMCS version 1
1791                  * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
1792                  * value to first u32 field of eVMCS which should specify eVMCS
1793                  * VersionNumber.
1794                  *
1795                  * Guest should be aware of supported eVMCS versions by host by
1796                  * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
1797                  * expected to set this CPUID leaf according to the value
1798                  * returned in vmcs_version from nested_enable_evmcs().
1799                  *
1800                  * However, it turns out that Microsoft Hyper-V fails to comply
1801                  * to their own invented interface: When Hyper-V use eVMCS, it
1802                  * just sets first u32 field of eVMCS to revision_id specified
1803                  * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
1804                  * which is one of the supported versions specified in
1805                  * CPUID.0x4000000A.EAX[0:15].
1806                  *
1807                  * To overcome Hyper-V bug, we accept here either a supported
1808                  * eVMCS version or VMCS12 revision_id as valid values for first
1809                  * u32 field of eVMCS.
1810                  */
1811                 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
1812                     (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
1813                         nested_release_evmcs(vcpu);
1814                         return 0;
1815                 }
1816
1817                 vmx->nested.dirty_vmcs12 = true;
1818                 /*
1819                  * As we keep L2 state for one guest only 'hv_clean_fields' mask
1820                  * can't be used when we switch between them. Reset it here for
1821                  * simplicity.
1822                  */
1823                 vmx->nested.hv_evmcs->hv_clean_fields &=
1824                         ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1825                 vmx->nested.hv_evmcs_vmptr = assist_page.current_nested_vmcs;
1826
1827                 /*
1828                  * Unlike normal vmcs12, enlightened vmcs12 is not fully
1829                  * reloaded from guest's memory (read only fields, fields not
1830                  * present in struct hv_enlightened_vmcs, ...). Make sure there
1831                  * are no leftovers.
1832                  */
1833                 if (from_launch) {
1834                         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1835                         memset(vmcs12, 0, sizeof(*vmcs12));
1836                         vmcs12->hdr.revision_id = VMCS12_REVISION;
1837                 }
1838
1839         }
1840         return 1;
1841 }
1842
1843 void nested_sync_from_vmcs12(struct kvm_vcpu *vcpu)
1844 {
1845         struct vcpu_vmx *vmx = to_vmx(vcpu);
1846
1847         /*
1848          * hv_evmcs may end up being not mapped after migration (when
1849          * L2 was running), map it here to make sure vmcs12 changes are
1850          * properly reflected.
1851          */
1852         if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs)
1853                 nested_vmx_handle_enlightened_vmptrld(vcpu, false);
1854
1855         if (vmx->nested.hv_evmcs) {
1856                 copy_vmcs12_to_enlightened(vmx);
1857                 /* All fields are clean */
1858                 vmx->nested.hv_evmcs->hv_clean_fields |=
1859                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1860         } else {
1861                 copy_vmcs12_to_shadow(vmx);
1862         }
1863
1864         vmx->nested.need_vmcs12_sync = false;
1865 }
1866
1867 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
1868 {
1869         struct vcpu_vmx *vmx =
1870                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
1871
1872         vmx->nested.preemption_timer_expired = true;
1873         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
1874         kvm_vcpu_kick(&vmx->vcpu);
1875
1876         return HRTIMER_NORESTART;
1877 }
1878
1879 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
1880 {
1881         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
1882         struct vcpu_vmx *vmx = to_vmx(vcpu);
1883
1884         /*
1885          * A timer value of zero is architecturally guaranteed to cause
1886          * a VMExit prior to executing any instructions in the guest.
1887          */
1888         if (preemption_timeout == 0) {
1889                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
1890                 return;
1891         }
1892
1893         if (vcpu->arch.virtual_tsc_khz == 0)
1894                 return;
1895
1896         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
1897         preemption_timeout *= 1000000;
1898         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
1899         hrtimer_start(&vmx->nested.preemption_timer,
1900                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
1901 }
1902
1903 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
1904 {
1905         if (vmx->nested.nested_run_pending &&
1906             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
1907                 return vmcs12->guest_ia32_efer;
1908         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
1909                 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
1910         else
1911                 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
1912 }
1913
1914 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
1915 {
1916         /*
1917          * If vmcs02 hasn't been initialized, set the constant vmcs02 state
1918          * according to L0's settings (vmcs12 is irrelevant here).  Host
1919          * fields that come from L0 and are not constant, e.g. HOST_CR3,
1920          * will be set as needed prior to VMLAUNCH/VMRESUME.
1921          */
1922         if (vmx->nested.vmcs02_initialized)
1923                 return;
1924         vmx->nested.vmcs02_initialized = true;
1925
1926         /*
1927          * We don't care what the EPTP value is we just need to guarantee
1928          * it's valid so we don't get a false positive when doing early
1929          * consistency checks.
1930          */
1931         if (enable_ept && nested_early_check)
1932                 vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
1933
1934         /* All VMFUNCs are currently emulated through L0 vmexits.  */
1935         if (cpu_has_vmx_vmfunc())
1936                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
1937
1938         if (cpu_has_vmx_posted_intr())
1939                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
1940
1941         if (cpu_has_vmx_msr_bitmap())
1942                 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
1943
1944         if (enable_pml)
1945                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
1946
1947         /*
1948          * Set the MSR load/store lists to match L0's settings.  Only the
1949          * addresses are constant (for vmcs02), the counts can change based
1950          * on L2's behavior, e.g. switching to/from long mode.
1951          */
1952         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1953         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
1954         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
1955
1956         vmx_set_constant_host_state(vmx);
1957 }
1958
1959 static void prepare_vmcs02_early_full(struct vcpu_vmx *vmx,
1960                                       struct vmcs12 *vmcs12)
1961 {
1962         prepare_vmcs02_constant_state(vmx);
1963
1964         vmcs_write64(VMCS_LINK_POINTER, -1ull);
1965
1966         if (enable_vpid) {
1967                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
1968                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
1969                 else
1970                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
1971         }
1972 }
1973
1974 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
1975 {
1976         u32 exec_control, vmcs12_exec_ctrl;
1977         u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
1978
1979         if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
1980                 prepare_vmcs02_early_full(vmx, vmcs12);
1981
1982         /*
1983          * PIN CONTROLS
1984          */
1985         exec_control = vmcs12->pin_based_vm_exec_control;
1986
1987         /* Preemption timer setting is computed directly in vmx_vcpu_run.  */
1988         exec_control |= vmcs_config.pin_based_exec_ctrl;
1989         exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
1990         vmx->loaded_vmcs->hv_timer_armed = false;
1991
1992         /* Posted interrupts setting is only taken from vmcs12.  */
1993         if (nested_cpu_has_posted_intr(vmcs12)) {
1994                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
1995                 vmx->nested.pi_pending = false;
1996         } else {
1997                 exec_control &= ~PIN_BASED_POSTED_INTR;
1998         }
1999         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
2000
2001         /*
2002          * EXEC CONTROLS
2003          */
2004         exec_control = vmx_exec_control(vmx); /* L0's desires */
2005         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2006         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
2007         exec_control &= ~CPU_BASED_TPR_SHADOW;
2008         exec_control |= vmcs12->cpu_based_vm_exec_control;
2009
2010         /*
2011          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
2012          * nested_get_vmcs12_pages can't fix it up, the illegal value
2013          * will result in a VM entry failure.
2014          */
2015         if (exec_control & CPU_BASED_TPR_SHADOW) {
2016                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
2017                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2018         } else {
2019 #ifdef CONFIG_X86_64
2020                 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2021                                 CPU_BASED_CR8_STORE_EXITING;
2022 #endif
2023         }
2024
2025         /*
2026          * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2027          * for I/O port accesses.
2028          */
2029         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2030         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2031         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2032
2033         /*
2034          * SECONDARY EXEC CONTROLS
2035          */
2036         if (cpu_has_secondary_exec_ctrls()) {
2037                 exec_control = vmx->secondary_exec_control;
2038
2039                 /* Take the following fields only from vmcs12 */
2040                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2041                                   SECONDARY_EXEC_ENABLE_INVPCID |
2042                                   SECONDARY_EXEC_RDTSCP |
2043                                   SECONDARY_EXEC_XSAVES |
2044                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2045                                   SECONDARY_EXEC_APIC_REGISTER_VIRT |
2046                                   SECONDARY_EXEC_ENABLE_VMFUNC);
2047                 if (nested_cpu_has(vmcs12,
2048                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
2049                         vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
2050                                 ~SECONDARY_EXEC_ENABLE_PML;
2051                         exec_control |= vmcs12_exec_ctrl;
2052                 }
2053
2054                 /* VMCS shadowing for L2 is emulated for now */
2055                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2056
2057                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2058                         vmcs_write16(GUEST_INTR_STATUS,
2059                                 vmcs12->guest_intr_status);
2060
2061                 /*
2062                  * Write an illegal value to APIC_ACCESS_ADDR. Later,
2063                  * nested_get_vmcs12_pages will either fix it up or
2064                  * remove the VM execution control.
2065                  */
2066                 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
2067                         vmcs_write64(APIC_ACCESS_ADDR, -1ull);
2068
2069                 if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2070                         vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2071
2072                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2073         }
2074
2075         /*
2076          * ENTRY CONTROLS
2077          *
2078          * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2079          * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2080          * on the related bits (if supported by the CPU) in the hope that
2081          * we can avoid VMWrites during vmx_set_efer().
2082          */
2083         exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2084                         ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2085         if (cpu_has_load_ia32_efer()) {
2086                 if (guest_efer & EFER_LMA)
2087                         exec_control |= VM_ENTRY_IA32E_MODE;
2088                 if (guest_efer != host_efer)
2089                         exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2090         }
2091         vm_entry_controls_init(vmx, exec_control);
2092
2093         /*
2094          * EXIT CONTROLS
2095          *
2096          * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2097          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2098          * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2099          */
2100         exec_control = vmx_vmexit_ctrl();
2101         if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2102                 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2103         vm_exit_controls_init(vmx, exec_control);
2104
2105         /*
2106          * Conceptually we want to copy the PML address and index from
2107          * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
2108          * since we always flush the log on each vmexit and never change
2109          * the PML address (once set), this happens to be equivalent to
2110          * simply resetting the index in vmcs02.
2111          */
2112         if (enable_pml)
2113                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
2114
2115         /*
2116          * Interrupt/Exception Fields
2117          */
2118         if (vmx->nested.nested_run_pending) {
2119                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2120                              vmcs12->vm_entry_intr_info_field);
2121                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2122                              vmcs12->vm_entry_exception_error_code);
2123                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2124                              vmcs12->vm_entry_instruction_len);
2125                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2126                              vmcs12->guest_interruptibility_info);
2127                 vmx->loaded_vmcs->nmi_known_unmasked =
2128                         !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2129         } else {
2130                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2131         }
2132 }
2133
2134 static void prepare_vmcs02_full(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2135 {
2136         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2137
2138         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2139                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2140                 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2141                 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2142                 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2143                 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2144                 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2145                 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2146                 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2147                 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2148                 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2149                 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2150                 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2151                 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2152                 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2153                 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2154                 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2155                 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2156                 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2157                 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2158                 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2159                 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2160                 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2161                 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2162                 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2163                 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2164                 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2165                 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2166                 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2167                 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2168                 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2169                 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2170                 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2171                 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2172                 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2173                 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2174         }
2175
2176         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2177                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2178                 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2179                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2180                             vmcs12->guest_pending_dbg_exceptions);
2181                 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2182                 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2183
2184                 /*
2185                  * L1 may access the L2's PDPTR, so save them to construct
2186                  * vmcs12
2187                  */
2188                 if (enable_ept) {
2189                         vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2190                         vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2191                         vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2192                         vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2193                 }
2194         }
2195
2196         if (nested_cpu_has_xsaves(vmcs12))
2197                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2198
2199         /*
2200          * Whether page-faults are trapped is determined by a combination of
2201          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
2202          * If enable_ept, L0 doesn't care about page faults and we should
2203          * set all of these to L1's desires. However, if !enable_ept, L0 does
2204          * care about (at least some) page faults, and because it is not easy
2205          * (if at all possible?) to merge L0 and L1's desires, we simply ask
2206          * to exit on each and every L2 page fault. This is done by setting
2207          * MASK=MATCH=0 and (see below) EB.PF=1.
2208          * Note that below we don't need special code to set EB.PF beyond the
2209          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2210          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2211          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2212          */
2213         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
2214                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
2215         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
2216                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
2217
2218         if (cpu_has_vmx_apicv()) {
2219                 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2220                 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2221                 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2222                 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2223         }
2224
2225         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2226         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2227
2228         set_cr4_guest_host_mask(vmx);
2229
2230         if (kvm_mpx_supported()) {
2231                 if (vmx->nested.nested_run_pending &&
2232                         (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2233                         vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2234                 else
2235                         vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2236         }
2237 }
2238
2239 /*
2240  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2241  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2242  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2243  * guest in a way that will both be appropriate to L1's requests, and our
2244  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2245  * function also has additional necessary side-effects, like setting various
2246  * vcpu->arch fields.
2247  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2248  * is assigned to entry_failure_code on failure.
2249  */
2250 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2251                           u32 *entry_failure_code)
2252 {
2253         struct vcpu_vmx *vmx = to_vmx(vcpu);
2254         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2255
2256         if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs) {
2257                 prepare_vmcs02_full(vmx, vmcs12);
2258                 vmx->nested.dirty_vmcs12 = false;
2259         }
2260
2261         /*
2262          * First, the fields that are shadowed.  This must be kept in sync
2263          * with vmcs_shadow_fields.h.
2264          */
2265         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2266                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2267                 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2268                 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2269         }
2270
2271         if (vmx->nested.nested_run_pending &&
2272             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2273                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2274                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2275         } else {
2276                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2277                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2278         }
2279         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2280
2281         vmx->nested.preemption_timer_expired = false;
2282         if (nested_cpu_has_preemption_timer(vmcs12))
2283                 vmx_start_preemption_timer(vcpu);
2284
2285         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2286          * bitwise-or of what L1 wants to trap for L2, and what we want to
2287          * trap. Note that CR0.TS also needs updating - we do this later.
2288          */
2289         update_exception_bitmap(vcpu);
2290         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2291         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2292
2293         if (vmx->nested.nested_run_pending &&
2294             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2295                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2296                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2297         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2298                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2299         }
2300
2301         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2302
2303         if (kvm_has_tsc_control)
2304                 decache_tsc_multiplier(vmx);
2305
2306         if (enable_vpid) {
2307                 /*
2308                  * There is no direct mapping between vpid02 and vpid12, the
2309                  * vpid02 is per-vCPU for L0 and reused while the value of
2310                  * vpid12 is changed w/ one invvpid during nested vmentry.
2311                  * The vpid12 is allocated by L1 for L2, so it will not
2312                  * influence global bitmap(for vpid01 and vpid02 allocation)
2313                  * even if spawn a lot of nested vCPUs.
2314                  */
2315                 if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) {
2316                         if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
2317                                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
2318                                 __vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false);
2319                         }
2320                 } else {
2321                         /*
2322                          * If L1 use EPT, then L0 needs to execute INVEPT on
2323                          * EPTP02 instead of EPTP01. Therefore, delay TLB
2324                          * flush until vmcs02->eptp is fully updated by
2325                          * KVM_REQ_LOAD_CR3. Note that this assumes
2326                          * KVM_REQ_TLB_FLUSH is evaluated after
2327                          * KVM_REQ_LOAD_CR3 in vcpu_enter_guest().
2328                          */
2329                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2330                 }
2331         }
2332
2333         if (nested_cpu_has_ept(vmcs12))
2334                 nested_ept_init_mmu_context(vcpu);
2335         else if (nested_cpu_has2(vmcs12,
2336                                  SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2337                 vmx_flush_tlb(vcpu, true);
2338
2339         /*
2340          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2341          * bits which we consider mandatory enabled.
2342          * The CR0_READ_SHADOW is what L2 should have expected to read given
2343          * the specifications by L1; It's not enough to take
2344          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2345          * have more bits than L1 expected.
2346          */
2347         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2348         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2349
2350         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2351         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2352
2353         vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2354         /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2355         vmx_set_efer(vcpu, vcpu->arch.efer);
2356
2357         /*
2358          * Guest state is invalid and unrestricted guest is disabled,
2359          * which means L1 attempted VMEntry to L2 with invalid state.
2360          * Fail the VMEntry.
2361          */
2362         if (vmx->emulation_required) {
2363                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2364                 return 1;
2365         }
2366
2367         /* Shadow page tables on either EPT or shadow page tables. */
2368         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2369                                 entry_failure_code))
2370                 return 1;
2371
2372         if (!enable_ept)
2373                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2374
2375         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
2376         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
2377         return 0;
2378 }
2379
2380 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2381 {
2382         if (!nested_cpu_has_nmi_exiting(vmcs12) &&
2383             nested_cpu_has_virtual_nmis(vmcs12))
2384                 return -EINVAL;
2385
2386         if (!nested_cpu_has_virtual_nmis(vmcs12) &&
2387             nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING))
2388                 return -EINVAL;
2389
2390         return 0;
2391 }
2392
2393 static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
2394 {
2395         struct vcpu_vmx *vmx = to_vmx(vcpu);
2396         int maxphyaddr = cpuid_maxphyaddr(vcpu);
2397
2398         /* Check for memory type validity */
2399         switch (address & VMX_EPTP_MT_MASK) {
2400         case VMX_EPTP_MT_UC:
2401                 if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT))
2402                         return false;
2403                 break;
2404         case VMX_EPTP_MT_WB:
2405                 if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT))
2406                         return false;
2407                 break;
2408         default:
2409                 return false;
2410         }
2411
2412         /* only 4 levels page-walk length are valid */
2413         if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
2414                 return false;
2415
2416         /* Reserved bits should not be set */
2417         if (address >> maxphyaddr || ((address >> 7) & 0x1f))
2418                 return false;
2419
2420         /* AD, if set, should be supported */
2421         if (address & VMX_EPTP_AD_ENABLE_BIT) {
2422                 if (!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT))
2423                         return false;
2424         }
2425
2426         return true;
2427 }
2428
2429 /*
2430  * Checks related to VM-Execution Control Fields
2431  */
2432 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2433                                               struct vmcs12 *vmcs12)
2434 {
2435         struct vcpu_vmx *vmx = to_vmx(vcpu);
2436
2437         if (!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2438                                 vmx->nested.msrs.pinbased_ctls_low,
2439                                 vmx->nested.msrs.pinbased_ctls_high) ||
2440             !vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2441                                 vmx->nested.msrs.procbased_ctls_low,
2442                                 vmx->nested.msrs.procbased_ctls_high))
2443                 return -EINVAL;
2444
2445         if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2446             !vmx_control_verify(vmcs12->secondary_vm_exec_control,
2447                                  vmx->nested.msrs.secondary_ctls_low,
2448                                  vmx->nested.msrs.secondary_ctls_high))
2449                 return -EINVAL;
2450
2451         if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu) ||
2452             nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2453             nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2454             nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2455             nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2456             nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2457             nested_vmx_check_nmi_controls(vmcs12) ||
2458             nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2459             nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2460             nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2461             nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2462             (nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2463                 return -EINVAL;
2464
2465         if (nested_cpu_has_ept(vmcs12) &&
2466             !valid_ept_address(vcpu, vmcs12->ept_pointer))
2467                 return -EINVAL;
2468
2469         if (nested_cpu_has_vmfunc(vmcs12)) {
2470                 if (vmcs12->vm_function_control &
2471                     ~vmx->nested.msrs.vmfunc_controls)
2472                         return -EINVAL;
2473
2474                 if (nested_cpu_has_eptp_switching(vmcs12)) {
2475                         if (!nested_cpu_has_ept(vmcs12) ||
2476                             !page_address_valid(vcpu, vmcs12->eptp_list_address))
2477                                 return -EINVAL;
2478                 }
2479         }
2480
2481         return 0;
2482 }
2483
2484 /*
2485  * Checks related to VM-Exit Control Fields
2486  */
2487 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2488                                          struct vmcs12 *vmcs12)
2489 {
2490         struct vcpu_vmx *vmx = to_vmx(vcpu);
2491
2492         if (!vmx_control_verify(vmcs12->vm_exit_controls,
2493                                 vmx->nested.msrs.exit_ctls_low,
2494                                 vmx->nested.msrs.exit_ctls_high) ||
2495             nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12))
2496                 return -EINVAL;
2497
2498         return 0;
2499 }
2500
2501 /*
2502  * Checks related to VM-Entry Control Fields
2503  */
2504 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2505                                           struct vmcs12 *vmcs12)
2506 {
2507         struct vcpu_vmx *vmx = to_vmx(vcpu);
2508
2509         if (!vmx_control_verify(vmcs12->vm_entry_controls,
2510                                 vmx->nested.msrs.entry_ctls_low,
2511                                 vmx->nested.msrs.entry_ctls_high))
2512                 return -EINVAL;
2513
2514         /*
2515          * From the Intel SDM, volume 3:
2516          * Fields relevant to VM-entry event injection must be set properly.
2517          * These fields are the VM-entry interruption-information field, the
2518          * VM-entry exception error code, and the VM-entry instruction length.
2519          */
2520         if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2521                 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2522                 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2523                 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2524                 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2525                 bool should_have_error_code;
2526                 bool urg = nested_cpu_has2(vmcs12,
2527                                            SECONDARY_EXEC_UNRESTRICTED_GUEST);
2528                 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2529
2530                 /* VM-entry interruption-info field: interruption type */
2531                 if (intr_type == INTR_TYPE_RESERVED ||
2532                     (intr_type == INTR_TYPE_OTHER_EVENT &&
2533                      !nested_cpu_supports_monitor_trap_flag(vcpu)))
2534                         return -EINVAL;
2535
2536                 /* VM-entry interruption-info field: vector */
2537                 if ((intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2538                     (intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2539                     (intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2540                         return -EINVAL;
2541
2542                 /* VM-entry interruption-info field: deliver error code */
2543                 should_have_error_code =
2544                         intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2545                         x86_exception_has_error_code(vector);
2546                 if (has_error_code != should_have_error_code)
2547                         return -EINVAL;
2548
2549                 /* VM-entry exception error code */
2550                 if (has_error_code &&
2551                     vmcs12->vm_entry_exception_error_code & GENMASK(31, 15))
2552                         return -EINVAL;
2553
2554                 /* VM-entry interruption-info field: reserved bits */
2555                 if (intr_info & INTR_INFO_RESVD_BITS_MASK)
2556                         return -EINVAL;
2557
2558                 /* VM-entry instruction length */
2559                 switch (intr_type) {
2560                 case INTR_TYPE_SOFT_EXCEPTION:
2561                 case INTR_TYPE_SOFT_INTR:
2562                 case INTR_TYPE_PRIV_SW_EXCEPTION:
2563                         if ((vmcs12->vm_entry_instruction_len > 15) ||
2564                             (vmcs12->vm_entry_instruction_len == 0 &&
2565                              !nested_cpu_has_zero_length_injection(vcpu)))
2566                                 return -EINVAL;
2567                 }
2568         }
2569
2570         if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2571                 return -EINVAL;
2572
2573         return 0;
2574 }
2575
2576 /*
2577  * Checks related to Host Control Registers and MSRs
2578  */
2579 static int nested_check_host_control_regs(struct kvm_vcpu *vcpu,
2580                                           struct vmcs12 *vmcs12)
2581 {
2582         bool ia32e;
2583
2584         if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
2585             !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
2586             !nested_cr3_valid(vcpu, vmcs12->host_cr3))
2587                 return -EINVAL;
2588         /*
2589          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2590          * IA32_EFER MSR must be 0 in the field for that register. In addition,
2591          * the values of the LMA and LME bits in the field must each be that of
2592          * the host address-space size VM-exit control.
2593          */
2594         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2595                 ia32e = (vmcs12->vm_exit_controls &
2596                          VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
2597                 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
2598                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
2599                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
2600                         return -EINVAL;
2601         }
2602
2603         return 0;
2604 }
2605
2606 /*
2607  * Checks related to Guest Non-register State
2608  */
2609 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2610 {
2611         if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2612             vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
2613                 return -EINVAL;
2614
2615         return 0;
2616 }
2617
2618 static int nested_vmx_check_vmentry_prereqs(struct kvm_vcpu *vcpu,
2619                                             struct vmcs12 *vmcs12)
2620 {
2621         if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2622             nested_check_vm_exit_controls(vcpu, vmcs12) ||
2623             nested_check_vm_entry_controls(vcpu, vmcs12))
2624                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
2625
2626         if (nested_check_host_control_regs(vcpu, vmcs12))
2627                 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
2628
2629         if (nested_check_guest_non_reg_state(vmcs12))
2630                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
2631
2632         return 0;
2633 }
2634
2635 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2636                                           struct vmcs12 *vmcs12)
2637 {
2638         int r;
2639         struct page *page;
2640         struct vmcs12 *shadow;
2641
2642         if (vmcs12->vmcs_link_pointer == -1ull)
2643                 return 0;
2644
2645         if (!page_address_valid(vcpu, vmcs12->vmcs_link_pointer))
2646                 return -EINVAL;
2647
2648         page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
2649         if (is_error_page(page))
2650                 return -EINVAL;
2651
2652         r = 0;
2653         shadow = kmap(page);
2654         if (shadow->hdr.revision_id != VMCS12_REVISION ||
2655             shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12))
2656                 r = -EINVAL;
2657         kunmap(page);
2658         kvm_release_page_clean(page);
2659         return r;
2660 }
2661
2662 static int nested_vmx_check_vmentry_postreqs(struct kvm_vcpu *vcpu,
2663                                              struct vmcs12 *vmcs12,
2664                                              u32 *exit_qual)
2665 {
2666         bool ia32e;
2667
2668         *exit_qual = ENTRY_FAIL_DEFAULT;
2669
2670         if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
2671             !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
2672                 return 1;
2673
2674         if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2675                 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
2676                 return 1;
2677         }
2678
2679         /*
2680          * If the load IA32_EFER VM-entry control is 1, the following checks
2681          * are performed on the field for the IA32_EFER MSR:
2682          * - Bits reserved in the IA32_EFER MSR must be 0.
2683          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
2684          *   the IA-32e mode guest VM-exit control. It must also be identical
2685          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
2686          *   CR0.PG) is 1.
2687          */
2688         if (to_vmx(vcpu)->nested.nested_run_pending &&
2689             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
2690                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
2691                 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
2692                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
2693                     ((vmcs12->guest_cr0 & X86_CR0_PG) &&
2694                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
2695                         return 1;
2696         }
2697
2698         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
2699                 (is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) ||
2700                 (vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD)))
2701                         return 1;
2702
2703         return 0;
2704 }
2705
2706 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
2707 {
2708         struct vcpu_vmx *vmx = to_vmx(vcpu);
2709         unsigned long cr3, cr4;
2710         bool vm_fail;
2711
2712         if (!nested_early_check)
2713                 return 0;
2714
2715         if (vmx->msr_autoload.host.nr)
2716                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2717         if (vmx->msr_autoload.guest.nr)
2718                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2719
2720         preempt_disable();
2721
2722         vmx_prepare_switch_to_guest(vcpu);
2723
2724         /*
2725          * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
2726          * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
2727          * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e.
2728          * there is no need to preserve other bits or save/restore the field.
2729          */
2730         vmcs_writel(GUEST_RFLAGS, 0);
2731
2732         cr3 = __get_current_cr3_fast();
2733         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
2734                 vmcs_writel(HOST_CR3, cr3);
2735                 vmx->loaded_vmcs->host_state.cr3 = cr3;
2736         }
2737
2738         cr4 = cr4_read_shadow();
2739         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
2740                 vmcs_writel(HOST_CR4, cr4);
2741                 vmx->loaded_vmcs->host_state.cr4 = cr4;
2742         }
2743
2744         asm(
2745                 "sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
2746                 "cmp %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2747                 "je 1f \n\t"
2748                 __ex("vmwrite %%" _ASM_SP ", %[HOST_RSP]") "\n\t"
2749                 "mov %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2750                 "1: \n\t"
2751                 "add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
2752
2753                 /* Check if vmlaunch or vmresume is needed */
2754                 "cmpb $0, %c[launched](%[loaded_vmcs])\n\t"
2755
2756                 /*
2757                  * VMLAUNCH and VMRESUME clear RFLAGS.{CF,ZF} on VM-Exit, set
2758                  * RFLAGS.CF on VM-Fail Invalid and set RFLAGS.ZF on VM-Fail
2759                  * Valid.  vmx_vmenter() directly "returns" RFLAGS, and so the
2760                  * results of VM-Enter is captured via CC_{SET,OUT} to vm_fail.
2761                  */
2762                 "call vmx_vmenter\n\t"
2763
2764                 CC_SET(be)
2765               : ASM_CALL_CONSTRAINT, CC_OUT(be) (vm_fail)
2766               : [HOST_RSP]"r"((unsigned long)HOST_RSP),
2767                 [loaded_vmcs]"r"(vmx->loaded_vmcs),
2768                 [launched]"i"(offsetof(struct loaded_vmcs, launched)),
2769                 [host_state_rsp]"i"(offsetof(struct loaded_vmcs, host_state.rsp)),
2770                 [wordsize]"i"(sizeof(ulong))
2771               : "cc", "memory"
2772         );
2773
2774         preempt_enable();
2775
2776         if (vmx->msr_autoload.host.nr)
2777                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2778         if (vmx->msr_autoload.guest.nr)
2779                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2780
2781         if (vm_fail) {
2782                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
2783                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
2784                 return 1;
2785         }
2786
2787         /*
2788          * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
2789          */
2790         local_irq_enable();
2791         if (hw_breakpoint_active())
2792                 set_debugreg(__this_cpu_read(cpu_dr7), 7);
2793
2794         /*
2795          * A non-failing VMEntry means we somehow entered guest mode with
2796          * an illegal RIP, and that's just the tip of the iceberg.  There
2797          * is no telling what memory has been modified or what state has
2798          * been exposed to unknown code.  Hitting this all but guarantees
2799          * a (very critical) hardware issue.
2800          */
2801         WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
2802                 VMX_EXIT_REASONS_FAILED_VMENTRY));
2803
2804         return 0;
2805 }
2806
2807 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
2808                                                  struct vmcs12 *vmcs12);
2809
2810 static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
2811 {
2812         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2813         struct vcpu_vmx *vmx = to_vmx(vcpu);
2814         struct page *page;
2815         u64 hpa;
2816
2817         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
2818                 /*
2819                  * Translate L1 physical address to host physical
2820                  * address for vmcs02. Keep the page pinned, so this
2821                  * physical address remains valid. We keep a reference
2822                  * to it so we can release it later.
2823                  */
2824                 if (vmx->nested.apic_access_page) { /* shouldn't happen */
2825                         kvm_release_page_dirty(vmx->nested.apic_access_page);
2826                         vmx->nested.apic_access_page = NULL;
2827                 }
2828                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
2829                 /*
2830                  * If translation failed, no matter: This feature asks
2831                  * to exit when accessing the given address, and if it
2832                  * can never be accessed, this feature won't do
2833                  * anything anyway.
2834                  */
2835                 if (!is_error_page(page)) {
2836                         vmx->nested.apic_access_page = page;
2837                         hpa = page_to_phys(vmx->nested.apic_access_page);
2838                         vmcs_write64(APIC_ACCESS_ADDR, hpa);
2839                 } else {
2840                         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
2841                                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
2842                 }
2843         }
2844
2845         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
2846                 if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
2847                         kvm_release_page_dirty(vmx->nested.virtual_apic_page);
2848                         vmx->nested.virtual_apic_page = NULL;
2849                 }
2850                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
2851
2852                 /*
2853                  * If translation failed, VM entry will fail because
2854                  * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
2855                  * Failing the vm entry is _not_ what the processor
2856                  * does but it's basically the only possibility we
2857                  * have.  We could still enter the guest if CR8 load
2858                  * exits are enabled, CR8 store exits are enabled, and
2859                  * virtualize APIC access is disabled; in this case
2860                  * the processor would never use the TPR shadow and we
2861                  * could simply clear the bit from the execution
2862                  * control.  But such a configuration is useless, so
2863                  * let's keep the code simple.
2864                  */
2865                 if (!is_error_page(page)) {
2866                         vmx->nested.virtual_apic_page = page;
2867                         hpa = page_to_phys(vmx->nested.virtual_apic_page);
2868                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
2869                 }
2870         }
2871
2872         if (nested_cpu_has_posted_intr(vmcs12)) {
2873                 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
2874                         kunmap(vmx->nested.pi_desc_page);
2875                         kvm_release_page_dirty(vmx->nested.pi_desc_page);
2876                         vmx->nested.pi_desc_page = NULL;
2877                         vmx->nested.pi_desc = NULL;
2878                         vmcs_write64(POSTED_INTR_DESC_ADDR, -1ull);
2879                 }
2880                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
2881                 if (is_error_page(page))
2882                         return;
2883                 vmx->nested.pi_desc_page = page;
2884                 vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
2885                 vmx->nested.pi_desc =
2886                         (struct pi_desc *)((void *)vmx->nested.pi_desc +
2887                         (unsigned long)(vmcs12->posted_intr_desc_addr &
2888                         (PAGE_SIZE - 1)));
2889                 vmcs_write64(POSTED_INTR_DESC_ADDR,
2890                         page_to_phys(vmx->nested.pi_desc_page) +
2891                         (unsigned long)(vmcs12->posted_intr_desc_addr &
2892                         (PAGE_SIZE - 1)));
2893         }
2894         if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
2895                 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
2896                               CPU_BASED_USE_MSR_BITMAPS);
2897         else
2898                 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
2899                                 CPU_BASED_USE_MSR_BITMAPS);
2900 }
2901
2902 /*
2903  * Intel's VMX Instruction Reference specifies a common set of prerequisites
2904  * for running VMX instructions (except VMXON, whose prerequisites are
2905  * slightly different). It also specifies what exception to inject otherwise.
2906  * Note that many of these exceptions have priority over VM exits, so they
2907  * don't have to be checked again here.
2908  */
2909 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
2910 {
2911         if (!to_vmx(vcpu)->nested.vmxon) {
2912                 kvm_queue_exception(vcpu, UD_VECTOR);
2913                 return 0;
2914         }
2915
2916         if (vmx_get_cpl(vcpu)) {
2917                 kvm_inject_gp(vcpu, 0);
2918                 return 0;
2919         }
2920
2921         return 1;
2922 }
2923
2924 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
2925 {
2926         u8 rvi = vmx_get_rvi();
2927         u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
2928
2929         return ((rvi & 0xf0) > (vppr & 0xf0));
2930 }
2931
2932 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
2933                                    struct vmcs12 *vmcs12);
2934
2935 /*
2936  * If from_vmentry is false, this is being called from state restore (either RSM
2937  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
2938 + *
2939 + * Returns:
2940 + *   0 - success, i.e. proceed with actual VMEnter
2941 + *   1 - consistency check VMExit
2942 + *  -1 - consistency check VMFail
2943  */
2944 int nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
2945 {
2946         struct vcpu_vmx *vmx = to_vmx(vcpu);
2947         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2948         bool evaluate_pending_interrupts;
2949         u32 exit_reason = EXIT_REASON_INVALID_STATE;
2950         u32 exit_qual;
2951
2952         evaluate_pending_interrupts = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
2953                 (CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING);
2954         if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
2955                 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
2956
2957         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
2958                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
2959         if (kvm_mpx_supported() &&
2960                 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2961                 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
2962
2963         vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
2964
2965         prepare_vmcs02_early(vmx, vmcs12);
2966
2967         if (from_vmentry) {
2968                 nested_get_vmcs12_pages(vcpu);
2969
2970                 if (nested_vmx_check_vmentry_hw(vcpu)) {
2971                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
2972                         return -1;
2973                 }
2974
2975                 if (nested_vmx_check_vmentry_postreqs(vcpu, vmcs12, &exit_qual))
2976                         goto vmentry_fail_vmexit;
2977         }
2978
2979         enter_guest_mode(vcpu);
2980         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
2981                 vcpu->arch.tsc_offset += vmcs12->tsc_offset;
2982
2983         if (prepare_vmcs02(vcpu, vmcs12, &exit_qual))
2984                 goto vmentry_fail_vmexit_guest_mode;
2985
2986         if (from_vmentry) {
2987                 exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
2988                 exit_qual = nested_vmx_load_msr(vcpu,
2989                                                 vmcs12->vm_entry_msr_load_addr,
2990                                                 vmcs12->vm_entry_msr_load_count);
2991                 if (exit_qual)
2992                         goto vmentry_fail_vmexit_guest_mode;
2993         } else {
2994                 /*
2995                  * The MMU is not initialized to point at the right entities yet and
2996                  * "get pages" would need to read data from the guest (i.e. we will
2997                  * need to perform gpa to hpa translation). Request a call
2998                  * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
2999                  * have already been set at vmentry time and should not be reset.
3000                  */
3001                 kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
3002         }
3003
3004         /*
3005          * If L1 had a pending IRQ/NMI until it executed
3006          * VMLAUNCH/VMRESUME which wasn't delivered because it was
3007          * disallowed (e.g. interrupts disabled), L0 needs to
3008          * evaluate if this pending event should cause an exit from L2
3009          * to L1 or delivered directly to L2 (e.g. In case L1 don't
3010          * intercept EXTERNAL_INTERRUPT).
3011          *
3012          * Usually this would be handled by the processor noticing an
3013          * IRQ/NMI window request, or checking RVI during evaluation of
3014          * pending virtual interrupts.  However, this setting was done
3015          * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3016          * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3017          */
3018         if (unlikely(evaluate_pending_interrupts))
3019                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3020
3021         /*
3022          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3023          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3024          * returned as far as L1 is concerned. It will only return (and set
3025          * the success flag) when L2 exits (see nested_vmx_vmexit()).
3026          */
3027         return 0;
3028
3029         /*
3030          * A failed consistency check that leads to a VMExit during L1's
3031          * VMEnter to L2 is a variation of a normal VMexit, as explained in
3032          * 26.7 "VM-entry failures during or after loading guest state".
3033          */
3034 vmentry_fail_vmexit_guest_mode:
3035         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3036                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3037         leave_guest_mode(vcpu);
3038
3039 vmentry_fail_vmexit:
3040         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3041
3042         if (!from_vmentry)
3043                 return 1;
3044
3045         load_vmcs12_host_state(vcpu, vmcs12);
3046         vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
3047         vmcs12->exit_qualification = exit_qual;
3048         if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3049                 vmx->nested.need_vmcs12_sync = true;
3050         return 1;
3051 }
3052
3053 /*
3054  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3055  * for running an L2 nested guest.
3056  */
3057 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3058 {
3059         struct vmcs12 *vmcs12;
3060         struct vcpu_vmx *vmx = to_vmx(vcpu);
3061         u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3062         int ret;
3063
3064         if (!nested_vmx_check_permission(vcpu))
3065                 return 1;
3066
3067         if (!nested_vmx_handle_enlightened_vmptrld(vcpu, true))
3068                 return 1;
3069
3070         if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
3071                 return nested_vmx_failInvalid(vcpu);
3072
3073         vmcs12 = get_vmcs12(vcpu);
3074
3075         /*
3076          * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3077          * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3078          * rather than RFLAGS.ZF, and no error number is stored to the
3079          * VM-instruction error field.
3080          */
3081         if (vmcs12->hdr.shadow_vmcs)
3082                 return nested_vmx_failInvalid(vcpu);
3083
3084         if (vmx->nested.hv_evmcs) {
3085                 copy_enlightened_to_vmcs12(vmx);
3086                 /* Enlightened VMCS doesn't have launch state */
3087                 vmcs12->launch_state = !launch;
3088         } else if (enable_shadow_vmcs) {
3089                 copy_shadow_to_vmcs12(vmx);
3090         }
3091
3092         /*
3093          * The nested entry process starts with enforcing various prerequisites
3094          * on vmcs12 as required by the Intel SDM, and act appropriately when
3095          * they fail: As the SDM explains, some conditions should cause the
3096          * instruction to fail, while others will cause the instruction to seem
3097          * to succeed, but return an EXIT_REASON_INVALID_STATE.
3098          * To speed up the normal (success) code path, we should avoid checking
3099          * for misconfigurations which will anyway be caught by the processor
3100          * when using the merged vmcs02.
3101          */
3102         if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
3103                 return nested_vmx_failValid(vcpu,
3104                         VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3105
3106         if (vmcs12->launch_state == launch)
3107                 return nested_vmx_failValid(vcpu,
3108                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3109                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3110
3111         ret = nested_vmx_check_vmentry_prereqs(vcpu, vmcs12);
3112         if (ret)
3113                 return nested_vmx_failValid(vcpu, ret);
3114
3115         /*
3116          * We're finally done with prerequisite checking, and can start with
3117          * the nested entry.
3118          */
3119         vmx->nested.nested_run_pending = 1;
3120         ret = nested_vmx_enter_non_root_mode(vcpu, true);
3121         vmx->nested.nested_run_pending = !ret;
3122         if (ret > 0)
3123                 return 1;
3124         else if (ret)
3125                 return nested_vmx_failValid(vcpu,
3126                         VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3127
3128         /* Hide L1D cache contents from the nested guest.  */
3129         vmx->vcpu.arch.l1tf_flush_l1d = true;
3130
3131         /*
3132          * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3133          * also be used as part of restoring nVMX state for
3134          * snapshot restore (migration).
3135          *
3136          * In this flow, it is assumed that vmcs12 cache was
3137          * trasferred as part of captured nVMX state and should
3138          * therefore not be read from guest memory (which may not
3139          * exist on destination host yet).
3140          */
3141         nested_cache_shadow_vmcs12(vcpu, vmcs12);
3142
3143         /*
3144          * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3145          * awakened by event injection or by an NMI-window VM-exit or
3146          * by an interrupt-window VM-exit, halt the vcpu.
3147          */
3148         if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
3149             !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3150             !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_NMI_PENDING) &&
3151             !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_INTR_PENDING) &&
3152               (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3153                 vmx->nested.nested_run_pending = 0;
3154                 return kvm_vcpu_halt(vcpu);
3155         }
3156         return 1;
3157 }
3158
3159 /*
3160  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3161  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
3162  * This function returns the new value we should put in vmcs12.guest_cr0.
3163  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3164  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3165  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3166  *     didn't trap the bit, because if L1 did, so would L0).
3167  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3168  *     been modified by L2, and L1 knows it. So just leave the old value of
3169  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3170  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3171  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3172  *     changed these bits, and therefore they need to be updated, but L0
3173  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3174  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3175  */
3176 static inline unsigned long
3177 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3178 {
3179         return
3180         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3181         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3182         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3183                         vcpu->arch.cr0_guest_owned_bits));
3184 }
3185
3186 static inline unsigned long
3187 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3188 {
3189         return
3190         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3191         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3192         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3193                         vcpu->arch.cr4_guest_owned_bits));
3194 }
3195
3196 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3197                                       struct vmcs12 *vmcs12)
3198 {
3199         u32 idt_vectoring;
3200         unsigned int nr;
3201
3202         if (vcpu->arch.exception.injected) {
3203                 nr = vcpu->arch.exception.nr;
3204                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3205
3206                 if (kvm_exception_is_soft(nr)) {
3207                         vmcs12->vm_exit_instruction_len =
3208                                 vcpu->arch.event_exit_inst_len;
3209                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3210                 } else
3211                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3212
3213                 if (vcpu->arch.exception.has_error_code) {
3214                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3215                         vmcs12->idt_vectoring_error_code =
3216                                 vcpu->arch.exception.error_code;
3217                 }
3218
3219                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3220         } else if (vcpu->arch.nmi_injected) {
3221                 vmcs12->idt_vectoring_info_field =
3222                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3223         } else if (vcpu->arch.interrupt.injected) {
3224                 nr = vcpu->arch.interrupt.nr;
3225                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3226
3227                 if (vcpu->arch.interrupt.soft) {
3228                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
3229                         vmcs12->vm_entry_instruction_len =
3230                                 vcpu->arch.event_exit_inst_len;
3231                 } else
3232                         idt_vectoring |= INTR_TYPE_EXT_INTR;
3233
3234                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3235         }
3236 }
3237
3238
3239 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3240 {
3241         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3242         gfn_t gfn;
3243
3244         /*
3245          * Don't need to mark the APIC access page dirty; it is never
3246          * written to by the CPU during APIC virtualization.
3247          */
3248
3249         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3250                 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3251                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3252         }
3253
3254         if (nested_cpu_has_posted_intr(vmcs12)) {
3255                 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3256                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3257         }
3258 }
3259
3260 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3261 {
3262         struct vcpu_vmx *vmx = to_vmx(vcpu);
3263         int max_irr;
3264         void *vapic_page;
3265         u16 status;
3266
3267         if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3268                 return;
3269
3270         vmx->nested.pi_pending = false;
3271         if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3272                 return;
3273
3274         max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3275         if (max_irr != 256) {
3276                 vapic_page = kmap(vmx->nested.virtual_apic_page);
3277                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3278                         vapic_page, &max_irr);
3279                 kunmap(vmx->nested.virtual_apic_page);
3280
3281                 status = vmcs_read16(GUEST_INTR_STATUS);
3282                 if ((u8)max_irr > ((u8)status & 0xff)) {
3283                         status &= ~0xff;
3284                         status |= (u8)max_irr;
3285                         vmcs_write16(GUEST_INTR_STATUS, status);
3286                 }
3287         }
3288
3289         nested_mark_vmcs12_pages_dirty(vcpu);
3290 }
3291
3292 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3293                                                unsigned long exit_qual)
3294 {
3295         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3296         unsigned int nr = vcpu->arch.exception.nr;
3297         u32 intr_info = nr | INTR_INFO_VALID_MASK;
3298
3299         if (vcpu->arch.exception.has_error_code) {
3300                 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3301                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3302         }
3303
3304         if (kvm_exception_is_soft(nr))
3305                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3306         else
3307                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3308
3309         if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3310             vmx_get_nmi_mask(vcpu))
3311                 intr_info |= INTR_INFO_UNBLOCK_NMI;
3312
3313         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3314 }
3315
3316 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
3317 {
3318         struct vcpu_vmx *vmx = to_vmx(vcpu);
3319         unsigned long exit_qual;
3320         bool block_nested_events =
3321             vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3322
3323         if (vcpu->arch.exception.pending &&
3324                 nested_vmx_check_exception(vcpu, &exit_qual)) {
3325                 if (block_nested_events)
3326                         return -EBUSY;
3327                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3328                 return 0;
3329         }
3330
3331         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3332             vmx->nested.preemption_timer_expired) {
3333                 if (block_nested_events)
3334                         return -EBUSY;
3335                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3336                 return 0;
3337         }
3338
3339         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
3340                 if (block_nested_events)
3341                         return -EBUSY;
3342                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3343                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
3344                                   INTR_INFO_VALID_MASK, 0);
3345                 /*
3346                  * The NMI-triggered VM exit counts as injection:
3347                  * clear this one and block further NMIs.
3348                  */
3349                 vcpu->arch.nmi_pending = 0;
3350                 vmx_set_nmi_mask(vcpu, true);
3351                 return 0;
3352         }
3353
3354         if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
3355             nested_exit_on_intr(vcpu)) {
3356                 if (block_nested_events)
3357                         return -EBUSY;
3358                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3359                 return 0;
3360         }
3361
3362         vmx_complete_nested_posted_interrupt(vcpu);
3363         return 0;
3364 }
3365
3366 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3367 {
3368         ktime_t remaining =
3369                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3370         u64 value;
3371
3372         if (ktime_to_ns(remaining) <= 0)
3373                 return 0;
3374
3375         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3376         do_div(value, 1000000);
3377         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3378 }
3379
3380 /*
3381  * Update the guest state fields of vmcs12 to reflect changes that
3382  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
3383  * VM-entry controls is also updated, since this is really a guest
3384  * state bit.)
3385  */
3386 static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3387 {
3388         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
3389         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
3390
3391         vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3392         vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
3393         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
3394
3395         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
3396         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
3397         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
3398         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
3399         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
3400         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
3401         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
3402         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
3403         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
3404         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
3405         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
3406         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
3407         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
3408         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
3409         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
3410         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
3411         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
3412         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
3413         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
3414         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
3415         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
3416         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
3417         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
3418         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
3419         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
3420         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
3421         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
3422         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
3423         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
3424         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
3425         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
3426         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
3427         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
3428         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
3429         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
3430         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
3431
3432         vmcs12->guest_interruptibility_info =
3433                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
3434         vmcs12->guest_pending_dbg_exceptions =
3435                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3436         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3437                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
3438         else
3439                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
3440
3441         if (nested_cpu_has_preemption_timer(vmcs12) &&
3442             vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
3443                         vmcs12->vmx_preemption_timer_value =
3444                                 vmx_get_preemption_timer_value(vcpu);
3445
3446         /*
3447          * In some cases (usually, nested EPT), L2 is allowed to change its
3448          * own CR3 without exiting. If it has changed it, we must keep it.
3449          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
3450          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
3451          *
3452          * Additionally, restore L2's PDPTR to vmcs12.
3453          */
3454         if (enable_ept) {
3455                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3456                 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
3457                 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
3458                 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
3459                 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
3460         }
3461
3462         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
3463
3464         if (nested_cpu_has_vid(vmcs12))
3465                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
3466
3467         vmcs12->vm_entry_controls =
3468                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
3469                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
3470
3471         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
3472                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
3473                 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3474         }
3475
3476         /* TODO: These cannot have changed unless we have MSR bitmaps and
3477          * the relevant bit asks not to trap the change */
3478         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
3479                 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
3480         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
3481                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
3482         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
3483         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
3484         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
3485         if (kvm_mpx_supported())
3486                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3487 }
3488
3489 /*
3490  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
3491  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
3492  * and this function updates it to reflect the changes to the guest state while
3493  * L2 was running (and perhaps made some exits which were handled directly by L0
3494  * without going back to L1), and to reflect the exit reason.
3495  * Note that we do not have to copy here all VMCS fields, just those that
3496  * could have changed by the L2 guest or the exit - i.e., the guest-state and
3497  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
3498  * which already writes to vmcs12 directly.
3499  */
3500 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
3501                            u32 exit_reason, u32 exit_intr_info,
3502                            unsigned long exit_qualification)
3503 {
3504         /* update guest state fields: */
3505         sync_vmcs12(vcpu, vmcs12);
3506
3507         /* update exit information fields: */
3508
3509         vmcs12->vm_exit_reason = exit_reason;
3510         vmcs12->exit_qualification = exit_qualification;
3511         vmcs12->vm_exit_intr_info = exit_intr_info;
3512
3513         vmcs12->idt_vectoring_info_field = 0;
3514         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3515         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
3516
3517         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
3518                 vmcs12->launch_state = 1;
3519
3520                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
3521                  * instead of reading the real value. */
3522                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
3523
3524                 /*
3525                  * Transfer the event that L0 or L1 may wanted to inject into
3526                  * L2 to IDT_VECTORING_INFO_FIELD.
3527                  */
3528                 vmcs12_save_pending_event(vcpu, vmcs12);
3529
3530                 /*
3531                  * According to spec, there's no need to store the guest's
3532                  * MSRs if the exit is due to a VM-entry failure that occurs
3533                  * during or after loading the guest state. Since this exit
3534                  * does not fall in that category, we need to save the MSRs.
3535                  */
3536                 if (nested_vmx_store_msr(vcpu,
3537                                          vmcs12->vm_exit_msr_store_addr,
3538                                          vmcs12->vm_exit_msr_store_count))
3539                         nested_vmx_abort(vcpu,
3540                                          VMX_ABORT_SAVE_GUEST_MSR_FAIL);
3541         }
3542
3543         /*
3544          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
3545          * preserved above and would only end up incorrectly in L1.
3546          */
3547         vcpu->arch.nmi_injected = false;
3548         kvm_clear_exception_queue(vcpu);
3549         kvm_clear_interrupt_queue(vcpu);
3550 }
3551
3552 /*
3553  * A part of what we need to when the nested L2 guest exits and we want to
3554  * run its L1 parent, is to reset L1's guest state to the host state specified
3555  * in vmcs12.
3556  * This function is to be called not only on normal nested exit, but also on
3557  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
3558  * Failures During or After Loading Guest State").
3559  * This function should be called when the active VMCS is L1's (vmcs01).
3560  */
3561 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3562                                    struct vmcs12 *vmcs12)
3563 {
3564         struct kvm_segment seg;
3565         u32 entry_failure_code;
3566
3567         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
3568                 vcpu->arch.efer = vmcs12->host_ia32_efer;
3569         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3570                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
3571         else
3572                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
3573         vmx_set_efer(vcpu, vcpu->arch.efer);
3574
3575         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
3576         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
3577         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
3578         vmx_set_interrupt_shadow(vcpu, 0);
3579
3580         /*
3581          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
3582          * actually changed, because vmx_set_cr0 refers to efer set above.
3583          *
3584          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
3585          * (KVM doesn't change it);
3586          */
3587         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3588         vmx_set_cr0(vcpu, vmcs12->host_cr0);
3589
3590         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
3591         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3592         vmx_set_cr4(vcpu, vmcs12->host_cr4);
3593
3594         nested_ept_uninit_mmu_context(vcpu);
3595
3596         /*
3597          * Only PDPTE load can fail as the value of cr3 was checked on entry and
3598          * couldn't have changed.
3599          */
3600         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
3601                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
3602
3603         if (!enable_ept)
3604                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3605
3606         /*
3607          * If vmcs01 doesn't use VPID, CPU flushes TLB on every
3608          * VMEntry/VMExit. Thus, no need to flush TLB.
3609          *
3610          * If vmcs12 doesn't use VPID, L1 expects TLB to be
3611          * flushed on every VMEntry/VMExit.
3612          *
3613          * Otherwise, we can preserve TLB entries as long as we are
3614          * able to tag L1 TLB entries differently than L2 TLB entries.
3615          *
3616          * If vmcs12 uses EPT, we need to execute this flush on EPTP01
3617          * and therefore we request the TLB flush to happen only after VMCS EPTP
3618          * has been set by KVM_REQ_LOAD_CR3.
3619          */
3620         if (enable_vpid &&
3621             (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) {
3622                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3623         }
3624
3625         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
3626         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
3627         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
3628         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
3629         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
3630         vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
3631         vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
3632
3633         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
3634         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
3635                 vmcs_write64(GUEST_BNDCFGS, 0);
3636
3637         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
3638                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
3639                 vcpu->arch.pat = vmcs12->host_ia32_pat;
3640         }
3641         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
3642                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
3643                         vmcs12->host_ia32_perf_global_ctrl);
3644
3645         /* Set L1 segment info according to Intel SDM
3646             27.5.2 Loading Host Segment and Descriptor-Table Registers */
3647         seg = (struct kvm_segment) {
3648                 .base = 0,
3649                 .limit = 0xFFFFFFFF,
3650                 .selector = vmcs12->host_cs_selector,
3651                 .type = 11,
3652                 .present = 1,
3653                 .s = 1,
3654                 .g = 1
3655         };
3656         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3657                 seg.l = 1;
3658         else
3659                 seg.db = 1;
3660         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
3661         seg = (struct kvm_segment) {
3662                 .base = 0,
3663                 .limit = 0xFFFFFFFF,
3664                 .type = 3,
3665                 .present = 1,
3666                 .s = 1,
3667                 .db = 1,
3668                 .g = 1
3669         };
3670         seg.selector = vmcs12->host_ds_selector;
3671         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
3672         seg.selector = vmcs12->host_es_selector;
3673         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
3674         seg.selector = vmcs12->host_ss_selector;
3675         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
3676         seg.selector = vmcs12->host_fs_selector;
3677         seg.base = vmcs12->host_fs_base;
3678         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
3679         seg.selector = vmcs12->host_gs_selector;
3680         seg.base = vmcs12->host_gs_base;
3681         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
3682         seg = (struct kvm_segment) {
3683                 .base = vmcs12->host_tr_base,
3684                 .limit = 0x67,
3685                 .selector = vmcs12->host_tr_selector,
3686                 .type = 11,
3687                 .present = 1
3688         };
3689         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
3690
3691         kvm_set_dr(vcpu, 7, 0x400);
3692         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3693
3694         if (cpu_has_vmx_msr_bitmap())
3695                 vmx_update_msr_bitmap(vcpu);
3696
3697         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
3698                                 vmcs12->vm_exit_msr_load_count))
3699                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
3700 }
3701
3702 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
3703 {
3704         struct shared_msr_entry *efer_msr;
3705         unsigned int i;
3706
3707         if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
3708                 return vmcs_read64(GUEST_IA32_EFER);
3709
3710         if (cpu_has_load_ia32_efer())
3711                 return host_efer;
3712
3713         for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
3714                 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
3715                         return vmx->msr_autoload.guest.val[i].value;
3716         }
3717
3718         efer_msr = find_msr_entry(vmx, MSR_EFER);
3719         if (efer_msr)
3720                 return efer_msr->data;
3721
3722         return host_efer;
3723 }
3724
3725 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
3726 {
3727         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3728         struct vcpu_vmx *vmx = to_vmx(vcpu);
3729         struct vmx_msr_entry g, h;
3730         struct msr_data msr;
3731         gpa_t gpa;
3732         u32 i, j;
3733
3734         vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
3735
3736         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
3737                 /*
3738                  * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
3739                  * as vmcs01.GUEST_DR7 contains a userspace defined value
3740                  * and vcpu->arch.dr7 is not squirreled away before the
3741                  * nested VMENTER (not worth adding a variable in nested_vmx).
3742                  */
3743                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
3744                         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
3745                 else
3746                         WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
3747         }
3748
3749         /*
3750          * Note that calling vmx_set_{efer,cr0,cr4} is important as they
3751          * handle a variety of side effects to KVM's software model.
3752          */
3753         vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
3754
3755         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3756         vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
3757
3758         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3759         vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
3760
3761         nested_ept_uninit_mmu_context(vcpu);
3762         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3763         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3764
3765         /*
3766          * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
3767          * from vmcs01 (if necessary).  The PDPTRs are not loaded on
3768          * VMFail, like everything else we just need to ensure our
3769          * software model is up-to-date.
3770          */
3771         ept_save_pdptrs(vcpu);
3772
3773         kvm_mmu_reset_context(vcpu);
3774
3775         if (cpu_has_vmx_msr_bitmap())
3776                 vmx_update_msr_bitmap(vcpu);
3777
3778         /*
3779          * This nasty bit of open coding is a compromise between blindly
3780          * loading L1's MSRs using the exit load lists (incorrect emulation
3781          * of VMFail), leaving the nested VM's MSRs in the software model
3782          * (incorrect behavior) and snapshotting the modified MSRs (too
3783          * expensive since the lists are unbound by hardware).  For each
3784          * MSR that was (prematurely) loaded from the nested VMEntry load
3785          * list, reload it from the exit load list if it exists and differs
3786          * from the guest value.  The intent is to stuff host state as
3787          * silently as possible, not to fully process the exit load list.
3788          */
3789         msr.host_initiated = false;
3790         for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
3791                 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
3792                 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
3793                         pr_debug_ratelimited(
3794                                 "%s read MSR index failed (%u, 0x%08llx)\n",
3795                                 __func__, i, gpa);
3796                         goto vmabort;
3797                 }
3798
3799                 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
3800                         gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
3801                         if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
3802                                 pr_debug_ratelimited(
3803                                         "%s read MSR failed (%u, 0x%08llx)\n",
3804                                         __func__, j, gpa);
3805                                 goto vmabort;
3806                         }
3807                         if (h.index != g.index)
3808                                 continue;
3809                         if (h.value == g.value)
3810                                 break;
3811
3812                         if (nested_vmx_load_msr_check(vcpu, &h)) {
3813                                 pr_debug_ratelimited(
3814                                         "%s check failed (%u, 0x%x, 0x%x)\n",
3815                                         __func__, j, h.index, h.reserved);
3816                                 goto vmabort;
3817                         }
3818
3819                         msr.index = h.index;
3820                         msr.data = h.value;
3821                         if (kvm_set_msr(vcpu, &msr)) {
3822                                 pr_debug_ratelimited(
3823                                         "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
3824                                         __func__, j, h.index, h.value);
3825                                 goto vmabort;
3826                         }
3827                 }
3828         }
3829
3830         return;
3831
3832 vmabort:
3833         nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
3834 }
3835
3836 /*
3837  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
3838  * and modify vmcs12 to make it see what it would expect to see there if
3839  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
3840  */
3841 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
3842                        u32 exit_intr_info, unsigned long exit_qualification)
3843 {
3844         struct vcpu_vmx *vmx = to_vmx(vcpu);
3845         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3846
3847         /* trying to cancel vmlaunch/vmresume is a bug */
3848         WARN_ON_ONCE(vmx->nested.nested_run_pending);
3849
3850         leave_guest_mode(vcpu);
3851
3852         if (nested_cpu_has_preemption_timer(vmcs12))
3853                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
3854
3855         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3856                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3857
3858         if (likely(!vmx->fail)) {
3859                 if (exit_reason == -1)
3860                         sync_vmcs12(vcpu, vmcs12);
3861                 else
3862                         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
3863                                        exit_qualification);
3864
3865                 /*
3866                  * Must happen outside of sync_vmcs12() as it will
3867                  * also be used to capture vmcs12 cache as part of
3868                  * capturing nVMX state for snapshot (migration).
3869                  *
3870                  * Otherwise, this flush will dirty guest memory at a
3871                  * point it is already assumed by user-space to be
3872                  * immutable.
3873                  */
3874                 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
3875         } else {
3876                 /*
3877                  * The only expected VM-instruction error is "VM entry with
3878                  * invalid control field(s)." Anything else indicates a
3879                  * problem with L0.  And we should never get here with a
3880                  * VMFail of any type if early consistency checks are enabled.
3881                  */
3882                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
3883                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3884                 WARN_ON_ONCE(nested_early_check);
3885         }
3886
3887         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3888
3889         /* Update any VMCS fields that might have changed while L2 ran */
3890         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3891         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3892         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
3893
3894         if (kvm_has_tsc_control)
3895                 decache_tsc_multiplier(vmx);
3896
3897         if (vmx->nested.change_vmcs01_virtual_apic_mode) {
3898                 vmx->nested.change_vmcs01_virtual_apic_mode = false;
3899                 vmx_set_virtual_apic_mode(vcpu);
3900         } else if (!nested_cpu_has_ept(vmcs12) &&
3901                    nested_cpu_has2(vmcs12,
3902                                    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3903                 vmx_flush_tlb(vcpu, true);
3904         }
3905
3906         /* Unpin physical memory we referred to in vmcs02 */
3907         if (vmx->nested.apic_access_page) {
3908                 kvm_release_page_dirty(vmx->nested.apic_access_page);
3909                 vmx->nested.apic_access_page = NULL;
3910         }
3911         if (vmx->nested.virtual_apic_page) {
3912                 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
3913                 vmx->nested.virtual_apic_page = NULL;
3914         }
3915         if (vmx->nested.pi_desc_page) {
3916                 kunmap(vmx->nested.pi_desc_page);
3917                 kvm_release_page_dirty(vmx->nested.pi_desc_page);
3918                 vmx->nested.pi_desc_page = NULL;
3919                 vmx->nested.pi_desc = NULL;
3920         }
3921
3922         /*
3923          * We are now running in L2, mmu_notifier will force to reload the
3924          * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
3925          */
3926         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
3927
3928         if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs))
3929                 vmx->nested.need_vmcs12_sync = true;
3930
3931         /* in case we halted in L2 */
3932         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3933
3934         if (likely(!vmx->fail)) {
3935                 /*
3936                  * TODO: SDM says that with acknowledge interrupt on
3937                  * exit, bit 31 of the VM-exit interrupt information
3938                  * (valid interrupt) is always set to 1 on
3939                  * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
3940                  * need kvm_cpu_has_interrupt().  See the commit
3941                  * message for details.
3942                  */
3943                 if (nested_exit_intr_ack_set(vcpu) &&
3944                     exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
3945                     kvm_cpu_has_interrupt(vcpu)) {
3946                         int irq = kvm_cpu_get_interrupt(vcpu);
3947                         WARN_ON(irq < 0);
3948                         vmcs12->vm_exit_intr_info = irq |
3949                                 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
3950                 }
3951
3952                 if (exit_reason != -1)
3953                         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
3954                                                        vmcs12->exit_qualification,
3955                                                        vmcs12->idt_vectoring_info_field,
3956                                                        vmcs12->vm_exit_intr_info,
3957                                                        vmcs12->vm_exit_intr_error_code,
3958                                                        KVM_ISA_VMX);
3959
3960                 load_vmcs12_host_state(vcpu, vmcs12);
3961
3962                 return;
3963         }
3964
3965         /*
3966          * After an early L2 VM-entry failure, we're now back
3967          * in L1 which thinks it just finished a VMLAUNCH or
3968          * VMRESUME instruction, so we need to set the failure
3969          * flag and the VM-instruction error field of the VMCS
3970          * accordingly, and skip the emulated instruction.
3971          */
3972         (void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3973
3974         /*
3975          * Restore L1's host state to KVM's software model.  We're here
3976          * because a consistency check was caught by hardware, which
3977          * means some amount of guest state has been propagated to KVM's
3978          * model and needs to be unwound to the host's state.
3979          */
3980         nested_vmx_restore_host_state(vcpu);
3981
3982         vmx->fail = 0;
3983 }
3984
3985 /*
3986  * Decode the memory-address operand of a vmx instruction, as recorded on an
3987  * exit caused by such an instruction (run by a guest hypervisor).
3988  * On success, returns 0. When the operand is invalid, returns 1 and throws
3989  * #UD or #GP.
3990  */
3991 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
3992                         u32 vmx_instruction_info, bool wr, gva_t *ret)
3993 {
3994         gva_t off;
3995         bool exn;
3996         struct kvm_segment s;
3997
3998         /*
3999          * According to Vol. 3B, "Information for VM Exits Due to Instruction
4000          * Execution", on an exit, vmx_instruction_info holds most of the
4001          * addressing components of the operand. Only the displacement part
4002          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4003          * For how an actual address is calculated from all these components,
4004          * refer to Vol. 1, "Operand Addressing".
4005          */
4006         int  scaling = vmx_instruction_info & 3;
4007         int  addr_size = (vmx_instruction_info >> 7) & 7;
4008         bool is_reg = vmx_instruction_info & (1u << 10);
4009         int  seg_reg = (vmx_instruction_info >> 15) & 7;
4010         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4011         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4012         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4013         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4014
4015         if (is_reg) {
4016                 kvm_queue_exception(vcpu, UD_VECTOR);
4017                 return 1;
4018         }
4019
4020         /* Addr = segment_base + offset */
4021         /* offset = base + [index * scale] + displacement */
4022         off = exit_qualification; /* holds the displacement */
4023         if (addr_size == 1)
4024                 off = (gva_t)sign_extend64(off, 31);
4025         else if (addr_size == 0)
4026                 off = (gva_t)sign_extend64(off, 15);
4027         if (base_is_valid)
4028                 off += kvm_register_read(vcpu, base_reg);
4029         if (index_is_valid)
4030                 off += kvm_register_read(vcpu, index_reg)<<scaling;
4031         vmx_get_segment(vcpu, &s, seg_reg);
4032
4033         /*
4034          * The effective address, i.e. @off, of a memory operand is truncated
4035          * based on the address size of the instruction.  Note that this is
4036          * the *effective address*, i.e. the address prior to accounting for
4037          * the segment's base.
4038          */
4039         if (addr_size == 1) /* 32 bit */
4040                 off &= 0xffffffff;
4041         else if (addr_size == 0) /* 16 bit */
4042                 off &= 0xffff;
4043
4044         /* Checks for #GP/#SS exceptions. */
4045         exn = false;
4046         if (is_long_mode(vcpu)) {
4047                 /*
4048                  * The virtual/linear address is never truncated in 64-bit
4049                  * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4050                  * address when using FS/GS with a non-zero base.
4051                  */
4052                 *ret = s.base + off;
4053
4054                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4055                  * non-canonical form. This is the only check on the memory
4056                  * destination for long mode!
4057                  */
4058                 exn = is_noncanonical_address(*ret, vcpu);
4059         } else {
4060                 /*
4061                  * When not in long mode, the virtual/linear address is
4062                  * unconditionally truncated to 32 bits regardless of the
4063                  * address size.
4064                  */
4065                 *ret = (s.base + off) & 0xffffffff;
4066
4067                 /* Protected mode: apply checks for segment validity in the
4068                  * following order:
4069                  * - segment type check (#GP(0) may be thrown)
4070                  * - usability check (#GP(0)/#SS(0))
4071                  * - limit check (#GP(0)/#SS(0))
4072                  */
4073                 if (wr)
4074                         /* #GP(0) if the destination operand is located in a
4075                          * read-only data segment or any code segment.
4076                          */
4077                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
4078                 else
4079                         /* #GP(0) if the source operand is located in an
4080                          * execute-only code segment
4081                          */
4082                         exn = ((s.type & 0xa) == 8);
4083                 if (exn) {
4084                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4085                         return 1;
4086                 }
4087                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4088                  */
4089                 exn = (s.unusable != 0);
4090
4091                 /*
4092                  * Protected mode: #GP(0)/#SS(0) if the memory operand is
4093                  * outside the segment limit.  All CPUs that support VMX ignore
4094                  * limit checks for flat segments, i.e. segments with base==0,
4095                  * limit==0xffffffff and of type expand-up data or code.
4096                  */
4097                 if (!(s.base == 0 && s.limit == 0xffffffff &&
4098                      ((s.type & 8) || !(s.type & 4))))
4099                         exn = exn || (off + sizeof(u64) > s.limit);
4100         }
4101         if (exn) {
4102                 kvm_queue_exception_e(vcpu,
4103                                       seg_reg == VCPU_SREG_SS ?
4104                                                 SS_VECTOR : GP_VECTOR,
4105                                       0);
4106                 return 1;
4107         }
4108
4109         return 0;
4110 }
4111
4112 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
4113 {
4114         gva_t gva;
4115         struct x86_exception e;
4116
4117         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4118                         vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
4119                 return 1;
4120
4121         if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
4122                 kvm_inject_page_fault(vcpu, &e);
4123                 return 1;
4124         }
4125
4126         return 0;
4127 }
4128
4129 /*
4130  * Allocate a shadow VMCS and associate it with the currently loaded
4131  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4132  * VMCS is also VMCLEARed, so that it is ready for use.
4133  */
4134 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4135 {
4136         struct vcpu_vmx *vmx = to_vmx(vcpu);
4137         struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4138
4139         /*
4140          * We should allocate a shadow vmcs for vmcs01 only when L1
4141          * executes VMXON and free it when L1 executes VMXOFF.
4142          * As it is invalid to execute VMXON twice, we shouldn't reach
4143          * here when vmcs01 already have an allocated shadow vmcs.
4144          */
4145         WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4146
4147         if (!loaded_vmcs->shadow_vmcs) {
4148                 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4149                 if (loaded_vmcs->shadow_vmcs)
4150                         vmcs_clear(loaded_vmcs->shadow_vmcs);
4151         }
4152         return loaded_vmcs->shadow_vmcs;
4153 }
4154
4155 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4156 {
4157         struct vcpu_vmx *vmx = to_vmx(vcpu);
4158         int r;
4159
4160         r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4161         if (r < 0)
4162                 goto out_vmcs02;
4163
4164         vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL);
4165         if (!vmx->nested.cached_vmcs12)
4166                 goto out_cached_vmcs12;
4167
4168         vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL);
4169         if (!vmx->nested.cached_shadow_vmcs12)
4170                 goto out_cached_shadow_vmcs12;
4171
4172         if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4173                 goto out_shadow_vmcs;
4174
4175         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4176                      HRTIMER_MODE_REL_PINNED);
4177         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4178
4179         vmx->nested.vpid02 = allocate_vpid();
4180
4181         vmx->nested.vmcs02_initialized = false;
4182         vmx->nested.vmxon = true;
4183
4184         if (pt_mode == PT_MODE_HOST_GUEST) {
4185                 vmx->pt_desc.guest.ctl = 0;
4186                 pt_update_intercept_for_msr(vmx);
4187         }
4188
4189         return 0;
4190
4191 out_shadow_vmcs:
4192         kfree(vmx->nested.cached_shadow_vmcs12);
4193
4194 out_cached_shadow_vmcs12:
4195         kfree(vmx->nested.cached_vmcs12);
4196
4197 out_cached_vmcs12:
4198         free_loaded_vmcs(&vmx->nested.vmcs02);
4199
4200 out_vmcs02:
4201         return -ENOMEM;
4202 }
4203
4204 /*
4205  * Emulate the VMXON instruction.
4206  * Currently, we just remember that VMX is active, and do not save or even
4207  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4208  * do not currently need to store anything in that guest-allocated memory
4209  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4210  * argument is different from the VMXON pointer (which the spec says they do).
4211  */
4212 static int handle_vmon(struct kvm_vcpu *vcpu)
4213 {
4214         int ret;
4215         gpa_t vmptr;
4216         struct page *page;
4217         struct vcpu_vmx *vmx = to_vmx(vcpu);
4218         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
4219                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
4220
4221         /*
4222          * The Intel VMX Instruction Reference lists a bunch of bits that are
4223          * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4224          * 1 (see vmx_set_cr4() for when we allow the guest to set this).
4225          * Otherwise, we should fail with #UD.  But most faulting conditions
4226          * have already been checked by hardware, prior to the VM-exit for
4227          * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4228          * that bit set to 1 in non-root mode.
4229          */
4230         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4231                 kvm_queue_exception(vcpu, UD_VECTOR);
4232                 return 1;
4233         }
4234
4235         /* CPL=0 must be checked manually. */
4236         if (vmx_get_cpl(vcpu)) {
4237                 kvm_inject_gp(vcpu, 0);
4238                 return 1;
4239         }
4240
4241         if (vmx->nested.vmxon)
4242                 return nested_vmx_failValid(vcpu,
4243                         VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4244
4245         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4246                         != VMXON_NEEDED_FEATURES) {
4247                 kvm_inject_gp(vcpu, 0);
4248                 return 1;
4249         }
4250
4251         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4252                 return 1;
4253
4254         /*
4255          * SDM 3: 24.11.5
4256          * The first 4 bytes of VMXON region contain the supported
4257          * VMCS revision identifier
4258          *
4259          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4260          * which replaces physical address width with 32
4261          */
4262         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
4263                 return nested_vmx_failInvalid(vcpu);
4264
4265         page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
4266         if (is_error_page(page))
4267                 return nested_vmx_failInvalid(vcpu);
4268
4269         if (*(u32 *)kmap(page) != VMCS12_REVISION) {
4270                 kunmap(page);
4271                 kvm_release_page_clean(page);
4272                 return nested_vmx_failInvalid(vcpu);
4273         }
4274         kunmap(page);
4275         kvm_release_page_clean(page);
4276
4277         vmx->nested.vmxon_ptr = vmptr;
4278         ret = enter_vmx_operation(vcpu);
4279         if (ret)
4280                 return ret;
4281
4282         return nested_vmx_succeed(vcpu);
4283 }
4284
4285 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4286 {
4287         struct vcpu_vmx *vmx = to_vmx(vcpu);
4288
4289         if (vmx->nested.current_vmptr == -1ull)
4290                 return;
4291
4292         if (enable_shadow_vmcs) {
4293                 /* copy to memory all shadowed fields in case
4294                    they were modified */
4295                 copy_shadow_to_vmcs12(vmx);
4296                 vmx->nested.need_vmcs12_sync = false;
4297                 vmx_disable_shadow_vmcs(vmx);
4298         }
4299         vmx->nested.posted_intr_nv = -1;
4300
4301         /* Flush VMCS12 to guest memory */
4302         kvm_vcpu_write_guest_page(vcpu,
4303                                   vmx->nested.current_vmptr >> PAGE_SHIFT,
4304                                   vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4305
4306         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4307
4308         vmx->nested.current_vmptr = -1ull;
4309 }
4310
4311 /* Emulate the VMXOFF instruction */
4312 static int handle_vmoff(struct kvm_vcpu *vcpu)
4313 {
4314         if (!nested_vmx_check_permission(vcpu))
4315                 return 1;
4316         free_nested(vcpu);
4317         return nested_vmx_succeed(vcpu);
4318 }
4319
4320 /* Emulate the VMCLEAR instruction */
4321 static int handle_vmclear(struct kvm_vcpu *vcpu)
4322 {
4323         struct vcpu_vmx *vmx = to_vmx(vcpu);
4324         u32 zero = 0;
4325         gpa_t vmptr;
4326
4327         if (!nested_vmx_check_permission(vcpu))
4328                 return 1;
4329
4330         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4331                 return 1;
4332
4333         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
4334                 return nested_vmx_failValid(vcpu,
4335                         VMXERR_VMCLEAR_INVALID_ADDRESS);
4336
4337         if (vmptr == vmx->nested.vmxon_ptr)
4338                 return nested_vmx_failValid(vcpu,
4339                         VMXERR_VMCLEAR_VMXON_POINTER);
4340
4341         if (vmx->nested.hv_evmcs_page) {
4342                 if (vmptr == vmx->nested.hv_evmcs_vmptr)
4343                         nested_release_evmcs(vcpu);
4344         } else {
4345                 if (vmptr == vmx->nested.current_vmptr)
4346                         nested_release_vmcs12(vcpu);
4347
4348                 kvm_vcpu_write_guest(vcpu,
4349                                      vmptr + offsetof(struct vmcs12,
4350                                                       launch_state),
4351                                      &zero, sizeof(zero));
4352         }
4353
4354         return nested_vmx_succeed(vcpu);
4355 }
4356
4357 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
4358
4359 /* Emulate the VMLAUNCH instruction */
4360 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
4361 {
4362         return nested_vmx_run(vcpu, true);
4363 }
4364
4365 /* Emulate the VMRESUME instruction */
4366 static int handle_vmresume(struct kvm_vcpu *vcpu)
4367 {
4368
4369         return nested_vmx_run(vcpu, false);
4370 }
4371
4372 static int handle_vmread(struct kvm_vcpu *vcpu)
4373 {
4374         unsigned long field;
4375         u64 field_value;
4376         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4377         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4378         gva_t gva = 0;
4379         struct vmcs12 *vmcs12;
4380
4381         if (!nested_vmx_check_permission(vcpu))
4382                 return 1;
4383
4384         if (to_vmx(vcpu)->nested.current_vmptr == -1ull)
4385                 return nested_vmx_failInvalid(vcpu);
4386
4387         if (!is_guest_mode(vcpu))
4388                 vmcs12 = get_vmcs12(vcpu);
4389         else {
4390                 /*
4391                  * When vmcs->vmcs_link_pointer is -1ull, any VMREAD
4392                  * to shadowed-field sets the ALU flags for VMfailInvalid.
4393                  */
4394                 if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4395                         return nested_vmx_failInvalid(vcpu);
4396                 vmcs12 = get_shadow_vmcs12(vcpu);
4397         }
4398
4399         /* Decode instruction info and find the field to read */
4400         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4401         /* Read the field, zero-extended to a u64 field_value */
4402         if (vmcs12_read_any(vmcs12, field, &field_value) < 0)
4403                 return nested_vmx_failValid(vcpu,
4404                         VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4405
4406         /*
4407          * Now copy part of this value to register or memory, as requested.
4408          * Note that the number of bits actually copied is 32 or 64 depending
4409          * on the guest's mode (32 or 64 bit), not on the given field's length.
4410          */
4411         if (vmx_instruction_info & (1u << 10)) {
4412                 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
4413                         field_value);
4414         } else {
4415                 if (get_vmx_mem_address(vcpu, exit_qualification,
4416                                 vmx_instruction_info, true, &gva))
4417                         return 1;
4418                 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
4419                 kvm_write_guest_virt_system(vcpu, gva, &field_value,
4420                                             (is_long_mode(vcpu) ? 8 : 4), NULL);
4421         }
4422
4423         return nested_vmx_succeed(vcpu);
4424 }
4425
4426
4427 static int handle_vmwrite(struct kvm_vcpu *vcpu)
4428 {
4429         unsigned long field;
4430         gva_t gva;
4431         struct vcpu_vmx *vmx = to_vmx(vcpu);
4432         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4433         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4434
4435         /* The value to write might be 32 or 64 bits, depending on L1's long
4436          * mode, and eventually we need to write that into a field of several
4437          * possible lengths. The code below first zero-extends the value to 64
4438          * bit (field_value), and then copies only the appropriate number of
4439          * bits into the vmcs12 field.
4440          */
4441         u64 field_value = 0;
4442         struct x86_exception e;
4443         struct vmcs12 *vmcs12;
4444
4445         if (!nested_vmx_check_permission(vcpu))
4446                 return 1;
4447
4448         if (vmx->nested.current_vmptr == -1ull)
4449                 return nested_vmx_failInvalid(vcpu);
4450
4451         if (vmx_instruction_info & (1u << 10))
4452                 field_value = kvm_register_readl(vcpu,
4453                         (((vmx_instruction_info) >> 3) & 0xf));
4454         else {
4455                 if (get_vmx_mem_address(vcpu, exit_qualification,
4456                                 vmx_instruction_info, false, &gva))
4457                         return 1;
4458                 if (kvm_read_guest_virt(vcpu, gva, &field_value,
4459                                         (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
4460                         kvm_inject_page_fault(vcpu, &e);
4461                         return 1;
4462                 }
4463         }
4464
4465
4466         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4467         /*
4468          * If the vCPU supports "VMWRITE to any supported field in the
4469          * VMCS," then the "read-only" fields are actually read/write.
4470          */
4471         if (vmcs_field_readonly(field) &&
4472             !nested_cpu_has_vmwrite_any_field(vcpu))
4473                 return nested_vmx_failValid(vcpu,
4474                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
4475
4476         if (!is_guest_mode(vcpu))
4477                 vmcs12 = get_vmcs12(vcpu);
4478         else {
4479                 /*
4480                  * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE
4481                  * to shadowed-field sets the ALU flags for VMfailInvalid.
4482                  */
4483                 if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4484                         return nested_vmx_failInvalid(vcpu);
4485                 vmcs12 = get_shadow_vmcs12(vcpu);
4486         }
4487
4488         if (vmcs12_write_any(vmcs12, field, field_value) < 0)
4489                 return nested_vmx_failValid(vcpu,
4490                         VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4491
4492         /*
4493          * Do not track vmcs12 dirty-state if in guest-mode
4494          * as we actually dirty shadow vmcs12 instead of vmcs12.
4495          */
4496         if (!is_guest_mode(vcpu)) {
4497                 switch (field) {
4498 #define SHADOW_FIELD_RW(x) case x:
4499 #include "vmcs_shadow_fields.h"
4500                         /*
4501                          * The fields that can be updated by L1 without a vmexit are
4502                          * always updated in the vmcs02, the others go down the slow
4503                          * path of prepare_vmcs02.
4504                          */
4505                         break;
4506                 default:
4507                         vmx->nested.dirty_vmcs12 = true;
4508                         break;
4509                 }
4510         }
4511
4512         return nested_vmx_succeed(vcpu);
4513 }
4514
4515 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
4516 {
4517         vmx->nested.current_vmptr = vmptr;
4518         if (enable_shadow_vmcs) {
4519                 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
4520                               SECONDARY_EXEC_SHADOW_VMCS);
4521                 vmcs_write64(VMCS_LINK_POINTER,
4522                              __pa(vmx->vmcs01.shadow_vmcs));
4523                 vmx->nested.need_vmcs12_sync = true;
4524         }
4525         vmx->nested.dirty_vmcs12 = true;
4526 }
4527
4528 /* Emulate the VMPTRLD instruction */
4529 static int handle_vmptrld(struct kvm_vcpu *vcpu)
4530 {
4531         struct vcpu_vmx *vmx = to_vmx(vcpu);
4532         gpa_t vmptr;
4533
4534         if (!nested_vmx_check_permission(vcpu))
4535                 return 1;
4536
4537         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4538                 return 1;
4539
4540         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
4541                 return nested_vmx_failValid(vcpu,
4542                         VMXERR_VMPTRLD_INVALID_ADDRESS);
4543
4544         if (vmptr == vmx->nested.vmxon_ptr)
4545                 return nested_vmx_failValid(vcpu,
4546                         VMXERR_VMPTRLD_VMXON_POINTER);
4547
4548         /* Forbid normal VMPTRLD if Enlightened version was used */
4549         if (vmx->nested.hv_evmcs)
4550                 return 1;
4551
4552         if (vmx->nested.current_vmptr != vmptr) {
4553                 struct vmcs12 *new_vmcs12;
4554                 struct page *page;
4555
4556                 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
4557                 if (is_error_page(page)) {
4558                         /*
4559                          * Reads from an unbacked page return all 1s,
4560                          * which means that the 32 bits located at the
4561                          * given physical address won't match the required
4562                          * VMCS12_REVISION identifier.
4563                          */
4564                         return nested_vmx_failValid(vcpu,
4565                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4566                 }
4567                 new_vmcs12 = kmap(page);
4568                 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
4569                     (new_vmcs12->hdr.shadow_vmcs &&
4570                      !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
4571                         kunmap(page);
4572                         kvm_release_page_clean(page);
4573                         return nested_vmx_failValid(vcpu,
4574                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4575                 }
4576
4577                 nested_release_vmcs12(vcpu);
4578
4579                 /*
4580                  * Load VMCS12 from guest memory since it is not already
4581                  * cached.
4582                  */
4583                 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
4584                 kunmap(page);
4585                 kvm_release_page_clean(page);
4586
4587                 set_current_vmptr(vmx, vmptr);
4588         }
4589
4590         return nested_vmx_succeed(vcpu);
4591 }
4592
4593 /* Emulate the VMPTRST instruction */
4594 static int handle_vmptrst(struct kvm_vcpu *vcpu)
4595 {
4596         unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
4597         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4598         gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
4599         struct x86_exception e;
4600         gva_t gva;
4601
4602         if (!nested_vmx_check_permission(vcpu))
4603                 return 1;
4604
4605         if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
4606                 return 1;
4607
4608         if (get_vmx_mem_address(vcpu, exit_qual, instr_info, true, &gva))
4609                 return 1;
4610         /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
4611         if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
4612                                         sizeof(gpa_t), &e)) {
4613                 kvm_inject_page_fault(vcpu, &e);
4614                 return 1;
4615         }
4616         return nested_vmx_succeed(vcpu);
4617 }
4618
4619 /* Emulate the INVEPT instruction */
4620 static int handle_invept(struct kvm_vcpu *vcpu)
4621 {
4622         struct vcpu_vmx *vmx = to_vmx(vcpu);
4623         u32 vmx_instruction_info, types;
4624         unsigned long type;
4625         gva_t gva;
4626         struct x86_exception e;
4627         struct {
4628                 u64 eptp, gpa;
4629         } operand;
4630
4631         if (!(vmx->nested.msrs.secondary_ctls_high &
4632               SECONDARY_EXEC_ENABLE_EPT) ||
4633             !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
4634                 kvm_queue_exception(vcpu, UD_VECTOR);
4635                 return 1;
4636         }
4637
4638         if (!nested_vmx_check_permission(vcpu))
4639                 return 1;
4640
4641         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4642         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4643
4644         types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
4645
4646         if (type >= 32 || !(types & (1 << type)))
4647                 return nested_vmx_failValid(vcpu,
4648                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4649
4650         /* According to the Intel VMX instruction reference, the memory
4651          * operand is read even if it isn't needed (e.g., for type==global)
4652          */
4653         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4654                         vmx_instruction_info, false, &gva))
4655                 return 1;
4656         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
4657                 kvm_inject_page_fault(vcpu, &e);
4658                 return 1;
4659         }
4660
4661         switch (type) {
4662         case VMX_EPT_EXTENT_GLOBAL:
4663         /*
4664          * TODO: track mappings and invalidate
4665          * single context requests appropriately
4666          */
4667         case VMX_EPT_EXTENT_CONTEXT:
4668                 kvm_mmu_sync_roots(vcpu);
4669                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4670                 break;
4671         default:
4672                 BUG_ON(1);
4673                 break;
4674         }
4675
4676         return nested_vmx_succeed(vcpu);
4677 }
4678
4679 static int handle_invvpid(struct kvm_vcpu *vcpu)
4680 {
4681         struct vcpu_vmx *vmx = to_vmx(vcpu);
4682         u32 vmx_instruction_info;
4683         unsigned long type, types;
4684         gva_t gva;
4685         struct x86_exception e;
4686         struct {
4687                 u64 vpid;
4688                 u64 gla;
4689         } operand;
4690         u16 vpid02;
4691
4692         if (!(vmx->nested.msrs.secondary_ctls_high &
4693               SECONDARY_EXEC_ENABLE_VPID) ||
4694                         !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
4695                 kvm_queue_exception(vcpu, UD_VECTOR);
4696                 return 1;
4697         }
4698
4699         if (!nested_vmx_check_permission(vcpu))
4700                 return 1;
4701
4702         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4703         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4704
4705         types = (vmx->nested.msrs.vpid_caps &
4706                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
4707
4708         if (type >= 32 || !(types & (1 << type)))
4709                 return nested_vmx_failValid(vcpu,
4710                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4711
4712         /* according to the intel vmx instruction reference, the memory
4713          * operand is read even if it isn't needed (e.g., for type==global)
4714          */
4715         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4716                         vmx_instruction_info, false, &gva))
4717                 return 1;
4718         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
4719                 kvm_inject_page_fault(vcpu, &e);
4720                 return 1;
4721         }
4722         if (operand.vpid >> 16)
4723                 return nested_vmx_failValid(vcpu,
4724                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4725
4726         vpid02 = nested_get_vpid02(vcpu);
4727         switch (type) {
4728         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
4729                 if (!operand.vpid ||
4730                     is_noncanonical_address(operand.gla, vcpu))
4731                         return nested_vmx_failValid(vcpu,
4732                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4733                 if (cpu_has_vmx_invvpid_individual_addr()) {
4734                         __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
4735                                 vpid02, operand.gla);
4736                 } else
4737                         __vmx_flush_tlb(vcpu, vpid02, false);
4738                 break;
4739         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
4740         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
4741                 if (!operand.vpid)
4742                         return nested_vmx_failValid(vcpu,
4743                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4744                 __vmx_flush_tlb(vcpu, vpid02, false);
4745                 break;
4746         case VMX_VPID_EXTENT_ALL_CONTEXT:
4747                 __vmx_flush_tlb(vcpu, vpid02, false);
4748                 break;
4749         default:
4750                 WARN_ON_ONCE(1);
4751                 return kvm_skip_emulated_instruction(vcpu);
4752         }
4753
4754         return nested_vmx_succeed(vcpu);
4755 }
4756
4757 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
4758                                      struct vmcs12 *vmcs12)
4759 {
4760         u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
4761         u64 address;
4762         bool accessed_dirty;
4763         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4764
4765         if (!nested_cpu_has_eptp_switching(vmcs12) ||
4766             !nested_cpu_has_ept(vmcs12))
4767                 return 1;
4768
4769         if (index >= VMFUNC_EPTP_ENTRIES)
4770                 return 1;
4771
4772
4773         if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
4774                                      &address, index * 8, 8))
4775                 return 1;
4776
4777         accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
4778
4779         /*
4780          * If the (L2) guest does a vmfunc to the currently
4781          * active ept pointer, we don't have to do anything else
4782          */
4783         if (vmcs12->ept_pointer != address) {
4784                 if (!valid_ept_address(vcpu, address))
4785                         return 1;
4786
4787                 kvm_mmu_unload(vcpu);
4788                 mmu->ept_ad = accessed_dirty;
4789                 mmu->mmu_role.base.ad_disabled = !accessed_dirty;
4790                 vmcs12->ept_pointer = address;
4791                 /*
4792                  * TODO: Check what's the correct approach in case
4793                  * mmu reload fails. Currently, we just let the next
4794                  * reload potentially fail
4795                  */
4796                 kvm_mmu_reload(vcpu);
4797         }
4798
4799         return 0;
4800 }
4801
4802 static int handle_vmfunc(struct kvm_vcpu *vcpu)
4803 {
4804         struct vcpu_vmx *vmx = to_vmx(vcpu);
4805         struct vmcs12 *vmcs12;
4806         u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
4807
4808         /*
4809          * VMFUNC is only supported for nested guests, but we always enable the
4810          * secondary control for simplicity; for non-nested mode, fake that we
4811          * didn't by injecting #UD.
4812          */
4813         if (!is_guest_mode(vcpu)) {
4814                 kvm_queue_exception(vcpu, UD_VECTOR);
4815                 return 1;
4816         }
4817
4818         vmcs12 = get_vmcs12(vcpu);
4819         if ((vmcs12->vm_function_control & (1 << function)) == 0)
4820                 goto fail;
4821
4822         switch (function) {
4823         case 0:
4824                 if (nested_vmx_eptp_switching(vcpu, vmcs12))
4825                         goto fail;
4826                 break;
4827         default:
4828                 goto fail;
4829         }
4830         return kvm_skip_emulated_instruction(vcpu);
4831
4832 fail:
4833         nested_vmx_vmexit(vcpu, vmx->exit_reason,
4834                           vmcs_read32(VM_EXIT_INTR_INFO),
4835                           vmcs_readl(EXIT_QUALIFICATION));
4836         return 1;
4837 }
4838
4839
4840 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
4841                                        struct vmcs12 *vmcs12)
4842 {
4843         unsigned long exit_qualification;
4844         gpa_t bitmap, last_bitmap;
4845         unsigned int port;
4846         int size;
4847         u8 b;
4848
4849         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
4850                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
4851
4852         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4853
4854         port = exit_qualification >> 16;
4855         size = (exit_qualification & 7) + 1;
4856
4857         last_bitmap = (gpa_t)-1;
4858         b = -1;
4859
4860         while (size > 0) {
4861                 if (port < 0x8000)
4862                         bitmap = vmcs12->io_bitmap_a;
4863                 else if (port < 0x10000)
4864                         bitmap = vmcs12->io_bitmap_b;
4865                 else
4866                         return true;
4867                 bitmap += (port & 0x7fff) / 8;
4868
4869                 if (last_bitmap != bitmap)
4870                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
4871                                 return true;
4872                 if (b & (1 << (port & 7)))
4873                         return true;
4874
4875                 port++;
4876                 size--;
4877                 last_bitmap = bitmap;
4878         }
4879
4880         return false;
4881 }
4882
4883 /*
4884  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
4885  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
4886  * disinterest in the current event (read or write a specific MSR) by using an
4887  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
4888  */
4889 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
4890         struct vmcs12 *vmcs12, u32 exit_reason)
4891 {
4892         u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
4893         gpa_t bitmap;
4894
4895         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
4896                 return true;
4897
4898         /*
4899          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
4900          * for the four combinations of read/write and low/high MSR numbers.
4901          * First we need to figure out which of the four to use:
4902          */
4903         bitmap = vmcs12->msr_bitmap;
4904         if (exit_reason == EXIT_REASON_MSR_WRITE)
4905                 bitmap += 2048;
4906         if (msr_index >= 0xc0000000) {
4907                 msr_index -= 0xc0000000;
4908                 bitmap += 1024;
4909         }
4910
4911         /* Then read the msr_index'th bit from this bitmap: */
4912         if (msr_index < 1024*8) {
4913                 unsigned char b;
4914                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
4915                         return true;
4916                 return 1 & (b >> (msr_index & 7));
4917         } else
4918                 return true; /* let L1 handle the wrong parameter */
4919 }
4920
4921 /*
4922  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
4923  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
4924  * intercept (via guest_host_mask etc.) the current event.
4925  */
4926 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
4927         struct vmcs12 *vmcs12)
4928 {
4929         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4930         int cr = exit_qualification & 15;
4931         int reg;
4932         unsigned long val;
4933
4934         switch ((exit_qualification >> 4) & 3) {
4935         case 0: /* mov to cr */
4936                 reg = (exit_qualification >> 8) & 15;
4937                 val = kvm_register_readl(vcpu, reg);
4938                 switch (cr) {
4939                 case 0:
4940                         if (vmcs12->cr0_guest_host_mask &
4941                             (val ^ vmcs12->cr0_read_shadow))
4942                                 return true;
4943                         break;
4944                 case 3:
4945                         if ((vmcs12->cr3_target_count >= 1 &&
4946                                         vmcs12->cr3_target_value0 == val) ||
4947                                 (vmcs12->cr3_target_count >= 2 &&
4948                                         vmcs12->cr3_target_value1 == val) ||
4949                                 (vmcs12->cr3_target_count >= 3 &&
4950                                         vmcs12->cr3_target_value2 == val) ||
4951                                 (vmcs12->cr3_target_count >= 4 &&
4952                                         vmcs12->cr3_target_value3 == val))
4953                                 return false;
4954                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
4955                                 return true;
4956                         break;
4957                 case 4:
4958                         if (vmcs12->cr4_guest_host_mask &
4959                             (vmcs12->cr4_read_shadow ^ val))
4960                                 return true;
4961                         break;
4962                 case 8:
4963                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
4964                                 return true;
4965                         break;
4966                 }
4967                 break;
4968         case 2: /* clts */
4969                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
4970                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
4971                         return true;
4972                 break;
4973         case 1: /* mov from cr */
4974                 switch (cr) {
4975                 case 3:
4976                         if (vmcs12->cpu_based_vm_exec_control &
4977                             CPU_BASED_CR3_STORE_EXITING)
4978                                 return true;
4979                         break;
4980                 case 8:
4981                         if (vmcs12->cpu_based_vm_exec_control &
4982                             CPU_BASED_CR8_STORE_EXITING)
4983                                 return true;
4984                         break;
4985                 }
4986                 break;
4987         case 3: /* lmsw */
4988                 /*
4989                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
4990                  * cr0. Other attempted changes are ignored, with no exit.
4991                  */
4992                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4993                 if (vmcs12->cr0_guest_host_mask & 0xe &
4994                     (val ^ vmcs12->cr0_read_shadow))
4995                         return true;
4996                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
4997                     !(vmcs12->cr0_read_shadow & 0x1) &&
4998                     (val & 0x1))
4999                         return true;
5000                 break;
5001         }
5002         return false;
5003 }
5004
5005 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5006         struct vmcs12 *vmcs12, gpa_t bitmap)
5007 {
5008         u32 vmx_instruction_info;
5009         unsigned long field;
5010         u8 b;
5011
5012         if (!nested_cpu_has_shadow_vmcs(vmcs12))
5013                 return true;
5014
5015         /* Decode instruction info and find the field to access */
5016         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5017         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5018
5019         /* Out-of-range fields always cause a VM exit from L2 to L1 */
5020         if (field >> 15)
5021                 return true;
5022
5023         if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5024                 return true;
5025
5026         return 1 & (b >> (field & 7));
5027 }
5028
5029 /*
5030  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5031  * should handle it ourselves in L0 (and then continue L2). Only call this
5032  * when in is_guest_mode (L2).
5033  */
5034 bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
5035 {
5036         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5037         struct vcpu_vmx *vmx = to_vmx(vcpu);
5038         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5039
5040         if (vmx->nested.nested_run_pending)
5041                 return false;
5042
5043         if (unlikely(vmx->fail)) {
5044                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
5045                                     vmcs_read32(VM_INSTRUCTION_ERROR));
5046                 return true;
5047         }
5048
5049         /*
5050          * The host physical addresses of some pages of guest memory
5051          * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5052          * Page). The CPU may write to these pages via their host
5053          * physical address while L2 is running, bypassing any
5054          * address-translation-based dirty tracking (e.g. EPT write
5055          * protection).
5056          *
5057          * Mark them dirty on every exit from L2 to prevent them from
5058          * getting out of sync with dirty tracking.
5059          */
5060         nested_mark_vmcs12_pages_dirty(vcpu);
5061
5062         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
5063                                 vmcs_readl(EXIT_QUALIFICATION),
5064                                 vmx->idt_vectoring_info,
5065                                 intr_info,
5066                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5067                                 KVM_ISA_VMX);
5068
5069         switch (exit_reason) {
5070         case EXIT_REASON_EXCEPTION_NMI:
5071                 if (is_nmi(intr_info))
5072                         return false;
5073                 else if (is_page_fault(intr_info))
5074                         return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
5075                 else if (is_debug(intr_info) &&
5076                          vcpu->guest_debug &
5077                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5078                         return false;
5079                 else if (is_breakpoint(intr_info) &&
5080                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5081                         return false;
5082                 return vmcs12->exception_bitmap &
5083                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5084         case EXIT_REASON_EXTERNAL_INTERRUPT:
5085                 return false;
5086         case EXIT_REASON_TRIPLE_FAULT:
5087                 return true;
5088         case EXIT_REASON_PENDING_INTERRUPT:
5089                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
5090         case EXIT_REASON_NMI_WINDOW:
5091                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
5092         case EXIT_REASON_TASK_SWITCH:
5093                 return true;
5094         case EXIT_REASON_CPUID:
5095                 return true;
5096         case EXIT_REASON_HLT:
5097                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5098         case EXIT_REASON_INVD:
5099                 return true;
5100         case EXIT_REASON_INVLPG:
5101                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5102         case EXIT_REASON_RDPMC:
5103                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5104         case EXIT_REASON_RDRAND:
5105                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5106         case EXIT_REASON_RDSEED:
5107                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5108         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5109                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5110         case EXIT_REASON_VMREAD:
5111                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5112                         vmcs12->vmread_bitmap);
5113         case EXIT_REASON_VMWRITE:
5114                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5115                         vmcs12->vmwrite_bitmap);
5116         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5117         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5118         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5119         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5120         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5121                 /*
5122                  * VMX instructions trap unconditionally. This allows L1 to
5123                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
5124                  */
5125                 return true;
5126         case EXIT_REASON_CR_ACCESS:
5127                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5128         case EXIT_REASON_DR_ACCESS:
5129                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5130         case EXIT_REASON_IO_INSTRUCTION:
5131                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
5132         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5133                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5134         case EXIT_REASON_MSR_READ:
5135         case EXIT_REASON_MSR_WRITE:
5136                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5137         case EXIT_REASON_INVALID_STATE:
5138                 return true;
5139         case EXIT_REASON_MWAIT_INSTRUCTION:
5140                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5141         case EXIT_REASON_MONITOR_TRAP_FLAG:
5142                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
5143         case EXIT_REASON_MONITOR_INSTRUCTION:
5144                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5145         case EXIT_REASON_PAUSE_INSTRUCTION:
5146                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5147                         nested_cpu_has2(vmcs12,
5148                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5149         case EXIT_REASON_MCE_DURING_VMENTRY:
5150                 return false;
5151         case EXIT_REASON_TPR_BELOW_THRESHOLD:
5152                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5153         case EXIT_REASON_APIC_ACCESS:
5154         case EXIT_REASON_APIC_WRITE:
5155         case EXIT_REASON_EOI_INDUCED:
5156                 /*
5157                  * The controls for "virtualize APIC accesses," "APIC-
5158                  * register virtualization," and "virtual-interrupt
5159                  * delivery" only come from vmcs12.
5160                  */
5161                 return true;
5162         case EXIT_REASON_EPT_VIOLATION:
5163                 /*
5164                  * L0 always deals with the EPT violation. If nested EPT is
5165                  * used, and the nested mmu code discovers that the address is
5166                  * missing in the guest EPT table (EPT12), the EPT violation
5167                  * will be injected with nested_ept_inject_page_fault()
5168                  */
5169                 return false;
5170         case EXIT_REASON_EPT_MISCONFIG:
5171                 /*
5172                  * L2 never uses directly L1's EPT, but rather L0's own EPT
5173                  * table (shadow on EPT) or a merged EPT table that L0 built
5174                  * (EPT on EPT). So any problems with the structure of the
5175                  * table is L0's fault.
5176                  */
5177                 return false;
5178         case EXIT_REASON_INVPCID:
5179                 return
5180                         nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5181                         nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5182         case EXIT_REASON_WBINVD:
5183                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5184         case EXIT_REASON_XSETBV:
5185                 return true;
5186         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5187                 /*
5188                  * This should never happen, since it is not possible to
5189                  * set XSS to a non-zero value---neither in L1 nor in L2.
5190                  * If if it were, XSS would have to be checked against
5191                  * the XSS exit bitmap in vmcs12.
5192                  */
5193                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5194         case EXIT_REASON_PREEMPTION_TIMER:
5195                 return false;
5196         case EXIT_REASON_PML_FULL:
5197                 /* We emulate PML support to L1. */
5198                 return false;
5199         case EXIT_REASON_VMFUNC:
5200                 /* VM functions are emulated through L2->L0 vmexits. */
5201                 return false;
5202         case EXIT_REASON_ENCLS:
5203                 /* SGX is never exposed to L1 */
5204                 return false;
5205         default:
5206                 return true;
5207         }
5208 }
5209
5210
5211 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
5212                                 struct kvm_nested_state __user *user_kvm_nested_state,
5213                                 u32 user_data_size)
5214 {
5215         struct vcpu_vmx *vmx;
5216         struct vmcs12 *vmcs12;
5217         struct kvm_nested_state kvm_state = {
5218                 .flags = 0,
5219                 .format = 0,
5220                 .size = sizeof(kvm_state),
5221                 .vmx.vmxon_pa = -1ull,
5222                 .vmx.vmcs_pa = -1ull,
5223         };
5224
5225         if (!vcpu)
5226                 return kvm_state.size + 2 * VMCS12_SIZE;
5227
5228         vmx = to_vmx(vcpu);
5229         vmcs12 = get_vmcs12(vcpu);
5230
5231         if (nested_vmx_allowed(vcpu) && vmx->nested.enlightened_vmcs_enabled)
5232                 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
5233
5234         if (nested_vmx_allowed(vcpu) &&
5235             (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
5236                 kvm_state.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
5237                 kvm_state.vmx.vmcs_pa = vmx->nested.current_vmptr;
5238
5239                 if (vmx_has_valid_vmcs12(vcpu)) {
5240                         kvm_state.size += VMCS12_SIZE;
5241
5242                         if (is_guest_mode(vcpu) &&
5243                             nested_cpu_has_shadow_vmcs(vmcs12) &&
5244                             vmcs12->vmcs_link_pointer != -1ull)
5245                                 kvm_state.size += VMCS12_SIZE;
5246                 }
5247
5248                 if (vmx->nested.smm.vmxon)
5249                         kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
5250
5251                 if (vmx->nested.smm.guest_mode)
5252                         kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
5253
5254                 if (is_guest_mode(vcpu)) {
5255                         kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
5256
5257                         if (vmx->nested.nested_run_pending)
5258                                 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
5259                 }
5260         }
5261
5262         if (user_data_size < kvm_state.size)
5263                 goto out;
5264
5265         if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
5266                 return -EFAULT;
5267
5268         if (!vmx_has_valid_vmcs12(vcpu))
5269                 goto out;
5270
5271         /*
5272          * When running L2, the authoritative vmcs12 state is in the
5273          * vmcs02. When running L1, the authoritative vmcs12 state is
5274          * in the shadow or enlightened vmcs linked to vmcs01, unless
5275          * need_vmcs12_sync is set, in which case, the authoritative
5276          * vmcs12 state is in the vmcs12 already.
5277          */
5278         if (is_guest_mode(vcpu)) {
5279                 sync_vmcs12(vcpu, vmcs12);
5280         } else if (!vmx->nested.need_vmcs12_sync) {
5281                 if (vmx->nested.hv_evmcs)
5282                         copy_enlightened_to_vmcs12(vmx);
5283                 else if (enable_shadow_vmcs)
5284                         copy_shadow_to_vmcs12(vmx);
5285         }
5286
5287         /*
5288          * Copy over the full allocated size of vmcs12 rather than just the size
5289          * of the struct.
5290          */
5291         if (copy_to_user(user_kvm_nested_state->data, vmcs12, VMCS12_SIZE))
5292                 return -EFAULT;
5293
5294         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5295             vmcs12->vmcs_link_pointer != -1ull) {
5296                 if (copy_to_user(user_kvm_nested_state->data + VMCS12_SIZE,
5297                                  get_shadow_vmcs12(vcpu), VMCS12_SIZE))
5298                         return -EFAULT;
5299         }
5300
5301 out:
5302         return kvm_state.size;
5303 }
5304
5305 /*
5306  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
5307  */
5308 void vmx_leave_nested(struct kvm_vcpu *vcpu)
5309 {
5310         if (is_guest_mode(vcpu)) {
5311                 to_vmx(vcpu)->nested.nested_run_pending = 0;
5312                 nested_vmx_vmexit(vcpu, -1, 0, 0);
5313         }
5314         free_nested(vcpu);
5315 }
5316
5317 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
5318                                 struct kvm_nested_state __user *user_kvm_nested_state,
5319                                 struct kvm_nested_state *kvm_state)
5320 {
5321         struct vcpu_vmx *vmx = to_vmx(vcpu);
5322         struct vmcs12 *vmcs12;
5323         u32 exit_qual;
5324         int ret;
5325
5326         if (kvm_state->format != 0)
5327                 return -EINVAL;
5328
5329         if (kvm_state->flags & KVM_STATE_NESTED_EVMCS)
5330                 nested_enable_evmcs(vcpu, NULL);
5331
5332         if (!nested_vmx_allowed(vcpu))
5333                 return kvm_state->vmx.vmxon_pa == -1ull ? 0 : -EINVAL;
5334
5335         if (kvm_state->vmx.vmxon_pa == -1ull) {
5336                 if (kvm_state->vmx.smm.flags)
5337                         return -EINVAL;
5338
5339                 if (kvm_state->vmx.vmcs_pa != -1ull)
5340                         return -EINVAL;
5341
5342                 vmx_leave_nested(vcpu);
5343                 return 0;
5344         }
5345
5346         if (!page_address_valid(vcpu, kvm_state->vmx.vmxon_pa))
5347                 return -EINVAL;
5348
5349         if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5350             (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5351                 return -EINVAL;
5352
5353         if (kvm_state->vmx.smm.flags &
5354             ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
5355                 return -EINVAL;
5356
5357         /*
5358          * SMM temporarily disables VMX, so we cannot be in guest mode,
5359          * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
5360          * must be zero.
5361          */
5362         if (is_smm(vcpu) ? kvm_state->flags : kvm_state->vmx.smm.flags)
5363                 return -EINVAL;
5364
5365         if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5366             !(kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
5367                 return -EINVAL;
5368
5369         vmx_leave_nested(vcpu);
5370         if (kvm_state->vmx.vmxon_pa == -1ull)
5371                 return 0;
5372
5373         vmx->nested.vmxon_ptr = kvm_state->vmx.vmxon_pa;
5374         ret = enter_vmx_operation(vcpu);
5375         if (ret)
5376                 return ret;
5377
5378         /* Empty 'VMXON' state is permitted */
5379         if (kvm_state->size < sizeof(kvm_state) + sizeof(*vmcs12))
5380                 return 0;
5381
5382         if (kvm_state->vmx.vmcs_pa != -1ull) {
5383                 if (kvm_state->vmx.vmcs_pa == kvm_state->vmx.vmxon_pa ||
5384                     !page_address_valid(vcpu, kvm_state->vmx.vmcs_pa))
5385                         return -EINVAL;
5386
5387                 set_current_vmptr(vmx, kvm_state->vmx.vmcs_pa);
5388         } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
5389                 /*
5390                  * Sync eVMCS upon entry as we may not have
5391                  * HV_X64_MSR_VP_ASSIST_PAGE set up yet.
5392                  */
5393                 vmx->nested.need_vmcs12_sync = true;
5394         } else {
5395                 return -EINVAL;
5396         }
5397
5398         if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
5399                 vmx->nested.smm.vmxon = true;
5400                 vmx->nested.vmxon = false;
5401
5402                 if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
5403                         vmx->nested.smm.guest_mode = true;
5404         }
5405
5406         vmcs12 = get_vmcs12(vcpu);
5407         if (copy_from_user(vmcs12, user_kvm_nested_state->data, sizeof(*vmcs12)))
5408                 return -EFAULT;
5409
5410         if (vmcs12->hdr.revision_id != VMCS12_REVISION)
5411                 return -EINVAL;
5412
5413         if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5414                 return 0;
5415
5416         vmx->nested.nested_run_pending =
5417                 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
5418
5419         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5420             vmcs12->vmcs_link_pointer != -1ull) {
5421                 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
5422
5423                 if (kvm_state->size < sizeof(kvm_state) + 2 * sizeof(*vmcs12))
5424                         return -EINVAL;
5425
5426                 if (copy_from_user(shadow_vmcs12,
5427                                    user_kvm_nested_state->data + VMCS12_SIZE,
5428                                    sizeof(*vmcs12)))
5429                         return -EFAULT;
5430
5431                 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5432                     !shadow_vmcs12->hdr.shadow_vmcs)
5433                         return -EINVAL;
5434         }
5435
5436         if (nested_vmx_check_vmentry_prereqs(vcpu, vmcs12) ||
5437             nested_vmx_check_vmentry_postreqs(vcpu, vmcs12, &exit_qual))
5438                 return -EINVAL;
5439
5440         vmx->nested.dirty_vmcs12 = true;
5441         ret = nested_vmx_enter_non_root_mode(vcpu, false);
5442         if (ret)
5443                 return -EINVAL;
5444
5445         return 0;
5446 }
5447
5448 void nested_vmx_vcpu_setup(void)
5449 {
5450         if (enable_shadow_vmcs) {
5451                 /*
5452                  * At vCPU creation, "VMWRITE to any supported field
5453                  * in the VMCS" is supported, so use the more
5454                  * permissive vmx_vmread_bitmap to specify both read
5455                  * and write permissions for the shadow VMCS.
5456                  */
5457                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5458                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmread_bitmap));
5459         }
5460 }
5461
5462 /*
5463  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
5464  * returned for the various VMX controls MSRs when nested VMX is enabled.
5465  * The same values should also be used to verify that vmcs12 control fields are
5466  * valid during nested entry from L1 to L2.
5467  * Each of these control msrs has a low and high 32-bit half: A low bit is on
5468  * if the corresponding bit in the (32-bit) control field *must* be on, and a
5469  * bit in the high half is on if the corresponding bit in the control field
5470  * may be on. See also vmx_control_verify().
5471  */
5472 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps,
5473                                 bool apicv)
5474 {
5475         /*
5476          * Note that as a general rule, the high half of the MSRs (bits in
5477          * the control fields which may be 1) should be initialized by the
5478          * intersection of the underlying hardware's MSR (i.e., features which
5479          * can be supported) and the list of features we want to expose -
5480          * because they are known to be properly supported in our code.
5481          * Also, usually, the low half of the MSRs (bits which must be 1) can
5482          * be set to 0, meaning that L1 may turn off any of these bits. The
5483          * reason is that if one of these bits is necessary, it will appear
5484          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
5485          * fields of vmcs01 and vmcs02, will turn these bits off - and
5486          * nested_vmx_exit_reflected() will not pass related exits to L1.
5487          * These rules have exceptions below.
5488          */
5489
5490         /* pin-based controls */
5491         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
5492                 msrs->pinbased_ctls_low,
5493                 msrs->pinbased_ctls_high);
5494         msrs->pinbased_ctls_low |=
5495                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5496         msrs->pinbased_ctls_high &=
5497                 PIN_BASED_EXT_INTR_MASK |
5498                 PIN_BASED_NMI_EXITING |
5499                 PIN_BASED_VIRTUAL_NMIS |
5500                 (apicv ? PIN_BASED_POSTED_INTR : 0);
5501         msrs->pinbased_ctls_high |=
5502                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5503                 PIN_BASED_VMX_PREEMPTION_TIMER;
5504
5505         /* exit controls */
5506         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
5507                 msrs->exit_ctls_low,
5508                 msrs->exit_ctls_high);
5509         msrs->exit_ctls_low =
5510                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
5511
5512         msrs->exit_ctls_high &=
5513 #ifdef CONFIG_X86_64
5514                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
5515 #endif
5516                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
5517         msrs->exit_ctls_high |=
5518                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
5519                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
5520                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
5521
5522         /* We support free control of debug control saving. */
5523         msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
5524
5525         /* entry controls */
5526         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
5527                 msrs->entry_ctls_low,
5528                 msrs->entry_ctls_high);
5529         msrs->entry_ctls_low =
5530                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
5531         msrs->entry_ctls_high &=
5532 #ifdef CONFIG_X86_64
5533                 VM_ENTRY_IA32E_MODE |
5534 #endif
5535                 VM_ENTRY_LOAD_IA32_PAT;
5536         msrs->entry_ctls_high |=
5537                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
5538
5539         /* We support free control of debug control loading. */
5540         msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
5541
5542         /* cpu-based controls */
5543         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
5544                 msrs->procbased_ctls_low,
5545                 msrs->procbased_ctls_high);
5546         msrs->procbased_ctls_low =
5547                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5548         msrs->procbased_ctls_high &=
5549                 CPU_BASED_VIRTUAL_INTR_PENDING |
5550                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
5551                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
5552                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
5553                 CPU_BASED_CR3_STORE_EXITING |
5554 #ifdef CONFIG_X86_64
5555                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
5556 #endif
5557                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5558                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
5559                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
5560                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
5561                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
5562         /*
5563          * We can allow some features even when not supported by the
5564          * hardware. For example, L1 can specify an MSR bitmap - and we
5565          * can use it to avoid exits to L1 - even when L0 runs L2
5566          * without MSR bitmaps.
5567          */
5568         msrs->procbased_ctls_high |=
5569                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5570                 CPU_BASED_USE_MSR_BITMAPS;
5571
5572         /* We support free control of CR3 access interception. */
5573         msrs->procbased_ctls_low &=
5574                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
5575
5576         /*
5577          * secondary cpu-based controls.  Do not include those that
5578          * depend on CPUID bits, they are added later by vmx_cpuid_update.
5579          */
5580         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
5581                 msrs->secondary_ctls_low,
5582                 msrs->secondary_ctls_high);
5583         msrs->secondary_ctls_low = 0;
5584         msrs->secondary_ctls_high &=
5585                 SECONDARY_EXEC_DESC |
5586                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
5587                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5588                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
5589                 SECONDARY_EXEC_WBINVD_EXITING;
5590
5591         /*
5592          * We can emulate "VMCS shadowing," even if the hardware
5593          * doesn't support it.
5594          */
5595         msrs->secondary_ctls_high |=
5596                 SECONDARY_EXEC_SHADOW_VMCS;
5597
5598         if (enable_ept) {
5599                 /* nested EPT: emulate EPT also to L1 */
5600                 msrs->secondary_ctls_high |=
5601                         SECONDARY_EXEC_ENABLE_EPT;
5602                 msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
5603                          VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
5604                 if (cpu_has_vmx_ept_execute_only())
5605                         msrs->ept_caps |=
5606                                 VMX_EPT_EXECUTE_ONLY_BIT;
5607                 msrs->ept_caps &= ept_caps;
5608                 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
5609                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
5610                         VMX_EPT_1GB_PAGE_BIT;
5611                 if (enable_ept_ad_bits) {
5612                         msrs->secondary_ctls_high |=
5613                                 SECONDARY_EXEC_ENABLE_PML;
5614                         msrs->ept_caps |= VMX_EPT_AD_BIT;
5615                 }
5616         }
5617
5618         if (cpu_has_vmx_vmfunc()) {
5619                 msrs->secondary_ctls_high |=
5620                         SECONDARY_EXEC_ENABLE_VMFUNC;
5621                 /*
5622                  * Advertise EPTP switching unconditionally
5623                  * since we emulate it
5624                  */
5625                 if (enable_ept)
5626                         msrs->vmfunc_controls =
5627                                 VMX_VMFUNC_EPTP_SWITCHING;
5628         }
5629
5630         /*
5631          * Old versions of KVM use the single-context version without
5632          * checking for support, so declare that it is supported even
5633          * though it is treated as global context.  The alternative is
5634          * not failing the single-context invvpid, and it is worse.
5635          */
5636         if (enable_vpid) {
5637                 msrs->secondary_ctls_high |=
5638                         SECONDARY_EXEC_ENABLE_VPID;
5639                 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
5640                         VMX_VPID_EXTENT_SUPPORTED_MASK;
5641         }
5642
5643         if (enable_unrestricted_guest)
5644                 msrs->secondary_ctls_high |=
5645                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
5646
5647         if (flexpriority_enabled)
5648                 msrs->secondary_ctls_high |=
5649                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5650
5651         /* miscellaneous data */
5652         rdmsr(MSR_IA32_VMX_MISC,
5653                 msrs->misc_low,
5654                 msrs->misc_high);
5655         msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
5656         msrs->misc_low |=
5657                 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
5658                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
5659                 VMX_MISC_ACTIVITY_HLT;
5660         msrs->misc_high = 0;
5661
5662         /*
5663          * This MSR reports some information about VMX support. We
5664          * should return information about the VMX we emulate for the
5665          * guest, and the VMCS structure we give it - not about the
5666          * VMX support of the underlying hardware.
5667          */
5668         msrs->basic =
5669                 VMCS12_REVISION |
5670                 VMX_BASIC_TRUE_CTLS |
5671                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
5672                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
5673
5674         if (cpu_has_vmx_basic_inout())
5675                 msrs->basic |= VMX_BASIC_INOUT;
5676
5677         /*
5678          * These MSRs specify bits which the guest must keep fixed on
5679          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
5680          * We picked the standard core2 setting.
5681          */
5682 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
5683 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
5684         msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
5685         msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
5686
5687         /* These MSRs specify bits which the guest must keep fixed off. */
5688         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
5689         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
5690
5691         /* highest index: VMX_PREEMPTION_TIMER_VALUE */
5692         msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
5693 }
5694
5695 void nested_vmx_hardware_unsetup(void)
5696 {
5697         int i;
5698
5699         if (enable_shadow_vmcs) {
5700                 for (i = 0; i < VMX_BITMAP_NR; i++)
5701                         free_page((unsigned long)vmx_bitmap[i]);
5702         }
5703 }
5704
5705 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
5706 {
5707         int i;
5708
5709         if (!cpu_has_vmx_shadow_vmcs())
5710                 enable_shadow_vmcs = 0;
5711         if (enable_shadow_vmcs) {
5712                 for (i = 0; i < VMX_BITMAP_NR; i++) {
5713                         vmx_bitmap[i] = (unsigned long *)
5714                                 __get_free_page(GFP_KERNEL);
5715                         if (!vmx_bitmap[i]) {
5716                                 nested_vmx_hardware_unsetup();
5717                                 return -ENOMEM;
5718                         }
5719                 }
5720
5721                 init_vmcs_shadow_fields();
5722         }
5723
5724         exit_handlers[EXIT_REASON_VMCLEAR]      = handle_vmclear,
5725         exit_handlers[EXIT_REASON_VMLAUNCH]     = handle_vmlaunch,
5726         exit_handlers[EXIT_REASON_VMPTRLD]      = handle_vmptrld,
5727         exit_handlers[EXIT_REASON_VMPTRST]      = handle_vmptrst,
5728         exit_handlers[EXIT_REASON_VMREAD]       = handle_vmread,
5729         exit_handlers[EXIT_REASON_VMRESUME]     = handle_vmresume,
5730         exit_handlers[EXIT_REASON_VMWRITE]      = handle_vmwrite,
5731         exit_handlers[EXIT_REASON_VMOFF]        = handle_vmoff,
5732         exit_handlers[EXIT_REASON_VMON]         = handle_vmon,
5733         exit_handlers[EXIT_REASON_INVEPT]       = handle_invept,
5734         exit_handlers[EXIT_REASON_INVVPID]      = handle_invvpid,
5735         exit_handlers[EXIT_REASON_VMFUNC]       = handle_vmfunc,
5736
5737         kvm_x86_ops->check_nested_events = vmx_check_nested_events;
5738         kvm_x86_ops->get_nested_state = vmx_get_nested_state;
5739         kvm_x86_ops->set_nested_state = vmx_set_nested_state;
5740         kvm_x86_ops->get_vmcs12_pages = nested_get_vmcs12_pages,
5741         kvm_x86_ops->nested_enable_evmcs = nested_enable_evmcs;
5742         kvm_x86_ops->nested_get_evmcs_version = nested_get_evmcs_version;
5743
5744         return 0;
5745 }