]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/vmx/nested.c
Merge tag 'armsoc-fixes-5.0' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux.git] / arch / x86 / kvm / vmx / nested.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/frame.h>
4 #include <linux/percpu.h>
5
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "trace.h"
14 #include "x86.h"
15
16 static bool __read_mostly enable_shadow_vmcs = 1;
17 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
18
19 static bool __read_mostly nested_early_check = 0;
20 module_param(nested_early_check, bool, S_IRUGO);
21
22 /*
23  * Hyper-V requires all of these, so mark them as supported even though
24  * they are just treated the same as all-context.
25  */
26 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
27         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
28         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
29         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
30         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
31
32 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
33
34 enum {
35         VMX_VMREAD_BITMAP,
36         VMX_VMWRITE_BITMAP,
37         VMX_BITMAP_NR
38 };
39 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
40
41 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
42 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
43
44 static u16 shadow_read_only_fields[] = {
45 #define SHADOW_FIELD_RO(x) x,
46 #include "vmcs_shadow_fields.h"
47 };
48 static int max_shadow_read_only_fields =
49         ARRAY_SIZE(shadow_read_only_fields);
50
51 static u16 shadow_read_write_fields[] = {
52 #define SHADOW_FIELD_RW(x) x,
53 #include "vmcs_shadow_fields.h"
54 };
55 static int max_shadow_read_write_fields =
56         ARRAY_SIZE(shadow_read_write_fields);
57
58 static void init_vmcs_shadow_fields(void)
59 {
60         int i, j;
61
62         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
63         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
64
65         for (i = j = 0; i < max_shadow_read_only_fields; i++) {
66                 u16 field = shadow_read_only_fields[i];
67
68                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
69                     (i + 1 == max_shadow_read_only_fields ||
70                      shadow_read_only_fields[i + 1] != field + 1))
71                         pr_err("Missing field from shadow_read_only_field %x\n",
72                                field + 1);
73
74                 clear_bit(field, vmx_vmread_bitmap);
75 #ifdef CONFIG_X86_64
76                 if (field & 1)
77                         continue;
78 #endif
79                 if (j < i)
80                         shadow_read_only_fields[j] = field;
81                 j++;
82         }
83         max_shadow_read_only_fields = j;
84
85         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
86                 u16 field = shadow_read_write_fields[i];
87
88                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
89                     (i + 1 == max_shadow_read_write_fields ||
90                      shadow_read_write_fields[i + 1] != field + 1))
91                         pr_err("Missing field from shadow_read_write_field %x\n",
92                                field + 1);
93
94                 /*
95                  * PML and the preemption timer can be emulated, but the
96                  * processor cannot vmwrite to fields that don't exist
97                  * on bare metal.
98                  */
99                 switch (field) {
100                 case GUEST_PML_INDEX:
101                         if (!cpu_has_vmx_pml())
102                                 continue;
103                         break;
104                 case VMX_PREEMPTION_TIMER_VALUE:
105                         if (!cpu_has_vmx_preemption_timer())
106                                 continue;
107                         break;
108                 case GUEST_INTR_STATUS:
109                         if (!cpu_has_vmx_apicv())
110                                 continue;
111                         break;
112                 default:
113                         break;
114                 }
115
116                 clear_bit(field, vmx_vmwrite_bitmap);
117                 clear_bit(field, vmx_vmread_bitmap);
118 #ifdef CONFIG_X86_64
119                 if (field & 1)
120                         continue;
121 #endif
122                 if (j < i)
123                         shadow_read_write_fields[j] = field;
124                 j++;
125         }
126         max_shadow_read_write_fields = j;
127 }
128
129 /*
130  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
131  * set the success or error code of an emulated VMX instruction (as specified
132  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
133  * instruction.
134  */
135 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
136 {
137         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
138                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
139                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
140         return kvm_skip_emulated_instruction(vcpu);
141 }
142
143 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
144 {
145         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
146                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
147                             X86_EFLAGS_SF | X86_EFLAGS_OF))
148                         | X86_EFLAGS_CF);
149         return kvm_skip_emulated_instruction(vcpu);
150 }
151
152 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
153                                 u32 vm_instruction_error)
154 {
155         struct vcpu_vmx *vmx = to_vmx(vcpu);
156
157         /*
158          * failValid writes the error number to the current VMCS, which
159          * can't be done if there isn't a current VMCS.
160          */
161         if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
162                 return nested_vmx_failInvalid(vcpu);
163
164         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
165                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
166                             X86_EFLAGS_SF | X86_EFLAGS_OF))
167                         | X86_EFLAGS_ZF);
168         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
169         /*
170          * We don't need to force a shadow sync because
171          * VM_INSTRUCTION_ERROR is not shadowed
172          */
173         return kvm_skip_emulated_instruction(vcpu);
174 }
175
176 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
177 {
178         /* TODO: not to reset guest simply here. */
179         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
180         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
181 }
182
183 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
184 {
185         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
186         vmcs_write64(VMCS_LINK_POINTER, -1ull);
187 }
188
189 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
190 {
191         struct vcpu_vmx *vmx = to_vmx(vcpu);
192
193         if (!vmx->nested.hv_evmcs)
194                 return;
195
196         kunmap(vmx->nested.hv_evmcs_page);
197         kvm_release_page_dirty(vmx->nested.hv_evmcs_page);
198         vmx->nested.hv_evmcs_vmptr = -1ull;
199         vmx->nested.hv_evmcs_page = NULL;
200         vmx->nested.hv_evmcs = NULL;
201 }
202
203 /*
204  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
205  * just stops using VMX.
206  */
207 static void free_nested(struct kvm_vcpu *vcpu)
208 {
209         struct vcpu_vmx *vmx = to_vmx(vcpu);
210
211         if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
212                 return;
213
214         hrtimer_cancel(&vmx->nested.preemption_timer);
215         vmx->nested.vmxon = false;
216         vmx->nested.smm.vmxon = false;
217         free_vpid(vmx->nested.vpid02);
218         vmx->nested.posted_intr_nv = -1;
219         vmx->nested.current_vmptr = -1ull;
220         if (enable_shadow_vmcs) {
221                 vmx_disable_shadow_vmcs(vmx);
222                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
223                 free_vmcs(vmx->vmcs01.shadow_vmcs);
224                 vmx->vmcs01.shadow_vmcs = NULL;
225         }
226         kfree(vmx->nested.cached_vmcs12);
227         kfree(vmx->nested.cached_shadow_vmcs12);
228         /* Unpin physical memory we referred to in the vmcs02 */
229         if (vmx->nested.apic_access_page) {
230                 kvm_release_page_dirty(vmx->nested.apic_access_page);
231                 vmx->nested.apic_access_page = NULL;
232         }
233         if (vmx->nested.virtual_apic_page) {
234                 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
235                 vmx->nested.virtual_apic_page = NULL;
236         }
237         if (vmx->nested.pi_desc_page) {
238                 kunmap(vmx->nested.pi_desc_page);
239                 kvm_release_page_dirty(vmx->nested.pi_desc_page);
240                 vmx->nested.pi_desc_page = NULL;
241                 vmx->nested.pi_desc = NULL;
242         }
243
244         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
245
246         nested_release_evmcs(vcpu);
247
248         free_loaded_vmcs(&vmx->nested.vmcs02);
249 }
250
251 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
252 {
253         struct vcpu_vmx *vmx = to_vmx(vcpu);
254         int cpu;
255
256         if (vmx->loaded_vmcs == vmcs)
257                 return;
258
259         cpu = get_cpu();
260         vmx_vcpu_put(vcpu);
261         vmx->loaded_vmcs = vmcs;
262         vmx_vcpu_load(vcpu, cpu);
263         put_cpu();
264
265         vm_entry_controls_reset_shadow(vmx);
266         vm_exit_controls_reset_shadow(vmx);
267         vmx_segment_cache_clear(vmx);
268 }
269
270 /*
271  * Ensure that the current vmcs of the logical processor is the
272  * vmcs01 of the vcpu before calling free_nested().
273  */
274 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
275 {
276         vcpu_load(vcpu);
277         vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
278         free_nested(vcpu);
279         vcpu_put(vcpu);
280 }
281
282 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
283                 struct x86_exception *fault)
284 {
285         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
286         struct vcpu_vmx *vmx = to_vmx(vcpu);
287         u32 exit_reason;
288         unsigned long exit_qualification = vcpu->arch.exit_qualification;
289
290         if (vmx->nested.pml_full) {
291                 exit_reason = EXIT_REASON_PML_FULL;
292                 vmx->nested.pml_full = false;
293                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
294         } else if (fault->error_code & PFERR_RSVD_MASK)
295                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
296         else
297                 exit_reason = EXIT_REASON_EPT_VIOLATION;
298
299         nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
300         vmcs12->guest_physical_address = fault->address;
301 }
302
303 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
304 {
305         WARN_ON(mmu_is_nested(vcpu));
306
307         vcpu->arch.mmu = &vcpu->arch.guest_mmu;
308         kvm_init_shadow_ept_mmu(vcpu,
309                         to_vmx(vcpu)->nested.msrs.ept_caps &
310                         VMX_EPT_EXECUTE_ONLY_BIT,
311                         nested_ept_ad_enabled(vcpu),
312                         nested_ept_get_cr3(vcpu));
313         vcpu->arch.mmu->set_cr3           = vmx_set_cr3;
314         vcpu->arch.mmu->get_cr3           = nested_ept_get_cr3;
315         vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
316         vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
317
318         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
319 }
320
321 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
322 {
323         vcpu->arch.mmu = &vcpu->arch.root_mmu;
324         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
325 }
326
327 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
328                                             u16 error_code)
329 {
330         bool inequality, bit;
331
332         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
333         inequality =
334                 (error_code & vmcs12->page_fault_error_code_mask) !=
335                  vmcs12->page_fault_error_code_match;
336         return inequality ^ bit;
337 }
338
339
340 /*
341  * KVM wants to inject page-faults which it got to the guest. This function
342  * checks whether in a nested guest, we need to inject them to L1 or L2.
343  */
344 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
345 {
346         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
347         unsigned int nr = vcpu->arch.exception.nr;
348         bool has_payload = vcpu->arch.exception.has_payload;
349         unsigned long payload = vcpu->arch.exception.payload;
350
351         if (nr == PF_VECTOR) {
352                 if (vcpu->arch.exception.nested_apf) {
353                         *exit_qual = vcpu->arch.apf.nested_apf_token;
354                         return 1;
355                 }
356                 if (nested_vmx_is_page_fault_vmexit(vmcs12,
357                                                     vcpu->arch.exception.error_code)) {
358                         *exit_qual = has_payload ? payload : vcpu->arch.cr2;
359                         return 1;
360                 }
361         } else if (vmcs12->exception_bitmap & (1u << nr)) {
362                 if (nr == DB_VECTOR) {
363                         if (!has_payload) {
364                                 payload = vcpu->arch.dr6;
365                                 payload &= ~(DR6_FIXED_1 | DR6_BT);
366                                 payload ^= DR6_RTM;
367                         }
368                         *exit_qual = payload;
369                 } else
370                         *exit_qual = 0;
371                 return 1;
372         }
373
374         return 0;
375 }
376
377
378 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
379                 struct x86_exception *fault)
380 {
381         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
382
383         WARN_ON(!is_guest_mode(vcpu));
384
385         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
386                 !to_vmx(vcpu)->nested.nested_run_pending) {
387                 vmcs12->vm_exit_intr_error_code = fault->error_code;
388                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
389                                   PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
390                                   INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
391                                   fault->address);
392         } else {
393                 kvm_inject_page_fault(vcpu, fault);
394         }
395 }
396
397 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
398 {
399         return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
400 }
401
402 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
403                                                struct vmcs12 *vmcs12)
404 {
405         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
406                 return 0;
407
408         if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
409             !page_address_valid(vcpu, vmcs12->io_bitmap_b))
410                 return -EINVAL;
411
412         return 0;
413 }
414
415 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
416                                                 struct vmcs12 *vmcs12)
417 {
418         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
419                 return 0;
420
421         if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
422                 return -EINVAL;
423
424         return 0;
425 }
426
427 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
428                                                 struct vmcs12 *vmcs12)
429 {
430         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
431                 return 0;
432
433         if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
434                 return -EINVAL;
435
436         return 0;
437 }
438
439 /*
440  * Check if MSR is intercepted for L01 MSR bitmap.
441  */
442 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
443 {
444         unsigned long *msr_bitmap;
445         int f = sizeof(unsigned long);
446
447         if (!cpu_has_vmx_msr_bitmap())
448                 return true;
449
450         msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
451
452         if (msr <= 0x1fff) {
453                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
454         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
455                 msr &= 0x1fff;
456                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
457         }
458
459         return true;
460 }
461
462 /*
463  * If a msr is allowed by L0, we should check whether it is allowed by L1.
464  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
465  */
466 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
467                                                unsigned long *msr_bitmap_nested,
468                                                u32 msr, int type)
469 {
470         int f = sizeof(unsigned long);
471
472         /*
473          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
474          * have the write-low and read-high bitmap offsets the wrong way round.
475          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
476          */
477         if (msr <= 0x1fff) {
478                 if (type & MSR_TYPE_R &&
479                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
480                         /* read-low */
481                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
482
483                 if (type & MSR_TYPE_W &&
484                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
485                         /* write-low */
486                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
487
488         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
489                 msr &= 0x1fff;
490                 if (type & MSR_TYPE_R &&
491                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
492                         /* read-high */
493                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
494
495                 if (type & MSR_TYPE_W &&
496                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
497                         /* write-high */
498                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
499
500         }
501 }
502
503 /*
504  * Merge L0's and L1's MSR bitmap, return false to indicate that
505  * we do not use the hardware.
506  */
507 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
508                                                  struct vmcs12 *vmcs12)
509 {
510         int msr;
511         struct page *page;
512         unsigned long *msr_bitmap_l1;
513         unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
514         /*
515          * pred_cmd & spec_ctrl are trying to verify two things:
516          *
517          * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
518          *    ensures that we do not accidentally generate an L02 MSR bitmap
519          *    from the L12 MSR bitmap that is too permissive.
520          * 2. That L1 or L2s have actually used the MSR. This avoids
521          *    unnecessarily merging of the bitmap if the MSR is unused. This
522          *    works properly because we only update the L01 MSR bitmap lazily.
523          *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
524          *    updated to reflect this when L1 (or its L2s) actually write to
525          *    the MSR.
526          */
527         bool pred_cmd = !msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD);
528         bool spec_ctrl = !msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL);
529
530         /* Nothing to do if the MSR bitmap is not in use.  */
531         if (!cpu_has_vmx_msr_bitmap() ||
532             !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
533                 return false;
534
535         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
536             !pred_cmd && !spec_ctrl)
537                 return false;
538
539         page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
540         if (is_error_page(page))
541                 return false;
542
543         msr_bitmap_l1 = (unsigned long *)kmap(page);
544         if (nested_cpu_has_apic_reg_virt(vmcs12)) {
545                 /*
546                  * L0 need not intercept reads for MSRs between 0x800 and 0x8ff, it
547                  * just lets the processor take the value from the virtual-APIC page;
548                  * take those 256 bits directly from the L1 bitmap.
549                  */
550                 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
551                         unsigned word = msr / BITS_PER_LONG;
552                         msr_bitmap_l0[word] = msr_bitmap_l1[word];
553                         msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
554                 }
555         } else {
556                 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
557                         unsigned word = msr / BITS_PER_LONG;
558                         msr_bitmap_l0[word] = ~0;
559                         msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
560                 }
561         }
562
563         nested_vmx_disable_intercept_for_msr(
564                 msr_bitmap_l1, msr_bitmap_l0,
565                 X2APIC_MSR(APIC_TASKPRI),
566                 MSR_TYPE_W);
567
568         if (nested_cpu_has_vid(vmcs12)) {
569                 nested_vmx_disable_intercept_for_msr(
570                         msr_bitmap_l1, msr_bitmap_l0,
571                         X2APIC_MSR(APIC_EOI),
572                         MSR_TYPE_W);
573                 nested_vmx_disable_intercept_for_msr(
574                         msr_bitmap_l1, msr_bitmap_l0,
575                         X2APIC_MSR(APIC_SELF_IPI),
576                         MSR_TYPE_W);
577         }
578
579         if (spec_ctrl)
580                 nested_vmx_disable_intercept_for_msr(
581                                         msr_bitmap_l1, msr_bitmap_l0,
582                                         MSR_IA32_SPEC_CTRL,
583                                         MSR_TYPE_R | MSR_TYPE_W);
584
585         if (pred_cmd)
586                 nested_vmx_disable_intercept_for_msr(
587                                         msr_bitmap_l1, msr_bitmap_l0,
588                                         MSR_IA32_PRED_CMD,
589                                         MSR_TYPE_W);
590
591         kunmap(page);
592         kvm_release_page_clean(page);
593
594         return true;
595 }
596
597 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
598                                        struct vmcs12 *vmcs12)
599 {
600         struct vmcs12 *shadow;
601         struct page *page;
602
603         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
604             vmcs12->vmcs_link_pointer == -1ull)
605                 return;
606
607         shadow = get_shadow_vmcs12(vcpu);
608         page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
609
610         memcpy(shadow, kmap(page), VMCS12_SIZE);
611
612         kunmap(page);
613         kvm_release_page_clean(page);
614 }
615
616 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
617                                               struct vmcs12 *vmcs12)
618 {
619         struct vcpu_vmx *vmx = to_vmx(vcpu);
620
621         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
622             vmcs12->vmcs_link_pointer == -1ull)
623                 return;
624
625         kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
626                         get_shadow_vmcs12(vcpu), VMCS12_SIZE);
627 }
628
629 /*
630  * In nested virtualization, check if L1 has set
631  * VM_EXIT_ACK_INTR_ON_EXIT
632  */
633 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
634 {
635         return get_vmcs12(vcpu)->vm_exit_controls &
636                 VM_EXIT_ACK_INTR_ON_EXIT;
637 }
638
639 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
640 {
641         return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
642 }
643
644 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
645                                           struct vmcs12 *vmcs12)
646 {
647         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
648             !page_address_valid(vcpu, vmcs12->apic_access_addr))
649                 return -EINVAL;
650         else
651                 return 0;
652 }
653
654 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
655                                            struct vmcs12 *vmcs12)
656 {
657         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
658             !nested_cpu_has_apic_reg_virt(vmcs12) &&
659             !nested_cpu_has_vid(vmcs12) &&
660             !nested_cpu_has_posted_intr(vmcs12))
661                 return 0;
662
663         /*
664          * If virtualize x2apic mode is enabled,
665          * virtualize apic access must be disabled.
666          */
667         if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
668             nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
669                 return -EINVAL;
670
671         /*
672          * If virtual interrupt delivery is enabled,
673          * we must exit on external interrupts.
674          */
675         if (nested_cpu_has_vid(vmcs12) &&
676            !nested_exit_on_intr(vcpu))
677                 return -EINVAL;
678
679         /*
680          * bits 15:8 should be zero in posted_intr_nv,
681          * the descriptor address has been already checked
682          * in nested_get_vmcs12_pages.
683          *
684          * bits 5:0 of posted_intr_desc_addr should be zero.
685          */
686         if (nested_cpu_has_posted_intr(vmcs12) &&
687            (!nested_cpu_has_vid(vmcs12) ||
688             !nested_exit_intr_ack_set(vcpu) ||
689             (vmcs12->posted_intr_nv & 0xff00) ||
690             (vmcs12->posted_intr_desc_addr & 0x3f) ||
691             (vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu))))
692                 return -EINVAL;
693
694         /* tpr shadow is needed by all apicv features. */
695         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
696                 return -EINVAL;
697
698         return 0;
699 }
700
701 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
702                                        u32 count, u64 addr)
703 {
704         int maxphyaddr;
705
706         if (count == 0)
707                 return 0;
708         maxphyaddr = cpuid_maxphyaddr(vcpu);
709         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
710             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
711                 return -EINVAL;
712
713         return 0;
714 }
715
716 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
717                                                      struct vmcs12 *vmcs12)
718 {
719         if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_load_count,
720                                         vmcs12->vm_exit_msr_load_addr) ||
721             nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_store_count,
722                                         vmcs12->vm_exit_msr_store_addr))
723                 return -EINVAL;
724
725         return 0;
726 }
727
728 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
729                                                       struct vmcs12 *vmcs12)
730 {
731         if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_entry_msr_load_count,
732                                         vmcs12->vm_entry_msr_load_addr))
733                 return -EINVAL;
734
735         return 0;
736 }
737
738 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
739                                          struct vmcs12 *vmcs12)
740 {
741         if (!nested_cpu_has_pml(vmcs12))
742                 return 0;
743
744         if (!nested_cpu_has_ept(vmcs12) ||
745             !page_address_valid(vcpu, vmcs12->pml_address))
746                 return -EINVAL;
747
748         return 0;
749 }
750
751 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
752                                                         struct vmcs12 *vmcs12)
753 {
754         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
755             !nested_cpu_has_ept(vmcs12))
756                 return -EINVAL;
757         return 0;
758 }
759
760 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
761                                                          struct vmcs12 *vmcs12)
762 {
763         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
764             !nested_cpu_has_ept(vmcs12))
765                 return -EINVAL;
766         return 0;
767 }
768
769 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
770                                                  struct vmcs12 *vmcs12)
771 {
772         if (!nested_cpu_has_shadow_vmcs(vmcs12))
773                 return 0;
774
775         if (!page_address_valid(vcpu, vmcs12->vmread_bitmap) ||
776             !page_address_valid(vcpu, vmcs12->vmwrite_bitmap))
777                 return -EINVAL;
778
779         return 0;
780 }
781
782 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
783                                        struct vmx_msr_entry *e)
784 {
785         /* x2APIC MSR accesses are not allowed */
786         if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
787                 return -EINVAL;
788         if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
789             e->index == MSR_IA32_UCODE_REV)
790                 return -EINVAL;
791         if (e->reserved != 0)
792                 return -EINVAL;
793         return 0;
794 }
795
796 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
797                                      struct vmx_msr_entry *e)
798 {
799         if (e->index == MSR_FS_BASE ||
800             e->index == MSR_GS_BASE ||
801             e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
802             nested_vmx_msr_check_common(vcpu, e))
803                 return -EINVAL;
804         return 0;
805 }
806
807 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
808                                       struct vmx_msr_entry *e)
809 {
810         if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
811             nested_vmx_msr_check_common(vcpu, e))
812                 return -EINVAL;
813         return 0;
814 }
815
816 /*
817  * Load guest's/host's msr at nested entry/exit.
818  * return 0 for success, entry index for failure.
819  */
820 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
821 {
822         u32 i;
823         struct vmx_msr_entry e;
824         struct msr_data msr;
825
826         msr.host_initiated = false;
827         for (i = 0; i < count; i++) {
828                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
829                                         &e, sizeof(e))) {
830                         pr_debug_ratelimited(
831                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
832                                 __func__, i, gpa + i * sizeof(e));
833                         goto fail;
834                 }
835                 if (nested_vmx_load_msr_check(vcpu, &e)) {
836                         pr_debug_ratelimited(
837                                 "%s check failed (%u, 0x%x, 0x%x)\n",
838                                 __func__, i, e.index, e.reserved);
839                         goto fail;
840                 }
841                 msr.index = e.index;
842                 msr.data = e.value;
843                 if (kvm_set_msr(vcpu, &msr)) {
844                         pr_debug_ratelimited(
845                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
846                                 __func__, i, e.index, e.value);
847                         goto fail;
848                 }
849         }
850         return 0;
851 fail:
852         return i + 1;
853 }
854
855 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
856 {
857         u32 i;
858         struct vmx_msr_entry e;
859
860         for (i = 0; i < count; i++) {
861                 struct msr_data msr_info;
862                 if (kvm_vcpu_read_guest(vcpu,
863                                         gpa + i * sizeof(e),
864                                         &e, 2 * sizeof(u32))) {
865                         pr_debug_ratelimited(
866                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
867                                 __func__, i, gpa + i * sizeof(e));
868                         return -EINVAL;
869                 }
870                 if (nested_vmx_store_msr_check(vcpu, &e)) {
871                         pr_debug_ratelimited(
872                                 "%s check failed (%u, 0x%x, 0x%x)\n",
873                                 __func__, i, e.index, e.reserved);
874                         return -EINVAL;
875                 }
876                 msr_info.host_initiated = false;
877                 msr_info.index = e.index;
878                 if (kvm_get_msr(vcpu, &msr_info)) {
879                         pr_debug_ratelimited(
880                                 "%s cannot read MSR (%u, 0x%x)\n",
881                                 __func__, i, e.index);
882                         return -EINVAL;
883                 }
884                 if (kvm_vcpu_write_guest(vcpu,
885                                          gpa + i * sizeof(e) +
886                                              offsetof(struct vmx_msr_entry, value),
887                                          &msr_info.data, sizeof(msr_info.data))) {
888                         pr_debug_ratelimited(
889                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
890                                 __func__, i, e.index, msr_info.data);
891                         return -EINVAL;
892                 }
893         }
894         return 0;
895 }
896
897 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
898 {
899         unsigned long invalid_mask;
900
901         invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
902         return (val & invalid_mask) == 0;
903 }
904
905 /*
906  * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
907  * emulating VM entry into a guest with EPT enabled.
908  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
909  * is assigned to entry_failure_code on failure.
910  */
911 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
912                                u32 *entry_failure_code)
913 {
914         if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
915                 if (!nested_cr3_valid(vcpu, cr3)) {
916                         *entry_failure_code = ENTRY_FAIL_DEFAULT;
917                         return 1;
918                 }
919
920                 /*
921                  * If PAE paging and EPT are both on, CR3 is not used by the CPU and
922                  * must not be dereferenced.
923                  */
924                 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
925                     !nested_ept) {
926                         if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
927                                 *entry_failure_code = ENTRY_FAIL_PDPTE;
928                                 return 1;
929                         }
930                 }
931         }
932
933         if (!nested_ept)
934                 kvm_mmu_new_cr3(vcpu, cr3, false);
935
936         vcpu->arch.cr3 = cr3;
937         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
938
939         kvm_init_mmu(vcpu, false);
940
941         return 0;
942 }
943
944 /*
945  * Returns if KVM is able to config CPU to tag TLB entries
946  * populated by L2 differently than TLB entries populated
947  * by L1.
948  *
949  * If L1 uses EPT, then TLB entries are tagged with different EPTP.
950  *
951  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
952  * with different VPID (L1 entries are tagged with vmx->vpid
953  * while L2 entries are tagged with vmx->nested.vpid02).
954  */
955 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
956 {
957         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
958
959         return nested_cpu_has_ept(vmcs12) ||
960                (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
961 }
962
963 static u16 nested_get_vpid02(struct kvm_vcpu *vcpu)
964 {
965         struct vcpu_vmx *vmx = to_vmx(vcpu);
966
967         return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid;
968 }
969
970
971 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
972 {
973         return fixed_bits_valid(control, low, high);
974 }
975
976 static inline u64 vmx_control_msr(u32 low, u32 high)
977 {
978         return low | ((u64)high << 32);
979 }
980
981 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
982 {
983         superset &= mask;
984         subset &= mask;
985
986         return (superset | subset) == superset;
987 }
988
989 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
990 {
991         const u64 feature_and_reserved =
992                 /* feature (except bit 48; see below) */
993                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
994                 /* reserved */
995                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
996         u64 vmx_basic = vmx->nested.msrs.basic;
997
998         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
999                 return -EINVAL;
1000
1001         /*
1002          * KVM does not emulate a version of VMX that constrains physical
1003          * addresses of VMX structures (e.g. VMCS) to 32-bits.
1004          */
1005         if (data & BIT_ULL(48))
1006                 return -EINVAL;
1007
1008         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1009             vmx_basic_vmcs_revision_id(data))
1010                 return -EINVAL;
1011
1012         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1013                 return -EINVAL;
1014
1015         vmx->nested.msrs.basic = data;
1016         return 0;
1017 }
1018
1019 static int
1020 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1021 {
1022         u64 supported;
1023         u32 *lowp, *highp;
1024
1025         switch (msr_index) {
1026         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1027                 lowp = &vmx->nested.msrs.pinbased_ctls_low;
1028                 highp = &vmx->nested.msrs.pinbased_ctls_high;
1029                 break;
1030         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1031                 lowp = &vmx->nested.msrs.procbased_ctls_low;
1032                 highp = &vmx->nested.msrs.procbased_ctls_high;
1033                 break;
1034         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1035                 lowp = &vmx->nested.msrs.exit_ctls_low;
1036                 highp = &vmx->nested.msrs.exit_ctls_high;
1037                 break;
1038         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1039                 lowp = &vmx->nested.msrs.entry_ctls_low;
1040                 highp = &vmx->nested.msrs.entry_ctls_high;
1041                 break;
1042         case MSR_IA32_VMX_PROCBASED_CTLS2:
1043                 lowp = &vmx->nested.msrs.secondary_ctls_low;
1044                 highp = &vmx->nested.msrs.secondary_ctls_high;
1045                 break;
1046         default:
1047                 BUG();
1048         }
1049
1050         supported = vmx_control_msr(*lowp, *highp);
1051
1052         /* Check must-be-1 bits are still 1. */
1053         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1054                 return -EINVAL;
1055
1056         /* Check must-be-0 bits are still 0. */
1057         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1058                 return -EINVAL;
1059
1060         *lowp = data;
1061         *highp = data >> 32;
1062         return 0;
1063 }
1064
1065 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1066 {
1067         const u64 feature_and_reserved_bits =
1068                 /* feature */
1069                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1070                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1071                 /* reserved */
1072                 GENMASK_ULL(13, 9) | BIT_ULL(31);
1073         u64 vmx_misc;
1074
1075         vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1076                                    vmx->nested.msrs.misc_high);
1077
1078         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1079                 return -EINVAL;
1080
1081         if ((vmx->nested.msrs.pinbased_ctls_high &
1082              PIN_BASED_VMX_PREEMPTION_TIMER) &&
1083             vmx_misc_preemption_timer_rate(data) !=
1084             vmx_misc_preemption_timer_rate(vmx_misc))
1085                 return -EINVAL;
1086
1087         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1088                 return -EINVAL;
1089
1090         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1091                 return -EINVAL;
1092
1093         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1094                 return -EINVAL;
1095
1096         vmx->nested.msrs.misc_low = data;
1097         vmx->nested.msrs.misc_high = data >> 32;
1098
1099         /*
1100          * If L1 has read-only VM-exit information fields, use the
1101          * less permissive vmx_vmwrite_bitmap to specify write
1102          * permissions for the shadow VMCS.
1103          */
1104         if (enable_shadow_vmcs && !nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
1105                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
1106
1107         return 0;
1108 }
1109
1110 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1111 {
1112         u64 vmx_ept_vpid_cap;
1113
1114         vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1115                                            vmx->nested.msrs.vpid_caps);
1116
1117         /* Every bit is either reserved or a feature bit. */
1118         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1119                 return -EINVAL;
1120
1121         vmx->nested.msrs.ept_caps = data;
1122         vmx->nested.msrs.vpid_caps = data >> 32;
1123         return 0;
1124 }
1125
1126 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1127 {
1128         u64 *msr;
1129
1130         switch (msr_index) {
1131         case MSR_IA32_VMX_CR0_FIXED0:
1132                 msr = &vmx->nested.msrs.cr0_fixed0;
1133                 break;
1134         case MSR_IA32_VMX_CR4_FIXED0:
1135                 msr = &vmx->nested.msrs.cr4_fixed0;
1136                 break;
1137         default:
1138                 BUG();
1139         }
1140
1141         /*
1142          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1143          * must be 1 in the restored value.
1144          */
1145         if (!is_bitwise_subset(data, *msr, -1ULL))
1146                 return -EINVAL;
1147
1148         *msr = data;
1149         return 0;
1150 }
1151
1152 /*
1153  * Called when userspace is restoring VMX MSRs.
1154  *
1155  * Returns 0 on success, non-0 otherwise.
1156  */
1157 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1158 {
1159         struct vcpu_vmx *vmx = to_vmx(vcpu);
1160
1161         /*
1162          * Don't allow changes to the VMX capability MSRs while the vCPU
1163          * is in VMX operation.
1164          */
1165         if (vmx->nested.vmxon)
1166                 return -EBUSY;
1167
1168         switch (msr_index) {
1169         case MSR_IA32_VMX_BASIC:
1170                 return vmx_restore_vmx_basic(vmx, data);
1171         case MSR_IA32_VMX_PINBASED_CTLS:
1172         case MSR_IA32_VMX_PROCBASED_CTLS:
1173         case MSR_IA32_VMX_EXIT_CTLS:
1174         case MSR_IA32_VMX_ENTRY_CTLS:
1175                 /*
1176                  * The "non-true" VMX capability MSRs are generated from the
1177                  * "true" MSRs, so we do not support restoring them directly.
1178                  *
1179                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1180                  * should restore the "true" MSRs with the must-be-1 bits
1181                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1182                  * DEFAULT SETTINGS".
1183                  */
1184                 return -EINVAL;
1185         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1186         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1187         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1188         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1189         case MSR_IA32_VMX_PROCBASED_CTLS2:
1190                 return vmx_restore_control_msr(vmx, msr_index, data);
1191         case MSR_IA32_VMX_MISC:
1192                 return vmx_restore_vmx_misc(vmx, data);
1193         case MSR_IA32_VMX_CR0_FIXED0:
1194         case MSR_IA32_VMX_CR4_FIXED0:
1195                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1196         case MSR_IA32_VMX_CR0_FIXED1:
1197         case MSR_IA32_VMX_CR4_FIXED1:
1198                 /*
1199                  * These MSRs are generated based on the vCPU's CPUID, so we
1200                  * do not support restoring them directly.
1201                  */
1202                 return -EINVAL;
1203         case MSR_IA32_VMX_EPT_VPID_CAP:
1204                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1205         case MSR_IA32_VMX_VMCS_ENUM:
1206                 vmx->nested.msrs.vmcs_enum = data;
1207                 return 0;
1208         default:
1209                 /*
1210                  * The rest of the VMX capability MSRs do not support restore.
1211                  */
1212                 return -EINVAL;
1213         }
1214 }
1215
1216 /* Returns 0 on success, non-0 otherwise. */
1217 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1218 {
1219         switch (msr_index) {
1220         case MSR_IA32_VMX_BASIC:
1221                 *pdata = msrs->basic;
1222                 break;
1223         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1224         case MSR_IA32_VMX_PINBASED_CTLS:
1225                 *pdata = vmx_control_msr(
1226                         msrs->pinbased_ctls_low,
1227                         msrs->pinbased_ctls_high);
1228                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1229                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1230                 break;
1231         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1232         case MSR_IA32_VMX_PROCBASED_CTLS:
1233                 *pdata = vmx_control_msr(
1234                         msrs->procbased_ctls_low,
1235                         msrs->procbased_ctls_high);
1236                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1237                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1238                 break;
1239         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1240         case MSR_IA32_VMX_EXIT_CTLS:
1241                 *pdata = vmx_control_msr(
1242                         msrs->exit_ctls_low,
1243                         msrs->exit_ctls_high);
1244                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1245                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1246                 break;
1247         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1248         case MSR_IA32_VMX_ENTRY_CTLS:
1249                 *pdata = vmx_control_msr(
1250                         msrs->entry_ctls_low,
1251                         msrs->entry_ctls_high);
1252                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1253                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1254                 break;
1255         case MSR_IA32_VMX_MISC:
1256                 *pdata = vmx_control_msr(
1257                         msrs->misc_low,
1258                         msrs->misc_high);
1259                 break;
1260         case MSR_IA32_VMX_CR0_FIXED0:
1261                 *pdata = msrs->cr0_fixed0;
1262                 break;
1263         case MSR_IA32_VMX_CR0_FIXED1:
1264                 *pdata = msrs->cr0_fixed1;
1265                 break;
1266         case MSR_IA32_VMX_CR4_FIXED0:
1267                 *pdata = msrs->cr4_fixed0;
1268                 break;
1269         case MSR_IA32_VMX_CR4_FIXED1:
1270                 *pdata = msrs->cr4_fixed1;
1271                 break;
1272         case MSR_IA32_VMX_VMCS_ENUM:
1273                 *pdata = msrs->vmcs_enum;
1274                 break;
1275         case MSR_IA32_VMX_PROCBASED_CTLS2:
1276                 *pdata = vmx_control_msr(
1277                         msrs->secondary_ctls_low,
1278                         msrs->secondary_ctls_high);
1279                 break;
1280         case MSR_IA32_VMX_EPT_VPID_CAP:
1281                 *pdata = msrs->ept_caps |
1282                         ((u64)msrs->vpid_caps << 32);
1283                 break;
1284         case MSR_IA32_VMX_VMFUNC:
1285                 *pdata = msrs->vmfunc_controls;
1286                 break;
1287         default:
1288                 return 1;
1289         }
1290
1291         return 0;
1292 }
1293
1294 /*
1295  * Copy the writable VMCS shadow fields back to the VMCS12, in case
1296  * they have been modified by the L1 guest. Note that the "read-only"
1297  * VM-exit information fields are actually writable if the vCPU is
1298  * configured to support "VMWRITE to any supported field in the VMCS."
1299  */
1300 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1301 {
1302         const u16 *fields[] = {
1303                 shadow_read_write_fields,
1304                 shadow_read_only_fields
1305         };
1306         const int max_fields[] = {
1307                 max_shadow_read_write_fields,
1308                 max_shadow_read_only_fields
1309         };
1310         int i, q;
1311         unsigned long field;
1312         u64 field_value;
1313         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1314
1315         preempt_disable();
1316
1317         vmcs_load(shadow_vmcs);
1318
1319         for (q = 0; q < ARRAY_SIZE(fields); q++) {
1320                 for (i = 0; i < max_fields[q]; i++) {
1321                         field = fields[q][i];
1322                         field_value = __vmcs_readl(field);
1323                         vmcs12_write_any(get_vmcs12(&vmx->vcpu), field, field_value);
1324                 }
1325                 /*
1326                  * Skip the VM-exit information fields if they are read-only.
1327                  */
1328                 if (!nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
1329                         break;
1330         }
1331
1332         vmcs_clear(shadow_vmcs);
1333         vmcs_load(vmx->loaded_vmcs->vmcs);
1334
1335         preempt_enable();
1336 }
1337
1338 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1339 {
1340         const u16 *fields[] = {
1341                 shadow_read_write_fields,
1342                 shadow_read_only_fields
1343         };
1344         const int max_fields[] = {
1345                 max_shadow_read_write_fields,
1346                 max_shadow_read_only_fields
1347         };
1348         int i, q;
1349         unsigned long field;
1350         u64 field_value = 0;
1351         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1352
1353         vmcs_load(shadow_vmcs);
1354
1355         for (q = 0; q < ARRAY_SIZE(fields); q++) {
1356                 for (i = 0; i < max_fields[q]; i++) {
1357                         field = fields[q][i];
1358                         vmcs12_read_any(get_vmcs12(&vmx->vcpu), field, &field_value);
1359                         __vmcs_writel(field, field_value);
1360                 }
1361         }
1362
1363         vmcs_clear(shadow_vmcs);
1364         vmcs_load(vmx->loaded_vmcs->vmcs);
1365 }
1366
1367 static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1368 {
1369         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1370         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1371
1372         /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1373         vmcs12->tpr_threshold = evmcs->tpr_threshold;
1374         vmcs12->guest_rip = evmcs->guest_rip;
1375
1376         if (unlikely(!(evmcs->hv_clean_fields &
1377                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1378                 vmcs12->guest_rsp = evmcs->guest_rsp;
1379                 vmcs12->guest_rflags = evmcs->guest_rflags;
1380                 vmcs12->guest_interruptibility_info =
1381                         evmcs->guest_interruptibility_info;
1382         }
1383
1384         if (unlikely(!(evmcs->hv_clean_fields &
1385                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1386                 vmcs12->cpu_based_vm_exec_control =
1387                         evmcs->cpu_based_vm_exec_control;
1388         }
1389
1390         if (unlikely(!(evmcs->hv_clean_fields &
1391                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1392                 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1393         }
1394
1395         if (unlikely(!(evmcs->hv_clean_fields &
1396                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1397                 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1398         }
1399
1400         if (unlikely(!(evmcs->hv_clean_fields &
1401                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1402                 vmcs12->vm_entry_intr_info_field =
1403                         evmcs->vm_entry_intr_info_field;
1404                 vmcs12->vm_entry_exception_error_code =
1405                         evmcs->vm_entry_exception_error_code;
1406                 vmcs12->vm_entry_instruction_len =
1407                         evmcs->vm_entry_instruction_len;
1408         }
1409
1410         if (unlikely(!(evmcs->hv_clean_fields &
1411                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1412                 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1413                 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1414                 vmcs12->host_cr0 = evmcs->host_cr0;
1415                 vmcs12->host_cr3 = evmcs->host_cr3;
1416                 vmcs12->host_cr4 = evmcs->host_cr4;
1417                 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1418                 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1419                 vmcs12->host_rip = evmcs->host_rip;
1420                 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1421                 vmcs12->host_es_selector = evmcs->host_es_selector;
1422                 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1423                 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1424                 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1425                 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1426                 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1427                 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1428         }
1429
1430         if (unlikely(!(evmcs->hv_clean_fields &
1431                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1432                 vmcs12->pin_based_vm_exec_control =
1433                         evmcs->pin_based_vm_exec_control;
1434                 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1435                 vmcs12->secondary_vm_exec_control =
1436                         evmcs->secondary_vm_exec_control;
1437         }
1438
1439         if (unlikely(!(evmcs->hv_clean_fields &
1440                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1441                 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1442                 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1443         }
1444
1445         if (unlikely(!(evmcs->hv_clean_fields &
1446                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1447                 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1448         }
1449
1450         if (unlikely(!(evmcs->hv_clean_fields &
1451                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1452                 vmcs12->guest_es_base = evmcs->guest_es_base;
1453                 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1454                 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1455                 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1456                 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1457                 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1458                 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1459                 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1460                 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1461                 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1462                 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1463                 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1464                 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1465                 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1466                 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1467                 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1468                 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1469                 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1470                 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1471                 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1472                 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1473                 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1474                 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1475                 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1476                 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1477                 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1478                 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1479                 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1480                 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1481                 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1482                 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1483                 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1484                 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1485                 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1486                 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1487                 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1488         }
1489
1490         if (unlikely(!(evmcs->hv_clean_fields &
1491                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1492                 vmcs12->tsc_offset = evmcs->tsc_offset;
1493                 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1494                 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1495         }
1496
1497         if (unlikely(!(evmcs->hv_clean_fields &
1498                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1499                 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1500                 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1501                 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1502                 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1503                 vmcs12->guest_cr0 = evmcs->guest_cr0;
1504                 vmcs12->guest_cr3 = evmcs->guest_cr3;
1505                 vmcs12->guest_cr4 = evmcs->guest_cr4;
1506                 vmcs12->guest_dr7 = evmcs->guest_dr7;
1507         }
1508
1509         if (unlikely(!(evmcs->hv_clean_fields &
1510                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1511                 vmcs12->host_fs_base = evmcs->host_fs_base;
1512                 vmcs12->host_gs_base = evmcs->host_gs_base;
1513                 vmcs12->host_tr_base = evmcs->host_tr_base;
1514                 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1515                 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1516                 vmcs12->host_rsp = evmcs->host_rsp;
1517         }
1518
1519         if (unlikely(!(evmcs->hv_clean_fields &
1520                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1521                 vmcs12->ept_pointer = evmcs->ept_pointer;
1522                 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1523         }
1524
1525         if (unlikely(!(evmcs->hv_clean_fields &
1526                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1527                 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1528                 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1529                 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1530                 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1531                 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1532                 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1533                 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1534                 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1535                 vmcs12->guest_pending_dbg_exceptions =
1536                         evmcs->guest_pending_dbg_exceptions;
1537                 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1538                 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1539                 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1540                 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1541                 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1542         }
1543
1544         /*
1545          * Not used?
1546          * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1547          * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1548          * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1549          * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0;
1550          * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1;
1551          * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2;
1552          * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3;
1553          * vmcs12->page_fault_error_code_mask =
1554          *              evmcs->page_fault_error_code_mask;
1555          * vmcs12->page_fault_error_code_match =
1556          *              evmcs->page_fault_error_code_match;
1557          * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1558          * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1559          * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1560          * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1561          */
1562
1563         /*
1564          * Read only fields:
1565          * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1566          * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1567          * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1568          * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1569          * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1570          * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1571          * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1572          * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1573          * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1574          * vmcs12->exit_qualification = evmcs->exit_qualification;
1575          * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1576          *
1577          * Not present in struct vmcs12:
1578          * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1579          * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1580          * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1581          * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1582          */
1583
1584         return 0;
1585 }
1586
1587 static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1588 {
1589         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1590         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1591
1592         /*
1593          * Should not be changed by KVM:
1594          *
1595          * evmcs->host_es_selector = vmcs12->host_es_selector;
1596          * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1597          * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1598          * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1599          * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1600          * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1601          * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1602          * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1603          * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1604          * evmcs->host_cr0 = vmcs12->host_cr0;
1605          * evmcs->host_cr3 = vmcs12->host_cr3;
1606          * evmcs->host_cr4 = vmcs12->host_cr4;
1607          * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1608          * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1609          * evmcs->host_rip = vmcs12->host_rip;
1610          * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1611          * evmcs->host_fs_base = vmcs12->host_fs_base;
1612          * evmcs->host_gs_base = vmcs12->host_gs_base;
1613          * evmcs->host_tr_base = vmcs12->host_tr_base;
1614          * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1615          * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1616          * evmcs->host_rsp = vmcs12->host_rsp;
1617          * sync_vmcs12() doesn't read these:
1618          * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1619          * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1620          * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1621          * evmcs->ept_pointer = vmcs12->ept_pointer;
1622          * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1623          * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1624          * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1625          * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1626          * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0;
1627          * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1;
1628          * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2;
1629          * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3;
1630          * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1631          * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1632          * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1633          * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1634          * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1635          * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1636          * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1637          * evmcs->page_fault_error_code_mask =
1638          *              vmcs12->page_fault_error_code_mask;
1639          * evmcs->page_fault_error_code_match =
1640          *              vmcs12->page_fault_error_code_match;
1641          * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1642          * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1643          * evmcs->tsc_offset = vmcs12->tsc_offset;
1644          * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1645          * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1646          * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1647          * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1648          * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1649          * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1650          * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1651          * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1652          *
1653          * Not present in struct vmcs12:
1654          * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1655          * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1656          * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1657          * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1658          */
1659
1660         evmcs->guest_es_selector = vmcs12->guest_es_selector;
1661         evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1662         evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1663         evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1664         evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1665         evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1666         evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1667         evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1668
1669         evmcs->guest_es_limit = vmcs12->guest_es_limit;
1670         evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1671         evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1672         evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1673         evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1674         evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1675         evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1676         evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1677         evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1678         evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1679
1680         evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1681         evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1682         evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1683         evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1684         evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1685         evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1686         evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1687         evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1688
1689         evmcs->guest_es_base = vmcs12->guest_es_base;
1690         evmcs->guest_cs_base = vmcs12->guest_cs_base;
1691         evmcs->guest_ss_base = vmcs12->guest_ss_base;
1692         evmcs->guest_ds_base = vmcs12->guest_ds_base;
1693         evmcs->guest_fs_base = vmcs12->guest_fs_base;
1694         evmcs->guest_gs_base = vmcs12->guest_gs_base;
1695         evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1696         evmcs->guest_tr_base = vmcs12->guest_tr_base;
1697         evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1698         evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1699
1700         evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1701         evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1702
1703         evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1704         evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1705         evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1706         evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1707
1708         evmcs->guest_pending_dbg_exceptions =
1709                 vmcs12->guest_pending_dbg_exceptions;
1710         evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1711         evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1712
1713         evmcs->guest_activity_state = vmcs12->guest_activity_state;
1714         evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1715
1716         evmcs->guest_cr0 = vmcs12->guest_cr0;
1717         evmcs->guest_cr3 = vmcs12->guest_cr3;
1718         evmcs->guest_cr4 = vmcs12->guest_cr4;
1719         evmcs->guest_dr7 = vmcs12->guest_dr7;
1720
1721         evmcs->guest_physical_address = vmcs12->guest_physical_address;
1722
1723         evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1724         evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1725         evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1726         evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1727         evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1728         evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1729         evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1730         evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1731
1732         evmcs->exit_qualification = vmcs12->exit_qualification;
1733
1734         evmcs->guest_linear_address = vmcs12->guest_linear_address;
1735         evmcs->guest_rsp = vmcs12->guest_rsp;
1736         evmcs->guest_rflags = vmcs12->guest_rflags;
1737
1738         evmcs->guest_interruptibility_info =
1739                 vmcs12->guest_interruptibility_info;
1740         evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1741         evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1742         evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1743         evmcs->vm_entry_exception_error_code =
1744                 vmcs12->vm_entry_exception_error_code;
1745         evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1746
1747         evmcs->guest_rip = vmcs12->guest_rip;
1748
1749         evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1750
1751         return 0;
1752 }
1753
1754 /*
1755  * This is an equivalent of the nested hypervisor executing the vmptrld
1756  * instruction.
1757  */
1758 static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu,
1759                                                  bool from_launch)
1760 {
1761         struct vcpu_vmx *vmx = to_vmx(vcpu);
1762         struct hv_vp_assist_page assist_page;
1763
1764         if (likely(!vmx->nested.enlightened_vmcs_enabled))
1765                 return 1;
1766
1767         if (unlikely(!kvm_hv_get_assist_page(vcpu, &assist_page)))
1768                 return 1;
1769
1770         if (unlikely(!assist_page.enlighten_vmentry))
1771                 return 1;
1772
1773         if (unlikely(assist_page.current_nested_vmcs !=
1774                      vmx->nested.hv_evmcs_vmptr)) {
1775
1776                 if (!vmx->nested.hv_evmcs)
1777                         vmx->nested.current_vmptr = -1ull;
1778
1779                 nested_release_evmcs(vcpu);
1780
1781                 vmx->nested.hv_evmcs_page = kvm_vcpu_gpa_to_page(
1782                         vcpu, assist_page.current_nested_vmcs);
1783
1784                 if (unlikely(is_error_page(vmx->nested.hv_evmcs_page)))
1785                         return 0;
1786
1787                 vmx->nested.hv_evmcs = kmap(vmx->nested.hv_evmcs_page);
1788
1789                 /*
1790                  * Currently, KVM only supports eVMCS version 1
1791                  * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
1792                  * value to first u32 field of eVMCS which should specify eVMCS
1793                  * VersionNumber.
1794                  *
1795                  * Guest should be aware of supported eVMCS versions by host by
1796                  * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
1797                  * expected to set this CPUID leaf according to the value
1798                  * returned in vmcs_version from nested_enable_evmcs().
1799                  *
1800                  * However, it turns out that Microsoft Hyper-V fails to comply
1801                  * to their own invented interface: When Hyper-V use eVMCS, it
1802                  * just sets first u32 field of eVMCS to revision_id specified
1803                  * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
1804                  * which is one of the supported versions specified in
1805                  * CPUID.0x4000000A.EAX[0:15].
1806                  *
1807                  * To overcome Hyper-V bug, we accept here either a supported
1808                  * eVMCS version or VMCS12 revision_id as valid values for first
1809                  * u32 field of eVMCS.
1810                  */
1811                 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
1812                     (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
1813                         nested_release_evmcs(vcpu);
1814                         return 0;
1815                 }
1816
1817                 vmx->nested.dirty_vmcs12 = true;
1818                 /*
1819                  * As we keep L2 state for one guest only 'hv_clean_fields' mask
1820                  * can't be used when we switch between them. Reset it here for
1821                  * simplicity.
1822                  */
1823                 vmx->nested.hv_evmcs->hv_clean_fields &=
1824                         ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1825                 vmx->nested.hv_evmcs_vmptr = assist_page.current_nested_vmcs;
1826
1827                 /*
1828                  * Unlike normal vmcs12, enlightened vmcs12 is not fully
1829                  * reloaded from guest's memory (read only fields, fields not
1830                  * present in struct hv_enlightened_vmcs, ...). Make sure there
1831                  * are no leftovers.
1832                  */
1833                 if (from_launch) {
1834                         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1835                         memset(vmcs12, 0, sizeof(*vmcs12));
1836                         vmcs12->hdr.revision_id = VMCS12_REVISION;
1837                 }
1838
1839         }
1840         return 1;
1841 }
1842
1843 void nested_sync_from_vmcs12(struct kvm_vcpu *vcpu)
1844 {
1845         struct vcpu_vmx *vmx = to_vmx(vcpu);
1846
1847         /*
1848          * hv_evmcs may end up being not mapped after migration (when
1849          * L2 was running), map it here to make sure vmcs12 changes are
1850          * properly reflected.
1851          */
1852         if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs)
1853                 nested_vmx_handle_enlightened_vmptrld(vcpu, false);
1854
1855         if (vmx->nested.hv_evmcs) {
1856                 copy_vmcs12_to_enlightened(vmx);
1857                 /* All fields are clean */
1858                 vmx->nested.hv_evmcs->hv_clean_fields |=
1859                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1860         } else {
1861                 copy_vmcs12_to_shadow(vmx);
1862         }
1863
1864         vmx->nested.need_vmcs12_sync = false;
1865 }
1866
1867 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
1868 {
1869         struct vcpu_vmx *vmx =
1870                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
1871
1872         vmx->nested.preemption_timer_expired = true;
1873         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
1874         kvm_vcpu_kick(&vmx->vcpu);
1875
1876         return HRTIMER_NORESTART;
1877 }
1878
1879 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
1880 {
1881         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
1882         struct vcpu_vmx *vmx = to_vmx(vcpu);
1883
1884         /*
1885          * A timer value of zero is architecturally guaranteed to cause
1886          * a VMExit prior to executing any instructions in the guest.
1887          */
1888         if (preemption_timeout == 0) {
1889                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
1890                 return;
1891         }
1892
1893         if (vcpu->arch.virtual_tsc_khz == 0)
1894                 return;
1895
1896         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
1897         preemption_timeout *= 1000000;
1898         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
1899         hrtimer_start(&vmx->nested.preemption_timer,
1900                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
1901 }
1902
1903 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
1904 {
1905         if (vmx->nested.nested_run_pending &&
1906             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
1907                 return vmcs12->guest_ia32_efer;
1908         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
1909                 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
1910         else
1911                 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
1912 }
1913
1914 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
1915 {
1916         /*
1917          * If vmcs02 hasn't been initialized, set the constant vmcs02 state
1918          * according to L0's settings (vmcs12 is irrelevant here).  Host
1919          * fields that come from L0 and are not constant, e.g. HOST_CR3,
1920          * will be set as needed prior to VMLAUNCH/VMRESUME.
1921          */
1922         if (vmx->nested.vmcs02_initialized)
1923                 return;
1924         vmx->nested.vmcs02_initialized = true;
1925
1926         /*
1927          * We don't care what the EPTP value is we just need to guarantee
1928          * it's valid so we don't get a false positive when doing early
1929          * consistency checks.
1930          */
1931         if (enable_ept && nested_early_check)
1932                 vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
1933
1934         /* All VMFUNCs are currently emulated through L0 vmexits.  */
1935         if (cpu_has_vmx_vmfunc())
1936                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
1937
1938         if (cpu_has_vmx_posted_intr())
1939                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
1940
1941         if (cpu_has_vmx_msr_bitmap())
1942                 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
1943
1944         if (enable_pml)
1945                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
1946
1947         /*
1948          * Set the MSR load/store lists to match L0's settings.  Only the
1949          * addresses are constant (for vmcs02), the counts can change based
1950          * on L2's behavior, e.g. switching to/from long mode.
1951          */
1952         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1953         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
1954         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
1955
1956         vmx_set_constant_host_state(vmx);
1957 }
1958
1959 static void prepare_vmcs02_early_full(struct vcpu_vmx *vmx,
1960                                       struct vmcs12 *vmcs12)
1961 {
1962         prepare_vmcs02_constant_state(vmx);
1963
1964         vmcs_write64(VMCS_LINK_POINTER, -1ull);
1965
1966         if (enable_vpid) {
1967                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
1968                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
1969                 else
1970                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
1971         }
1972 }
1973
1974 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
1975 {
1976         u32 exec_control, vmcs12_exec_ctrl;
1977         u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
1978
1979         if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
1980                 prepare_vmcs02_early_full(vmx, vmcs12);
1981
1982         /*
1983          * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
1984          * entry, but only if the current (host) sp changed from the value
1985          * we wrote last (vmx->host_rsp).  This cache is no longer relevant
1986          * if we switch vmcs, and rather than hold a separate cache per vmcs,
1987          * here we just force the write to happen on entry.  host_rsp will
1988          * also be written unconditionally by nested_vmx_check_vmentry_hw()
1989          * if we are doing early consistency checks via hardware.
1990          */
1991         vmx->host_rsp = 0;
1992
1993         /*
1994          * PIN CONTROLS
1995          */
1996         exec_control = vmcs12->pin_based_vm_exec_control;
1997
1998         /* Preemption timer setting is computed directly in vmx_vcpu_run.  */
1999         exec_control |= vmcs_config.pin_based_exec_ctrl;
2000         exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2001         vmx->loaded_vmcs->hv_timer_armed = false;
2002
2003         /* Posted interrupts setting is only taken from vmcs12.  */
2004         if (nested_cpu_has_posted_intr(vmcs12)) {
2005                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2006                 vmx->nested.pi_pending = false;
2007         } else {
2008                 exec_control &= ~PIN_BASED_POSTED_INTR;
2009         }
2010         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
2011
2012         /*
2013          * EXEC CONTROLS
2014          */
2015         exec_control = vmx_exec_control(vmx); /* L0's desires */
2016         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2017         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
2018         exec_control &= ~CPU_BASED_TPR_SHADOW;
2019         exec_control |= vmcs12->cpu_based_vm_exec_control;
2020
2021         /*
2022          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
2023          * nested_get_vmcs12_pages can't fix it up, the illegal value
2024          * will result in a VM entry failure.
2025          */
2026         if (exec_control & CPU_BASED_TPR_SHADOW) {
2027                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
2028                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2029         } else {
2030 #ifdef CONFIG_X86_64
2031                 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2032                                 CPU_BASED_CR8_STORE_EXITING;
2033 #endif
2034         }
2035
2036         /*
2037          * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2038          * for I/O port accesses.
2039          */
2040         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2041         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2042         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2043
2044         /*
2045          * SECONDARY EXEC CONTROLS
2046          */
2047         if (cpu_has_secondary_exec_ctrls()) {
2048                 exec_control = vmx->secondary_exec_control;
2049
2050                 /* Take the following fields only from vmcs12 */
2051                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2052                                   SECONDARY_EXEC_ENABLE_INVPCID |
2053                                   SECONDARY_EXEC_RDTSCP |
2054                                   SECONDARY_EXEC_XSAVES |
2055                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2056                                   SECONDARY_EXEC_APIC_REGISTER_VIRT |
2057                                   SECONDARY_EXEC_ENABLE_VMFUNC);
2058                 if (nested_cpu_has(vmcs12,
2059                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
2060                         vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
2061                                 ~SECONDARY_EXEC_ENABLE_PML;
2062                         exec_control |= vmcs12_exec_ctrl;
2063                 }
2064
2065                 /* VMCS shadowing for L2 is emulated for now */
2066                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2067
2068                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2069                         vmcs_write16(GUEST_INTR_STATUS,
2070                                 vmcs12->guest_intr_status);
2071
2072                 /*
2073                  * Write an illegal value to APIC_ACCESS_ADDR. Later,
2074                  * nested_get_vmcs12_pages will either fix it up or
2075                  * remove the VM execution control.
2076                  */
2077                 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
2078                         vmcs_write64(APIC_ACCESS_ADDR, -1ull);
2079
2080                 if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2081                         vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2082
2083                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2084         }
2085
2086         /*
2087          * ENTRY CONTROLS
2088          *
2089          * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2090          * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2091          * on the related bits (if supported by the CPU) in the hope that
2092          * we can avoid VMWrites during vmx_set_efer().
2093          */
2094         exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2095                         ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2096         if (cpu_has_load_ia32_efer()) {
2097                 if (guest_efer & EFER_LMA)
2098                         exec_control |= VM_ENTRY_IA32E_MODE;
2099                 if (guest_efer != host_efer)
2100                         exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2101         }
2102         vm_entry_controls_init(vmx, exec_control);
2103
2104         /*
2105          * EXIT CONTROLS
2106          *
2107          * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2108          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2109          * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2110          */
2111         exec_control = vmx_vmexit_ctrl();
2112         if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2113                 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2114         vm_exit_controls_init(vmx, exec_control);
2115
2116         /*
2117          * Conceptually we want to copy the PML address and index from
2118          * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
2119          * since we always flush the log on each vmexit and never change
2120          * the PML address (once set), this happens to be equivalent to
2121          * simply resetting the index in vmcs02.
2122          */
2123         if (enable_pml)
2124                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
2125
2126         /*
2127          * Interrupt/Exception Fields
2128          */
2129         if (vmx->nested.nested_run_pending) {
2130                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2131                              vmcs12->vm_entry_intr_info_field);
2132                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2133                              vmcs12->vm_entry_exception_error_code);
2134                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2135                              vmcs12->vm_entry_instruction_len);
2136                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2137                              vmcs12->guest_interruptibility_info);
2138                 vmx->loaded_vmcs->nmi_known_unmasked =
2139                         !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2140         } else {
2141                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2142         }
2143 }
2144
2145 static void prepare_vmcs02_full(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2146 {
2147         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2148
2149         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2150                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2151                 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2152                 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2153                 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2154                 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2155                 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2156                 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2157                 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2158                 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2159                 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2160                 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2161                 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2162                 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2163                 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2164                 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2165                 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2166                 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2167                 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2168                 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2169                 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2170                 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2171                 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2172                 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2173                 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2174                 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2175                 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2176                 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2177                 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2178                 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2179                 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2180                 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2181                 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2182                 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2183                 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2184                 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2185         }
2186
2187         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2188                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2189                 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2190                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2191                             vmcs12->guest_pending_dbg_exceptions);
2192                 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2193                 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2194
2195                 /*
2196                  * L1 may access the L2's PDPTR, so save them to construct
2197                  * vmcs12
2198                  */
2199                 if (enable_ept) {
2200                         vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2201                         vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2202                         vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2203                         vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2204                 }
2205         }
2206
2207         if (nested_cpu_has_xsaves(vmcs12))
2208                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2209
2210         /*
2211          * Whether page-faults are trapped is determined by a combination of
2212          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
2213          * If enable_ept, L0 doesn't care about page faults and we should
2214          * set all of these to L1's desires. However, if !enable_ept, L0 does
2215          * care about (at least some) page faults, and because it is not easy
2216          * (if at all possible?) to merge L0 and L1's desires, we simply ask
2217          * to exit on each and every L2 page fault. This is done by setting
2218          * MASK=MATCH=0 and (see below) EB.PF=1.
2219          * Note that below we don't need special code to set EB.PF beyond the
2220          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2221          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2222          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2223          */
2224         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
2225                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
2226         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
2227                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
2228
2229         if (cpu_has_vmx_apicv()) {
2230                 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2231                 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2232                 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2233                 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2234         }
2235
2236         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2237         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2238
2239         set_cr4_guest_host_mask(vmx);
2240
2241         if (kvm_mpx_supported()) {
2242                 if (vmx->nested.nested_run_pending &&
2243                         (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2244                         vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2245                 else
2246                         vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2247         }
2248 }
2249
2250 /*
2251  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2252  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2253  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2254  * guest in a way that will both be appropriate to L1's requests, and our
2255  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2256  * function also has additional necessary side-effects, like setting various
2257  * vcpu->arch fields.
2258  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2259  * is assigned to entry_failure_code on failure.
2260  */
2261 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2262                           u32 *entry_failure_code)
2263 {
2264         struct vcpu_vmx *vmx = to_vmx(vcpu);
2265         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2266
2267         if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs) {
2268                 prepare_vmcs02_full(vmx, vmcs12);
2269                 vmx->nested.dirty_vmcs12 = false;
2270         }
2271
2272         /*
2273          * First, the fields that are shadowed.  This must be kept in sync
2274          * with vmcs_shadow_fields.h.
2275          */
2276         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2277                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2278                 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2279                 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2280         }
2281
2282         if (vmx->nested.nested_run_pending &&
2283             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2284                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2285                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2286         } else {
2287                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2288                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2289         }
2290         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2291
2292         vmx->nested.preemption_timer_expired = false;
2293         if (nested_cpu_has_preemption_timer(vmcs12))
2294                 vmx_start_preemption_timer(vcpu);
2295
2296         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2297          * bitwise-or of what L1 wants to trap for L2, and what we want to
2298          * trap. Note that CR0.TS also needs updating - we do this later.
2299          */
2300         update_exception_bitmap(vcpu);
2301         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2302         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2303
2304         if (vmx->nested.nested_run_pending &&
2305             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2306                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2307                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2308         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2309                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2310         }
2311
2312         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2313
2314         if (kvm_has_tsc_control)
2315                 decache_tsc_multiplier(vmx);
2316
2317         if (enable_vpid) {
2318                 /*
2319                  * There is no direct mapping between vpid02 and vpid12, the
2320                  * vpid02 is per-vCPU for L0 and reused while the value of
2321                  * vpid12 is changed w/ one invvpid during nested vmentry.
2322                  * The vpid12 is allocated by L1 for L2, so it will not
2323                  * influence global bitmap(for vpid01 and vpid02 allocation)
2324                  * even if spawn a lot of nested vCPUs.
2325                  */
2326                 if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) {
2327                         if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
2328                                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
2329                                 __vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false);
2330                         }
2331                 } else {
2332                         /*
2333                          * If L1 use EPT, then L0 needs to execute INVEPT on
2334                          * EPTP02 instead of EPTP01. Therefore, delay TLB
2335                          * flush until vmcs02->eptp is fully updated by
2336                          * KVM_REQ_LOAD_CR3. Note that this assumes
2337                          * KVM_REQ_TLB_FLUSH is evaluated after
2338                          * KVM_REQ_LOAD_CR3 in vcpu_enter_guest().
2339                          */
2340                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2341                 }
2342         }
2343
2344         if (nested_cpu_has_ept(vmcs12))
2345                 nested_ept_init_mmu_context(vcpu);
2346         else if (nested_cpu_has2(vmcs12,
2347                                  SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2348                 vmx_flush_tlb(vcpu, true);
2349
2350         /*
2351          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2352          * bits which we consider mandatory enabled.
2353          * The CR0_READ_SHADOW is what L2 should have expected to read given
2354          * the specifications by L1; It's not enough to take
2355          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2356          * have more bits than L1 expected.
2357          */
2358         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2359         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2360
2361         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2362         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2363
2364         vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2365         /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2366         vmx_set_efer(vcpu, vcpu->arch.efer);
2367
2368         /*
2369          * Guest state is invalid and unrestricted guest is disabled,
2370          * which means L1 attempted VMEntry to L2 with invalid state.
2371          * Fail the VMEntry.
2372          */
2373         if (vmx->emulation_required) {
2374                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2375                 return 1;
2376         }
2377
2378         /* Shadow page tables on either EPT or shadow page tables. */
2379         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2380                                 entry_failure_code))
2381                 return 1;
2382
2383         if (!enable_ept)
2384                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2385
2386         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
2387         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
2388         return 0;
2389 }
2390
2391 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2392 {
2393         if (!nested_cpu_has_nmi_exiting(vmcs12) &&
2394             nested_cpu_has_virtual_nmis(vmcs12))
2395                 return -EINVAL;
2396
2397         if (!nested_cpu_has_virtual_nmis(vmcs12) &&
2398             nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING))
2399                 return -EINVAL;
2400
2401         return 0;
2402 }
2403
2404 static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
2405 {
2406         struct vcpu_vmx *vmx = to_vmx(vcpu);
2407         int maxphyaddr = cpuid_maxphyaddr(vcpu);
2408
2409         /* Check for memory type validity */
2410         switch (address & VMX_EPTP_MT_MASK) {
2411         case VMX_EPTP_MT_UC:
2412                 if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT))
2413                         return false;
2414                 break;
2415         case VMX_EPTP_MT_WB:
2416                 if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT))
2417                         return false;
2418                 break;
2419         default:
2420                 return false;
2421         }
2422
2423         /* only 4 levels page-walk length are valid */
2424         if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
2425                 return false;
2426
2427         /* Reserved bits should not be set */
2428         if (address >> maxphyaddr || ((address >> 7) & 0x1f))
2429                 return false;
2430
2431         /* AD, if set, should be supported */
2432         if (address & VMX_EPTP_AD_ENABLE_BIT) {
2433                 if (!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT))
2434                         return false;
2435         }
2436
2437         return true;
2438 }
2439
2440 /*
2441  * Checks related to VM-Execution Control Fields
2442  */
2443 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2444                                               struct vmcs12 *vmcs12)
2445 {
2446         struct vcpu_vmx *vmx = to_vmx(vcpu);
2447
2448         if (!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2449                                 vmx->nested.msrs.pinbased_ctls_low,
2450                                 vmx->nested.msrs.pinbased_ctls_high) ||
2451             !vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2452                                 vmx->nested.msrs.procbased_ctls_low,
2453                                 vmx->nested.msrs.procbased_ctls_high))
2454                 return -EINVAL;
2455
2456         if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2457             !vmx_control_verify(vmcs12->secondary_vm_exec_control,
2458                                  vmx->nested.msrs.secondary_ctls_low,
2459                                  vmx->nested.msrs.secondary_ctls_high))
2460                 return -EINVAL;
2461
2462         if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu) ||
2463             nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2464             nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2465             nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2466             nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2467             nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2468             nested_vmx_check_nmi_controls(vmcs12) ||
2469             nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2470             nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2471             nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2472             nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2473             (nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2474                 return -EINVAL;
2475
2476         if (nested_cpu_has_ept(vmcs12) &&
2477             !valid_ept_address(vcpu, vmcs12->ept_pointer))
2478                 return -EINVAL;
2479
2480         if (nested_cpu_has_vmfunc(vmcs12)) {
2481                 if (vmcs12->vm_function_control &
2482                     ~vmx->nested.msrs.vmfunc_controls)
2483                         return -EINVAL;
2484
2485                 if (nested_cpu_has_eptp_switching(vmcs12)) {
2486                         if (!nested_cpu_has_ept(vmcs12) ||
2487                             !page_address_valid(vcpu, vmcs12->eptp_list_address))
2488                                 return -EINVAL;
2489                 }
2490         }
2491
2492         return 0;
2493 }
2494
2495 /*
2496  * Checks related to VM-Exit Control Fields
2497  */
2498 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2499                                          struct vmcs12 *vmcs12)
2500 {
2501         struct vcpu_vmx *vmx = to_vmx(vcpu);
2502
2503         if (!vmx_control_verify(vmcs12->vm_exit_controls,
2504                                 vmx->nested.msrs.exit_ctls_low,
2505                                 vmx->nested.msrs.exit_ctls_high) ||
2506             nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12))
2507                 return -EINVAL;
2508
2509         return 0;
2510 }
2511
2512 /*
2513  * Checks related to VM-Entry Control Fields
2514  */
2515 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2516                                           struct vmcs12 *vmcs12)
2517 {
2518         struct vcpu_vmx *vmx = to_vmx(vcpu);
2519
2520         if (!vmx_control_verify(vmcs12->vm_entry_controls,
2521                                 vmx->nested.msrs.entry_ctls_low,
2522                                 vmx->nested.msrs.entry_ctls_high))
2523                 return -EINVAL;
2524
2525         /*
2526          * From the Intel SDM, volume 3:
2527          * Fields relevant to VM-entry event injection must be set properly.
2528          * These fields are the VM-entry interruption-information field, the
2529          * VM-entry exception error code, and the VM-entry instruction length.
2530          */
2531         if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2532                 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2533                 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2534                 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2535                 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2536                 bool should_have_error_code;
2537                 bool urg = nested_cpu_has2(vmcs12,
2538                                            SECONDARY_EXEC_UNRESTRICTED_GUEST);
2539                 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2540
2541                 /* VM-entry interruption-info field: interruption type */
2542                 if (intr_type == INTR_TYPE_RESERVED ||
2543                     (intr_type == INTR_TYPE_OTHER_EVENT &&
2544                      !nested_cpu_supports_monitor_trap_flag(vcpu)))
2545                         return -EINVAL;
2546
2547                 /* VM-entry interruption-info field: vector */
2548                 if ((intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2549                     (intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2550                     (intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2551                         return -EINVAL;
2552
2553                 /* VM-entry interruption-info field: deliver error code */
2554                 should_have_error_code =
2555                         intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2556                         x86_exception_has_error_code(vector);
2557                 if (has_error_code != should_have_error_code)
2558                         return -EINVAL;
2559
2560                 /* VM-entry exception error code */
2561                 if (has_error_code &&
2562                     vmcs12->vm_entry_exception_error_code & GENMASK(31, 15))
2563                         return -EINVAL;
2564
2565                 /* VM-entry interruption-info field: reserved bits */
2566                 if (intr_info & INTR_INFO_RESVD_BITS_MASK)
2567                         return -EINVAL;
2568
2569                 /* VM-entry instruction length */
2570                 switch (intr_type) {
2571                 case INTR_TYPE_SOFT_EXCEPTION:
2572                 case INTR_TYPE_SOFT_INTR:
2573                 case INTR_TYPE_PRIV_SW_EXCEPTION:
2574                         if ((vmcs12->vm_entry_instruction_len > 15) ||
2575                             (vmcs12->vm_entry_instruction_len == 0 &&
2576                              !nested_cpu_has_zero_length_injection(vcpu)))
2577                                 return -EINVAL;
2578                 }
2579         }
2580
2581         if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2582                 return -EINVAL;
2583
2584         return 0;
2585 }
2586
2587 /*
2588  * Checks related to Host Control Registers and MSRs
2589  */
2590 static int nested_check_host_control_regs(struct kvm_vcpu *vcpu,
2591                                           struct vmcs12 *vmcs12)
2592 {
2593         bool ia32e;
2594
2595         if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
2596             !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
2597             !nested_cr3_valid(vcpu, vmcs12->host_cr3))
2598                 return -EINVAL;
2599         /*
2600          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2601          * IA32_EFER MSR must be 0 in the field for that register. In addition,
2602          * the values of the LMA and LME bits in the field must each be that of
2603          * the host address-space size VM-exit control.
2604          */
2605         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2606                 ia32e = (vmcs12->vm_exit_controls &
2607                          VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
2608                 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
2609                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
2610                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
2611                         return -EINVAL;
2612         }
2613
2614         return 0;
2615 }
2616
2617 /*
2618  * Checks related to Guest Non-register State
2619  */
2620 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2621 {
2622         if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2623             vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
2624                 return -EINVAL;
2625
2626         return 0;
2627 }
2628
2629 static int nested_vmx_check_vmentry_prereqs(struct kvm_vcpu *vcpu,
2630                                             struct vmcs12 *vmcs12)
2631 {
2632         if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2633             nested_check_vm_exit_controls(vcpu, vmcs12) ||
2634             nested_check_vm_entry_controls(vcpu, vmcs12))
2635                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
2636
2637         if (nested_check_host_control_regs(vcpu, vmcs12))
2638                 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
2639
2640         if (nested_check_guest_non_reg_state(vmcs12))
2641                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
2642
2643         return 0;
2644 }
2645
2646 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2647                                           struct vmcs12 *vmcs12)
2648 {
2649         int r;
2650         struct page *page;
2651         struct vmcs12 *shadow;
2652
2653         if (vmcs12->vmcs_link_pointer == -1ull)
2654                 return 0;
2655
2656         if (!page_address_valid(vcpu, vmcs12->vmcs_link_pointer))
2657                 return -EINVAL;
2658
2659         page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
2660         if (is_error_page(page))
2661                 return -EINVAL;
2662
2663         r = 0;
2664         shadow = kmap(page);
2665         if (shadow->hdr.revision_id != VMCS12_REVISION ||
2666             shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12))
2667                 r = -EINVAL;
2668         kunmap(page);
2669         kvm_release_page_clean(page);
2670         return r;
2671 }
2672
2673 static int nested_vmx_check_vmentry_postreqs(struct kvm_vcpu *vcpu,
2674                                              struct vmcs12 *vmcs12,
2675                                              u32 *exit_qual)
2676 {
2677         bool ia32e;
2678
2679         *exit_qual = ENTRY_FAIL_DEFAULT;
2680
2681         if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
2682             !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
2683                 return 1;
2684
2685         if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2686                 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
2687                 return 1;
2688         }
2689
2690         /*
2691          * If the load IA32_EFER VM-entry control is 1, the following checks
2692          * are performed on the field for the IA32_EFER MSR:
2693          * - Bits reserved in the IA32_EFER MSR must be 0.
2694          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
2695          *   the IA-32e mode guest VM-exit control. It must also be identical
2696          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
2697          *   CR0.PG) is 1.
2698          */
2699         if (to_vmx(vcpu)->nested.nested_run_pending &&
2700             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
2701                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
2702                 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
2703                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
2704                     ((vmcs12->guest_cr0 & X86_CR0_PG) &&
2705                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
2706                         return 1;
2707         }
2708
2709         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
2710                 (is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) ||
2711                 (vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD)))
2712                         return 1;
2713
2714         return 0;
2715 }
2716
2717 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
2718 {
2719         struct vcpu_vmx *vmx = to_vmx(vcpu);
2720         unsigned long cr3, cr4;
2721
2722         if (!nested_early_check)
2723                 return 0;
2724
2725         if (vmx->msr_autoload.host.nr)
2726                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2727         if (vmx->msr_autoload.guest.nr)
2728                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2729
2730         preempt_disable();
2731
2732         vmx_prepare_switch_to_guest(vcpu);
2733
2734         /*
2735          * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
2736          * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
2737          * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e.
2738          * there is no need to preserve other bits or save/restore the field.
2739          */
2740         vmcs_writel(GUEST_RFLAGS, 0);
2741
2742         cr3 = __get_current_cr3_fast();
2743         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
2744                 vmcs_writel(HOST_CR3, cr3);
2745                 vmx->loaded_vmcs->host_state.cr3 = cr3;
2746         }
2747
2748         cr4 = cr4_read_shadow();
2749         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
2750                 vmcs_writel(HOST_CR4, cr4);
2751                 vmx->loaded_vmcs->host_state.cr4 = cr4;
2752         }
2753
2754         vmx->__launched = vmx->loaded_vmcs->launched;
2755
2756         asm(
2757                 /* Set HOST_RSP */
2758                 "sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
2759                 __ex("vmwrite %%" _ASM_SP ", %%" _ASM_DX) "\n\t"
2760                 "mov %%" _ASM_SP ", %c[host_rsp](%1)\n\t"
2761                 "add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
2762
2763                 /* Check if vmlaunch or vmresume is needed */
2764                 "cmpl $0, %c[launched](%% " _ASM_CX")\n\t"
2765
2766                 "call vmx_vmenter\n\t"
2767
2768                 /* Set vmx->fail accordingly */
2769                 "setbe %c[fail](%% " _ASM_CX")\n\t"
2770               : ASM_CALL_CONSTRAINT
2771               : "c"(vmx), "d"((unsigned long)HOST_RSP),
2772                 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
2773                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
2774                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
2775                 [wordsize]"i"(sizeof(ulong))
2776               : "rax", "cc", "memory"
2777         );
2778
2779         preempt_enable();
2780
2781         if (vmx->msr_autoload.host.nr)
2782                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2783         if (vmx->msr_autoload.guest.nr)
2784                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2785
2786         if (vmx->fail) {
2787                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
2788                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
2789                 vmx->fail = 0;
2790                 return 1;
2791         }
2792
2793         /*
2794          * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
2795          */
2796         local_irq_enable();
2797         if (hw_breakpoint_active())
2798                 set_debugreg(__this_cpu_read(cpu_dr7), 7);
2799
2800         /*
2801          * A non-failing VMEntry means we somehow entered guest mode with
2802          * an illegal RIP, and that's just the tip of the iceberg.  There
2803          * is no telling what memory has been modified or what state has
2804          * been exposed to unknown code.  Hitting this all but guarantees
2805          * a (very critical) hardware issue.
2806          */
2807         WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
2808                 VMX_EXIT_REASONS_FAILED_VMENTRY));
2809
2810         return 0;
2811 }
2812 STACK_FRAME_NON_STANDARD(nested_vmx_check_vmentry_hw);
2813
2814
2815 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
2816                                                  struct vmcs12 *vmcs12);
2817
2818 static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
2819 {
2820         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2821         struct vcpu_vmx *vmx = to_vmx(vcpu);
2822         struct page *page;
2823         u64 hpa;
2824
2825         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
2826                 /*
2827                  * Translate L1 physical address to host physical
2828                  * address for vmcs02. Keep the page pinned, so this
2829                  * physical address remains valid. We keep a reference
2830                  * to it so we can release it later.
2831                  */
2832                 if (vmx->nested.apic_access_page) { /* shouldn't happen */
2833                         kvm_release_page_dirty(vmx->nested.apic_access_page);
2834                         vmx->nested.apic_access_page = NULL;
2835                 }
2836                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
2837                 /*
2838                  * If translation failed, no matter: This feature asks
2839                  * to exit when accessing the given address, and if it
2840                  * can never be accessed, this feature won't do
2841                  * anything anyway.
2842                  */
2843                 if (!is_error_page(page)) {
2844                         vmx->nested.apic_access_page = page;
2845                         hpa = page_to_phys(vmx->nested.apic_access_page);
2846                         vmcs_write64(APIC_ACCESS_ADDR, hpa);
2847                 } else {
2848                         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
2849                                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
2850                 }
2851         }
2852
2853         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
2854                 if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
2855                         kvm_release_page_dirty(vmx->nested.virtual_apic_page);
2856                         vmx->nested.virtual_apic_page = NULL;
2857                 }
2858                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
2859
2860                 /*
2861                  * If translation failed, VM entry will fail because
2862                  * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
2863                  * Failing the vm entry is _not_ what the processor
2864                  * does but it's basically the only possibility we
2865                  * have.  We could still enter the guest if CR8 load
2866                  * exits are enabled, CR8 store exits are enabled, and
2867                  * virtualize APIC access is disabled; in this case
2868                  * the processor would never use the TPR shadow and we
2869                  * could simply clear the bit from the execution
2870                  * control.  But such a configuration is useless, so
2871                  * let's keep the code simple.
2872                  */
2873                 if (!is_error_page(page)) {
2874                         vmx->nested.virtual_apic_page = page;
2875                         hpa = page_to_phys(vmx->nested.virtual_apic_page);
2876                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
2877                 }
2878         }
2879
2880         if (nested_cpu_has_posted_intr(vmcs12)) {
2881                 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
2882                         kunmap(vmx->nested.pi_desc_page);
2883                         kvm_release_page_dirty(vmx->nested.pi_desc_page);
2884                         vmx->nested.pi_desc_page = NULL;
2885                         vmx->nested.pi_desc = NULL;
2886                         vmcs_write64(POSTED_INTR_DESC_ADDR, -1ull);
2887                 }
2888                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
2889                 if (is_error_page(page))
2890                         return;
2891                 vmx->nested.pi_desc_page = page;
2892                 vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
2893                 vmx->nested.pi_desc =
2894                         (struct pi_desc *)((void *)vmx->nested.pi_desc +
2895                         (unsigned long)(vmcs12->posted_intr_desc_addr &
2896                         (PAGE_SIZE - 1)));
2897                 vmcs_write64(POSTED_INTR_DESC_ADDR,
2898                         page_to_phys(vmx->nested.pi_desc_page) +
2899                         (unsigned long)(vmcs12->posted_intr_desc_addr &
2900                         (PAGE_SIZE - 1)));
2901         }
2902         if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
2903                 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
2904                               CPU_BASED_USE_MSR_BITMAPS);
2905         else
2906                 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
2907                                 CPU_BASED_USE_MSR_BITMAPS);
2908 }
2909
2910 /*
2911  * Intel's VMX Instruction Reference specifies a common set of prerequisites
2912  * for running VMX instructions (except VMXON, whose prerequisites are
2913  * slightly different). It also specifies what exception to inject otherwise.
2914  * Note that many of these exceptions have priority over VM exits, so they
2915  * don't have to be checked again here.
2916  */
2917 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
2918 {
2919         if (!to_vmx(vcpu)->nested.vmxon) {
2920                 kvm_queue_exception(vcpu, UD_VECTOR);
2921                 return 0;
2922         }
2923
2924         if (vmx_get_cpl(vcpu)) {
2925                 kvm_inject_gp(vcpu, 0);
2926                 return 0;
2927         }
2928
2929         return 1;
2930 }
2931
2932 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
2933 {
2934         u8 rvi = vmx_get_rvi();
2935         u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
2936
2937         return ((rvi & 0xf0) > (vppr & 0xf0));
2938 }
2939
2940 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
2941                                    struct vmcs12 *vmcs12);
2942
2943 /*
2944  * If from_vmentry is false, this is being called from state restore (either RSM
2945  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
2946 + *
2947 + * Returns:
2948 + *   0 - success, i.e. proceed with actual VMEnter
2949 + *   1 - consistency check VMExit
2950 + *  -1 - consistency check VMFail
2951  */
2952 int nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
2953 {
2954         struct vcpu_vmx *vmx = to_vmx(vcpu);
2955         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2956         bool evaluate_pending_interrupts;
2957         u32 exit_reason = EXIT_REASON_INVALID_STATE;
2958         u32 exit_qual;
2959
2960         evaluate_pending_interrupts = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
2961                 (CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING);
2962         if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
2963                 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
2964
2965         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
2966                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
2967         if (kvm_mpx_supported() &&
2968                 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2969                 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
2970
2971         vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
2972
2973         prepare_vmcs02_early(vmx, vmcs12);
2974
2975         if (from_vmentry) {
2976                 nested_get_vmcs12_pages(vcpu);
2977
2978                 if (nested_vmx_check_vmentry_hw(vcpu)) {
2979                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
2980                         return -1;
2981                 }
2982
2983                 if (nested_vmx_check_vmentry_postreqs(vcpu, vmcs12, &exit_qual))
2984                         goto vmentry_fail_vmexit;
2985         }
2986
2987         enter_guest_mode(vcpu);
2988         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
2989                 vcpu->arch.tsc_offset += vmcs12->tsc_offset;
2990
2991         if (prepare_vmcs02(vcpu, vmcs12, &exit_qual))
2992                 goto vmentry_fail_vmexit_guest_mode;
2993
2994         if (from_vmentry) {
2995                 exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
2996                 exit_qual = nested_vmx_load_msr(vcpu,
2997                                                 vmcs12->vm_entry_msr_load_addr,
2998                                                 vmcs12->vm_entry_msr_load_count);
2999                 if (exit_qual)
3000                         goto vmentry_fail_vmexit_guest_mode;
3001         } else {
3002                 /*
3003                  * The MMU is not initialized to point at the right entities yet and
3004                  * "get pages" would need to read data from the guest (i.e. we will
3005                  * need to perform gpa to hpa translation). Request a call
3006                  * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3007                  * have already been set at vmentry time and should not be reset.
3008                  */
3009                 kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
3010         }
3011
3012         /*
3013          * If L1 had a pending IRQ/NMI until it executed
3014          * VMLAUNCH/VMRESUME which wasn't delivered because it was
3015          * disallowed (e.g. interrupts disabled), L0 needs to
3016          * evaluate if this pending event should cause an exit from L2
3017          * to L1 or delivered directly to L2 (e.g. In case L1 don't
3018          * intercept EXTERNAL_INTERRUPT).
3019          *
3020          * Usually this would be handled by the processor noticing an
3021          * IRQ/NMI window request, or checking RVI during evaluation of
3022          * pending virtual interrupts.  However, this setting was done
3023          * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3024          * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3025          */
3026         if (unlikely(evaluate_pending_interrupts))
3027                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3028
3029         /*
3030          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3031          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3032          * returned as far as L1 is concerned. It will only return (and set
3033          * the success flag) when L2 exits (see nested_vmx_vmexit()).
3034          */
3035         return 0;
3036
3037         /*
3038          * A failed consistency check that leads to a VMExit during L1's
3039          * VMEnter to L2 is a variation of a normal VMexit, as explained in
3040          * 26.7 "VM-entry failures during or after loading guest state".
3041          */
3042 vmentry_fail_vmexit_guest_mode:
3043         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3044                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3045         leave_guest_mode(vcpu);
3046
3047 vmentry_fail_vmexit:
3048         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3049
3050         if (!from_vmentry)
3051                 return 1;
3052
3053         load_vmcs12_host_state(vcpu, vmcs12);
3054         vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
3055         vmcs12->exit_qualification = exit_qual;
3056         if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3057                 vmx->nested.need_vmcs12_sync = true;
3058         return 1;
3059 }
3060
3061 /*
3062  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3063  * for running an L2 nested guest.
3064  */
3065 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3066 {
3067         struct vmcs12 *vmcs12;
3068         struct vcpu_vmx *vmx = to_vmx(vcpu);
3069         u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3070         int ret;
3071
3072         if (!nested_vmx_check_permission(vcpu))
3073                 return 1;
3074
3075         if (!nested_vmx_handle_enlightened_vmptrld(vcpu, true))
3076                 return 1;
3077
3078         if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
3079                 return nested_vmx_failInvalid(vcpu);
3080
3081         vmcs12 = get_vmcs12(vcpu);
3082
3083         /*
3084          * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3085          * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3086          * rather than RFLAGS.ZF, and no error number is stored to the
3087          * VM-instruction error field.
3088          */
3089         if (vmcs12->hdr.shadow_vmcs)
3090                 return nested_vmx_failInvalid(vcpu);
3091
3092         if (vmx->nested.hv_evmcs) {
3093                 copy_enlightened_to_vmcs12(vmx);
3094                 /* Enlightened VMCS doesn't have launch state */
3095                 vmcs12->launch_state = !launch;
3096         } else if (enable_shadow_vmcs) {
3097                 copy_shadow_to_vmcs12(vmx);
3098         }
3099
3100         /*
3101          * The nested entry process starts with enforcing various prerequisites
3102          * on vmcs12 as required by the Intel SDM, and act appropriately when
3103          * they fail: As the SDM explains, some conditions should cause the
3104          * instruction to fail, while others will cause the instruction to seem
3105          * to succeed, but return an EXIT_REASON_INVALID_STATE.
3106          * To speed up the normal (success) code path, we should avoid checking
3107          * for misconfigurations which will anyway be caught by the processor
3108          * when using the merged vmcs02.
3109          */
3110         if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
3111                 return nested_vmx_failValid(vcpu,
3112                         VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3113
3114         if (vmcs12->launch_state == launch)
3115                 return nested_vmx_failValid(vcpu,
3116                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3117                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3118
3119         ret = nested_vmx_check_vmentry_prereqs(vcpu, vmcs12);
3120         if (ret)
3121                 return nested_vmx_failValid(vcpu, ret);
3122
3123         /*
3124          * We're finally done with prerequisite checking, and can start with
3125          * the nested entry.
3126          */
3127         vmx->nested.nested_run_pending = 1;
3128         ret = nested_vmx_enter_non_root_mode(vcpu, true);
3129         vmx->nested.nested_run_pending = !ret;
3130         if (ret > 0)
3131                 return 1;
3132         else if (ret)
3133                 return nested_vmx_failValid(vcpu,
3134                         VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3135
3136         /* Hide L1D cache contents from the nested guest.  */
3137         vmx->vcpu.arch.l1tf_flush_l1d = true;
3138
3139         /*
3140          * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3141          * also be used as part of restoring nVMX state for
3142          * snapshot restore (migration).
3143          *
3144          * In this flow, it is assumed that vmcs12 cache was
3145          * trasferred as part of captured nVMX state and should
3146          * therefore not be read from guest memory (which may not
3147          * exist on destination host yet).
3148          */
3149         nested_cache_shadow_vmcs12(vcpu, vmcs12);
3150
3151         /*
3152          * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3153          * awakened by event injection or by an NMI-window VM-exit or
3154          * by an interrupt-window VM-exit, halt the vcpu.
3155          */
3156         if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
3157             !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3158             !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_NMI_PENDING) &&
3159             !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_INTR_PENDING) &&
3160               (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3161                 vmx->nested.nested_run_pending = 0;
3162                 return kvm_vcpu_halt(vcpu);
3163         }
3164         return 1;
3165 }
3166
3167 /*
3168  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3169  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
3170  * This function returns the new value we should put in vmcs12.guest_cr0.
3171  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3172  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3173  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3174  *     didn't trap the bit, because if L1 did, so would L0).
3175  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3176  *     been modified by L2, and L1 knows it. So just leave the old value of
3177  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3178  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3179  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3180  *     changed these bits, and therefore they need to be updated, but L0
3181  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3182  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3183  */
3184 static inline unsigned long
3185 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3186 {
3187         return
3188         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3189         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3190         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3191                         vcpu->arch.cr0_guest_owned_bits));
3192 }
3193
3194 static inline unsigned long
3195 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3196 {
3197         return
3198         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3199         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3200         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3201                         vcpu->arch.cr4_guest_owned_bits));
3202 }
3203
3204 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3205                                       struct vmcs12 *vmcs12)
3206 {
3207         u32 idt_vectoring;
3208         unsigned int nr;
3209
3210         if (vcpu->arch.exception.injected) {
3211                 nr = vcpu->arch.exception.nr;
3212                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3213
3214                 if (kvm_exception_is_soft(nr)) {
3215                         vmcs12->vm_exit_instruction_len =
3216                                 vcpu->arch.event_exit_inst_len;
3217                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3218                 } else
3219                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3220
3221                 if (vcpu->arch.exception.has_error_code) {
3222                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3223                         vmcs12->idt_vectoring_error_code =
3224                                 vcpu->arch.exception.error_code;
3225                 }
3226
3227                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3228         } else if (vcpu->arch.nmi_injected) {
3229                 vmcs12->idt_vectoring_info_field =
3230                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3231         } else if (vcpu->arch.interrupt.injected) {
3232                 nr = vcpu->arch.interrupt.nr;
3233                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3234
3235                 if (vcpu->arch.interrupt.soft) {
3236                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
3237                         vmcs12->vm_entry_instruction_len =
3238                                 vcpu->arch.event_exit_inst_len;
3239                 } else
3240                         idt_vectoring |= INTR_TYPE_EXT_INTR;
3241
3242                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3243         }
3244 }
3245
3246
3247 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3248 {
3249         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3250         gfn_t gfn;
3251
3252         /*
3253          * Don't need to mark the APIC access page dirty; it is never
3254          * written to by the CPU during APIC virtualization.
3255          */
3256
3257         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3258                 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3259                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3260         }
3261
3262         if (nested_cpu_has_posted_intr(vmcs12)) {
3263                 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3264                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3265         }
3266 }
3267
3268 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3269 {
3270         struct vcpu_vmx *vmx = to_vmx(vcpu);
3271         int max_irr;
3272         void *vapic_page;
3273         u16 status;
3274
3275         if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3276                 return;
3277
3278         vmx->nested.pi_pending = false;
3279         if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3280                 return;
3281
3282         max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3283         if (max_irr != 256) {
3284                 vapic_page = kmap(vmx->nested.virtual_apic_page);
3285                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3286                         vapic_page, &max_irr);
3287                 kunmap(vmx->nested.virtual_apic_page);
3288
3289                 status = vmcs_read16(GUEST_INTR_STATUS);
3290                 if ((u8)max_irr > ((u8)status & 0xff)) {
3291                         status &= ~0xff;
3292                         status |= (u8)max_irr;
3293                         vmcs_write16(GUEST_INTR_STATUS, status);
3294                 }
3295         }
3296
3297         nested_mark_vmcs12_pages_dirty(vcpu);
3298 }
3299
3300 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3301                                                unsigned long exit_qual)
3302 {
3303         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3304         unsigned int nr = vcpu->arch.exception.nr;
3305         u32 intr_info = nr | INTR_INFO_VALID_MASK;
3306
3307         if (vcpu->arch.exception.has_error_code) {
3308                 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3309                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3310         }
3311
3312         if (kvm_exception_is_soft(nr))
3313                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3314         else
3315                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3316
3317         if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3318             vmx_get_nmi_mask(vcpu))
3319                 intr_info |= INTR_INFO_UNBLOCK_NMI;
3320
3321         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3322 }
3323
3324 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
3325 {
3326         struct vcpu_vmx *vmx = to_vmx(vcpu);
3327         unsigned long exit_qual;
3328         bool block_nested_events =
3329             vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3330
3331         if (vcpu->arch.exception.pending &&
3332                 nested_vmx_check_exception(vcpu, &exit_qual)) {
3333                 if (block_nested_events)
3334                         return -EBUSY;
3335                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3336                 return 0;
3337         }
3338
3339         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3340             vmx->nested.preemption_timer_expired) {
3341                 if (block_nested_events)
3342                         return -EBUSY;
3343                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3344                 return 0;
3345         }
3346
3347         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
3348                 if (block_nested_events)
3349                         return -EBUSY;
3350                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3351                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
3352                                   INTR_INFO_VALID_MASK, 0);
3353                 /*
3354                  * The NMI-triggered VM exit counts as injection:
3355                  * clear this one and block further NMIs.
3356                  */
3357                 vcpu->arch.nmi_pending = 0;
3358                 vmx_set_nmi_mask(vcpu, true);
3359                 return 0;
3360         }
3361
3362         if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
3363             nested_exit_on_intr(vcpu)) {
3364                 if (block_nested_events)
3365                         return -EBUSY;
3366                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3367                 return 0;
3368         }
3369
3370         vmx_complete_nested_posted_interrupt(vcpu);
3371         return 0;
3372 }
3373
3374 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3375 {
3376         ktime_t remaining =
3377                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3378         u64 value;
3379
3380         if (ktime_to_ns(remaining) <= 0)
3381                 return 0;
3382
3383         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3384         do_div(value, 1000000);
3385         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3386 }
3387
3388 /*
3389  * Update the guest state fields of vmcs12 to reflect changes that
3390  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
3391  * VM-entry controls is also updated, since this is really a guest
3392  * state bit.)
3393  */
3394 static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3395 {
3396         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
3397         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
3398
3399         vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3400         vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
3401         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
3402
3403         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
3404         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
3405         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
3406         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
3407         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
3408         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
3409         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
3410         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
3411         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
3412         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
3413         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
3414         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
3415         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
3416         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
3417         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
3418         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
3419         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
3420         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
3421         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
3422         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
3423         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
3424         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
3425         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
3426         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
3427         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
3428         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
3429         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
3430         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
3431         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
3432         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
3433         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
3434         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
3435         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
3436         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
3437         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
3438         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
3439
3440         vmcs12->guest_interruptibility_info =
3441                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
3442         vmcs12->guest_pending_dbg_exceptions =
3443                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3444         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3445                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
3446         else
3447                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
3448
3449         if (nested_cpu_has_preemption_timer(vmcs12)) {
3450                 if (vmcs12->vm_exit_controls &
3451                     VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
3452                         vmcs12->vmx_preemption_timer_value =
3453                                 vmx_get_preemption_timer_value(vcpu);
3454                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
3455         }
3456
3457         /*
3458          * In some cases (usually, nested EPT), L2 is allowed to change its
3459          * own CR3 without exiting. If it has changed it, we must keep it.
3460          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
3461          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
3462          *
3463          * Additionally, restore L2's PDPTR to vmcs12.
3464          */
3465         if (enable_ept) {
3466                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3467                 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
3468                 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
3469                 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
3470                 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
3471         }
3472
3473         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
3474
3475         if (nested_cpu_has_vid(vmcs12))
3476                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
3477
3478         vmcs12->vm_entry_controls =
3479                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
3480                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
3481
3482         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
3483                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
3484                 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3485         }
3486
3487         /* TODO: These cannot have changed unless we have MSR bitmaps and
3488          * the relevant bit asks not to trap the change */
3489         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
3490                 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
3491         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
3492                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
3493         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
3494         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
3495         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
3496         if (kvm_mpx_supported())
3497                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3498 }
3499
3500 /*
3501  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
3502  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
3503  * and this function updates it to reflect the changes to the guest state while
3504  * L2 was running (and perhaps made some exits which were handled directly by L0
3505  * without going back to L1), and to reflect the exit reason.
3506  * Note that we do not have to copy here all VMCS fields, just those that
3507  * could have changed by the L2 guest or the exit - i.e., the guest-state and
3508  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
3509  * which already writes to vmcs12 directly.
3510  */
3511 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
3512                            u32 exit_reason, u32 exit_intr_info,
3513                            unsigned long exit_qualification)
3514 {
3515         /* update guest state fields: */
3516         sync_vmcs12(vcpu, vmcs12);
3517
3518         /* update exit information fields: */
3519
3520         vmcs12->vm_exit_reason = exit_reason;
3521         vmcs12->exit_qualification = exit_qualification;
3522         vmcs12->vm_exit_intr_info = exit_intr_info;
3523
3524         vmcs12->idt_vectoring_info_field = 0;
3525         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3526         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
3527
3528         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
3529                 vmcs12->launch_state = 1;
3530
3531                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
3532                  * instead of reading the real value. */
3533                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
3534
3535                 /*
3536                  * Transfer the event that L0 or L1 may wanted to inject into
3537                  * L2 to IDT_VECTORING_INFO_FIELD.
3538                  */
3539                 vmcs12_save_pending_event(vcpu, vmcs12);
3540
3541                 /*
3542                  * According to spec, there's no need to store the guest's
3543                  * MSRs if the exit is due to a VM-entry failure that occurs
3544                  * during or after loading the guest state. Since this exit
3545                  * does not fall in that category, we need to save the MSRs.
3546                  */
3547                 if (nested_vmx_store_msr(vcpu,
3548                                          vmcs12->vm_exit_msr_store_addr,
3549                                          vmcs12->vm_exit_msr_store_count))
3550                         nested_vmx_abort(vcpu,
3551                                          VMX_ABORT_SAVE_GUEST_MSR_FAIL);
3552         }
3553
3554         /*
3555          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
3556          * preserved above and would only end up incorrectly in L1.
3557          */
3558         vcpu->arch.nmi_injected = false;
3559         kvm_clear_exception_queue(vcpu);
3560         kvm_clear_interrupt_queue(vcpu);
3561 }
3562
3563 /*
3564  * A part of what we need to when the nested L2 guest exits and we want to
3565  * run its L1 parent, is to reset L1's guest state to the host state specified
3566  * in vmcs12.
3567  * This function is to be called not only on normal nested exit, but also on
3568  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
3569  * Failures During or After Loading Guest State").
3570  * This function should be called when the active VMCS is L1's (vmcs01).
3571  */
3572 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3573                                    struct vmcs12 *vmcs12)
3574 {
3575         struct kvm_segment seg;
3576         u32 entry_failure_code;
3577
3578         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
3579                 vcpu->arch.efer = vmcs12->host_ia32_efer;
3580         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3581                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
3582         else
3583                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
3584         vmx_set_efer(vcpu, vcpu->arch.efer);
3585
3586         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
3587         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
3588         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
3589         vmx_set_interrupt_shadow(vcpu, 0);
3590
3591         /*
3592          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
3593          * actually changed, because vmx_set_cr0 refers to efer set above.
3594          *
3595          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
3596          * (KVM doesn't change it);
3597          */
3598         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3599         vmx_set_cr0(vcpu, vmcs12->host_cr0);
3600
3601         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
3602         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3603         vmx_set_cr4(vcpu, vmcs12->host_cr4);
3604
3605         nested_ept_uninit_mmu_context(vcpu);
3606
3607         /*
3608          * Only PDPTE load can fail as the value of cr3 was checked on entry and
3609          * couldn't have changed.
3610          */
3611         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
3612                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
3613
3614         if (!enable_ept)
3615                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3616
3617         /*
3618          * If vmcs01 doesn't use VPID, CPU flushes TLB on every
3619          * VMEntry/VMExit. Thus, no need to flush TLB.
3620          *
3621          * If vmcs12 doesn't use VPID, L1 expects TLB to be
3622          * flushed on every VMEntry/VMExit.
3623          *
3624          * Otherwise, we can preserve TLB entries as long as we are
3625          * able to tag L1 TLB entries differently than L2 TLB entries.
3626          *
3627          * If vmcs12 uses EPT, we need to execute this flush on EPTP01
3628          * and therefore we request the TLB flush to happen only after VMCS EPTP
3629          * has been set by KVM_REQ_LOAD_CR3.
3630          */
3631         if (enable_vpid &&
3632             (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) {
3633                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3634         }
3635
3636         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
3637         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
3638         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
3639         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
3640         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
3641         vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
3642         vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
3643
3644         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
3645         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
3646                 vmcs_write64(GUEST_BNDCFGS, 0);
3647
3648         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
3649                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
3650                 vcpu->arch.pat = vmcs12->host_ia32_pat;
3651         }
3652         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
3653                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
3654                         vmcs12->host_ia32_perf_global_ctrl);
3655
3656         /* Set L1 segment info according to Intel SDM
3657             27.5.2 Loading Host Segment and Descriptor-Table Registers */
3658         seg = (struct kvm_segment) {
3659                 .base = 0,
3660                 .limit = 0xFFFFFFFF,
3661                 .selector = vmcs12->host_cs_selector,
3662                 .type = 11,
3663                 .present = 1,
3664                 .s = 1,
3665                 .g = 1
3666         };
3667         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3668                 seg.l = 1;
3669         else
3670                 seg.db = 1;
3671         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
3672         seg = (struct kvm_segment) {
3673                 .base = 0,
3674                 .limit = 0xFFFFFFFF,
3675                 .type = 3,
3676                 .present = 1,
3677                 .s = 1,
3678                 .db = 1,
3679                 .g = 1
3680         };
3681         seg.selector = vmcs12->host_ds_selector;
3682         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
3683         seg.selector = vmcs12->host_es_selector;
3684         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
3685         seg.selector = vmcs12->host_ss_selector;
3686         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
3687         seg.selector = vmcs12->host_fs_selector;
3688         seg.base = vmcs12->host_fs_base;
3689         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
3690         seg.selector = vmcs12->host_gs_selector;
3691         seg.base = vmcs12->host_gs_base;
3692         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
3693         seg = (struct kvm_segment) {
3694                 .base = vmcs12->host_tr_base,
3695                 .limit = 0x67,
3696                 .selector = vmcs12->host_tr_selector,
3697                 .type = 11,
3698                 .present = 1
3699         };
3700         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
3701
3702         kvm_set_dr(vcpu, 7, 0x400);
3703         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3704
3705         if (cpu_has_vmx_msr_bitmap())
3706                 vmx_update_msr_bitmap(vcpu);
3707
3708         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
3709                                 vmcs12->vm_exit_msr_load_count))
3710                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
3711 }
3712
3713 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
3714 {
3715         struct shared_msr_entry *efer_msr;
3716         unsigned int i;
3717
3718         if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
3719                 return vmcs_read64(GUEST_IA32_EFER);
3720
3721         if (cpu_has_load_ia32_efer())
3722                 return host_efer;
3723
3724         for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
3725                 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
3726                         return vmx->msr_autoload.guest.val[i].value;
3727         }
3728
3729         efer_msr = find_msr_entry(vmx, MSR_EFER);
3730         if (efer_msr)
3731                 return efer_msr->data;
3732
3733         return host_efer;
3734 }
3735
3736 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
3737 {
3738         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3739         struct vcpu_vmx *vmx = to_vmx(vcpu);
3740         struct vmx_msr_entry g, h;
3741         struct msr_data msr;
3742         gpa_t gpa;
3743         u32 i, j;
3744
3745         vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
3746
3747         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
3748                 /*
3749                  * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
3750                  * as vmcs01.GUEST_DR7 contains a userspace defined value
3751                  * and vcpu->arch.dr7 is not squirreled away before the
3752                  * nested VMENTER (not worth adding a variable in nested_vmx).
3753                  */
3754                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
3755                         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
3756                 else
3757                         WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
3758         }
3759
3760         /*
3761          * Note that calling vmx_set_{efer,cr0,cr4} is important as they
3762          * handle a variety of side effects to KVM's software model.
3763          */
3764         vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
3765
3766         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3767         vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
3768
3769         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3770         vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
3771
3772         nested_ept_uninit_mmu_context(vcpu);
3773         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3774         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3775
3776         /*
3777          * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
3778          * from vmcs01 (if necessary).  The PDPTRs are not loaded on
3779          * VMFail, like everything else we just need to ensure our
3780          * software model is up-to-date.
3781          */
3782         ept_save_pdptrs(vcpu);
3783
3784         kvm_mmu_reset_context(vcpu);
3785
3786         if (cpu_has_vmx_msr_bitmap())
3787                 vmx_update_msr_bitmap(vcpu);
3788
3789         /*
3790          * This nasty bit of open coding is a compromise between blindly
3791          * loading L1's MSRs using the exit load lists (incorrect emulation
3792          * of VMFail), leaving the nested VM's MSRs in the software model
3793          * (incorrect behavior) and snapshotting the modified MSRs (too
3794          * expensive since the lists are unbound by hardware).  For each
3795          * MSR that was (prematurely) loaded from the nested VMEntry load
3796          * list, reload it from the exit load list if it exists and differs
3797          * from the guest value.  The intent is to stuff host state as
3798          * silently as possible, not to fully process the exit load list.
3799          */
3800         msr.host_initiated = false;
3801         for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
3802                 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
3803                 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
3804                         pr_debug_ratelimited(
3805                                 "%s read MSR index failed (%u, 0x%08llx)\n",
3806                                 __func__, i, gpa);
3807                         goto vmabort;
3808                 }
3809
3810                 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
3811                         gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
3812                         if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
3813                                 pr_debug_ratelimited(
3814                                         "%s read MSR failed (%u, 0x%08llx)\n",
3815                                         __func__, j, gpa);
3816                                 goto vmabort;
3817                         }
3818                         if (h.index != g.index)
3819                                 continue;
3820                         if (h.value == g.value)
3821                                 break;
3822
3823                         if (nested_vmx_load_msr_check(vcpu, &h)) {
3824                                 pr_debug_ratelimited(
3825                                         "%s check failed (%u, 0x%x, 0x%x)\n",
3826                                         __func__, j, h.index, h.reserved);
3827                                 goto vmabort;
3828                         }
3829
3830                         msr.index = h.index;
3831                         msr.data = h.value;
3832                         if (kvm_set_msr(vcpu, &msr)) {
3833                                 pr_debug_ratelimited(
3834                                         "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
3835                                         __func__, j, h.index, h.value);
3836                                 goto vmabort;
3837                         }
3838                 }
3839         }
3840
3841         return;
3842
3843 vmabort:
3844         nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
3845 }
3846
3847 /*
3848  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
3849  * and modify vmcs12 to make it see what it would expect to see there if
3850  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
3851  */
3852 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
3853                        u32 exit_intr_info, unsigned long exit_qualification)
3854 {
3855         struct vcpu_vmx *vmx = to_vmx(vcpu);
3856         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3857
3858         /* trying to cancel vmlaunch/vmresume is a bug */
3859         WARN_ON_ONCE(vmx->nested.nested_run_pending);
3860
3861         leave_guest_mode(vcpu);
3862
3863         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3864                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3865
3866         if (likely(!vmx->fail)) {
3867                 if (exit_reason == -1)
3868                         sync_vmcs12(vcpu, vmcs12);
3869                 else
3870                         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
3871                                        exit_qualification);
3872
3873                 /*
3874                  * Must happen outside of sync_vmcs12() as it will
3875                  * also be used to capture vmcs12 cache as part of
3876                  * capturing nVMX state for snapshot (migration).
3877                  *
3878                  * Otherwise, this flush will dirty guest memory at a
3879                  * point it is already assumed by user-space to be
3880                  * immutable.
3881                  */
3882                 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
3883         } else {
3884                 /*
3885                  * The only expected VM-instruction error is "VM entry with
3886                  * invalid control field(s)." Anything else indicates a
3887                  * problem with L0.  And we should never get here with a
3888                  * VMFail of any type if early consistency checks are enabled.
3889                  */
3890                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
3891                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3892                 WARN_ON_ONCE(nested_early_check);
3893         }
3894
3895         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3896
3897         /* Update any VMCS fields that might have changed while L2 ran */
3898         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3899         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3900         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
3901
3902         if (kvm_has_tsc_control)
3903                 decache_tsc_multiplier(vmx);
3904
3905         if (vmx->nested.change_vmcs01_virtual_apic_mode) {
3906                 vmx->nested.change_vmcs01_virtual_apic_mode = false;
3907                 vmx_set_virtual_apic_mode(vcpu);
3908         } else if (!nested_cpu_has_ept(vmcs12) &&
3909                    nested_cpu_has2(vmcs12,
3910                                    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3911                 vmx_flush_tlb(vcpu, true);
3912         }
3913
3914         /* This is needed for same reason as it was needed in prepare_vmcs02 */
3915         vmx->host_rsp = 0;
3916
3917         /* Unpin physical memory we referred to in vmcs02 */
3918         if (vmx->nested.apic_access_page) {
3919                 kvm_release_page_dirty(vmx->nested.apic_access_page);
3920                 vmx->nested.apic_access_page = NULL;
3921         }
3922         if (vmx->nested.virtual_apic_page) {
3923                 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
3924                 vmx->nested.virtual_apic_page = NULL;
3925         }
3926         if (vmx->nested.pi_desc_page) {
3927                 kunmap(vmx->nested.pi_desc_page);
3928                 kvm_release_page_dirty(vmx->nested.pi_desc_page);
3929                 vmx->nested.pi_desc_page = NULL;
3930                 vmx->nested.pi_desc = NULL;
3931         }
3932
3933         /*
3934          * We are now running in L2, mmu_notifier will force to reload the
3935          * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
3936          */
3937         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
3938
3939         if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs))
3940                 vmx->nested.need_vmcs12_sync = true;
3941
3942         /* in case we halted in L2 */
3943         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3944
3945         if (likely(!vmx->fail)) {
3946                 /*
3947                  * TODO: SDM says that with acknowledge interrupt on
3948                  * exit, bit 31 of the VM-exit interrupt information
3949                  * (valid interrupt) is always set to 1 on
3950                  * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
3951                  * need kvm_cpu_has_interrupt().  See the commit
3952                  * message for details.
3953                  */
3954                 if (nested_exit_intr_ack_set(vcpu) &&
3955                     exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
3956                     kvm_cpu_has_interrupt(vcpu)) {
3957                         int irq = kvm_cpu_get_interrupt(vcpu);
3958                         WARN_ON(irq < 0);
3959                         vmcs12->vm_exit_intr_info = irq |
3960                                 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
3961                 }
3962
3963                 if (exit_reason != -1)
3964                         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
3965                                                        vmcs12->exit_qualification,
3966                                                        vmcs12->idt_vectoring_info_field,
3967                                                        vmcs12->vm_exit_intr_info,
3968                                                        vmcs12->vm_exit_intr_error_code,
3969                                                        KVM_ISA_VMX);
3970
3971                 load_vmcs12_host_state(vcpu, vmcs12);
3972
3973                 return;
3974         }
3975
3976         /*
3977          * After an early L2 VM-entry failure, we're now back
3978          * in L1 which thinks it just finished a VMLAUNCH or
3979          * VMRESUME instruction, so we need to set the failure
3980          * flag and the VM-instruction error field of the VMCS
3981          * accordingly, and skip the emulated instruction.
3982          */
3983         (void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3984
3985         /*
3986          * Restore L1's host state to KVM's software model.  We're here
3987          * because a consistency check was caught by hardware, which
3988          * means some amount of guest state has been propagated to KVM's
3989          * model and needs to be unwound to the host's state.
3990          */
3991         nested_vmx_restore_host_state(vcpu);
3992
3993         vmx->fail = 0;
3994 }
3995
3996 /*
3997  * Decode the memory-address operand of a vmx instruction, as recorded on an
3998  * exit caused by such an instruction (run by a guest hypervisor).
3999  * On success, returns 0. When the operand is invalid, returns 1 and throws
4000  * #UD or #GP.
4001  */
4002 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4003                         u32 vmx_instruction_info, bool wr, gva_t *ret)
4004 {
4005         gva_t off;
4006         bool exn;
4007         struct kvm_segment s;
4008
4009         /*
4010          * According to Vol. 3B, "Information for VM Exits Due to Instruction
4011          * Execution", on an exit, vmx_instruction_info holds most of the
4012          * addressing components of the operand. Only the displacement part
4013          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4014          * For how an actual address is calculated from all these components,
4015          * refer to Vol. 1, "Operand Addressing".
4016          */
4017         int  scaling = vmx_instruction_info & 3;
4018         int  addr_size = (vmx_instruction_info >> 7) & 7;
4019         bool is_reg = vmx_instruction_info & (1u << 10);
4020         int  seg_reg = (vmx_instruction_info >> 15) & 7;
4021         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4022         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4023         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4024         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4025
4026         if (is_reg) {
4027                 kvm_queue_exception(vcpu, UD_VECTOR);
4028                 return 1;
4029         }
4030
4031         /* Addr = segment_base + offset */
4032         /* offset = base + [index * scale] + displacement */
4033         off = exit_qualification; /* holds the displacement */
4034         if (base_is_valid)
4035                 off += kvm_register_read(vcpu, base_reg);
4036         if (index_is_valid)
4037                 off += kvm_register_read(vcpu, index_reg)<<scaling;
4038         vmx_get_segment(vcpu, &s, seg_reg);
4039         *ret = s.base + off;
4040
4041         if (addr_size == 1) /* 32 bit */
4042                 *ret &= 0xffffffff;
4043
4044         /* Checks for #GP/#SS exceptions. */
4045         exn = false;
4046         if (is_long_mode(vcpu)) {
4047                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4048                  * non-canonical form. This is the only check on the memory
4049                  * destination for long mode!
4050                  */
4051                 exn = is_noncanonical_address(*ret, vcpu);
4052         } else if (is_protmode(vcpu)) {
4053                 /* Protected mode: apply checks for segment validity in the
4054                  * following order:
4055                  * - segment type check (#GP(0) may be thrown)
4056                  * - usability check (#GP(0)/#SS(0))
4057                  * - limit check (#GP(0)/#SS(0))
4058                  */
4059                 if (wr)
4060                         /* #GP(0) if the destination operand is located in a
4061                          * read-only data segment or any code segment.
4062                          */
4063                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
4064                 else
4065                         /* #GP(0) if the source operand is located in an
4066                          * execute-only code segment
4067                          */
4068                         exn = ((s.type & 0xa) == 8);
4069                 if (exn) {
4070                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4071                         return 1;
4072                 }
4073                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4074                  */
4075                 exn = (s.unusable != 0);
4076                 /* Protected mode: #GP(0)/#SS(0) if the memory
4077                  * operand is outside the segment limit.
4078                  */
4079                 exn = exn || (off + sizeof(u64) > s.limit);
4080         }
4081         if (exn) {
4082                 kvm_queue_exception_e(vcpu,
4083                                       seg_reg == VCPU_SREG_SS ?
4084                                                 SS_VECTOR : GP_VECTOR,
4085                                       0);
4086                 return 1;
4087         }
4088
4089         return 0;
4090 }
4091
4092 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
4093 {
4094         gva_t gva;
4095         struct x86_exception e;
4096
4097         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4098                         vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
4099                 return 1;
4100
4101         if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
4102                 kvm_inject_page_fault(vcpu, &e);
4103                 return 1;
4104         }
4105
4106         return 0;
4107 }
4108
4109 /*
4110  * Allocate a shadow VMCS and associate it with the currently loaded
4111  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4112  * VMCS is also VMCLEARed, so that it is ready for use.
4113  */
4114 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4115 {
4116         struct vcpu_vmx *vmx = to_vmx(vcpu);
4117         struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4118
4119         /*
4120          * We should allocate a shadow vmcs for vmcs01 only when L1
4121          * executes VMXON and free it when L1 executes VMXOFF.
4122          * As it is invalid to execute VMXON twice, we shouldn't reach
4123          * here when vmcs01 already have an allocated shadow vmcs.
4124          */
4125         WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4126
4127         if (!loaded_vmcs->shadow_vmcs) {
4128                 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4129                 if (loaded_vmcs->shadow_vmcs)
4130                         vmcs_clear(loaded_vmcs->shadow_vmcs);
4131         }
4132         return loaded_vmcs->shadow_vmcs;
4133 }
4134
4135 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4136 {
4137         struct vcpu_vmx *vmx = to_vmx(vcpu);
4138         int r;
4139
4140         r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4141         if (r < 0)
4142                 goto out_vmcs02;
4143
4144         vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL);
4145         if (!vmx->nested.cached_vmcs12)
4146                 goto out_cached_vmcs12;
4147
4148         vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL);
4149         if (!vmx->nested.cached_shadow_vmcs12)
4150                 goto out_cached_shadow_vmcs12;
4151
4152         if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4153                 goto out_shadow_vmcs;
4154
4155         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4156                      HRTIMER_MODE_REL_PINNED);
4157         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4158
4159         vmx->nested.vpid02 = allocate_vpid();
4160
4161         vmx->nested.vmcs02_initialized = false;
4162         vmx->nested.vmxon = true;
4163
4164         if (pt_mode == PT_MODE_HOST_GUEST) {
4165                 vmx->pt_desc.guest.ctl = 0;
4166                 pt_update_intercept_for_msr(vmx);
4167         }
4168
4169         return 0;
4170
4171 out_shadow_vmcs:
4172         kfree(vmx->nested.cached_shadow_vmcs12);
4173
4174 out_cached_shadow_vmcs12:
4175         kfree(vmx->nested.cached_vmcs12);
4176
4177 out_cached_vmcs12:
4178         free_loaded_vmcs(&vmx->nested.vmcs02);
4179
4180 out_vmcs02:
4181         return -ENOMEM;
4182 }
4183
4184 /*
4185  * Emulate the VMXON instruction.
4186  * Currently, we just remember that VMX is active, and do not save or even
4187  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4188  * do not currently need to store anything in that guest-allocated memory
4189  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4190  * argument is different from the VMXON pointer (which the spec says they do).
4191  */
4192 static int handle_vmon(struct kvm_vcpu *vcpu)
4193 {
4194         int ret;
4195         gpa_t vmptr;
4196         struct page *page;
4197         struct vcpu_vmx *vmx = to_vmx(vcpu);
4198         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
4199                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
4200
4201         /*
4202          * The Intel VMX Instruction Reference lists a bunch of bits that are
4203          * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4204          * 1 (see vmx_set_cr4() for when we allow the guest to set this).
4205          * Otherwise, we should fail with #UD.  But most faulting conditions
4206          * have already been checked by hardware, prior to the VM-exit for
4207          * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4208          * that bit set to 1 in non-root mode.
4209          */
4210         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4211                 kvm_queue_exception(vcpu, UD_VECTOR);
4212                 return 1;
4213         }
4214
4215         /* CPL=0 must be checked manually. */
4216         if (vmx_get_cpl(vcpu)) {
4217                 kvm_inject_gp(vcpu, 0);
4218                 return 1;
4219         }
4220
4221         if (vmx->nested.vmxon)
4222                 return nested_vmx_failValid(vcpu,
4223                         VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4224
4225         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4226                         != VMXON_NEEDED_FEATURES) {
4227                 kvm_inject_gp(vcpu, 0);
4228                 return 1;
4229         }
4230
4231         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4232                 return 1;
4233
4234         /*
4235          * SDM 3: 24.11.5
4236          * The first 4 bytes of VMXON region contain the supported
4237          * VMCS revision identifier
4238          *
4239          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4240          * which replaces physical address width with 32
4241          */
4242         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
4243                 return nested_vmx_failInvalid(vcpu);
4244
4245         page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
4246         if (is_error_page(page))
4247                 return nested_vmx_failInvalid(vcpu);
4248
4249         if (*(u32 *)kmap(page) != VMCS12_REVISION) {
4250                 kunmap(page);
4251                 kvm_release_page_clean(page);
4252                 return nested_vmx_failInvalid(vcpu);
4253         }
4254         kunmap(page);
4255         kvm_release_page_clean(page);
4256
4257         vmx->nested.vmxon_ptr = vmptr;
4258         ret = enter_vmx_operation(vcpu);
4259         if (ret)
4260                 return ret;
4261
4262         return nested_vmx_succeed(vcpu);
4263 }
4264
4265 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4266 {
4267         struct vcpu_vmx *vmx = to_vmx(vcpu);
4268
4269         if (vmx->nested.current_vmptr == -1ull)
4270                 return;
4271
4272         if (enable_shadow_vmcs) {
4273                 /* copy to memory all shadowed fields in case
4274                    they were modified */
4275                 copy_shadow_to_vmcs12(vmx);
4276                 vmx->nested.need_vmcs12_sync = false;
4277                 vmx_disable_shadow_vmcs(vmx);
4278         }
4279         vmx->nested.posted_intr_nv = -1;
4280
4281         /* Flush VMCS12 to guest memory */
4282         kvm_vcpu_write_guest_page(vcpu,
4283                                   vmx->nested.current_vmptr >> PAGE_SHIFT,
4284                                   vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4285
4286         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4287
4288         vmx->nested.current_vmptr = -1ull;
4289 }
4290
4291 /* Emulate the VMXOFF instruction */
4292 static int handle_vmoff(struct kvm_vcpu *vcpu)
4293 {
4294         if (!nested_vmx_check_permission(vcpu))
4295                 return 1;
4296         free_nested(vcpu);
4297         return nested_vmx_succeed(vcpu);
4298 }
4299
4300 /* Emulate the VMCLEAR instruction */
4301 static int handle_vmclear(struct kvm_vcpu *vcpu)
4302 {
4303         struct vcpu_vmx *vmx = to_vmx(vcpu);
4304         u32 zero = 0;
4305         gpa_t vmptr;
4306
4307         if (!nested_vmx_check_permission(vcpu))
4308                 return 1;
4309
4310         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4311                 return 1;
4312
4313         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
4314                 return nested_vmx_failValid(vcpu,
4315                         VMXERR_VMCLEAR_INVALID_ADDRESS);
4316
4317         if (vmptr == vmx->nested.vmxon_ptr)
4318                 return nested_vmx_failValid(vcpu,
4319                         VMXERR_VMCLEAR_VMXON_POINTER);
4320
4321         if (vmx->nested.hv_evmcs_page) {
4322                 if (vmptr == vmx->nested.hv_evmcs_vmptr)
4323                         nested_release_evmcs(vcpu);
4324         } else {
4325                 if (vmptr == vmx->nested.current_vmptr)
4326                         nested_release_vmcs12(vcpu);
4327
4328                 kvm_vcpu_write_guest(vcpu,
4329                                      vmptr + offsetof(struct vmcs12,
4330                                                       launch_state),
4331                                      &zero, sizeof(zero));
4332         }
4333
4334         return nested_vmx_succeed(vcpu);
4335 }
4336
4337 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
4338
4339 /* Emulate the VMLAUNCH instruction */
4340 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
4341 {
4342         return nested_vmx_run(vcpu, true);
4343 }
4344
4345 /* Emulate the VMRESUME instruction */
4346 static int handle_vmresume(struct kvm_vcpu *vcpu)
4347 {
4348
4349         return nested_vmx_run(vcpu, false);
4350 }
4351
4352 static int handle_vmread(struct kvm_vcpu *vcpu)
4353 {
4354         unsigned long field;
4355         u64 field_value;
4356         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4357         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4358         gva_t gva = 0;
4359         struct vmcs12 *vmcs12;
4360
4361         if (!nested_vmx_check_permission(vcpu))
4362                 return 1;
4363
4364         if (to_vmx(vcpu)->nested.current_vmptr == -1ull)
4365                 return nested_vmx_failInvalid(vcpu);
4366
4367         if (!is_guest_mode(vcpu))
4368                 vmcs12 = get_vmcs12(vcpu);
4369         else {
4370                 /*
4371                  * When vmcs->vmcs_link_pointer is -1ull, any VMREAD
4372                  * to shadowed-field sets the ALU flags for VMfailInvalid.
4373                  */
4374                 if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4375                         return nested_vmx_failInvalid(vcpu);
4376                 vmcs12 = get_shadow_vmcs12(vcpu);
4377         }
4378
4379         /* Decode instruction info and find the field to read */
4380         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4381         /* Read the field, zero-extended to a u64 field_value */
4382         if (vmcs12_read_any(vmcs12, field, &field_value) < 0)
4383                 return nested_vmx_failValid(vcpu,
4384                         VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4385
4386         /*
4387          * Now copy part of this value to register or memory, as requested.
4388          * Note that the number of bits actually copied is 32 or 64 depending
4389          * on the guest's mode (32 or 64 bit), not on the given field's length.
4390          */
4391         if (vmx_instruction_info & (1u << 10)) {
4392                 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
4393                         field_value);
4394         } else {
4395                 if (get_vmx_mem_address(vcpu, exit_qualification,
4396                                 vmx_instruction_info, true, &gva))
4397                         return 1;
4398                 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
4399                 kvm_write_guest_virt_system(vcpu, gva, &field_value,
4400                                             (is_long_mode(vcpu) ? 8 : 4), NULL);
4401         }
4402
4403         return nested_vmx_succeed(vcpu);
4404 }
4405
4406
4407 static int handle_vmwrite(struct kvm_vcpu *vcpu)
4408 {
4409         unsigned long field;
4410         gva_t gva;
4411         struct vcpu_vmx *vmx = to_vmx(vcpu);
4412         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4413         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4414
4415         /* The value to write might be 32 or 64 bits, depending on L1's long
4416          * mode, and eventually we need to write that into a field of several
4417          * possible lengths. The code below first zero-extends the value to 64
4418          * bit (field_value), and then copies only the appropriate number of
4419          * bits into the vmcs12 field.
4420          */
4421         u64 field_value = 0;
4422         struct x86_exception e;
4423         struct vmcs12 *vmcs12;
4424
4425         if (!nested_vmx_check_permission(vcpu))
4426                 return 1;
4427
4428         if (vmx->nested.current_vmptr == -1ull)
4429                 return nested_vmx_failInvalid(vcpu);
4430
4431         if (vmx_instruction_info & (1u << 10))
4432                 field_value = kvm_register_readl(vcpu,
4433                         (((vmx_instruction_info) >> 3) & 0xf));
4434         else {
4435                 if (get_vmx_mem_address(vcpu, exit_qualification,
4436                                 vmx_instruction_info, false, &gva))
4437                         return 1;
4438                 if (kvm_read_guest_virt(vcpu, gva, &field_value,
4439                                         (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
4440                         kvm_inject_page_fault(vcpu, &e);
4441                         return 1;
4442                 }
4443         }
4444
4445
4446         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4447         /*
4448          * If the vCPU supports "VMWRITE to any supported field in the
4449          * VMCS," then the "read-only" fields are actually read/write.
4450          */
4451         if (vmcs_field_readonly(field) &&
4452             !nested_cpu_has_vmwrite_any_field(vcpu))
4453                 return nested_vmx_failValid(vcpu,
4454                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
4455
4456         if (!is_guest_mode(vcpu))
4457                 vmcs12 = get_vmcs12(vcpu);
4458         else {
4459                 /*
4460                  * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE
4461                  * to shadowed-field sets the ALU flags for VMfailInvalid.
4462                  */
4463                 if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4464                         return nested_vmx_failInvalid(vcpu);
4465                 vmcs12 = get_shadow_vmcs12(vcpu);
4466         }
4467
4468         if (vmcs12_write_any(vmcs12, field, field_value) < 0)
4469                 return nested_vmx_failValid(vcpu,
4470                         VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4471
4472         /*
4473          * Do not track vmcs12 dirty-state if in guest-mode
4474          * as we actually dirty shadow vmcs12 instead of vmcs12.
4475          */
4476         if (!is_guest_mode(vcpu)) {
4477                 switch (field) {
4478 #define SHADOW_FIELD_RW(x) case x:
4479 #include "vmcs_shadow_fields.h"
4480                         /*
4481                          * The fields that can be updated by L1 without a vmexit are
4482                          * always updated in the vmcs02, the others go down the slow
4483                          * path of prepare_vmcs02.
4484                          */
4485                         break;
4486                 default:
4487                         vmx->nested.dirty_vmcs12 = true;
4488                         break;
4489                 }
4490         }
4491
4492         return nested_vmx_succeed(vcpu);
4493 }
4494
4495 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
4496 {
4497         vmx->nested.current_vmptr = vmptr;
4498         if (enable_shadow_vmcs) {
4499                 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
4500                               SECONDARY_EXEC_SHADOW_VMCS);
4501                 vmcs_write64(VMCS_LINK_POINTER,
4502                              __pa(vmx->vmcs01.shadow_vmcs));
4503                 vmx->nested.need_vmcs12_sync = true;
4504         }
4505         vmx->nested.dirty_vmcs12 = true;
4506 }
4507
4508 /* Emulate the VMPTRLD instruction */
4509 static int handle_vmptrld(struct kvm_vcpu *vcpu)
4510 {
4511         struct vcpu_vmx *vmx = to_vmx(vcpu);
4512         gpa_t vmptr;
4513
4514         if (!nested_vmx_check_permission(vcpu))
4515                 return 1;
4516
4517         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4518                 return 1;
4519
4520         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
4521                 return nested_vmx_failValid(vcpu,
4522                         VMXERR_VMPTRLD_INVALID_ADDRESS);
4523
4524         if (vmptr == vmx->nested.vmxon_ptr)
4525                 return nested_vmx_failValid(vcpu,
4526                         VMXERR_VMPTRLD_VMXON_POINTER);
4527
4528         /* Forbid normal VMPTRLD if Enlightened version was used */
4529         if (vmx->nested.hv_evmcs)
4530                 return 1;
4531
4532         if (vmx->nested.current_vmptr != vmptr) {
4533                 struct vmcs12 *new_vmcs12;
4534                 struct page *page;
4535
4536                 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
4537                 if (is_error_page(page)) {
4538                         /*
4539                          * Reads from an unbacked page return all 1s,
4540                          * which means that the 32 bits located at the
4541                          * given physical address won't match the required
4542                          * VMCS12_REVISION identifier.
4543                          */
4544                         return nested_vmx_failValid(vcpu,
4545                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4546                 }
4547                 new_vmcs12 = kmap(page);
4548                 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
4549                     (new_vmcs12->hdr.shadow_vmcs &&
4550                      !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
4551                         kunmap(page);
4552                         kvm_release_page_clean(page);
4553                         return nested_vmx_failValid(vcpu,
4554                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4555                 }
4556
4557                 nested_release_vmcs12(vcpu);
4558
4559                 /*
4560                  * Load VMCS12 from guest memory since it is not already
4561                  * cached.
4562                  */
4563                 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
4564                 kunmap(page);
4565                 kvm_release_page_clean(page);
4566
4567                 set_current_vmptr(vmx, vmptr);
4568         }
4569
4570         return nested_vmx_succeed(vcpu);
4571 }
4572
4573 /* Emulate the VMPTRST instruction */
4574 static int handle_vmptrst(struct kvm_vcpu *vcpu)
4575 {
4576         unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
4577         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4578         gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
4579         struct x86_exception e;
4580         gva_t gva;
4581
4582         if (!nested_vmx_check_permission(vcpu))
4583                 return 1;
4584
4585         if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
4586                 return 1;
4587
4588         if (get_vmx_mem_address(vcpu, exit_qual, instr_info, true, &gva))
4589                 return 1;
4590         /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
4591         if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
4592                                         sizeof(gpa_t), &e)) {
4593                 kvm_inject_page_fault(vcpu, &e);
4594                 return 1;
4595         }
4596         return nested_vmx_succeed(vcpu);
4597 }
4598
4599 /* Emulate the INVEPT instruction */
4600 static int handle_invept(struct kvm_vcpu *vcpu)
4601 {
4602         struct vcpu_vmx *vmx = to_vmx(vcpu);
4603         u32 vmx_instruction_info, types;
4604         unsigned long type;
4605         gva_t gva;
4606         struct x86_exception e;
4607         struct {
4608                 u64 eptp, gpa;
4609         } operand;
4610
4611         if (!(vmx->nested.msrs.secondary_ctls_high &
4612               SECONDARY_EXEC_ENABLE_EPT) ||
4613             !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
4614                 kvm_queue_exception(vcpu, UD_VECTOR);
4615                 return 1;
4616         }
4617
4618         if (!nested_vmx_check_permission(vcpu))
4619                 return 1;
4620
4621         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4622         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4623
4624         types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
4625
4626         if (type >= 32 || !(types & (1 << type)))
4627                 return nested_vmx_failValid(vcpu,
4628                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4629
4630         /* According to the Intel VMX instruction reference, the memory
4631          * operand is read even if it isn't needed (e.g., for type==global)
4632          */
4633         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4634                         vmx_instruction_info, false, &gva))
4635                 return 1;
4636         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
4637                 kvm_inject_page_fault(vcpu, &e);
4638                 return 1;
4639         }
4640
4641         switch (type) {
4642         case VMX_EPT_EXTENT_GLOBAL:
4643         /*
4644          * TODO: track mappings and invalidate
4645          * single context requests appropriately
4646          */
4647         case VMX_EPT_EXTENT_CONTEXT:
4648                 kvm_mmu_sync_roots(vcpu);
4649                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4650                 break;
4651         default:
4652                 BUG_ON(1);
4653                 break;
4654         }
4655
4656         return nested_vmx_succeed(vcpu);
4657 }
4658
4659 static int handle_invvpid(struct kvm_vcpu *vcpu)
4660 {
4661         struct vcpu_vmx *vmx = to_vmx(vcpu);
4662         u32 vmx_instruction_info;
4663         unsigned long type, types;
4664         gva_t gva;
4665         struct x86_exception e;
4666         struct {
4667                 u64 vpid;
4668                 u64 gla;
4669         } operand;
4670         u16 vpid02;
4671
4672         if (!(vmx->nested.msrs.secondary_ctls_high &
4673               SECONDARY_EXEC_ENABLE_VPID) ||
4674                         !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
4675                 kvm_queue_exception(vcpu, UD_VECTOR);
4676                 return 1;
4677         }
4678
4679         if (!nested_vmx_check_permission(vcpu))
4680                 return 1;
4681
4682         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4683         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4684
4685         types = (vmx->nested.msrs.vpid_caps &
4686                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
4687
4688         if (type >= 32 || !(types & (1 << type)))
4689                 return nested_vmx_failValid(vcpu,
4690                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4691
4692         /* according to the intel vmx instruction reference, the memory
4693          * operand is read even if it isn't needed (e.g., for type==global)
4694          */
4695         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4696                         vmx_instruction_info, false, &gva))
4697                 return 1;
4698         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
4699                 kvm_inject_page_fault(vcpu, &e);
4700                 return 1;
4701         }
4702         if (operand.vpid >> 16)
4703                 return nested_vmx_failValid(vcpu,
4704                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4705
4706         vpid02 = nested_get_vpid02(vcpu);
4707         switch (type) {
4708         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
4709                 if (!operand.vpid ||
4710                     is_noncanonical_address(operand.gla, vcpu))
4711                         return nested_vmx_failValid(vcpu,
4712                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4713                 if (cpu_has_vmx_invvpid_individual_addr()) {
4714                         __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
4715                                 vpid02, operand.gla);
4716                 } else
4717                         __vmx_flush_tlb(vcpu, vpid02, false);
4718                 break;
4719         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
4720         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
4721                 if (!operand.vpid)
4722                         return nested_vmx_failValid(vcpu,
4723                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4724                 __vmx_flush_tlb(vcpu, vpid02, false);
4725                 break;
4726         case VMX_VPID_EXTENT_ALL_CONTEXT:
4727                 __vmx_flush_tlb(vcpu, vpid02, false);
4728                 break;
4729         default:
4730                 WARN_ON_ONCE(1);
4731                 return kvm_skip_emulated_instruction(vcpu);
4732         }
4733
4734         return nested_vmx_succeed(vcpu);
4735 }
4736
4737 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
4738                                      struct vmcs12 *vmcs12)
4739 {
4740         u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
4741         u64 address;
4742         bool accessed_dirty;
4743         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4744
4745         if (!nested_cpu_has_eptp_switching(vmcs12) ||
4746             !nested_cpu_has_ept(vmcs12))
4747                 return 1;
4748
4749         if (index >= VMFUNC_EPTP_ENTRIES)
4750                 return 1;
4751
4752
4753         if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
4754                                      &address, index * 8, 8))
4755                 return 1;
4756
4757         accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
4758
4759         /*
4760          * If the (L2) guest does a vmfunc to the currently
4761          * active ept pointer, we don't have to do anything else
4762          */
4763         if (vmcs12->ept_pointer != address) {
4764                 if (!valid_ept_address(vcpu, address))
4765                         return 1;
4766
4767                 kvm_mmu_unload(vcpu);
4768                 mmu->ept_ad = accessed_dirty;
4769                 mmu->mmu_role.base.ad_disabled = !accessed_dirty;
4770                 vmcs12->ept_pointer = address;
4771                 /*
4772                  * TODO: Check what's the correct approach in case
4773                  * mmu reload fails. Currently, we just let the next
4774                  * reload potentially fail
4775                  */
4776                 kvm_mmu_reload(vcpu);
4777         }
4778
4779         return 0;
4780 }
4781
4782 static int handle_vmfunc(struct kvm_vcpu *vcpu)
4783 {
4784         struct vcpu_vmx *vmx = to_vmx(vcpu);
4785         struct vmcs12 *vmcs12;
4786         u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
4787
4788         /*
4789          * VMFUNC is only supported for nested guests, but we always enable the
4790          * secondary control for simplicity; for non-nested mode, fake that we
4791          * didn't by injecting #UD.
4792          */
4793         if (!is_guest_mode(vcpu)) {
4794                 kvm_queue_exception(vcpu, UD_VECTOR);
4795                 return 1;
4796         }
4797
4798         vmcs12 = get_vmcs12(vcpu);
4799         if ((vmcs12->vm_function_control & (1 << function)) == 0)
4800                 goto fail;
4801
4802         switch (function) {
4803         case 0:
4804                 if (nested_vmx_eptp_switching(vcpu, vmcs12))
4805                         goto fail;
4806                 break;
4807         default:
4808                 goto fail;
4809         }
4810         return kvm_skip_emulated_instruction(vcpu);
4811
4812 fail:
4813         nested_vmx_vmexit(vcpu, vmx->exit_reason,
4814                           vmcs_read32(VM_EXIT_INTR_INFO),
4815                           vmcs_readl(EXIT_QUALIFICATION));
4816         return 1;
4817 }
4818
4819
4820 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
4821                                        struct vmcs12 *vmcs12)
4822 {
4823         unsigned long exit_qualification;
4824         gpa_t bitmap, last_bitmap;
4825         unsigned int port;
4826         int size;
4827         u8 b;
4828
4829         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
4830                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
4831
4832         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4833
4834         port = exit_qualification >> 16;
4835         size = (exit_qualification & 7) + 1;
4836
4837         last_bitmap = (gpa_t)-1;
4838         b = -1;
4839
4840         while (size > 0) {
4841                 if (port < 0x8000)
4842                         bitmap = vmcs12->io_bitmap_a;
4843                 else if (port < 0x10000)
4844                         bitmap = vmcs12->io_bitmap_b;
4845                 else
4846                         return true;
4847                 bitmap += (port & 0x7fff) / 8;
4848
4849                 if (last_bitmap != bitmap)
4850                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
4851                                 return true;
4852                 if (b & (1 << (port & 7)))
4853                         return true;
4854
4855                 port++;
4856                 size--;
4857                 last_bitmap = bitmap;
4858         }
4859
4860         return false;
4861 }
4862
4863 /*
4864  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
4865  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
4866  * disinterest in the current event (read or write a specific MSR) by using an
4867  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
4868  */
4869 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
4870         struct vmcs12 *vmcs12, u32 exit_reason)
4871 {
4872         u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
4873         gpa_t bitmap;
4874
4875         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
4876                 return true;
4877
4878         /*
4879          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
4880          * for the four combinations of read/write and low/high MSR numbers.
4881          * First we need to figure out which of the four to use:
4882          */
4883         bitmap = vmcs12->msr_bitmap;
4884         if (exit_reason == EXIT_REASON_MSR_WRITE)
4885                 bitmap += 2048;
4886         if (msr_index >= 0xc0000000) {
4887                 msr_index -= 0xc0000000;
4888                 bitmap += 1024;
4889         }
4890
4891         /* Then read the msr_index'th bit from this bitmap: */
4892         if (msr_index < 1024*8) {
4893                 unsigned char b;
4894                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
4895                         return true;
4896                 return 1 & (b >> (msr_index & 7));
4897         } else
4898                 return true; /* let L1 handle the wrong parameter */
4899 }
4900
4901 /*
4902  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
4903  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
4904  * intercept (via guest_host_mask etc.) the current event.
4905  */
4906 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
4907         struct vmcs12 *vmcs12)
4908 {
4909         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4910         int cr = exit_qualification & 15;
4911         int reg;
4912         unsigned long val;
4913
4914         switch ((exit_qualification >> 4) & 3) {
4915         case 0: /* mov to cr */
4916                 reg = (exit_qualification >> 8) & 15;
4917                 val = kvm_register_readl(vcpu, reg);
4918                 switch (cr) {
4919                 case 0:
4920                         if (vmcs12->cr0_guest_host_mask &
4921                             (val ^ vmcs12->cr0_read_shadow))
4922                                 return true;
4923                         break;
4924                 case 3:
4925                         if ((vmcs12->cr3_target_count >= 1 &&
4926                                         vmcs12->cr3_target_value0 == val) ||
4927                                 (vmcs12->cr3_target_count >= 2 &&
4928                                         vmcs12->cr3_target_value1 == val) ||
4929                                 (vmcs12->cr3_target_count >= 3 &&
4930                                         vmcs12->cr3_target_value2 == val) ||
4931                                 (vmcs12->cr3_target_count >= 4 &&
4932                                         vmcs12->cr3_target_value3 == val))
4933                                 return false;
4934                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
4935                                 return true;
4936                         break;
4937                 case 4:
4938                         if (vmcs12->cr4_guest_host_mask &
4939                             (vmcs12->cr4_read_shadow ^ val))
4940                                 return true;
4941                         break;
4942                 case 8:
4943                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
4944                                 return true;
4945                         break;
4946                 }
4947                 break;
4948         case 2: /* clts */
4949                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
4950                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
4951                         return true;
4952                 break;
4953         case 1: /* mov from cr */
4954                 switch (cr) {
4955                 case 3:
4956                         if (vmcs12->cpu_based_vm_exec_control &
4957                             CPU_BASED_CR3_STORE_EXITING)
4958                                 return true;
4959                         break;
4960                 case 8:
4961                         if (vmcs12->cpu_based_vm_exec_control &
4962                             CPU_BASED_CR8_STORE_EXITING)
4963                                 return true;
4964                         break;
4965                 }
4966                 break;
4967         case 3: /* lmsw */
4968                 /*
4969                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
4970                  * cr0. Other attempted changes are ignored, with no exit.
4971                  */
4972                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4973                 if (vmcs12->cr0_guest_host_mask & 0xe &
4974                     (val ^ vmcs12->cr0_read_shadow))
4975                         return true;
4976                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
4977                     !(vmcs12->cr0_read_shadow & 0x1) &&
4978                     (val & 0x1))
4979                         return true;
4980                 break;
4981         }
4982         return false;
4983 }
4984
4985 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
4986         struct vmcs12 *vmcs12, gpa_t bitmap)
4987 {
4988         u32 vmx_instruction_info;
4989         unsigned long field;
4990         u8 b;
4991
4992         if (!nested_cpu_has_shadow_vmcs(vmcs12))
4993                 return true;
4994
4995         /* Decode instruction info and find the field to access */
4996         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4997         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4998
4999         /* Out-of-range fields always cause a VM exit from L2 to L1 */
5000         if (field >> 15)
5001                 return true;
5002
5003         if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5004                 return true;
5005
5006         return 1 & (b >> (field & 7));
5007 }
5008
5009 /*
5010  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5011  * should handle it ourselves in L0 (and then continue L2). Only call this
5012  * when in is_guest_mode (L2).
5013  */
5014 bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
5015 {
5016         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5017         struct vcpu_vmx *vmx = to_vmx(vcpu);
5018         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5019
5020         if (vmx->nested.nested_run_pending)
5021                 return false;
5022
5023         if (unlikely(vmx->fail)) {
5024                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
5025                                     vmcs_read32(VM_INSTRUCTION_ERROR));
5026                 return true;
5027         }
5028
5029         /*
5030          * The host physical addresses of some pages of guest memory
5031          * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5032          * Page). The CPU may write to these pages via their host
5033          * physical address while L2 is running, bypassing any
5034          * address-translation-based dirty tracking (e.g. EPT write
5035          * protection).
5036          *
5037          * Mark them dirty on every exit from L2 to prevent them from
5038          * getting out of sync with dirty tracking.
5039          */
5040         nested_mark_vmcs12_pages_dirty(vcpu);
5041
5042         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
5043                                 vmcs_readl(EXIT_QUALIFICATION),
5044                                 vmx->idt_vectoring_info,
5045                                 intr_info,
5046                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5047                                 KVM_ISA_VMX);
5048
5049         switch (exit_reason) {
5050         case EXIT_REASON_EXCEPTION_NMI:
5051                 if (is_nmi(intr_info))
5052                         return false;
5053                 else if (is_page_fault(intr_info))
5054                         return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
5055                 else if (is_debug(intr_info) &&
5056                          vcpu->guest_debug &
5057                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5058                         return false;
5059                 else if (is_breakpoint(intr_info) &&
5060                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5061                         return false;
5062                 return vmcs12->exception_bitmap &
5063                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5064         case EXIT_REASON_EXTERNAL_INTERRUPT:
5065                 return false;
5066         case EXIT_REASON_TRIPLE_FAULT:
5067                 return true;
5068         case EXIT_REASON_PENDING_INTERRUPT:
5069                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
5070         case EXIT_REASON_NMI_WINDOW:
5071                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
5072         case EXIT_REASON_TASK_SWITCH:
5073                 return true;
5074         case EXIT_REASON_CPUID:
5075                 return true;
5076         case EXIT_REASON_HLT:
5077                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5078         case EXIT_REASON_INVD:
5079                 return true;
5080         case EXIT_REASON_INVLPG:
5081                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5082         case EXIT_REASON_RDPMC:
5083                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5084         case EXIT_REASON_RDRAND:
5085                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5086         case EXIT_REASON_RDSEED:
5087                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5088         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5089                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5090         case EXIT_REASON_VMREAD:
5091                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5092                         vmcs12->vmread_bitmap);
5093         case EXIT_REASON_VMWRITE:
5094                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5095                         vmcs12->vmwrite_bitmap);
5096         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5097         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5098         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5099         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5100         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5101                 /*
5102                  * VMX instructions trap unconditionally. This allows L1 to
5103                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
5104                  */
5105                 return true;
5106         case EXIT_REASON_CR_ACCESS:
5107                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5108         case EXIT_REASON_DR_ACCESS:
5109                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5110         case EXIT_REASON_IO_INSTRUCTION:
5111                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
5112         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5113                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5114         case EXIT_REASON_MSR_READ:
5115         case EXIT_REASON_MSR_WRITE:
5116                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5117         case EXIT_REASON_INVALID_STATE:
5118                 return true;
5119         case EXIT_REASON_MWAIT_INSTRUCTION:
5120                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5121         case EXIT_REASON_MONITOR_TRAP_FLAG:
5122                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
5123         case EXIT_REASON_MONITOR_INSTRUCTION:
5124                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5125         case EXIT_REASON_PAUSE_INSTRUCTION:
5126                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5127                         nested_cpu_has2(vmcs12,
5128                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5129         case EXIT_REASON_MCE_DURING_VMENTRY:
5130                 return false;
5131         case EXIT_REASON_TPR_BELOW_THRESHOLD:
5132                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5133         case EXIT_REASON_APIC_ACCESS:
5134         case EXIT_REASON_APIC_WRITE:
5135         case EXIT_REASON_EOI_INDUCED:
5136                 /*
5137                  * The controls for "virtualize APIC accesses," "APIC-
5138                  * register virtualization," and "virtual-interrupt
5139                  * delivery" only come from vmcs12.
5140                  */
5141                 return true;
5142         case EXIT_REASON_EPT_VIOLATION:
5143                 /*
5144                  * L0 always deals with the EPT violation. If nested EPT is
5145                  * used, and the nested mmu code discovers that the address is
5146                  * missing in the guest EPT table (EPT12), the EPT violation
5147                  * will be injected with nested_ept_inject_page_fault()
5148                  */
5149                 return false;
5150         case EXIT_REASON_EPT_MISCONFIG:
5151                 /*
5152                  * L2 never uses directly L1's EPT, but rather L0's own EPT
5153                  * table (shadow on EPT) or a merged EPT table that L0 built
5154                  * (EPT on EPT). So any problems with the structure of the
5155                  * table is L0's fault.
5156                  */
5157                 return false;
5158         case EXIT_REASON_INVPCID:
5159                 return
5160                         nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5161                         nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5162         case EXIT_REASON_WBINVD:
5163                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5164         case EXIT_REASON_XSETBV:
5165                 return true;
5166         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5167                 /*
5168                  * This should never happen, since it is not possible to
5169                  * set XSS to a non-zero value---neither in L1 nor in L2.
5170                  * If if it were, XSS would have to be checked against
5171                  * the XSS exit bitmap in vmcs12.
5172                  */
5173                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5174         case EXIT_REASON_PREEMPTION_TIMER:
5175                 return false;
5176         case EXIT_REASON_PML_FULL:
5177                 /* We emulate PML support to L1. */
5178                 return false;
5179         case EXIT_REASON_VMFUNC:
5180                 /* VM functions are emulated through L2->L0 vmexits. */
5181                 return false;
5182         case EXIT_REASON_ENCLS:
5183                 /* SGX is never exposed to L1 */
5184                 return false;
5185         default:
5186                 return true;
5187         }
5188 }
5189
5190
5191 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
5192                                 struct kvm_nested_state __user *user_kvm_nested_state,
5193                                 u32 user_data_size)
5194 {
5195         struct vcpu_vmx *vmx;
5196         struct vmcs12 *vmcs12;
5197         struct kvm_nested_state kvm_state = {
5198                 .flags = 0,
5199                 .format = 0,
5200                 .size = sizeof(kvm_state),
5201                 .vmx.vmxon_pa = -1ull,
5202                 .vmx.vmcs_pa = -1ull,
5203         };
5204
5205         if (!vcpu)
5206                 return kvm_state.size + 2 * VMCS12_SIZE;
5207
5208         vmx = to_vmx(vcpu);
5209         vmcs12 = get_vmcs12(vcpu);
5210
5211         if (nested_vmx_allowed(vcpu) && vmx->nested.enlightened_vmcs_enabled)
5212                 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
5213
5214         if (nested_vmx_allowed(vcpu) &&
5215             (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
5216                 kvm_state.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
5217                 kvm_state.vmx.vmcs_pa = vmx->nested.current_vmptr;
5218
5219                 if (vmx_has_valid_vmcs12(vcpu)) {
5220                         kvm_state.size += VMCS12_SIZE;
5221
5222                         if (is_guest_mode(vcpu) &&
5223                             nested_cpu_has_shadow_vmcs(vmcs12) &&
5224                             vmcs12->vmcs_link_pointer != -1ull)
5225                                 kvm_state.size += VMCS12_SIZE;
5226                 }
5227
5228                 if (vmx->nested.smm.vmxon)
5229                         kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
5230
5231                 if (vmx->nested.smm.guest_mode)
5232                         kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
5233
5234                 if (is_guest_mode(vcpu)) {
5235                         kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
5236
5237                         if (vmx->nested.nested_run_pending)
5238                                 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
5239                 }
5240         }
5241
5242         if (user_data_size < kvm_state.size)
5243                 goto out;
5244
5245         if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
5246                 return -EFAULT;
5247
5248         if (!vmx_has_valid_vmcs12(vcpu))
5249                 goto out;
5250
5251         /*
5252          * When running L2, the authoritative vmcs12 state is in the
5253          * vmcs02. When running L1, the authoritative vmcs12 state is
5254          * in the shadow or enlightened vmcs linked to vmcs01, unless
5255          * need_vmcs12_sync is set, in which case, the authoritative
5256          * vmcs12 state is in the vmcs12 already.
5257          */
5258         if (is_guest_mode(vcpu)) {
5259                 sync_vmcs12(vcpu, vmcs12);
5260         } else if (!vmx->nested.need_vmcs12_sync) {
5261                 if (vmx->nested.hv_evmcs)
5262                         copy_enlightened_to_vmcs12(vmx);
5263                 else if (enable_shadow_vmcs)
5264                         copy_shadow_to_vmcs12(vmx);
5265         }
5266
5267         /*
5268          * Copy over the full allocated size of vmcs12 rather than just the size
5269          * of the struct.
5270          */
5271         if (copy_to_user(user_kvm_nested_state->data, vmcs12, VMCS12_SIZE))
5272                 return -EFAULT;
5273
5274         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5275             vmcs12->vmcs_link_pointer != -1ull) {
5276                 if (copy_to_user(user_kvm_nested_state->data + VMCS12_SIZE,
5277                                  get_shadow_vmcs12(vcpu), VMCS12_SIZE))
5278                         return -EFAULT;
5279         }
5280
5281 out:
5282         return kvm_state.size;
5283 }
5284
5285 /*
5286  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
5287  */
5288 void vmx_leave_nested(struct kvm_vcpu *vcpu)
5289 {
5290         if (is_guest_mode(vcpu)) {
5291                 to_vmx(vcpu)->nested.nested_run_pending = 0;
5292                 nested_vmx_vmexit(vcpu, -1, 0, 0);
5293         }
5294         free_nested(vcpu);
5295 }
5296
5297 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
5298                                 struct kvm_nested_state __user *user_kvm_nested_state,
5299                                 struct kvm_nested_state *kvm_state)
5300 {
5301         struct vcpu_vmx *vmx = to_vmx(vcpu);
5302         struct vmcs12 *vmcs12;
5303         u32 exit_qual;
5304         int ret;
5305
5306         if (kvm_state->format != 0)
5307                 return -EINVAL;
5308
5309         if (kvm_state->flags & KVM_STATE_NESTED_EVMCS)
5310                 nested_enable_evmcs(vcpu, NULL);
5311
5312         if (!nested_vmx_allowed(vcpu))
5313                 return kvm_state->vmx.vmxon_pa == -1ull ? 0 : -EINVAL;
5314
5315         if (kvm_state->vmx.vmxon_pa == -1ull) {
5316                 if (kvm_state->vmx.smm.flags)
5317                         return -EINVAL;
5318
5319                 if (kvm_state->vmx.vmcs_pa != -1ull)
5320                         return -EINVAL;
5321
5322                 vmx_leave_nested(vcpu);
5323                 return 0;
5324         }
5325
5326         if (!page_address_valid(vcpu, kvm_state->vmx.vmxon_pa))
5327                 return -EINVAL;
5328
5329         if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5330             (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5331                 return -EINVAL;
5332
5333         if (kvm_state->vmx.smm.flags &
5334             ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
5335                 return -EINVAL;
5336
5337         /*
5338          * SMM temporarily disables VMX, so we cannot be in guest mode,
5339          * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
5340          * must be zero.
5341          */
5342         if (is_smm(vcpu) ? kvm_state->flags : kvm_state->vmx.smm.flags)
5343                 return -EINVAL;
5344
5345         if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5346             !(kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
5347                 return -EINVAL;
5348
5349         vmx_leave_nested(vcpu);
5350         if (kvm_state->vmx.vmxon_pa == -1ull)
5351                 return 0;
5352
5353         vmx->nested.vmxon_ptr = kvm_state->vmx.vmxon_pa;
5354         ret = enter_vmx_operation(vcpu);
5355         if (ret)
5356                 return ret;
5357
5358         /* Empty 'VMXON' state is permitted */
5359         if (kvm_state->size < sizeof(kvm_state) + sizeof(*vmcs12))
5360                 return 0;
5361
5362         if (kvm_state->vmx.vmcs_pa != -1ull) {
5363                 if (kvm_state->vmx.vmcs_pa == kvm_state->vmx.vmxon_pa ||
5364                     !page_address_valid(vcpu, kvm_state->vmx.vmcs_pa))
5365                         return -EINVAL;
5366
5367                 set_current_vmptr(vmx, kvm_state->vmx.vmcs_pa);
5368         } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
5369                 /*
5370                  * Sync eVMCS upon entry as we may not have
5371                  * HV_X64_MSR_VP_ASSIST_PAGE set up yet.
5372                  */
5373                 vmx->nested.need_vmcs12_sync = true;
5374         } else {
5375                 return -EINVAL;
5376         }
5377
5378         if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
5379                 vmx->nested.smm.vmxon = true;
5380                 vmx->nested.vmxon = false;
5381
5382                 if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
5383                         vmx->nested.smm.guest_mode = true;
5384         }
5385
5386         vmcs12 = get_vmcs12(vcpu);
5387         if (copy_from_user(vmcs12, user_kvm_nested_state->data, sizeof(*vmcs12)))
5388                 return -EFAULT;
5389
5390         if (vmcs12->hdr.revision_id != VMCS12_REVISION)
5391                 return -EINVAL;
5392
5393         if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5394                 return 0;
5395
5396         vmx->nested.nested_run_pending =
5397                 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
5398
5399         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5400             vmcs12->vmcs_link_pointer != -1ull) {
5401                 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
5402
5403                 if (kvm_state->size < sizeof(kvm_state) + 2 * sizeof(*vmcs12))
5404                         return -EINVAL;
5405
5406                 if (copy_from_user(shadow_vmcs12,
5407                                    user_kvm_nested_state->data + VMCS12_SIZE,
5408                                    sizeof(*vmcs12)))
5409                         return -EFAULT;
5410
5411                 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5412                     !shadow_vmcs12->hdr.shadow_vmcs)
5413                         return -EINVAL;
5414         }
5415
5416         if (nested_vmx_check_vmentry_prereqs(vcpu, vmcs12) ||
5417             nested_vmx_check_vmentry_postreqs(vcpu, vmcs12, &exit_qual))
5418                 return -EINVAL;
5419
5420         vmx->nested.dirty_vmcs12 = true;
5421         ret = nested_vmx_enter_non_root_mode(vcpu, false);
5422         if (ret)
5423                 return -EINVAL;
5424
5425         return 0;
5426 }
5427
5428 void nested_vmx_vcpu_setup(void)
5429 {
5430         if (enable_shadow_vmcs) {
5431                 /*
5432                  * At vCPU creation, "VMWRITE to any supported field
5433                  * in the VMCS" is supported, so use the more
5434                  * permissive vmx_vmread_bitmap to specify both read
5435                  * and write permissions for the shadow VMCS.
5436                  */
5437                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5438                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmread_bitmap));
5439         }
5440 }
5441
5442 /*
5443  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
5444  * returned for the various VMX controls MSRs when nested VMX is enabled.
5445  * The same values should also be used to verify that vmcs12 control fields are
5446  * valid during nested entry from L1 to L2.
5447  * Each of these control msrs has a low and high 32-bit half: A low bit is on
5448  * if the corresponding bit in the (32-bit) control field *must* be on, and a
5449  * bit in the high half is on if the corresponding bit in the control field
5450  * may be on. See also vmx_control_verify().
5451  */
5452 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps,
5453                                 bool apicv)
5454 {
5455         /*
5456          * Note that as a general rule, the high half of the MSRs (bits in
5457          * the control fields which may be 1) should be initialized by the
5458          * intersection of the underlying hardware's MSR (i.e., features which
5459          * can be supported) and the list of features we want to expose -
5460          * because they are known to be properly supported in our code.
5461          * Also, usually, the low half of the MSRs (bits which must be 1) can
5462          * be set to 0, meaning that L1 may turn off any of these bits. The
5463          * reason is that if one of these bits is necessary, it will appear
5464          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
5465          * fields of vmcs01 and vmcs02, will turn these bits off - and
5466          * nested_vmx_exit_reflected() will not pass related exits to L1.
5467          * These rules have exceptions below.
5468          */
5469
5470         /* pin-based controls */
5471         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
5472                 msrs->pinbased_ctls_low,
5473                 msrs->pinbased_ctls_high);
5474         msrs->pinbased_ctls_low |=
5475                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5476         msrs->pinbased_ctls_high &=
5477                 PIN_BASED_EXT_INTR_MASK |
5478                 PIN_BASED_NMI_EXITING |
5479                 PIN_BASED_VIRTUAL_NMIS |
5480                 (apicv ? PIN_BASED_POSTED_INTR : 0);
5481         msrs->pinbased_ctls_high |=
5482                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5483                 PIN_BASED_VMX_PREEMPTION_TIMER;
5484
5485         /* exit controls */
5486         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
5487                 msrs->exit_ctls_low,
5488                 msrs->exit_ctls_high);
5489         msrs->exit_ctls_low =
5490                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
5491
5492         msrs->exit_ctls_high &=
5493 #ifdef CONFIG_X86_64
5494                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
5495 #endif
5496                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
5497         msrs->exit_ctls_high |=
5498                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
5499                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
5500                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
5501
5502         /* We support free control of debug control saving. */
5503         msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
5504
5505         /* entry controls */
5506         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
5507                 msrs->entry_ctls_low,
5508                 msrs->entry_ctls_high);
5509         msrs->entry_ctls_low =
5510                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
5511         msrs->entry_ctls_high &=
5512 #ifdef CONFIG_X86_64
5513                 VM_ENTRY_IA32E_MODE |
5514 #endif
5515                 VM_ENTRY_LOAD_IA32_PAT;
5516         msrs->entry_ctls_high |=
5517                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
5518
5519         /* We support free control of debug control loading. */
5520         msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
5521
5522         /* cpu-based controls */
5523         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
5524                 msrs->procbased_ctls_low,
5525                 msrs->procbased_ctls_high);
5526         msrs->procbased_ctls_low =
5527                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5528         msrs->procbased_ctls_high &=
5529                 CPU_BASED_VIRTUAL_INTR_PENDING |
5530                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
5531                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
5532                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
5533                 CPU_BASED_CR3_STORE_EXITING |
5534 #ifdef CONFIG_X86_64
5535                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
5536 #endif
5537                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5538                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
5539                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
5540                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
5541                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
5542         /*
5543          * We can allow some features even when not supported by the
5544          * hardware. For example, L1 can specify an MSR bitmap - and we
5545          * can use it to avoid exits to L1 - even when L0 runs L2
5546          * without MSR bitmaps.
5547          */
5548         msrs->procbased_ctls_high |=
5549                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5550                 CPU_BASED_USE_MSR_BITMAPS;
5551
5552         /* We support free control of CR3 access interception. */
5553         msrs->procbased_ctls_low &=
5554                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
5555
5556         /*
5557          * secondary cpu-based controls.  Do not include those that
5558          * depend on CPUID bits, they are added later by vmx_cpuid_update.
5559          */
5560         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
5561                 msrs->secondary_ctls_low,
5562                 msrs->secondary_ctls_high);
5563         msrs->secondary_ctls_low = 0;
5564         msrs->secondary_ctls_high &=
5565                 SECONDARY_EXEC_DESC |
5566                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
5567                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5568                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
5569                 SECONDARY_EXEC_WBINVD_EXITING;
5570
5571         /*
5572          * We can emulate "VMCS shadowing," even if the hardware
5573          * doesn't support it.
5574          */
5575         msrs->secondary_ctls_high |=
5576                 SECONDARY_EXEC_SHADOW_VMCS;
5577
5578         if (enable_ept) {
5579                 /* nested EPT: emulate EPT also to L1 */
5580                 msrs->secondary_ctls_high |=
5581                         SECONDARY_EXEC_ENABLE_EPT;
5582                 msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
5583                          VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
5584                 if (cpu_has_vmx_ept_execute_only())
5585                         msrs->ept_caps |=
5586                                 VMX_EPT_EXECUTE_ONLY_BIT;
5587                 msrs->ept_caps &= ept_caps;
5588                 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
5589                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
5590                         VMX_EPT_1GB_PAGE_BIT;
5591                 if (enable_ept_ad_bits) {
5592                         msrs->secondary_ctls_high |=
5593                                 SECONDARY_EXEC_ENABLE_PML;
5594                         msrs->ept_caps |= VMX_EPT_AD_BIT;
5595                 }
5596         }
5597
5598         if (cpu_has_vmx_vmfunc()) {
5599                 msrs->secondary_ctls_high |=
5600                         SECONDARY_EXEC_ENABLE_VMFUNC;
5601                 /*
5602                  * Advertise EPTP switching unconditionally
5603                  * since we emulate it
5604                  */
5605                 if (enable_ept)
5606                         msrs->vmfunc_controls =
5607                                 VMX_VMFUNC_EPTP_SWITCHING;
5608         }
5609
5610         /*
5611          * Old versions of KVM use the single-context version without
5612          * checking for support, so declare that it is supported even
5613          * though it is treated as global context.  The alternative is
5614          * not failing the single-context invvpid, and it is worse.
5615          */
5616         if (enable_vpid) {
5617                 msrs->secondary_ctls_high |=
5618                         SECONDARY_EXEC_ENABLE_VPID;
5619                 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
5620                         VMX_VPID_EXTENT_SUPPORTED_MASK;
5621         }
5622
5623         if (enable_unrestricted_guest)
5624                 msrs->secondary_ctls_high |=
5625                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
5626
5627         if (flexpriority_enabled)
5628                 msrs->secondary_ctls_high |=
5629                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5630
5631         /* miscellaneous data */
5632         rdmsr(MSR_IA32_VMX_MISC,
5633                 msrs->misc_low,
5634                 msrs->misc_high);
5635         msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
5636         msrs->misc_low |=
5637                 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
5638                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
5639                 VMX_MISC_ACTIVITY_HLT;
5640         msrs->misc_high = 0;
5641
5642         /*
5643          * This MSR reports some information about VMX support. We
5644          * should return information about the VMX we emulate for the
5645          * guest, and the VMCS structure we give it - not about the
5646          * VMX support of the underlying hardware.
5647          */
5648         msrs->basic =
5649                 VMCS12_REVISION |
5650                 VMX_BASIC_TRUE_CTLS |
5651                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
5652                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
5653
5654         if (cpu_has_vmx_basic_inout())
5655                 msrs->basic |= VMX_BASIC_INOUT;
5656
5657         /*
5658          * These MSRs specify bits which the guest must keep fixed on
5659          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
5660          * We picked the standard core2 setting.
5661          */
5662 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
5663 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
5664         msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
5665         msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
5666
5667         /* These MSRs specify bits which the guest must keep fixed off. */
5668         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
5669         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
5670
5671         /* highest index: VMX_PREEMPTION_TIMER_VALUE */
5672         msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
5673 }
5674
5675 void nested_vmx_hardware_unsetup(void)
5676 {
5677         int i;
5678
5679         if (enable_shadow_vmcs) {
5680                 for (i = 0; i < VMX_BITMAP_NR; i++)
5681                         free_page((unsigned long)vmx_bitmap[i]);
5682         }
5683 }
5684
5685 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
5686 {
5687         int i;
5688
5689         if (!cpu_has_vmx_shadow_vmcs())
5690                 enable_shadow_vmcs = 0;
5691         if (enable_shadow_vmcs) {
5692                 for (i = 0; i < VMX_BITMAP_NR; i++) {
5693                         vmx_bitmap[i] = (unsigned long *)
5694                                 __get_free_page(GFP_KERNEL);
5695                         if (!vmx_bitmap[i]) {
5696                                 nested_vmx_hardware_unsetup();
5697                                 return -ENOMEM;
5698                         }
5699                 }
5700
5701                 init_vmcs_shadow_fields();
5702         }
5703
5704         exit_handlers[EXIT_REASON_VMCLEAR]      = handle_vmclear,
5705         exit_handlers[EXIT_REASON_VMLAUNCH]     = handle_vmlaunch,
5706         exit_handlers[EXIT_REASON_VMPTRLD]      = handle_vmptrld,
5707         exit_handlers[EXIT_REASON_VMPTRST]      = handle_vmptrst,
5708         exit_handlers[EXIT_REASON_VMREAD]       = handle_vmread,
5709         exit_handlers[EXIT_REASON_VMRESUME]     = handle_vmresume,
5710         exit_handlers[EXIT_REASON_VMWRITE]      = handle_vmwrite,
5711         exit_handlers[EXIT_REASON_VMOFF]        = handle_vmoff,
5712         exit_handlers[EXIT_REASON_VMON]         = handle_vmon,
5713         exit_handlers[EXIT_REASON_INVEPT]       = handle_invept,
5714         exit_handlers[EXIT_REASON_INVVPID]      = handle_invvpid,
5715         exit_handlers[EXIT_REASON_VMFUNC]       = handle_vmfunc,
5716
5717         kvm_x86_ops->check_nested_events = vmx_check_nested_events;
5718         kvm_x86_ops->get_nested_state = vmx_get_nested_state;
5719         kvm_x86_ops->set_nested_state = vmx_set_nested_state;
5720         kvm_x86_ops->get_vmcs12_pages = nested_get_vmcs12_pages,
5721         kvm_x86_ops->nested_enable_evmcs = nested_enable_evmcs;
5722         kvm_x86_ops->nested_get_evmcs_version = nested_get_evmcs_version;
5723
5724         return 0;
5725 }