]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/vmx/vmx.c
KVM: vmx: Emulate MSR IA32_UMWAIT_CONTROL
[linux.git] / arch / x86 / kvm / vmx / vmx.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <linux/frame.h>
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30
31 #include <asm/apic.h>
32 #include <asm/asm.h>
33 #include <asm/cpu.h>
34 #include <asm/debugreg.h>
35 #include <asm/desc.h>
36 #include <asm/fpu/internal.h>
37 #include <asm/io.h>
38 #include <asm/irq_remapping.h>
39 #include <asm/kexec.h>
40 #include <asm/perf_event.h>
41 #include <asm/mce.h>
42 #include <asm/mmu_context.h>
43 #include <asm/mshyperv.h>
44 #include <asm/spec-ctrl.h>
45 #include <asm/virtext.h>
46 #include <asm/vmx.h>
47
48 #include "capabilities.h"
49 #include "cpuid.h"
50 #include "evmcs.h"
51 #include "irq.h"
52 #include "kvm_cache_regs.h"
53 #include "lapic.h"
54 #include "mmu.h"
55 #include "nested.h"
56 #include "ops.h"
57 #include "pmu.h"
58 #include "trace.h"
59 #include "vmcs.h"
60 #include "vmcs12.h"
61 #include "vmx.h"
62 #include "x86.h"
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 static const struct x86_cpu_id vmx_cpu_id[] = {
68         X86_FEATURE_MATCH(X86_FEATURE_VMX),
69         {}
70 };
71 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
72
73 bool __read_mostly enable_vpid = 1;
74 module_param_named(vpid, enable_vpid, bool, 0444);
75
76 static bool __read_mostly enable_vnmi = 1;
77 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
78
79 bool __read_mostly flexpriority_enabled = 1;
80 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
81
82 bool __read_mostly enable_ept = 1;
83 module_param_named(ept, enable_ept, bool, S_IRUGO);
84
85 bool __read_mostly enable_unrestricted_guest = 1;
86 module_param_named(unrestricted_guest,
87                         enable_unrestricted_guest, bool, S_IRUGO);
88
89 bool __read_mostly enable_ept_ad_bits = 1;
90 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
91
92 static bool __read_mostly emulate_invalid_guest_state = true;
93 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
94
95 static bool __read_mostly fasteoi = 1;
96 module_param(fasteoi, bool, S_IRUGO);
97
98 static bool __read_mostly enable_apicv = 1;
99 module_param(enable_apicv, bool, S_IRUGO);
100
101 /*
102  * If nested=1, nested virtualization is supported, i.e., guests may use
103  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
104  * use VMX instructions.
105  */
106 static bool __read_mostly nested = 1;
107 module_param(nested, bool, S_IRUGO);
108
109 static u64 __read_mostly host_xss;
110
111 bool __read_mostly enable_pml = 1;
112 module_param_named(pml, enable_pml, bool, S_IRUGO);
113
114 static bool __read_mostly dump_invalid_vmcs = 0;
115 module_param(dump_invalid_vmcs, bool, 0644);
116
117 #define MSR_BITMAP_MODE_X2APIC          1
118 #define MSR_BITMAP_MODE_X2APIC_APICV    2
119
120 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
121
122 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
123 static int __read_mostly cpu_preemption_timer_multi;
124 static bool __read_mostly enable_preemption_timer = 1;
125 #ifdef CONFIG_X86_64
126 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
127 #endif
128
129 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
130 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
131 #define KVM_VM_CR0_ALWAYS_ON                            \
132         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST |      \
133          X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
134 #define KVM_CR4_GUEST_OWNED_BITS                                      \
135         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
136          | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
137
138 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
139 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
140 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
141
142 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
143
144 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
145         RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
146         RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
147         RTIT_STATUS_BYTECNT))
148
149 #define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
150         (~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
151
152 /*
153  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
154  * ple_gap:    upper bound on the amount of time between two successive
155  *             executions of PAUSE in a loop. Also indicate if ple enabled.
156  *             According to test, this time is usually smaller than 128 cycles.
157  * ple_window: upper bound on the amount of time a guest is allowed to execute
158  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
159  *             less than 2^12 cycles
160  * Time is measured based on a counter that runs at the same rate as the TSC,
161  * refer SDM volume 3b section 21.6.13 & 22.1.3.
162  */
163 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
164 module_param(ple_gap, uint, 0444);
165
166 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
167 module_param(ple_window, uint, 0444);
168
169 /* Default doubles per-vcpu window every exit. */
170 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
171 module_param(ple_window_grow, uint, 0444);
172
173 /* Default resets per-vcpu window every exit to ple_window. */
174 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
175 module_param(ple_window_shrink, uint, 0444);
176
177 /* Default is to compute the maximum so we can never overflow. */
178 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179 module_param(ple_window_max, uint, 0444);
180
181 /* Default is SYSTEM mode, 1 for host-guest mode */
182 int __read_mostly pt_mode = PT_MODE_SYSTEM;
183 module_param(pt_mode, int, S_IRUGO);
184
185 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
186 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
187 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
188
189 /* Storage for pre module init parameter parsing */
190 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
191
192 static const struct {
193         const char *option;
194         bool for_parse;
195 } vmentry_l1d_param[] = {
196         [VMENTER_L1D_FLUSH_AUTO]         = {"auto", true},
197         [VMENTER_L1D_FLUSH_NEVER]        = {"never", true},
198         [VMENTER_L1D_FLUSH_COND]         = {"cond", true},
199         [VMENTER_L1D_FLUSH_ALWAYS]       = {"always", true},
200         [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
201         [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
202 };
203
204 #define L1D_CACHE_ORDER 4
205 static void *vmx_l1d_flush_pages;
206
207 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
208 {
209         struct page *page;
210         unsigned int i;
211
212         if (!enable_ept) {
213                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
214                 return 0;
215         }
216
217         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
218                 u64 msr;
219
220                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
221                 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
222                         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
223                         return 0;
224                 }
225         }
226
227         /* If set to auto use the default l1tf mitigation method */
228         if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
229                 switch (l1tf_mitigation) {
230                 case L1TF_MITIGATION_OFF:
231                         l1tf = VMENTER_L1D_FLUSH_NEVER;
232                         break;
233                 case L1TF_MITIGATION_FLUSH_NOWARN:
234                 case L1TF_MITIGATION_FLUSH:
235                 case L1TF_MITIGATION_FLUSH_NOSMT:
236                         l1tf = VMENTER_L1D_FLUSH_COND;
237                         break;
238                 case L1TF_MITIGATION_FULL:
239                 case L1TF_MITIGATION_FULL_FORCE:
240                         l1tf = VMENTER_L1D_FLUSH_ALWAYS;
241                         break;
242                 }
243         } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
244                 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
245         }
246
247         if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
248             !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
249                 /*
250                  * This allocation for vmx_l1d_flush_pages is not tied to a VM
251                  * lifetime and so should not be charged to a memcg.
252                  */
253                 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
254                 if (!page)
255                         return -ENOMEM;
256                 vmx_l1d_flush_pages = page_address(page);
257
258                 /*
259                  * Initialize each page with a different pattern in
260                  * order to protect against KSM in the nested
261                  * virtualization case.
262                  */
263                 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
264                         memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
265                                PAGE_SIZE);
266                 }
267         }
268
269         l1tf_vmx_mitigation = l1tf;
270
271         if (l1tf != VMENTER_L1D_FLUSH_NEVER)
272                 static_branch_enable(&vmx_l1d_should_flush);
273         else
274                 static_branch_disable(&vmx_l1d_should_flush);
275
276         if (l1tf == VMENTER_L1D_FLUSH_COND)
277                 static_branch_enable(&vmx_l1d_flush_cond);
278         else
279                 static_branch_disable(&vmx_l1d_flush_cond);
280         return 0;
281 }
282
283 static int vmentry_l1d_flush_parse(const char *s)
284 {
285         unsigned int i;
286
287         if (s) {
288                 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
289                         if (vmentry_l1d_param[i].for_parse &&
290                             sysfs_streq(s, vmentry_l1d_param[i].option))
291                                 return i;
292                 }
293         }
294         return -EINVAL;
295 }
296
297 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
298 {
299         int l1tf, ret;
300
301         l1tf = vmentry_l1d_flush_parse(s);
302         if (l1tf < 0)
303                 return l1tf;
304
305         if (!boot_cpu_has(X86_BUG_L1TF))
306                 return 0;
307
308         /*
309          * Has vmx_init() run already? If not then this is the pre init
310          * parameter parsing. In that case just store the value and let
311          * vmx_init() do the proper setup after enable_ept has been
312          * established.
313          */
314         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
315                 vmentry_l1d_flush_param = l1tf;
316                 return 0;
317         }
318
319         mutex_lock(&vmx_l1d_flush_mutex);
320         ret = vmx_setup_l1d_flush(l1tf);
321         mutex_unlock(&vmx_l1d_flush_mutex);
322         return ret;
323 }
324
325 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
326 {
327         if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
328                 return sprintf(s, "???\n");
329
330         return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
331 }
332
333 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
334         .set = vmentry_l1d_flush_set,
335         .get = vmentry_l1d_flush_get,
336 };
337 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
338
339 static bool guest_state_valid(struct kvm_vcpu *vcpu);
340 static u32 vmx_segment_access_rights(struct kvm_segment *var);
341 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
342                                                           u32 msr, int type);
343
344 void vmx_vmexit(void);
345
346 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
347 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
348 /*
349  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
350  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
351  */
352 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
353
354 /*
355  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
356  * can find which vCPU should be waken up.
357  */
358 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
359 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
360
361 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
362 static DEFINE_SPINLOCK(vmx_vpid_lock);
363
364 struct vmcs_config vmcs_config;
365 struct vmx_capability vmx_capability;
366
367 #define VMX_SEGMENT_FIELD(seg)                                  \
368         [VCPU_SREG_##seg] = {                                   \
369                 .selector = GUEST_##seg##_SELECTOR,             \
370                 .base = GUEST_##seg##_BASE,                     \
371                 .limit = GUEST_##seg##_LIMIT,                   \
372                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
373         }
374
375 static const struct kvm_vmx_segment_field {
376         unsigned selector;
377         unsigned base;
378         unsigned limit;
379         unsigned ar_bytes;
380 } kvm_vmx_segment_fields[] = {
381         VMX_SEGMENT_FIELD(CS),
382         VMX_SEGMENT_FIELD(DS),
383         VMX_SEGMENT_FIELD(ES),
384         VMX_SEGMENT_FIELD(FS),
385         VMX_SEGMENT_FIELD(GS),
386         VMX_SEGMENT_FIELD(SS),
387         VMX_SEGMENT_FIELD(TR),
388         VMX_SEGMENT_FIELD(LDTR),
389 };
390
391 u64 host_efer;
392 static unsigned long host_idt_base;
393
394 /*
395  * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
396  * will emulate SYSCALL in legacy mode if the vendor string in guest
397  * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
398  * support this emulation, IA32_STAR must always be included in
399  * vmx_msr_index[], even in i386 builds.
400  */
401 const u32 vmx_msr_index[] = {
402 #ifdef CONFIG_X86_64
403         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
404 #endif
405         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
406 };
407
408 #if IS_ENABLED(CONFIG_HYPERV)
409 static bool __read_mostly enlightened_vmcs = true;
410 module_param(enlightened_vmcs, bool, 0444);
411
412 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
413 static void check_ept_pointer_match(struct kvm *kvm)
414 {
415         struct kvm_vcpu *vcpu;
416         u64 tmp_eptp = INVALID_PAGE;
417         int i;
418
419         kvm_for_each_vcpu(i, vcpu, kvm) {
420                 if (!VALID_PAGE(tmp_eptp)) {
421                         tmp_eptp = to_vmx(vcpu)->ept_pointer;
422                 } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
423                         to_kvm_vmx(kvm)->ept_pointers_match
424                                 = EPT_POINTERS_MISMATCH;
425                         return;
426                 }
427         }
428
429         to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
430 }
431
432 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
433                 void *data)
434 {
435         struct kvm_tlb_range *range = data;
436
437         return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
438                         range->pages);
439 }
440
441 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
442                 struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
443 {
444         u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
445
446         /*
447          * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
448          * of the base of EPT PML4 table, strip off EPT configuration
449          * information.
450          */
451         if (range)
452                 return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
453                                 kvm_fill_hv_flush_list_func, (void *)range);
454         else
455                 return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
456 }
457
458 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
459                 struct kvm_tlb_range *range)
460 {
461         struct kvm_vcpu *vcpu;
462         int ret = 0, i;
463
464         spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
465
466         if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
467                 check_ept_pointer_match(kvm);
468
469         if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
470                 kvm_for_each_vcpu(i, vcpu, kvm) {
471                         /* If ept_pointer is invalid pointer, bypass flush request. */
472                         if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
473                                 ret |= __hv_remote_flush_tlb_with_range(
474                                         kvm, vcpu, range);
475                 }
476         } else {
477                 ret = __hv_remote_flush_tlb_with_range(kvm,
478                                 kvm_get_vcpu(kvm, 0), range);
479         }
480
481         spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
482         return ret;
483 }
484 static int hv_remote_flush_tlb(struct kvm *kvm)
485 {
486         return hv_remote_flush_tlb_with_range(kvm, NULL);
487 }
488
489 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
490 {
491         struct hv_enlightened_vmcs *evmcs;
492         struct hv_partition_assist_pg **p_hv_pa_pg =
493                         &vcpu->kvm->arch.hyperv.hv_pa_pg;
494         /*
495          * Synthetic VM-Exit is not enabled in current code and so All
496          * evmcs in singe VM shares same assist page.
497          */
498         if (!*p_hv_pa_pg) {
499                 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL);
500                 if (!*p_hv_pa_pg)
501                         return -ENOMEM;
502                 pr_debug("KVM: Hyper-V: allocated PA_PG for %llx\n",
503                        (u64)&vcpu->kvm);
504         }
505
506         evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
507
508         evmcs->partition_assist_page =
509                 __pa(*p_hv_pa_pg);
510         evmcs->hv_vm_id = (u64)vcpu->kvm;
511         evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
512
513         pr_debug("KVM: Hyper-V: enabled DIRECT flush for %llx\n",
514                  (u64)vcpu->kvm);
515         return 0;
516 }
517
518 #endif /* IS_ENABLED(CONFIG_HYPERV) */
519
520 /*
521  * Comment's format: document - errata name - stepping - processor name.
522  * Refer from
523  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
524  */
525 static u32 vmx_preemption_cpu_tfms[] = {
526 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
527 0x000206E6,
528 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
529 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
530 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
531 0x00020652,
532 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
533 0x00020655,
534 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
535 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
536 /*
537  * 320767.pdf - AAP86  - B1 -
538  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
539  */
540 0x000106E5,
541 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
542 0x000106A0,
543 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
544 0x000106A1,
545 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
546 0x000106A4,
547  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
548  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
549  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
550 0x000106A5,
551  /* Xeon E3-1220 V2 */
552 0x000306A8,
553 };
554
555 static inline bool cpu_has_broken_vmx_preemption_timer(void)
556 {
557         u32 eax = cpuid_eax(0x00000001), i;
558
559         /* Clear the reserved bits */
560         eax &= ~(0x3U << 14 | 0xfU << 28);
561         for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
562                 if (eax == vmx_preemption_cpu_tfms[i])
563                         return true;
564
565         return false;
566 }
567
568 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
569 {
570         return flexpriority_enabled && lapic_in_kernel(vcpu);
571 }
572
573 static inline bool report_flexpriority(void)
574 {
575         return flexpriority_enabled;
576 }
577
578 static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
579 {
580         int i;
581
582         for (i = 0; i < vmx->nmsrs; ++i)
583                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
584                         return i;
585         return -1;
586 }
587
588 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
589 {
590         int i;
591
592         i = __find_msr_index(vmx, msr);
593         if (i >= 0)
594                 return &vmx->guest_msrs[i];
595         return NULL;
596 }
597
598 void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
599 {
600         vmcs_clear(loaded_vmcs->vmcs);
601         if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
602                 vmcs_clear(loaded_vmcs->shadow_vmcs);
603         loaded_vmcs->cpu = -1;
604         loaded_vmcs->launched = 0;
605 }
606
607 #ifdef CONFIG_KEXEC_CORE
608 /*
609  * This bitmap is used to indicate whether the vmclear
610  * operation is enabled on all cpus. All disabled by
611  * default.
612  */
613 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
614
615 static inline void crash_enable_local_vmclear(int cpu)
616 {
617         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
618 }
619
620 static inline void crash_disable_local_vmclear(int cpu)
621 {
622         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
623 }
624
625 static inline int crash_local_vmclear_enabled(int cpu)
626 {
627         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
628 }
629
630 static void crash_vmclear_local_loaded_vmcss(void)
631 {
632         int cpu = raw_smp_processor_id();
633         struct loaded_vmcs *v;
634
635         if (!crash_local_vmclear_enabled(cpu))
636                 return;
637
638         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
639                             loaded_vmcss_on_cpu_link)
640                 vmcs_clear(v->vmcs);
641 }
642 #else
643 static inline void crash_enable_local_vmclear(int cpu) { }
644 static inline void crash_disable_local_vmclear(int cpu) { }
645 #endif /* CONFIG_KEXEC_CORE */
646
647 static void __loaded_vmcs_clear(void *arg)
648 {
649         struct loaded_vmcs *loaded_vmcs = arg;
650         int cpu = raw_smp_processor_id();
651
652         if (loaded_vmcs->cpu != cpu)
653                 return; /* vcpu migration can race with cpu offline */
654         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
655                 per_cpu(current_vmcs, cpu) = NULL;
656         crash_disable_local_vmclear(cpu);
657         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
658
659         /*
660          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
661          * is before setting loaded_vmcs->vcpu to -1 which is done in
662          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
663          * then adds the vmcs into percpu list before it is deleted.
664          */
665         smp_wmb();
666
667         loaded_vmcs_init(loaded_vmcs);
668         crash_enable_local_vmclear(cpu);
669 }
670
671 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
672 {
673         int cpu = loaded_vmcs->cpu;
674
675         if (cpu != -1)
676                 smp_call_function_single(cpu,
677                          __loaded_vmcs_clear, loaded_vmcs, 1);
678 }
679
680 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
681                                        unsigned field)
682 {
683         bool ret;
684         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
685
686         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
687                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
688                 vmx->segment_cache.bitmask = 0;
689         }
690         ret = vmx->segment_cache.bitmask & mask;
691         vmx->segment_cache.bitmask |= mask;
692         return ret;
693 }
694
695 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
696 {
697         u16 *p = &vmx->segment_cache.seg[seg].selector;
698
699         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
700                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
701         return *p;
702 }
703
704 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
705 {
706         ulong *p = &vmx->segment_cache.seg[seg].base;
707
708         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
709                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
710         return *p;
711 }
712
713 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
714 {
715         u32 *p = &vmx->segment_cache.seg[seg].limit;
716
717         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
718                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
719         return *p;
720 }
721
722 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
723 {
724         u32 *p = &vmx->segment_cache.seg[seg].ar;
725
726         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
727                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
728         return *p;
729 }
730
731 void update_exception_bitmap(struct kvm_vcpu *vcpu)
732 {
733         u32 eb;
734
735         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
736              (1u << DB_VECTOR) | (1u << AC_VECTOR);
737         /*
738          * Guest access to VMware backdoor ports could legitimately
739          * trigger #GP because of TSS I/O permission bitmap.
740          * We intercept those #GP and allow access to them anyway
741          * as VMware does.
742          */
743         if (enable_vmware_backdoor)
744                 eb |= (1u << GP_VECTOR);
745         if ((vcpu->guest_debug &
746              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
747             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
748                 eb |= 1u << BP_VECTOR;
749         if (to_vmx(vcpu)->rmode.vm86_active)
750                 eb = ~0;
751         if (enable_ept)
752                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
753
754         /* When we are running a nested L2 guest and L1 specified for it a
755          * certain exception bitmap, we must trap the same exceptions and pass
756          * them to L1. When running L2, we will only handle the exceptions
757          * specified above if L1 did not want them.
758          */
759         if (is_guest_mode(vcpu))
760                 eb |= get_vmcs12(vcpu)->exception_bitmap;
761
762         vmcs_write32(EXCEPTION_BITMAP, eb);
763 }
764
765 /*
766  * Check if MSR is intercepted for currently loaded MSR bitmap.
767  */
768 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
769 {
770         unsigned long *msr_bitmap;
771         int f = sizeof(unsigned long);
772
773         if (!cpu_has_vmx_msr_bitmap())
774                 return true;
775
776         msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
777
778         if (msr <= 0x1fff) {
779                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
780         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
781                 msr &= 0x1fff;
782                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
783         }
784
785         return true;
786 }
787
788 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
789                 unsigned long entry, unsigned long exit)
790 {
791         vm_entry_controls_clearbit(vmx, entry);
792         vm_exit_controls_clearbit(vmx, exit);
793 }
794
795 static int find_msr(struct vmx_msrs *m, unsigned int msr)
796 {
797         unsigned int i;
798
799         for (i = 0; i < m->nr; ++i) {
800                 if (m->val[i].index == msr)
801                         return i;
802         }
803         return -ENOENT;
804 }
805
806 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
807 {
808         int i;
809         struct msr_autoload *m = &vmx->msr_autoload;
810
811         switch (msr) {
812         case MSR_EFER:
813                 if (cpu_has_load_ia32_efer()) {
814                         clear_atomic_switch_msr_special(vmx,
815                                         VM_ENTRY_LOAD_IA32_EFER,
816                                         VM_EXIT_LOAD_IA32_EFER);
817                         return;
818                 }
819                 break;
820         case MSR_CORE_PERF_GLOBAL_CTRL:
821                 if (cpu_has_load_perf_global_ctrl()) {
822                         clear_atomic_switch_msr_special(vmx,
823                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
824                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
825                         return;
826                 }
827                 break;
828         }
829         i = find_msr(&m->guest, msr);
830         if (i < 0)
831                 goto skip_guest;
832         --m->guest.nr;
833         m->guest.val[i] = m->guest.val[m->guest.nr];
834         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
835
836 skip_guest:
837         i = find_msr(&m->host, msr);
838         if (i < 0)
839                 return;
840
841         --m->host.nr;
842         m->host.val[i] = m->host.val[m->host.nr];
843         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
844 }
845
846 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
847                 unsigned long entry, unsigned long exit,
848                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
849                 u64 guest_val, u64 host_val)
850 {
851         vmcs_write64(guest_val_vmcs, guest_val);
852         if (host_val_vmcs != HOST_IA32_EFER)
853                 vmcs_write64(host_val_vmcs, host_val);
854         vm_entry_controls_setbit(vmx, entry);
855         vm_exit_controls_setbit(vmx, exit);
856 }
857
858 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
859                                   u64 guest_val, u64 host_val, bool entry_only)
860 {
861         int i, j = 0;
862         struct msr_autoload *m = &vmx->msr_autoload;
863
864         switch (msr) {
865         case MSR_EFER:
866                 if (cpu_has_load_ia32_efer()) {
867                         add_atomic_switch_msr_special(vmx,
868                                         VM_ENTRY_LOAD_IA32_EFER,
869                                         VM_EXIT_LOAD_IA32_EFER,
870                                         GUEST_IA32_EFER,
871                                         HOST_IA32_EFER,
872                                         guest_val, host_val);
873                         return;
874                 }
875                 break;
876         case MSR_CORE_PERF_GLOBAL_CTRL:
877                 if (cpu_has_load_perf_global_ctrl()) {
878                         add_atomic_switch_msr_special(vmx,
879                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
880                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
881                                         GUEST_IA32_PERF_GLOBAL_CTRL,
882                                         HOST_IA32_PERF_GLOBAL_CTRL,
883                                         guest_val, host_val);
884                         return;
885                 }
886                 break;
887         case MSR_IA32_PEBS_ENABLE:
888                 /* PEBS needs a quiescent period after being disabled (to write
889                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
890                  * provide that period, so a CPU could write host's record into
891                  * guest's memory.
892                  */
893                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
894         }
895
896         i = find_msr(&m->guest, msr);
897         if (!entry_only)
898                 j = find_msr(&m->host, msr);
899
900         if ((i < 0 && m->guest.nr == NR_AUTOLOAD_MSRS) ||
901                 (j < 0 &&  m->host.nr == NR_AUTOLOAD_MSRS)) {
902                 printk_once(KERN_WARNING "Not enough msr switch entries. "
903                                 "Can't add msr %x\n", msr);
904                 return;
905         }
906         if (i < 0) {
907                 i = m->guest.nr++;
908                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
909         }
910         m->guest.val[i].index = msr;
911         m->guest.val[i].value = guest_val;
912
913         if (entry_only)
914                 return;
915
916         if (j < 0) {
917                 j = m->host.nr++;
918                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
919         }
920         m->host.val[j].index = msr;
921         m->host.val[j].value = host_val;
922 }
923
924 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
925 {
926         u64 guest_efer = vmx->vcpu.arch.efer;
927         u64 ignore_bits = 0;
928
929         if (!enable_ept) {
930                 /*
931                  * NX is needed to handle CR0.WP=1, CR4.SMEP=1.  Testing
932                  * host CPUID is more efficient than testing guest CPUID
933                  * or CR4.  Host SMEP is anyway a requirement for guest SMEP.
934                  */
935                 if (boot_cpu_has(X86_FEATURE_SMEP))
936                         guest_efer |= EFER_NX;
937                 else if (!(guest_efer & EFER_NX))
938                         ignore_bits |= EFER_NX;
939         }
940
941         /*
942          * LMA and LME handled by hardware; SCE meaningless outside long mode.
943          */
944         ignore_bits |= EFER_SCE;
945 #ifdef CONFIG_X86_64
946         ignore_bits |= EFER_LMA | EFER_LME;
947         /* SCE is meaningful only in long mode on Intel */
948         if (guest_efer & EFER_LMA)
949                 ignore_bits &= ~(u64)EFER_SCE;
950 #endif
951
952         /*
953          * On EPT, we can't emulate NX, so we must switch EFER atomically.
954          * On CPUs that support "load IA32_EFER", always switch EFER
955          * atomically, since it's faster than switching it manually.
956          */
957         if (cpu_has_load_ia32_efer() ||
958             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
959                 if (!(guest_efer & EFER_LMA))
960                         guest_efer &= ~EFER_LME;
961                 if (guest_efer != host_efer)
962                         add_atomic_switch_msr(vmx, MSR_EFER,
963                                               guest_efer, host_efer, false);
964                 else
965                         clear_atomic_switch_msr(vmx, MSR_EFER);
966                 return false;
967         } else {
968                 clear_atomic_switch_msr(vmx, MSR_EFER);
969
970                 guest_efer &= ~ignore_bits;
971                 guest_efer |= host_efer & ignore_bits;
972
973                 vmx->guest_msrs[efer_offset].data = guest_efer;
974                 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
975
976                 return true;
977         }
978 }
979
980 #ifdef CONFIG_X86_32
981 /*
982  * On 32-bit kernels, VM exits still load the FS and GS bases from the
983  * VMCS rather than the segment table.  KVM uses this helper to figure
984  * out the current bases to poke them into the VMCS before entry.
985  */
986 static unsigned long segment_base(u16 selector)
987 {
988         struct desc_struct *table;
989         unsigned long v;
990
991         if (!(selector & ~SEGMENT_RPL_MASK))
992                 return 0;
993
994         table = get_current_gdt_ro();
995
996         if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
997                 u16 ldt_selector = kvm_read_ldt();
998
999                 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1000                         return 0;
1001
1002                 table = (struct desc_struct *)segment_base(ldt_selector);
1003         }
1004         v = get_desc_base(&table[selector >> 3]);
1005         return v;
1006 }
1007 #endif
1008
1009 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1010 {
1011         u32 i;
1012
1013         wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1014         wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1015         wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1016         wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1017         for (i = 0; i < addr_range; i++) {
1018                 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1019                 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1020         }
1021 }
1022
1023 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1024 {
1025         u32 i;
1026
1027         rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1028         rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1029         rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1030         rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1031         for (i = 0; i < addr_range; i++) {
1032                 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1033                 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1034         }
1035 }
1036
1037 static void pt_guest_enter(struct vcpu_vmx *vmx)
1038 {
1039         if (pt_mode == PT_MODE_SYSTEM)
1040                 return;
1041
1042         /*
1043          * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1044          * Save host state before VM entry.
1045          */
1046         rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1047         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1048                 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1049                 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1050                 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1051         }
1052 }
1053
1054 static void pt_guest_exit(struct vcpu_vmx *vmx)
1055 {
1056         if (pt_mode == PT_MODE_SYSTEM)
1057                 return;
1058
1059         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1060                 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1061                 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1062         }
1063
1064         /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1065         wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1066 }
1067
1068 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1069                         unsigned long fs_base, unsigned long gs_base)
1070 {
1071         if (unlikely(fs_sel != host->fs_sel)) {
1072                 if (!(fs_sel & 7))
1073                         vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1074                 else
1075                         vmcs_write16(HOST_FS_SELECTOR, 0);
1076                 host->fs_sel = fs_sel;
1077         }
1078         if (unlikely(gs_sel != host->gs_sel)) {
1079                 if (!(gs_sel & 7))
1080                         vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1081                 else
1082                         vmcs_write16(HOST_GS_SELECTOR, 0);
1083                 host->gs_sel = gs_sel;
1084         }
1085         if (unlikely(fs_base != host->fs_base)) {
1086                 vmcs_writel(HOST_FS_BASE, fs_base);
1087                 host->fs_base = fs_base;
1088         }
1089         if (unlikely(gs_base != host->gs_base)) {
1090                 vmcs_writel(HOST_GS_BASE, gs_base);
1091                 host->gs_base = gs_base;
1092         }
1093 }
1094
1095 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1096 {
1097         struct vcpu_vmx *vmx = to_vmx(vcpu);
1098         struct vmcs_host_state *host_state;
1099 #ifdef CONFIG_X86_64
1100         int cpu = raw_smp_processor_id();
1101 #endif
1102         unsigned long fs_base, gs_base;
1103         u16 fs_sel, gs_sel;
1104         int i;
1105
1106         vmx->req_immediate_exit = false;
1107
1108         /*
1109          * Note that guest MSRs to be saved/restored can also be changed
1110          * when guest state is loaded. This happens when guest transitions
1111          * to/from long-mode by setting MSR_EFER.LMA.
1112          */
1113         if (!vmx->guest_msrs_ready) {
1114                 vmx->guest_msrs_ready = true;
1115                 for (i = 0; i < vmx->save_nmsrs; ++i)
1116                         kvm_set_shared_msr(vmx->guest_msrs[i].index,
1117                                            vmx->guest_msrs[i].data,
1118                                            vmx->guest_msrs[i].mask);
1119
1120         }
1121         if (vmx->guest_state_loaded)
1122                 return;
1123
1124         host_state = &vmx->loaded_vmcs->host_state;
1125
1126         /*
1127          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1128          * allow segment selectors with cpl > 0 or ti == 1.
1129          */
1130         host_state->ldt_sel = kvm_read_ldt();
1131
1132 #ifdef CONFIG_X86_64
1133         savesegment(ds, host_state->ds_sel);
1134         savesegment(es, host_state->es_sel);
1135
1136         gs_base = cpu_kernelmode_gs_base(cpu);
1137         if (likely(is_64bit_mm(current->mm))) {
1138                 save_fsgs_for_kvm();
1139                 fs_sel = current->thread.fsindex;
1140                 gs_sel = current->thread.gsindex;
1141                 fs_base = current->thread.fsbase;
1142                 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1143         } else {
1144                 savesegment(fs, fs_sel);
1145                 savesegment(gs, gs_sel);
1146                 fs_base = read_msr(MSR_FS_BASE);
1147                 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1148         }
1149
1150         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1151 #else
1152         savesegment(fs, fs_sel);
1153         savesegment(gs, gs_sel);
1154         fs_base = segment_base(fs_sel);
1155         gs_base = segment_base(gs_sel);
1156 #endif
1157
1158         vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1159         vmx->guest_state_loaded = true;
1160 }
1161
1162 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1163 {
1164         struct vmcs_host_state *host_state;
1165
1166         if (!vmx->guest_state_loaded)
1167                 return;
1168
1169         host_state = &vmx->loaded_vmcs->host_state;
1170
1171         ++vmx->vcpu.stat.host_state_reload;
1172
1173 #ifdef CONFIG_X86_64
1174         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1175 #endif
1176         if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1177                 kvm_load_ldt(host_state->ldt_sel);
1178 #ifdef CONFIG_X86_64
1179                 load_gs_index(host_state->gs_sel);
1180 #else
1181                 loadsegment(gs, host_state->gs_sel);
1182 #endif
1183         }
1184         if (host_state->fs_sel & 7)
1185                 loadsegment(fs, host_state->fs_sel);
1186 #ifdef CONFIG_X86_64
1187         if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1188                 loadsegment(ds, host_state->ds_sel);
1189                 loadsegment(es, host_state->es_sel);
1190         }
1191 #endif
1192         invalidate_tss_limit();
1193 #ifdef CONFIG_X86_64
1194         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1195 #endif
1196         load_fixmap_gdt(raw_smp_processor_id());
1197         vmx->guest_state_loaded = false;
1198         vmx->guest_msrs_ready = false;
1199 }
1200
1201 #ifdef CONFIG_X86_64
1202 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1203 {
1204         preempt_disable();
1205         if (vmx->guest_state_loaded)
1206                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1207         preempt_enable();
1208         return vmx->msr_guest_kernel_gs_base;
1209 }
1210
1211 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1212 {
1213         preempt_disable();
1214         if (vmx->guest_state_loaded)
1215                 wrmsrl(MSR_KERNEL_GS_BASE, data);
1216         preempt_enable();
1217         vmx->msr_guest_kernel_gs_base = data;
1218 }
1219 #endif
1220
1221 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1222 {
1223         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1224         struct pi_desc old, new;
1225         unsigned int dest;
1226
1227         /*
1228          * In case of hot-plug or hot-unplug, we may have to undo
1229          * vmx_vcpu_pi_put even if there is no assigned device.  And we
1230          * always keep PI.NDST up to date for simplicity: it makes the
1231          * code easier, and CPU migration is not a fast path.
1232          */
1233         if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
1234                 return;
1235
1236         /* The full case.  */
1237         do {
1238                 old.control = new.control = pi_desc->control;
1239
1240                 dest = cpu_physical_id(cpu);
1241
1242                 if (x2apic_enabled())
1243                         new.ndst = dest;
1244                 else
1245                         new.ndst = (dest << 8) & 0xFF00;
1246
1247                 new.sn = 0;
1248         } while (cmpxchg64(&pi_desc->control, old.control,
1249                            new.control) != old.control);
1250
1251         /*
1252          * Clear SN before reading the bitmap.  The VT-d firmware
1253          * writes the bitmap and reads SN atomically (5.2.3 in the
1254          * spec), so it doesn't really have a memory barrier that
1255          * pairs with this, but we cannot do that and we need one.
1256          */
1257         smp_mb__after_atomic();
1258
1259         if (!bitmap_empty((unsigned long *)pi_desc->pir, NR_VECTORS))
1260                 pi_set_on(pi_desc);
1261 }
1262
1263 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu)
1264 {
1265         struct vcpu_vmx *vmx = to_vmx(vcpu);
1266         bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1267
1268         if (!already_loaded) {
1269                 loaded_vmcs_clear(vmx->loaded_vmcs);
1270                 local_irq_disable();
1271                 crash_disable_local_vmclear(cpu);
1272
1273                 /*
1274                  * Read loaded_vmcs->cpu should be before fetching
1275                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
1276                  * See the comments in __loaded_vmcs_clear().
1277                  */
1278                 smp_rmb();
1279
1280                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1281                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1282                 crash_enable_local_vmclear(cpu);
1283                 local_irq_enable();
1284         }
1285
1286         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1287                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1288                 vmcs_load(vmx->loaded_vmcs->vmcs);
1289                 indirect_branch_prediction_barrier();
1290         }
1291
1292         if (!already_loaded) {
1293                 void *gdt = get_current_gdt_ro();
1294                 unsigned long sysenter_esp;
1295
1296                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1297
1298                 /*
1299                  * Linux uses per-cpu TSS and GDT, so set these when switching
1300                  * processors.  See 22.2.4.
1301                  */
1302                 vmcs_writel(HOST_TR_BASE,
1303                             (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1304                 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1305
1306                 /*
1307                  * VM exits change the host TR limit to 0x67 after a VM
1308                  * exit.  This is okay, since 0x67 covers everything except
1309                  * the IO bitmap and have have code to handle the IO bitmap
1310                  * being lost after a VM exit.
1311                  */
1312                 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
1313
1314                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1315                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1316
1317                 vmx->loaded_vmcs->cpu = cpu;
1318         }
1319
1320         /* Setup TSC multiplier */
1321         if (kvm_has_tsc_control &&
1322             vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1323                 decache_tsc_multiplier(vmx);
1324 }
1325
1326 /*
1327  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1328  * vcpu mutex is already taken.
1329  */
1330 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1331 {
1332         struct vcpu_vmx *vmx = to_vmx(vcpu);
1333
1334         vmx_vcpu_load_vmcs(vcpu, cpu);
1335
1336         vmx_vcpu_pi_load(vcpu, cpu);
1337
1338         vmx->host_pkru = read_pkru();
1339         vmx->host_debugctlmsr = get_debugctlmsr();
1340 }
1341
1342 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
1343 {
1344         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1345
1346         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1347                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
1348                 !kvm_vcpu_apicv_active(vcpu))
1349                 return;
1350
1351         /* Set SN when the vCPU is preempted */
1352         if (vcpu->preempted)
1353                 pi_set_sn(pi_desc);
1354 }
1355
1356 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1357 {
1358         vmx_vcpu_pi_put(vcpu);
1359
1360         vmx_prepare_switch_to_host(to_vmx(vcpu));
1361 }
1362
1363 static bool emulation_required(struct kvm_vcpu *vcpu)
1364 {
1365         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
1366 }
1367
1368 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1369
1370 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1371 {
1372         unsigned long rflags, save_rflags;
1373
1374         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1375                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1376                 rflags = vmcs_readl(GUEST_RFLAGS);
1377                 if (to_vmx(vcpu)->rmode.vm86_active) {
1378                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1379                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1380                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1381                 }
1382                 to_vmx(vcpu)->rflags = rflags;
1383         }
1384         return to_vmx(vcpu)->rflags;
1385 }
1386
1387 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1388 {
1389         unsigned long old_rflags = vmx_get_rflags(vcpu);
1390
1391         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1392         to_vmx(vcpu)->rflags = rflags;
1393         if (to_vmx(vcpu)->rmode.vm86_active) {
1394                 to_vmx(vcpu)->rmode.save_rflags = rflags;
1395                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1396         }
1397         vmcs_writel(GUEST_RFLAGS, rflags);
1398
1399         if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
1400                 to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
1401 }
1402
1403 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1404 {
1405         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1406         int ret = 0;
1407
1408         if (interruptibility & GUEST_INTR_STATE_STI)
1409                 ret |= KVM_X86_SHADOW_INT_STI;
1410         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1411                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1412
1413         return ret;
1414 }
1415
1416 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1417 {
1418         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1419         u32 interruptibility = interruptibility_old;
1420
1421         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1422
1423         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1424                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1425         else if (mask & KVM_X86_SHADOW_INT_STI)
1426                 interruptibility |= GUEST_INTR_STATE_STI;
1427
1428         if ((interruptibility != interruptibility_old))
1429                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1430 }
1431
1432 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1433 {
1434         struct vcpu_vmx *vmx = to_vmx(vcpu);
1435         unsigned long value;
1436
1437         /*
1438          * Any MSR write that attempts to change bits marked reserved will
1439          * case a #GP fault.
1440          */
1441         if (data & vmx->pt_desc.ctl_bitmask)
1442                 return 1;
1443
1444         /*
1445          * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1446          * result in a #GP unless the same write also clears TraceEn.
1447          */
1448         if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1449                 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1450                 return 1;
1451
1452         /*
1453          * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1454          * and FabricEn would cause #GP, if
1455          * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1456          */
1457         if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1458                 !(data & RTIT_CTL_FABRIC_EN) &&
1459                 !intel_pt_validate_cap(vmx->pt_desc.caps,
1460                                         PT_CAP_single_range_output))
1461                 return 1;
1462
1463         /*
1464          * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1465          * utilize encodings marked reserved will casue a #GP fault.
1466          */
1467         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1468         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1469                         !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1470                         RTIT_CTL_MTC_RANGE_OFFSET, &value))
1471                 return 1;
1472         value = intel_pt_validate_cap(vmx->pt_desc.caps,
1473                                                 PT_CAP_cycle_thresholds);
1474         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1475                         !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1476                         RTIT_CTL_CYC_THRESH_OFFSET, &value))
1477                 return 1;
1478         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1479         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1480                         !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1481                         RTIT_CTL_PSB_FREQ_OFFSET, &value))
1482                 return 1;
1483
1484         /*
1485          * If ADDRx_CFG is reserved or the encodings is >2 will
1486          * cause a #GP fault.
1487          */
1488         value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1489         if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1490                 return 1;
1491         value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1492         if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1493                 return 1;
1494         value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1495         if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1496                 return 1;
1497         value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1498         if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1499                 return 1;
1500
1501         return 0;
1502 }
1503
1504 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1505 {
1506         unsigned long rip;
1507
1508         /*
1509          * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1510          * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1511          * set when EPT misconfig occurs.  In practice, real hardware updates
1512          * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1513          * (namely Hyper-V) don't set it due to it being undefined behavior,
1514          * i.e. we end up advancing IP with some random value.
1515          */
1516         if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1517             to_vmx(vcpu)->exit_reason != EXIT_REASON_EPT_MISCONFIG) {
1518                 rip = kvm_rip_read(vcpu);
1519                 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1520                 kvm_rip_write(vcpu, rip);
1521         } else {
1522                 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1523                         return 0;
1524         }
1525
1526         /* skipping an emulated instruction also counts */
1527         vmx_set_interrupt_shadow(vcpu, 0);
1528
1529         return 1;
1530 }
1531
1532 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1533 {
1534         /*
1535          * Ensure that we clear the HLT state in the VMCS.  We don't need to
1536          * explicitly skip the instruction because if the HLT state is set,
1537          * then the instruction is already executing and RIP has already been
1538          * advanced.
1539          */
1540         if (kvm_hlt_in_guest(vcpu->kvm) &&
1541                         vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1542                 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1543 }
1544
1545 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1546 {
1547         struct vcpu_vmx *vmx = to_vmx(vcpu);
1548         unsigned nr = vcpu->arch.exception.nr;
1549         bool has_error_code = vcpu->arch.exception.has_error_code;
1550         u32 error_code = vcpu->arch.exception.error_code;
1551         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1552
1553         kvm_deliver_exception_payload(vcpu);
1554
1555         if (has_error_code) {
1556                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1557                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1558         }
1559
1560         if (vmx->rmode.vm86_active) {
1561                 int inc_eip = 0;
1562                 if (kvm_exception_is_soft(nr))
1563                         inc_eip = vcpu->arch.event_exit_inst_len;
1564                 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1565                 return;
1566         }
1567
1568         WARN_ON_ONCE(vmx->emulation_required);
1569
1570         if (kvm_exception_is_soft(nr)) {
1571                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1572                              vmx->vcpu.arch.event_exit_inst_len);
1573                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1574         } else
1575                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1576
1577         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1578
1579         vmx_clear_hlt(vcpu);
1580 }
1581
1582 static bool vmx_rdtscp_supported(void)
1583 {
1584         return cpu_has_vmx_rdtscp();
1585 }
1586
1587 static bool vmx_invpcid_supported(void)
1588 {
1589         return cpu_has_vmx_invpcid();
1590 }
1591
1592 /*
1593  * Swap MSR entry in host/guest MSR entry array.
1594  */
1595 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1596 {
1597         struct shared_msr_entry tmp;
1598
1599         tmp = vmx->guest_msrs[to];
1600         vmx->guest_msrs[to] = vmx->guest_msrs[from];
1601         vmx->guest_msrs[from] = tmp;
1602 }
1603
1604 /*
1605  * Set up the vmcs to automatically save and restore system
1606  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1607  * mode, as fiddling with msrs is very expensive.
1608  */
1609 static void setup_msrs(struct vcpu_vmx *vmx)
1610 {
1611         int save_nmsrs, index;
1612
1613         save_nmsrs = 0;
1614 #ifdef CONFIG_X86_64
1615         /*
1616          * The SYSCALL MSRs are only needed on long mode guests, and only
1617          * when EFER.SCE is set.
1618          */
1619         if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1620                 index = __find_msr_index(vmx, MSR_STAR);
1621                 if (index >= 0)
1622                         move_msr_up(vmx, index, save_nmsrs++);
1623                 index = __find_msr_index(vmx, MSR_LSTAR);
1624                 if (index >= 0)
1625                         move_msr_up(vmx, index, save_nmsrs++);
1626                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1627                 if (index >= 0)
1628                         move_msr_up(vmx, index, save_nmsrs++);
1629         }
1630 #endif
1631         index = __find_msr_index(vmx, MSR_EFER);
1632         if (index >= 0 && update_transition_efer(vmx, index))
1633                 move_msr_up(vmx, index, save_nmsrs++);
1634         index = __find_msr_index(vmx, MSR_TSC_AUX);
1635         if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1636                 move_msr_up(vmx, index, save_nmsrs++);
1637
1638         vmx->save_nmsrs = save_nmsrs;
1639         vmx->guest_msrs_ready = false;
1640
1641         if (cpu_has_vmx_msr_bitmap())
1642                 vmx_update_msr_bitmap(&vmx->vcpu);
1643 }
1644
1645 static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1646 {
1647         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1648
1649         if (is_guest_mode(vcpu) &&
1650             (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1651                 return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
1652
1653         return vcpu->arch.tsc_offset;
1654 }
1655
1656 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1657 {
1658         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1659         u64 g_tsc_offset = 0;
1660
1661         /*
1662          * We're here if L1 chose not to trap WRMSR to TSC. According
1663          * to the spec, this should set L1's TSC; The offset that L1
1664          * set for L2 remains unchanged, and still needs to be added
1665          * to the newly set TSC to get L2's TSC.
1666          */
1667         if (is_guest_mode(vcpu) &&
1668             (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1669                 g_tsc_offset = vmcs12->tsc_offset;
1670
1671         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1672                                    vcpu->arch.tsc_offset - g_tsc_offset,
1673                                    offset);
1674         vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1675         return offset + g_tsc_offset;
1676 }
1677
1678 /*
1679  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1680  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1681  * all guests if the "nested" module option is off, and can also be disabled
1682  * for a single guest by disabling its VMX cpuid bit.
1683  */
1684 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1685 {
1686         return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1687 }
1688
1689 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1690                                                  uint64_t val)
1691 {
1692         uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1693
1694         return !(val & ~valid_bits);
1695 }
1696
1697 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1698 {
1699         switch (msr->index) {
1700         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1701                 if (!nested)
1702                         return 1;
1703                 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1704         default:
1705                 return 1;
1706         }
1707
1708         return 0;
1709 }
1710
1711 /*
1712  * Reads an msr value (of 'msr_index') into 'pdata'.
1713  * Returns 0 on success, non-0 otherwise.
1714  * Assumes vcpu_load() was already called.
1715  */
1716 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1717 {
1718         struct vcpu_vmx *vmx = to_vmx(vcpu);
1719         struct shared_msr_entry *msr;
1720         u32 index;
1721
1722         switch (msr_info->index) {
1723 #ifdef CONFIG_X86_64
1724         case MSR_FS_BASE:
1725                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1726                 break;
1727         case MSR_GS_BASE:
1728                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1729                 break;
1730         case MSR_KERNEL_GS_BASE:
1731                 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1732                 break;
1733 #endif
1734         case MSR_EFER:
1735                 return kvm_get_msr_common(vcpu, msr_info);
1736         case MSR_IA32_UMWAIT_CONTROL:
1737                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1738                         return 1;
1739
1740                 msr_info->data = vmx->msr_ia32_umwait_control;
1741                 break;
1742         case MSR_IA32_SPEC_CTRL:
1743                 if (!msr_info->host_initiated &&
1744                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1745                         return 1;
1746
1747                 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1748                 break;
1749         case MSR_IA32_SYSENTER_CS:
1750                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1751                 break;
1752         case MSR_IA32_SYSENTER_EIP:
1753                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1754                 break;
1755         case MSR_IA32_SYSENTER_ESP:
1756                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1757                 break;
1758         case MSR_IA32_BNDCFGS:
1759                 if (!kvm_mpx_supported() ||
1760                     (!msr_info->host_initiated &&
1761                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1762                         return 1;
1763                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1764                 break;
1765         case MSR_IA32_MCG_EXT_CTL:
1766                 if (!msr_info->host_initiated &&
1767                     !(vmx->msr_ia32_feature_control &
1768                       FEATURE_CONTROL_LMCE))
1769                         return 1;
1770                 msr_info->data = vcpu->arch.mcg_ext_ctl;
1771                 break;
1772         case MSR_IA32_FEATURE_CONTROL:
1773                 msr_info->data = vmx->msr_ia32_feature_control;
1774                 break;
1775         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1776                 if (!nested_vmx_allowed(vcpu))
1777                         return 1;
1778                 return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1779                                        &msr_info->data);
1780         case MSR_IA32_XSS:
1781                 if (!vmx_xsaves_supported() ||
1782                     (!msr_info->host_initiated &&
1783                      !(guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
1784                        guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))))
1785                         return 1;
1786                 msr_info->data = vcpu->arch.ia32_xss;
1787                 break;
1788         case MSR_IA32_RTIT_CTL:
1789                 if (pt_mode != PT_MODE_HOST_GUEST)
1790                         return 1;
1791                 msr_info->data = vmx->pt_desc.guest.ctl;
1792                 break;
1793         case MSR_IA32_RTIT_STATUS:
1794                 if (pt_mode != PT_MODE_HOST_GUEST)
1795                         return 1;
1796                 msr_info->data = vmx->pt_desc.guest.status;
1797                 break;
1798         case MSR_IA32_RTIT_CR3_MATCH:
1799                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1800                         !intel_pt_validate_cap(vmx->pt_desc.caps,
1801                                                 PT_CAP_cr3_filtering))
1802                         return 1;
1803                 msr_info->data = vmx->pt_desc.guest.cr3_match;
1804                 break;
1805         case MSR_IA32_RTIT_OUTPUT_BASE:
1806                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1807                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1808                                         PT_CAP_topa_output) &&
1809                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1810                                         PT_CAP_single_range_output)))
1811                         return 1;
1812                 msr_info->data = vmx->pt_desc.guest.output_base;
1813                 break;
1814         case MSR_IA32_RTIT_OUTPUT_MASK:
1815                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1816                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1817                                         PT_CAP_topa_output) &&
1818                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1819                                         PT_CAP_single_range_output)))
1820                         return 1;
1821                 msr_info->data = vmx->pt_desc.guest.output_mask;
1822                 break;
1823         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1824                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1825                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1826                         (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1827                                         PT_CAP_num_address_ranges)))
1828                         return 1;
1829                 if (index % 2)
1830                         msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1831                 else
1832                         msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1833                 break;
1834         case MSR_TSC_AUX:
1835                 if (!msr_info->host_initiated &&
1836                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1837                         return 1;
1838                 /* Else, falls through */
1839         default:
1840                 msr = find_msr_entry(vmx, msr_info->index);
1841                 if (msr) {
1842                         msr_info->data = msr->data;
1843                         break;
1844                 }
1845                 return kvm_get_msr_common(vcpu, msr_info);
1846         }
1847
1848         return 0;
1849 }
1850
1851 /*
1852  * Writes msr value into into the appropriate "register".
1853  * Returns 0 on success, non-0 otherwise.
1854  * Assumes vcpu_load() was already called.
1855  */
1856 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1857 {
1858         struct vcpu_vmx *vmx = to_vmx(vcpu);
1859         struct shared_msr_entry *msr;
1860         int ret = 0;
1861         u32 msr_index = msr_info->index;
1862         u64 data = msr_info->data;
1863         u32 index;
1864
1865         switch (msr_index) {
1866         case MSR_EFER:
1867                 ret = kvm_set_msr_common(vcpu, msr_info);
1868                 break;
1869 #ifdef CONFIG_X86_64
1870         case MSR_FS_BASE:
1871                 vmx_segment_cache_clear(vmx);
1872                 vmcs_writel(GUEST_FS_BASE, data);
1873                 break;
1874         case MSR_GS_BASE:
1875                 vmx_segment_cache_clear(vmx);
1876                 vmcs_writel(GUEST_GS_BASE, data);
1877                 break;
1878         case MSR_KERNEL_GS_BASE:
1879                 vmx_write_guest_kernel_gs_base(vmx, data);
1880                 break;
1881 #endif
1882         case MSR_IA32_SYSENTER_CS:
1883                 if (is_guest_mode(vcpu))
1884                         get_vmcs12(vcpu)->guest_sysenter_cs = data;
1885                 vmcs_write32(GUEST_SYSENTER_CS, data);
1886                 break;
1887         case MSR_IA32_SYSENTER_EIP:
1888                 if (is_guest_mode(vcpu))
1889                         get_vmcs12(vcpu)->guest_sysenter_eip = data;
1890                 vmcs_writel(GUEST_SYSENTER_EIP, data);
1891                 break;
1892         case MSR_IA32_SYSENTER_ESP:
1893                 if (is_guest_mode(vcpu))
1894                         get_vmcs12(vcpu)->guest_sysenter_esp = data;
1895                 vmcs_writel(GUEST_SYSENTER_ESP, data);
1896                 break;
1897         case MSR_IA32_DEBUGCTLMSR:
1898                 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
1899                                                 VM_EXIT_SAVE_DEBUG_CONTROLS)
1900                         get_vmcs12(vcpu)->guest_ia32_debugctl = data;
1901
1902                 ret = kvm_set_msr_common(vcpu, msr_info);
1903                 break;
1904
1905         case MSR_IA32_BNDCFGS:
1906                 if (!kvm_mpx_supported() ||
1907                     (!msr_info->host_initiated &&
1908                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1909                         return 1;
1910                 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
1911                     (data & MSR_IA32_BNDCFGS_RSVD))
1912                         return 1;
1913                 vmcs_write64(GUEST_BNDCFGS, data);
1914                 break;
1915         case MSR_IA32_UMWAIT_CONTROL:
1916                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1917                         return 1;
1918
1919                 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
1920                 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
1921                         return 1;
1922
1923                 vmx->msr_ia32_umwait_control = data;
1924                 break;
1925         case MSR_IA32_SPEC_CTRL:
1926                 if (!msr_info->host_initiated &&
1927                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1928                         return 1;
1929
1930                 /* The STIBP bit doesn't fault even if it's not advertised */
1931                 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
1932                         return 1;
1933
1934                 vmx->spec_ctrl = data;
1935
1936                 if (!data)
1937                         break;
1938
1939                 /*
1940                  * For non-nested:
1941                  * When it's written (to non-zero) for the first time, pass
1942                  * it through.
1943                  *
1944                  * For nested:
1945                  * The handling of the MSR bitmap for L2 guests is done in
1946                  * nested_vmx_merge_msr_bitmap. We should not touch the
1947                  * vmcs02.msr_bitmap here since it gets completely overwritten
1948                  * in the merging. We update the vmcs01 here for L1 as well
1949                  * since it will end up touching the MSR anyway now.
1950                  */
1951                 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
1952                                               MSR_IA32_SPEC_CTRL,
1953                                               MSR_TYPE_RW);
1954                 break;
1955         case MSR_IA32_PRED_CMD:
1956                 if (!msr_info->host_initiated &&
1957                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1958                         return 1;
1959
1960                 if (data & ~PRED_CMD_IBPB)
1961                         return 1;
1962
1963                 if (!data)
1964                         break;
1965
1966                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
1967
1968                 /*
1969                  * For non-nested:
1970                  * When it's written (to non-zero) for the first time, pass
1971                  * it through.
1972                  *
1973                  * For nested:
1974                  * The handling of the MSR bitmap for L2 guests is done in
1975                  * nested_vmx_merge_msr_bitmap. We should not touch the
1976                  * vmcs02.msr_bitmap here since it gets completely overwritten
1977                  * in the merging.
1978                  */
1979                 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
1980                                               MSR_TYPE_W);
1981                 break;
1982         case MSR_IA32_CR_PAT:
1983                 if (!kvm_pat_valid(data))
1984                         return 1;
1985
1986                 if (is_guest_mode(vcpu) &&
1987                     get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
1988                         get_vmcs12(vcpu)->guest_ia32_pat = data;
1989
1990                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1991                         vmcs_write64(GUEST_IA32_PAT, data);
1992                         vcpu->arch.pat = data;
1993                         break;
1994                 }
1995                 ret = kvm_set_msr_common(vcpu, msr_info);
1996                 break;
1997         case MSR_IA32_TSC_ADJUST:
1998                 ret = kvm_set_msr_common(vcpu, msr_info);
1999                 break;
2000         case MSR_IA32_MCG_EXT_CTL:
2001                 if ((!msr_info->host_initiated &&
2002                      !(to_vmx(vcpu)->msr_ia32_feature_control &
2003                        FEATURE_CONTROL_LMCE)) ||
2004                     (data & ~MCG_EXT_CTL_LMCE_EN))
2005                         return 1;
2006                 vcpu->arch.mcg_ext_ctl = data;
2007                 break;
2008         case MSR_IA32_FEATURE_CONTROL:
2009                 if (!vmx_feature_control_msr_valid(vcpu, data) ||
2010                     (to_vmx(vcpu)->msr_ia32_feature_control &
2011                      FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2012                         return 1;
2013                 vmx->msr_ia32_feature_control = data;
2014                 if (msr_info->host_initiated && data == 0)
2015                         vmx_leave_nested(vcpu);
2016                 break;
2017         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2018                 if (!msr_info->host_initiated)
2019                         return 1; /* they are read-only */
2020                 if (!nested_vmx_allowed(vcpu))
2021                         return 1;
2022                 return vmx_set_vmx_msr(vcpu, msr_index, data);
2023         case MSR_IA32_XSS:
2024                 if (!vmx_xsaves_supported() ||
2025                     (!msr_info->host_initiated &&
2026                      !(guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
2027                        guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))))
2028                         return 1;
2029                 /*
2030                  * The only supported bit as of Skylake is bit 8, but
2031                  * it is not supported on KVM.
2032                  */
2033                 if (data != 0)
2034                         return 1;
2035                 vcpu->arch.ia32_xss = data;
2036                 if (vcpu->arch.ia32_xss != host_xss)
2037                         add_atomic_switch_msr(vmx, MSR_IA32_XSS,
2038                                 vcpu->arch.ia32_xss, host_xss, false);
2039                 else
2040                         clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
2041                 break;
2042         case MSR_IA32_RTIT_CTL:
2043                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2044                         vmx_rtit_ctl_check(vcpu, data) ||
2045                         vmx->nested.vmxon)
2046                         return 1;
2047                 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2048                 vmx->pt_desc.guest.ctl = data;
2049                 pt_update_intercept_for_msr(vmx);
2050                 break;
2051         case MSR_IA32_RTIT_STATUS:
2052                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2053                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2054                         (data & MSR_IA32_RTIT_STATUS_MASK))
2055                         return 1;
2056                 vmx->pt_desc.guest.status = data;
2057                 break;
2058         case MSR_IA32_RTIT_CR3_MATCH:
2059                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2060                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2061                         !intel_pt_validate_cap(vmx->pt_desc.caps,
2062                                                 PT_CAP_cr3_filtering))
2063                         return 1;
2064                 vmx->pt_desc.guest.cr3_match = data;
2065                 break;
2066         case MSR_IA32_RTIT_OUTPUT_BASE:
2067                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2068                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2069                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
2070                                         PT_CAP_topa_output) &&
2071                          !intel_pt_validate_cap(vmx->pt_desc.caps,
2072                                         PT_CAP_single_range_output)) ||
2073                         (data & MSR_IA32_RTIT_OUTPUT_BASE_MASK))
2074                         return 1;
2075                 vmx->pt_desc.guest.output_base = data;
2076                 break;
2077         case MSR_IA32_RTIT_OUTPUT_MASK:
2078                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2079                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2080                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
2081                                         PT_CAP_topa_output) &&
2082                          !intel_pt_validate_cap(vmx->pt_desc.caps,
2083                                         PT_CAP_single_range_output)))
2084                         return 1;
2085                 vmx->pt_desc.guest.output_mask = data;
2086                 break;
2087         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2088                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2089                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2090                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2091                         (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2092                                         PT_CAP_num_address_ranges)))
2093                         return 1;
2094                 if (index % 2)
2095                         vmx->pt_desc.guest.addr_b[index / 2] = data;
2096                 else
2097                         vmx->pt_desc.guest.addr_a[index / 2] = data;
2098                 break;
2099         case MSR_TSC_AUX:
2100                 if (!msr_info->host_initiated &&
2101                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2102                         return 1;
2103                 /* Check reserved bit, higher 32 bits should be zero */
2104                 if ((data >> 32) != 0)
2105                         return 1;
2106                 /* Else, falls through */
2107         default:
2108                 msr = find_msr_entry(vmx, msr_index);
2109                 if (msr) {
2110                         u64 old_msr_data = msr->data;
2111                         msr->data = data;
2112                         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2113                                 preempt_disable();
2114                                 ret = kvm_set_shared_msr(msr->index, msr->data,
2115                                                          msr->mask);
2116                                 preempt_enable();
2117                                 if (ret)
2118                                         msr->data = old_msr_data;
2119                         }
2120                         break;
2121                 }
2122                 ret = kvm_set_msr_common(vcpu, msr_info);
2123         }
2124
2125         return ret;
2126 }
2127
2128 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2129 {
2130         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2131         switch (reg) {
2132         case VCPU_REGS_RSP:
2133                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2134                 break;
2135         case VCPU_REGS_RIP:
2136                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2137                 break;
2138         case VCPU_EXREG_PDPTR:
2139                 if (enable_ept)
2140                         ept_save_pdptrs(vcpu);
2141                 break;
2142         default:
2143                 break;
2144         }
2145 }
2146
2147 static __init int cpu_has_kvm_support(void)
2148 {
2149         return cpu_has_vmx();
2150 }
2151
2152 static __init int vmx_disabled_by_bios(void)
2153 {
2154         u64 msr;
2155
2156         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2157         if (msr & FEATURE_CONTROL_LOCKED) {
2158                 /* launched w/ TXT and VMX disabled */
2159                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2160                         && tboot_enabled())
2161                         return 1;
2162                 /* launched w/o TXT and VMX only enabled w/ TXT */
2163                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2164                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2165                         && !tboot_enabled()) {
2166                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2167                                 "activate TXT before enabling KVM\n");
2168                         return 1;
2169                 }
2170                 /* launched w/o TXT and VMX disabled */
2171                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2172                         && !tboot_enabled())
2173                         return 1;
2174         }
2175
2176         return 0;
2177 }
2178
2179 static void kvm_cpu_vmxon(u64 addr)
2180 {
2181         cr4_set_bits(X86_CR4_VMXE);
2182         intel_pt_handle_vmx(1);
2183
2184         asm volatile ("vmxon %0" : : "m"(addr));
2185 }
2186
2187 static int hardware_enable(void)
2188 {
2189         int cpu = raw_smp_processor_id();
2190         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2191         u64 old, test_bits;
2192
2193         if (cr4_read_shadow() & X86_CR4_VMXE)
2194                 return -EBUSY;
2195
2196         /*
2197          * This can happen if we hot-added a CPU but failed to allocate
2198          * VP assist page for it.
2199          */
2200         if (static_branch_unlikely(&enable_evmcs) &&
2201             !hv_get_vp_assist_page(cpu))
2202                 return -EFAULT;
2203
2204         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2205         INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
2206         spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
2207
2208         /*
2209          * Now we can enable the vmclear operation in kdump
2210          * since the loaded_vmcss_on_cpu list on this cpu
2211          * has been initialized.
2212          *
2213          * Though the cpu is not in VMX operation now, there
2214          * is no problem to enable the vmclear operation
2215          * for the loaded_vmcss_on_cpu list is empty!
2216          */
2217         crash_enable_local_vmclear(cpu);
2218
2219         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2220
2221         test_bits = FEATURE_CONTROL_LOCKED;
2222         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2223         if (tboot_enabled())
2224                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2225
2226         if ((old & test_bits) != test_bits) {
2227                 /* enable and lock */
2228                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2229         }
2230         kvm_cpu_vmxon(phys_addr);
2231         if (enable_ept)
2232                 ept_sync_global();
2233
2234         return 0;
2235 }
2236
2237 static void vmclear_local_loaded_vmcss(void)
2238 {
2239         int cpu = raw_smp_processor_id();
2240         struct loaded_vmcs *v, *n;
2241
2242         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2243                                  loaded_vmcss_on_cpu_link)
2244                 __loaded_vmcs_clear(v);
2245 }
2246
2247
2248 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2249  * tricks.
2250  */
2251 static void kvm_cpu_vmxoff(void)
2252 {
2253         asm volatile (__ex("vmxoff"));
2254
2255         intel_pt_handle_vmx(0);
2256         cr4_clear_bits(X86_CR4_VMXE);
2257 }
2258
2259 static void hardware_disable(void)
2260 {
2261         vmclear_local_loaded_vmcss();
2262         kvm_cpu_vmxoff();
2263 }
2264
2265 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2266                                       u32 msr, u32 *result)
2267 {
2268         u32 vmx_msr_low, vmx_msr_high;
2269         u32 ctl = ctl_min | ctl_opt;
2270
2271         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2272
2273         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2274         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2275
2276         /* Ensure minimum (required) set of control bits are supported. */
2277         if (ctl_min & ~ctl)
2278                 return -EIO;
2279
2280         *result = ctl;
2281         return 0;
2282 }
2283
2284 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2285                                     struct vmx_capability *vmx_cap)
2286 {
2287         u32 vmx_msr_low, vmx_msr_high;
2288         u32 min, opt, min2, opt2;
2289         u32 _pin_based_exec_control = 0;
2290         u32 _cpu_based_exec_control = 0;
2291         u32 _cpu_based_2nd_exec_control = 0;
2292         u32 _vmexit_control = 0;
2293         u32 _vmentry_control = 0;
2294
2295         memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2296         min = CPU_BASED_HLT_EXITING |
2297 #ifdef CONFIG_X86_64
2298               CPU_BASED_CR8_LOAD_EXITING |
2299               CPU_BASED_CR8_STORE_EXITING |
2300 #endif
2301               CPU_BASED_CR3_LOAD_EXITING |
2302               CPU_BASED_CR3_STORE_EXITING |
2303               CPU_BASED_UNCOND_IO_EXITING |
2304               CPU_BASED_MOV_DR_EXITING |
2305               CPU_BASED_USE_TSC_OFFSETING |
2306               CPU_BASED_MWAIT_EXITING |
2307               CPU_BASED_MONITOR_EXITING |
2308               CPU_BASED_INVLPG_EXITING |
2309               CPU_BASED_RDPMC_EXITING;
2310
2311         opt = CPU_BASED_TPR_SHADOW |
2312               CPU_BASED_USE_MSR_BITMAPS |
2313               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2314         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2315                                 &_cpu_based_exec_control) < 0)
2316                 return -EIO;
2317 #ifdef CONFIG_X86_64
2318         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2319                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2320                                            ~CPU_BASED_CR8_STORE_EXITING;
2321 #endif
2322         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2323                 min2 = 0;
2324                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2325                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2326                         SECONDARY_EXEC_WBINVD_EXITING |
2327                         SECONDARY_EXEC_ENABLE_VPID |
2328                         SECONDARY_EXEC_ENABLE_EPT |
2329                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
2330                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2331                         SECONDARY_EXEC_DESC |
2332                         SECONDARY_EXEC_RDTSCP |
2333                         SECONDARY_EXEC_ENABLE_INVPCID |
2334                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
2335                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2336                         SECONDARY_EXEC_SHADOW_VMCS |
2337                         SECONDARY_EXEC_XSAVES |
2338                         SECONDARY_EXEC_RDSEED_EXITING |
2339                         SECONDARY_EXEC_RDRAND_EXITING |
2340                         SECONDARY_EXEC_ENABLE_PML |
2341                         SECONDARY_EXEC_TSC_SCALING |
2342                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2343                         SECONDARY_EXEC_PT_USE_GPA |
2344                         SECONDARY_EXEC_PT_CONCEAL_VMX |
2345                         SECONDARY_EXEC_ENABLE_VMFUNC |
2346                         SECONDARY_EXEC_ENCLS_EXITING;
2347                 if (adjust_vmx_controls(min2, opt2,
2348                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2349                                         &_cpu_based_2nd_exec_control) < 0)
2350                         return -EIO;
2351         }
2352 #ifndef CONFIG_X86_64
2353         if (!(_cpu_based_2nd_exec_control &
2354                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2355                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2356 #endif
2357
2358         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2359                 _cpu_based_2nd_exec_control &= ~(
2360                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2361                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2362                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2363
2364         rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2365                 &vmx_cap->ept, &vmx_cap->vpid);
2366
2367         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2368                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2369                    enabled */
2370                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2371                                              CPU_BASED_CR3_STORE_EXITING |
2372                                              CPU_BASED_INVLPG_EXITING);
2373         } else if (vmx_cap->ept) {
2374                 vmx_cap->ept = 0;
2375                 pr_warn_once("EPT CAP should not exist if not support "
2376                                 "1-setting enable EPT VM-execution control\n");
2377         }
2378         if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2379                 vmx_cap->vpid) {
2380                 vmx_cap->vpid = 0;
2381                 pr_warn_once("VPID CAP should not exist if not support "
2382                                 "1-setting enable VPID VM-execution control\n");
2383         }
2384
2385         min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2386 #ifdef CONFIG_X86_64
2387         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2388 #endif
2389         opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2390               VM_EXIT_LOAD_IA32_PAT |
2391               VM_EXIT_LOAD_IA32_EFER |
2392               VM_EXIT_CLEAR_BNDCFGS |
2393               VM_EXIT_PT_CONCEAL_PIP |
2394               VM_EXIT_CLEAR_IA32_RTIT_CTL;
2395         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2396                                 &_vmexit_control) < 0)
2397                 return -EIO;
2398
2399         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2400         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2401                  PIN_BASED_VMX_PREEMPTION_TIMER;
2402         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2403                                 &_pin_based_exec_control) < 0)
2404                 return -EIO;
2405
2406         if (cpu_has_broken_vmx_preemption_timer())
2407                 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2408         if (!(_cpu_based_2nd_exec_control &
2409                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2410                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2411
2412         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2413         opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2414               VM_ENTRY_LOAD_IA32_PAT |
2415               VM_ENTRY_LOAD_IA32_EFER |
2416               VM_ENTRY_LOAD_BNDCFGS |
2417               VM_ENTRY_PT_CONCEAL_PIP |
2418               VM_ENTRY_LOAD_IA32_RTIT_CTL;
2419         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2420                                 &_vmentry_control) < 0)
2421                 return -EIO;
2422
2423         /*
2424          * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2425          * can't be used due to an errata where VM Exit may incorrectly clear
2426          * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2427          * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2428          */
2429         if (boot_cpu_data.x86 == 0x6) {
2430                 switch (boot_cpu_data.x86_model) {
2431                 case 26: /* AAK155 */
2432                 case 30: /* AAP115 */
2433                 case 37: /* AAT100 */
2434                 case 44: /* BC86,AAY89,BD102 */
2435                 case 46: /* BA97 */
2436                         _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2437                         _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2438                         pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2439                                         "does not work properly. Using workaround\n");
2440                         break;
2441                 default:
2442                         break;
2443                 }
2444         }
2445
2446
2447         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2448
2449         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2450         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2451                 return -EIO;
2452
2453 #ifdef CONFIG_X86_64
2454         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2455         if (vmx_msr_high & (1u<<16))
2456                 return -EIO;
2457 #endif
2458
2459         /* Require Write-Back (WB) memory type for VMCS accesses. */
2460         if (((vmx_msr_high >> 18) & 15) != 6)
2461                 return -EIO;
2462
2463         vmcs_conf->size = vmx_msr_high & 0x1fff;
2464         vmcs_conf->order = get_order(vmcs_conf->size);
2465         vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2466
2467         vmcs_conf->revision_id = vmx_msr_low;
2468
2469         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2470         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2471         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2472         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2473         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2474
2475         if (static_branch_unlikely(&enable_evmcs))
2476                 evmcs_sanitize_exec_ctrls(vmcs_conf);
2477
2478         return 0;
2479 }
2480
2481 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2482 {
2483         int node = cpu_to_node(cpu);
2484         struct page *pages;
2485         struct vmcs *vmcs;
2486
2487         pages = __alloc_pages_node(node, flags, vmcs_config.order);
2488         if (!pages)
2489                 return NULL;
2490         vmcs = page_address(pages);
2491         memset(vmcs, 0, vmcs_config.size);
2492
2493         /* KVM supports Enlightened VMCS v1 only */
2494         if (static_branch_unlikely(&enable_evmcs))
2495                 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2496         else
2497                 vmcs->hdr.revision_id = vmcs_config.revision_id;
2498
2499         if (shadow)
2500                 vmcs->hdr.shadow_vmcs = 1;
2501         return vmcs;
2502 }
2503
2504 void free_vmcs(struct vmcs *vmcs)
2505 {
2506         free_pages((unsigned long)vmcs, vmcs_config.order);
2507 }
2508
2509 /*
2510  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2511  */
2512 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2513 {
2514         if (!loaded_vmcs->vmcs)
2515                 return;
2516         loaded_vmcs_clear(loaded_vmcs);
2517         free_vmcs(loaded_vmcs->vmcs);
2518         loaded_vmcs->vmcs = NULL;
2519         if (loaded_vmcs->msr_bitmap)
2520                 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2521         WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2522 }
2523
2524 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2525 {
2526         loaded_vmcs->vmcs = alloc_vmcs(false);
2527         if (!loaded_vmcs->vmcs)
2528                 return -ENOMEM;
2529
2530         loaded_vmcs->shadow_vmcs = NULL;
2531         loaded_vmcs->hv_timer_soft_disabled = false;
2532         loaded_vmcs_init(loaded_vmcs);
2533
2534         if (cpu_has_vmx_msr_bitmap()) {
2535                 loaded_vmcs->msr_bitmap = (unsigned long *)
2536                                 __get_free_page(GFP_KERNEL_ACCOUNT);
2537                 if (!loaded_vmcs->msr_bitmap)
2538                         goto out_vmcs;
2539                 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2540
2541                 if (IS_ENABLED(CONFIG_HYPERV) &&
2542                     static_branch_unlikely(&enable_evmcs) &&
2543                     (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2544                         struct hv_enlightened_vmcs *evmcs =
2545                                 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2546
2547                         evmcs->hv_enlightenments_control.msr_bitmap = 1;
2548                 }
2549         }
2550
2551         memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2552         memset(&loaded_vmcs->controls_shadow, 0,
2553                 sizeof(struct vmcs_controls_shadow));
2554
2555         return 0;
2556
2557 out_vmcs:
2558         free_loaded_vmcs(loaded_vmcs);
2559         return -ENOMEM;
2560 }
2561
2562 static void free_kvm_area(void)
2563 {
2564         int cpu;
2565
2566         for_each_possible_cpu(cpu) {
2567                 free_vmcs(per_cpu(vmxarea, cpu));
2568                 per_cpu(vmxarea, cpu) = NULL;
2569         }
2570 }
2571
2572 static __init int alloc_kvm_area(void)
2573 {
2574         int cpu;
2575
2576         for_each_possible_cpu(cpu) {
2577                 struct vmcs *vmcs;
2578
2579                 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2580                 if (!vmcs) {
2581                         free_kvm_area();
2582                         return -ENOMEM;
2583                 }
2584
2585                 /*
2586                  * When eVMCS is enabled, alloc_vmcs_cpu() sets
2587                  * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2588                  * revision_id reported by MSR_IA32_VMX_BASIC.
2589                  *
2590                  * However, even though not explicitly documented by
2591                  * TLFS, VMXArea passed as VMXON argument should
2592                  * still be marked with revision_id reported by
2593                  * physical CPU.
2594                  */
2595                 if (static_branch_unlikely(&enable_evmcs))
2596                         vmcs->hdr.revision_id = vmcs_config.revision_id;
2597
2598                 per_cpu(vmxarea, cpu) = vmcs;
2599         }
2600         return 0;
2601 }
2602
2603 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2604                 struct kvm_segment *save)
2605 {
2606         if (!emulate_invalid_guest_state) {
2607                 /*
2608                  * CS and SS RPL should be equal during guest entry according
2609                  * to VMX spec, but in reality it is not always so. Since vcpu
2610                  * is in the middle of the transition from real mode to
2611                  * protected mode it is safe to assume that RPL 0 is a good
2612                  * default value.
2613                  */
2614                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2615                         save->selector &= ~SEGMENT_RPL_MASK;
2616                 save->dpl = save->selector & SEGMENT_RPL_MASK;
2617                 save->s = 1;
2618         }
2619         vmx_set_segment(vcpu, save, seg);
2620 }
2621
2622 static void enter_pmode(struct kvm_vcpu *vcpu)
2623 {
2624         unsigned long flags;
2625         struct vcpu_vmx *vmx = to_vmx(vcpu);
2626
2627         /*
2628          * Update real mode segment cache. It may be not up-to-date if sement
2629          * register was written while vcpu was in a guest mode.
2630          */
2631         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2632         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2633         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2634         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2635         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2636         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2637
2638         vmx->rmode.vm86_active = 0;
2639
2640         vmx_segment_cache_clear(vmx);
2641
2642         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2643
2644         flags = vmcs_readl(GUEST_RFLAGS);
2645         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2646         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2647         vmcs_writel(GUEST_RFLAGS, flags);
2648
2649         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2650                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2651
2652         update_exception_bitmap(vcpu);
2653
2654         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2655         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2656         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2657         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2658         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2659         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2660 }
2661
2662 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2663 {
2664         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2665         struct kvm_segment var = *save;
2666
2667         var.dpl = 0x3;
2668         if (seg == VCPU_SREG_CS)
2669                 var.type = 0x3;
2670
2671         if (!emulate_invalid_guest_state) {
2672                 var.selector = var.base >> 4;
2673                 var.base = var.base & 0xffff0;
2674                 var.limit = 0xffff;
2675                 var.g = 0;
2676                 var.db = 0;
2677                 var.present = 1;
2678                 var.s = 1;
2679                 var.l = 0;
2680                 var.unusable = 0;
2681                 var.type = 0x3;
2682                 var.avl = 0;
2683                 if (save->base & 0xf)
2684                         printk_once(KERN_WARNING "kvm: segment base is not "
2685                                         "paragraph aligned when entering "
2686                                         "protected mode (seg=%d)", seg);
2687         }
2688
2689         vmcs_write16(sf->selector, var.selector);
2690         vmcs_writel(sf->base, var.base);
2691         vmcs_write32(sf->limit, var.limit);
2692         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2693 }
2694
2695 static void enter_rmode(struct kvm_vcpu *vcpu)
2696 {
2697         unsigned long flags;
2698         struct vcpu_vmx *vmx = to_vmx(vcpu);
2699         struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2700
2701         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2702         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2703         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2704         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2705         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2706         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2707         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2708
2709         vmx->rmode.vm86_active = 1;
2710
2711         /*
2712          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2713          * vcpu. Warn the user that an update is overdue.
2714          */
2715         if (!kvm_vmx->tss_addr)
2716                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2717                              "called before entering vcpu\n");
2718
2719         vmx_segment_cache_clear(vmx);
2720
2721         vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2722         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2723         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2724
2725         flags = vmcs_readl(GUEST_RFLAGS);
2726         vmx->rmode.save_rflags = flags;
2727
2728         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2729
2730         vmcs_writel(GUEST_RFLAGS, flags);
2731         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2732         update_exception_bitmap(vcpu);
2733
2734         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2735         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2736         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2737         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2738         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2739         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2740
2741         kvm_mmu_reset_context(vcpu);
2742 }
2743
2744 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2745 {
2746         struct vcpu_vmx *vmx = to_vmx(vcpu);
2747         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2748
2749         if (!msr)
2750                 return;
2751
2752         vcpu->arch.efer = efer;
2753         if (efer & EFER_LMA) {
2754                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2755                 msr->data = efer;
2756         } else {
2757                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2758
2759                 msr->data = efer & ~EFER_LME;
2760         }
2761         setup_msrs(vmx);
2762 }
2763
2764 #ifdef CONFIG_X86_64
2765
2766 static void enter_lmode(struct kvm_vcpu *vcpu)
2767 {
2768         u32 guest_tr_ar;
2769
2770         vmx_segment_cache_clear(to_vmx(vcpu));
2771
2772         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2773         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2774                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2775                                      __func__);
2776                 vmcs_write32(GUEST_TR_AR_BYTES,
2777                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2778                              | VMX_AR_TYPE_BUSY_64_TSS);
2779         }
2780         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2781 }
2782
2783 static void exit_lmode(struct kvm_vcpu *vcpu)
2784 {
2785         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2786         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2787 }
2788
2789 #endif
2790
2791 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2792 {
2793         int vpid = to_vmx(vcpu)->vpid;
2794
2795         if (!vpid_sync_vcpu_addr(vpid, addr))
2796                 vpid_sync_context(vpid);
2797
2798         /*
2799          * If VPIDs are not supported or enabled, then the above is a no-op.
2800          * But we don't really need a TLB flush in that case anyway, because
2801          * each VM entry/exit includes an implicit flush when VPID is 0.
2802          */
2803 }
2804
2805 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2806 {
2807         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2808
2809         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2810         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2811 }
2812
2813 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2814 {
2815         if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
2816                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2817         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2818 }
2819
2820 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2821 {
2822         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2823
2824         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2825         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2826 }
2827
2828 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2829 {
2830         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2831
2832         if (!test_bit(VCPU_EXREG_PDPTR,
2833                       (unsigned long *)&vcpu->arch.regs_dirty))
2834                 return;
2835
2836         if (is_pae_paging(vcpu)) {
2837                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2838                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2839                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2840                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2841         }
2842 }
2843
2844 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2845 {
2846         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2847
2848         if (is_pae_paging(vcpu)) {
2849                 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2850                 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2851                 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2852                 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2853         }
2854
2855         __set_bit(VCPU_EXREG_PDPTR,
2856                   (unsigned long *)&vcpu->arch.regs_avail);
2857         __set_bit(VCPU_EXREG_PDPTR,
2858                   (unsigned long *)&vcpu->arch.regs_dirty);
2859 }
2860
2861 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2862                                         unsigned long cr0,
2863                                         struct kvm_vcpu *vcpu)
2864 {
2865         struct vcpu_vmx *vmx = to_vmx(vcpu);
2866
2867         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2868                 vmx_decache_cr3(vcpu);
2869         if (!(cr0 & X86_CR0_PG)) {
2870                 /* From paging/starting to nonpaging */
2871                 exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2872                                           CPU_BASED_CR3_STORE_EXITING);
2873                 vcpu->arch.cr0 = cr0;
2874                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2875         } else if (!is_paging(vcpu)) {
2876                 /* From nonpaging to paging */
2877                 exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2878                                             CPU_BASED_CR3_STORE_EXITING);
2879                 vcpu->arch.cr0 = cr0;
2880                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2881         }
2882
2883         if (!(cr0 & X86_CR0_WP))
2884                 *hw_cr0 &= ~X86_CR0_WP;
2885 }
2886
2887 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2888 {
2889         struct vcpu_vmx *vmx = to_vmx(vcpu);
2890         unsigned long hw_cr0;
2891
2892         hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
2893         if (enable_unrestricted_guest)
2894                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2895         else {
2896                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
2897
2898                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2899                         enter_pmode(vcpu);
2900
2901                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2902                         enter_rmode(vcpu);
2903         }
2904
2905 #ifdef CONFIG_X86_64
2906         if (vcpu->arch.efer & EFER_LME) {
2907                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2908                         enter_lmode(vcpu);
2909                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2910                         exit_lmode(vcpu);
2911         }
2912 #endif
2913
2914         if (enable_ept && !enable_unrestricted_guest)
2915                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2916
2917         vmcs_writel(CR0_READ_SHADOW, cr0);
2918         vmcs_writel(GUEST_CR0, hw_cr0);
2919         vcpu->arch.cr0 = cr0;
2920
2921         /* depends on vcpu->arch.cr0 to be set to a new value */
2922         vmx->emulation_required = emulation_required(vcpu);
2923 }
2924
2925 static int get_ept_level(struct kvm_vcpu *vcpu)
2926 {
2927         if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
2928                 return 5;
2929         return 4;
2930 }
2931
2932 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
2933 {
2934         u64 eptp = VMX_EPTP_MT_WB;
2935
2936         eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
2937
2938         if (enable_ept_ad_bits &&
2939             (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
2940                 eptp |= VMX_EPTP_AD_ENABLE_BIT;
2941         eptp |= (root_hpa & PAGE_MASK);
2942
2943         return eptp;
2944 }
2945
2946 void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
2947 {
2948         struct kvm *kvm = vcpu->kvm;
2949         unsigned long guest_cr3;
2950         u64 eptp;
2951
2952         guest_cr3 = cr3;
2953         if (enable_ept) {
2954                 eptp = construct_eptp(vcpu, cr3);
2955                 vmcs_write64(EPT_POINTER, eptp);
2956
2957                 if (kvm_x86_ops->tlb_remote_flush) {
2958                         spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
2959                         to_vmx(vcpu)->ept_pointer = eptp;
2960                         to_kvm_vmx(kvm)->ept_pointers_match
2961                                 = EPT_POINTERS_CHECK;
2962                         spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
2963                 }
2964
2965                 if (enable_unrestricted_guest || is_paging(vcpu) ||
2966                     is_guest_mode(vcpu))
2967                         guest_cr3 = kvm_read_cr3(vcpu);
2968                 else
2969                         guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
2970                 ept_load_pdptrs(vcpu);
2971         }
2972
2973         vmcs_writel(GUEST_CR3, guest_cr3);
2974 }
2975
2976 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2977 {
2978         struct vcpu_vmx *vmx = to_vmx(vcpu);
2979         /*
2980          * Pass through host's Machine Check Enable value to hw_cr4, which
2981          * is in force while we are in guest mode.  Do not let guests control
2982          * this bit, even if host CR4.MCE == 0.
2983          */
2984         unsigned long hw_cr4;
2985
2986         hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
2987         if (enable_unrestricted_guest)
2988                 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
2989         else if (vmx->rmode.vm86_active)
2990                 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
2991         else
2992                 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
2993
2994         if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
2995                 if (cr4 & X86_CR4_UMIP) {
2996                         secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
2997                         hw_cr4 &= ~X86_CR4_UMIP;
2998                 } else if (!is_guest_mode(vcpu) ||
2999                         !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3000                         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3001                 }
3002         }
3003
3004         if (cr4 & X86_CR4_VMXE) {
3005                 /*
3006                  * To use VMXON (and later other VMX instructions), a guest
3007                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
3008                  * So basically the check on whether to allow nested VMX
3009                  * is here.  We operate under the default treatment of SMM,
3010                  * so VMX cannot be enabled under SMM.
3011                  */
3012                 if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
3013                         return 1;
3014         }
3015
3016         if (vmx->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3017                 return 1;
3018
3019         vcpu->arch.cr4 = cr4;
3020
3021         if (!enable_unrestricted_guest) {
3022                 if (enable_ept) {
3023                         if (!is_paging(vcpu)) {
3024                                 hw_cr4 &= ~X86_CR4_PAE;
3025                                 hw_cr4 |= X86_CR4_PSE;
3026                         } else if (!(cr4 & X86_CR4_PAE)) {
3027                                 hw_cr4 &= ~X86_CR4_PAE;
3028                         }
3029                 }
3030
3031                 /*
3032                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3033                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3034                  * to be manually disabled when guest switches to non-paging
3035                  * mode.
3036                  *
3037                  * If !enable_unrestricted_guest, the CPU is always running
3038                  * with CR0.PG=1 and CR4 needs to be modified.
3039                  * If enable_unrestricted_guest, the CPU automatically
3040                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3041                  */
3042                 if (!is_paging(vcpu))
3043                         hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3044         }
3045
3046         vmcs_writel(CR4_READ_SHADOW, cr4);
3047         vmcs_writel(GUEST_CR4, hw_cr4);
3048         return 0;
3049 }
3050
3051 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3052 {
3053         struct vcpu_vmx *vmx = to_vmx(vcpu);
3054         u32 ar;
3055
3056         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3057                 *var = vmx->rmode.segs[seg];
3058                 if (seg == VCPU_SREG_TR
3059                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3060                         return;
3061                 var->base = vmx_read_guest_seg_base(vmx, seg);
3062                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3063                 return;
3064         }
3065         var->base = vmx_read_guest_seg_base(vmx, seg);
3066         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3067         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3068         ar = vmx_read_guest_seg_ar(vmx, seg);
3069         var->unusable = (ar >> 16) & 1;
3070         var->type = ar & 15;
3071         var->s = (ar >> 4) & 1;
3072         var->dpl = (ar >> 5) & 3;
3073         /*
3074          * Some userspaces do not preserve unusable property. Since usable
3075          * segment has to be present according to VMX spec we can use present
3076          * property to amend userspace bug by making unusable segment always
3077          * nonpresent. vmx_segment_access_rights() already marks nonpresent
3078          * segment as unusable.
3079          */
3080         var->present = !var->unusable;
3081         var->avl = (ar >> 12) & 1;
3082         var->l = (ar >> 13) & 1;
3083         var->db = (ar >> 14) & 1;
3084         var->g = (ar >> 15) & 1;
3085 }
3086
3087 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3088 {
3089         struct kvm_segment s;
3090
3091         if (to_vmx(vcpu)->rmode.vm86_active) {
3092                 vmx_get_segment(vcpu, &s, seg);
3093                 return s.base;
3094         }
3095         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3096 }
3097
3098 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3099 {
3100         struct vcpu_vmx *vmx = to_vmx(vcpu);
3101
3102         if (unlikely(vmx->rmode.vm86_active))
3103                 return 0;
3104         else {
3105                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3106                 return VMX_AR_DPL(ar);
3107         }
3108 }
3109
3110 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3111 {
3112         u32 ar;
3113
3114         if (var->unusable || !var->present)
3115                 ar = 1 << 16;
3116         else {
3117                 ar = var->type & 15;
3118                 ar |= (var->s & 1) << 4;
3119                 ar |= (var->dpl & 3) << 5;
3120                 ar |= (var->present & 1) << 7;
3121                 ar |= (var->avl & 1) << 12;
3122                 ar |= (var->l & 1) << 13;
3123                 ar |= (var->db & 1) << 14;
3124                 ar |= (var->g & 1) << 15;
3125         }
3126
3127         return ar;
3128 }
3129
3130 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3131 {
3132         struct vcpu_vmx *vmx = to_vmx(vcpu);
3133         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3134
3135         vmx_segment_cache_clear(vmx);
3136
3137         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3138                 vmx->rmode.segs[seg] = *var;
3139                 if (seg == VCPU_SREG_TR)
3140                         vmcs_write16(sf->selector, var->selector);
3141                 else if (var->s)
3142                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3143                 goto out;
3144         }
3145
3146         vmcs_writel(sf->base, var->base);
3147         vmcs_write32(sf->limit, var->limit);
3148         vmcs_write16(sf->selector, var->selector);
3149
3150         /*
3151          *   Fix the "Accessed" bit in AR field of segment registers for older
3152          * qemu binaries.
3153          *   IA32 arch specifies that at the time of processor reset the
3154          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3155          * is setting it to 0 in the userland code. This causes invalid guest
3156          * state vmexit when "unrestricted guest" mode is turned on.
3157          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3158          * tree. Newer qemu binaries with that qemu fix would not need this
3159          * kvm hack.
3160          */
3161         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3162                 var->type |= 0x1; /* Accessed */
3163
3164         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3165
3166 out:
3167         vmx->emulation_required = emulation_required(vcpu);
3168 }
3169
3170 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3171 {
3172         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3173
3174         *db = (ar >> 14) & 1;
3175         *l = (ar >> 13) & 1;
3176 }
3177
3178 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3179 {
3180         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3181         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3182 }
3183
3184 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3185 {
3186         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3187         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3188 }
3189
3190 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3191 {
3192         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3193         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3194 }
3195
3196 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3197 {
3198         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3199         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3200 }
3201
3202 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3203 {
3204         struct kvm_segment var;
3205         u32 ar;
3206
3207         vmx_get_segment(vcpu, &var, seg);
3208         var.dpl = 0x3;
3209         if (seg == VCPU_SREG_CS)
3210                 var.type = 0x3;
3211         ar = vmx_segment_access_rights(&var);
3212
3213         if (var.base != (var.selector << 4))
3214                 return false;
3215         if (var.limit != 0xffff)
3216                 return false;
3217         if (ar != 0xf3)
3218                 return false;
3219
3220         return true;
3221 }
3222
3223 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3224 {
3225         struct kvm_segment cs;
3226         unsigned int cs_rpl;
3227
3228         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3229         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3230
3231         if (cs.unusable)
3232                 return false;
3233         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3234                 return false;
3235         if (!cs.s)
3236                 return false;
3237         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3238                 if (cs.dpl > cs_rpl)
3239                         return false;
3240         } else {
3241                 if (cs.dpl != cs_rpl)
3242                         return false;
3243         }
3244         if (!cs.present)
3245                 return false;
3246
3247         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3248         return true;
3249 }
3250
3251 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3252 {
3253         struct kvm_segment ss;
3254         unsigned int ss_rpl;
3255
3256         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3257         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3258
3259         if (ss.unusable)
3260                 return true;
3261         if (ss.type != 3 && ss.type != 7)
3262                 return false;
3263         if (!ss.s)
3264                 return false;
3265         if (ss.dpl != ss_rpl) /* DPL != RPL */
3266                 return false;
3267         if (!ss.present)
3268                 return false;
3269
3270         return true;
3271 }
3272
3273 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3274 {
3275         struct kvm_segment var;
3276         unsigned int rpl;
3277
3278         vmx_get_segment(vcpu, &var, seg);
3279         rpl = var.selector & SEGMENT_RPL_MASK;
3280
3281         if (var.unusable)
3282                 return true;
3283         if (!var.s)
3284                 return false;
3285         if (!var.present)
3286                 return false;
3287         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3288                 if (var.dpl < rpl) /* DPL < RPL */
3289                         return false;
3290         }
3291
3292         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3293          * rights flags
3294          */
3295         return true;
3296 }
3297
3298 static bool tr_valid(struct kvm_vcpu *vcpu)
3299 {
3300         struct kvm_segment tr;
3301
3302         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3303
3304         if (tr.unusable)
3305                 return false;
3306         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
3307                 return false;
3308         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3309                 return false;
3310         if (!tr.present)
3311                 return false;
3312
3313         return true;
3314 }
3315
3316 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3317 {
3318         struct kvm_segment ldtr;
3319
3320         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3321
3322         if (ldtr.unusable)
3323                 return true;
3324         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
3325                 return false;
3326         if (ldtr.type != 2)
3327                 return false;
3328         if (!ldtr.present)
3329                 return false;
3330
3331         return true;
3332 }
3333
3334 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3335 {
3336         struct kvm_segment cs, ss;
3337
3338         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3339         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3340
3341         return ((cs.selector & SEGMENT_RPL_MASK) ==
3342                  (ss.selector & SEGMENT_RPL_MASK));
3343 }
3344
3345 /*
3346  * Check if guest state is valid. Returns true if valid, false if
3347  * not.
3348  * We assume that registers are always usable
3349  */
3350 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3351 {
3352         if (enable_unrestricted_guest)
3353                 return true;
3354
3355         /* real mode guest state checks */
3356         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3357                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3358                         return false;
3359                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3360                         return false;
3361                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3362                         return false;
3363                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3364                         return false;
3365                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3366                         return false;
3367                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3368                         return false;
3369         } else {
3370         /* protected mode guest state checks */
3371                 if (!cs_ss_rpl_check(vcpu))
3372                         return false;
3373                 if (!code_segment_valid(vcpu))
3374                         return false;
3375                 if (!stack_segment_valid(vcpu))
3376                         return false;
3377                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3378                         return false;
3379                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3380                         return false;
3381                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3382                         return false;
3383                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3384                         return false;
3385                 if (!tr_valid(vcpu))
3386                         return false;
3387                 if (!ldtr_valid(vcpu))
3388                         return false;
3389         }
3390         /* TODO:
3391          * - Add checks on RIP
3392          * - Add checks on RFLAGS
3393          */
3394
3395         return true;
3396 }
3397
3398 static int init_rmode_tss(struct kvm *kvm)
3399 {
3400         gfn_t fn;
3401         u16 data = 0;
3402         int idx, r;
3403
3404         idx = srcu_read_lock(&kvm->srcu);
3405         fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3406         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3407         if (r < 0)
3408                 goto out;
3409         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3410         r = kvm_write_guest_page(kvm, fn++, &data,
3411                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
3412         if (r < 0)
3413                 goto out;
3414         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3415         if (r < 0)
3416                 goto out;
3417         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3418         if (r < 0)
3419                 goto out;
3420         data = ~0;
3421         r = kvm_write_guest_page(kvm, fn, &data,
3422                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3423                                  sizeof(u8));
3424 out:
3425         srcu_read_unlock(&kvm->srcu, idx);
3426         return r;
3427 }
3428
3429 static int init_rmode_identity_map(struct kvm *kvm)
3430 {
3431         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3432         int i, idx, r = 0;
3433         kvm_pfn_t identity_map_pfn;
3434         u32 tmp;
3435
3436         /* Protect kvm_vmx->ept_identity_pagetable_done. */
3437         mutex_lock(&kvm->slots_lock);
3438
3439         if (likely(kvm_vmx->ept_identity_pagetable_done))
3440                 goto out2;
3441
3442         if (!kvm_vmx->ept_identity_map_addr)
3443                 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3444         identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3445
3446         r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3447                                     kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3448         if (r < 0)
3449                 goto out2;
3450
3451         idx = srcu_read_lock(&kvm->srcu);
3452         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3453         if (r < 0)
3454                 goto out;
3455         /* Set up identity-mapping pagetable for EPT in real mode */
3456         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3457                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3458                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3459                 r = kvm_write_guest_page(kvm, identity_map_pfn,
3460                                 &tmp, i * sizeof(tmp), sizeof(tmp));
3461                 if (r < 0)
3462                         goto out;
3463         }
3464         kvm_vmx->ept_identity_pagetable_done = true;
3465
3466 out:
3467         srcu_read_unlock(&kvm->srcu, idx);
3468
3469 out2:
3470         mutex_unlock(&kvm->slots_lock);
3471         return r;
3472 }
3473
3474 static void seg_setup(int seg)
3475 {
3476         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3477         unsigned int ar;
3478
3479         vmcs_write16(sf->selector, 0);
3480         vmcs_writel(sf->base, 0);
3481         vmcs_write32(sf->limit, 0xffff);
3482         ar = 0x93;
3483         if (seg == VCPU_SREG_CS)
3484                 ar |= 0x08; /* code segment */
3485
3486         vmcs_write32(sf->ar_bytes, ar);
3487 }
3488
3489 static int alloc_apic_access_page(struct kvm *kvm)
3490 {
3491         struct page *page;
3492         int r = 0;
3493
3494         mutex_lock(&kvm->slots_lock);
3495         if (kvm->arch.apic_access_page_done)
3496                 goto out;
3497         r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3498                                     APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3499         if (r)
3500                 goto out;
3501
3502         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3503         if (is_error_page(page)) {
3504                 r = -EFAULT;
3505                 goto out;
3506         }
3507
3508         /*
3509          * Do not pin the page in memory, so that memory hot-unplug
3510          * is able to migrate it.
3511          */
3512         put_page(page);
3513         kvm->arch.apic_access_page_done = true;
3514 out:
3515         mutex_unlock(&kvm->slots_lock);
3516         return r;
3517 }
3518
3519 int allocate_vpid(void)
3520 {
3521         int vpid;
3522
3523         if (!enable_vpid)
3524                 return 0;
3525         spin_lock(&vmx_vpid_lock);
3526         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3527         if (vpid < VMX_NR_VPIDS)
3528                 __set_bit(vpid, vmx_vpid_bitmap);
3529         else
3530                 vpid = 0;
3531         spin_unlock(&vmx_vpid_lock);
3532         return vpid;
3533 }
3534
3535 void free_vpid(int vpid)
3536 {
3537         if (!enable_vpid || vpid == 0)
3538                 return;
3539         spin_lock(&vmx_vpid_lock);
3540         __clear_bit(vpid, vmx_vpid_bitmap);
3541         spin_unlock(&vmx_vpid_lock);
3542 }
3543
3544 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3545                                                           u32 msr, int type)
3546 {
3547         int f = sizeof(unsigned long);
3548
3549         if (!cpu_has_vmx_msr_bitmap())
3550                 return;
3551
3552         if (static_branch_unlikely(&enable_evmcs))
3553                 evmcs_touch_msr_bitmap();
3554
3555         /*
3556          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3557          * have the write-low and read-high bitmap offsets the wrong way round.
3558          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3559          */
3560         if (msr <= 0x1fff) {
3561                 if (type & MSR_TYPE_R)
3562                         /* read-low */
3563                         __clear_bit(msr, msr_bitmap + 0x000 / f);
3564
3565                 if (type & MSR_TYPE_W)
3566                         /* write-low */
3567                         __clear_bit(msr, msr_bitmap + 0x800 / f);
3568
3569         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3570                 msr &= 0x1fff;
3571                 if (type & MSR_TYPE_R)
3572                         /* read-high */
3573                         __clear_bit(msr, msr_bitmap + 0x400 / f);
3574
3575                 if (type & MSR_TYPE_W)
3576                         /* write-high */
3577                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
3578
3579         }
3580 }
3581
3582 static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3583                                                          u32 msr, int type)
3584 {
3585         int f = sizeof(unsigned long);
3586
3587         if (!cpu_has_vmx_msr_bitmap())
3588                 return;
3589
3590         if (static_branch_unlikely(&enable_evmcs))
3591                 evmcs_touch_msr_bitmap();
3592
3593         /*
3594          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3595          * have the write-low and read-high bitmap offsets the wrong way round.
3596          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3597          */
3598         if (msr <= 0x1fff) {
3599                 if (type & MSR_TYPE_R)
3600                         /* read-low */
3601                         __set_bit(msr, msr_bitmap + 0x000 / f);
3602
3603                 if (type & MSR_TYPE_W)
3604                         /* write-low */
3605                         __set_bit(msr, msr_bitmap + 0x800 / f);
3606
3607         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3608                 msr &= 0x1fff;
3609                 if (type & MSR_TYPE_R)
3610                         /* read-high */
3611                         __set_bit(msr, msr_bitmap + 0x400 / f);
3612
3613                 if (type & MSR_TYPE_W)
3614                         /* write-high */
3615                         __set_bit(msr, msr_bitmap + 0xc00 / f);
3616
3617         }
3618 }
3619
3620 static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
3621                                                       u32 msr, int type, bool value)
3622 {
3623         if (value)
3624                 vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
3625         else
3626                 vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
3627 }
3628
3629 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3630 {
3631         u8 mode = 0;
3632
3633         if (cpu_has_secondary_exec_ctrls() &&
3634             (secondary_exec_controls_get(to_vmx(vcpu)) &
3635              SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3636                 mode |= MSR_BITMAP_MODE_X2APIC;
3637                 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3638                         mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3639         }
3640
3641         return mode;
3642 }
3643
3644 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
3645                                          u8 mode)
3646 {
3647         int msr;
3648
3649         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3650                 unsigned word = msr / BITS_PER_LONG;
3651                 msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3652                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
3653         }
3654
3655         if (mode & MSR_BITMAP_MODE_X2APIC) {
3656                 /*
3657                  * TPR reads and writes can be virtualized even if virtual interrupt
3658                  * delivery is not in use.
3659                  */
3660                 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
3661                 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3662                         vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
3663                         vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3664                         vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3665                 }
3666         }
3667 }
3668
3669 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3670 {
3671         struct vcpu_vmx *vmx = to_vmx(vcpu);
3672         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3673         u8 mode = vmx_msr_bitmap_mode(vcpu);
3674         u8 changed = mode ^ vmx->msr_bitmap_mode;
3675
3676         if (!changed)
3677                 return;
3678
3679         if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3680                 vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
3681
3682         vmx->msr_bitmap_mode = mode;
3683 }
3684
3685 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
3686 {
3687         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3688         bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3689         u32 i;
3690
3691         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
3692                                                         MSR_TYPE_RW, flag);
3693         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
3694                                                         MSR_TYPE_RW, flag);
3695         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
3696                                                         MSR_TYPE_RW, flag);
3697         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
3698                                                         MSR_TYPE_RW, flag);
3699         for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3700                 vmx_set_intercept_for_msr(msr_bitmap,
3701                         MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3702                 vmx_set_intercept_for_msr(msr_bitmap,
3703                         MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3704         }
3705 }
3706
3707 static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
3708 {
3709         return enable_apicv;
3710 }
3711
3712 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3713 {
3714         struct vcpu_vmx *vmx = to_vmx(vcpu);
3715         void *vapic_page;
3716         u32 vppr;
3717         int rvi;
3718
3719         if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3720                 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3721                 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3722                 return false;
3723
3724         rvi = vmx_get_rvi();
3725
3726         vapic_page = vmx->nested.virtual_apic_map.hva;
3727         vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3728
3729         return ((rvi & 0xf0) > (vppr & 0xf0));
3730 }
3731
3732 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3733                                                      bool nested)
3734 {
3735 #ifdef CONFIG_SMP
3736         int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3737
3738         if (vcpu->mode == IN_GUEST_MODE) {
3739                 /*
3740                  * The vector of interrupt to be delivered to vcpu had
3741                  * been set in PIR before this function.
3742                  *
3743                  * Following cases will be reached in this block, and
3744                  * we always send a notification event in all cases as
3745                  * explained below.
3746                  *
3747                  * Case 1: vcpu keeps in non-root mode. Sending a
3748                  * notification event posts the interrupt to vcpu.
3749                  *
3750                  * Case 2: vcpu exits to root mode and is still
3751                  * runnable. PIR will be synced to vIRR before the
3752                  * next vcpu entry. Sending a notification event in
3753                  * this case has no effect, as vcpu is not in root
3754                  * mode.
3755                  *
3756                  * Case 3: vcpu exits to root mode and is blocked.
3757                  * vcpu_block() has already synced PIR to vIRR and
3758                  * never blocks vcpu if vIRR is not cleared. Therefore,
3759                  * a blocked vcpu here does not wait for any requested
3760                  * interrupts in PIR, and sending a notification event
3761                  * which has no effect is safe here.
3762                  */
3763
3764                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3765                 return true;
3766         }
3767 #endif
3768         return false;
3769 }
3770
3771 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3772                                                 int vector)
3773 {
3774         struct vcpu_vmx *vmx = to_vmx(vcpu);
3775
3776         if (is_guest_mode(vcpu) &&
3777             vector == vmx->nested.posted_intr_nv) {
3778                 /*
3779                  * If a posted intr is not recognized by hardware,
3780                  * we will accomplish it in the next vmentry.
3781                  */
3782                 vmx->nested.pi_pending = true;
3783                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3784                 /* the PIR and ON have been set by L1. */
3785                 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3786                         kvm_vcpu_kick(vcpu);
3787                 return 0;
3788         }
3789         return -1;
3790 }
3791 /*
3792  * Send interrupt to vcpu via posted interrupt way.
3793  * 1. If target vcpu is running(non-root mode), send posted interrupt
3794  * notification to vcpu and hardware will sync PIR to vIRR atomically.
3795  * 2. If target vcpu isn't running(root mode), kick it to pick up the
3796  * interrupt from PIR in next vmentry.
3797  */
3798 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3799 {
3800         struct vcpu_vmx *vmx = to_vmx(vcpu);
3801         int r;
3802
3803         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3804         if (!r)
3805                 return;
3806
3807         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3808                 return;
3809
3810         /* If a previous notification has sent the IPI, nothing to do.  */
3811         if (pi_test_and_set_on(&vmx->pi_desc))
3812                 return;
3813
3814         if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
3815                 kvm_vcpu_kick(vcpu);
3816 }
3817
3818 /*
3819  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3820  * will not change in the lifetime of the guest.
3821  * Note that host-state that does change is set elsewhere. E.g., host-state
3822  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3823  */
3824 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3825 {
3826         u32 low32, high32;
3827         unsigned long tmpl;
3828         unsigned long cr0, cr3, cr4;
3829
3830         cr0 = read_cr0();
3831         WARN_ON(cr0 & X86_CR0_TS);
3832         vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
3833
3834         /*
3835          * Save the most likely value for this task's CR3 in the VMCS.
3836          * We can't use __get_current_cr3_fast() because we're not atomic.
3837          */
3838         cr3 = __read_cr3();
3839         vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
3840         vmx->loaded_vmcs->host_state.cr3 = cr3;
3841
3842         /* Save the most likely value for this task's CR4 in the VMCS. */
3843         cr4 = cr4_read_shadow();
3844         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
3845         vmx->loaded_vmcs->host_state.cr4 = cr4;
3846
3847         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
3848 #ifdef CONFIG_X86_64
3849         /*
3850          * Load null selectors, so we can avoid reloading them in
3851          * vmx_prepare_switch_to_host(), in case userspace uses
3852          * the null selectors too (the expected case).
3853          */
3854         vmcs_write16(HOST_DS_SELECTOR, 0);
3855         vmcs_write16(HOST_ES_SELECTOR, 0);
3856 #else
3857         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3858         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3859 #endif
3860         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3861         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
3862
3863         vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
3864
3865         vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
3866
3867         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3868         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3869         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3870         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
3871
3872         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3873                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3874                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3875         }
3876
3877         if (cpu_has_load_ia32_efer())
3878                 vmcs_write64(HOST_IA32_EFER, host_efer);
3879 }
3880
3881 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3882 {
3883         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3884         if (enable_ept)
3885                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3886         if (is_guest_mode(&vmx->vcpu))
3887                 vmx->vcpu.arch.cr4_guest_owned_bits &=
3888                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3889         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3890 }
3891
3892 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
3893 {
3894         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
3895
3896         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
3897                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
3898
3899         if (!enable_vnmi)
3900                 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
3901
3902         if (!enable_preemption_timer)
3903                 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3904
3905         return pin_based_exec_ctrl;
3906 }
3907
3908 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
3909 {
3910         struct vcpu_vmx *vmx = to_vmx(vcpu);
3911
3912         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
3913         if (cpu_has_secondary_exec_ctrls()) {
3914                 if (kvm_vcpu_apicv_active(vcpu))
3915                         secondary_exec_controls_setbit(vmx,
3916                                       SECONDARY_EXEC_APIC_REGISTER_VIRT |
3917                                       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3918                 else
3919                         secondary_exec_controls_clearbit(vmx,
3920                                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
3921                                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3922         }
3923
3924         if (cpu_has_vmx_msr_bitmap())
3925                 vmx_update_msr_bitmap(vcpu);
3926 }
3927
3928 u32 vmx_exec_control(struct vcpu_vmx *vmx)
3929 {
3930         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3931
3932         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
3933                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
3934
3935         if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
3936                 exec_control &= ~CPU_BASED_TPR_SHADOW;
3937 #ifdef CONFIG_X86_64
3938                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3939                                 CPU_BASED_CR8_LOAD_EXITING;
3940 #endif
3941         }
3942         if (!enable_ept)
3943                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3944                                 CPU_BASED_CR3_LOAD_EXITING  |
3945                                 CPU_BASED_INVLPG_EXITING;
3946         if (kvm_mwait_in_guest(vmx->vcpu.kvm))
3947                 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
3948                                 CPU_BASED_MONITOR_EXITING);
3949         if (kvm_hlt_in_guest(vmx->vcpu.kvm))
3950                 exec_control &= ~CPU_BASED_HLT_EXITING;
3951         return exec_control;
3952 }
3953
3954
3955 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
3956 {
3957         struct kvm_vcpu *vcpu = &vmx->vcpu;
3958
3959         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3960
3961         if (pt_mode == PT_MODE_SYSTEM)
3962                 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
3963         if (!cpu_need_virtualize_apic_accesses(vcpu))
3964                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3965         if (vmx->vpid == 0)
3966                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3967         if (!enable_ept) {
3968                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3969                 enable_unrestricted_guest = 0;
3970         }
3971         if (!enable_unrestricted_guest)
3972                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3973         if (kvm_pause_in_guest(vmx->vcpu.kvm))
3974                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
3975         if (!kvm_vcpu_apicv_active(vcpu))
3976                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
3977                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3978         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
3979
3980         /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
3981          * in vmx_set_cr4.  */
3982         exec_control &= ~SECONDARY_EXEC_DESC;
3983
3984         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
3985            (handle_vmptrld).
3986            We can NOT enable shadow_vmcs here because we don't have yet
3987            a current VMCS12
3988         */
3989         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
3990
3991         if (!enable_pml)
3992                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
3993
3994         if (vmx_xsaves_supported()) {
3995                 /* Exposing XSAVES only when XSAVE is exposed */
3996                 bool xsaves_enabled =
3997                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
3998                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
3999
4000                 if (!xsaves_enabled)
4001                         exec_control &= ~SECONDARY_EXEC_XSAVES;
4002
4003                 if (nested) {
4004                         if (xsaves_enabled)
4005                                 vmx->nested.msrs.secondary_ctls_high |=
4006                                         SECONDARY_EXEC_XSAVES;
4007                         else
4008                                 vmx->nested.msrs.secondary_ctls_high &=
4009                                         ~SECONDARY_EXEC_XSAVES;
4010                 }
4011         }
4012
4013         if (vmx_rdtscp_supported()) {
4014                 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
4015                 if (!rdtscp_enabled)
4016                         exec_control &= ~SECONDARY_EXEC_RDTSCP;
4017
4018                 if (nested) {
4019                         if (rdtscp_enabled)
4020                                 vmx->nested.msrs.secondary_ctls_high |=
4021                                         SECONDARY_EXEC_RDTSCP;
4022                         else
4023                                 vmx->nested.msrs.secondary_ctls_high &=
4024                                         ~SECONDARY_EXEC_RDTSCP;
4025                 }
4026         }
4027
4028         if (vmx_invpcid_supported()) {
4029                 /* Exposing INVPCID only when PCID is exposed */
4030                 bool invpcid_enabled =
4031                         guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
4032                         guest_cpuid_has(vcpu, X86_FEATURE_PCID);
4033
4034                 if (!invpcid_enabled) {
4035                         exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4036                         guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
4037                 }
4038
4039                 if (nested) {
4040                         if (invpcid_enabled)
4041                                 vmx->nested.msrs.secondary_ctls_high |=
4042                                         SECONDARY_EXEC_ENABLE_INVPCID;
4043                         else
4044                                 vmx->nested.msrs.secondary_ctls_high &=
4045                                         ~SECONDARY_EXEC_ENABLE_INVPCID;
4046                 }
4047         }
4048
4049         if (vmx_rdrand_supported()) {
4050                 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
4051                 if (rdrand_enabled)
4052                         exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
4053
4054                 if (nested) {
4055                         if (rdrand_enabled)
4056                                 vmx->nested.msrs.secondary_ctls_high |=
4057                                         SECONDARY_EXEC_RDRAND_EXITING;
4058                         else
4059                                 vmx->nested.msrs.secondary_ctls_high &=
4060                                         ~SECONDARY_EXEC_RDRAND_EXITING;
4061                 }
4062         }
4063
4064         if (vmx_rdseed_supported()) {
4065                 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
4066                 if (rdseed_enabled)
4067                         exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
4068
4069                 if (nested) {
4070                         if (rdseed_enabled)
4071                                 vmx->nested.msrs.secondary_ctls_high |=
4072                                         SECONDARY_EXEC_RDSEED_EXITING;
4073                         else
4074                                 vmx->nested.msrs.secondary_ctls_high &=
4075                                         ~SECONDARY_EXEC_RDSEED_EXITING;
4076                 }
4077         }
4078
4079         if (vmx_waitpkg_supported()) {
4080                 bool waitpkg_enabled =
4081                         guest_cpuid_has(vcpu, X86_FEATURE_WAITPKG);
4082
4083                 if (!waitpkg_enabled)
4084                         exec_control &= ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4085
4086                 if (nested) {
4087                         if (waitpkg_enabled)
4088                                 vmx->nested.msrs.secondary_ctls_high |=
4089                                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4090                         else
4091                                 vmx->nested.msrs.secondary_ctls_high &=
4092                                         ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4093                 }
4094         }
4095
4096         vmx->secondary_exec_control = exec_control;
4097 }
4098
4099 static void ept_set_mmio_spte_mask(void)
4100 {
4101         /*
4102          * EPT Misconfigurations can be generated if the value of bits 2:0
4103          * of an EPT paging-structure entry is 110b (write/execute).
4104          */
4105         kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
4106                                    VMX_EPT_MISCONFIG_WX_VALUE, 0);
4107 }
4108
4109 #define VMX_XSS_EXIT_BITMAP 0
4110
4111 /*
4112  * Sets up the vmcs for emulated real mode.
4113  */
4114 static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
4115 {
4116         int i;
4117
4118         if (nested)
4119                 nested_vmx_vcpu_setup();
4120
4121         if (cpu_has_vmx_msr_bitmap())
4122                 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4123
4124         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4125
4126         /* Control */
4127         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4128         vmx->hv_deadline_tsc = -1;
4129
4130         exec_controls_set(vmx, vmx_exec_control(vmx));
4131
4132         if (cpu_has_secondary_exec_ctrls()) {
4133                 vmx_compute_secondary_exec_control(vmx);
4134                 secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4135         }
4136
4137         if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4138                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4139                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4140                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4141                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4142
4143                 vmcs_write16(GUEST_INTR_STATUS, 0);
4144
4145                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4146                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4147         }
4148
4149         if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4150                 vmcs_write32(PLE_GAP, ple_gap);
4151                 vmx->ple_window = ple_window;
4152                 vmx->ple_window_dirty = true;
4153         }
4154
4155         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4156         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4157         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4158
4159         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4160         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4161         vmx_set_constant_host_state(vmx);
4162         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4163         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4164
4165         if (cpu_has_vmx_vmfunc())
4166                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4167
4168         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4169         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4170         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4171         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4172         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4173
4174         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4175                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4176
4177         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4178                 u32 index = vmx_msr_index[i];
4179                 u32 data_low, data_high;
4180                 int j = vmx->nmsrs;
4181
4182                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4183                         continue;
4184                 if (wrmsr_safe(index, data_low, data_high) < 0)
4185                         continue;
4186                 vmx->guest_msrs[j].index = i;
4187                 vmx->guest_msrs[j].data = 0;
4188                 vmx->guest_msrs[j].mask = -1ull;
4189                 ++vmx->nmsrs;
4190         }
4191
4192         vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4193
4194         /* 22.2.1, 20.8.1 */
4195         vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4196
4197         vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
4198         vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
4199
4200         set_cr4_guest_host_mask(vmx);
4201
4202         if (vmx_xsaves_supported())
4203                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4204
4205         if (enable_pml) {
4206                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4207                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4208         }
4209
4210         if (cpu_has_vmx_encls_vmexit())
4211                 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4212
4213         if (pt_mode == PT_MODE_HOST_GUEST) {
4214                 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4215                 /* Bit[6~0] are forced to 1, writes are ignored. */
4216                 vmx->pt_desc.guest.output_mask = 0x7F;
4217                 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4218         }
4219 }
4220
4221 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4222 {
4223         struct vcpu_vmx *vmx = to_vmx(vcpu);
4224         struct msr_data apic_base_msr;
4225         u64 cr0;
4226
4227         vmx->rmode.vm86_active = 0;
4228         vmx->spec_ctrl = 0;
4229
4230         vmx->msr_ia32_umwait_control = 0;
4231
4232         vcpu->arch.microcode_version = 0x100000000ULL;
4233         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4234         vmx->hv_deadline_tsc = -1;
4235         kvm_set_cr8(vcpu, 0);
4236
4237         if (!init_event) {
4238                 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4239                                      MSR_IA32_APICBASE_ENABLE;
4240                 if (kvm_vcpu_is_reset_bsp(vcpu))
4241                         apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4242                 apic_base_msr.host_initiated = true;
4243                 kvm_set_apic_base(vcpu, &apic_base_msr);
4244         }
4245
4246         vmx_segment_cache_clear(vmx);
4247
4248         seg_setup(VCPU_SREG_CS);
4249         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4250         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4251
4252         seg_setup(VCPU_SREG_DS);
4253         seg_setup(VCPU_SREG_ES);
4254         seg_setup(VCPU_SREG_FS);
4255         seg_setup(VCPU_SREG_GS);
4256         seg_setup(VCPU_SREG_SS);
4257
4258         vmcs_write16(GUEST_TR_SELECTOR, 0);
4259         vmcs_writel(GUEST_TR_BASE, 0);
4260         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4261         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4262
4263         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4264         vmcs_writel(GUEST_LDTR_BASE, 0);
4265         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4266         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4267
4268         if (!init_event) {
4269                 vmcs_write32(GUEST_SYSENTER_CS, 0);
4270                 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4271                 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4272                 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4273         }
4274
4275         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4276         kvm_rip_write(vcpu, 0xfff0);
4277
4278         vmcs_writel(GUEST_GDTR_BASE, 0);
4279         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4280
4281         vmcs_writel(GUEST_IDTR_BASE, 0);
4282         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4283
4284         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4285         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4286         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4287         if (kvm_mpx_supported())
4288                 vmcs_write64(GUEST_BNDCFGS, 0);
4289
4290         setup_msrs(vmx);
4291
4292         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4293
4294         if (cpu_has_vmx_tpr_shadow() && !init_event) {
4295                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4296                 if (cpu_need_tpr_shadow(vcpu))
4297                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4298                                      __pa(vcpu->arch.apic->regs));
4299                 vmcs_write32(TPR_THRESHOLD, 0);
4300         }
4301
4302         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4303
4304         if (vmx->vpid != 0)
4305                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4306
4307         cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4308         vmx->vcpu.arch.cr0 = cr0;
4309         vmx_set_cr0(vcpu, cr0); /* enter rmode */
4310         vmx_set_cr4(vcpu, 0);
4311         vmx_set_efer(vcpu, 0);
4312
4313         update_exception_bitmap(vcpu);
4314
4315         vpid_sync_context(vmx->vpid);
4316         if (init_event)
4317                 vmx_clear_hlt(vcpu);
4318 }
4319
4320 static void enable_irq_window(struct kvm_vcpu *vcpu)
4321 {
4322         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_INTR_PENDING);
4323 }
4324
4325 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4326 {
4327         if (!enable_vnmi ||
4328             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4329                 enable_irq_window(vcpu);
4330                 return;
4331         }
4332
4333         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_NMI_PENDING);
4334 }
4335
4336 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4337 {
4338         struct vcpu_vmx *vmx = to_vmx(vcpu);
4339         uint32_t intr;
4340         int irq = vcpu->arch.interrupt.nr;
4341
4342         trace_kvm_inj_virq(irq);
4343
4344         ++vcpu->stat.irq_injections;
4345         if (vmx->rmode.vm86_active) {
4346                 int inc_eip = 0;
4347                 if (vcpu->arch.interrupt.soft)
4348                         inc_eip = vcpu->arch.event_exit_inst_len;
4349                 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4350                 return;
4351         }
4352         intr = irq | INTR_INFO_VALID_MASK;
4353         if (vcpu->arch.interrupt.soft) {
4354                 intr |= INTR_TYPE_SOFT_INTR;
4355                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4356                              vmx->vcpu.arch.event_exit_inst_len);
4357         } else
4358                 intr |= INTR_TYPE_EXT_INTR;
4359         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4360
4361         vmx_clear_hlt(vcpu);
4362 }
4363
4364 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4365 {
4366         struct vcpu_vmx *vmx = to_vmx(vcpu);
4367
4368         if (!enable_vnmi) {
4369                 /*
4370                  * Tracking the NMI-blocked state in software is built upon
4371                  * finding the next open IRQ window. This, in turn, depends on
4372                  * well-behaving guests: They have to keep IRQs disabled at
4373                  * least as long as the NMI handler runs. Otherwise we may
4374                  * cause NMI nesting, maybe breaking the guest. But as this is
4375                  * highly unlikely, we can live with the residual risk.
4376                  */
4377                 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4378                 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4379         }
4380
4381         ++vcpu->stat.nmi_injections;
4382         vmx->loaded_vmcs->nmi_known_unmasked = false;
4383
4384         if (vmx->rmode.vm86_active) {
4385                 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4386                 return;
4387         }
4388
4389         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4390                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4391
4392         vmx_clear_hlt(vcpu);
4393 }
4394
4395 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4396 {
4397         struct vcpu_vmx *vmx = to_vmx(vcpu);
4398         bool masked;
4399
4400         if (!enable_vnmi)
4401                 return vmx->loaded_vmcs->soft_vnmi_blocked;
4402         if (vmx->loaded_vmcs->nmi_known_unmasked)
4403                 return false;
4404         masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4405         vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4406         return masked;
4407 }
4408
4409 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4410 {
4411         struct vcpu_vmx *vmx = to_vmx(vcpu);
4412
4413         if (!enable_vnmi) {
4414                 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4415                         vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4416                         vmx->loaded_vmcs->vnmi_blocked_time = 0;
4417                 }
4418         } else {
4419                 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4420                 if (masked)
4421                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4422                                       GUEST_INTR_STATE_NMI);
4423                 else
4424                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4425                                         GUEST_INTR_STATE_NMI);
4426         }
4427 }
4428
4429 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4430 {
4431         if (to_vmx(vcpu)->nested.nested_run_pending)
4432                 return 0;
4433
4434         if (!enable_vnmi &&
4435             to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4436                 return 0;
4437
4438         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4439                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4440                    | GUEST_INTR_STATE_NMI));
4441 }
4442
4443 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4444 {
4445         return (!to_vmx(vcpu)->nested.nested_run_pending &&
4446                 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4447                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4448                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4449 }
4450
4451 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4452 {
4453         int ret;
4454
4455         if (enable_unrestricted_guest)
4456                 return 0;
4457
4458         ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4459                                     PAGE_SIZE * 3);
4460         if (ret)
4461                 return ret;
4462         to_kvm_vmx(kvm)->tss_addr = addr;
4463         return init_rmode_tss(kvm);
4464 }
4465
4466 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4467 {
4468         to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4469         return 0;
4470 }
4471
4472 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4473 {
4474         switch (vec) {
4475         case BP_VECTOR:
4476                 /*
4477                  * Update instruction length as we may reinject the exception
4478                  * from user space while in guest debugging mode.
4479                  */
4480                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4481                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4482                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4483                         return false;
4484                 /* fall through */
4485         case DB_VECTOR:
4486                 if (vcpu->guest_debug &
4487                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4488                         return false;
4489                 /* fall through */
4490         case DE_VECTOR:
4491         case OF_VECTOR:
4492         case BR_VECTOR:
4493         case UD_VECTOR:
4494         case DF_VECTOR:
4495         case SS_VECTOR:
4496         case GP_VECTOR:
4497         case MF_VECTOR:
4498                 return true;
4499         break;
4500         }
4501         return false;
4502 }
4503
4504 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4505                                   int vec, u32 err_code)
4506 {
4507         /*
4508          * Instruction with address size override prefix opcode 0x67
4509          * Cause the #SS fault with 0 error code in VM86 mode.
4510          */
4511         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4512                 if (kvm_emulate_instruction(vcpu, 0)) {
4513                         if (vcpu->arch.halt_request) {
4514                                 vcpu->arch.halt_request = 0;
4515                                 return kvm_vcpu_halt(vcpu);
4516                         }
4517                         return 1;
4518                 }
4519                 return 0;
4520         }
4521
4522         /*
4523          * Forward all other exceptions that are valid in real mode.
4524          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4525          *        the required debugging infrastructure rework.
4526          */
4527         kvm_queue_exception(vcpu, vec);
4528         return 1;
4529 }
4530
4531 /*
4532  * Trigger machine check on the host. We assume all the MSRs are already set up
4533  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4534  * We pass a fake environment to the machine check handler because we want
4535  * the guest to be always treated like user space, no matter what context
4536  * it used internally.
4537  */
4538 static void kvm_machine_check(void)
4539 {
4540 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4541         struct pt_regs regs = {
4542                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4543                 .flags = X86_EFLAGS_IF,
4544         };
4545
4546         do_machine_check(&regs, 0);
4547 #endif
4548 }
4549
4550 static int handle_machine_check(struct kvm_vcpu *vcpu)
4551 {
4552         /* handled by vmx_vcpu_run() */
4553         return 1;
4554 }
4555
4556 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4557 {
4558         struct vcpu_vmx *vmx = to_vmx(vcpu);
4559         struct kvm_run *kvm_run = vcpu->run;
4560         u32 intr_info, ex_no, error_code;
4561         unsigned long cr2, rip, dr6;
4562         u32 vect_info;
4563
4564         vect_info = vmx->idt_vectoring_info;
4565         intr_info = vmx->exit_intr_info;
4566
4567         if (is_machine_check(intr_info) || is_nmi(intr_info))
4568                 return 1; /* handled by handle_exception_nmi_irqoff() */
4569
4570         if (is_invalid_opcode(intr_info))
4571                 return handle_ud(vcpu);
4572
4573         error_code = 0;
4574         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4575                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4576
4577         if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4578                 WARN_ON_ONCE(!enable_vmware_backdoor);
4579
4580                 /*
4581                  * VMware backdoor emulation on #GP interception only handles
4582                  * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4583                  * error code on #GP.
4584                  */
4585                 if (error_code) {
4586                         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4587                         return 1;
4588                 }
4589                 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4590         }
4591
4592         /*
4593          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4594          * MMIO, it is better to report an internal error.
4595          * See the comments in vmx_handle_exit.
4596          */
4597         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4598             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4599                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4600                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4601                 vcpu->run->internal.ndata = 3;
4602                 vcpu->run->internal.data[0] = vect_info;
4603                 vcpu->run->internal.data[1] = intr_info;
4604                 vcpu->run->internal.data[2] = error_code;
4605                 return 0;
4606         }
4607
4608         if (is_page_fault(intr_info)) {
4609                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4610                 /* EPT won't cause page fault directly */
4611                 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
4612                 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4613         }
4614
4615         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4616
4617         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4618                 return handle_rmode_exception(vcpu, ex_no, error_code);
4619
4620         switch (ex_no) {
4621         case AC_VECTOR:
4622                 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4623                 return 1;
4624         case DB_VECTOR:
4625                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4626                 if (!(vcpu->guest_debug &
4627                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4628                         vcpu->arch.dr6 &= ~DR_TRAP_BITS;
4629                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
4630                         if (is_icebp(intr_info))
4631                                 WARN_ON(!skip_emulated_instruction(vcpu));
4632
4633                         kvm_queue_exception(vcpu, DB_VECTOR);
4634                         return 1;
4635                 }
4636                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4637                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4638                 /* fall through */
4639         case BP_VECTOR:
4640                 /*
4641                  * Update instruction length as we may reinject #BP from
4642                  * user space while in guest debugging mode. Reading it for
4643                  * #DB as well causes no harm, it is not used in that case.
4644                  */
4645                 vmx->vcpu.arch.event_exit_inst_len =
4646                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4647                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4648                 rip = kvm_rip_read(vcpu);
4649                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4650                 kvm_run->debug.arch.exception = ex_no;
4651                 break;
4652         default:
4653                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4654                 kvm_run->ex.exception = ex_no;
4655                 kvm_run->ex.error_code = error_code;
4656                 break;
4657         }
4658         return 0;
4659 }
4660
4661 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4662 {
4663         ++vcpu->stat.irq_exits;
4664         return 1;
4665 }
4666
4667 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4668 {
4669         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4670         vcpu->mmio_needed = 0;
4671         return 0;
4672 }
4673
4674 static int handle_io(struct kvm_vcpu *vcpu)
4675 {
4676         unsigned long exit_qualification;
4677         int size, in, string;
4678         unsigned port;
4679
4680         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4681         string = (exit_qualification & 16) != 0;
4682
4683         ++vcpu->stat.io_exits;
4684
4685         if (string)
4686                 return kvm_emulate_instruction(vcpu, 0);
4687
4688         port = exit_qualification >> 16;
4689         size = (exit_qualification & 7) + 1;
4690         in = (exit_qualification & 8) != 0;
4691
4692         return kvm_fast_pio(vcpu, size, port, in);
4693 }
4694
4695 static void
4696 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4697 {
4698         /*
4699          * Patch in the VMCALL instruction:
4700          */
4701         hypercall[0] = 0x0f;
4702         hypercall[1] = 0x01;
4703         hypercall[2] = 0xc1;
4704 }
4705
4706 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4707 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4708 {
4709         if (is_guest_mode(vcpu)) {
4710                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4711                 unsigned long orig_val = val;
4712
4713                 /*
4714                  * We get here when L2 changed cr0 in a way that did not change
4715                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4716                  * but did change L0 shadowed bits. So we first calculate the
4717                  * effective cr0 value that L1 would like to write into the
4718                  * hardware. It consists of the L2-owned bits from the new
4719                  * value combined with the L1-owned bits from L1's guest_cr0.
4720                  */
4721                 val = (val & ~vmcs12->cr0_guest_host_mask) |
4722                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4723
4724                 if (!nested_guest_cr0_valid(vcpu, val))
4725                         return 1;
4726
4727                 if (kvm_set_cr0(vcpu, val))
4728                         return 1;
4729                 vmcs_writel(CR0_READ_SHADOW, orig_val);
4730                 return 0;
4731         } else {
4732                 if (to_vmx(vcpu)->nested.vmxon &&
4733                     !nested_host_cr0_valid(vcpu, val))
4734                         return 1;
4735
4736                 return kvm_set_cr0(vcpu, val);
4737         }
4738 }
4739
4740 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4741 {
4742         if (is_guest_mode(vcpu)) {
4743                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4744                 unsigned long orig_val = val;
4745
4746                 /* analogously to handle_set_cr0 */
4747                 val = (val & ~vmcs12->cr4_guest_host_mask) |
4748                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4749                 if (kvm_set_cr4(vcpu, val))
4750                         return 1;
4751                 vmcs_writel(CR4_READ_SHADOW, orig_val);
4752                 return 0;
4753         } else
4754                 return kvm_set_cr4(vcpu, val);
4755 }
4756
4757 static int handle_desc(struct kvm_vcpu *vcpu)
4758 {
4759         WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4760         return kvm_emulate_instruction(vcpu, 0);
4761 }
4762
4763 static int handle_cr(struct kvm_vcpu *vcpu)
4764 {
4765         unsigned long exit_qualification, val;
4766         int cr;
4767         int reg;
4768         int err;
4769         int ret;
4770
4771         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4772         cr = exit_qualification & 15;
4773         reg = (exit_qualification >> 8) & 15;
4774         switch ((exit_qualification >> 4) & 3) {
4775         case 0: /* mov to cr */
4776                 val = kvm_register_readl(vcpu, reg);
4777                 trace_kvm_cr_write(cr, val);
4778                 switch (cr) {
4779                 case 0:
4780                         err = handle_set_cr0(vcpu, val);
4781                         return kvm_complete_insn_gp(vcpu, err);
4782                 case 3:
4783                         WARN_ON_ONCE(enable_unrestricted_guest);
4784                         err = kvm_set_cr3(vcpu, val);
4785                         return kvm_complete_insn_gp(vcpu, err);
4786                 case 4:
4787                         err = handle_set_cr4(vcpu, val);
4788                         return kvm_complete_insn_gp(vcpu, err);
4789                 case 8: {
4790                                 u8 cr8_prev = kvm_get_cr8(vcpu);
4791                                 u8 cr8 = (u8)val;
4792                                 err = kvm_set_cr8(vcpu, cr8);
4793                                 ret = kvm_complete_insn_gp(vcpu, err);
4794                                 if (lapic_in_kernel(vcpu))
4795                                         return ret;
4796                                 if (cr8_prev <= cr8)
4797                                         return ret;
4798                                 /*
4799                                  * TODO: we might be squashing a
4800                                  * KVM_GUESTDBG_SINGLESTEP-triggered
4801                                  * KVM_EXIT_DEBUG here.
4802                                  */
4803                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4804                                 return 0;
4805                         }
4806                 }
4807                 break;
4808         case 2: /* clts */
4809                 WARN_ONCE(1, "Guest should always own CR0.TS");
4810                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4811                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4812                 return kvm_skip_emulated_instruction(vcpu);
4813         case 1: /*mov from cr*/
4814                 switch (cr) {
4815                 case 3:
4816                         WARN_ON_ONCE(enable_unrestricted_guest);
4817                         val = kvm_read_cr3(vcpu);
4818                         kvm_register_write(vcpu, reg, val);
4819                         trace_kvm_cr_read(cr, val);
4820                         return kvm_skip_emulated_instruction(vcpu);
4821                 case 8:
4822                         val = kvm_get_cr8(vcpu);
4823                         kvm_register_write(vcpu, reg, val);
4824                         trace_kvm_cr_read(cr, val);
4825                         return kvm_skip_emulated_instruction(vcpu);
4826                 }
4827                 break;
4828         case 3: /* lmsw */
4829                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4830                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4831                 kvm_lmsw(vcpu, val);
4832
4833                 return kvm_skip_emulated_instruction(vcpu);
4834         default:
4835                 break;
4836         }
4837         vcpu->run->exit_reason = 0;
4838         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4839                (int)(exit_qualification >> 4) & 3, cr);
4840         return 0;
4841 }
4842
4843 static int handle_dr(struct kvm_vcpu *vcpu)
4844 {
4845         unsigned long exit_qualification;
4846         int dr, dr7, reg;
4847
4848         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4849         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4850
4851         /* First, if DR does not exist, trigger UD */
4852         if (!kvm_require_dr(vcpu, dr))
4853                 return 1;
4854
4855         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4856         if (!kvm_require_cpl(vcpu, 0))
4857                 return 1;
4858         dr7 = vmcs_readl(GUEST_DR7);
4859         if (dr7 & DR7_GD) {
4860                 /*
4861                  * As the vm-exit takes precedence over the debug trap, we
4862                  * need to emulate the latter, either for the host or the
4863                  * guest debugging itself.
4864                  */
4865                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4866                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4867                         vcpu->run->debug.arch.dr7 = dr7;
4868                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4869                         vcpu->run->debug.arch.exception = DB_VECTOR;
4870                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4871                         return 0;
4872                 } else {
4873                         vcpu->arch.dr6 &= ~DR_TRAP_BITS;
4874                         vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
4875                         kvm_queue_exception(vcpu, DB_VECTOR);
4876                         return 1;
4877                 }
4878         }
4879
4880         if (vcpu->guest_debug == 0) {
4881                 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4882
4883                 /*
4884                  * No more DR vmexits; force a reload of the debug registers
4885                  * and reenter on this instruction.  The next vmexit will
4886                  * retrieve the full state of the debug registers.
4887                  */
4888                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4889                 return 1;
4890         }
4891
4892         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4893         if (exit_qualification & TYPE_MOV_FROM_DR) {
4894                 unsigned long val;
4895
4896                 if (kvm_get_dr(vcpu, dr, &val))
4897                         return 1;
4898                 kvm_register_write(vcpu, reg, val);
4899         } else
4900                 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4901                         return 1;
4902
4903         return kvm_skip_emulated_instruction(vcpu);
4904 }
4905
4906 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
4907 {
4908         return vcpu->arch.dr6;
4909 }
4910
4911 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
4912 {
4913 }
4914
4915 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
4916 {
4917         get_debugreg(vcpu->arch.db[0], 0);
4918         get_debugreg(vcpu->arch.db[1], 1);
4919         get_debugreg(vcpu->arch.db[2], 2);
4920         get_debugreg(vcpu->arch.db[3], 3);
4921         get_debugreg(vcpu->arch.dr6, 6);
4922         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
4923
4924         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
4925         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4926 }
4927
4928 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4929 {
4930         vmcs_writel(GUEST_DR7, val);
4931 }
4932
4933 static int handle_cpuid(struct kvm_vcpu *vcpu)
4934 {
4935         return kvm_emulate_cpuid(vcpu);
4936 }
4937
4938 static int handle_rdmsr(struct kvm_vcpu *vcpu)
4939 {
4940         return kvm_emulate_rdmsr(vcpu);
4941 }
4942
4943 static int handle_wrmsr(struct kvm_vcpu *vcpu)
4944 {
4945         return kvm_emulate_wrmsr(vcpu);
4946 }
4947
4948 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4949 {
4950         kvm_apic_update_ppr(vcpu);
4951         return 1;
4952 }
4953
4954 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
4955 {
4956         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_INTR_PENDING);
4957
4958         kvm_make_request(KVM_REQ_EVENT, vcpu);
4959
4960         ++vcpu->stat.irq_window_exits;
4961         return 1;
4962 }
4963
4964 static int handle_halt(struct kvm_vcpu *vcpu)
4965 {
4966         return kvm_emulate_halt(vcpu);
4967 }
4968
4969 static int handle_vmcall(struct kvm_vcpu *vcpu)
4970 {
4971         return kvm_emulate_hypercall(vcpu);
4972 }
4973
4974 static int handle_invd(struct kvm_vcpu *vcpu)
4975 {
4976         return kvm_emulate_instruction(vcpu, 0);
4977 }
4978
4979 static int handle_invlpg(struct kvm_vcpu *vcpu)
4980 {
4981         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4982
4983         kvm_mmu_invlpg(vcpu, exit_qualification);
4984         return kvm_skip_emulated_instruction(vcpu);
4985 }
4986
4987 static int handle_rdpmc(struct kvm_vcpu *vcpu)
4988 {
4989         int err;
4990
4991         err = kvm_rdpmc(vcpu);
4992         return kvm_complete_insn_gp(vcpu, err);
4993 }
4994
4995 static int handle_wbinvd(struct kvm_vcpu *vcpu)
4996 {
4997         return kvm_emulate_wbinvd(vcpu);
4998 }
4999
5000 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5001 {
5002         u64 new_bv = kvm_read_edx_eax(vcpu);
5003         u32 index = kvm_rcx_read(vcpu);
5004
5005         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5006                 return kvm_skip_emulated_instruction(vcpu);
5007         return 1;
5008 }
5009
5010 static int handle_xsaves(struct kvm_vcpu *vcpu)
5011 {
5012         kvm_skip_emulated_instruction(vcpu);
5013         WARN(1, "this should never happen\n");
5014         return 1;
5015 }
5016
5017 static int handle_xrstors(struct kvm_vcpu *vcpu)
5018 {
5019         kvm_skip_emulated_instruction(vcpu);
5020         WARN(1, "this should never happen\n");
5021         return 1;
5022 }
5023
5024 static int handle_apic_access(struct kvm_vcpu *vcpu)
5025 {
5026         if (likely(fasteoi)) {
5027                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5028                 int access_type, offset;
5029
5030                 access_type = exit_qualification & APIC_ACCESS_TYPE;
5031                 offset = exit_qualification & APIC_ACCESS_OFFSET;
5032                 /*
5033                  * Sane guest uses MOV to write EOI, with written value
5034                  * not cared. So make a short-circuit here by avoiding
5035                  * heavy instruction emulation.
5036                  */
5037                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5038                     (offset == APIC_EOI)) {
5039                         kvm_lapic_set_eoi(vcpu);
5040                         return kvm_skip_emulated_instruction(vcpu);
5041                 }
5042         }
5043         return kvm_emulate_instruction(vcpu, 0);
5044 }
5045
5046 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5047 {
5048         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5049         int vector = exit_qualification & 0xff;
5050
5051         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5052         kvm_apic_set_eoi_accelerated(vcpu, vector);
5053         return 1;
5054 }
5055
5056 static int handle_apic_write(struct kvm_vcpu *vcpu)
5057 {
5058         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5059         u32 offset = exit_qualification & 0xfff;
5060
5061         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5062         kvm_apic_write_nodecode(vcpu, offset);
5063         return 1;
5064 }
5065
5066 static int handle_task_switch(struct kvm_vcpu *vcpu)
5067 {
5068         struct vcpu_vmx *vmx = to_vmx(vcpu);
5069         unsigned long exit_qualification;
5070         bool has_error_code = false;
5071         u32 error_code = 0;
5072         u16 tss_selector;
5073         int reason, type, idt_v, idt_index;
5074
5075         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5076         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5077         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5078
5079         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5080
5081         reason = (u32)exit_qualification >> 30;
5082         if (reason == TASK_SWITCH_GATE && idt_v) {
5083                 switch (type) {
5084                 case INTR_TYPE_NMI_INTR:
5085                         vcpu->arch.nmi_injected = false;
5086                         vmx_set_nmi_mask(vcpu, true);
5087                         break;
5088                 case INTR_TYPE_EXT_INTR:
5089                 case INTR_TYPE_SOFT_INTR:
5090                         kvm_clear_interrupt_queue(vcpu);
5091                         break;
5092                 case INTR_TYPE_HARD_EXCEPTION:
5093                         if (vmx->idt_vectoring_info &
5094                             VECTORING_INFO_DELIVER_CODE_MASK) {
5095                                 has_error_code = true;
5096                                 error_code =
5097                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5098                         }
5099                         /* fall through */
5100                 case INTR_TYPE_SOFT_EXCEPTION:
5101                         kvm_clear_exception_queue(vcpu);
5102                         break;
5103                 default:
5104                         break;
5105                 }
5106         }
5107         tss_selector = exit_qualification;
5108
5109         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5110                        type != INTR_TYPE_EXT_INTR &&
5111                        type != INTR_TYPE_NMI_INTR))
5112                 WARN_ON(!skip_emulated_instruction(vcpu));
5113
5114         /*
5115          * TODO: What about debug traps on tss switch?
5116          *       Are we supposed to inject them and update dr6?
5117          */
5118         return kvm_task_switch(vcpu, tss_selector,
5119                                type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5120                                reason, has_error_code, error_code);
5121 }
5122
5123 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5124 {
5125         unsigned long exit_qualification;
5126         gpa_t gpa;
5127         u64 error_code;
5128
5129         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5130
5131         /*
5132          * EPT violation happened while executing iret from NMI,
5133          * "blocked by NMI" bit has to be set before next VM entry.
5134          * There are errata that may cause this bit to not be set:
5135          * AAK134, BY25.
5136          */
5137         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5138                         enable_vnmi &&
5139                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5140                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5141
5142         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5143         trace_kvm_page_fault(gpa, exit_qualification);
5144
5145         /* Is it a read fault? */
5146         error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5147                      ? PFERR_USER_MASK : 0;
5148         /* Is it a write fault? */
5149         error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5150                       ? PFERR_WRITE_MASK : 0;
5151         /* Is it a fetch fault? */
5152         error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5153                       ? PFERR_FETCH_MASK : 0;
5154         /* ept page table entry is present? */
5155         error_code |= (exit_qualification &
5156                        (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5157                         EPT_VIOLATION_EXECUTABLE))
5158                       ? PFERR_PRESENT_MASK : 0;
5159
5160         error_code |= (exit_qualification & 0x100) != 0 ?
5161                PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5162
5163         vcpu->arch.exit_qualification = exit_qualification;
5164         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5165 }
5166
5167 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5168 {
5169         gpa_t gpa;
5170
5171         /*
5172          * A nested guest cannot optimize MMIO vmexits, because we have an
5173          * nGPA here instead of the required GPA.
5174          */
5175         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5176         if (!is_guest_mode(vcpu) &&
5177             !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5178                 trace_kvm_fast_mmio(gpa);
5179                 return kvm_skip_emulated_instruction(vcpu);
5180         }
5181
5182         return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5183 }
5184
5185 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5186 {
5187         WARN_ON_ONCE(!enable_vnmi);
5188         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_NMI_PENDING);
5189         ++vcpu->stat.nmi_window_exits;
5190         kvm_make_request(KVM_REQ_EVENT, vcpu);
5191
5192         return 1;
5193 }
5194
5195 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5196 {
5197         struct vcpu_vmx *vmx = to_vmx(vcpu);
5198         bool intr_window_requested;
5199         unsigned count = 130;
5200
5201         /*
5202          * We should never reach the point where we are emulating L2
5203          * due to invalid guest state as that means we incorrectly
5204          * allowed a nested VMEntry with an invalid vmcs12.
5205          */
5206         WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
5207
5208         intr_window_requested = exec_controls_get(vmx) &
5209                                 CPU_BASED_VIRTUAL_INTR_PENDING;
5210
5211         while (vmx->emulation_required && count-- != 0) {
5212                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5213                         return handle_interrupt_window(&vmx->vcpu);
5214
5215                 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5216                         return 1;
5217
5218                 if (!kvm_emulate_instruction(vcpu, 0))
5219                         return 0;
5220
5221                 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5222                     vcpu->arch.exception.pending) {
5223                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5224                         vcpu->run->internal.suberror =
5225                                                 KVM_INTERNAL_ERROR_EMULATION;
5226                         vcpu->run->internal.ndata = 0;
5227                         return 0;
5228                 }
5229
5230                 if (vcpu->arch.halt_request) {
5231                         vcpu->arch.halt_request = 0;
5232                         return kvm_vcpu_halt(vcpu);
5233                 }
5234
5235                 /*
5236                  * Note, return 1 and not 0, vcpu_run() is responsible for
5237                  * morphing the pending signal into the proper return code.
5238                  */
5239                 if (signal_pending(current))
5240                         return 1;
5241
5242                 if (need_resched())
5243                         schedule();
5244         }
5245
5246         return 1;
5247 }
5248
5249 static void grow_ple_window(struct kvm_vcpu *vcpu)
5250 {
5251         struct vcpu_vmx *vmx = to_vmx(vcpu);
5252         unsigned int old = vmx->ple_window;
5253
5254         vmx->ple_window = __grow_ple_window(old, ple_window,
5255                                             ple_window_grow,
5256                                             ple_window_max);
5257
5258         if (vmx->ple_window != old) {
5259                 vmx->ple_window_dirty = true;
5260                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5261                                             vmx->ple_window, old);
5262         }
5263 }
5264
5265 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5266 {
5267         struct vcpu_vmx *vmx = to_vmx(vcpu);
5268         unsigned int old = vmx->ple_window;
5269
5270         vmx->ple_window = __shrink_ple_window(old, ple_window,
5271                                               ple_window_shrink,
5272                                               ple_window);
5273
5274         if (vmx->ple_window != old) {
5275                 vmx->ple_window_dirty = true;
5276                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5277                                             vmx->ple_window, old);
5278         }
5279 }
5280
5281 /*
5282  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
5283  */
5284 static void wakeup_handler(void)
5285 {
5286         struct kvm_vcpu *vcpu;
5287         int cpu = smp_processor_id();
5288
5289         spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5290         list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
5291                         blocked_vcpu_list) {
5292                 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
5293
5294                 if (pi_test_on(pi_desc) == 1)
5295                         kvm_vcpu_kick(vcpu);
5296         }
5297         spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5298 }
5299
5300 static void vmx_enable_tdp(void)
5301 {
5302         kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5303                 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5304                 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5305                 0ull, VMX_EPT_EXECUTABLE_MASK,
5306                 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5307                 VMX_EPT_RWX_MASK, 0ull);
5308
5309         ept_set_mmio_spte_mask();
5310         kvm_enable_tdp();
5311 }
5312
5313 /*
5314  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5315  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5316  */
5317 static int handle_pause(struct kvm_vcpu *vcpu)
5318 {
5319         if (!kvm_pause_in_guest(vcpu->kvm))
5320                 grow_ple_window(vcpu);
5321
5322         /*
5323          * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5324          * VM-execution control is ignored if CPL > 0. OTOH, KVM
5325          * never set PAUSE_EXITING and just set PLE if supported,
5326          * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5327          */
5328         kvm_vcpu_on_spin(vcpu, true);
5329         return kvm_skip_emulated_instruction(vcpu);
5330 }
5331
5332 static int handle_nop(struct kvm_vcpu *vcpu)
5333 {
5334         return kvm_skip_emulated_instruction(vcpu);
5335 }
5336
5337 static int handle_mwait(struct kvm_vcpu *vcpu)
5338 {
5339         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5340         return handle_nop(vcpu);
5341 }
5342
5343 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5344 {
5345         kvm_queue_exception(vcpu, UD_VECTOR);
5346         return 1;
5347 }
5348
5349 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5350 {
5351         return 1;
5352 }
5353
5354 static int handle_monitor(struct kvm_vcpu *vcpu)
5355 {
5356         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5357         return handle_nop(vcpu);
5358 }
5359
5360 static int handle_invpcid(struct kvm_vcpu *vcpu)
5361 {
5362         u32 vmx_instruction_info;
5363         unsigned long type;
5364         bool pcid_enabled;
5365         gva_t gva;
5366         struct x86_exception e;
5367         unsigned i;
5368         unsigned long roots_to_free = 0;
5369         struct {
5370                 u64 pcid;
5371                 u64 gla;
5372         } operand;
5373
5374         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5375                 kvm_queue_exception(vcpu, UD_VECTOR);
5376                 return 1;
5377         }
5378
5379         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5380         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5381
5382         if (type > 3) {
5383                 kvm_inject_gp(vcpu, 0);
5384                 return 1;
5385         }
5386
5387         /* According to the Intel instruction reference, the memory operand
5388          * is read even if it isn't needed (e.g., for type==all)
5389          */
5390         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5391                                 vmx_instruction_info, false,
5392                                 sizeof(operand), &gva))
5393                 return 1;
5394
5395         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5396                 kvm_inject_page_fault(vcpu, &e);
5397                 return 1;
5398         }
5399
5400         if (operand.pcid >> 12 != 0) {
5401                 kvm_inject_gp(vcpu, 0);
5402                 return 1;
5403         }
5404
5405         pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
5406
5407         switch (type) {
5408         case INVPCID_TYPE_INDIV_ADDR:
5409                 if ((!pcid_enabled && (operand.pcid != 0)) ||
5410                     is_noncanonical_address(operand.gla, vcpu)) {
5411                         kvm_inject_gp(vcpu, 0);
5412                         return 1;
5413                 }
5414                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
5415                 return kvm_skip_emulated_instruction(vcpu);
5416
5417         case INVPCID_TYPE_SINGLE_CTXT:
5418                 if (!pcid_enabled && (operand.pcid != 0)) {
5419                         kvm_inject_gp(vcpu, 0);
5420                         return 1;
5421                 }
5422
5423                 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
5424                         kvm_mmu_sync_roots(vcpu);
5425                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5426                 }
5427
5428                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5429                         if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3)
5430                             == operand.pcid)
5431                                 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5432
5433                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
5434                 /*
5435                  * If neither the current cr3 nor any of the prev_roots use the
5436                  * given PCID, then nothing needs to be done here because a
5437                  * resync will happen anyway before switching to any other CR3.
5438                  */
5439
5440                 return kvm_skip_emulated_instruction(vcpu);
5441
5442         case INVPCID_TYPE_ALL_NON_GLOBAL:
5443                 /*
5444                  * Currently, KVM doesn't mark global entries in the shadow
5445                  * page tables, so a non-global flush just degenerates to a
5446                  * global flush. If needed, we could optimize this later by
5447                  * keeping track of global entries in shadow page tables.
5448                  */
5449
5450                 /* fall-through */
5451         case INVPCID_TYPE_ALL_INCL_GLOBAL:
5452                 kvm_mmu_unload(vcpu);
5453                 return kvm_skip_emulated_instruction(vcpu);
5454
5455         default:
5456                 BUG(); /* We have already checked above that type <= 3 */
5457         }
5458 }
5459
5460 static int handle_pml_full(struct kvm_vcpu *vcpu)
5461 {
5462         unsigned long exit_qualification;
5463
5464         trace_kvm_pml_full(vcpu->vcpu_id);
5465
5466         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5467
5468         /*
5469          * PML buffer FULL happened while executing iret from NMI,
5470          * "blocked by NMI" bit has to be set before next VM entry.
5471          */
5472         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5473                         enable_vnmi &&
5474                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5475                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5476                                 GUEST_INTR_STATE_NMI);
5477
5478         /*
5479          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5480          * here.., and there's no userspace involvement needed for PML.
5481          */
5482         return 1;
5483 }
5484
5485 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5486 {
5487         struct vcpu_vmx *vmx = to_vmx(vcpu);
5488
5489         if (!vmx->req_immediate_exit &&
5490             !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
5491                 kvm_lapic_expired_hv_timer(vcpu);
5492
5493         return 1;
5494 }
5495
5496 /*
5497  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5498  * are overwritten by nested_vmx_setup() when nested=1.
5499  */
5500 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5501 {
5502         kvm_queue_exception(vcpu, UD_VECTOR);
5503         return 1;
5504 }
5505
5506 static int handle_encls(struct kvm_vcpu *vcpu)
5507 {
5508         /*
5509          * SGX virtualization is not yet supported.  There is no software
5510          * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5511          * to prevent the guest from executing ENCLS.
5512          */
5513         kvm_queue_exception(vcpu, UD_VECTOR);
5514         return 1;
5515 }
5516
5517 /*
5518  * The exit handlers return 1 if the exit was handled fully and guest execution
5519  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5520  * to be done to userspace and return 0.
5521  */
5522 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5523         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5524         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5525         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5526         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
5527         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5528         [EXIT_REASON_CR_ACCESS]               = handle_cr,
5529         [EXIT_REASON_DR_ACCESS]               = handle_dr,
5530         [EXIT_REASON_CPUID]                   = handle_cpuid,
5531         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
5532         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
5533         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
5534         [EXIT_REASON_HLT]                     = handle_halt,
5535         [EXIT_REASON_INVD]                    = handle_invd,
5536         [EXIT_REASON_INVLPG]                  = handle_invlpg,
5537         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
5538         [EXIT_REASON_VMCALL]                  = handle_vmcall,
5539         [EXIT_REASON_VMCLEAR]                 = handle_vmx_instruction,
5540         [EXIT_REASON_VMLAUNCH]                = handle_vmx_instruction,
5541         [EXIT_REASON_VMPTRLD]                 = handle_vmx_instruction,
5542         [EXIT_REASON_VMPTRST]                 = handle_vmx_instruction,
5543         [EXIT_REASON_VMREAD]                  = handle_vmx_instruction,
5544         [EXIT_REASON_VMRESUME]                = handle_vmx_instruction,
5545         [EXIT_REASON_VMWRITE]                 = handle_vmx_instruction,
5546         [EXIT_REASON_VMOFF]                   = handle_vmx_instruction,
5547         [EXIT_REASON_VMON]                    = handle_vmx_instruction,
5548         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5549         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5550         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5551         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5552         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
5553         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
5554         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5555         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5556         [EXIT_REASON_GDTR_IDTR]               = handle_desc,
5557         [EXIT_REASON_LDTR_TR]                 = handle_desc,
5558         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
5559         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5560         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5561         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
5562         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5563         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
5564         [EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5565         [EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5566         [EXIT_REASON_RDRAND]                  = handle_invalid_op,
5567         [EXIT_REASON_RDSEED]                  = handle_invalid_op,
5568         [EXIT_REASON_XSAVES]                  = handle_xsaves,
5569         [EXIT_REASON_XRSTORS]                 = handle_xrstors,
5570         [EXIT_REASON_PML_FULL]                = handle_pml_full,
5571         [EXIT_REASON_INVPCID]                 = handle_invpcid,
5572         [EXIT_REASON_VMFUNC]                  = handle_vmx_instruction,
5573         [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
5574         [EXIT_REASON_ENCLS]                   = handle_encls,
5575 };
5576
5577 static const int kvm_vmx_max_exit_handlers =
5578         ARRAY_SIZE(kvm_vmx_exit_handlers);
5579
5580 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5581 {
5582         *info1 = vmcs_readl(EXIT_QUALIFICATION);
5583         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5584 }
5585
5586 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5587 {
5588         if (vmx->pml_pg) {
5589                 __free_page(vmx->pml_pg);
5590                 vmx->pml_pg = NULL;
5591         }
5592 }
5593
5594 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5595 {
5596         struct vcpu_vmx *vmx = to_vmx(vcpu);
5597         u64 *pml_buf;
5598         u16 pml_idx;
5599
5600         pml_idx = vmcs_read16(GUEST_PML_INDEX);
5601
5602         /* Do nothing if PML buffer is empty */
5603         if (pml_idx == (PML_ENTITY_NUM - 1))
5604                 return;
5605
5606         /* PML index always points to next available PML buffer entity */
5607         if (pml_idx >= PML_ENTITY_NUM)
5608                 pml_idx = 0;
5609         else
5610                 pml_idx++;
5611
5612         pml_buf = page_address(vmx->pml_pg);
5613         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5614                 u64 gpa;
5615
5616                 gpa = pml_buf[pml_idx];
5617                 WARN_ON(gpa & (PAGE_SIZE - 1));
5618                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5619         }
5620
5621         /* reset PML index */
5622         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5623 }
5624
5625 /*
5626  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5627  * Called before reporting dirty_bitmap to userspace.
5628  */
5629 static void kvm_flush_pml_buffers(struct kvm *kvm)
5630 {
5631         int i;
5632         struct kvm_vcpu *vcpu;
5633         /*
5634          * We only need to kick vcpu out of guest mode here, as PML buffer
5635          * is flushed at beginning of all VMEXITs, and it's obvious that only
5636          * vcpus running in guest are possible to have unflushed GPAs in PML
5637          * buffer.
5638          */
5639         kvm_for_each_vcpu(i, vcpu, kvm)
5640                 kvm_vcpu_kick(vcpu);
5641 }
5642
5643 static void vmx_dump_sel(char *name, uint32_t sel)
5644 {
5645         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5646                name, vmcs_read16(sel),
5647                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5648                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5649                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5650 }
5651
5652 static void vmx_dump_dtsel(char *name, uint32_t limit)
5653 {
5654         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5655                name, vmcs_read32(limit),
5656                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5657 }
5658
5659 void dump_vmcs(void)
5660 {
5661         u32 vmentry_ctl, vmexit_ctl;
5662         u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5663         unsigned long cr4;
5664         u64 efer;
5665         int i, n;
5666
5667         if (!dump_invalid_vmcs) {
5668                 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5669                 return;
5670         }
5671
5672         vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5673         vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5674         cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5675         pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5676         cr4 = vmcs_readl(GUEST_CR4);
5677         efer = vmcs_read64(GUEST_IA32_EFER);
5678         secondary_exec_control = 0;
5679         if (cpu_has_secondary_exec_ctrls())
5680                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5681
5682         pr_err("*** Guest State ***\n");
5683         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5684                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5685                vmcs_readl(CR0_GUEST_HOST_MASK));
5686         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5687                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5688         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5689         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5690             (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5691         {
5692                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5693                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5694                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5695                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5696         }
5697         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5698                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5699         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5700                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5701         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5702                vmcs_readl(GUEST_SYSENTER_ESP),
5703                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5704         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5705         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5706         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5707         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5708         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5709         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5710         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5711         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5712         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5713         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5714         if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5715             (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5716                 pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
5717                        efer, vmcs_read64(GUEST_IA32_PAT));
5718         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5719                vmcs_read64(GUEST_IA32_DEBUGCTL),
5720                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5721         if (cpu_has_load_perf_global_ctrl() &&
5722             vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5723                 pr_err("PerfGlobCtl = 0x%016llx\n",
5724                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5725         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5726                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5727         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5728                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5729                vmcs_read32(GUEST_ACTIVITY_STATE));
5730         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5731                 pr_err("InterruptStatus = %04x\n",
5732                        vmcs_read16(GUEST_INTR_STATUS));
5733
5734         pr_err("*** Host State ***\n");
5735         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5736                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5737         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5738                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5739                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5740                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5741                vmcs_read16(HOST_TR_SELECTOR));
5742         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5743                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5744                vmcs_readl(HOST_TR_BASE));
5745         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5746                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5747         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5748                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5749                vmcs_readl(HOST_CR4));
5750         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5751                vmcs_readl(HOST_IA32_SYSENTER_ESP),
5752                vmcs_read32(HOST_IA32_SYSENTER_CS),
5753                vmcs_readl(HOST_IA32_SYSENTER_EIP));
5754         if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5755                 pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
5756                        vmcs_read64(HOST_IA32_EFER),
5757                        vmcs_read64(HOST_IA32_PAT));
5758         if (cpu_has_load_perf_global_ctrl() &&
5759             vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5760                 pr_err("PerfGlobCtl = 0x%016llx\n",
5761                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5762
5763         pr_err("*** Control State ***\n");
5764         pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5765                pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5766         pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5767         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5768                vmcs_read32(EXCEPTION_BITMAP),
5769                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5770                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5771         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5772                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5773                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5774                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5775         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5776                vmcs_read32(VM_EXIT_INTR_INFO),
5777                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5778                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5779         pr_err("        reason=%08x qualification=%016lx\n",
5780                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5781         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5782                vmcs_read32(IDT_VECTORING_INFO_FIELD),
5783                vmcs_read32(IDT_VECTORING_ERROR_CODE));
5784         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5785         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5786                 pr_err("TSC Multiplier = 0x%016llx\n",
5787                        vmcs_read64(TSC_MULTIPLIER));
5788         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5789                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5790                         u16 status = vmcs_read16(GUEST_INTR_STATUS);
5791                         pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5792                 }
5793                 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5794                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5795                         pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5796                 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5797         }
5798         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5799                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5800         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5801                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5802         n = vmcs_read32(CR3_TARGET_COUNT);
5803         for (i = 0; i + 1 < n; i += 4)
5804                 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
5805                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
5806                        i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
5807         if (i < n)
5808                 pr_err("CR3 target%u=%016lx\n",
5809                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
5810         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5811                 pr_err("PLE Gap=%08x Window=%08x\n",
5812                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5813         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5814                 pr_err("Virtual processor ID = 0x%04x\n",
5815                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
5816 }
5817
5818 /*
5819  * The guest has exited.  See if we can fix it or if we need userspace
5820  * assistance.
5821  */
5822 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
5823 {
5824         struct vcpu_vmx *vmx = to_vmx(vcpu);
5825         u32 exit_reason = vmx->exit_reason;
5826         u32 vectoring_info = vmx->idt_vectoring_info;
5827
5828         trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
5829
5830         /*
5831          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5832          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5833          * querying dirty_bitmap, we only need to kick all vcpus out of guest
5834          * mode as if vcpus is in root mode, the PML buffer must has been
5835          * flushed already.
5836          */
5837         if (enable_pml)
5838                 vmx_flush_pml_buffer(vcpu);
5839
5840         /* If guest state is invalid, start emulating */
5841         if (vmx->emulation_required)
5842                 return handle_invalid_guest_state(vcpu);
5843
5844         if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
5845                 return nested_vmx_reflect_vmexit(vcpu, exit_reason);
5846
5847         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5848                 dump_vmcs();
5849                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5850                 vcpu->run->fail_entry.hardware_entry_failure_reason
5851                         = exit_reason;
5852                 return 0;
5853         }
5854
5855         if (unlikely(vmx->fail)) {
5856                 dump_vmcs();
5857                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5858                 vcpu->run->fail_entry.hardware_entry_failure_reason
5859                         = vmcs_read32(VM_INSTRUCTION_ERROR);
5860                 return 0;
5861         }
5862
5863         /*
5864          * Note:
5865          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5866          * delivery event since it indicates guest is accessing MMIO.
5867          * The vm-exit can be triggered again after return to guest that
5868          * will cause infinite loop.
5869          */
5870         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5871                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5872                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
5873                         exit_reason != EXIT_REASON_PML_FULL &&
5874                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
5875                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5876                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5877                 vcpu->run->internal.ndata = 3;
5878                 vcpu->run->internal.data[0] = vectoring_info;
5879                 vcpu->run->internal.data[1] = exit_reason;
5880                 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5881                 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
5882                         vcpu->run->internal.ndata++;
5883                         vcpu->run->internal.data[3] =
5884                                 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5885                 }
5886                 return 0;
5887         }
5888
5889         if (unlikely(!enable_vnmi &&
5890                      vmx->loaded_vmcs->soft_vnmi_blocked)) {
5891                 if (vmx_interrupt_allowed(vcpu)) {
5892                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5893                 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5894                            vcpu->arch.nmi_pending) {
5895                         /*
5896                          * This CPU don't support us in finding the end of an
5897                          * NMI-blocked window if the guest runs with IRQs
5898                          * disabled. So we pull the trigger after 1 s of
5899                          * futile waiting, but inform the user about this.
5900                          */
5901                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5902                                "state on VCPU %d after 1 s timeout\n",
5903                                __func__, vcpu->vcpu_id);
5904                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5905                 }
5906         }
5907
5908         if (exit_reason < kvm_vmx_max_exit_handlers
5909             && kvm_vmx_exit_handlers[exit_reason])
5910                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
5911         else {
5912                 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
5913                                 exit_reason);
5914                 dump_vmcs();
5915                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5916                 vcpu->run->internal.suberror =
5917                         KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
5918                 vcpu->run->internal.ndata = 1;
5919                 vcpu->run->internal.data[0] = exit_reason;
5920                 return 0;
5921         }
5922 }
5923
5924 /*
5925  * Software based L1D cache flush which is used when microcode providing
5926  * the cache control MSR is not loaded.
5927  *
5928  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
5929  * flush it is required to read in 64 KiB because the replacement algorithm
5930  * is not exactly LRU. This could be sized at runtime via topology
5931  * information but as all relevant affected CPUs have 32KiB L1D cache size
5932  * there is no point in doing so.
5933  */
5934 static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
5935 {
5936         int size = PAGE_SIZE << L1D_CACHE_ORDER;
5937
5938         /*
5939          * This code is only executed when the the flush mode is 'cond' or
5940          * 'always'
5941          */
5942         if (static_branch_likely(&vmx_l1d_flush_cond)) {
5943                 bool flush_l1d;
5944
5945                 /*
5946                  * Clear the per-vcpu flush bit, it gets set again
5947                  * either from vcpu_run() or from one of the unsafe
5948                  * VMEXIT handlers.
5949                  */
5950                 flush_l1d = vcpu->arch.l1tf_flush_l1d;
5951                 vcpu->arch.l1tf_flush_l1d = false;
5952
5953                 /*
5954                  * Clear the per-cpu flush bit, it gets set again from
5955                  * the interrupt handlers.
5956                  */
5957                 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
5958                 kvm_clear_cpu_l1tf_flush_l1d();
5959
5960                 if (!flush_l1d)
5961                         return;
5962         }
5963
5964         vcpu->stat.l1d_flush++;
5965
5966         if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
5967                 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
5968                 return;
5969         }
5970
5971         asm volatile(
5972                 /* First ensure the pages are in the TLB */
5973                 "xorl   %%eax, %%eax\n"
5974                 ".Lpopulate_tlb:\n\t"
5975                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
5976                 "addl   $4096, %%eax\n\t"
5977                 "cmpl   %%eax, %[size]\n\t"
5978                 "jne    .Lpopulate_tlb\n\t"
5979                 "xorl   %%eax, %%eax\n\t"
5980                 "cpuid\n\t"
5981                 /* Now fill the cache */
5982                 "xorl   %%eax, %%eax\n"
5983                 ".Lfill_cache:\n"
5984                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
5985                 "addl   $64, %%eax\n\t"
5986                 "cmpl   %%eax, %[size]\n\t"
5987                 "jne    .Lfill_cache\n\t"
5988                 "lfence\n"
5989                 :: [flush_pages] "r" (vmx_l1d_flush_pages),
5990                     [size] "r" (size)
5991                 : "eax", "ebx", "ecx", "edx");
5992 }
5993
5994 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5995 {
5996         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5997
5998         if (is_guest_mode(vcpu) &&
5999                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6000                 return;
6001
6002         if (irr == -1 || tpr < irr) {
6003                 vmcs_write32(TPR_THRESHOLD, 0);
6004                 return;
6005         }
6006
6007         vmcs_write32(TPR_THRESHOLD, irr);
6008 }
6009
6010 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6011 {
6012         struct vcpu_vmx *vmx = to_vmx(vcpu);
6013         u32 sec_exec_control;
6014
6015         if (!lapic_in_kernel(vcpu))
6016                 return;
6017
6018         if (!flexpriority_enabled &&
6019             !cpu_has_vmx_virtualize_x2apic_mode())
6020                 return;
6021
6022         /* Postpone execution until vmcs01 is the current VMCS. */
6023         if (is_guest_mode(vcpu)) {
6024                 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6025                 return;
6026         }
6027
6028         sec_exec_control = secondary_exec_controls_get(vmx);
6029         sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6030                               SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6031
6032         switch (kvm_get_apic_mode(vcpu)) {
6033         case LAPIC_MODE_INVALID:
6034                 WARN_ONCE(true, "Invalid local APIC state");
6035         case LAPIC_MODE_DISABLED:
6036                 break;
6037         case LAPIC_MODE_XAPIC:
6038                 if (flexpriority_enabled) {
6039                         sec_exec_control |=
6040                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6041                         vmx_flush_tlb(vcpu, true);
6042                 }
6043                 break;
6044         case LAPIC_MODE_X2APIC:
6045                 if (cpu_has_vmx_virtualize_x2apic_mode())
6046                         sec_exec_control |=
6047                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6048                 break;
6049         }
6050         secondary_exec_controls_set(vmx, sec_exec_control);
6051
6052         vmx_update_msr_bitmap(vcpu);
6053 }
6054
6055 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
6056 {
6057         if (!is_guest_mode(vcpu)) {
6058                 vmcs_write64(APIC_ACCESS_ADDR, hpa);
6059                 vmx_flush_tlb(vcpu, true);
6060         }
6061 }
6062
6063 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6064 {
6065         u16 status;
6066         u8 old;
6067
6068         if (max_isr == -1)
6069                 max_isr = 0;
6070
6071         status = vmcs_read16(GUEST_INTR_STATUS);
6072         old = status >> 8;
6073         if (max_isr != old) {
6074                 status &= 0xff;
6075                 status |= max_isr << 8;
6076                 vmcs_write16(GUEST_INTR_STATUS, status);
6077         }
6078 }
6079
6080 static void vmx_set_rvi(int vector)
6081 {
6082         u16 status;
6083         u8 old;
6084
6085         if (vector == -1)
6086                 vector = 0;
6087
6088         status = vmcs_read16(GUEST_INTR_STATUS);
6089         old = (u8)status & 0xff;
6090         if ((u8)vector != old) {
6091                 status &= ~0xff;
6092                 status |= (u8)vector;
6093                 vmcs_write16(GUEST_INTR_STATUS, status);
6094         }
6095 }
6096
6097 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6098 {
6099         /*
6100          * When running L2, updating RVI is only relevant when
6101          * vmcs12 virtual-interrupt-delivery enabled.
6102          * However, it can be enabled only when L1 also
6103          * intercepts external-interrupts and in that case
6104          * we should not update vmcs02 RVI but instead intercept
6105          * interrupt. Therefore, do nothing when running L2.
6106          */
6107         if (!is_guest_mode(vcpu))
6108                 vmx_set_rvi(max_irr);
6109 }
6110
6111 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6112 {
6113         struct vcpu_vmx *vmx = to_vmx(vcpu);
6114         int max_irr;
6115         bool max_irr_updated;
6116
6117         WARN_ON(!vcpu->arch.apicv_active);
6118         if (pi_test_on(&vmx->pi_desc)) {
6119                 pi_clear_on(&vmx->pi_desc);
6120                 /*
6121                  * IOMMU can write to PIR.ON, so the barrier matters even on UP.
6122                  * But on x86 this is just a compiler barrier anyway.
6123                  */
6124                 smp_mb__after_atomic();
6125                 max_irr_updated =
6126                         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6127
6128                 /*
6129                  * If we are running L2 and L1 has a new pending interrupt
6130                  * which can be injected, we should re-evaluate
6131                  * what should be done with this new L1 interrupt.
6132                  * If L1 intercepts external-interrupts, we should
6133                  * exit from L2 to L1. Otherwise, interrupt should be
6134                  * delivered directly to L2.
6135                  */
6136                 if (is_guest_mode(vcpu) && max_irr_updated) {
6137                         if (nested_exit_on_intr(vcpu))
6138                                 kvm_vcpu_exiting_guest_mode(vcpu);
6139                         else
6140                                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6141                 }
6142         } else {
6143                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6144         }
6145         vmx_hwapic_irr_update(vcpu, max_irr);
6146         return max_irr;
6147 }
6148
6149 static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
6150 {
6151         return pi_test_on(vcpu_to_pi_desc(vcpu));
6152 }
6153
6154 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6155 {
6156         if (!kvm_vcpu_apicv_active(vcpu))
6157                 return;
6158
6159         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6160         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6161         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6162         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6163 }
6164
6165 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6166 {
6167         struct vcpu_vmx *vmx = to_vmx(vcpu);
6168
6169         pi_clear_on(&vmx->pi_desc);
6170         memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6171 }
6172
6173 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6174 {
6175         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6176
6177         /* if exit due to PF check for async PF */
6178         if (is_page_fault(vmx->exit_intr_info))
6179                 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
6180
6181         /* Handle machine checks before interrupts are enabled */
6182         if (is_machine_check(vmx->exit_intr_info))
6183                 kvm_machine_check();
6184
6185         /* We need to handle NMIs before interrupts are enabled */
6186         if (is_nmi(vmx->exit_intr_info)) {
6187                 kvm_before_interrupt(&vmx->vcpu);
6188                 asm("int $2");
6189                 kvm_after_interrupt(&vmx->vcpu);
6190         }
6191 }
6192
6193 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6194 {
6195         unsigned int vector;
6196         unsigned long entry;
6197 #ifdef CONFIG_X86_64
6198         unsigned long tmp;
6199 #endif
6200         gate_desc *desc;
6201         u32 intr_info;
6202
6203         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6204         if (WARN_ONCE(!is_external_intr(intr_info),
6205             "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6206                 return;
6207
6208         vector = intr_info & INTR_INFO_VECTOR_MASK;
6209         desc = (gate_desc *)host_idt_base + vector;
6210         entry = gate_offset(desc);
6211
6212         kvm_before_interrupt(vcpu);
6213
6214         asm volatile(
6215 #ifdef CONFIG_X86_64
6216                 "mov %%" _ASM_SP ", %[sp]\n\t"
6217                 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6218                 "push $%c[ss]\n\t"
6219                 "push %[sp]\n\t"
6220 #endif
6221                 "pushf\n\t"
6222                 __ASM_SIZE(push) " $%c[cs]\n\t"
6223                 CALL_NOSPEC
6224                 :
6225 #ifdef CONFIG_X86_64
6226                 [sp]"=&r"(tmp),
6227 #endif
6228                 ASM_CALL_CONSTRAINT
6229                 :
6230                 THUNK_TARGET(entry),
6231                 [ss]"i"(__KERNEL_DS),
6232                 [cs]"i"(__KERNEL_CS)
6233         );
6234
6235         kvm_after_interrupt(vcpu);
6236 }
6237 STACK_FRAME_NON_STANDARD(handle_external_interrupt_irqoff);
6238
6239 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6240 {
6241         struct vcpu_vmx *vmx = to_vmx(vcpu);
6242
6243         if (vmx->exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6244                 handle_external_interrupt_irqoff(vcpu);
6245         else if (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI)
6246                 handle_exception_nmi_irqoff(vmx);
6247 }
6248
6249 static bool vmx_has_emulated_msr(int index)
6250 {
6251         switch (index) {
6252         case MSR_IA32_SMBASE:
6253                 /*
6254                  * We cannot do SMM unless we can run the guest in big
6255                  * real mode.
6256                  */
6257                 return enable_unrestricted_guest || emulate_invalid_guest_state;
6258         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6259                 return nested;
6260         case MSR_AMD64_VIRT_SPEC_CTRL:
6261                 /* This is AMD only.  */
6262                 return false;
6263         default:
6264                 return true;
6265         }
6266 }
6267
6268 static bool vmx_pt_supported(void)
6269 {
6270         return pt_mode == PT_MODE_HOST_GUEST;
6271 }
6272
6273 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6274 {
6275         u32 exit_intr_info;
6276         bool unblock_nmi;
6277         u8 vector;
6278         bool idtv_info_valid;
6279
6280         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6281
6282         if (enable_vnmi) {
6283                 if (vmx->loaded_vmcs->nmi_known_unmasked)
6284                         return;
6285                 /*
6286                  * Can't use vmx->exit_intr_info since we're not sure what
6287                  * the exit reason is.
6288                  */
6289                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6290                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6291                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6292                 /*
6293                  * SDM 3: 27.7.1.2 (September 2008)
6294                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
6295                  * a guest IRET fault.
6296                  * SDM 3: 23.2.2 (September 2008)
6297                  * Bit 12 is undefined in any of the following cases:
6298                  *  If the VM exit sets the valid bit in the IDT-vectoring
6299                  *   information field.
6300                  *  If the VM exit is due to a double fault.
6301                  */
6302                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6303                     vector != DF_VECTOR && !idtv_info_valid)
6304                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6305                                       GUEST_INTR_STATE_NMI);
6306                 else
6307                         vmx->loaded_vmcs->nmi_known_unmasked =
6308                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6309                                   & GUEST_INTR_STATE_NMI);
6310         } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6311                 vmx->loaded_vmcs->vnmi_blocked_time +=
6312                         ktime_to_ns(ktime_sub(ktime_get(),
6313                                               vmx->loaded_vmcs->entry_time));
6314 }
6315
6316 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6317                                       u32 idt_vectoring_info,
6318                                       int instr_len_field,
6319                                       int error_code_field)
6320 {
6321         u8 vector;
6322         int type;
6323         bool idtv_info_valid;
6324
6325         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6326
6327         vcpu->arch.nmi_injected = false;
6328         kvm_clear_exception_queue(vcpu);
6329         kvm_clear_interrupt_queue(vcpu);
6330
6331         if (!idtv_info_valid)
6332                 return;
6333
6334         kvm_make_request(KVM_REQ_EVENT, vcpu);
6335
6336         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6337         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6338
6339         switch (type) {
6340         case INTR_TYPE_NMI_INTR:
6341                 vcpu->arch.nmi_injected = true;
6342                 /*
6343                  * SDM 3: 27.7.1.2 (September 2008)
6344                  * Clear bit "block by NMI" before VM entry if a NMI
6345                  * delivery faulted.
6346                  */
6347                 vmx_set_nmi_mask(vcpu, false);
6348                 break;
6349         case INTR_TYPE_SOFT_EXCEPTION:
6350                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6351                 /* fall through */
6352         case INTR_TYPE_HARD_EXCEPTION:
6353                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6354                         u32 err = vmcs_read32(error_code_field);
6355                         kvm_requeue_exception_e(vcpu, vector, err);
6356                 } else
6357                         kvm_requeue_exception(vcpu, vector);
6358                 break;
6359         case INTR_TYPE_SOFT_INTR:
6360                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6361                 /* fall through */
6362         case INTR_TYPE_EXT_INTR:
6363                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6364                 break;
6365         default:
6366                 break;
6367         }
6368 }
6369
6370 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6371 {
6372         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6373                                   VM_EXIT_INSTRUCTION_LEN,
6374                                   IDT_VECTORING_ERROR_CODE);
6375 }
6376
6377 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6378 {
6379         __vmx_complete_interrupts(vcpu,
6380                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6381                                   VM_ENTRY_INSTRUCTION_LEN,
6382                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
6383
6384         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6385 }
6386
6387 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6388 {
6389         int i, nr_msrs;
6390         struct perf_guest_switch_msr *msrs;
6391
6392         msrs = perf_guest_get_msrs(&nr_msrs);
6393
6394         if (!msrs)
6395                 return;
6396
6397         for (i = 0; i < nr_msrs; i++)
6398                 if (msrs[i].host == msrs[i].guest)
6399                         clear_atomic_switch_msr(vmx, msrs[i].msr);
6400                 else
6401                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6402                                         msrs[i].host, false);
6403 }
6404
6405 static void atomic_switch_umwait_control_msr(struct vcpu_vmx *vmx)
6406 {
6407         u32 host_umwait_control;
6408
6409         if (!vmx_has_waitpkg(vmx))
6410                 return;
6411
6412         host_umwait_control = get_umwait_control_msr();
6413
6414         if (vmx->msr_ia32_umwait_control != host_umwait_control)
6415                 add_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL,
6416                         vmx->msr_ia32_umwait_control,
6417                         host_umwait_control, false);
6418         else
6419                 clear_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL);
6420 }
6421
6422 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6423 {
6424         struct vcpu_vmx *vmx = to_vmx(vcpu);
6425         u64 tscl;
6426         u32 delta_tsc;
6427
6428         if (vmx->req_immediate_exit) {
6429                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6430                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6431         } else if (vmx->hv_deadline_tsc != -1) {
6432                 tscl = rdtsc();
6433                 if (vmx->hv_deadline_tsc > tscl)
6434                         /* set_hv_timer ensures the delta fits in 32-bits */
6435                         delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6436                                 cpu_preemption_timer_multi);
6437                 else
6438                         delta_tsc = 0;
6439
6440                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6441                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6442         } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6443                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6444                 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6445         }
6446 }
6447
6448 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6449 {
6450         if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6451                 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6452                 vmcs_writel(HOST_RSP, host_rsp);
6453         }
6454 }
6455
6456 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
6457
6458 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
6459 {
6460         struct vcpu_vmx *vmx = to_vmx(vcpu);
6461         unsigned long cr3, cr4;
6462
6463         /* Record the guest's net vcpu time for enforced NMI injections. */
6464         if (unlikely(!enable_vnmi &&
6465                      vmx->loaded_vmcs->soft_vnmi_blocked))
6466                 vmx->loaded_vmcs->entry_time = ktime_get();
6467
6468         /* Don't enter VMX if guest state is invalid, let the exit handler
6469            start emulation until we arrive back to a valid state */
6470         if (vmx->emulation_required)
6471                 return;
6472
6473         if (vmx->ple_window_dirty) {
6474                 vmx->ple_window_dirty = false;
6475                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6476         }
6477
6478         if (vmx->nested.need_vmcs12_to_shadow_sync)
6479                 nested_sync_vmcs12_to_shadow(vcpu);
6480
6481         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6482                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6483         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6484                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6485
6486         cr3 = __get_current_cr3_fast();
6487         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6488                 vmcs_writel(HOST_CR3, cr3);
6489                 vmx->loaded_vmcs->host_state.cr3 = cr3;
6490         }
6491
6492         cr4 = cr4_read_shadow();
6493         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6494                 vmcs_writel(HOST_CR4, cr4);
6495                 vmx->loaded_vmcs->host_state.cr4 = cr4;
6496         }
6497
6498         /* When single-stepping over STI and MOV SS, we must clear the
6499          * corresponding interruptibility bits in the guest state. Otherwise
6500          * vmentry fails as it then expects bit 14 (BS) in pending debug
6501          * exceptions being set, but that's not correct for the guest debugging
6502          * case. */
6503         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6504                 vmx_set_interrupt_shadow(vcpu, 0);
6505
6506         kvm_load_guest_xcr0(vcpu);
6507
6508         if (static_cpu_has(X86_FEATURE_PKU) &&
6509             kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
6510             vcpu->arch.pkru != vmx->host_pkru)
6511                 __write_pkru(vcpu->arch.pkru);
6512
6513         pt_guest_enter(vmx);
6514
6515         atomic_switch_perf_msrs(vmx);
6516         atomic_switch_umwait_control_msr(vmx);
6517
6518         if (enable_preemption_timer)
6519                 vmx_update_hv_timer(vcpu);
6520
6521         if (lapic_in_kernel(vcpu) &&
6522                 vcpu->arch.apic->lapic_timer.timer_advance_ns)
6523                 kvm_wait_lapic_expire(vcpu);
6524
6525         /*
6526          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6527          * it's non-zero. Since vmentry is serialising on affected CPUs, there
6528          * is no need to worry about the conditional branch over the wrmsr
6529          * being speculatively taken.
6530          */
6531         x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6532
6533         /* L1D Flush includes CPU buffer clear to mitigate MDS */
6534         if (static_branch_unlikely(&vmx_l1d_should_flush))
6535                 vmx_l1d_flush(vcpu);
6536         else if (static_branch_unlikely(&mds_user_clear))
6537                 mds_clear_cpu_buffers();
6538
6539         if (vcpu->arch.cr2 != read_cr2())
6540                 write_cr2(vcpu->arch.cr2);
6541
6542         vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6543                                    vmx->loaded_vmcs->launched);
6544
6545         vcpu->arch.cr2 = read_cr2();
6546
6547         /*
6548          * We do not use IBRS in the kernel. If this vCPU has used the
6549          * SPEC_CTRL MSR it may have left it on; save the value and
6550          * turn it off. This is much more efficient than blindly adding
6551          * it to the atomic save/restore list. Especially as the former
6552          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6553          *
6554          * For non-nested case:
6555          * If the L01 MSR bitmap does not intercept the MSR, then we need to
6556          * save it.
6557          *
6558          * For nested case:
6559          * If the L02 MSR bitmap does not intercept the MSR, then we need to
6560          * save it.
6561          */
6562         if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6563                 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6564
6565         x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6566
6567         /* All fields are clean at this point */
6568         if (static_branch_unlikely(&enable_evmcs))
6569                 current_evmcs->hv_clean_fields |=
6570                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6571
6572         if (static_branch_unlikely(&enable_evmcs))
6573                 current_evmcs->hv_vp_id = vcpu->arch.hyperv.vp_index;
6574
6575         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6576         if (vmx->host_debugctlmsr)
6577                 update_debugctlmsr(vmx->host_debugctlmsr);
6578
6579 #ifndef CONFIG_X86_64
6580         /*
6581          * The sysexit path does not restore ds/es, so we must set them to
6582          * a reasonable value ourselves.
6583          *
6584          * We can't defer this to vmx_prepare_switch_to_host() since that
6585          * function may be executed in interrupt context, which saves and
6586          * restore segments around it, nullifying its effect.
6587          */
6588         loadsegment(ds, __USER_DS);
6589         loadsegment(es, __USER_DS);
6590 #endif
6591
6592         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6593                                   | (1 << VCPU_EXREG_RFLAGS)
6594                                   | (1 << VCPU_EXREG_PDPTR)
6595                                   | (1 << VCPU_EXREG_SEGMENTS)
6596                                   | (1 << VCPU_EXREG_CR3));
6597         vcpu->arch.regs_dirty = 0;
6598
6599         pt_guest_exit(vmx);
6600
6601         /*
6602          * eager fpu is enabled if PKEY is supported and CR4 is switched
6603          * back on host, so it is safe to read guest PKRU from current
6604          * XSAVE.
6605          */
6606         if (static_cpu_has(X86_FEATURE_PKU) &&
6607             kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
6608                 vcpu->arch.pkru = rdpkru();
6609                 if (vcpu->arch.pkru != vmx->host_pkru)
6610                         __write_pkru(vmx->host_pkru);
6611         }
6612
6613         kvm_put_guest_xcr0(vcpu);
6614
6615         vmx->nested.nested_run_pending = 0;
6616         vmx->idt_vectoring_info = 0;
6617
6618         vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
6619         if ((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
6620                 kvm_machine_check();
6621
6622         if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6623                 return;
6624
6625         vmx->loaded_vmcs->launched = 1;
6626         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6627
6628         vmx_recover_nmi_blocking(vmx);
6629         vmx_complete_interrupts(vmx);
6630 }
6631
6632 static struct kvm *vmx_vm_alloc(void)
6633 {
6634         struct kvm_vmx *kvm_vmx = __vmalloc(sizeof(struct kvm_vmx),
6635                                             GFP_KERNEL_ACCOUNT | __GFP_ZERO,
6636                                             PAGE_KERNEL);
6637         return &kvm_vmx->kvm;
6638 }
6639
6640 static void vmx_vm_free(struct kvm *kvm)
6641 {
6642         kfree(kvm->arch.hyperv.hv_pa_pg);
6643         vfree(to_kvm_vmx(kvm));
6644 }
6645
6646 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6647 {
6648         struct vcpu_vmx *vmx = to_vmx(vcpu);
6649
6650         if (enable_pml)
6651                 vmx_destroy_pml_buffer(vmx);
6652         free_vpid(vmx->vpid);
6653         nested_vmx_free_vcpu(vcpu);
6654         free_loaded_vmcs(vmx->loaded_vmcs);
6655         kfree(vmx->guest_msrs);
6656         kvm_vcpu_uninit(vcpu);
6657         kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu);
6658         kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6659         kmem_cache_free(kvm_vcpu_cache, vmx);
6660 }
6661
6662 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6663 {
6664         int err;
6665         struct vcpu_vmx *vmx;
6666         unsigned long *msr_bitmap;
6667         int cpu;
6668
6669         BUILD_BUG_ON_MSG(offsetof(struct vcpu_vmx, vcpu) != 0,
6670                 "struct kvm_vcpu must be at offset 0 for arch usercopy region");
6671
6672         vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
6673         if (!vmx)
6674                 return ERR_PTR(-ENOMEM);
6675
6676         vmx->vcpu.arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
6677                         GFP_KERNEL_ACCOUNT);
6678         if (!vmx->vcpu.arch.user_fpu) {
6679                 printk(KERN_ERR "kvm: failed to allocate kvm userspace's fpu\n");
6680                 err = -ENOMEM;
6681                 goto free_partial_vcpu;
6682         }
6683
6684         vmx->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
6685                         GFP_KERNEL_ACCOUNT);
6686         if (!vmx->vcpu.arch.guest_fpu) {
6687                 printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
6688                 err = -ENOMEM;
6689                 goto free_user_fpu;
6690         }
6691
6692         vmx->vpid = allocate_vpid();
6693
6694         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6695         if (err)
6696                 goto free_vcpu;
6697
6698         err = -ENOMEM;
6699
6700         /*
6701          * If PML is turned on, failure on enabling PML just results in failure
6702          * of creating the vcpu, therefore we can simplify PML logic (by
6703          * avoiding dealing with cases, such as enabling PML partially on vcpus
6704          * for the guest, etc.
6705          */
6706         if (enable_pml) {
6707                 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6708                 if (!vmx->pml_pg)
6709                         goto uninit_vcpu;
6710         }
6711
6712         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
6713         BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
6714                      > PAGE_SIZE);
6715
6716         if (!vmx->guest_msrs)
6717                 goto free_pml;
6718
6719         err = alloc_loaded_vmcs(&vmx->vmcs01);
6720         if (err < 0)
6721                 goto free_msrs;
6722
6723         msr_bitmap = vmx->vmcs01.msr_bitmap;
6724         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R);
6725         vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
6726         vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
6727         vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6728         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6729         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6730         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6731         if (kvm_cstate_in_guest(kvm)) {
6732                 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C1_RES, MSR_TYPE_R);
6733                 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6734                 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6735                 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6736         }
6737         vmx->msr_bitmap_mode = 0;
6738
6739         vmx->loaded_vmcs = &vmx->vmcs01;
6740         cpu = get_cpu();
6741         vmx_vcpu_load(&vmx->vcpu, cpu);
6742         vmx->vcpu.cpu = cpu;
6743         vmx_vcpu_setup(vmx);
6744         vmx_vcpu_put(&vmx->vcpu);
6745         put_cpu();
6746         if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
6747                 err = alloc_apic_access_page(kvm);
6748                 if (err)
6749                         goto free_vmcs;
6750         }
6751
6752         if (enable_ept && !enable_unrestricted_guest) {
6753                 err = init_rmode_identity_map(kvm);
6754                 if (err)
6755                         goto free_vmcs;
6756         }
6757
6758         if (nested)
6759                 nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
6760                                            vmx_capability.ept,
6761                                            kvm_vcpu_apicv_active(&vmx->vcpu));
6762         else
6763                 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6764
6765         vmx->nested.posted_intr_nv = -1;
6766         vmx->nested.current_vmptr = -1ull;
6767
6768         vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
6769
6770         /*
6771          * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6772          * or POSTED_INTR_WAKEUP_VECTOR.
6773          */
6774         vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6775         vmx->pi_desc.sn = 1;
6776
6777         vmx->ept_pointer = INVALID_PAGE;
6778
6779         return &vmx->vcpu;
6780
6781 free_vmcs:
6782         free_loaded_vmcs(vmx->loaded_vmcs);
6783 free_msrs:
6784         kfree(vmx->guest_msrs);
6785 free_pml:
6786         vmx_destroy_pml_buffer(vmx);
6787 uninit_vcpu:
6788         kvm_vcpu_uninit(&vmx->vcpu);
6789 free_vcpu:
6790         free_vpid(vmx->vpid);
6791         kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6792 free_user_fpu:
6793         kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu);
6794 free_partial_vcpu:
6795         kmem_cache_free(kvm_vcpu_cache, vmx);
6796         return ERR_PTR(err);
6797 }
6798
6799 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6800 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6801
6802 static int vmx_vm_init(struct kvm *kvm)
6803 {
6804         spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
6805
6806         if (!ple_gap)
6807                 kvm->arch.pause_in_guest = true;
6808
6809         if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6810                 switch (l1tf_mitigation) {
6811                 case L1TF_MITIGATION_OFF:
6812                 case L1TF_MITIGATION_FLUSH_NOWARN:
6813                         /* 'I explicitly don't care' is set */
6814                         break;
6815                 case L1TF_MITIGATION_FLUSH:
6816                 case L1TF_MITIGATION_FLUSH_NOSMT:
6817                 case L1TF_MITIGATION_FULL:
6818                         /*
6819                          * Warn upon starting the first VM in a potentially
6820                          * insecure environment.
6821                          */
6822                         if (sched_smt_active())
6823                                 pr_warn_once(L1TF_MSG_SMT);
6824                         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6825                                 pr_warn_once(L1TF_MSG_L1D);
6826                         break;
6827                 case L1TF_MITIGATION_FULL_FORCE:
6828                         /* Flush is enforced */
6829                         break;
6830                 }
6831         }
6832         return 0;
6833 }
6834
6835 static int __init vmx_check_processor_compat(void)
6836 {
6837         struct vmcs_config vmcs_conf;
6838         struct vmx_capability vmx_cap;
6839
6840         if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6841                 return -EIO;
6842         if (nested)
6843                 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept,
6844                                            enable_apicv);
6845         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6846                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6847                                 smp_processor_id());
6848                 return -EIO;
6849         }
6850         return 0;
6851 }
6852
6853 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6854 {
6855         u8 cache;
6856         u64 ipat = 0;
6857
6858         /* For VT-d and EPT combination
6859          * 1. MMIO: always map as UC
6860          * 2. EPT with VT-d:
6861          *   a. VT-d without snooping control feature: can't guarantee the
6862          *      result, try to trust guest.
6863          *   b. VT-d with snooping control feature: snooping control feature of
6864          *      VT-d engine can guarantee the cache correctness. Just set it
6865          *      to WB to keep consistent with host. So the same as item 3.
6866          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6867          *    consistent with host MTRR
6868          */
6869         if (is_mmio) {
6870                 cache = MTRR_TYPE_UNCACHABLE;
6871                 goto exit;
6872         }
6873
6874         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
6875                 ipat = VMX_EPT_IPAT_BIT;
6876                 cache = MTRR_TYPE_WRBACK;
6877                 goto exit;
6878         }
6879
6880         if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
6881                 ipat = VMX_EPT_IPAT_BIT;
6882                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
6883                         cache = MTRR_TYPE_WRBACK;
6884                 else
6885                         cache = MTRR_TYPE_UNCACHABLE;
6886                 goto exit;
6887         }
6888
6889         cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
6890
6891 exit:
6892         return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
6893 }
6894
6895 static int vmx_get_lpage_level(void)
6896 {
6897         if (enable_ept && !cpu_has_vmx_ept_1g_page())
6898                 return PT_DIRECTORY_LEVEL;
6899         else
6900                 /* For shadow and EPT supported 1GB page */
6901                 return PT_PDPE_LEVEL;
6902 }
6903
6904 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
6905 {
6906         /*
6907          * These bits in the secondary execution controls field
6908          * are dynamic, the others are mostly based on the hypervisor
6909          * architecture and the guest's CPUID.  Do not touch the
6910          * dynamic bits.
6911          */
6912         u32 mask =
6913                 SECONDARY_EXEC_SHADOW_VMCS |
6914                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6915                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6916                 SECONDARY_EXEC_DESC;
6917
6918         u32 new_ctl = vmx->secondary_exec_control;
6919         u32 cur_ctl = secondary_exec_controls_get(vmx);
6920
6921         secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
6922 }
6923
6924 /*
6925  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
6926  * (indicating "allowed-1") if they are supported in the guest's CPUID.
6927  */
6928 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
6929 {
6930         struct vcpu_vmx *vmx = to_vmx(vcpu);
6931         struct kvm_cpuid_entry2 *entry;
6932
6933         vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
6934         vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
6935
6936 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
6937         if (entry && (entry->_reg & (_cpuid_mask)))                     \
6938                 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);     \
6939 } while (0)
6940
6941         entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
6942         cr4_fixed1_update(X86_CR4_VME,        edx, bit(X86_FEATURE_VME));
6943         cr4_fixed1_update(X86_CR4_PVI,        edx, bit(X86_FEATURE_VME));
6944         cr4_fixed1_update(X86_CR4_TSD,        edx, bit(X86_FEATURE_TSC));
6945         cr4_fixed1_update(X86_CR4_DE,         edx, bit(X86_FEATURE_DE));
6946         cr4_fixed1_update(X86_CR4_PSE,        edx, bit(X86_FEATURE_PSE));
6947         cr4_fixed1_update(X86_CR4_PAE,        edx, bit(X86_FEATURE_PAE));
6948         cr4_fixed1_update(X86_CR4_MCE,        edx, bit(X86_FEATURE_MCE));
6949         cr4_fixed1_update(X86_CR4_PGE,        edx, bit(X86_FEATURE_PGE));
6950         cr4_fixed1_update(X86_CR4_OSFXSR,     edx, bit(X86_FEATURE_FXSR));
6951         cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
6952         cr4_fixed1_update(X86_CR4_VMXE,       ecx, bit(X86_FEATURE_VMX));
6953         cr4_fixed1_update(X86_CR4_SMXE,       ecx, bit(X86_FEATURE_SMX));
6954         cr4_fixed1_update(X86_CR4_PCIDE,      ecx, bit(X86_FEATURE_PCID));
6955         cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, bit(X86_FEATURE_XSAVE));
6956
6957         entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
6958         cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, bit(X86_FEATURE_FSGSBASE));
6959         cr4_fixed1_update(X86_CR4_SMEP,       ebx, bit(X86_FEATURE_SMEP));
6960         cr4_fixed1_update(X86_CR4_SMAP,       ebx, bit(X86_FEATURE_SMAP));
6961         cr4_fixed1_update(X86_CR4_PKE,        ecx, bit(X86_FEATURE_PKU));
6962         cr4_fixed1_update(X86_CR4_UMIP,       ecx, bit(X86_FEATURE_UMIP));
6963
6964 #undef cr4_fixed1_update
6965 }
6966
6967 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
6968 {
6969         struct vcpu_vmx *vmx = to_vmx(vcpu);
6970
6971         if (kvm_mpx_supported()) {
6972                 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
6973
6974                 if (mpx_enabled) {
6975                         vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
6976                         vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
6977                 } else {
6978                         vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
6979                         vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
6980                 }
6981         }
6982 }
6983
6984 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
6985 {
6986         struct vcpu_vmx *vmx = to_vmx(vcpu);
6987         struct kvm_cpuid_entry2 *best = NULL;
6988         int i;
6989
6990         for (i = 0; i < PT_CPUID_LEAVES; i++) {
6991                 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
6992                 if (!best)
6993                         return;
6994                 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
6995                 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
6996                 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
6997                 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
6998         }
6999
7000         /* Get the number of configurable Address Ranges for filtering */
7001         vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7002                                                 PT_CAP_num_address_ranges);
7003
7004         /* Initialize and clear the no dependency bits */
7005         vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7006                         RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7007
7008         /*
7009          * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7010          * will inject an #GP
7011          */
7012         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7013                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7014
7015         /*
7016          * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7017          * PSBFreq can be set
7018          */
7019         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7020                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7021                                 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7022
7023         /*
7024          * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7025          * MTCFreq can be set
7026          */
7027         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7028                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7029                                 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7030
7031         /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7032         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7033                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7034                                                         RTIT_CTL_PTW_EN);
7035
7036         /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7037         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7038                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7039
7040         /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7041         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7042                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7043
7044         /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
7045         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7046                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7047
7048         /* unmask address range configure area */
7049         for (i = 0; i < vmx->pt_desc.addr_range; i++)
7050                 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7051 }
7052
7053 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7054 {
7055         struct vcpu_vmx *vmx = to_vmx(vcpu);
7056
7057         if (cpu_has_secondary_exec_ctrls()) {
7058                 vmx_compute_secondary_exec_control(vmx);
7059                 vmcs_set_secondary_exec_control(vmx);
7060         }
7061
7062         if (nested_vmx_allowed(vcpu))
7063                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7064                         FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7065         else
7066                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7067                         ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7068
7069         if (nested_vmx_allowed(vcpu)) {
7070                 nested_vmx_cr_fixed1_bits_update(vcpu);
7071                 nested_vmx_entry_exit_ctls_update(vcpu);
7072         }
7073
7074         if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7075                         guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7076                 update_intel_pt_cfg(vcpu);
7077 }
7078
7079 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7080 {
7081         if (func == 1 && nested)
7082                 entry->ecx |= bit(X86_FEATURE_VMX);
7083 }
7084
7085 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7086 {
7087         to_vmx(vcpu)->req_immediate_exit = true;
7088 }
7089
7090 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7091                                struct x86_instruction_info *info,
7092                                enum x86_intercept_stage stage)
7093 {
7094         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7095         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7096
7097         /*
7098          * RDPID causes #UD if disabled through secondary execution controls.
7099          * Because it is marked as EmulateOnUD, we need to intercept it here.
7100          */
7101         if (info->intercept == x86_intercept_rdtscp &&
7102             !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
7103                 ctxt->exception.vector = UD_VECTOR;
7104                 ctxt->exception.error_code_valid = false;
7105                 return X86EMUL_PROPAGATE_FAULT;
7106         }
7107
7108         /* TODO: check more intercepts... */
7109         return X86EMUL_CONTINUE;
7110 }
7111
7112 #ifdef CONFIG_X86_64
7113 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7114 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7115                                   u64 divisor, u64 *result)
7116 {
7117         u64 low = a << shift, high = a >> (64 - shift);
7118
7119         /* To avoid the overflow on divq */
7120         if (high >= divisor)
7121                 return 1;
7122
7123         /* Low hold the result, high hold rem which is discarded */
7124         asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7125             "rm" (divisor), "0" (low), "1" (high));
7126         *result = low;
7127
7128         return 0;
7129 }
7130
7131 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7132                             bool *expired)
7133 {
7134         struct vcpu_vmx *vmx;
7135         u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7136         struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7137
7138         if (kvm_mwait_in_guest(vcpu->kvm) ||
7139                 kvm_can_post_timer_interrupt(vcpu))
7140                 return -EOPNOTSUPP;
7141
7142         vmx = to_vmx(vcpu);
7143         tscl = rdtsc();
7144         guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7145         delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7146         lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7147                                                     ktimer->timer_advance_ns);
7148
7149         if (delta_tsc > lapic_timer_advance_cycles)
7150                 delta_tsc -= lapic_timer_advance_cycles;
7151         else
7152                 delta_tsc = 0;
7153
7154         /* Convert to host delta tsc if tsc scaling is enabled */
7155         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7156             delta_tsc && u64_shl_div_u64(delta_tsc,
7157                                 kvm_tsc_scaling_ratio_frac_bits,
7158                                 vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7159                 return -ERANGE;
7160
7161         /*
7162          * If the delta tsc can't fit in the 32 bit after the multi shift,
7163          * we can't use the preemption timer.
7164          * It's possible that it fits on later vmentries, but checking
7165          * on every vmentry is costly so we just use an hrtimer.
7166          */
7167         if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7168                 return -ERANGE;
7169
7170         vmx->hv_deadline_tsc = tscl + delta_tsc;
7171         *expired = !delta_tsc;
7172         return 0;
7173 }
7174
7175 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7176 {
7177         to_vmx(vcpu)->hv_deadline_tsc = -1;
7178 }
7179 #endif
7180
7181 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7182 {
7183         if (!kvm_pause_in_guest(vcpu->kvm))
7184                 shrink_ple_window(vcpu);
7185 }
7186
7187 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7188                                      struct kvm_memory_slot *slot)
7189 {
7190         kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7191         kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7192 }
7193
7194 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7195                                        struct kvm_memory_slot *slot)
7196 {
7197         kvm_mmu_slot_set_dirty(kvm, slot);
7198 }
7199
7200 static void vmx_flush_log_dirty(struct kvm *kvm)
7201 {
7202         kvm_flush_pml_buffers(kvm);
7203 }
7204
7205 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
7206 {
7207         struct vmcs12 *vmcs12;
7208         struct vcpu_vmx *vmx = to_vmx(vcpu);
7209         gpa_t gpa, dst;
7210
7211         if (is_guest_mode(vcpu)) {
7212                 WARN_ON_ONCE(vmx->nested.pml_full);
7213
7214                 /*
7215                  * Check if PML is enabled for the nested guest.
7216                  * Whether eptp bit 6 is set is already checked
7217                  * as part of A/D emulation.
7218                  */
7219                 vmcs12 = get_vmcs12(vcpu);
7220                 if (!nested_cpu_has_pml(vmcs12))
7221                         return 0;
7222
7223                 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
7224                         vmx->nested.pml_full = true;
7225                         return 1;
7226                 }
7227
7228                 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
7229                 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
7230
7231                 if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
7232                                          offset_in_page(dst), sizeof(gpa)))
7233                         return 0;
7234
7235                 vmcs12->guest_pml_index--;
7236         }
7237
7238         return 0;
7239 }
7240
7241 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7242                                            struct kvm_memory_slot *memslot,
7243                                            gfn_t offset, unsigned long mask)
7244 {
7245         kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7246 }
7247
7248 static void __pi_post_block(struct kvm_vcpu *vcpu)
7249 {
7250         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7251         struct pi_desc old, new;
7252         unsigned int dest;
7253
7254         do {
7255                 old.control = new.control = pi_desc->control;
7256                 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
7257                      "Wakeup handler not enabled while the VCPU is blocked\n");
7258
7259                 dest = cpu_physical_id(vcpu->cpu);
7260
7261                 if (x2apic_enabled())
7262                         new.ndst = dest;
7263                 else
7264                         new.ndst = (dest << 8) & 0xFF00;
7265
7266                 /* set 'NV' to 'notification vector' */
7267                 new.nv = POSTED_INTR_VECTOR;
7268         } while (cmpxchg64(&pi_desc->control, old.control,
7269                            new.control) != old.control);
7270
7271         if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
7272                 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7273                 list_del(&vcpu->blocked_vcpu_list);
7274                 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7275                 vcpu->pre_pcpu = -1;
7276         }
7277 }
7278
7279 /*
7280  * This routine does the following things for vCPU which is going
7281  * to be blocked if VT-d PI is enabled.
7282  * - Store the vCPU to the wakeup list, so when interrupts happen
7283  *   we can find the right vCPU to wake up.
7284  * - Change the Posted-interrupt descriptor as below:
7285  *      'NDST' <-- vcpu->pre_pcpu
7286  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
7287  * - If 'ON' is set during this process, which means at least one
7288  *   interrupt is posted for this vCPU, we cannot block it, in
7289  *   this case, return 1, otherwise, return 0.
7290  *
7291  */
7292 static int pi_pre_block(struct kvm_vcpu *vcpu)
7293 {
7294         unsigned int dest;
7295         struct pi_desc old, new;
7296         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7297
7298         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
7299                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
7300                 !kvm_vcpu_apicv_active(vcpu))
7301                 return 0;
7302
7303         WARN_ON(irqs_disabled());
7304         local_irq_disable();
7305         if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
7306                 vcpu->pre_pcpu = vcpu->cpu;
7307                 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7308                 list_add_tail(&vcpu->blocked_vcpu_list,
7309                               &per_cpu(blocked_vcpu_on_cpu,
7310                                        vcpu->pre_pcpu));
7311                 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7312         }
7313
7314         do {
7315                 old.control = new.control = pi_desc->control;
7316
7317                 WARN((pi_desc->sn == 1),
7318                      "Warning: SN field of posted-interrupts "
7319                      "is set before blocking\n");
7320
7321                 /*
7322                  * Since vCPU can be preempted during this process,
7323                  * vcpu->cpu could be different with pre_pcpu, we
7324                  * need to set pre_pcpu as the destination of wakeup
7325                  * notification event, then we can find the right vCPU
7326                  * to wakeup in wakeup handler if interrupts happen
7327                  * when the vCPU is in blocked state.
7328                  */
7329                 dest = cpu_physical_id(vcpu->pre_pcpu);
7330
7331                 if (x2apic_enabled())
7332                         new.ndst = dest;
7333                 else
7334                         new.ndst = (dest << 8) & 0xFF00;
7335
7336                 /* set 'NV' to 'wakeup vector' */
7337                 new.nv = POSTED_INTR_WAKEUP_VECTOR;
7338         } while (cmpxchg64(&pi_desc->control, old.control,
7339                            new.control) != old.control);
7340
7341         /* We should not block the vCPU if an interrupt is posted for it.  */
7342         if (pi_test_on(pi_desc) == 1)
7343                 __pi_post_block(vcpu);
7344
7345         local_irq_enable();
7346         return (vcpu->pre_pcpu == -1);
7347 }
7348
7349 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7350 {
7351         if (pi_pre_block(vcpu))
7352                 return 1;
7353
7354         if (kvm_lapic_hv_timer_in_use(vcpu))
7355                 kvm_lapic_switch_to_sw_timer(vcpu);
7356
7357         return 0;
7358 }
7359
7360 static void pi_post_block(struct kvm_vcpu *vcpu)
7361 {
7362         if (vcpu->pre_pcpu == -1)
7363                 return;
7364
7365         WARN_ON(irqs_disabled());
7366         local_irq_disable();
7367         __pi_post_block(vcpu);
7368         local_irq_enable();
7369 }
7370
7371 static void vmx_post_block(struct kvm_vcpu *vcpu)
7372 {
7373         if (kvm_x86_ops->set_hv_timer)
7374                 kvm_lapic_switch_to_hv_timer(vcpu);
7375
7376         pi_post_block(vcpu);
7377 }
7378
7379 /*
7380  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
7381  *
7382  * @kvm: kvm
7383  * @host_irq: host irq of the interrupt
7384  * @guest_irq: gsi of the interrupt
7385  * @set: set or unset PI
7386  * returns 0 on success, < 0 on failure
7387  */
7388 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
7389                               uint32_t guest_irq, bool set)
7390 {
7391         struct kvm_kernel_irq_routing_entry *e;
7392         struct kvm_irq_routing_table *irq_rt;
7393         struct kvm_lapic_irq irq;
7394         struct kvm_vcpu *vcpu;
7395         struct vcpu_data vcpu_info;
7396         int idx, ret = 0;
7397
7398         if (!kvm_arch_has_assigned_device(kvm) ||
7399                 !irq_remapping_cap(IRQ_POSTING_CAP) ||
7400                 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
7401                 return 0;
7402
7403         idx = srcu_read_lock(&kvm->irq_srcu);
7404         irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
7405         if (guest_irq >= irq_rt->nr_rt_entries ||
7406             hlist_empty(&irq_rt->map[guest_irq])) {
7407                 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
7408                              guest_irq, irq_rt->nr_rt_entries);
7409                 goto out;
7410         }
7411
7412         hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
7413                 if (e->type != KVM_IRQ_ROUTING_MSI)
7414                         continue;
7415                 /*
7416                  * VT-d PI cannot support posting multicast/broadcast
7417                  * interrupts to a vCPU, we still use interrupt remapping
7418                  * for these kind of interrupts.
7419                  *
7420                  * For lowest-priority interrupts, we only support
7421                  * those with single CPU as the destination, e.g. user
7422                  * configures the interrupts via /proc/irq or uses
7423                  * irqbalance to make the interrupts single-CPU.
7424                  *
7425                  * We will support full lowest-priority interrupt later.
7426                  *
7427                  * In addition, we can only inject generic interrupts using
7428                  * the PI mechanism, refuse to route others through it.
7429                  */
7430
7431                 kvm_set_msi_irq(kvm, e, &irq);
7432                 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
7433                     !kvm_irq_is_postable(&irq)) {
7434                         /*
7435                          * Make sure the IRTE is in remapped mode if
7436                          * we don't handle it in posted mode.
7437                          */
7438                         ret = irq_set_vcpu_affinity(host_irq, NULL);
7439                         if (ret < 0) {
7440                                 printk(KERN_INFO
7441                                    "failed to back to remapped mode, irq: %u\n",
7442                                    host_irq);
7443                                 goto out;
7444                         }
7445
7446                         continue;
7447                 }
7448
7449                 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
7450                 vcpu_info.vector = irq.vector;
7451
7452                 trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
7453                                 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
7454
7455                 if (set)
7456                         ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
7457                 else
7458                         ret = irq_set_vcpu_affinity(host_irq, NULL);
7459
7460                 if (ret < 0) {
7461                         printk(KERN_INFO "%s: failed to update PI IRTE\n",
7462                                         __func__);
7463                         goto out;
7464                 }
7465         }
7466
7467         ret = 0;
7468 out:
7469         srcu_read_unlock(&kvm->irq_srcu, idx);
7470         return ret;
7471 }
7472
7473 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7474 {
7475         if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7476                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7477                         FEATURE_CONTROL_LMCE;
7478         else
7479                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7480                         ~FEATURE_CONTROL_LMCE;
7481 }
7482
7483 static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
7484 {
7485         /* we need a nested vmexit to enter SMM, postpone if run is pending */
7486         if (to_vmx(vcpu)->nested.nested_run_pending)
7487                 return 0;
7488         return 1;
7489 }
7490
7491 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7492 {
7493         struct vcpu_vmx *vmx = to_vmx(vcpu);
7494
7495         vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7496         if (vmx->nested.smm.guest_mode)
7497                 nested_vmx_vmexit(vcpu, -1, 0, 0);
7498
7499         vmx->nested.smm.vmxon = vmx->nested.vmxon;
7500         vmx->nested.vmxon = false;
7501         vmx_clear_hlt(vcpu);
7502         return 0;
7503 }
7504
7505 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7506 {
7507         struct vcpu_vmx *vmx = to_vmx(vcpu);
7508         int ret;
7509
7510         if (vmx->nested.smm.vmxon) {
7511                 vmx->nested.vmxon = true;
7512                 vmx->nested.smm.vmxon = false;
7513         }
7514
7515         if (vmx->nested.smm.guest_mode) {
7516                 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7517                 if (ret)
7518                         return ret;
7519
7520                 vmx->nested.smm.guest_mode = false;
7521         }
7522         return 0;
7523 }
7524
7525 static int enable_smi_window(struct kvm_vcpu *vcpu)
7526 {
7527         return 0;
7528 }
7529
7530 static bool vmx_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7531 {
7532         return false;
7533 }
7534
7535 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7536 {
7537         return to_vmx(vcpu)->nested.vmxon;
7538 }
7539
7540 static __init int hardware_setup(void)
7541 {
7542         unsigned long host_bndcfgs;
7543         struct desc_ptr dt;
7544         int r, i;
7545
7546         rdmsrl_safe(MSR_EFER, &host_efer);
7547
7548         store_idt(&dt);
7549         host_idt_base = dt.address;
7550
7551         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
7552                 kvm_define_shared_msr(i, vmx_msr_index[i]);
7553
7554         if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7555                 return -EIO;
7556
7557         if (boot_cpu_has(X86_FEATURE_NX))
7558                 kvm_enable_efer_bits(EFER_NX);
7559
7560         if (boot_cpu_has(X86_FEATURE_MPX)) {
7561                 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7562                 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7563         }
7564
7565         if (boot_cpu_has(X86_FEATURE_XSAVES))
7566                 rdmsrl(MSR_IA32_XSS, host_xss);
7567
7568         if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7569             !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7570                 enable_vpid = 0;
7571
7572         if (!cpu_has_vmx_ept() ||
7573             !cpu_has_vmx_ept_4levels() ||
7574             !cpu_has_vmx_ept_mt_wb() ||
7575             !cpu_has_vmx_invept_global())
7576                 enable_ept = 0;
7577
7578         if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7579                 enable_ept_ad_bits = 0;
7580
7581         if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7582                 enable_unrestricted_guest = 0;
7583
7584         if (!cpu_has_vmx_flexpriority())
7585                 flexpriority_enabled = 0;
7586
7587         if (!cpu_has_virtual_nmis())
7588                 enable_vnmi = 0;
7589
7590         /*
7591          * set_apic_access_page_addr() is used to reload apic access
7592          * page upon invalidation.  No need to do anything if not
7593          * using the APIC_ACCESS_ADDR VMCS field.
7594          */
7595         if (!flexpriority_enabled)
7596                 kvm_x86_ops->set_apic_access_page_addr = NULL;
7597
7598         if (!cpu_has_vmx_tpr_shadow())
7599                 kvm_x86_ops->update_cr8_intercept = NULL;
7600
7601         if (enable_ept && !cpu_has_vmx_ept_2m_page())
7602                 kvm_disable_largepages();
7603
7604 #if IS_ENABLED(CONFIG_HYPERV)
7605         if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7606             && enable_ept) {
7607                 kvm_x86_ops->tlb_remote_flush = hv_remote_flush_tlb;
7608                 kvm_x86_ops->tlb_remote_flush_with_range =
7609                                 hv_remote_flush_tlb_with_range;
7610         }
7611 #endif
7612
7613         if (!cpu_has_vmx_ple()) {
7614                 ple_gap = 0;
7615                 ple_window = 0;
7616                 ple_window_grow = 0;
7617                 ple_window_max = 0;
7618                 ple_window_shrink = 0;
7619         }
7620
7621         if (!cpu_has_vmx_apicv()) {
7622                 enable_apicv = 0;
7623                 kvm_x86_ops->sync_pir_to_irr = NULL;
7624         }
7625
7626         if (cpu_has_vmx_tsc_scaling()) {
7627                 kvm_has_tsc_control = true;
7628                 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7629                 kvm_tsc_scaling_ratio_frac_bits = 48;
7630         }
7631
7632         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7633
7634         if (enable_ept)
7635                 vmx_enable_tdp();
7636         else
7637                 kvm_disable_tdp();
7638
7639         /*
7640          * Only enable PML when hardware supports PML feature, and both EPT
7641          * and EPT A/D bit features are enabled -- PML depends on them to work.
7642          */
7643         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7644                 enable_pml = 0;
7645
7646         if (!enable_pml) {
7647                 kvm_x86_ops->slot_enable_log_dirty = NULL;
7648                 kvm_x86_ops->slot_disable_log_dirty = NULL;
7649                 kvm_x86_ops->flush_log_dirty = NULL;
7650                 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
7651         }
7652
7653         if (!cpu_has_vmx_preemption_timer())
7654                 enable_preemption_timer = false;
7655
7656         if (enable_preemption_timer) {
7657                 u64 use_timer_freq = 5000ULL * 1000 * 1000;
7658                 u64 vmx_msr;
7659
7660                 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7661                 cpu_preemption_timer_multi =
7662                         vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7663
7664                 if (tsc_khz)
7665                         use_timer_freq = (u64)tsc_khz * 1000;
7666                 use_timer_freq >>= cpu_preemption_timer_multi;
7667
7668                 /*
7669                  * KVM "disables" the preemption timer by setting it to its max
7670                  * value.  Don't use the timer if it might cause spurious exits
7671                  * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7672                  */
7673                 if (use_timer_freq > 0xffffffffu / 10)
7674                         enable_preemption_timer = false;
7675         }
7676
7677         if (!enable_preemption_timer) {
7678                 kvm_x86_ops->set_hv_timer = NULL;
7679                 kvm_x86_ops->cancel_hv_timer = NULL;
7680                 kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit;
7681         }
7682
7683         kvm_set_posted_intr_wakeup_handler(wakeup_handler);
7684
7685         kvm_mce_cap_supported |= MCG_LMCE_P;
7686
7687         if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7688                 return -EINVAL;
7689         if (!enable_ept || !cpu_has_vmx_intel_pt())
7690                 pt_mode = PT_MODE_SYSTEM;
7691
7692         if (nested) {
7693                 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7694                                            vmx_capability.ept, enable_apicv);
7695
7696                 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7697                 if (r)
7698                         return r;
7699         }
7700
7701         r = alloc_kvm_area();
7702         if (r)
7703                 nested_vmx_hardware_unsetup();
7704         return r;
7705 }
7706
7707 static __exit void hardware_unsetup(void)
7708 {
7709         if (nested)
7710                 nested_vmx_hardware_unsetup();
7711
7712         free_kvm_area();
7713 }
7714
7715 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
7716         .cpu_has_kvm_support = cpu_has_kvm_support,
7717         .disabled_by_bios = vmx_disabled_by_bios,
7718         .hardware_setup = hardware_setup,
7719         .hardware_unsetup = hardware_unsetup,
7720         .check_processor_compatibility = vmx_check_processor_compat,
7721         .hardware_enable = hardware_enable,
7722         .hardware_disable = hardware_disable,
7723         .cpu_has_accelerated_tpr = report_flexpriority,
7724         .has_emulated_msr = vmx_has_emulated_msr,
7725
7726         .vm_init = vmx_vm_init,
7727         .vm_alloc = vmx_vm_alloc,
7728         .vm_free = vmx_vm_free,
7729
7730         .vcpu_create = vmx_create_vcpu,
7731         .vcpu_free = vmx_free_vcpu,
7732         .vcpu_reset = vmx_vcpu_reset,
7733
7734         .prepare_guest_switch = vmx_prepare_switch_to_guest,
7735         .vcpu_load = vmx_vcpu_load,
7736         .vcpu_put = vmx_vcpu_put,
7737
7738         .update_bp_intercept = update_exception_bitmap,
7739         .get_msr_feature = vmx_get_msr_feature,
7740         .get_msr = vmx_get_msr,
7741         .set_msr = vmx_set_msr,
7742         .get_segment_base = vmx_get_segment_base,
7743         .get_segment = vmx_get_segment,
7744         .set_segment = vmx_set_segment,
7745         .get_cpl = vmx_get_cpl,
7746         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7747         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7748         .decache_cr3 = vmx_decache_cr3,
7749         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7750         .set_cr0 = vmx_set_cr0,
7751         .set_cr3 = vmx_set_cr3,
7752         .set_cr4 = vmx_set_cr4,
7753         .set_efer = vmx_set_efer,
7754         .get_idt = vmx_get_idt,
7755         .set_idt = vmx_set_idt,
7756         .get_gdt = vmx_get_gdt,
7757         .set_gdt = vmx_set_gdt,
7758         .get_dr6 = vmx_get_dr6,
7759         .set_dr6 = vmx_set_dr6,
7760         .set_dr7 = vmx_set_dr7,
7761         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7762         .cache_reg = vmx_cache_reg,
7763         .get_rflags = vmx_get_rflags,
7764         .set_rflags = vmx_set_rflags,
7765
7766         .tlb_flush = vmx_flush_tlb,
7767         .tlb_flush_gva = vmx_flush_tlb_gva,
7768
7769         .run = vmx_vcpu_run,
7770         .handle_exit = vmx_handle_exit,
7771         .skip_emulated_instruction = skip_emulated_instruction,
7772         .set_interrupt_shadow = vmx_set_interrupt_shadow,
7773         .get_interrupt_shadow = vmx_get_interrupt_shadow,
7774         .patch_hypercall = vmx_patch_hypercall,
7775         .set_irq = vmx_inject_irq,
7776         .set_nmi = vmx_inject_nmi,
7777         .queue_exception = vmx_queue_exception,
7778         .cancel_injection = vmx_cancel_injection,
7779         .interrupt_allowed = vmx_interrupt_allowed,
7780         .nmi_allowed = vmx_nmi_allowed,
7781         .get_nmi_mask = vmx_get_nmi_mask,
7782         .set_nmi_mask = vmx_set_nmi_mask,
7783         .enable_nmi_window = enable_nmi_window,
7784         .enable_irq_window = enable_irq_window,
7785         .update_cr8_intercept = update_cr8_intercept,
7786         .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7787         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7788         .get_enable_apicv = vmx_get_enable_apicv,
7789         .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7790         .load_eoi_exitmap = vmx_load_eoi_exitmap,
7791         .apicv_post_state_restore = vmx_apicv_post_state_restore,
7792         .hwapic_irr_update = vmx_hwapic_irr_update,
7793         .hwapic_isr_update = vmx_hwapic_isr_update,
7794         .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7795         .sync_pir_to_irr = vmx_sync_pir_to_irr,
7796         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7797         .dy_apicv_has_pending_interrupt = vmx_dy_apicv_has_pending_interrupt,
7798
7799         .set_tss_addr = vmx_set_tss_addr,
7800         .set_identity_map_addr = vmx_set_identity_map_addr,
7801         .get_tdp_level = get_ept_level,
7802         .get_mt_mask = vmx_get_mt_mask,
7803
7804         .get_exit_info = vmx_get_exit_info,
7805
7806         .get_lpage_level = vmx_get_lpage_level,
7807
7808         .cpuid_update = vmx_cpuid_update,
7809
7810         .rdtscp_supported = vmx_rdtscp_supported,
7811         .invpcid_supported = vmx_invpcid_supported,
7812
7813         .set_supported_cpuid = vmx_set_supported_cpuid,
7814
7815         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7816
7817         .read_l1_tsc_offset = vmx_read_l1_tsc_offset,
7818         .write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7819
7820         .set_tdp_cr3 = vmx_set_cr3,
7821
7822         .check_intercept = vmx_check_intercept,
7823         .handle_exit_irqoff = vmx_handle_exit_irqoff,
7824         .mpx_supported = vmx_mpx_supported,
7825         .xsaves_supported = vmx_xsaves_supported,
7826         .umip_emulated = vmx_umip_emulated,
7827         .pt_supported = vmx_pt_supported,
7828
7829         .request_immediate_exit = vmx_request_immediate_exit,
7830
7831         .sched_in = vmx_sched_in,
7832
7833         .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7834         .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7835         .flush_log_dirty = vmx_flush_log_dirty,
7836         .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7837         .write_log_dirty = vmx_write_pml_buffer,
7838
7839         .pre_block = vmx_pre_block,
7840         .post_block = vmx_post_block,
7841
7842         .pmu_ops = &intel_pmu_ops,
7843
7844         .update_pi_irte = vmx_update_pi_irte,
7845
7846 #ifdef CONFIG_X86_64
7847         .set_hv_timer = vmx_set_hv_timer,
7848         .cancel_hv_timer = vmx_cancel_hv_timer,
7849 #endif
7850
7851         .setup_mce = vmx_setup_mce,
7852
7853         .smi_allowed = vmx_smi_allowed,
7854         .pre_enter_smm = vmx_pre_enter_smm,
7855         .pre_leave_smm = vmx_pre_leave_smm,
7856         .enable_smi_window = enable_smi_window,
7857
7858         .check_nested_events = NULL,
7859         .get_nested_state = NULL,
7860         .set_nested_state = NULL,
7861         .get_vmcs12_pages = NULL,
7862         .nested_enable_evmcs = NULL,
7863         .nested_get_evmcs_version = NULL,
7864         .need_emulation_on_page_fault = vmx_need_emulation_on_page_fault,
7865         .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7866 };
7867
7868 static void vmx_cleanup_l1d_flush(void)
7869 {
7870         if (vmx_l1d_flush_pages) {
7871                 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7872                 vmx_l1d_flush_pages = NULL;
7873         }
7874         /* Restore state so sysfs ignores VMX */
7875         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7876 }
7877
7878 static void vmx_exit(void)
7879 {
7880 #ifdef CONFIG_KEXEC_CORE
7881         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7882         synchronize_rcu();
7883 #endif
7884
7885         kvm_exit();
7886
7887 #if IS_ENABLED(CONFIG_HYPERV)
7888         if (static_branch_unlikely(&enable_evmcs)) {
7889                 int cpu;
7890                 struct hv_vp_assist_page *vp_ap;
7891                 /*
7892                  * Reset everything to support using non-enlightened VMCS
7893                  * access later (e.g. when we reload the module with
7894                  * enlightened_vmcs=0)
7895                  */
7896                 for_each_online_cpu(cpu) {
7897                         vp_ap = hv_get_vp_assist_page(cpu);
7898
7899                         if (!vp_ap)
7900                                 continue;
7901
7902                         vp_ap->nested_control.features.directhypercall = 0;
7903                         vp_ap->current_nested_vmcs = 0;
7904                         vp_ap->enlighten_vmentry = 0;
7905                 }
7906
7907                 static_branch_disable(&enable_evmcs);
7908         }
7909 #endif
7910         vmx_cleanup_l1d_flush();
7911 }
7912 module_exit(vmx_exit);
7913
7914 static int __init vmx_init(void)
7915 {
7916         int r;
7917
7918 #if IS_ENABLED(CONFIG_HYPERV)
7919         /*
7920          * Enlightened VMCS usage should be recommended and the host needs
7921          * to support eVMCS v1 or above. We can also disable eVMCS support
7922          * with module parameter.
7923          */
7924         if (enlightened_vmcs &&
7925             ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
7926             (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
7927             KVM_EVMCS_VERSION) {
7928                 int cpu;
7929
7930                 /* Check that we have assist pages on all online CPUs */
7931                 for_each_online_cpu(cpu) {
7932                         if (!hv_get_vp_assist_page(cpu)) {
7933                                 enlightened_vmcs = false;
7934                                 break;
7935                         }
7936                 }
7937
7938                 if (enlightened_vmcs) {
7939                         pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
7940                         static_branch_enable(&enable_evmcs);
7941                 }
7942
7943                 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
7944                         vmx_x86_ops.enable_direct_tlbflush
7945                                 = hv_enable_direct_tlbflush;
7946
7947         } else {
7948                 enlightened_vmcs = false;
7949         }
7950 #endif
7951
7952         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7953                      __alignof__(struct vcpu_vmx), THIS_MODULE);
7954         if (r)
7955                 return r;
7956
7957         /*
7958          * Must be called after kvm_init() so enable_ept is properly set
7959          * up. Hand the parameter mitigation value in which was stored in
7960          * the pre module init parser. If no parameter was given, it will
7961          * contain 'auto' which will be turned into the default 'cond'
7962          * mitigation mode.
7963          */
7964         if (boot_cpu_has(X86_BUG_L1TF)) {
7965                 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
7966                 if (r) {
7967                         vmx_exit();
7968                         return r;
7969                 }
7970         }
7971
7972 #ifdef CONFIG_KEXEC_CORE
7973         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
7974                            crash_vmclear_local_loaded_vmcss);
7975 #endif
7976         vmx_check_vmcs12_offsets();
7977
7978         return 0;
7979 }
7980 module_init(vmx_init);