]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/vmx/vmx.c
KVM: x86: Move triple fault request into RM int injection
[linux.git] / arch / x86 / kvm / vmx / vmx.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <linux/frame.h>
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30
31 #include <asm/apic.h>
32 #include <asm/asm.h>
33 #include <asm/cpu.h>
34 #include <asm/debugreg.h>
35 #include <asm/desc.h>
36 #include <asm/fpu/internal.h>
37 #include <asm/io.h>
38 #include <asm/irq_remapping.h>
39 #include <asm/kexec.h>
40 #include <asm/perf_event.h>
41 #include <asm/mce.h>
42 #include <asm/mmu_context.h>
43 #include <asm/mshyperv.h>
44 #include <asm/spec-ctrl.h>
45 #include <asm/virtext.h>
46 #include <asm/vmx.h>
47
48 #include "capabilities.h"
49 #include "cpuid.h"
50 #include "evmcs.h"
51 #include "irq.h"
52 #include "kvm_cache_regs.h"
53 #include "lapic.h"
54 #include "mmu.h"
55 #include "nested.h"
56 #include "ops.h"
57 #include "pmu.h"
58 #include "trace.h"
59 #include "vmcs.h"
60 #include "vmcs12.h"
61 #include "vmx.h"
62 #include "x86.h"
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 static const struct x86_cpu_id vmx_cpu_id[] = {
68         X86_FEATURE_MATCH(X86_FEATURE_VMX),
69         {}
70 };
71 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
72
73 bool __read_mostly enable_vpid = 1;
74 module_param_named(vpid, enable_vpid, bool, 0444);
75
76 static bool __read_mostly enable_vnmi = 1;
77 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
78
79 bool __read_mostly flexpriority_enabled = 1;
80 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
81
82 bool __read_mostly enable_ept = 1;
83 module_param_named(ept, enable_ept, bool, S_IRUGO);
84
85 bool __read_mostly enable_unrestricted_guest = 1;
86 module_param_named(unrestricted_guest,
87                         enable_unrestricted_guest, bool, S_IRUGO);
88
89 bool __read_mostly enable_ept_ad_bits = 1;
90 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
91
92 static bool __read_mostly emulate_invalid_guest_state = true;
93 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
94
95 static bool __read_mostly fasteoi = 1;
96 module_param(fasteoi, bool, S_IRUGO);
97
98 static bool __read_mostly enable_apicv = 1;
99 module_param(enable_apicv, bool, S_IRUGO);
100
101 /*
102  * If nested=1, nested virtualization is supported, i.e., guests may use
103  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
104  * use VMX instructions.
105  */
106 static bool __read_mostly nested = 1;
107 module_param(nested, bool, S_IRUGO);
108
109 static u64 __read_mostly host_xss;
110
111 bool __read_mostly enable_pml = 1;
112 module_param_named(pml, enable_pml, bool, S_IRUGO);
113
114 static bool __read_mostly dump_invalid_vmcs = 0;
115 module_param(dump_invalid_vmcs, bool, 0644);
116
117 #define MSR_BITMAP_MODE_X2APIC          1
118 #define MSR_BITMAP_MODE_X2APIC_APICV    2
119
120 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
121
122 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
123 static int __read_mostly cpu_preemption_timer_multi;
124 static bool __read_mostly enable_preemption_timer = 1;
125 #ifdef CONFIG_X86_64
126 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
127 #endif
128
129 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
130 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
131 #define KVM_VM_CR0_ALWAYS_ON                            \
132         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST |      \
133          X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
134 #define KVM_CR4_GUEST_OWNED_BITS                                      \
135         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
136          | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
137
138 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
139 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
140 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
141
142 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
143
144 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
145         RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
146         RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
147         RTIT_STATUS_BYTECNT))
148
149 #define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
150         (~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
151
152 /*
153  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
154  * ple_gap:    upper bound on the amount of time between two successive
155  *             executions of PAUSE in a loop. Also indicate if ple enabled.
156  *             According to test, this time is usually smaller than 128 cycles.
157  * ple_window: upper bound on the amount of time a guest is allowed to execute
158  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
159  *             less than 2^12 cycles
160  * Time is measured based on a counter that runs at the same rate as the TSC,
161  * refer SDM volume 3b section 21.6.13 & 22.1.3.
162  */
163 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
164 module_param(ple_gap, uint, 0444);
165
166 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
167 module_param(ple_window, uint, 0444);
168
169 /* Default doubles per-vcpu window every exit. */
170 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
171 module_param(ple_window_grow, uint, 0444);
172
173 /* Default resets per-vcpu window every exit to ple_window. */
174 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
175 module_param(ple_window_shrink, uint, 0444);
176
177 /* Default is to compute the maximum so we can never overflow. */
178 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179 module_param(ple_window_max, uint, 0444);
180
181 /* Default is SYSTEM mode, 1 for host-guest mode */
182 int __read_mostly pt_mode = PT_MODE_SYSTEM;
183 module_param(pt_mode, int, S_IRUGO);
184
185 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
186 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
187 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
188
189 /* Storage for pre module init parameter parsing */
190 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
191
192 static const struct {
193         const char *option;
194         bool for_parse;
195 } vmentry_l1d_param[] = {
196         [VMENTER_L1D_FLUSH_AUTO]         = {"auto", true},
197         [VMENTER_L1D_FLUSH_NEVER]        = {"never", true},
198         [VMENTER_L1D_FLUSH_COND]         = {"cond", true},
199         [VMENTER_L1D_FLUSH_ALWAYS]       = {"always", true},
200         [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
201         [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
202 };
203
204 #define L1D_CACHE_ORDER 4
205 static void *vmx_l1d_flush_pages;
206
207 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
208 {
209         struct page *page;
210         unsigned int i;
211
212         if (!enable_ept) {
213                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
214                 return 0;
215         }
216
217         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
218                 u64 msr;
219
220                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
221                 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
222                         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
223                         return 0;
224                 }
225         }
226
227         /* If set to auto use the default l1tf mitigation method */
228         if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
229                 switch (l1tf_mitigation) {
230                 case L1TF_MITIGATION_OFF:
231                         l1tf = VMENTER_L1D_FLUSH_NEVER;
232                         break;
233                 case L1TF_MITIGATION_FLUSH_NOWARN:
234                 case L1TF_MITIGATION_FLUSH:
235                 case L1TF_MITIGATION_FLUSH_NOSMT:
236                         l1tf = VMENTER_L1D_FLUSH_COND;
237                         break;
238                 case L1TF_MITIGATION_FULL:
239                 case L1TF_MITIGATION_FULL_FORCE:
240                         l1tf = VMENTER_L1D_FLUSH_ALWAYS;
241                         break;
242                 }
243         } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
244                 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
245         }
246
247         if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
248             !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
249                 /*
250                  * This allocation for vmx_l1d_flush_pages is not tied to a VM
251                  * lifetime and so should not be charged to a memcg.
252                  */
253                 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
254                 if (!page)
255                         return -ENOMEM;
256                 vmx_l1d_flush_pages = page_address(page);
257
258                 /*
259                  * Initialize each page with a different pattern in
260                  * order to protect against KSM in the nested
261                  * virtualization case.
262                  */
263                 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
264                         memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
265                                PAGE_SIZE);
266                 }
267         }
268
269         l1tf_vmx_mitigation = l1tf;
270
271         if (l1tf != VMENTER_L1D_FLUSH_NEVER)
272                 static_branch_enable(&vmx_l1d_should_flush);
273         else
274                 static_branch_disable(&vmx_l1d_should_flush);
275
276         if (l1tf == VMENTER_L1D_FLUSH_COND)
277                 static_branch_enable(&vmx_l1d_flush_cond);
278         else
279                 static_branch_disable(&vmx_l1d_flush_cond);
280         return 0;
281 }
282
283 static int vmentry_l1d_flush_parse(const char *s)
284 {
285         unsigned int i;
286
287         if (s) {
288                 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
289                         if (vmentry_l1d_param[i].for_parse &&
290                             sysfs_streq(s, vmentry_l1d_param[i].option))
291                                 return i;
292                 }
293         }
294         return -EINVAL;
295 }
296
297 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
298 {
299         int l1tf, ret;
300
301         l1tf = vmentry_l1d_flush_parse(s);
302         if (l1tf < 0)
303                 return l1tf;
304
305         if (!boot_cpu_has(X86_BUG_L1TF))
306                 return 0;
307
308         /*
309          * Has vmx_init() run already? If not then this is the pre init
310          * parameter parsing. In that case just store the value and let
311          * vmx_init() do the proper setup after enable_ept has been
312          * established.
313          */
314         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
315                 vmentry_l1d_flush_param = l1tf;
316                 return 0;
317         }
318
319         mutex_lock(&vmx_l1d_flush_mutex);
320         ret = vmx_setup_l1d_flush(l1tf);
321         mutex_unlock(&vmx_l1d_flush_mutex);
322         return ret;
323 }
324
325 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
326 {
327         if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
328                 return sprintf(s, "???\n");
329
330         return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
331 }
332
333 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
334         .set = vmentry_l1d_flush_set,
335         .get = vmentry_l1d_flush_get,
336 };
337 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
338
339 static bool guest_state_valid(struct kvm_vcpu *vcpu);
340 static u32 vmx_segment_access_rights(struct kvm_segment *var);
341 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
342                                                           u32 msr, int type);
343
344 void vmx_vmexit(void);
345
346 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
347 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
348 /*
349  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
350  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
351  */
352 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
353
354 /*
355  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
356  * can find which vCPU should be waken up.
357  */
358 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
359 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
360
361 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
362 static DEFINE_SPINLOCK(vmx_vpid_lock);
363
364 struct vmcs_config vmcs_config;
365 struct vmx_capability vmx_capability;
366
367 #define VMX_SEGMENT_FIELD(seg)                                  \
368         [VCPU_SREG_##seg] = {                                   \
369                 .selector = GUEST_##seg##_SELECTOR,             \
370                 .base = GUEST_##seg##_BASE,                     \
371                 .limit = GUEST_##seg##_LIMIT,                   \
372                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
373         }
374
375 static const struct kvm_vmx_segment_field {
376         unsigned selector;
377         unsigned base;
378         unsigned limit;
379         unsigned ar_bytes;
380 } kvm_vmx_segment_fields[] = {
381         VMX_SEGMENT_FIELD(CS),
382         VMX_SEGMENT_FIELD(DS),
383         VMX_SEGMENT_FIELD(ES),
384         VMX_SEGMENT_FIELD(FS),
385         VMX_SEGMENT_FIELD(GS),
386         VMX_SEGMENT_FIELD(SS),
387         VMX_SEGMENT_FIELD(TR),
388         VMX_SEGMENT_FIELD(LDTR),
389 };
390
391 u64 host_efer;
392 static unsigned long host_idt_base;
393
394 /*
395  * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
396  * will emulate SYSCALL in legacy mode if the vendor string in guest
397  * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
398  * support this emulation, IA32_STAR must always be included in
399  * vmx_msr_index[], even in i386 builds.
400  */
401 const u32 vmx_msr_index[] = {
402 #ifdef CONFIG_X86_64
403         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
404 #endif
405         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
406 };
407
408 #if IS_ENABLED(CONFIG_HYPERV)
409 static bool __read_mostly enlightened_vmcs = true;
410 module_param(enlightened_vmcs, bool, 0444);
411
412 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
413 static void check_ept_pointer_match(struct kvm *kvm)
414 {
415         struct kvm_vcpu *vcpu;
416         u64 tmp_eptp = INVALID_PAGE;
417         int i;
418
419         kvm_for_each_vcpu(i, vcpu, kvm) {
420                 if (!VALID_PAGE(tmp_eptp)) {
421                         tmp_eptp = to_vmx(vcpu)->ept_pointer;
422                 } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
423                         to_kvm_vmx(kvm)->ept_pointers_match
424                                 = EPT_POINTERS_MISMATCH;
425                         return;
426                 }
427         }
428
429         to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
430 }
431
432 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
433                 void *data)
434 {
435         struct kvm_tlb_range *range = data;
436
437         return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
438                         range->pages);
439 }
440
441 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
442                 struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
443 {
444         u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
445
446         /*
447          * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
448          * of the base of EPT PML4 table, strip off EPT configuration
449          * information.
450          */
451         if (range)
452                 return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
453                                 kvm_fill_hv_flush_list_func, (void *)range);
454         else
455                 return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
456 }
457
458 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
459                 struct kvm_tlb_range *range)
460 {
461         struct kvm_vcpu *vcpu;
462         int ret = 0, i;
463
464         spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
465
466         if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
467                 check_ept_pointer_match(kvm);
468
469         if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
470                 kvm_for_each_vcpu(i, vcpu, kvm) {
471                         /* If ept_pointer is invalid pointer, bypass flush request. */
472                         if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
473                                 ret |= __hv_remote_flush_tlb_with_range(
474                                         kvm, vcpu, range);
475                 }
476         } else {
477                 ret = __hv_remote_flush_tlb_with_range(kvm,
478                                 kvm_get_vcpu(kvm, 0), range);
479         }
480
481         spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
482         return ret;
483 }
484 static int hv_remote_flush_tlb(struct kvm *kvm)
485 {
486         return hv_remote_flush_tlb_with_range(kvm, NULL);
487 }
488
489 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
490 {
491         struct hv_enlightened_vmcs *evmcs;
492         struct hv_partition_assist_pg **p_hv_pa_pg =
493                         &vcpu->kvm->arch.hyperv.hv_pa_pg;
494         /*
495          * Synthetic VM-Exit is not enabled in current code and so All
496          * evmcs in singe VM shares same assist page.
497          */
498         if (!*p_hv_pa_pg) {
499                 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL);
500                 if (!*p_hv_pa_pg)
501                         return -ENOMEM;
502                 pr_debug("KVM: Hyper-V: allocated PA_PG for %llx\n",
503                        (u64)&vcpu->kvm);
504         }
505
506         evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
507
508         evmcs->partition_assist_page =
509                 __pa(*p_hv_pa_pg);
510         evmcs->hv_vm_id = (u64)vcpu->kvm;
511         evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
512
513         pr_debug("KVM: Hyper-V: enabled DIRECT flush for %llx\n",
514                  (u64)vcpu->kvm);
515         return 0;
516 }
517
518 #endif /* IS_ENABLED(CONFIG_HYPERV) */
519
520 /*
521  * Comment's format: document - errata name - stepping - processor name.
522  * Refer from
523  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
524  */
525 static u32 vmx_preemption_cpu_tfms[] = {
526 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
527 0x000206E6,
528 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
529 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
530 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
531 0x00020652,
532 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
533 0x00020655,
534 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
535 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
536 /*
537  * 320767.pdf - AAP86  - B1 -
538  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
539  */
540 0x000106E5,
541 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
542 0x000106A0,
543 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
544 0x000106A1,
545 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
546 0x000106A4,
547  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
548  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
549  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
550 0x000106A5,
551  /* Xeon E3-1220 V2 */
552 0x000306A8,
553 };
554
555 static inline bool cpu_has_broken_vmx_preemption_timer(void)
556 {
557         u32 eax = cpuid_eax(0x00000001), i;
558
559         /* Clear the reserved bits */
560         eax &= ~(0x3U << 14 | 0xfU << 28);
561         for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
562                 if (eax == vmx_preemption_cpu_tfms[i])
563                         return true;
564
565         return false;
566 }
567
568 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
569 {
570         return flexpriority_enabled && lapic_in_kernel(vcpu);
571 }
572
573 static inline bool report_flexpriority(void)
574 {
575         return flexpriority_enabled;
576 }
577
578 static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
579 {
580         int i;
581
582         for (i = 0; i < vmx->nmsrs; ++i)
583                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
584                         return i;
585         return -1;
586 }
587
588 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
589 {
590         int i;
591
592         i = __find_msr_index(vmx, msr);
593         if (i >= 0)
594                 return &vmx->guest_msrs[i];
595         return NULL;
596 }
597
598 void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
599 {
600         vmcs_clear(loaded_vmcs->vmcs);
601         if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
602                 vmcs_clear(loaded_vmcs->shadow_vmcs);
603         loaded_vmcs->cpu = -1;
604         loaded_vmcs->launched = 0;
605 }
606
607 #ifdef CONFIG_KEXEC_CORE
608 /*
609  * This bitmap is used to indicate whether the vmclear
610  * operation is enabled on all cpus. All disabled by
611  * default.
612  */
613 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
614
615 static inline void crash_enable_local_vmclear(int cpu)
616 {
617         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
618 }
619
620 static inline void crash_disable_local_vmclear(int cpu)
621 {
622         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
623 }
624
625 static inline int crash_local_vmclear_enabled(int cpu)
626 {
627         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
628 }
629
630 static void crash_vmclear_local_loaded_vmcss(void)
631 {
632         int cpu = raw_smp_processor_id();
633         struct loaded_vmcs *v;
634
635         if (!crash_local_vmclear_enabled(cpu))
636                 return;
637
638         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
639                             loaded_vmcss_on_cpu_link)
640                 vmcs_clear(v->vmcs);
641 }
642 #else
643 static inline void crash_enable_local_vmclear(int cpu) { }
644 static inline void crash_disable_local_vmclear(int cpu) { }
645 #endif /* CONFIG_KEXEC_CORE */
646
647 static void __loaded_vmcs_clear(void *arg)
648 {
649         struct loaded_vmcs *loaded_vmcs = arg;
650         int cpu = raw_smp_processor_id();
651
652         if (loaded_vmcs->cpu != cpu)
653                 return; /* vcpu migration can race with cpu offline */
654         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
655                 per_cpu(current_vmcs, cpu) = NULL;
656         crash_disable_local_vmclear(cpu);
657         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
658
659         /*
660          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
661          * is before setting loaded_vmcs->vcpu to -1 which is done in
662          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
663          * then adds the vmcs into percpu list before it is deleted.
664          */
665         smp_wmb();
666
667         loaded_vmcs_init(loaded_vmcs);
668         crash_enable_local_vmclear(cpu);
669 }
670
671 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
672 {
673         int cpu = loaded_vmcs->cpu;
674
675         if (cpu != -1)
676                 smp_call_function_single(cpu,
677                          __loaded_vmcs_clear, loaded_vmcs, 1);
678 }
679
680 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
681                                        unsigned field)
682 {
683         bool ret;
684         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
685
686         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
687                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
688                 vmx->segment_cache.bitmask = 0;
689         }
690         ret = vmx->segment_cache.bitmask & mask;
691         vmx->segment_cache.bitmask |= mask;
692         return ret;
693 }
694
695 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
696 {
697         u16 *p = &vmx->segment_cache.seg[seg].selector;
698
699         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
700                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
701         return *p;
702 }
703
704 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
705 {
706         ulong *p = &vmx->segment_cache.seg[seg].base;
707
708         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
709                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
710         return *p;
711 }
712
713 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
714 {
715         u32 *p = &vmx->segment_cache.seg[seg].limit;
716
717         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
718                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
719         return *p;
720 }
721
722 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
723 {
724         u32 *p = &vmx->segment_cache.seg[seg].ar;
725
726         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
727                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
728         return *p;
729 }
730
731 void update_exception_bitmap(struct kvm_vcpu *vcpu)
732 {
733         u32 eb;
734
735         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
736              (1u << DB_VECTOR) | (1u << AC_VECTOR);
737         /*
738          * Guest access to VMware backdoor ports could legitimately
739          * trigger #GP because of TSS I/O permission bitmap.
740          * We intercept those #GP and allow access to them anyway
741          * as VMware does.
742          */
743         if (enable_vmware_backdoor)
744                 eb |= (1u << GP_VECTOR);
745         if ((vcpu->guest_debug &
746              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
747             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
748                 eb |= 1u << BP_VECTOR;
749         if (to_vmx(vcpu)->rmode.vm86_active)
750                 eb = ~0;
751         if (enable_ept)
752                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
753
754         /* When we are running a nested L2 guest and L1 specified for it a
755          * certain exception bitmap, we must trap the same exceptions and pass
756          * them to L1. When running L2, we will only handle the exceptions
757          * specified above if L1 did not want them.
758          */
759         if (is_guest_mode(vcpu))
760                 eb |= get_vmcs12(vcpu)->exception_bitmap;
761
762         vmcs_write32(EXCEPTION_BITMAP, eb);
763 }
764
765 /*
766  * Check if MSR is intercepted for currently loaded MSR bitmap.
767  */
768 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
769 {
770         unsigned long *msr_bitmap;
771         int f = sizeof(unsigned long);
772
773         if (!cpu_has_vmx_msr_bitmap())
774                 return true;
775
776         msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
777
778         if (msr <= 0x1fff) {
779                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
780         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
781                 msr &= 0x1fff;
782                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
783         }
784
785         return true;
786 }
787
788 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
789                 unsigned long entry, unsigned long exit)
790 {
791         vm_entry_controls_clearbit(vmx, entry);
792         vm_exit_controls_clearbit(vmx, exit);
793 }
794
795 static int find_msr(struct vmx_msrs *m, unsigned int msr)
796 {
797         unsigned int i;
798
799         for (i = 0; i < m->nr; ++i) {
800                 if (m->val[i].index == msr)
801                         return i;
802         }
803         return -ENOENT;
804 }
805
806 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
807 {
808         int i;
809         struct msr_autoload *m = &vmx->msr_autoload;
810
811         switch (msr) {
812         case MSR_EFER:
813                 if (cpu_has_load_ia32_efer()) {
814                         clear_atomic_switch_msr_special(vmx,
815                                         VM_ENTRY_LOAD_IA32_EFER,
816                                         VM_EXIT_LOAD_IA32_EFER);
817                         return;
818                 }
819                 break;
820         case MSR_CORE_PERF_GLOBAL_CTRL:
821                 if (cpu_has_load_perf_global_ctrl()) {
822                         clear_atomic_switch_msr_special(vmx,
823                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
824                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
825                         return;
826                 }
827                 break;
828         }
829         i = find_msr(&m->guest, msr);
830         if (i < 0)
831                 goto skip_guest;
832         --m->guest.nr;
833         m->guest.val[i] = m->guest.val[m->guest.nr];
834         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
835
836 skip_guest:
837         i = find_msr(&m->host, msr);
838         if (i < 0)
839                 return;
840
841         --m->host.nr;
842         m->host.val[i] = m->host.val[m->host.nr];
843         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
844 }
845
846 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
847                 unsigned long entry, unsigned long exit,
848                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
849                 u64 guest_val, u64 host_val)
850 {
851         vmcs_write64(guest_val_vmcs, guest_val);
852         if (host_val_vmcs != HOST_IA32_EFER)
853                 vmcs_write64(host_val_vmcs, host_val);
854         vm_entry_controls_setbit(vmx, entry);
855         vm_exit_controls_setbit(vmx, exit);
856 }
857
858 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
859                                   u64 guest_val, u64 host_val, bool entry_only)
860 {
861         int i, j = 0;
862         struct msr_autoload *m = &vmx->msr_autoload;
863
864         switch (msr) {
865         case MSR_EFER:
866                 if (cpu_has_load_ia32_efer()) {
867                         add_atomic_switch_msr_special(vmx,
868                                         VM_ENTRY_LOAD_IA32_EFER,
869                                         VM_EXIT_LOAD_IA32_EFER,
870                                         GUEST_IA32_EFER,
871                                         HOST_IA32_EFER,
872                                         guest_val, host_val);
873                         return;
874                 }
875                 break;
876         case MSR_CORE_PERF_GLOBAL_CTRL:
877                 if (cpu_has_load_perf_global_ctrl()) {
878                         add_atomic_switch_msr_special(vmx,
879                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
880                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
881                                         GUEST_IA32_PERF_GLOBAL_CTRL,
882                                         HOST_IA32_PERF_GLOBAL_CTRL,
883                                         guest_val, host_val);
884                         return;
885                 }
886                 break;
887         case MSR_IA32_PEBS_ENABLE:
888                 /* PEBS needs a quiescent period after being disabled (to write
889                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
890                  * provide that period, so a CPU could write host's record into
891                  * guest's memory.
892                  */
893                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
894         }
895
896         i = find_msr(&m->guest, msr);
897         if (!entry_only)
898                 j = find_msr(&m->host, msr);
899
900         if ((i < 0 && m->guest.nr == NR_AUTOLOAD_MSRS) ||
901                 (j < 0 &&  m->host.nr == NR_AUTOLOAD_MSRS)) {
902                 printk_once(KERN_WARNING "Not enough msr switch entries. "
903                                 "Can't add msr %x\n", msr);
904                 return;
905         }
906         if (i < 0) {
907                 i = m->guest.nr++;
908                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
909         }
910         m->guest.val[i].index = msr;
911         m->guest.val[i].value = guest_val;
912
913         if (entry_only)
914                 return;
915
916         if (j < 0) {
917                 j = m->host.nr++;
918                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
919         }
920         m->host.val[j].index = msr;
921         m->host.val[j].value = host_val;
922 }
923
924 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
925 {
926         u64 guest_efer = vmx->vcpu.arch.efer;
927         u64 ignore_bits = 0;
928
929         if (!enable_ept) {
930                 /*
931                  * NX is needed to handle CR0.WP=1, CR4.SMEP=1.  Testing
932                  * host CPUID is more efficient than testing guest CPUID
933                  * or CR4.  Host SMEP is anyway a requirement for guest SMEP.
934                  */
935                 if (boot_cpu_has(X86_FEATURE_SMEP))
936                         guest_efer |= EFER_NX;
937                 else if (!(guest_efer & EFER_NX))
938                         ignore_bits |= EFER_NX;
939         }
940
941         /*
942          * LMA and LME handled by hardware; SCE meaningless outside long mode.
943          */
944         ignore_bits |= EFER_SCE;
945 #ifdef CONFIG_X86_64
946         ignore_bits |= EFER_LMA | EFER_LME;
947         /* SCE is meaningful only in long mode on Intel */
948         if (guest_efer & EFER_LMA)
949                 ignore_bits &= ~(u64)EFER_SCE;
950 #endif
951
952         /*
953          * On EPT, we can't emulate NX, so we must switch EFER atomically.
954          * On CPUs that support "load IA32_EFER", always switch EFER
955          * atomically, since it's faster than switching it manually.
956          */
957         if (cpu_has_load_ia32_efer() ||
958             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
959                 if (!(guest_efer & EFER_LMA))
960                         guest_efer &= ~EFER_LME;
961                 if (guest_efer != host_efer)
962                         add_atomic_switch_msr(vmx, MSR_EFER,
963                                               guest_efer, host_efer, false);
964                 else
965                         clear_atomic_switch_msr(vmx, MSR_EFER);
966                 return false;
967         } else {
968                 clear_atomic_switch_msr(vmx, MSR_EFER);
969
970                 guest_efer &= ~ignore_bits;
971                 guest_efer |= host_efer & ignore_bits;
972
973                 vmx->guest_msrs[efer_offset].data = guest_efer;
974                 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
975
976                 return true;
977         }
978 }
979
980 #ifdef CONFIG_X86_32
981 /*
982  * On 32-bit kernels, VM exits still load the FS and GS bases from the
983  * VMCS rather than the segment table.  KVM uses this helper to figure
984  * out the current bases to poke them into the VMCS before entry.
985  */
986 static unsigned long segment_base(u16 selector)
987 {
988         struct desc_struct *table;
989         unsigned long v;
990
991         if (!(selector & ~SEGMENT_RPL_MASK))
992                 return 0;
993
994         table = get_current_gdt_ro();
995
996         if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
997                 u16 ldt_selector = kvm_read_ldt();
998
999                 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1000                         return 0;
1001
1002                 table = (struct desc_struct *)segment_base(ldt_selector);
1003         }
1004         v = get_desc_base(&table[selector >> 3]);
1005         return v;
1006 }
1007 #endif
1008
1009 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1010 {
1011         u32 i;
1012
1013         wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1014         wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1015         wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1016         wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1017         for (i = 0; i < addr_range; i++) {
1018                 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1019                 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1020         }
1021 }
1022
1023 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1024 {
1025         u32 i;
1026
1027         rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1028         rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1029         rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1030         rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1031         for (i = 0; i < addr_range; i++) {
1032                 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1033                 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1034         }
1035 }
1036
1037 static void pt_guest_enter(struct vcpu_vmx *vmx)
1038 {
1039         if (pt_mode == PT_MODE_SYSTEM)
1040                 return;
1041
1042         /*
1043          * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1044          * Save host state before VM entry.
1045          */
1046         rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1047         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1048                 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1049                 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1050                 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1051         }
1052 }
1053
1054 static void pt_guest_exit(struct vcpu_vmx *vmx)
1055 {
1056         if (pt_mode == PT_MODE_SYSTEM)
1057                 return;
1058
1059         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1060                 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1061                 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1062         }
1063
1064         /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1065         wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1066 }
1067
1068 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1069                         unsigned long fs_base, unsigned long gs_base)
1070 {
1071         if (unlikely(fs_sel != host->fs_sel)) {
1072                 if (!(fs_sel & 7))
1073                         vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1074                 else
1075                         vmcs_write16(HOST_FS_SELECTOR, 0);
1076                 host->fs_sel = fs_sel;
1077         }
1078         if (unlikely(gs_sel != host->gs_sel)) {
1079                 if (!(gs_sel & 7))
1080                         vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1081                 else
1082                         vmcs_write16(HOST_GS_SELECTOR, 0);
1083                 host->gs_sel = gs_sel;
1084         }
1085         if (unlikely(fs_base != host->fs_base)) {
1086                 vmcs_writel(HOST_FS_BASE, fs_base);
1087                 host->fs_base = fs_base;
1088         }
1089         if (unlikely(gs_base != host->gs_base)) {
1090                 vmcs_writel(HOST_GS_BASE, gs_base);
1091                 host->gs_base = gs_base;
1092         }
1093 }
1094
1095 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1096 {
1097         struct vcpu_vmx *vmx = to_vmx(vcpu);
1098         struct vmcs_host_state *host_state;
1099 #ifdef CONFIG_X86_64
1100         int cpu = raw_smp_processor_id();
1101 #endif
1102         unsigned long fs_base, gs_base;
1103         u16 fs_sel, gs_sel;
1104         int i;
1105
1106         vmx->req_immediate_exit = false;
1107
1108         /*
1109          * Note that guest MSRs to be saved/restored can also be changed
1110          * when guest state is loaded. This happens when guest transitions
1111          * to/from long-mode by setting MSR_EFER.LMA.
1112          */
1113         if (!vmx->guest_msrs_ready) {
1114                 vmx->guest_msrs_ready = true;
1115                 for (i = 0; i < vmx->save_nmsrs; ++i)
1116                         kvm_set_shared_msr(vmx->guest_msrs[i].index,
1117                                            vmx->guest_msrs[i].data,
1118                                            vmx->guest_msrs[i].mask);
1119
1120         }
1121         if (vmx->guest_state_loaded)
1122                 return;
1123
1124         host_state = &vmx->loaded_vmcs->host_state;
1125
1126         /*
1127          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1128          * allow segment selectors with cpl > 0 or ti == 1.
1129          */
1130         host_state->ldt_sel = kvm_read_ldt();
1131
1132 #ifdef CONFIG_X86_64
1133         savesegment(ds, host_state->ds_sel);
1134         savesegment(es, host_state->es_sel);
1135
1136         gs_base = cpu_kernelmode_gs_base(cpu);
1137         if (likely(is_64bit_mm(current->mm))) {
1138                 save_fsgs_for_kvm();
1139                 fs_sel = current->thread.fsindex;
1140                 gs_sel = current->thread.gsindex;
1141                 fs_base = current->thread.fsbase;
1142                 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1143         } else {
1144                 savesegment(fs, fs_sel);
1145                 savesegment(gs, gs_sel);
1146                 fs_base = read_msr(MSR_FS_BASE);
1147                 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1148         }
1149
1150         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1151 #else
1152         savesegment(fs, fs_sel);
1153         savesegment(gs, gs_sel);
1154         fs_base = segment_base(fs_sel);
1155         gs_base = segment_base(gs_sel);
1156 #endif
1157
1158         vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1159         vmx->guest_state_loaded = true;
1160 }
1161
1162 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1163 {
1164         struct vmcs_host_state *host_state;
1165
1166         if (!vmx->guest_state_loaded)
1167                 return;
1168
1169         host_state = &vmx->loaded_vmcs->host_state;
1170
1171         ++vmx->vcpu.stat.host_state_reload;
1172
1173 #ifdef CONFIG_X86_64
1174         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1175 #endif
1176         if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1177                 kvm_load_ldt(host_state->ldt_sel);
1178 #ifdef CONFIG_X86_64
1179                 load_gs_index(host_state->gs_sel);
1180 #else
1181                 loadsegment(gs, host_state->gs_sel);
1182 #endif
1183         }
1184         if (host_state->fs_sel & 7)
1185                 loadsegment(fs, host_state->fs_sel);
1186 #ifdef CONFIG_X86_64
1187         if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1188                 loadsegment(ds, host_state->ds_sel);
1189                 loadsegment(es, host_state->es_sel);
1190         }
1191 #endif
1192         invalidate_tss_limit();
1193 #ifdef CONFIG_X86_64
1194         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1195 #endif
1196         load_fixmap_gdt(raw_smp_processor_id());
1197         vmx->guest_state_loaded = false;
1198         vmx->guest_msrs_ready = false;
1199 }
1200
1201 #ifdef CONFIG_X86_64
1202 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1203 {
1204         preempt_disable();
1205         if (vmx->guest_state_loaded)
1206                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1207         preempt_enable();
1208         return vmx->msr_guest_kernel_gs_base;
1209 }
1210
1211 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1212 {
1213         preempt_disable();
1214         if (vmx->guest_state_loaded)
1215                 wrmsrl(MSR_KERNEL_GS_BASE, data);
1216         preempt_enable();
1217         vmx->msr_guest_kernel_gs_base = data;
1218 }
1219 #endif
1220
1221 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1222 {
1223         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1224         struct pi_desc old, new;
1225         unsigned int dest;
1226
1227         /*
1228          * In case of hot-plug or hot-unplug, we may have to undo
1229          * vmx_vcpu_pi_put even if there is no assigned device.  And we
1230          * always keep PI.NDST up to date for simplicity: it makes the
1231          * code easier, and CPU migration is not a fast path.
1232          */
1233         if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
1234                 return;
1235
1236         /* The full case.  */
1237         do {
1238                 old.control = new.control = pi_desc->control;
1239
1240                 dest = cpu_physical_id(cpu);
1241
1242                 if (x2apic_enabled())
1243                         new.ndst = dest;
1244                 else
1245                         new.ndst = (dest << 8) & 0xFF00;
1246
1247                 new.sn = 0;
1248         } while (cmpxchg64(&pi_desc->control, old.control,
1249                            new.control) != old.control);
1250
1251         /*
1252          * Clear SN before reading the bitmap.  The VT-d firmware
1253          * writes the bitmap and reads SN atomically (5.2.3 in the
1254          * spec), so it doesn't really have a memory barrier that
1255          * pairs with this, but we cannot do that and we need one.
1256          */
1257         smp_mb__after_atomic();
1258
1259         if (!bitmap_empty((unsigned long *)pi_desc->pir, NR_VECTORS))
1260                 pi_set_on(pi_desc);
1261 }
1262
1263 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu)
1264 {
1265         struct vcpu_vmx *vmx = to_vmx(vcpu);
1266         bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1267
1268         if (!already_loaded) {
1269                 loaded_vmcs_clear(vmx->loaded_vmcs);
1270                 local_irq_disable();
1271                 crash_disable_local_vmclear(cpu);
1272
1273                 /*
1274                  * Read loaded_vmcs->cpu should be before fetching
1275                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
1276                  * See the comments in __loaded_vmcs_clear().
1277                  */
1278                 smp_rmb();
1279
1280                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1281                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1282                 crash_enable_local_vmclear(cpu);
1283                 local_irq_enable();
1284         }
1285
1286         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1287                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1288                 vmcs_load(vmx->loaded_vmcs->vmcs);
1289                 indirect_branch_prediction_barrier();
1290         }
1291
1292         if (!already_loaded) {
1293                 void *gdt = get_current_gdt_ro();
1294                 unsigned long sysenter_esp;
1295
1296                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1297
1298                 /*
1299                  * Linux uses per-cpu TSS and GDT, so set these when switching
1300                  * processors.  See 22.2.4.
1301                  */
1302                 vmcs_writel(HOST_TR_BASE,
1303                             (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1304                 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1305
1306                 /*
1307                  * VM exits change the host TR limit to 0x67 after a VM
1308                  * exit.  This is okay, since 0x67 covers everything except
1309                  * the IO bitmap and have have code to handle the IO bitmap
1310                  * being lost after a VM exit.
1311                  */
1312                 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
1313
1314                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1315                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1316
1317                 vmx->loaded_vmcs->cpu = cpu;
1318         }
1319
1320         /* Setup TSC multiplier */
1321         if (kvm_has_tsc_control &&
1322             vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1323                 decache_tsc_multiplier(vmx);
1324 }
1325
1326 /*
1327  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1328  * vcpu mutex is already taken.
1329  */
1330 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1331 {
1332         struct vcpu_vmx *vmx = to_vmx(vcpu);
1333
1334         vmx_vcpu_load_vmcs(vcpu, cpu);
1335
1336         vmx_vcpu_pi_load(vcpu, cpu);
1337
1338         vmx->host_pkru = read_pkru();
1339         vmx->host_debugctlmsr = get_debugctlmsr();
1340 }
1341
1342 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
1343 {
1344         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1345
1346         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1347                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
1348                 !kvm_vcpu_apicv_active(vcpu))
1349                 return;
1350
1351         /* Set SN when the vCPU is preempted */
1352         if (vcpu->preempted)
1353                 pi_set_sn(pi_desc);
1354 }
1355
1356 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1357 {
1358         vmx_vcpu_pi_put(vcpu);
1359
1360         vmx_prepare_switch_to_host(to_vmx(vcpu));
1361 }
1362
1363 static bool emulation_required(struct kvm_vcpu *vcpu)
1364 {
1365         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
1366 }
1367
1368 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1369
1370 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1371 {
1372         unsigned long rflags, save_rflags;
1373
1374         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1375                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1376                 rflags = vmcs_readl(GUEST_RFLAGS);
1377                 if (to_vmx(vcpu)->rmode.vm86_active) {
1378                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1379                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1380                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1381                 }
1382                 to_vmx(vcpu)->rflags = rflags;
1383         }
1384         return to_vmx(vcpu)->rflags;
1385 }
1386
1387 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1388 {
1389         unsigned long old_rflags = vmx_get_rflags(vcpu);
1390
1391         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1392         to_vmx(vcpu)->rflags = rflags;
1393         if (to_vmx(vcpu)->rmode.vm86_active) {
1394                 to_vmx(vcpu)->rmode.save_rflags = rflags;
1395                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1396         }
1397         vmcs_writel(GUEST_RFLAGS, rflags);
1398
1399         if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
1400                 to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
1401 }
1402
1403 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1404 {
1405         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1406         int ret = 0;
1407
1408         if (interruptibility & GUEST_INTR_STATE_STI)
1409                 ret |= KVM_X86_SHADOW_INT_STI;
1410         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1411                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1412
1413         return ret;
1414 }
1415
1416 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1417 {
1418         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1419         u32 interruptibility = interruptibility_old;
1420
1421         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1422
1423         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1424                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1425         else if (mask & KVM_X86_SHADOW_INT_STI)
1426                 interruptibility |= GUEST_INTR_STATE_STI;
1427
1428         if ((interruptibility != interruptibility_old))
1429                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1430 }
1431
1432 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1433 {
1434         struct vcpu_vmx *vmx = to_vmx(vcpu);
1435         unsigned long value;
1436
1437         /*
1438          * Any MSR write that attempts to change bits marked reserved will
1439          * case a #GP fault.
1440          */
1441         if (data & vmx->pt_desc.ctl_bitmask)
1442                 return 1;
1443
1444         /*
1445          * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1446          * result in a #GP unless the same write also clears TraceEn.
1447          */
1448         if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1449                 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1450                 return 1;
1451
1452         /*
1453          * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1454          * and FabricEn would cause #GP, if
1455          * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1456          */
1457         if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1458                 !(data & RTIT_CTL_FABRIC_EN) &&
1459                 !intel_pt_validate_cap(vmx->pt_desc.caps,
1460                                         PT_CAP_single_range_output))
1461                 return 1;
1462
1463         /*
1464          * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1465          * utilize encodings marked reserved will casue a #GP fault.
1466          */
1467         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1468         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1469                         !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1470                         RTIT_CTL_MTC_RANGE_OFFSET, &value))
1471                 return 1;
1472         value = intel_pt_validate_cap(vmx->pt_desc.caps,
1473                                                 PT_CAP_cycle_thresholds);
1474         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1475                         !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1476                         RTIT_CTL_CYC_THRESH_OFFSET, &value))
1477                 return 1;
1478         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1479         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1480                         !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1481                         RTIT_CTL_PSB_FREQ_OFFSET, &value))
1482                 return 1;
1483
1484         /*
1485          * If ADDRx_CFG is reserved or the encodings is >2 will
1486          * cause a #GP fault.
1487          */
1488         value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1489         if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1490                 return 1;
1491         value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1492         if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1493                 return 1;
1494         value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1495         if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1496                 return 1;
1497         value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1498         if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1499                 return 1;
1500
1501         return 0;
1502 }
1503
1504 /*
1505  * Returns an int to be compatible with SVM implementation (which can fail).
1506  * Do not use directly, use skip_emulated_instruction() instead.
1507  */
1508 static int __skip_emulated_instruction(struct kvm_vcpu *vcpu)
1509 {
1510         unsigned long rip;
1511
1512         rip = kvm_rip_read(vcpu);
1513         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1514         kvm_rip_write(vcpu, rip);
1515
1516         /* skipping an emulated instruction also counts */
1517         vmx_set_interrupt_shadow(vcpu, 0);
1518
1519         return EMULATE_DONE;
1520 }
1521
1522 static inline void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1523 {
1524         (void)__skip_emulated_instruction(vcpu);
1525 }
1526
1527 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1528 {
1529         /*
1530          * Ensure that we clear the HLT state in the VMCS.  We don't need to
1531          * explicitly skip the instruction because if the HLT state is set,
1532          * then the instruction is already executing and RIP has already been
1533          * advanced.
1534          */
1535         if (kvm_hlt_in_guest(vcpu->kvm) &&
1536                         vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1537                 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1538 }
1539
1540 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1541 {
1542         struct vcpu_vmx *vmx = to_vmx(vcpu);
1543         unsigned nr = vcpu->arch.exception.nr;
1544         bool has_error_code = vcpu->arch.exception.has_error_code;
1545         u32 error_code = vcpu->arch.exception.error_code;
1546         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1547
1548         kvm_deliver_exception_payload(vcpu);
1549
1550         if (has_error_code) {
1551                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1552                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1553         }
1554
1555         if (vmx->rmode.vm86_active) {
1556                 int inc_eip = 0;
1557                 if (kvm_exception_is_soft(nr))
1558                         inc_eip = vcpu->arch.event_exit_inst_len;
1559                 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1560                 return;
1561         }
1562
1563         WARN_ON_ONCE(vmx->emulation_required);
1564
1565         if (kvm_exception_is_soft(nr)) {
1566                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1567                              vmx->vcpu.arch.event_exit_inst_len);
1568                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1569         } else
1570                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1571
1572         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1573
1574         vmx_clear_hlt(vcpu);
1575 }
1576
1577 static bool vmx_rdtscp_supported(void)
1578 {
1579         return cpu_has_vmx_rdtscp();
1580 }
1581
1582 static bool vmx_invpcid_supported(void)
1583 {
1584         return cpu_has_vmx_invpcid();
1585 }
1586
1587 /*
1588  * Swap MSR entry in host/guest MSR entry array.
1589  */
1590 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1591 {
1592         struct shared_msr_entry tmp;
1593
1594         tmp = vmx->guest_msrs[to];
1595         vmx->guest_msrs[to] = vmx->guest_msrs[from];
1596         vmx->guest_msrs[from] = tmp;
1597 }
1598
1599 /*
1600  * Set up the vmcs to automatically save and restore system
1601  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1602  * mode, as fiddling with msrs is very expensive.
1603  */
1604 static void setup_msrs(struct vcpu_vmx *vmx)
1605 {
1606         int save_nmsrs, index;
1607
1608         save_nmsrs = 0;
1609 #ifdef CONFIG_X86_64
1610         /*
1611          * The SYSCALL MSRs are only needed on long mode guests, and only
1612          * when EFER.SCE is set.
1613          */
1614         if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1615                 index = __find_msr_index(vmx, MSR_STAR);
1616                 if (index >= 0)
1617                         move_msr_up(vmx, index, save_nmsrs++);
1618                 index = __find_msr_index(vmx, MSR_LSTAR);
1619                 if (index >= 0)
1620                         move_msr_up(vmx, index, save_nmsrs++);
1621                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1622                 if (index >= 0)
1623                         move_msr_up(vmx, index, save_nmsrs++);
1624         }
1625 #endif
1626         index = __find_msr_index(vmx, MSR_EFER);
1627         if (index >= 0 && update_transition_efer(vmx, index))
1628                 move_msr_up(vmx, index, save_nmsrs++);
1629         index = __find_msr_index(vmx, MSR_TSC_AUX);
1630         if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1631                 move_msr_up(vmx, index, save_nmsrs++);
1632
1633         vmx->save_nmsrs = save_nmsrs;
1634         vmx->guest_msrs_ready = false;
1635
1636         if (cpu_has_vmx_msr_bitmap())
1637                 vmx_update_msr_bitmap(&vmx->vcpu);
1638 }
1639
1640 static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1641 {
1642         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1643
1644         if (is_guest_mode(vcpu) &&
1645             (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1646                 return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
1647
1648         return vcpu->arch.tsc_offset;
1649 }
1650
1651 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1652 {
1653         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1654         u64 g_tsc_offset = 0;
1655
1656         /*
1657          * We're here if L1 chose not to trap WRMSR to TSC. According
1658          * to the spec, this should set L1's TSC; The offset that L1
1659          * set for L2 remains unchanged, and still needs to be added
1660          * to the newly set TSC to get L2's TSC.
1661          */
1662         if (is_guest_mode(vcpu) &&
1663             (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1664                 g_tsc_offset = vmcs12->tsc_offset;
1665
1666         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1667                                    vcpu->arch.tsc_offset - g_tsc_offset,
1668                                    offset);
1669         vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1670         return offset + g_tsc_offset;
1671 }
1672
1673 /*
1674  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1675  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1676  * all guests if the "nested" module option is off, and can also be disabled
1677  * for a single guest by disabling its VMX cpuid bit.
1678  */
1679 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1680 {
1681         return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1682 }
1683
1684 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1685                                                  uint64_t val)
1686 {
1687         uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1688
1689         return !(val & ~valid_bits);
1690 }
1691
1692 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1693 {
1694         switch (msr->index) {
1695         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1696                 if (!nested)
1697                         return 1;
1698                 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1699         default:
1700                 return 1;
1701         }
1702
1703         return 0;
1704 }
1705
1706 /*
1707  * Reads an msr value (of 'msr_index') into 'pdata'.
1708  * Returns 0 on success, non-0 otherwise.
1709  * Assumes vcpu_load() was already called.
1710  */
1711 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1712 {
1713         struct vcpu_vmx *vmx = to_vmx(vcpu);
1714         struct shared_msr_entry *msr;
1715         u32 index;
1716
1717         switch (msr_info->index) {
1718 #ifdef CONFIG_X86_64
1719         case MSR_FS_BASE:
1720                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1721                 break;
1722         case MSR_GS_BASE:
1723                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1724                 break;
1725         case MSR_KERNEL_GS_BASE:
1726                 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1727                 break;
1728 #endif
1729         case MSR_EFER:
1730                 return kvm_get_msr_common(vcpu, msr_info);
1731         case MSR_IA32_SPEC_CTRL:
1732                 if (!msr_info->host_initiated &&
1733                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1734                         return 1;
1735
1736                 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1737                 break;
1738         case MSR_IA32_SYSENTER_CS:
1739                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1740                 break;
1741         case MSR_IA32_SYSENTER_EIP:
1742                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1743                 break;
1744         case MSR_IA32_SYSENTER_ESP:
1745                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1746                 break;
1747         case MSR_IA32_BNDCFGS:
1748                 if (!kvm_mpx_supported() ||
1749                     (!msr_info->host_initiated &&
1750                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1751                         return 1;
1752                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1753                 break;
1754         case MSR_IA32_MCG_EXT_CTL:
1755                 if (!msr_info->host_initiated &&
1756                     !(vmx->msr_ia32_feature_control &
1757                       FEATURE_CONTROL_LMCE))
1758                         return 1;
1759                 msr_info->data = vcpu->arch.mcg_ext_ctl;
1760                 break;
1761         case MSR_IA32_FEATURE_CONTROL:
1762                 msr_info->data = vmx->msr_ia32_feature_control;
1763                 break;
1764         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1765                 if (!nested_vmx_allowed(vcpu))
1766                         return 1;
1767                 return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1768                                        &msr_info->data);
1769         case MSR_IA32_XSS:
1770                 if (!vmx_xsaves_supported() ||
1771                     (!msr_info->host_initiated &&
1772                      !(guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
1773                        guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))))
1774                         return 1;
1775                 msr_info->data = vcpu->arch.ia32_xss;
1776                 break;
1777         case MSR_IA32_RTIT_CTL:
1778                 if (pt_mode != PT_MODE_HOST_GUEST)
1779                         return 1;
1780                 msr_info->data = vmx->pt_desc.guest.ctl;
1781                 break;
1782         case MSR_IA32_RTIT_STATUS:
1783                 if (pt_mode != PT_MODE_HOST_GUEST)
1784                         return 1;
1785                 msr_info->data = vmx->pt_desc.guest.status;
1786                 break;
1787         case MSR_IA32_RTIT_CR3_MATCH:
1788                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1789                         !intel_pt_validate_cap(vmx->pt_desc.caps,
1790                                                 PT_CAP_cr3_filtering))
1791                         return 1;
1792                 msr_info->data = vmx->pt_desc.guest.cr3_match;
1793                 break;
1794         case MSR_IA32_RTIT_OUTPUT_BASE:
1795                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1796                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1797                                         PT_CAP_topa_output) &&
1798                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1799                                         PT_CAP_single_range_output)))
1800                         return 1;
1801                 msr_info->data = vmx->pt_desc.guest.output_base;
1802                 break;
1803         case MSR_IA32_RTIT_OUTPUT_MASK:
1804                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1805                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1806                                         PT_CAP_topa_output) &&
1807                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1808                                         PT_CAP_single_range_output)))
1809                         return 1;
1810                 msr_info->data = vmx->pt_desc.guest.output_mask;
1811                 break;
1812         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1813                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1814                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1815                         (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1816                                         PT_CAP_num_address_ranges)))
1817                         return 1;
1818                 if (index % 2)
1819                         msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1820                 else
1821                         msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1822                 break;
1823         case MSR_TSC_AUX:
1824                 if (!msr_info->host_initiated &&
1825                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1826                         return 1;
1827                 /* Else, falls through */
1828         default:
1829                 msr = find_msr_entry(vmx, msr_info->index);
1830                 if (msr) {
1831                         msr_info->data = msr->data;
1832                         break;
1833                 }
1834                 return kvm_get_msr_common(vcpu, msr_info);
1835         }
1836
1837         return 0;
1838 }
1839
1840 /*
1841  * Writes msr value into into the appropriate "register".
1842  * Returns 0 on success, non-0 otherwise.
1843  * Assumes vcpu_load() was already called.
1844  */
1845 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1846 {
1847         struct vcpu_vmx *vmx = to_vmx(vcpu);
1848         struct shared_msr_entry *msr;
1849         int ret = 0;
1850         u32 msr_index = msr_info->index;
1851         u64 data = msr_info->data;
1852         u32 index;
1853
1854         switch (msr_index) {
1855         case MSR_EFER:
1856                 ret = kvm_set_msr_common(vcpu, msr_info);
1857                 break;
1858 #ifdef CONFIG_X86_64
1859         case MSR_FS_BASE:
1860                 vmx_segment_cache_clear(vmx);
1861                 vmcs_writel(GUEST_FS_BASE, data);
1862                 break;
1863         case MSR_GS_BASE:
1864                 vmx_segment_cache_clear(vmx);
1865                 vmcs_writel(GUEST_GS_BASE, data);
1866                 break;
1867         case MSR_KERNEL_GS_BASE:
1868                 vmx_write_guest_kernel_gs_base(vmx, data);
1869                 break;
1870 #endif
1871         case MSR_IA32_SYSENTER_CS:
1872                 if (is_guest_mode(vcpu))
1873                         get_vmcs12(vcpu)->guest_sysenter_cs = data;
1874                 vmcs_write32(GUEST_SYSENTER_CS, data);
1875                 break;
1876         case MSR_IA32_SYSENTER_EIP:
1877                 if (is_guest_mode(vcpu))
1878                         get_vmcs12(vcpu)->guest_sysenter_eip = data;
1879                 vmcs_writel(GUEST_SYSENTER_EIP, data);
1880                 break;
1881         case MSR_IA32_SYSENTER_ESP:
1882                 if (is_guest_mode(vcpu))
1883                         get_vmcs12(vcpu)->guest_sysenter_esp = data;
1884                 vmcs_writel(GUEST_SYSENTER_ESP, data);
1885                 break;
1886         case MSR_IA32_DEBUGCTLMSR:
1887                 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
1888                                                 VM_EXIT_SAVE_DEBUG_CONTROLS)
1889                         get_vmcs12(vcpu)->guest_ia32_debugctl = data;
1890
1891                 ret = kvm_set_msr_common(vcpu, msr_info);
1892                 break;
1893
1894         case MSR_IA32_BNDCFGS:
1895                 if (!kvm_mpx_supported() ||
1896                     (!msr_info->host_initiated &&
1897                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1898                         return 1;
1899                 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
1900                     (data & MSR_IA32_BNDCFGS_RSVD))
1901                         return 1;
1902                 vmcs_write64(GUEST_BNDCFGS, data);
1903                 break;
1904         case MSR_IA32_SPEC_CTRL:
1905                 if (!msr_info->host_initiated &&
1906                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1907                         return 1;
1908
1909                 /* The STIBP bit doesn't fault even if it's not advertised */
1910                 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
1911                         return 1;
1912
1913                 vmx->spec_ctrl = data;
1914
1915                 if (!data)
1916                         break;
1917
1918                 /*
1919                  * For non-nested:
1920                  * When it's written (to non-zero) for the first time, pass
1921                  * it through.
1922                  *
1923                  * For nested:
1924                  * The handling of the MSR bitmap for L2 guests is done in
1925                  * nested_vmx_merge_msr_bitmap. We should not touch the
1926                  * vmcs02.msr_bitmap here since it gets completely overwritten
1927                  * in the merging. We update the vmcs01 here for L1 as well
1928                  * since it will end up touching the MSR anyway now.
1929                  */
1930                 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
1931                                               MSR_IA32_SPEC_CTRL,
1932                                               MSR_TYPE_RW);
1933                 break;
1934         case MSR_IA32_PRED_CMD:
1935                 if (!msr_info->host_initiated &&
1936                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1937                         return 1;
1938
1939                 if (data & ~PRED_CMD_IBPB)
1940                         return 1;
1941
1942                 if (!data)
1943                         break;
1944
1945                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
1946
1947                 /*
1948                  * For non-nested:
1949                  * When it's written (to non-zero) for the first time, pass
1950                  * it through.
1951                  *
1952                  * For nested:
1953                  * The handling of the MSR bitmap for L2 guests is done in
1954                  * nested_vmx_merge_msr_bitmap. We should not touch the
1955                  * vmcs02.msr_bitmap here since it gets completely overwritten
1956                  * in the merging.
1957                  */
1958                 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
1959                                               MSR_TYPE_W);
1960                 break;
1961         case MSR_IA32_CR_PAT:
1962                 if (!kvm_pat_valid(data))
1963                         return 1;
1964
1965                 if (is_guest_mode(vcpu) &&
1966                     get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
1967                         get_vmcs12(vcpu)->guest_ia32_pat = data;
1968
1969                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1970                         vmcs_write64(GUEST_IA32_PAT, data);
1971                         vcpu->arch.pat = data;
1972                         break;
1973                 }
1974                 ret = kvm_set_msr_common(vcpu, msr_info);
1975                 break;
1976         case MSR_IA32_TSC_ADJUST:
1977                 ret = kvm_set_msr_common(vcpu, msr_info);
1978                 break;
1979         case MSR_IA32_MCG_EXT_CTL:
1980                 if ((!msr_info->host_initiated &&
1981                      !(to_vmx(vcpu)->msr_ia32_feature_control &
1982                        FEATURE_CONTROL_LMCE)) ||
1983                     (data & ~MCG_EXT_CTL_LMCE_EN))
1984                         return 1;
1985                 vcpu->arch.mcg_ext_ctl = data;
1986                 break;
1987         case MSR_IA32_FEATURE_CONTROL:
1988                 if (!vmx_feature_control_msr_valid(vcpu, data) ||
1989                     (to_vmx(vcpu)->msr_ia32_feature_control &
1990                      FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
1991                         return 1;
1992                 vmx->msr_ia32_feature_control = data;
1993                 if (msr_info->host_initiated && data == 0)
1994                         vmx_leave_nested(vcpu);
1995                 break;
1996         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1997                 if (!msr_info->host_initiated)
1998                         return 1; /* they are read-only */
1999                 if (!nested_vmx_allowed(vcpu))
2000                         return 1;
2001                 return vmx_set_vmx_msr(vcpu, msr_index, data);
2002         case MSR_IA32_XSS:
2003                 if (!vmx_xsaves_supported() ||
2004                     (!msr_info->host_initiated &&
2005                      !(guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
2006                        guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))))
2007                         return 1;
2008                 /*
2009                  * The only supported bit as of Skylake is bit 8, but
2010                  * it is not supported on KVM.
2011                  */
2012                 if (data != 0)
2013                         return 1;
2014                 vcpu->arch.ia32_xss = data;
2015                 if (vcpu->arch.ia32_xss != host_xss)
2016                         add_atomic_switch_msr(vmx, MSR_IA32_XSS,
2017                                 vcpu->arch.ia32_xss, host_xss, false);
2018                 else
2019                         clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
2020                 break;
2021         case MSR_IA32_RTIT_CTL:
2022                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2023                         vmx_rtit_ctl_check(vcpu, data) ||
2024                         vmx->nested.vmxon)
2025                         return 1;
2026                 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2027                 vmx->pt_desc.guest.ctl = data;
2028                 pt_update_intercept_for_msr(vmx);
2029                 break;
2030         case MSR_IA32_RTIT_STATUS:
2031                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2032                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2033                         (data & MSR_IA32_RTIT_STATUS_MASK))
2034                         return 1;
2035                 vmx->pt_desc.guest.status = data;
2036                 break;
2037         case MSR_IA32_RTIT_CR3_MATCH:
2038                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2039                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2040                         !intel_pt_validate_cap(vmx->pt_desc.caps,
2041                                                 PT_CAP_cr3_filtering))
2042                         return 1;
2043                 vmx->pt_desc.guest.cr3_match = data;
2044                 break;
2045         case MSR_IA32_RTIT_OUTPUT_BASE:
2046                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2047                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2048                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
2049                                         PT_CAP_topa_output) &&
2050                          !intel_pt_validate_cap(vmx->pt_desc.caps,
2051                                         PT_CAP_single_range_output)) ||
2052                         (data & MSR_IA32_RTIT_OUTPUT_BASE_MASK))
2053                         return 1;
2054                 vmx->pt_desc.guest.output_base = data;
2055                 break;
2056         case MSR_IA32_RTIT_OUTPUT_MASK:
2057                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2058                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2059                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
2060                                         PT_CAP_topa_output) &&
2061                          !intel_pt_validate_cap(vmx->pt_desc.caps,
2062                                         PT_CAP_single_range_output)))
2063                         return 1;
2064                 vmx->pt_desc.guest.output_mask = data;
2065                 break;
2066         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2067                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2068                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2069                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2070                         (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2071                                         PT_CAP_num_address_ranges)))
2072                         return 1;
2073                 if (index % 2)
2074                         vmx->pt_desc.guest.addr_b[index / 2] = data;
2075                 else
2076                         vmx->pt_desc.guest.addr_a[index / 2] = data;
2077                 break;
2078         case MSR_TSC_AUX:
2079                 if (!msr_info->host_initiated &&
2080                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2081                         return 1;
2082                 /* Check reserved bit, higher 32 bits should be zero */
2083                 if ((data >> 32) != 0)
2084                         return 1;
2085                 /* Else, falls through */
2086         default:
2087                 msr = find_msr_entry(vmx, msr_index);
2088                 if (msr) {
2089                         u64 old_msr_data = msr->data;
2090                         msr->data = data;
2091                         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2092                                 preempt_disable();
2093                                 ret = kvm_set_shared_msr(msr->index, msr->data,
2094                                                          msr->mask);
2095                                 preempt_enable();
2096                                 if (ret)
2097                                         msr->data = old_msr_data;
2098                         }
2099                         break;
2100                 }
2101                 ret = kvm_set_msr_common(vcpu, msr_info);
2102         }
2103
2104         return ret;
2105 }
2106
2107 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2108 {
2109         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2110         switch (reg) {
2111         case VCPU_REGS_RSP:
2112                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2113                 break;
2114         case VCPU_REGS_RIP:
2115                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2116                 break;
2117         case VCPU_EXREG_PDPTR:
2118                 if (enable_ept)
2119                         ept_save_pdptrs(vcpu);
2120                 break;
2121         default:
2122                 break;
2123         }
2124 }
2125
2126 static __init int cpu_has_kvm_support(void)
2127 {
2128         return cpu_has_vmx();
2129 }
2130
2131 static __init int vmx_disabled_by_bios(void)
2132 {
2133         u64 msr;
2134
2135         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2136         if (msr & FEATURE_CONTROL_LOCKED) {
2137                 /* launched w/ TXT and VMX disabled */
2138                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2139                         && tboot_enabled())
2140                         return 1;
2141                 /* launched w/o TXT and VMX only enabled w/ TXT */
2142                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2143                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2144                         && !tboot_enabled()) {
2145                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2146                                 "activate TXT before enabling KVM\n");
2147                         return 1;
2148                 }
2149                 /* launched w/o TXT and VMX disabled */
2150                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2151                         && !tboot_enabled())
2152                         return 1;
2153         }
2154
2155         return 0;
2156 }
2157
2158 static void kvm_cpu_vmxon(u64 addr)
2159 {
2160         cr4_set_bits(X86_CR4_VMXE);
2161         intel_pt_handle_vmx(1);
2162
2163         asm volatile ("vmxon %0" : : "m"(addr));
2164 }
2165
2166 static int hardware_enable(void)
2167 {
2168         int cpu = raw_smp_processor_id();
2169         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2170         u64 old, test_bits;
2171
2172         if (cr4_read_shadow() & X86_CR4_VMXE)
2173                 return -EBUSY;
2174
2175         /*
2176          * This can happen if we hot-added a CPU but failed to allocate
2177          * VP assist page for it.
2178          */
2179         if (static_branch_unlikely(&enable_evmcs) &&
2180             !hv_get_vp_assist_page(cpu))
2181                 return -EFAULT;
2182
2183         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2184         INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
2185         spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
2186
2187         /*
2188          * Now we can enable the vmclear operation in kdump
2189          * since the loaded_vmcss_on_cpu list on this cpu
2190          * has been initialized.
2191          *
2192          * Though the cpu is not in VMX operation now, there
2193          * is no problem to enable the vmclear operation
2194          * for the loaded_vmcss_on_cpu list is empty!
2195          */
2196         crash_enable_local_vmclear(cpu);
2197
2198         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2199
2200         test_bits = FEATURE_CONTROL_LOCKED;
2201         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2202         if (tboot_enabled())
2203                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2204
2205         if ((old & test_bits) != test_bits) {
2206                 /* enable and lock */
2207                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2208         }
2209         kvm_cpu_vmxon(phys_addr);
2210         if (enable_ept)
2211                 ept_sync_global();
2212
2213         return 0;
2214 }
2215
2216 static void vmclear_local_loaded_vmcss(void)
2217 {
2218         int cpu = raw_smp_processor_id();
2219         struct loaded_vmcs *v, *n;
2220
2221         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2222                                  loaded_vmcss_on_cpu_link)
2223                 __loaded_vmcs_clear(v);
2224 }
2225
2226
2227 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2228  * tricks.
2229  */
2230 static void kvm_cpu_vmxoff(void)
2231 {
2232         asm volatile (__ex("vmxoff"));
2233
2234         intel_pt_handle_vmx(0);
2235         cr4_clear_bits(X86_CR4_VMXE);
2236 }
2237
2238 static void hardware_disable(void)
2239 {
2240         vmclear_local_loaded_vmcss();
2241         kvm_cpu_vmxoff();
2242 }
2243
2244 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2245                                       u32 msr, u32 *result)
2246 {
2247         u32 vmx_msr_low, vmx_msr_high;
2248         u32 ctl = ctl_min | ctl_opt;
2249
2250         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2251
2252         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2253         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2254
2255         /* Ensure minimum (required) set of control bits are supported. */
2256         if (ctl_min & ~ctl)
2257                 return -EIO;
2258
2259         *result = ctl;
2260         return 0;
2261 }
2262
2263 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2264                                     struct vmx_capability *vmx_cap)
2265 {
2266         u32 vmx_msr_low, vmx_msr_high;
2267         u32 min, opt, min2, opt2;
2268         u32 _pin_based_exec_control = 0;
2269         u32 _cpu_based_exec_control = 0;
2270         u32 _cpu_based_2nd_exec_control = 0;
2271         u32 _vmexit_control = 0;
2272         u32 _vmentry_control = 0;
2273
2274         memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2275         min = CPU_BASED_HLT_EXITING |
2276 #ifdef CONFIG_X86_64
2277               CPU_BASED_CR8_LOAD_EXITING |
2278               CPU_BASED_CR8_STORE_EXITING |
2279 #endif
2280               CPU_BASED_CR3_LOAD_EXITING |
2281               CPU_BASED_CR3_STORE_EXITING |
2282               CPU_BASED_UNCOND_IO_EXITING |
2283               CPU_BASED_MOV_DR_EXITING |
2284               CPU_BASED_USE_TSC_OFFSETING |
2285               CPU_BASED_MWAIT_EXITING |
2286               CPU_BASED_MONITOR_EXITING |
2287               CPU_BASED_INVLPG_EXITING |
2288               CPU_BASED_RDPMC_EXITING;
2289
2290         opt = CPU_BASED_TPR_SHADOW |
2291               CPU_BASED_USE_MSR_BITMAPS |
2292               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2293         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2294                                 &_cpu_based_exec_control) < 0)
2295                 return -EIO;
2296 #ifdef CONFIG_X86_64
2297         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2298                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2299                                            ~CPU_BASED_CR8_STORE_EXITING;
2300 #endif
2301         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2302                 min2 = 0;
2303                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2304                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2305                         SECONDARY_EXEC_WBINVD_EXITING |
2306                         SECONDARY_EXEC_ENABLE_VPID |
2307                         SECONDARY_EXEC_ENABLE_EPT |
2308                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
2309                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2310                         SECONDARY_EXEC_DESC |
2311                         SECONDARY_EXEC_RDTSCP |
2312                         SECONDARY_EXEC_ENABLE_INVPCID |
2313                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
2314                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2315                         SECONDARY_EXEC_SHADOW_VMCS |
2316                         SECONDARY_EXEC_XSAVES |
2317                         SECONDARY_EXEC_RDSEED_EXITING |
2318                         SECONDARY_EXEC_RDRAND_EXITING |
2319                         SECONDARY_EXEC_ENABLE_PML |
2320                         SECONDARY_EXEC_TSC_SCALING |
2321                         SECONDARY_EXEC_PT_USE_GPA |
2322                         SECONDARY_EXEC_PT_CONCEAL_VMX |
2323                         SECONDARY_EXEC_ENABLE_VMFUNC |
2324                         SECONDARY_EXEC_ENCLS_EXITING;
2325                 if (adjust_vmx_controls(min2, opt2,
2326                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2327                                         &_cpu_based_2nd_exec_control) < 0)
2328                         return -EIO;
2329         }
2330 #ifndef CONFIG_X86_64
2331         if (!(_cpu_based_2nd_exec_control &
2332                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2333                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2334 #endif
2335
2336         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2337                 _cpu_based_2nd_exec_control &= ~(
2338                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2339                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2340                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2341
2342         rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2343                 &vmx_cap->ept, &vmx_cap->vpid);
2344
2345         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2346                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2347                    enabled */
2348                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2349                                              CPU_BASED_CR3_STORE_EXITING |
2350                                              CPU_BASED_INVLPG_EXITING);
2351         } else if (vmx_cap->ept) {
2352                 vmx_cap->ept = 0;
2353                 pr_warn_once("EPT CAP should not exist if not support "
2354                                 "1-setting enable EPT VM-execution control\n");
2355         }
2356         if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2357                 vmx_cap->vpid) {
2358                 vmx_cap->vpid = 0;
2359                 pr_warn_once("VPID CAP should not exist if not support "
2360                                 "1-setting enable VPID VM-execution control\n");
2361         }
2362
2363         min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2364 #ifdef CONFIG_X86_64
2365         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2366 #endif
2367         opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2368               VM_EXIT_LOAD_IA32_PAT |
2369               VM_EXIT_LOAD_IA32_EFER |
2370               VM_EXIT_CLEAR_BNDCFGS |
2371               VM_EXIT_PT_CONCEAL_PIP |
2372               VM_EXIT_CLEAR_IA32_RTIT_CTL;
2373         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2374                                 &_vmexit_control) < 0)
2375                 return -EIO;
2376
2377         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2378         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2379                  PIN_BASED_VMX_PREEMPTION_TIMER;
2380         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2381                                 &_pin_based_exec_control) < 0)
2382                 return -EIO;
2383
2384         if (cpu_has_broken_vmx_preemption_timer())
2385                 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2386         if (!(_cpu_based_2nd_exec_control &
2387                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2388                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2389
2390         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2391         opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2392               VM_ENTRY_LOAD_IA32_PAT |
2393               VM_ENTRY_LOAD_IA32_EFER |
2394               VM_ENTRY_LOAD_BNDCFGS |
2395               VM_ENTRY_PT_CONCEAL_PIP |
2396               VM_ENTRY_LOAD_IA32_RTIT_CTL;
2397         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2398                                 &_vmentry_control) < 0)
2399                 return -EIO;
2400
2401         /*
2402          * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2403          * can't be used due to an errata where VM Exit may incorrectly clear
2404          * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2405          * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2406          */
2407         if (boot_cpu_data.x86 == 0x6) {
2408                 switch (boot_cpu_data.x86_model) {
2409                 case 26: /* AAK155 */
2410                 case 30: /* AAP115 */
2411                 case 37: /* AAT100 */
2412                 case 44: /* BC86,AAY89,BD102 */
2413                 case 46: /* BA97 */
2414                         _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2415                         _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2416                         pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2417                                         "does not work properly. Using workaround\n");
2418                         break;
2419                 default:
2420                         break;
2421                 }
2422         }
2423
2424
2425         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2426
2427         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2428         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2429                 return -EIO;
2430
2431 #ifdef CONFIG_X86_64
2432         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2433         if (vmx_msr_high & (1u<<16))
2434                 return -EIO;
2435 #endif
2436
2437         /* Require Write-Back (WB) memory type for VMCS accesses. */
2438         if (((vmx_msr_high >> 18) & 15) != 6)
2439                 return -EIO;
2440
2441         vmcs_conf->size = vmx_msr_high & 0x1fff;
2442         vmcs_conf->order = get_order(vmcs_conf->size);
2443         vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2444
2445         vmcs_conf->revision_id = vmx_msr_low;
2446
2447         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2448         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2449         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2450         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2451         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2452
2453         if (static_branch_unlikely(&enable_evmcs))
2454                 evmcs_sanitize_exec_ctrls(vmcs_conf);
2455
2456         return 0;
2457 }
2458
2459 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2460 {
2461         int node = cpu_to_node(cpu);
2462         struct page *pages;
2463         struct vmcs *vmcs;
2464
2465         pages = __alloc_pages_node(node, flags, vmcs_config.order);
2466         if (!pages)
2467                 return NULL;
2468         vmcs = page_address(pages);
2469         memset(vmcs, 0, vmcs_config.size);
2470
2471         /* KVM supports Enlightened VMCS v1 only */
2472         if (static_branch_unlikely(&enable_evmcs))
2473                 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2474         else
2475                 vmcs->hdr.revision_id = vmcs_config.revision_id;
2476
2477         if (shadow)
2478                 vmcs->hdr.shadow_vmcs = 1;
2479         return vmcs;
2480 }
2481
2482 void free_vmcs(struct vmcs *vmcs)
2483 {
2484         free_pages((unsigned long)vmcs, vmcs_config.order);
2485 }
2486
2487 /*
2488  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2489  */
2490 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2491 {
2492         if (!loaded_vmcs->vmcs)
2493                 return;
2494         loaded_vmcs_clear(loaded_vmcs);
2495         free_vmcs(loaded_vmcs->vmcs);
2496         loaded_vmcs->vmcs = NULL;
2497         if (loaded_vmcs->msr_bitmap)
2498                 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2499         WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2500 }
2501
2502 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2503 {
2504         loaded_vmcs->vmcs = alloc_vmcs(false);
2505         if (!loaded_vmcs->vmcs)
2506                 return -ENOMEM;
2507
2508         loaded_vmcs->shadow_vmcs = NULL;
2509         loaded_vmcs->hv_timer_soft_disabled = false;
2510         loaded_vmcs_init(loaded_vmcs);
2511
2512         if (cpu_has_vmx_msr_bitmap()) {
2513                 loaded_vmcs->msr_bitmap = (unsigned long *)
2514                                 __get_free_page(GFP_KERNEL_ACCOUNT);
2515                 if (!loaded_vmcs->msr_bitmap)
2516                         goto out_vmcs;
2517                 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2518
2519                 if (IS_ENABLED(CONFIG_HYPERV) &&
2520                     static_branch_unlikely(&enable_evmcs) &&
2521                     (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2522                         struct hv_enlightened_vmcs *evmcs =
2523                                 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2524
2525                         evmcs->hv_enlightenments_control.msr_bitmap = 1;
2526                 }
2527         }
2528
2529         memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2530         memset(&loaded_vmcs->controls_shadow, 0,
2531                 sizeof(struct vmcs_controls_shadow));
2532
2533         return 0;
2534
2535 out_vmcs:
2536         free_loaded_vmcs(loaded_vmcs);
2537         return -ENOMEM;
2538 }
2539
2540 static void free_kvm_area(void)
2541 {
2542         int cpu;
2543
2544         for_each_possible_cpu(cpu) {
2545                 free_vmcs(per_cpu(vmxarea, cpu));
2546                 per_cpu(vmxarea, cpu) = NULL;
2547         }
2548 }
2549
2550 static __init int alloc_kvm_area(void)
2551 {
2552         int cpu;
2553
2554         for_each_possible_cpu(cpu) {
2555                 struct vmcs *vmcs;
2556
2557                 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2558                 if (!vmcs) {
2559                         free_kvm_area();
2560                         return -ENOMEM;
2561                 }
2562
2563                 /*
2564                  * When eVMCS is enabled, alloc_vmcs_cpu() sets
2565                  * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2566                  * revision_id reported by MSR_IA32_VMX_BASIC.
2567                  *
2568                  * However, even though not explicitly documented by
2569                  * TLFS, VMXArea passed as VMXON argument should
2570                  * still be marked with revision_id reported by
2571                  * physical CPU.
2572                  */
2573                 if (static_branch_unlikely(&enable_evmcs))
2574                         vmcs->hdr.revision_id = vmcs_config.revision_id;
2575
2576                 per_cpu(vmxarea, cpu) = vmcs;
2577         }
2578         return 0;
2579 }
2580
2581 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2582                 struct kvm_segment *save)
2583 {
2584         if (!emulate_invalid_guest_state) {
2585                 /*
2586                  * CS and SS RPL should be equal during guest entry according
2587                  * to VMX spec, but in reality it is not always so. Since vcpu
2588                  * is in the middle of the transition from real mode to
2589                  * protected mode it is safe to assume that RPL 0 is a good
2590                  * default value.
2591                  */
2592                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2593                         save->selector &= ~SEGMENT_RPL_MASK;
2594                 save->dpl = save->selector & SEGMENT_RPL_MASK;
2595                 save->s = 1;
2596         }
2597         vmx_set_segment(vcpu, save, seg);
2598 }
2599
2600 static void enter_pmode(struct kvm_vcpu *vcpu)
2601 {
2602         unsigned long flags;
2603         struct vcpu_vmx *vmx = to_vmx(vcpu);
2604
2605         /*
2606          * Update real mode segment cache. It may be not up-to-date if sement
2607          * register was written while vcpu was in a guest mode.
2608          */
2609         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2610         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2611         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2612         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2613         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2614         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2615
2616         vmx->rmode.vm86_active = 0;
2617
2618         vmx_segment_cache_clear(vmx);
2619
2620         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2621
2622         flags = vmcs_readl(GUEST_RFLAGS);
2623         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2624         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2625         vmcs_writel(GUEST_RFLAGS, flags);
2626
2627         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2628                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2629
2630         update_exception_bitmap(vcpu);
2631
2632         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2633         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2634         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2635         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2636         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2637         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2638 }
2639
2640 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2641 {
2642         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2643         struct kvm_segment var = *save;
2644
2645         var.dpl = 0x3;
2646         if (seg == VCPU_SREG_CS)
2647                 var.type = 0x3;
2648
2649         if (!emulate_invalid_guest_state) {
2650                 var.selector = var.base >> 4;
2651                 var.base = var.base & 0xffff0;
2652                 var.limit = 0xffff;
2653                 var.g = 0;
2654                 var.db = 0;
2655                 var.present = 1;
2656                 var.s = 1;
2657                 var.l = 0;
2658                 var.unusable = 0;
2659                 var.type = 0x3;
2660                 var.avl = 0;
2661                 if (save->base & 0xf)
2662                         printk_once(KERN_WARNING "kvm: segment base is not "
2663                                         "paragraph aligned when entering "
2664                                         "protected mode (seg=%d)", seg);
2665         }
2666
2667         vmcs_write16(sf->selector, var.selector);
2668         vmcs_writel(sf->base, var.base);
2669         vmcs_write32(sf->limit, var.limit);
2670         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2671 }
2672
2673 static void enter_rmode(struct kvm_vcpu *vcpu)
2674 {
2675         unsigned long flags;
2676         struct vcpu_vmx *vmx = to_vmx(vcpu);
2677         struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2678
2679         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2680         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2681         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2682         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2683         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2684         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2685         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2686
2687         vmx->rmode.vm86_active = 1;
2688
2689         /*
2690          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2691          * vcpu. Warn the user that an update is overdue.
2692          */
2693         if (!kvm_vmx->tss_addr)
2694                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2695                              "called before entering vcpu\n");
2696
2697         vmx_segment_cache_clear(vmx);
2698
2699         vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2700         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2701         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2702
2703         flags = vmcs_readl(GUEST_RFLAGS);
2704         vmx->rmode.save_rflags = flags;
2705
2706         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2707
2708         vmcs_writel(GUEST_RFLAGS, flags);
2709         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2710         update_exception_bitmap(vcpu);
2711
2712         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2713         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2714         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2715         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2716         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2717         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2718
2719         kvm_mmu_reset_context(vcpu);
2720 }
2721
2722 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2723 {
2724         struct vcpu_vmx *vmx = to_vmx(vcpu);
2725         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2726
2727         if (!msr)
2728                 return;
2729
2730         vcpu->arch.efer = efer;
2731         if (efer & EFER_LMA) {
2732                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2733                 msr->data = efer;
2734         } else {
2735                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2736
2737                 msr->data = efer & ~EFER_LME;
2738         }
2739         setup_msrs(vmx);
2740 }
2741
2742 #ifdef CONFIG_X86_64
2743
2744 static void enter_lmode(struct kvm_vcpu *vcpu)
2745 {
2746         u32 guest_tr_ar;
2747
2748         vmx_segment_cache_clear(to_vmx(vcpu));
2749
2750         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2751         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2752                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2753                                      __func__);
2754                 vmcs_write32(GUEST_TR_AR_BYTES,
2755                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2756                              | VMX_AR_TYPE_BUSY_64_TSS);
2757         }
2758         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2759 }
2760
2761 static void exit_lmode(struct kvm_vcpu *vcpu)
2762 {
2763         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2764         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2765 }
2766
2767 #endif
2768
2769 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2770 {
2771         int vpid = to_vmx(vcpu)->vpid;
2772
2773         if (!vpid_sync_vcpu_addr(vpid, addr))
2774                 vpid_sync_context(vpid);
2775
2776         /*
2777          * If VPIDs are not supported or enabled, then the above is a no-op.
2778          * But we don't really need a TLB flush in that case anyway, because
2779          * each VM entry/exit includes an implicit flush when VPID is 0.
2780          */
2781 }
2782
2783 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2784 {
2785         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2786
2787         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2788         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2789 }
2790
2791 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2792 {
2793         if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
2794                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2795         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2796 }
2797
2798 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2799 {
2800         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2801
2802         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2803         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2804 }
2805
2806 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2807 {
2808         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2809
2810         if (!test_bit(VCPU_EXREG_PDPTR,
2811                       (unsigned long *)&vcpu->arch.regs_dirty))
2812                 return;
2813
2814         if (is_pae_paging(vcpu)) {
2815                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2816                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2817                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2818                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2819         }
2820 }
2821
2822 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2823 {
2824         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2825
2826         if (is_pae_paging(vcpu)) {
2827                 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2828                 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2829                 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2830                 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2831         }
2832
2833         __set_bit(VCPU_EXREG_PDPTR,
2834                   (unsigned long *)&vcpu->arch.regs_avail);
2835         __set_bit(VCPU_EXREG_PDPTR,
2836                   (unsigned long *)&vcpu->arch.regs_dirty);
2837 }
2838
2839 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2840                                         unsigned long cr0,
2841                                         struct kvm_vcpu *vcpu)
2842 {
2843         struct vcpu_vmx *vmx = to_vmx(vcpu);
2844
2845         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2846                 vmx_decache_cr3(vcpu);
2847         if (!(cr0 & X86_CR0_PG)) {
2848                 /* From paging/starting to nonpaging */
2849                 exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2850                                           CPU_BASED_CR3_STORE_EXITING);
2851                 vcpu->arch.cr0 = cr0;
2852                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2853         } else if (!is_paging(vcpu)) {
2854                 /* From nonpaging to paging */
2855                 exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2856                                             CPU_BASED_CR3_STORE_EXITING);
2857                 vcpu->arch.cr0 = cr0;
2858                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2859         }
2860
2861         if (!(cr0 & X86_CR0_WP))
2862                 *hw_cr0 &= ~X86_CR0_WP;
2863 }
2864
2865 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2866 {
2867         struct vcpu_vmx *vmx = to_vmx(vcpu);
2868         unsigned long hw_cr0;
2869
2870         hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
2871         if (enable_unrestricted_guest)
2872                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2873         else {
2874                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
2875
2876                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2877                         enter_pmode(vcpu);
2878
2879                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2880                         enter_rmode(vcpu);
2881         }
2882
2883 #ifdef CONFIG_X86_64
2884         if (vcpu->arch.efer & EFER_LME) {
2885                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2886                         enter_lmode(vcpu);
2887                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2888                         exit_lmode(vcpu);
2889         }
2890 #endif
2891
2892         if (enable_ept && !enable_unrestricted_guest)
2893                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2894
2895         vmcs_writel(CR0_READ_SHADOW, cr0);
2896         vmcs_writel(GUEST_CR0, hw_cr0);
2897         vcpu->arch.cr0 = cr0;
2898
2899         /* depends on vcpu->arch.cr0 to be set to a new value */
2900         vmx->emulation_required = emulation_required(vcpu);
2901 }
2902
2903 static int get_ept_level(struct kvm_vcpu *vcpu)
2904 {
2905         if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
2906                 return 5;
2907         return 4;
2908 }
2909
2910 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
2911 {
2912         u64 eptp = VMX_EPTP_MT_WB;
2913
2914         eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
2915
2916         if (enable_ept_ad_bits &&
2917             (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
2918                 eptp |= VMX_EPTP_AD_ENABLE_BIT;
2919         eptp |= (root_hpa & PAGE_MASK);
2920
2921         return eptp;
2922 }
2923
2924 void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
2925 {
2926         struct kvm *kvm = vcpu->kvm;
2927         unsigned long guest_cr3;
2928         u64 eptp;
2929
2930         guest_cr3 = cr3;
2931         if (enable_ept) {
2932                 eptp = construct_eptp(vcpu, cr3);
2933                 vmcs_write64(EPT_POINTER, eptp);
2934
2935                 if (kvm_x86_ops->tlb_remote_flush) {
2936                         spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
2937                         to_vmx(vcpu)->ept_pointer = eptp;
2938                         to_kvm_vmx(kvm)->ept_pointers_match
2939                                 = EPT_POINTERS_CHECK;
2940                         spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
2941                 }
2942
2943                 if (enable_unrestricted_guest || is_paging(vcpu) ||
2944                     is_guest_mode(vcpu))
2945                         guest_cr3 = kvm_read_cr3(vcpu);
2946                 else
2947                         guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
2948                 ept_load_pdptrs(vcpu);
2949         }
2950
2951         vmcs_writel(GUEST_CR3, guest_cr3);
2952 }
2953
2954 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2955 {
2956         struct vcpu_vmx *vmx = to_vmx(vcpu);
2957         /*
2958          * Pass through host's Machine Check Enable value to hw_cr4, which
2959          * is in force while we are in guest mode.  Do not let guests control
2960          * this bit, even if host CR4.MCE == 0.
2961          */
2962         unsigned long hw_cr4;
2963
2964         hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
2965         if (enable_unrestricted_guest)
2966                 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
2967         else if (vmx->rmode.vm86_active)
2968                 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
2969         else
2970                 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
2971
2972         if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
2973                 if (cr4 & X86_CR4_UMIP) {
2974                         secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
2975                         hw_cr4 &= ~X86_CR4_UMIP;
2976                 } else if (!is_guest_mode(vcpu) ||
2977                         !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
2978                         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
2979                 }
2980         }
2981
2982         if (cr4 & X86_CR4_VMXE) {
2983                 /*
2984                  * To use VMXON (and later other VMX instructions), a guest
2985                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
2986                  * So basically the check on whether to allow nested VMX
2987                  * is here.  We operate under the default treatment of SMM,
2988                  * so VMX cannot be enabled under SMM.
2989                  */
2990                 if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
2991                         return 1;
2992         }
2993
2994         if (vmx->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
2995                 return 1;
2996
2997         vcpu->arch.cr4 = cr4;
2998
2999         if (!enable_unrestricted_guest) {
3000                 if (enable_ept) {
3001                         if (!is_paging(vcpu)) {
3002                                 hw_cr4 &= ~X86_CR4_PAE;
3003                                 hw_cr4 |= X86_CR4_PSE;
3004                         } else if (!(cr4 & X86_CR4_PAE)) {
3005                                 hw_cr4 &= ~X86_CR4_PAE;
3006                         }
3007                 }
3008
3009                 /*
3010                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3011                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3012                  * to be manually disabled when guest switches to non-paging
3013                  * mode.
3014                  *
3015                  * If !enable_unrestricted_guest, the CPU is always running
3016                  * with CR0.PG=1 and CR4 needs to be modified.
3017                  * If enable_unrestricted_guest, the CPU automatically
3018                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3019                  */
3020                 if (!is_paging(vcpu))
3021                         hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3022         }
3023
3024         vmcs_writel(CR4_READ_SHADOW, cr4);
3025         vmcs_writel(GUEST_CR4, hw_cr4);
3026         return 0;
3027 }
3028
3029 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3030 {
3031         struct vcpu_vmx *vmx = to_vmx(vcpu);
3032         u32 ar;
3033
3034         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3035                 *var = vmx->rmode.segs[seg];
3036                 if (seg == VCPU_SREG_TR
3037                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3038                         return;
3039                 var->base = vmx_read_guest_seg_base(vmx, seg);
3040                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3041                 return;
3042         }
3043         var->base = vmx_read_guest_seg_base(vmx, seg);
3044         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3045         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3046         ar = vmx_read_guest_seg_ar(vmx, seg);
3047         var->unusable = (ar >> 16) & 1;
3048         var->type = ar & 15;
3049         var->s = (ar >> 4) & 1;
3050         var->dpl = (ar >> 5) & 3;
3051         /*
3052          * Some userspaces do not preserve unusable property. Since usable
3053          * segment has to be present according to VMX spec we can use present
3054          * property to amend userspace bug by making unusable segment always
3055          * nonpresent. vmx_segment_access_rights() already marks nonpresent
3056          * segment as unusable.
3057          */
3058         var->present = !var->unusable;
3059         var->avl = (ar >> 12) & 1;
3060         var->l = (ar >> 13) & 1;
3061         var->db = (ar >> 14) & 1;
3062         var->g = (ar >> 15) & 1;
3063 }
3064
3065 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3066 {
3067         struct kvm_segment s;
3068
3069         if (to_vmx(vcpu)->rmode.vm86_active) {
3070                 vmx_get_segment(vcpu, &s, seg);
3071                 return s.base;
3072         }
3073         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3074 }
3075
3076 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3077 {
3078         struct vcpu_vmx *vmx = to_vmx(vcpu);
3079
3080         if (unlikely(vmx->rmode.vm86_active))
3081                 return 0;
3082         else {
3083                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3084                 return VMX_AR_DPL(ar);
3085         }
3086 }
3087
3088 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3089 {
3090         u32 ar;
3091
3092         if (var->unusable || !var->present)
3093                 ar = 1 << 16;
3094         else {
3095                 ar = var->type & 15;
3096                 ar |= (var->s & 1) << 4;
3097                 ar |= (var->dpl & 3) << 5;
3098                 ar |= (var->present & 1) << 7;
3099                 ar |= (var->avl & 1) << 12;
3100                 ar |= (var->l & 1) << 13;
3101                 ar |= (var->db & 1) << 14;
3102                 ar |= (var->g & 1) << 15;
3103         }
3104
3105         return ar;
3106 }
3107
3108 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3109 {
3110         struct vcpu_vmx *vmx = to_vmx(vcpu);
3111         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3112
3113         vmx_segment_cache_clear(vmx);
3114
3115         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3116                 vmx->rmode.segs[seg] = *var;
3117                 if (seg == VCPU_SREG_TR)
3118                         vmcs_write16(sf->selector, var->selector);
3119                 else if (var->s)
3120                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3121                 goto out;
3122         }
3123
3124         vmcs_writel(sf->base, var->base);
3125         vmcs_write32(sf->limit, var->limit);
3126         vmcs_write16(sf->selector, var->selector);
3127
3128         /*
3129          *   Fix the "Accessed" bit in AR field of segment registers for older
3130          * qemu binaries.
3131          *   IA32 arch specifies that at the time of processor reset the
3132          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3133          * is setting it to 0 in the userland code. This causes invalid guest
3134          * state vmexit when "unrestricted guest" mode is turned on.
3135          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3136          * tree. Newer qemu binaries with that qemu fix would not need this
3137          * kvm hack.
3138          */
3139         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3140                 var->type |= 0x1; /* Accessed */
3141
3142         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3143
3144 out:
3145         vmx->emulation_required = emulation_required(vcpu);
3146 }
3147
3148 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3149 {
3150         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3151
3152         *db = (ar >> 14) & 1;
3153         *l = (ar >> 13) & 1;
3154 }
3155
3156 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3157 {
3158         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3159         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3160 }
3161
3162 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3163 {
3164         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3165         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3166 }
3167
3168 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3169 {
3170         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3171         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3172 }
3173
3174 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3175 {
3176         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3177         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3178 }
3179
3180 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3181 {
3182         struct kvm_segment var;
3183         u32 ar;
3184
3185         vmx_get_segment(vcpu, &var, seg);
3186         var.dpl = 0x3;
3187         if (seg == VCPU_SREG_CS)
3188                 var.type = 0x3;
3189         ar = vmx_segment_access_rights(&var);
3190
3191         if (var.base != (var.selector << 4))
3192                 return false;
3193         if (var.limit != 0xffff)
3194                 return false;
3195         if (ar != 0xf3)
3196                 return false;
3197
3198         return true;
3199 }
3200
3201 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3202 {
3203         struct kvm_segment cs;
3204         unsigned int cs_rpl;
3205
3206         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3207         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3208
3209         if (cs.unusable)
3210                 return false;
3211         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3212                 return false;
3213         if (!cs.s)
3214                 return false;
3215         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3216                 if (cs.dpl > cs_rpl)
3217                         return false;
3218         } else {
3219                 if (cs.dpl != cs_rpl)
3220                         return false;
3221         }
3222         if (!cs.present)
3223                 return false;
3224
3225         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3226         return true;
3227 }
3228
3229 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3230 {
3231         struct kvm_segment ss;
3232         unsigned int ss_rpl;
3233
3234         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3235         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3236
3237         if (ss.unusable)
3238                 return true;
3239         if (ss.type != 3 && ss.type != 7)
3240                 return false;
3241         if (!ss.s)
3242                 return false;
3243         if (ss.dpl != ss_rpl) /* DPL != RPL */
3244                 return false;
3245         if (!ss.present)
3246                 return false;
3247
3248         return true;
3249 }
3250
3251 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3252 {
3253         struct kvm_segment var;
3254         unsigned int rpl;
3255
3256         vmx_get_segment(vcpu, &var, seg);
3257         rpl = var.selector & SEGMENT_RPL_MASK;
3258
3259         if (var.unusable)
3260                 return true;
3261         if (!var.s)
3262                 return false;
3263         if (!var.present)
3264                 return false;
3265         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3266                 if (var.dpl < rpl) /* DPL < RPL */
3267                         return false;
3268         }
3269
3270         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3271          * rights flags
3272          */
3273         return true;
3274 }
3275
3276 static bool tr_valid(struct kvm_vcpu *vcpu)
3277 {
3278         struct kvm_segment tr;
3279
3280         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3281
3282         if (tr.unusable)
3283                 return false;
3284         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
3285                 return false;
3286         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3287                 return false;
3288         if (!tr.present)
3289                 return false;
3290
3291         return true;
3292 }
3293
3294 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3295 {
3296         struct kvm_segment ldtr;
3297
3298         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3299
3300         if (ldtr.unusable)
3301                 return true;
3302         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
3303                 return false;
3304         if (ldtr.type != 2)
3305                 return false;
3306         if (!ldtr.present)
3307                 return false;
3308
3309         return true;
3310 }
3311
3312 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3313 {
3314         struct kvm_segment cs, ss;
3315
3316         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3317         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3318
3319         return ((cs.selector & SEGMENT_RPL_MASK) ==
3320                  (ss.selector & SEGMENT_RPL_MASK));
3321 }
3322
3323 /*
3324  * Check if guest state is valid. Returns true if valid, false if
3325  * not.
3326  * We assume that registers are always usable
3327  */
3328 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3329 {
3330         if (enable_unrestricted_guest)
3331                 return true;
3332
3333         /* real mode guest state checks */
3334         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3335                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3336                         return false;
3337                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3338                         return false;
3339                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3340                         return false;
3341                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3342                         return false;
3343                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3344                         return false;
3345                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3346                         return false;
3347         } else {
3348         /* protected mode guest state checks */
3349                 if (!cs_ss_rpl_check(vcpu))
3350                         return false;
3351                 if (!code_segment_valid(vcpu))
3352                         return false;
3353                 if (!stack_segment_valid(vcpu))
3354                         return false;
3355                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3356                         return false;
3357                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3358                         return false;
3359                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3360                         return false;
3361                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3362                         return false;
3363                 if (!tr_valid(vcpu))
3364                         return false;
3365                 if (!ldtr_valid(vcpu))
3366                         return false;
3367         }
3368         /* TODO:
3369          * - Add checks on RIP
3370          * - Add checks on RFLAGS
3371          */
3372
3373         return true;
3374 }
3375
3376 static int init_rmode_tss(struct kvm *kvm)
3377 {
3378         gfn_t fn;
3379         u16 data = 0;
3380         int idx, r;
3381
3382         idx = srcu_read_lock(&kvm->srcu);
3383         fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3384         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3385         if (r < 0)
3386                 goto out;
3387         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3388         r = kvm_write_guest_page(kvm, fn++, &data,
3389                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
3390         if (r < 0)
3391                 goto out;
3392         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3393         if (r < 0)
3394                 goto out;
3395         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3396         if (r < 0)
3397                 goto out;
3398         data = ~0;
3399         r = kvm_write_guest_page(kvm, fn, &data,
3400                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3401                                  sizeof(u8));
3402 out:
3403         srcu_read_unlock(&kvm->srcu, idx);
3404         return r;
3405 }
3406
3407 static int init_rmode_identity_map(struct kvm *kvm)
3408 {
3409         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3410         int i, idx, r = 0;
3411         kvm_pfn_t identity_map_pfn;
3412         u32 tmp;
3413
3414         /* Protect kvm_vmx->ept_identity_pagetable_done. */
3415         mutex_lock(&kvm->slots_lock);
3416
3417         if (likely(kvm_vmx->ept_identity_pagetable_done))
3418                 goto out2;
3419
3420         if (!kvm_vmx->ept_identity_map_addr)
3421                 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3422         identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3423
3424         r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3425                                     kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3426         if (r < 0)
3427                 goto out2;
3428
3429         idx = srcu_read_lock(&kvm->srcu);
3430         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3431         if (r < 0)
3432                 goto out;
3433         /* Set up identity-mapping pagetable for EPT in real mode */
3434         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3435                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3436                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3437                 r = kvm_write_guest_page(kvm, identity_map_pfn,
3438                                 &tmp, i * sizeof(tmp), sizeof(tmp));
3439                 if (r < 0)
3440                         goto out;
3441         }
3442         kvm_vmx->ept_identity_pagetable_done = true;
3443
3444 out:
3445         srcu_read_unlock(&kvm->srcu, idx);
3446
3447 out2:
3448         mutex_unlock(&kvm->slots_lock);
3449         return r;
3450 }
3451
3452 static void seg_setup(int seg)
3453 {
3454         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3455         unsigned int ar;
3456
3457         vmcs_write16(sf->selector, 0);
3458         vmcs_writel(sf->base, 0);
3459         vmcs_write32(sf->limit, 0xffff);
3460         ar = 0x93;
3461         if (seg == VCPU_SREG_CS)
3462                 ar |= 0x08; /* code segment */
3463
3464         vmcs_write32(sf->ar_bytes, ar);
3465 }
3466
3467 static int alloc_apic_access_page(struct kvm *kvm)
3468 {
3469         struct page *page;
3470         int r = 0;
3471
3472         mutex_lock(&kvm->slots_lock);
3473         if (kvm->arch.apic_access_page_done)
3474                 goto out;
3475         r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3476                                     APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3477         if (r)
3478                 goto out;
3479
3480         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3481         if (is_error_page(page)) {
3482                 r = -EFAULT;
3483                 goto out;
3484         }
3485
3486         /*
3487          * Do not pin the page in memory, so that memory hot-unplug
3488          * is able to migrate it.
3489          */
3490         put_page(page);
3491         kvm->arch.apic_access_page_done = true;
3492 out:
3493         mutex_unlock(&kvm->slots_lock);
3494         return r;
3495 }
3496
3497 int allocate_vpid(void)
3498 {
3499         int vpid;
3500
3501         if (!enable_vpid)
3502                 return 0;
3503         spin_lock(&vmx_vpid_lock);
3504         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3505         if (vpid < VMX_NR_VPIDS)
3506                 __set_bit(vpid, vmx_vpid_bitmap);
3507         else
3508                 vpid = 0;
3509         spin_unlock(&vmx_vpid_lock);
3510         return vpid;
3511 }
3512
3513 void free_vpid(int vpid)
3514 {
3515         if (!enable_vpid || vpid == 0)
3516                 return;
3517         spin_lock(&vmx_vpid_lock);
3518         __clear_bit(vpid, vmx_vpid_bitmap);
3519         spin_unlock(&vmx_vpid_lock);
3520 }
3521
3522 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3523                                                           u32 msr, int type)
3524 {
3525         int f = sizeof(unsigned long);
3526
3527         if (!cpu_has_vmx_msr_bitmap())
3528                 return;
3529
3530         if (static_branch_unlikely(&enable_evmcs))
3531                 evmcs_touch_msr_bitmap();
3532
3533         /*
3534          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3535          * have the write-low and read-high bitmap offsets the wrong way round.
3536          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3537          */
3538         if (msr <= 0x1fff) {
3539                 if (type & MSR_TYPE_R)
3540                         /* read-low */
3541                         __clear_bit(msr, msr_bitmap + 0x000 / f);
3542
3543                 if (type & MSR_TYPE_W)
3544                         /* write-low */
3545                         __clear_bit(msr, msr_bitmap + 0x800 / f);
3546
3547         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3548                 msr &= 0x1fff;
3549                 if (type & MSR_TYPE_R)
3550                         /* read-high */
3551                         __clear_bit(msr, msr_bitmap + 0x400 / f);
3552
3553                 if (type & MSR_TYPE_W)
3554                         /* write-high */
3555                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
3556
3557         }
3558 }
3559
3560 static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3561                                                          u32 msr, int type)
3562 {
3563         int f = sizeof(unsigned long);
3564
3565         if (!cpu_has_vmx_msr_bitmap())
3566                 return;
3567
3568         if (static_branch_unlikely(&enable_evmcs))
3569                 evmcs_touch_msr_bitmap();
3570
3571         /*
3572          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3573          * have the write-low and read-high bitmap offsets the wrong way round.
3574          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3575          */
3576         if (msr <= 0x1fff) {
3577                 if (type & MSR_TYPE_R)
3578                         /* read-low */
3579                         __set_bit(msr, msr_bitmap + 0x000 / f);
3580
3581                 if (type & MSR_TYPE_W)
3582                         /* write-low */
3583                         __set_bit(msr, msr_bitmap + 0x800 / f);
3584
3585         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3586                 msr &= 0x1fff;
3587                 if (type & MSR_TYPE_R)
3588                         /* read-high */
3589                         __set_bit(msr, msr_bitmap + 0x400 / f);
3590
3591                 if (type & MSR_TYPE_W)
3592                         /* write-high */
3593                         __set_bit(msr, msr_bitmap + 0xc00 / f);
3594
3595         }
3596 }
3597
3598 static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
3599                                                       u32 msr, int type, bool value)
3600 {
3601         if (value)
3602                 vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
3603         else
3604                 vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
3605 }
3606
3607 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3608 {
3609         u8 mode = 0;
3610
3611         if (cpu_has_secondary_exec_ctrls() &&
3612             (secondary_exec_controls_get(to_vmx(vcpu)) &
3613              SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3614                 mode |= MSR_BITMAP_MODE_X2APIC;
3615                 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3616                         mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3617         }
3618
3619         return mode;
3620 }
3621
3622 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
3623                                          u8 mode)
3624 {
3625         int msr;
3626
3627         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3628                 unsigned word = msr / BITS_PER_LONG;
3629                 msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3630                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
3631         }
3632
3633         if (mode & MSR_BITMAP_MODE_X2APIC) {
3634                 /*
3635                  * TPR reads and writes can be virtualized even if virtual interrupt
3636                  * delivery is not in use.
3637                  */
3638                 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
3639                 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3640                         vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
3641                         vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3642                         vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3643                 }
3644         }
3645 }
3646
3647 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3648 {
3649         struct vcpu_vmx *vmx = to_vmx(vcpu);
3650         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3651         u8 mode = vmx_msr_bitmap_mode(vcpu);
3652         u8 changed = mode ^ vmx->msr_bitmap_mode;
3653
3654         if (!changed)
3655                 return;
3656
3657         if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3658                 vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
3659
3660         vmx->msr_bitmap_mode = mode;
3661 }
3662
3663 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
3664 {
3665         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3666         bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3667         u32 i;
3668
3669         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
3670                                                         MSR_TYPE_RW, flag);
3671         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
3672                                                         MSR_TYPE_RW, flag);
3673         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
3674                                                         MSR_TYPE_RW, flag);
3675         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
3676                                                         MSR_TYPE_RW, flag);
3677         for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3678                 vmx_set_intercept_for_msr(msr_bitmap,
3679                         MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3680                 vmx_set_intercept_for_msr(msr_bitmap,
3681                         MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3682         }
3683 }
3684
3685 static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
3686 {
3687         return enable_apicv;
3688 }
3689
3690 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3691 {
3692         struct vcpu_vmx *vmx = to_vmx(vcpu);
3693         void *vapic_page;
3694         u32 vppr;
3695         int rvi;
3696
3697         if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3698                 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3699                 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3700                 return false;
3701
3702         rvi = vmx_get_rvi();
3703
3704         vapic_page = vmx->nested.virtual_apic_map.hva;
3705         vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3706
3707         return ((rvi & 0xf0) > (vppr & 0xf0));
3708 }
3709
3710 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3711                                                      bool nested)
3712 {
3713 #ifdef CONFIG_SMP
3714         int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3715
3716         if (vcpu->mode == IN_GUEST_MODE) {
3717                 /*
3718                  * The vector of interrupt to be delivered to vcpu had
3719                  * been set in PIR before this function.
3720                  *
3721                  * Following cases will be reached in this block, and
3722                  * we always send a notification event in all cases as
3723                  * explained below.
3724                  *
3725                  * Case 1: vcpu keeps in non-root mode. Sending a
3726                  * notification event posts the interrupt to vcpu.
3727                  *
3728                  * Case 2: vcpu exits to root mode and is still
3729                  * runnable. PIR will be synced to vIRR before the
3730                  * next vcpu entry. Sending a notification event in
3731                  * this case has no effect, as vcpu is not in root
3732                  * mode.
3733                  *
3734                  * Case 3: vcpu exits to root mode and is blocked.
3735                  * vcpu_block() has already synced PIR to vIRR and
3736                  * never blocks vcpu if vIRR is not cleared. Therefore,
3737                  * a blocked vcpu here does not wait for any requested
3738                  * interrupts in PIR, and sending a notification event
3739                  * which has no effect is safe here.
3740                  */
3741
3742                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3743                 return true;
3744         }
3745 #endif
3746         return false;
3747 }
3748
3749 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3750                                                 int vector)
3751 {
3752         struct vcpu_vmx *vmx = to_vmx(vcpu);
3753
3754         if (is_guest_mode(vcpu) &&
3755             vector == vmx->nested.posted_intr_nv) {
3756                 /*
3757                  * If a posted intr is not recognized by hardware,
3758                  * we will accomplish it in the next vmentry.
3759                  */
3760                 vmx->nested.pi_pending = true;
3761                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3762                 /* the PIR and ON have been set by L1. */
3763                 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3764                         kvm_vcpu_kick(vcpu);
3765                 return 0;
3766         }
3767         return -1;
3768 }
3769 /*
3770  * Send interrupt to vcpu via posted interrupt way.
3771  * 1. If target vcpu is running(non-root mode), send posted interrupt
3772  * notification to vcpu and hardware will sync PIR to vIRR atomically.
3773  * 2. If target vcpu isn't running(root mode), kick it to pick up the
3774  * interrupt from PIR in next vmentry.
3775  */
3776 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3777 {
3778         struct vcpu_vmx *vmx = to_vmx(vcpu);
3779         int r;
3780
3781         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3782         if (!r)
3783                 return;
3784
3785         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3786                 return;
3787
3788         /* If a previous notification has sent the IPI, nothing to do.  */
3789         if (pi_test_and_set_on(&vmx->pi_desc))
3790                 return;
3791
3792         if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
3793                 kvm_vcpu_kick(vcpu);
3794 }
3795
3796 /*
3797  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3798  * will not change in the lifetime of the guest.
3799  * Note that host-state that does change is set elsewhere. E.g., host-state
3800  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3801  */
3802 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3803 {
3804         u32 low32, high32;
3805         unsigned long tmpl;
3806         unsigned long cr0, cr3, cr4;
3807
3808         cr0 = read_cr0();
3809         WARN_ON(cr0 & X86_CR0_TS);
3810         vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
3811
3812         /*
3813          * Save the most likely value for this task's CR3 in the VMCS.
3814          * We can't use __get_current_cr3_fast() because we're not atomic.
3815          */
3816         cr3 = __read_cr3();
3817         vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
3818         vmx->loaded_vmcs->host_state.cr3 = cr3;
3819
3820         /* Save the most likely value for this task's CR4 in the VMCS. */
3821         cr4 = cr4_read_shadow();
3822         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
3823         vmx->loaded_vmcs->host_state.cr4 = cr4;
3824
3825         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
3826 #ifdef CONFIG_X86_64
3827         /*
3828          * Load null selectors, so we can avoid reloading them in
3829          * vmx_prepare_switch_to_host(), in case userspace uses
3830          * the null selectors too (the expected case).
3831          */
3832         vmcs_write16(HOST_DS_SELECTOR, 0);
3833         vmcs_write16(HOST_ES_SELECTOR, 0);
3834 #else
3835         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3836         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3837 #endif
3838         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3839         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
3840
3841         vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
3842
3843         vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
3844
3845         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3846         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3847         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3848         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
3849
3850         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3851                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3852                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3853         }
3854
3855         if (cpu_has_load_ia32_efer())
3856                 vmcs_write64(HOST_IA32_EFER, host_efer);
3857 }
3858
3859 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3860 {
3861         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3862         if (enable_ept)
3863                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3864         if (is_guest_mode(&vmx->vcpu))
3865                 vmx->vcpu.arch.cr4_guest_owned_bits &=
3866                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3867         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3868 }
3869
3870 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
3871 {
3872         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
3873
3874         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
3875                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
3876
3877         if (!enable_vnmi)
3878                 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
3879
3880         if (!enable_preemption_timer)
3881                 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3882
3883         return pin_based_exec_ctrl;
3884 }
3885
3886 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
3887 {
3888         struct vcpu_vmx *vmx = to_vmx(vcpu);
3889
3890         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
3891         if (cpu_has_secondary_exec_ctrls()) {
3892                 if (kvm_vcpu_apicv_active(vcpu))
3893                         secondary_exec_controls_setbit(vmx,
3894                                       SECONDARY_EXEC_APIC_REGISTER_VIRT |
3895                                       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3896                 else
3897                         secondary_exec_controls_clearbit(vmx,
3898                                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
3899                                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3900         }
3901
3902         if (cpu_has_vmx_msr_bitmap())
3903                 vmx_update_msr_bitmap(vcpu);
3904 }
3905
3906 u32 vmx_exec_control(struct vcpu_vmx *vmx)
3907 {
3908         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3909
3910         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
3911                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
3912
3913         if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
3914                 exec_control &= ~CPU_BASED_TPR_SHADOW;
3915 #ifdef CONFIG_X86_64
3916                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3917                                 CPU_BASED_CR8_LOAD_EXITING;
3918 #endif
3919         }
3920         if (!enable_ept)
3921                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3922                                 CPU_BASED_CR3_LOAD_EXITING  |
3923                                 CPU_BASED_INVLPG_EXITING;
3924         if (kvm_mwait_in_guest(vmx->vcpu.kvm))
3925                 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
3926                                 CPU_BASED_MONITOR_EXITING);
3927         if (kvm_hlt_in_guest(vmx->vcpu.kvm))
3928                 exec_control &= ~CPU_BASED_HLT_EXITING;
3929         return exec_control;
3930 }
3931
3932
3933 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
3934 {
3935         struct kvm_vcpu *vcpu = &vmx->vcpu;
3936
3937         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3938
3939         if (pt_mode == PT_MODE_SYSTEM)
3940                 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
3941         if (!cpu_need_virtualize_apic_accesses(vcpu))
3942                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3943         if (vmx->vpid == 0)
3944                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3945         if (!enable_ept) {
3946                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3947                 enable_unrestricted_guest = 0;
3948         }
3949         if (!enable_unrestricted_guest)
3950                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3951         if (kvm_pause_in_guest(vmx->vcpu.kvm))
3952                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
3953         if (!kvm_vcpu_apicv_active(vcpu))
3954                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
3955                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3956         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
3957
3958         /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
3959          * in vmx_set_cr4.  */
3960         exec_control &= ~SECONDARY_EXEC_DESC;
3961
3962         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
3963            (handle_vmptrld).
3964            We can NOT enable shadow_vmcs here because we don't have yet
3965            a current VMCS12
3966         */
3967         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
3968
3969         if (!enable_pml)
3970                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
3971
3972         if (vmx_xsaves_supported()) {
3973                 /* Exposing XSAVES only when XSAVE is exposed */
3974                 bool xsaves_enabled =
3975                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
3976                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
3977
3978                 if (!xsaves_enabled)
3979                         exec_control &= ~SECONDARY_EXEC_XSAVES;
3980
3981                 if (nested) {
3982                         if (xsaves_enabled)
3983                                 vmx->nested.msrs.secondary_ctls_high |=
3984                                         SECONDARY_EXEC_XSAVES;
3985                         else
3986                                 vmx->nested.msrs.secondary_ctls_high &=
3987                                         ~SECONDARY_EXEC_XSAVES;
3988                 }
3989         }
3990
3991         if (vmx_rdtscp_supported()) {
3992                 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
3993                 if (!rdtscp_enabled)
3994                         exec_control &= ~SECONDARY_EXEC_RDTSCP;
3995
3996                 if (nested) {
3997                         if (rdtscp_enabled)
3998                                 vmx->nested.msrs.secondary_ctls_high |=
3999                                         SECONDARY_EXEC_RDTSCP;
4000                         else
4001                                 vmx->nested.msrs.secondary_ctls_high &=
4002                                         ~SECONDARY_EXEC_RDTSCP;
4003                 }
4004         }
4005
4006         if (vmx_invpcid_supported()) {
4007                 /* Exposing INVPCID only when PCID is exposed */
4008                 bool invpcid_enabled =
4009                         guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
4010                         guest_cpuid_has(vcpu, X86_FEATURE_PCID);
4011
4012                 if (!invpcid_enabled) {
4013                         exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4014                         guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
4015                 }
4016
4017                 if (nested) {
4018                         if (invpcid_enabled)
4019                                 vmx->nested.msrs.secondary_ctls_high |=
4020                                         SECONDARY_EXEC_ENABLE_INVPCID;
4021                         else
4022                                 vmx->nested.msrs.secondary_ctls_high &=
4023                                         ~SECONDARY_EXEC_ENABLE_INVPCID;
4024                 }
4025         }
4026
4027         if (vmx_rdrand_supported()) {
4028                 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
4029                 if (rdrand_enabled)
4030                         exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
4031
4032                 if (nested) {
4033                         if (rdrand_enabled)
4034                                 vmx->nested.msrs.secondary_ctls_high |=
4035                                         SECONDARY_EXEC_RDRAND_EXITING;
4036                         else
4037                                 vmx->nested.msrs.secondary_ctls_high &=
4038                                         ~SECONDARY_EXEC_RDRAND_EXITING;
4039                 }
4040         }
4041
4042         if (vmx_rdseed_supported()) {
4043                 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
4044                 if (rdseed_enabled)
4045                         exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
4046
4047                 if (nested) {
4048                         if (rdseed_enabled)
4049                                 vmx->nested.msrs.secondary_ctls_high |=
4050                                         SECONDARY_EXEC_RDSEED_EXITING;
4051                         else
4052                                 vmx->nested.msrs.secondary_ctls_high &=
4053                                         ~SECONDARY_EXEC_RDSEED_EXITING;
4054                 }
4055         }
4056
4057         vmx->secondary_exec_control = exec_control;
4058 }
4059
4060 static void ept_set_mmio_spte_mask(void)
4061 {
4062         /*
4063          * EPT Misconfigurations can be generated if the value of bits 2:0
4064          * of an EPT paging-structure entry is 110b (write/execute).
4065          */
4066         kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
4067                                    VMX_EPT_MISCONFIG_WX_VALUE, 0);
4068 }
4069
4070 #define VMX_XSS_EXIT_BITMAP 0
4071
4072 /*
4073  * Sets up the vmcs for emulated real mode.
4074  */
4075 static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
4076 {
4077         int i;
4078
4079         if (nested)
4080                 nested_vmx_vcpu_setup();
4081
4082         if (cpu_has_vmx_msr_bitmap())
4083                 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4084
4085         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4086
4087         /* Control */
4088         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4089         vmx->hv_deadline_tsc = -1;
4090
4091         exec_controls_set(vmx, vmx_exec_control(vmx));
4092
4093         if (cpu_has_secondary_exec_ctrls()) {
4094                 vmx_compute_secondary_exec_control(vmx);
4095                 secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4096         }
4097
4098         if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4099                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4100                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4101                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4102                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4103
4104                 vmcs_write16(GUEST_INTR_STATUS, 0);
4105
4106                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4107                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4108         }
4109
4110         if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4111                 vmcs_write32(PLE_GAP, ple_gap);
4112                 vmx->ple_window = ple_window;
4113                 vmx->ple_window_dirty = true;
4114         }
4115
4116         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4117         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4118         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4119
4120         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4121         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4122         vmx_set_constant_host_state(vmx);
4123         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4124         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4125
4126         if (cpu_has_vmx_vmfunc())
4127                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4128
4129         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4130         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4131         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4132         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4133         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4134
4135         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4136                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4137
4138         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4139                 u32 index = vmx_msr_index[i];
4140                 u32 data_low, data_high;
4141                 int j = vmx->nmsrs;
4142
4143                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4144                         continue;
4145                 if (wrmsr_safe(index, data_low, data_high) < 0)
4146                         continue;
4147                 vmx->guest_msrs[j].index = i;
4148                 vmx->guest_msrs[j].data = 0;
4149                 vmx->guest_msrs[j].mask = -1ull;
4150                 ++vmx->nmsrs;
4151         }
4152
4153         vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4154
4155         /* 22.2.1, 20.8.1 */
4156         vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4157
4158         vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
4159         vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
4160
4161         set_cr4_guest_host_mask(vmx);
4162
4163         if (vmx_xsaves_supported())
4164                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4165
4166         if (enable_pml) {
4167                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4168                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4169         }
4170
4171         if (cpu_has_vmx_encls_vmexit())
4172                 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4173
4174         if (pt_mode == PT_MODE_HOST_GUEST) {
4175                 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4176                 /* Bit[6~0] are forced to 1, writes are ignored. */
4177                 vmx->pt_desc.guest.output_mask = 0x7F;
4178                 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4179         }
4180 }
4181
4182 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4183 {
4184         struct vcpu_vmx *vmx = to_vmx(vcpu);
4185         struct msr_data apic_base_msr;
4186         u64 cr0;
4187
4188         vmx->rmode.vm86_active = 0;
4189         vmx->spec_ctrl = 0;
4190
4191         vcpu->arch.microcode_version = 0x100000000ULL;
4192         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4193         vmx->hv_deadline_tsc = -1;
4194         kvm_set_cr8(vcpu, 0);
4195
4196         if (!init_event) {
4197                 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4198                                      MSR_IA32_APICBASE_ENABLE;
4199                 if (kvm_vcpu_is_reset_bsp(vcpu))
4200                         apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4201                 apic_base_msr.host_initiated = true;
4202                 kvm_set_apic_base(vcpu, &apic_base_msr);
4203         }
4204
4205         vmx_segment_cache_clear(vmx);
4206
4207         seg_setup(VCPU_SREG_CS);
4208         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4209         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4210
4211         seg_setup(VCPU_SREG_DS);
4212         seg_setup(VCPU_SREG_ES);
4213         seg_setup(VCPU_SREG_FS);
4214         seg_setup(VCPU_SREG_GS);
4215         seg_setup(VCPU_SREG_SS);
4216
4217         vmcs_write16(GUEST_TR_SELECTOR, 0);
4218         vmcs_writel(GUEST_TR_BASE, 0);
4219         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4220         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4221
4222         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4223         vmcs_writel(GUEST_LDTR_BASE, 0);
4224         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4225         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4226
4227         if (!init_event) {
4228                 vmcs_write32(GUEST_SYSENTER_CS, 0);
4229                 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4230                 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4231                 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4232         }
4233
4234         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4235         kvm_rip_write(vcpu, 0xfff0);
4236
4237         vmcs_writel(GUEST_GDTR_BASE, 0);
4238         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4239
4240         vmcs_writel(GUEST_IDTR_BASE, 0);
4241         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4242
4243         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4244         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4245         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4246         if (kvm_mpx_supported())
4247                 vmcs_write64(GUEST_BNDCFGS, 0);
4248
4249         setup_msrs(vmx);
4250
4251         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4252
4253         if (cpu_has_vmx_tpr_shadow() && !init_event) {
4254                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4255                 if (cpu_need_tpr_shadow(vcpu))
4256                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4257                                      __pa(vcpu->arch.apic->regs));
4258                 vmcs_write32(TPR_THRESHOLD, 0);
4259         }
4260
4261         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4262
4263         if (vmx->vpid != 0)
4264                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4265
4266         cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4267         vmx->vcpu.arch.cr0 = cr0;
4268         vmx_set_cr0(vcpu, cr0); /* enter rmode */
4269         vmx_set_cr4(vcpu, 0);
4270         vmx_set_efer(vcpu, 0);
4271
4272         update_exception_bitmap(vcpu);
4273
4274         vpid_sync_context(vmx->vpid);
4275         if (init_event)
4276                 vmx_clear_hlt(vcpu);
4277 }
4278
4279 static void enable_irq_window(struct kvm_vcpu *vcpu)
4280 {
4281         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_INTR_PENDING);
4282 }
4283
4284 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4285 {
4286         if (!enable_vnmi ||
4287             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4288                 enable_irq_window(vcpu);
4289                 return;
4290         }
4291
4292         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_NMI_PENDING);
4293 }
4294
4295 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4296 {
4297         struct vcpu_vmx *vmx = to_vmx(vcpu);
4298         uint32_t intr;
4299         int irq = vcpu->arch.interrupt.nr;
4300
4301         trace_kvm_inj_virq(irq);
4302
4303         ++vcpu->stat.irq_injections;
4304         if (vmx->rmode.vm86_active) {
4305                 int inc_eip = 0;
4306                 if (vcpu->arch.interrupt.soft)
4307                         inc_eip = vcpu->arch.event_exit_inst_len;
4308                 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4309                 return;
4310         }
4311         intr = irq | INTR_INFO_VALID_MASK;
4312         if (vcpu->arch.interrupt.soft) {
4313                 intr |= INTR_TYPE_SOFT_INTR;
4314                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4315                              vmx->vcpu.arch.event_exit_inst_len);
4316         } else
4317                 intr |= INTR_TYPE_EXT_INTR;
4318         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4319
4320         vmx_clear_hlt(vcpu);
4321 }
4322
4323 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4324 {
4325         struct vcpu_vmx *vmx = to_vmx(vcpu);
4326
4327         if (!enable_vnmi) {
4328                 /*
4329                  * Tracking the NMI-blocked state in software is built upon
4330                  * finding the next open IRQ window. This, in turn, depends on
4331                  * well-behaving guests: They have to keep IRQs disabled at
4332                  * least as long as the NMI handler runs. Otherwise we may
4333                  * cause NMI nesting, maybe breaking the guest. But as this is
4334                  * highly unlikely, we can live with the residual risk.
4335                  */
4336                 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4337                 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4338         }
4339
4340         ++vcpu->stat.nmi_injections;
4341         vmx->loaded_vmcs->nmi_known_unmasked = false;
4342
4343         if (vmx->rmode.vm86_active) {
4344                 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4345                 return;
4346         }
4347
4348         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4349                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4350
4351         vmx_clear_hlt(vcpu);
4352 }
4353
4354 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4355 {
4356         struct vcpu_vmx *vmx = to_vmx(vcpu);
4357         bool masked;
4358
4359         if (!enable_vnmi)
4360                 return vmx->loaded_vmcs->soft_vnmi_blocked;
4361         if (vmx->loaded_vmcs->nmi_known_unmasked)
4362                 return false;
4363         masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4364         vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4365         return masked;
4366 }
4367
4368 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4369 {
4370         struct vcpu_vmx *vmx = to_vmx(vcpu);
4371
4372         if (!enable_vnmi) {
4373                 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4374                         vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4375                         vmx->loaded_vmcs->vnmi_blocked_time = 0;
4376                 }
4377         } else {
4378                 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4379                 if (masked)
4380                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4381                                       GUEST_INTR_STATE_NMI);
4382                 else
4383                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4384                                         GUEST_INTR_STATE_NMI);
4385         }
4386 }
4387
4388 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4389 {
4390         if (to_vmx(vcpu)->nested.nested_run_pending)
4391                 return 0;
4392
4393         if (!enable_vnmi &&
4394             to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4395                 return 0;
4396
4397         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4398                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4399                    | GUEST_INTR_STATE_NMI));
4400 }
4401
4402 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4403 {
4404         return (!to_vmx(vcpu)->nested.nested_run_pending &&
4405                 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4406                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4407                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4408 }
4409
4410 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4411 {
4412         int ret;
4413
4414         if (enable_unrestricted_guest)
4415                 return 0;
4416
4417         ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4418                                     PAGE_SIZE * 3);
4419         if (ret)
4420                 return ret;
4421         to_kvm_vmx(kvm)->tss_addr = addr;
4422         return init_rmode_tss(kvm);
4423 }
4424
4425 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4426 {
4427         to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4428         return 0;
4429 }
4430
4431 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4432 {
4433         switch (vec) {
4434         case BP_VECTOR:
4435                 /*
4436                  * Update instruction length as we may reinject the exception
4437                  * from user space while in guest debugging mode.
4438                  */
4439                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4440                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4441                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4442                         return false;
4443                 /* fall through */
4444         case DB_VECTOR:
4445                 if (vcpu->guest_debug &
4446                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4447                         return false;
4448                 /* fall through */
4449         case DE_VECTOR:
4450         case OF_VECTOR:
4451         case BR_VECTOR:
4452         case UD_VECTOR:
4453         case DF_VECTOR:
4454         case SS_VECTOR:
4455         case GP_VECTOR:
4456         case MF_VECTOR:
4457                 return true;
4458         break;
4459         }
4460         return false;
4461 }
4462
4463 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4464                                   int vec, u32 err_code)
4465 {
4466         /*
4467          * Instruction with address size override prefix opcode 0x67
4468          * Cause the #SS fault with 0 error code in VM86 mode.
4469          */
4470         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4471                 if (kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4472                         if (vcpu->arch.halt_request) {
4473                                 vcpu->arch.halt_request = 0;
4474                                 return kvm_vcpu_halt(vcpu);
4475                         }
4476                         return 1;
4477                 }
4478                 return 0;
4479         }
4480
4481         /*
4482          * Forward all other exceptions that are valid in real mode.
4483          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4484          *        the required debugging infrastructure rework.
4485          */
4486         kvm_queue_exception(vcpu, vec);
4487         return 1;
4488 }
4489
4490 /*
4491  * Trigger machine check on the host. We assume all the MSRs are already set up
4492  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4493  * We pass a fake environment to the machine check handler because we want
4494  * the guest to be always treated like user space, no matter what context
4495  * it used internally.
4496  */
4497 static void kvm_machine_check(void)
4498 {
4499 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4500         struct pt_regs regs = {
4501                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4502                 .flags = X86_EFLAGS_IF,
4503         };
4504
4505         do_machine_check(&regs, 0);
4506 #endif
4507 }
4508
4509 static int handle_machine_check(struct kvm_vcpu *vcpu)
4510 {
4511         /* handled by vmx_vcpu_run() */
4512         return 1;
4513 }
4514
4515 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4516 {
4517         struct vcpu_vmx *vmx = to_vmx(vcpu);
4518         struct kvm_run *kvm_run = vcpu->run;
4519         u32 intr_info, ex_no, error_code;
4520         unsigned long cr2, rip, dr6;
4521         u32 vect_info;
4522
4523         vect_info = vmx->idt_vectoring_info;
4524         intr_info = vmx->exit_intr_info;
4525
4526         if (is_machine_check(intr_info) || is_nmi(intr_info))
4527                 return 1; /* handled by handle_exception_nmi_irqoff() */
4528
4529         if (is_invalid_opcode(intr_info))
4530                 return handle_ud(vcpu);
4531
4532         error_code = 0;
4533         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4534                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4535
4536         if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4537                 WARN_ON_ONCE(!enable_vmware_backdoor);
4538
4539                 /*
4540                  * VMware backdoor emulation on #GP interception only handles
4541                  * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4542                  * error code on #GP.
4543                  */
4544                 if (error_code) {
4545                         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4546                         return 1;
4547                 }
4548                 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP) !=
4549                                                         EMULATE_USER_EXIT;
4550         }
4551
4552         /*
4553          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4554          * MMIO, it is better to report an internal error.
4555          * See the comments in vmx_handle_exit.
4556          */
4557         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4558             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4559                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4560                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4561                 vcpu->run->internal.ndata = 3;
4562                 vcpu->run->internal.data[0] = vect_info;
4563                 vcpu->run->internal.data[1] = intr_info;
4564                 vcpu->run->internal.data[2] = error_code;
4565                 return 0;
4566         }
4567
4568         if (is_page_fault(intr_info)) {
4569                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4570                 /* EPT won't cause page fault directly */
4571                 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
4572                 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4573         }
4574
4575         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4576
4577         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4578                 return handle_rmode_exception(vcpu, ex_no, error_code);
4579
4580         switch (ex_no) {
4581         case AC_VECTOR:
4582                 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4583                 return 1;
4584         case DB_VECTOR:
4585                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4586                 if (!(vcpu->guest_debug &
4587                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4588                         vcpu->arch.dr6 &= ~DR_TRAP_BITS;
4589                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
4590                         if (is_icebp(intr_info))
4591                                 skip_emulated_instruction(vcpu);
4592
4593                         kvm_queue_exception(vcpu, DB_VECTOR);
4594                         return 1;
4595                 }
4596                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4597                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4598                 /* fall through */
4599         case BP_VECTOR:
4600                 /*
4601                  * Update instruction length as we may reinject #BP from
4602                  * user space while in guest debugging mode. Reading it for
4603                  * #DB as well causes no harm, it is not used in that case.
4604                  */
4605                 vmx->vcpu.arch.event_exit_inst_len =
4606                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4607                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4608                 rip = kvm_rip_read(vcpu);
4609                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4610                 kvm_run->debug.arch.exception = ex_no;
4611                 break;
4612         default:
4613                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4614                 kvm_run->ex.exception = ex_no;
4615                 kvm_run->ex.error_code = error_code;
4616                 break;
4617         }
4618         return 0;
4619 }
4620
4621 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4622 {
4623         ++vcpu->stat.irq_exits;
4624         return 1;
4625 }
4626
4627 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4628 {
4629         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4630         vcpu->mmio_needed = 0;
4631         return 0;
4632 }
4633
4634 static int handle_io(struct kvm_vcpu *vcpu)
4635 {
4636         unsigned long exit_qualification;
4637         int size, in, string;
4638         unsigned port;
4639
4640         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4641         string = (exit_qualification & 16) != 0;
4642
4643         ++vcpu->stat.io_exits;
4644
4645         if (string)
4646                 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4647
4648         port = exit_qualification >> 16;
4649         size = (exit_qualification & 7) + 1;
4650         in = (exit_qualification & 8) != 0;
4651
4652         return kvm_fast_pio(vcpu, size, port, in);
4653 }
4654
4655 static void
4656 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4657 {
4658         /*
4659          * Patch in the VMCALL instruction:
4660          */
4661         hypercall[0] = 0x0f;
4662         hypercall[1] = 0x01;
4663         hypercall[2] = 0xc1;
4664 }
4665
4666 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4667 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4668 {
4669         if (is_guest_mode(vcpu)) {
4670                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4671                 unsigned long orig_val = val;
4672
4673                 /*
4674                  * We get here when L2 changed cr0 in a way that did not change
4675                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4676                  * but did change L0 shadowed bits. So we first calculate the
4677                  * effective cr0 value that L1 would like to write into the
4678                  * hardware. It consists of the L2-owned bits from the new
4679                  * value combined with the L1-owned bits from L1's guest_cr0.
4680                  */
4681                 val = (val & ~vmcs12->cr0_guest_host_mask) |
4682                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4683
4684                 if (!nested_guest_cr0_valid(vcpu, val))
4685                         return 1;
4686
4687                 if (kvm_set_cr0(vcpu, val))
4688                         return 1;
4689                 vmcs_writel(CR0_READ_SHADOW, orig_val);
4690                 return 0;
4691         } else {
4692                 if (to_vmx(vcpu)->nested.vmxon &&
4693                     !nested_host_cr0_valid(vcpu, val))
4694                         return 1;
4695
4696                 return kvm_set_cr0(vcpu, val);
4697         }
4698 }
4699
4700 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4701 {
4702         if (is_guest_mode(vcpu)) {
4703                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4704                 unsigned long orig_val = val;
4705
4706                 /* analogously to handle_set_cr0 */
4707                 val = (val & ~vmcs12->cr4_guest_host_mask) |
4708                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4709                 if (kvm_set_cr4(vcpu, val))
4710                         return 1;
4711                 vmcs_writel(CR4_READ_SHADOW, orig_val);
4712                 return 0;
4713         } else
4714                 return kvm_set_cr4(vcpu, val);
4715 }
4716
4717 static int handle_desc(struct kvm_vcpu *vcpu)
4718 {
4719         WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4720         return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4721 }
4722
4723 static int handle_cr(struct kvm_vcpu *vcpu)
4724 {
4725         unsigned long exit_qualification, val;
4726         int cr;
4727         int reg;
4728         int err;
4729         int ret;
4730
4731         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4732         cr = exit_qualification & 15;
4733         reg = (exit_qualification >> 8) & 15;
4734         switch ((exit_qualification >> 4) & 3) {
4735         case 0: /* mov to cr */
4736                 val = kvm_register_readl(vcpu, reg);
4737                 trace_kvm_cr_write(cr, val);
4738                 switch (cr) {
4739                 case 0:
4740                         err = handle_set_cr0(vcpu, val);
4741                         return kvm_complete_insn_gp(vcpu, err);
4742                 case 3:
4743                         WARN_ON_ONCE(enable_unrestricted_guest);
4744                         err = kvm_set_cr3(vcpu, val);
4745                         return kvm_complete_insn_gp(vcpu, err);
4746                 case 4:
4747                         err = handle_set_cr4(vcpu, val);
4748                         return kvm_complete_insn_gp(vcpu, err);
4749                 case 8: {
4750                                 u8 cr8_prev = kvm_get_cr8(vcpu);
4751                                 u8 cr8 = (u8)val;
4752                                 err = kvm_set_cr8(vcpu, cr8);
4753                                 ret = kvm_complete_insn_gp(vcpu, err);
4754                                 if (lapic_in_kernel(vcpu))
4755                                         return ret;
4756                                 if (cr8_prev <= cr8)
4757                                         return ret;
4758                                 /*
4759                                  * TODO: we might be squashing a
4760                                  * KVM_GUESTDBG_SINGLESTEP-triggered
4761                                  * KVM_EXIT_DEBUG here.
4762                                  */
4763                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4764                                 return 0;
4765                         }
4766                 }
4767                 break;
4768         case 2: /* clts */
4769                 WARN_ONCE(1, "Guest should always own CR0.TS");
4770                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4771                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4772                 return kvm_skip_emulated_instruction(vcpu);
4773         case 1: /*mov from cr*/
4774                 switch (cr) {
4775                 case 3:
4776                         WARN_ON_ONCE(enable_unrestricted_guest);
4777                         val = kvm_read_cr3(vcpu);
4778                         kvm_register_write(vcpu, reg, val);
4779                         trace_kvm_cr_read(cr, val);
4780                         return kvm_skip_emulated_instruction(vcpu);
4781                 case 8:
4782                         val = kvm_get_cr8(vcpu);
4783                         kvm_register_write(vcpu, reg, val);
4784                         trace_kvm_cr_read(cr, val);
4785                         return kvm_skip_emulated_instruction(vcpu);
4786                 }
4787                 break;
4788         case 3: /* lmsw */
4789                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4790                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4791                 kvm_lmsw(vcpu, val);
4792
4793                 return kvm_skip_emulated_instruction(vcpu);
4794         default:
4795                 break;
4796         }
4797         vcpu->run->exit_reason = 0;
4798         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4799                (int)(exit_qualification >> 4) & 3, cr);
4800         return 0;
4801 }
4802
4803 static int handle_dr(struct kvm_vcpu *vcpu)
4804 {
4805         unsigned long exit_qualification;
4806         int dr, dr7, reg;
4807
4808         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4809         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4810
4811         /* First, if DR does not exist, trigger UD */
4812         if (!kvm_require_dr(vcpu, dr))
4813                 return 1;
4814
4815         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4816         if (!kvm_require_cpl(vcpu, 0))
4817                 return 1;
4818         dr7 = vmcs_readl(GUEST_DR7);
4819         if (dr7 & DR7_GD) {
4820                 /*
4821                  * As the vm-exit takes precedence over the debug trap, we
4822                  * need to emulate the latter, either for the host or the
4823                  * guest debugging itself.
4824                  */
4825                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4826                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4827                         vcpu->run->debug.arch.dr7 = dr7;
4828                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4829                         vcpu->run->debug.arch.exception = DB_VECTOR;
4830                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4831                         return 0;
4832                 } else {
4833                         vcpu->arch.dr6 &= ~DR_TRAP_BITS;
4834                         vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
4835                         kvm_queue_exception(vcpu, DB_VECTOR);
4836                         return 1;
4837                 }
4838         }
4839
4840         if (vcpu->guest_debug == 0) {
4841                 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4842
4843                 /*
4844                  * No more DR vmexits; force a reload of the debug registers
4845                  * and reenter on this instruction.  The next vmexit will
4846                  * retrieve the full state of the debug registers.
4847                  */
4848                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4849                 return 1;
4850         }
4851
4852         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4853         if (exit_qualification & TYPE_MOV_FROM_DR) {
4854                 unsigned long val;
4855
4856                 if (kvm_get_dr(vcpu, dr, &val))
4857                         return 1;
4858                 kvm_register_write(vcpu, reg, val);
4859         } else
4860                 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4861                         return 1;
4862
4863         return kvm_skip_emulated_instruction(vcpu);
4864 }
4865
4866 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
4867 {
4868         return vcpu->arch.dr6;
4869 }
4870
4871 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
4872 {
4873 }
4874
4875 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
4876 {
4877         get_debugreg(vcpu->arch.db[0], 0);
4878         get_debugreg(vcpu->arch.db[1], 1);
4879         get_debugreg(vcpu->arch.db[2], 2);
4880         get_debugreg(vcpu->arch.db[3], 3);
4881         get_debugreg(vcpu->arch.dr6, 6);
4882         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
4883
4884         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
4885         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4886 }
4887
4888 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4889 {
4890         vmcs_writel(GUEST_DR7, val);
4891 }
4892
4893 static int handle_cpuid(struct kvm_vcpu *vcpu)
4894 {
4895         return kvm_emulate_cpuid(vcpu);
4896 }
4897
4898 static int handle_rdmsr(struct kvm_vcpu *vcpu)
4899 {
4900         return kvm_emulate_rdmsr(vcpu);
4901 }
4902
4903 static int handle_wrmsr(struct kvm_vcpu *vcpu)
4904 {
4905         return kvm_emulate_wrmsr(vcpu);
4906 }
4907
4908 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4909 {
4910         kvm_apic_update_ppr(vcpu);
4911         return 1;
4912 }
4913
4914 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
4915 {
4916         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_INTR_PENDING);
4917
4918         kvm_make_request(KVM_REQ_EVENT, vcpu);
4919
4920         ++vcpu->stat.irq_window_exits;
4921         return 1;
4922 }
4923
4924 static int handle_halt(struct kvm_vcpu *vcpu)
4925 {
4926         return kvm_emulate_halt(vcpu);
4927 }
4928
4929 static int handle_vmcall(struct kvm_vcpu *vcpu)
4930 {
4931         return kvm_emulate_hypercall(vcpu);
4932 }
4933
4934 static int handle_invd(struct kvm_vcpu *vcpu)
4935 {
4936         return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4937 }
4938
4939 static int handle_invlpg(struct kvm_vcpu *vcpu)
4940 {
4941         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4942
4943         kvm_mmu_invlpg(vcpu, exit_qualification);
4944         return kvm_skip_emulated_instruction(vcpu);
4945 }
4946
4947 static int handle_rdpmc(struct kvm_vcpu *vcpu)
4948 {
4949         int err;
4950
4951         err = kvm_rdpmc(vcpu);
4952         return kvm_complete_insn_gp(vcpu, err);
4953 }
4954
4955 static int handle_wbinvd(struct kvm_vcpu *vcpu)
4956 {
4957         return kvm_emulate_wbinvd(vcpu);
4958 }
4959
4960 static int handle_xsetbv(struct kvm_vcpu *vcpu)
4961 {
4962         u64 new_bv = kvm_read_edx_eax(vcpu);
4963         u32 index = kvm_rcx_read(vcpu);
4964
4965         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
4966                 return kvm_skip_emulated_instruction(vcpu);
4967         return 1;
4968 }
4969
4970 static int handle_xsaves(struct kvm_vcpu *vcpu)
4971 {
4972         kvm_skip_emulated_instruction(vcpu);
4973         WARN(1, "this should never happen\n");
4974         return 1;
4975 }
4976
4977 static int handle_xrstors(struct kvm_vcpu *vcpu)
4978 {
4979         kvm_skip_emulated_instruction(vcpu);
4980         WARN(1, "this should never happen\n");
4981         return 1;
4982 }
4983
4984 static int handle_apic_access(struct kvm_vcpu *vcpu)
4985 {
4986         if (likely(fasteoi)) {
4987                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4988                 int access_type, offset;
4989
4990                 access_type = exit_qualification & APIC_ACCESS_TYPE;
4991                 offset = exit_qualification & APIC_ACCESS_OFFSET;
4992                 /*
4993                  * Sane guest uses MOV to write EOI, with written value
4994                  * not cared. So make a short-circuit here by avoiding
4995                  * heavy instruction emulation.
4996                  */
4997                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
4998                     (offset == APIC_EOI)) {
4999                         kvm_lapic_set_eoi(vcpu);
5000                         return kvm_skip_emulated_instruction(vcpu);
5001                 }
5002         }
5003         return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
5004 }
5005
5006 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5007 {
5008         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5009         int vector = exit_qualification & 0xff;
5010
5011         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5012         kvm_apic_set_eoi_accelerated(vcpu, vector);
5013         return 1;
5014 }
5015
5016 static int handle_apic_write(struct kvm_vcpu *vcpu)
5017 {
5018         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5019         u32 offset = exit_qualification & 0xfff;
5020
5021         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5022         kvm_apic_write_nodecode(vcpu, offset);
5023         return 1;
5024 }
5025
5026 static int handle_task_switch(struct kvm_vcpu *vcpu)
5027 {
5028         struct vcpu_vmx *vmx = to_vmx(vcpu);
5029         unsigned long exit_qualification;
5030         bool has_error_code = false;
5031         u32 error_code = 0;
5032         u16 tss_selector;
5033         int reason, type, idt_v, idt_index;
5034
5035         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5036         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5037         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5038
5039         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5040
5041         reason = (u32)exit_qualification >> 30;
5042         if (reason == TASK_SWITCH_GATE && idt_v) {
5043                 switch (type) {
5044                 case INTR_TYPE_NMI_INTR:
5045                         vcpu->arch.nmi_injected = false;
5046                         vmx_set_nmi_mask(vcpu, true);
5047                         break;
5048                 case INTR_TYPE_EXT_INTR:
5049                 case INTR_TYPE_SOFT_INTR:
5050                         kvm_clear_interrupt_queue(vcpu);
5051                         break;
5052                 case INTR_TYPE_HARD_EXCEPTION:
5053                         if (vmx->idt_vectoring_info &
5054                             VECTORING_INFO_DELIVER_CODE_MASK) {
5055                                 has_error_code = true;
5056                                 error_code =
5057                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5058                         }
5059                         /* fall through */
5060                 case INTR_TYPE_SOFT_EXCEPTION:
5061                         kvm_clear_exception_queue(vcpu);
5062                         break;
5063                 default:
5064                         break;
5065                 }
5066         }
5067         tss_selector = exit_qualification;
5068
5069         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5070                        type != INTR_TYPE_EXT_INTR &&
5071                        type != INTR_TYPE_NMI_INTR))
5072                 skip_emulated_instruction(vcpu);
5073
5074         /*
5075          * TODO: What about debug traps on tss switch?
5076          *       Are we supposed to inject them and update dr6?
5077          */
5078         return kvm_task_switch(vcpu, tss_selector,
5079                                type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5080                                reason, has_error_code, error_code) != EMULATE_USER_EXIT;
5081 }
5082
5083 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5084 {
5085         unsigned long exit_qualification;
5086         gpa_t gpa;
5087         u64 error_code;
5088
5089         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5090
5091         /*
5092          * EPT violation happened while executing iret from NMI,
5093          * "blocked by NMI" bit has to be set before next VM entry.
5094          * There are errata that may cause this bit to not be set:
5095          * AAK134, BY25.
5096          */
5097         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5098                         enable_vnmi &&
5099                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5100                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5101
5102         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5103         trace_kvm_page_fault(gpa, exit_qualification);
5104
5105         /* Is it a read fault? */
5106         error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5107                      ? PFERR_USER_MASK : 0;
5108         /* Is it a write fault? */
5109         error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5110                       ? PFERR_WRITE_MASK : 0;
5111         /* Is it a fetch fault? */
5112         error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5113                       ? PFERR_FETCH_MASK : 0;
5114         /* ept page table entry is present? */
5115         error_code |= (exit_qualification &
5116                        (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5117                         EPT_VIOLATION_EXECUTABLE))
5118                       ? PFERR_PRESENT_MASK : 0;
5119
5120         error_code |= (exit_qualification & 0x100) != 0 ?
5121                PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5122
5123         vcpu->arch.exit_qualification = exit_qualification;
5124         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5125 }
5126
5127 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5128 {
5129         gpa_t gpa;
5130
5131         /*
5132          * A nested guest cannot optimize MMIO vmexits, because we have an
5133          * nGPA here instead of the required GPA.
5134          */
5135         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5136         if (!is_guest_mode(vcpu) &&
5137             !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5138                 trace_kvm_fast_mmio(gpa);
5139                 /*
5140                  * Doing kvm_skip_emulated_instruction() depends on undefined
5141                  * behavior: Intel's manual doesn't mandate
5142                  * VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG
5143                  * occurs and while on real hardware it was observed to be set,
5144                  * other hypervisors (namely Hyper-V) don't set it, we end up
5145                  * advancing IP with some random value. Disable fast mmio when
5146                  * running nested and keep it for real hardware in hope that
5147                  * VM_EXIT_INSTRUCTION_LEN will always be set correctly.
5148                  */
5149                 if (!static_cpu_has(X86_FEATURE_HYPERVISOR))
5150                         return kvm_skip_emulated_instruction(vcpu);
5151                 else
5152                         return kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) ==
5153                                                                 EMULATE_DONE;
5154         }
5155
5156         return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5157 }
5158
5159 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5160 {
5161         WARN_ON_ONCE(!enable_vnmi);
5162         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_NMI_PENDING);
5163         ++vcpu->stat.nmi_window_exits;
5164         kvm_make_request(KVM_REQ_EVENT, vcpu);
5165
5166         return 1;
5167 }
5168
5169 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5170 {
5171         struct vcpu_vmx *vmx = to_vmx(vcpu);
5172         enum emulation_result err = EMULATE_DONE;
5173         int ret = 1;
5174         bool intr_window_requested;
5175         unsigned count = 130;
5176
5177         /*
5178          * We should never reach the point where we are emulating L2
5179          * due to invalid guest state as that means we incorrectly
5180          * allowed a nested VMEntry with an invalid vmcs12.
5181          */
5182         WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
5183
5184         intr_window_requested = exec_controls_get(vmx) &
5185                                 CPU_BASED_VIRTUAL_INTR_PENDING;
5186
5187         while (vmx->emulation_required && count-- != 0) {
5188                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5189                         return handle_interrupt_window(&vmx->vcpu);
5190
5191                 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5192                         return 1;
5193
5194                 err = kvm_emulate_instruction(vcpu, 0);
5195
5196                 if (err == EMULATE_USER_EXIT) {
5197                         ret = 0;
5198                         goto out;
5199                 }
5200
5201                 if (err != EMULATE_DONE)
5202                         goto emulation_error;
5203
5204                 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5205                     vcpu->arch.exception.pending)
5206                         goto emulation_error;
5207
5208                 if (vcpu->arch.halt_request) {
5209                         vcpu->arch.halt_request = 0;
5210                         ret = kvm_vcpu_halt(vcpu);
5211                         goto out;
5212                 }
5213
5214                 if (signal_pending(current))
5215                         goto out;
5216                 if (need_resched())
5217                         schedule();
5218         }
5219
5220 out:
5221         return ret;
5222
5223 emulation_error:
5224         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5225         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5226         vcpu->run->internal.ndata = 0;
5227         return 0;
5228 }
5229
5230 static void grow_ple_window(struct kvm_vcpu *vcpu)
5231 {
5232         struct vcpu_vmx *vmx = to_vmx(vcpu);
5233         unsigned int old = vmx->ple_window;
5234
5235         vmx->ple_window = __grow_ple_window(old, ple_window,
5236                                             ple_window_grow,
5237                                             ple_window_max);
5238
5239         if (vmx->ple_window != old) {
5240                 vmx->ple_window_dirty = true;
5241                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5242                                             vmx->ple_window, old);
5243         }
5244 }
5245
5246 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5247 {
5248         struct vcpu_vmx *vmx = to_vmx(vcpu);
5249         unsigned int old = vmx->ple_window;
5250
5251         vmx->ple_window = __shrink_ple_window(old, ple_window,
5252                                               ple_window_shrink,
5253                                               ple_window);
5254
5255         if (vmx->ple_window != old) {
5256                 vmx->ple_window_dirty = true;
5257                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5258                                             vmx->ple_window, old);
5259         }
5260 }
5261
5262 /*
5263  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
5264  */
5265 static void wakeup_handler(void)
5266 {
5267         struct kvm_vcpu *vcpu;
5268         int cpu = smp_processor_id();
5269
5270         spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5271         list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
5272                         blocked_vcpu_list) {
5273                 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
5274
5275                 if (pi_test_on(pi_desc) == 1)
5276                         kvm_vcpu_kick(vcpu);
5277         }
5278         spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5279 }
5280
5281 static void vmx_enable_tdp(void)
5282 {
5283         kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5284                 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5285                 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5286                 0ull, VMX_EPT_EXECUTABLE_MASK,
5287                 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5288                 VMX_EPT_RWX_MASK, 0ull);
5289
5290         ept_set_mmio_spte_mask();
5291         kvm_enable_tdp();
5292 }
5293
5294 /*
5295  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5296  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5297  */
5298 static int handle_pause(struct kvm_vcpu *vcpu)
5299 {
5300         if (!kvm_pause_in_guest(vcpu->kvm))
5301                 grow_ple_window(vcpu);
5302
5303         /*
5304          * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5305          * VM-execution control is ignored if CPL > 0. OTOH, KVM
5306          * never set PAUSE_EXITING and just set PLE if supported,
5307          * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5308          */
5309         kvm_vcpu_on_spin(vcpu, true);
5310         return kvm_skip_emulated_instruction(vcpu);
5311 }
5312
5313 static int handle_nop(struct kvm_vcpu *vcpu)
5314 {
5315         return kvm_skip_emulated_instruction(vcpu);
5316 }
5317
5318 static int handle_mwait(struct kvm_vcpu *vcpu)
5319 {
5320         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5321         return handle_nop(vcpu);
5322 }
5323
5324 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5325 {
5326         kvm_queue_exception(vcpu, UD_VECTOR);
5327         return 1;
5328 }
5329
5330 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5331 {
5332         return 1;
5333 }
5334
5335 static int handle_monitor(struct kvm_vcpu *vcpu)
5336 {
5337         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5338         return handle_nop(vcpu);
5339 }
5340
5341 static int handle_invpcid(struct kvm_vcpu *vcpu)
5342 {
5343         u32 vmx_instruction_info;
5344         unsigned long type;
5345         bool pcid_enabled;
5346         gva_t gva;
5347         struct x86_exception e;
5348         unsigned i;
5349         unsigned long roots_to_free = 0;
5350         struct {
5351                 u64 pcid;
5352                 u64 gla;
5353         } operand;
5354
5355         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5356                 kvm_queue_exception(vcpu, UD_VECTOR);
5357                 return 1;
5358         }
5359
5360         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5361         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5362
5363         if (type > 3) {
5364                 kvm_inject_gp(vcpu, 0);
5365                 return 1;
5366         }
5367
5368         /* According to the Intel instruction reference, the memory operand
5369          * is read even if it isn't needed (e.g., for type==all)
5370          */
5371         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5372                                 vmx_instruction_info, false,
5373                                 sizeof(operand), &gva))
5374                 return 1;
5375
5376         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5377                 kvm_inject_page_fault(vcpu, &e);
5378                 return 1;
5379         }
5380
5381         if (operand.pcid >> 12 != 0) {
5382                 kvm_inject_gp(vcpu, 0);
5383                 return 1;
5384         }
5385
5386         pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
5387
5388         switch (type) {
5389         case INVPCID_TYPE_INDIV_ADDR:
5390                 if ((!pcid_enabled && (operand.pcid != 0)) ||
5391                     is_noncanonical_address(operand.gla, vcpu)) {
5392                         kvm_inject_gp(vcpu, 0);
5393                         return 1;
5394                 }
5395                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
5396                 return kvm_skip_emulated_instruction(vcpu);
5397
5398         case INVPCID_TYPE_SINGLE_CTXT:
5399                 if (!pcid_enabled && (operand.pcid != 0)) {
5400                         kvm_inject_gp(vcpu, 0);
5401                         return 1;
5402                 }
5403
5404                 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
5405                         kvm_mmu_sync_roots(vcpu);
5406                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5407                 }
5408
5409                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5410                         if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3)
5411                             == operand.pcid)
5412                                 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5413
5414                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
5415                 /*
5416                  * If neither the current cr3 nor any of the prev_roots use the
5417                  * given PCID, then nothing needs to be done here because a
5418                  * resync will happen anyway before switching to any other CR3.
5419                  */
5420
5421                 return kvm_skip_emulated_instruction(vcpu);
5422
5423         case INVPCID_TYPE_ALL_NON_GLOBAL:
5424                 /*
5425                  * Currently, KVM doesn't mark global entries in the shadow
5426                  * page tables, so a non-global flush just degenerates to a
5427                  * global flush. If needed, we could optimize this later by
5428                  * keeping track of global entries in shadow page tables.
5429                  */
5430
5431                 /* fall-through */
5432         case INVPCID_TYPE_ALL_INCL_GLOBAL:
5433                 kvm_mmu_unload(vcpu);
5434                 return kvm_skip_emulated_instruction(vcpu);
5435
5436         default:
5437                 BUG(); /* We have already checked above that type <= 3 */
5438         }
5439 }
5440
5441 static int handle_pml_full(struct kvm_vcpu *vcpu)
5442 {
5443         unsigned long exit_qualification;
5444
5445         trace_kvm_pml_full(vcpu->vcpu_id);
5446
5447         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5448
5449         /*
5450          * PML buffer FULL happened while executing iret from NMI,
5451          * "blocked by NMI" bit has to be set before next VM entry.
5452          */
5453         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5454                         enable_vnmi &&
5455                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5456                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5457                                 GUEST_INTR_STATE_NMI);
5458
5459         /*
5460          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5461          * here.., and there's no userspace involvement needed for PML.
5462          */
5463         return 1;
5464 }
5465
5466 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5467 {
5468         struct vcpu_vmx *vmx = to_vmx(vcpu);
5469
5470         if (!vmx->req_immediate_exit &&
5471             !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
5472                 kvm_lapic_expired_hv_timer(vcpu);
5473
5474         return 1;
5475 }
5476
5477 /*
5478  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5479  * are overwritten by nested_vmx_setup() when nested=1.
5480  */
5481 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5482 {
5483         kvm_queue_exception(vcpu, UD_VECTOR);
5484         return 1;
5485 }
5486
5487 static int handle_encls(struct kvm_vcpu *vcpu)
5488 {
5489         /*
5490          * SGX virtualization is not yet supported.  There is no software
5491          * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5492          * to prevent the guest from executing ENCLS.
5493          */
5494         kvm_queue_exception(vcpu, UD_VECTOR);
5495         return 1;
5496 }
5497
5498 /*
5499  * The exit handlers return 1 if the exit was handled fully and guest execution
5500  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5501  * to be done to userspace and return 0.
5502  */
5503 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5504         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5505         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5506         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5507         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
5508         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5509         [EXIT_REASON_CR_ACCESS]               = handle_cr,
5510         [EXIT_REASON_DR_ACCESS]               = handle_dr,
5511         [EXIT_REASON_CPUID]                   = handle_cpuid,
5512         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
5513         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
5514         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
5515         [EXIT_REASON_HLT]                     = handle_halt,
5516         [EXIT_REASON_INVD]                    = handle_invd,
5517         [EXIT_REASON_INVLPG]                  = handle_invlpg,
5518         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
5519         [EXIT_REASON_VMCALL]                  = handle_vmcall,
5520         [EXIT_REASON_VMCLEAR]                 = handle_vmx_instruction,
5521         [EXIT_REASON_VMLAUNCH]                = handle_vmx_instruction,
5522         [EXIT_REASON_VMPTRLD]                 = handle_vmx_instruction,
5523         [EXIT_REASON_VMPTRST]                 = handle_vmx_instruction,
5524         [EXIT_REASON_VMREAD]                  = handle_vmx_instruction,
5525         [EXIT_REASON_VMRESUME]                = handle_vmx_instruction,
5526         [EXIT_REASON_VMWRITE]                 = handle_vmx_instruction,
5527         [EXIT_REASON_VMOFF]                   = handle_vmx_instruction,
5528         [EXIT_REASON_VMON]                    = handle_vmx_instruction,
5529         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5530         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5531         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5532         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5533         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
5534         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
5535         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5536         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5537         [EXIT_REASON_GDTR_IDTR]               = handle_desc,
5538         [EXIT_REASON_LDTR_TR]                 = handle_desc,
5539         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
5540         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5541         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5542         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
5543         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5544         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
5545         [EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5546         [EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5547         [EXIT_REASON_RDRAND]                  = handle_invalid_op,
5548         [EXIT_REASON_RDSEED]                  = handle_invalid_op,
5549         [EXIT_REASON_XSAVES]                  = handle_xsaves,
5550         [EXIT_REASON_XRSTORS]                 = handle_xrstors,
5551         [EXIT_REASON_PML_FULL]                = handle_pml_full,
5552         [EXIT_REASON_INVPCID]                 = handle_invpcid,
5553         [EXIT_REASON_VMFUNC]                  = handle_vmx_instruction,
5554         [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
5555         [EXIT_REASON_ENCLS]                   = handle_encls,
5556 };
5557
5558 static const int kvm_vmx_max_exit_handlers =
5559         ARRAY_SIZE(kvm_vmx_exit_handlers);
5560
5561 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5562 {
5563         *info1 = vmcs_readl(EXIT_QUALIFICATION);
5564         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5565 }
5566
5567 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5568 {
5569         if (vmx->pml_pg) {
5570                 __free_page(vmx->pml_pg);
5571                 vmx->pml_pg = NULL;
5572         }
5573 }
5574
5575 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5576 {
5577         struct vcpu_vmx *vmx = to_vmx(vcpu);
5578         u64 *pml_buf;
5579         u16 pml_idx;
5580
5581         pml_idx = vmcs_read16(GUEST_PML_INDEX);
5582
5583         /* Do nothing if PML buffer is empty */
5584         if (pml_idx == (PML_ENTITY_NUM - 1))
5585                 return;
5586
5587         /* PML index always points to next available PML buffer entity */
5588         if (pml_idx >= PML_ENTITY_NUM)
5589                 pml_idx = 0;
5590         else
5591                 pml_idx++;
5592
5593         pml_buf = page_address(vmx->pml_pg);
5594         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5595                 u64 gpa;
5596
5597                 gpa = pml_buf[pml_idx];
5598                 WARN_ON(gpa & (PAGE_SIZE - 1));
5599                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5600         }
5601
5602         /* reset PML index */
5603         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5604 }
5605
5606 /*
5607  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5608  * Called before reporting dirty_bitmap to userspace.
5609  */
5610 static void kvm_flush_pml_buffers(struct kvm *kvm)
5611 {
5612         int i;
5613         struct kvm_vcpu *vcpu;
5614         /*
5615          * We only need to kick vcpu out of guest mode here, as PML buffer
5616          * is flushed at beginning of all VMEXITs, and it's obvious that only
5617          * vcpus running in guest are possible to have unflushed GPAs in PML
5618          * buffer.
5619          */
5620         kvm_for_each_vcpu(i, vcpu, kvm)
5621                 kvm_vcpu_kick(vcpu);
5622 }
5623
5624 static void vmx_dump_sel(char *name, uint32_t sel)
5625 {
5626         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5627                name, vmcs_read16(sel),
5628                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5629                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5630                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5631 }
5632
5633 static void vmx_dump_dtsel(char *name, uint32_t limit)
5634 {
5635         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5636                name, vmcs_read32(limit),
5637                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5638 }
5639
5640 void dump_vmcs(void)
5641 {
5642         u32 vmentry_ctl, vmexit_ctl;
5643         u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5644         unsigned long cr4;
5645         u64 efer;
5646         int i, n;
5647
5648         if (!dump_invalid_vmcs) {
5649                 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5650                 return;
5651         }
5652
5653         vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5654         vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5655         cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5656         pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5657         cr4 = vmcs_readl(GUEST_CR4);
5658         efer = vmcs_read64(GUEST_IA32_EFER);
5659         secondary_exec_control = 0;
5660         if (cpu_has_secondary_exec_ctrls())
5661                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5662
5663         pr_err("*** Guest State ***\n");
5664         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5665                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5666                vmcs_readl(CR0_GUEST_HOST_MASK));
5667         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5668                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5669         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5670         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5671             (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5672         {
5673                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5674                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5675                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5676                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5677         }
5678         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5679                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5680         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5681                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5682         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5683                vmcs_readl(GUEST_SYSENTER_ESP),
5684                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5685         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5686         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5687         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5688         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5689         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5690         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5691         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5692         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5693         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5694         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5695         if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5696             (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5697                 pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
5698                        efer, vmcs_read64(GUEST_IA32_PAT));
5699         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5700                vmcs_read64(GUEST_IA32_DEBUGCTL),
5701                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5702         if (cpu_has_load_perf_global_ctrl() &&
5703             vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5704                 pr_err("PerfGlobCtl = 0x%016llx\n",
5705                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5706         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5707                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5708         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5709                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5710                vmcs_read32(GUEST_ACTIVITY_STATE));
5711         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5712                 pr_err("InterruptStatus = %04x\n",
5713                        vmcs_read16(GUEST_INTR_STATUS));
5714
5715         pr_err("*** Host State ***\n");
5716         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5717                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5718         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5719                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5720                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5721                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5722                vmcs_read16(HOST_TR_SELECTOR));
5723         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5724                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5725                vmcs_readl(HOST_TR_BASE));
5726         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5727                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5728         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5729                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5730                vmcs_readl(HOST_CR4));
5731         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5732                vmcs_readl(HOST_IA32_SYSENTER_ESP),
5733                vmcs_read32(HOST_IA32_SYSENTER_CS),
5734                vmcs_readl(HOST_IA32_SYSENTER_EIP));
5735         if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5736                 pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
5737                        vmcs_read64(HOST_IA32_EFER),
5738                        vmcs_read64(HOST_IA32_PAT));
5739         if (cpu_has_load_perf_global_ctrl() &&
5740             vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5741                 pr_err("PerfGlobCtl = 0x%016llx\n",
5742                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5743
5744         pr_err("*** Control State ***\n");
5745         pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5746                pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5747         pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5748         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5749                vmcs_read32(EXCEPTION_BITMAP),
5750                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5751                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5752         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5753                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5754                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5755                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5756         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5757                vmcs_read32(VM_EXIT_INTR_INFO),
5758                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5759                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5760         pr_err("        reason=%08x qualification=%016lx\n",
5761                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5762         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5763                vmcs_read32(IDT_VECTORING_INFO_FIELD),
5764                vmcs_read32(IDT_VECTORING_ERROR_CODE));
5765         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5766         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5767                 pr_err("TSC Multiplier = 0x%016llx\n",
5768                        vmcs_read64(TSC_MULTIPLIER));
5769         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5770                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5771                         u16 status = vmcs_read16(GUEST_INTR_STATUS);
5772                         pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5773                 }
5774                 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5775                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5776                         pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5777                 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5778         }
5779         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5780                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5781         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5782                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5783         n = vmcs_read32(CR3_TARGET_COUNT);
5784         for (i = 0; i + 1 < n; i += 4)
5785                 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
5786                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
5787                        i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
5788         if (i < n)
5789                 pr_err("CR3 target%u=%016lx\n",
5790                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
5791         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5792                 pr_err("PLE Gap=%08x Window=%08x\n",
5793                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5794         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5795                 pr_err("Virtual processor ID = 0x%04x\n",
5796                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
5797 }
5798
5799 /*
5800  * The guest has exited.  See if we can fix it or if we need userspace
5801  * assistance.
5802  */
5803 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
5804 {
5805         struct vcpu_vmx *vmx = to_vmx(vcpu);
5806         u32 exit_reason = vmx->exit_reason;
5807         u32 vectoring_info = vmx->idt_vectoring_info;
5808
5809         trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
5810
5811         /*
5812          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5813          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5814          * querying dirty_bitmap, we only need to kick all vcpus out of guest
5815          * mode as if vcpus is in root mode, the PML buffer must has been
5816          * flushed already.
5817          */
5818         if (enable_pml)
5819                 vmx_flush_pml_buffer(vcpu);
5820
5821         /* If guest state is invalid, start emulating */
5822         if (vmx->emulation_required)
5823                 return handle_invalid_guest_state(vcpu);
5824
5825         if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
5826                 return nested_vmx_reflect_vmexit(vcpu, exit_reason);
5827
5828         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5829                 dump_vmcs();
5830                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5831                 vcpu->run->fail_entry.hardware_entry_failure_reason
5832                         = exit_reason;
5833                 return 0;
5834         }
5835
5836         if (unlikely(vmx->fail)) {
5837                 dump_vmcs();
5838                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5839                 vcpu->run->fail_entry.hardware_entry_failure_reason
5840                         = vmcs_read32(VM_INSTRUCTION_ERROR);
5841                 return 0;
5842         }
5843
5844         /*
5845          * Note:
5846          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5847          * delivery event since it indicates guest is accessing MMIO.
5848          * The vm-exit can be triggered again after return to guest that
5849          * will cause infinite loop.
5850          */
5851         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5852                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5853                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
5854                         exit_reason != EXIT_REASON_PML_FULL &&
5855                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
5856                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5857                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5858                 vcpu->run->internal.ndata = 3;
5859                 vcpu->run->internal.data[0] = vectoring_info;
5860                 vcpu->run->internal.data[1] = exit_reason;
5861                 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5862                 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
5863                         vcpu->run->internal.ndata++;
5864                         vcpu->run->internal.data[3] =
5865                                 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5866                 }
5867                 return 0;
5868         }
5869
5870         if (unlikely(!enable_vnmi &&
5871                      vmx->loaded_vmcs->soft_vnmi_blocked)) {
5872                 if (vmx_interrupt_allowed(vcpu)) {
5873                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5874                 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5875                            vcpu->arch.nmi_pending) {
5876                         /*
5877                          * This CPU don't support us in finding the end of an
5878                          * NMI-blocked window if the guest runs with IRQs
5879                          * disabled. So we pull the trigger after 1 s of
5880                          * futile waiting, but inform the user about this.
5881                          */
5882                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5883                                "state on VCPU %d after 1 s timeout\n",
5884                                __func__, vcpu->vcpu_id);
5885                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5886                 }
5887         }
5888
5889         if (exit_reason < kvm_vmx_max_exit_handlers
5890             && kvm_vmx_exit_handlers[exit_reason])
5891                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
5892         else {
5893                 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
5894                                 exit_reason);
5895                 dump_vmcs();
5896                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5897                 vcpu->run->internal.suberror =
5898                         KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
5899                 vcpu->run->internal.ndata = 1;
5900                 vcpu->run->internal.data[0] = exit_reason;
5901                 return 0;
5902         }
5903 }
5904
5905 /*
5906  * Software based L1D cache flush which is used when microcode providing
5907  * the cache control MSR is not loaded.
5908  *
5909  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
5910  * flush it is required to read in 64 KiB because the replacement algorithm
5911  * is not exactly LRU. This could be sized at runtime via topology
5912  * information but as all relevant affected CPUs have 32KiB L1D cache size
5913  * there is no point in doing so.
5914  */
5915 static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
5916 {
5917         int size = PAGE_SIZE << L1D_CACHE_ORDER;
5918
5919         /*
5920          * This code is only executed when the the flush mode is 'cond' or
5921          * 'always'
5922          */
5923         if (static_branch_likely(&vmx_l1d_flush_cond)) {
5924                 bool flush_l1d;
5925
5926                 /*
5927                  * Clear the per-vcpu flush bit, it gets set again
5928                  * either from vcpu_run() or from one of the unsafe
5929                  * VMEXIT handlers.
5930                  */
5931                 flush_l1d = vcpu->arch.l1tf_flush_l1d;
5932                 vcpu->arch.l1tf_flush_l1d = false;
5933
5934                 /*
5935                  * Clear the per-cpu flush bit, it gets set again from
5936                  * the interrupt handlers.
5937                  */
5938                 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
5939                 kvm_clear_cpu_l1tf_flush_l1d();
5940
5941                 if (!flush_l1d)
5942                         return;
5943         }
5944
5945         vcpu->stat.l1d_flush++;
5946
5947         if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
5948                 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
5949                 return;
5950         }
5951
5952         asm volatile(
5953                 /* First ensure the pages are in the TLB */
5954                 "xorl   %%eax, %%eax\n"
5955                 ".Lpopulate_tlb:\n\t"
5956                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
5957                 "addl   $4096, %%eax\n\t"
5958                 "cmpl   %%eax, %[size]\n\t"
5959                 "jne    .Lpopulate_tlb\n\t"
5960                 "xorl   %%eax, %%eax\n\t"
5961                 "cpuid\n\t"
5962                 /* Now fill the cache */
5963                 "xorl   %%eax, %%eax\n"
5964                 ".Lfill_cache:\n"
5965                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
5966                 "addl   $64, %%eax\n\t"
5967                 "cmpl   %%eax, %[size]\n\t"
5968                 "jne    .Lfill_cache\n\t"
5969                 "lfence\n"
5970                 :: [flush_pages] "r" (vmx_l1d_flush_pages),
5971                     [size] "r" (size)
5972                 : "eax", "ebx", "ecx", "edx");
5973 }
5974
5975 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5976 {
5977         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5978
5979         if (is_guest_mode(vcpu) &&
5980                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
5981                 return;
5982
5983         if (irr == -1 || tpr < irr) {
5984                 vmcs_write32(TPR_THRESHOLD, 0);
5985                 return;
5986         }
5987
5988         vmcs_write32(TPR_THRESHOLD, irr);
5989 }
5990
5991 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
5992 {
5993         struct vcpu_vmx *vmx = to_vmx(vcpu);
5994         u32 sec_exec_control;
5995
5996         if (!lapic_in_kernel(vcpu))
5997                 return;
5998
5999         if (!flexpriority_enabled &&
6000             !cpu_has_vmx_virtualize_x2apic_mode())
6001                 return;
6002
6003         /* Postpone execution until vmcs01 is the current VMCS. */
6004         if (is_guest_mode(vcpu)) {
6005                 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6006                 return;
6007         }
6008
6009         sec_exec_control = secondary_exec_controls_get(vmx);
6010         sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6011                               SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6012
6013         switch (kvm_get_apic_mode(vcpu)) {
6014         case LAPIC_MODE_INVALID:
6015                 WARN_ONCE(true, "Invalid local APIC state");
6016         case LAPIC_MODE_DISABLED:
6017                 break;
6018         case LAPIC_MODE_XAPIC:
6019                 if (flexpriority_enabled) {
6020                         sec_exec_control |=
6021                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6022                         vmx_flush_tlb(vcpu, true);
6023                 }
6024                 break;
6025         case LAPIC_MODE_X2APIC:
6026                 if (cpu_has_vmx_virtualize_x2apic_mode())
6027                         sec_exec_control |=
6028                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6029                 break;
6030         }
6031         secondary_exec_controls_set(vmx, sec_exec_control);
6032
6033         vmx_update_msr_bitmap(vcpu);
6034 }
6035
6036 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
6037 {
6038         if (!is_guest_mode(vcpu)) {
6039                 vmcs_write64(APIC_ACCESS_ADDR, hpa);
6040                 vmx_flush_tlb(vcpu, true);
6041         }
6042 }
6043
6044 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6045 {
6046         u16 status;
6047         u8 old;
6048
6049         if (max_isr == -1)
6050                 max_isr = 0;
6051
6052         status = vmcs_read16(GUEST_INTR_STATUS);
6053         old = status >> 8;
6054         if (max_isr != old) {
6055                 status &= 0xff;
6056                 status |= max_isr << 8;
6057                 vmcs_write16(GUEST_INTR_STATUS, status);
6058         }
6059 }
6060
6061 static void vmx_set_rvi(int vector)
6062 {
6063         u16 status;
6064         u8 old;
6065
6066         if (vector == -1)
6067                 vector = 0;
6068
6069         status = vmcs_read16(GUEST_INTR_STATUS);
6070         old = (u8)status & 0xff;
6071         if ((u8)vector != old) {
6072                 status &= ~0xff;
6073                 status |= (u8)vector;
6074                 vmcs_write16(GUEST_INTR_STATUS, status);
6075         }
6076 }
6077
6078 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6079 {
6080         /*
6081          * When running L2, updating RVI is only relevant when
6082          * vmcs12 virtual-interrupt-delivery enabled.
6083          * However, it can be enabled only when L1 also
6084          * intercepts external-interrupts and in that case
6085          * we should not update vmcs02 RVI but instead intercept
6086          * interrupt. Therefore, do nothing when running L2.
6087          */
6088         if (!is_guest_mode(vcpu))
6089                 vmx_set_rvi(max_irr);
6090 }
6091
6092 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6093 {
6094         struct vcpu_vmx *vmx = to_vmx(vcpu);
6095         int max_irr;
6096         bool max_irr_updated;
6097
6098         WARN_ON(!vcpu->arch.apicv_active);
6099         if (pi_test_on(&vmx->pi_desc)) {
6100                 pi_clear_on(&vmx->pi_desc);
6101                 /*
6102                  * IOMMU can write to PIR.ON, so the barrier matters even on UP.
6103                  * But on x86 this is just a compiler barrier anyway.
6104                  */
6105                 smp_mb__after_atomic();
6106                 max_irr_updated =
6107                         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6108
6109                 /*
6110                  * If we are running L2 and L1 has a new pending interrupt
6111                  * which can be injected, we should re-evaluate
6112                  * what should be done with this new L1 interrupt.
6113                  * If L1 intercepts external-interrupts, we should
6114                  * exit from L2 to L1. Otherwise, interrupt should be
6115                  * delivered directly to L2.
6116                  */
6117                 if (is_guest_mode(vcpu) && max_irr_updated) {
6118                         if (nested_exit_on_intr(vcpu))
6119                                 kvm_vcpu_exiting_guest_mode(vcpu);
6120                         else
6121                                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6122                 }
6123         } else {
6124                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6125         }
6126         vmx_hwapic_irr_update(vcpu, max_irr);
6127         return max_irr;
6128 }
6129
6130 static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
6131 {
6132         return pi_test_on(vcpu_to_pi_desc(vcpu));
6133 }
6134
6135 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6136 {
6137         if (!kvm_vcpu_apicv_active(vcpu))
6138                 return;
6139
6140         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6141         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6142         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6143         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6144 }
6145
6146 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6147 {
6148         struct vcpu_vmx *vmx = to_vmx(vcpu);
6149
6150         pi_clear_on(&vmx->pi_desc);
6151         memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6152 }
6153
6154 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6155 {
6156         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6157
6158         /* if exit due to PF check for async PF */
6159         if (is_page_fault(vmx->exit_intr_info))
6160                 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
6161
6162         /* Handle machine checks before interrupts are enabled */
6163         if (is_machine_check(vmx->exit_intr_info))
6164                 kvm_machine_check();
6165
6166         /* We need to handle NMIs before interrupts are enabled */
6167         if (is_nmi(vmx->exit_intr_info)) {
6168                 kvm_before_interrupt(&vmx->vcpu);
6169                 asm("int $2");
6170                 kvm_after_interrupt(&vmx->vcpu);
6171         }
6172 }
6173
6174 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6175 {
6176         unsigned int vector;
6177         unsigned long entry;
6178 #ifdef CONFIG_X86_64
6179         unsigned long tmp;
6180 #endif
6181         gate_desc *desc;
6182         u32 intr_info;
6183
6184         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6185         if (WARN_ONCE(!is_external_intr(intr_info),
6186             "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6187                 return;
6188
6189         vector = intr_info & INTR_INFO_VECTOR_MASK;
6190         desc = (gate_desc *)host_idt_base + vector;
6191         entry = gate_offset(desc);
6192
6193         kvm_before_interrupt(vcpu);
6194
6195         asm volatile(
6196 #ifdef CONFIG_X86_64
6197                 "mov %%" _ASM_SP ", %[sp]\n\t"
6198                 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6199                 "push $%c[ss]\n\t"
6200                 "push %[sp]\n\t"
6201 #endif
6202                 "pushf\n\t"
6203                 __ASM_SIZE(push) " $%c[cs]\n\t"
6204                 CALL_NOSPEC
6205                 :
6206 #ifdef CONFIG_X86_64
6207                 [sp]"=&r"(tmp),
6208 #endif
6209                 ASM_CALL_CONSTRAINT
6210                 :
6211                 THUNK_TARGET(entry),
6212                 [ss]"i"(__KERNEL_DS),
6213                 [cs]"i"(__KERNEL_CS)
6214         );
6215
6216         kvm_after_interrupt(vcpu);
6217 }
6218 STACK_FRAME_NON_STANDARD(handle_external_interrupt_irqoff);
6219
6220 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6221 {
6222         struct vcpu_vmx *vmx = to_vmx(vcpu);
6223
6224         if (vmx->exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6225                 handle_external_interrupt_irqoff(vcpu);
6226         else if (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI)
6227                 handle_exception_nmi_irqoff(vmx);
6228 }
6229
6230 static bool vmx_has_emulated_msr(int index)
6231 {
6232         switch (index) {
6233         case MSR_IA32_SMBASE:
6234                 /*
6235                  * We cannot do SMM unless we can run the guest in big
6236                  * real mode.
6237                  */
6238                 return enable_unrestricted_guest || emulate_invalid_guest_state;
6239         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6240                 return nested;
6241         case MSR_AMD64_VIRT_SPEC_CTRL:
6242                 /* This is AMD only.  */
6243                 return false;
6244         default:
6245                 return true;
6246         }
6247 }
6248
6249 static bool vmx_pt_supported(void)
6250 {
6251         return pt_mode == PT_MODE_HOST_GUEST;
6252 }
6253
6254 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6255 {
6256         u32 exit_intr_info;
6257         bool unblock_nmi;
6258         u8 vector;
6259         bool idtv_info_valid;
6260
6261         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6262
6263         if (enable_vnmi) {
6264                 if (vmx->loaded_vmcs->nmi_known_unmasked)
6265                         return;
6266                 /*
6267                  * Can't use vmx->exit_intr_info since we're not sure what
6268                  * the exit reason is.
6269                  */
6270                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6271                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6272                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6273                 /*
6274                  * SDM 3: 27.7.1.2 (September 2008)
6275                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
6276                  * a guest IRET fault.
6277                  * SDM 3: 23.2.2 (September 2008)
6278                  * Bit 12 is undefined in any of the following cases:
6279                  *  If the VM exit sets the valid bit in the IDT-vectoring
6280                  *   information field.
6281                  *  If the VM exit is due to a double fault.
6282                  */
6283                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6284                     vector != DF_VECTOR && !idtv_info_valid)
6285                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6286                                       GUEST_INTR_STATE_NMI);
6287                 else
6288                         vmx->loaded_vmcs->nmi_known_unmasked =
6289                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6290                                   & GUEST_INTR_STATE_NMI);
6291         } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6292                 vmx->loaded_vmcs->vnmi_blocked_time +=
6293                         ktime_to_ns(ktime_sub(ktime_get(),
6294                                               vmx->loaded_vmcs->entry_time));
6295 }
6296
6297 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6298                                       u32 idt_vectoring_info,
6299                                       int instr_len_field,
6300                                       int error_code_field)
6301 {
6302         u8 vector;
6303         int type;
6304         bool idtv_info_valid;
6305
6306         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6307
6308         vcpu->arch.nmi_injected = false;
6309         kvm_clear_exception_queue(vcpu);
6310         kvm_clear_interrupt_queue(vcpu);
6311
6312         if (!idtv_info_valid)
6313                 return;
6314
6315         kvm_make_request(KVM_REQ_EVENT, vcpu);
6316
6317         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6318         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6319
6320         switch (type) {
6321         case INTR_TYPE_NMI_INTR:
6322                 vcpu->arch.nmi_injected = true;
6323                 /*
6324                  * SDM 3: 27.7.1.2 (September 2008)
6325                  * Clear bit "block by NMI" before VM entry if a NMI
6326                  * delivery faulted.
6327                  */
6328                 vmx_set_nmi_mask(vcpu, false);
6329                 break;
6330         case INTR_TYPE_SOFT_EXCEPTION:
6331                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6332                 /* fall through */
6333         case INTR_TYPE_HARD_EXCEPTION:
6334                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6335                         u32 err = vmcs_read32(error_code_field);
6336                         kvm_requeue_exception_e(vcpu, vector, err);
6337                 } else
6338                         kvm_requeue_exception(vcpu, vector);
6339                 break;
6340         case INTR_TYPE_SOFT_INTR:
6341                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6342                 /* fall through */
6343         case INTR_TYPE_EXT_INTR:
6344                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6345                 break;
6346         default:
6347                 break;
6348         }
6349 }
6350
6351 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6352 {
6353         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6354                                   VM_EXIT_INSTRUCTION_LEN,
6355                                   IDT_VECTORING_ERROR_CODE);
6356 }
6357
6358 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6359 {
6360         __vmx_complete_interrupts(vcpu,
6361                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6362                                   VM_ENTRY_INSTRUCTION_LEN,
6363                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
6364
6365         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6366 }
6367
6368 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6369 {
6370         int i, nr_msrs;
6371         struct perf_guest_switch_msr *msrs;
6372
6373         msrs = perf_guest_get_msrs(&nr_msrs);
6374
6375         if (!msrs)
6376                 return;
6377
6378         for (i = 0; i < nr_msrs; i++)
6379                 if (msrs[i].host == msrs[i].guest)
6380                         clear_atomic_switch_msr(vmx, msrs[i].msr);
6381                 else
6382                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6383                                         msrs[i].host, false);
6384 }
6385
6386 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6387 {
6388         struct vcpu_vmx *vmx = to_vmx(vcpu);
6389         u64 tscl;
6390         u32 delta_tsc;
6391
6392         if (vmx->req_immediate_exit) {
6393                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6394                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6395         } else if (vmx->hv_deadline_tsc != -1) {
6396                 tscl = rdtsc();
6397                 if (vmx->hv_deadline_tsc > tscl)
6398                         /* set_hv_timer ensures the delta fits in 32-bits */
6399                         delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6400                                 cpu_preemption_timer_multi);
6401                 else
6402                         delta_tsc = 0;
6403
6404                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6405                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6406         } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6407                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6408                 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6409         }
6410 }
6411
6412 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6413 {
6414         if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6415                 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6416                 vmcs_writel(HOST_RSP, host_rsp);
6417         }
6418 }
6419
6420 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
6421
6422 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
6423 {
6424         struct vcpu_vmx *vmx = to_vmx(vcpu);
6425         unsigned long cr3, cr4;
6426
6427         /* Record the guest's net vcpu time for enforced NMI injections. */
6428         if (unlikely(!enable_vnmi &&
6429                      vmx->loaded_vmcs->soft_vnmi_blocked))
6430                 vmx->loaded_vmcs->entry_time = ktime_get();
6431
6432         /* Don't enter VMX if guest state is invalid, let the exit handler
6433            start emulation until we arrive back to a valid state */
6434         if (vmx->emulation_required)
6435                 return;
6436
6437         if (vmx->ple_window_dirty) {
6438                 vmx->ple_window_dirty = false;
6439                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6440         }
6441
6442         if (vmx->nested.need_vmcs12_to_shadow_sync)
6443                 nested_sync_vmcs12_to_shadow(vcpu);
6444
6445         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6446                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6447         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6448                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6449
6450         cr3 = __get_current_cr3_fast();
6451         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6452                 vmcs_writel(HOST_CR3, cr3);
6453                 vmx->loaded_vmcs->host_state.cr3 = cr3;
6454         }
6455
6456         cr4 = cr4_read_shadow();
6457         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6458                 vmcs_writel(HOST_CR4, cr4);
6459                 vmx->loaded_vmcs->host_state.cr4 = cr4;
6460         }
6461
6462         /* When single-stepping over STI and MOV SS, we must clear the
6463          * corresponding interruptibility bits in the guest state. Otherwise
6464          * vmentry fails as it then expects bit 14 (BS) in pending debug
6465          * exceptions being set, but that's not correct for the guest debugging
6466          * case. */
6467         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6468                 vmx_set_interrupt_shadow(vcpu, 0);
6469
6470         kvm_load_guest_xcr0(vcpu);
6471
6472         if (static_cpu_has(X86_FEATURE_PKU) &&
6473             kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
6474             vcpu->arch.pkru != vmx->host_pkru)
6475                 __write_pkru(vcpu->arch.pkru);
6476
6477         pt_guest_enter(vmx);
6478
6479         atomic_switch_perf_msrs(vmx);
6480
6481         if (enable_preemption_timer)
6482                 vmx_update_hv_timer(vcpu);
6483
6484         if (lapic_in_kernel(vcpu) &&
6485                 vcpu->arch.apic->lapic_timer.timer_advance_ns)
6486                 kvm_wait_lapic_expire(vcpu);
6487
6488         /*
6489          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6490          * it's non-zero. Since vmentry is serialising on affected CPUs, there
6491          * is no need to worry about the conditional branch over the wrmsr
6492          * being speculatively taken.
6493          */
6494         x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6495
6496         /* L1D Flush includes CPU buffer clear to mitigate MDS */
6497         if (static_branch_unlikely(&vmx_l1d_should_flush))
6498                 vmx_l1d_flush(vcpu);
6499         else if (static_branch_unlikely(&mds_user_clear))
6500                 mds_clear_cpu_buffers();
6501
6502         if (vcpu->arch.cr2 != read_cr2())
6503                 write_cr2(vcpu->arch.cr2);
6504
6505         vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6506                                    vmx->loaded_vmcs->launched);
6507
6508         vcpu->arch.cr2 = read_cr2();
6509
6510         /*
6511          * We do not use IBRS in the kernel. If this vCPU has used the
6512          * SPEC_CTRL MSR it may have left it on; save the value and
6513          * turn it off. This is much more efficient than blindly adding
6514          * it to the atomic save/restore list. Especially as the former
6515          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6516          *
6517          * For non-nested case:
6518          * If the L01 MSR bitmap does not intercept the MSR, then we need to
6519          * save it.
6520          *
6521          * For nested case:
6522          * If the L02 MSR bitmap does not intercept the MSR, then we need to
6523          * save it.
6524          */
6525         if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6526                 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6527
6528         x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6529
6530         /* All fields are clean at this point */
6531         if (static_branch_unlikely(&enable_evmcs))
6532                 current_evmcs->hv_clean_fields |=
6533                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6534
6535         if (static_branch_unlikely(&enable_evmcs))
6536                 current_evmcs->hv_vp_id = vcpu->arch.hyperv.vp_index;
6537
6538         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6539         if (vmx->host_debugctlmsr)
6540                 update_debugctlmsr(vmx->host_debugctlmsr);
6541
6542 #ifndef CONFIG_X86_64
6543         /*
6544          * The sysexit path does not restore ds/es, so we must set them to
6545          * a reasonable value ourselves.
6546          *
6547          * We can't defer this to vmx_prepare_switch_to_host() since that
6548          * function may be executed in interrupt context, which saves and
6549          * restore segments around it, nullifying its effect.
6550          */
6551         loadsegment(ds, __USER_DS);
6552         loadsegment(es, __USER_DS);
6553 #endif
6554
6555         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6556                                   | (1 << VCPU_EXREG_RFLAGS)
6557                                   | (1 << VCPU_EXREG_PDPTR)
6558                                   | (1 << VCPU_EXREG_SEGMENTS)
6559                                   | (1 << VCPU_EXREG_CR3));
6560         vcpu->arch.regs_dirty = 0;
6561
6562         pt_guest_exit(vmx);
6563
6564         /*
6565          * eager fpu is enabled if PKEY is supported and CR4 is switched
6566          * back on host, so it is safe to read guest PKRU from current
6567          * XSAVE.
6568          */
6569         if (static_cpu_has(X86_FEATURE_PKU) &&
6570             kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
6571                 vcpu->arch.pkru = rdpkru();
6572                 if (vcpu->arch.pkru != vmx->host_pkru)
6573                         __write_pkru(vmx->host_pkru);
6574         }
6575
6576         kvm_put_guest_xcr0(vcpu);
6577
6578         vmx->nested.nested_run_pending = 0;
6579         vmx->idt_vectoring_info = 0;
6580
6581         vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
6582         if ((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
6583                 kvm_machine_check();
6584
6585         if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6586                 return;
6587
6588         vmx->loaded_vmcs->launched = 1;
6589         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6590
6591         vmx_recover_nmi_blocking(vmx);
6592         vmx_complete_interrupts(vmx);
6593 }
6594
6595 static struct kvm *vmx_vm_alloc(void)
6596 {
6597         struct kvm_vmx *kvm_vmx = __vmalloc(sizeof(struct kvm_vmx),
6598                                             GFP_KERNEL_ACCOUNT | __GFP_ZERO,
6599                                             PAGE_KERNEL);
6600         return &kvm_vmx->kvm;
6601 }
6602
6603 static void vmx_vm_free(struct kvm *kvm)
6604 {
6605         kfree(kvm->arch.hyperv.hv_pa_pg);
6606         vfree(to_kvm_vmx(kvm));
6607 }
6608
6609 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6610 {
6611         struct vcpu_vmx *vmx = to_vmx(vcpu);
6612
6613         if (enable_pml)
6614                 vmx_destroy_pml_buffer(vmx);
6615         free_vpid(vmx->vpid);
6616         nested_vmx_free_vcpu(vcpu);
6617         free_loaded_vmcs(vmx->loaded_vmcs);
6618         kfree(vmx->guest_msrs);
6619         kvm_vcpu_uninit(vcpu);
6620         kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu);
6621         kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6622         kmem_cache_free(kvm_vcpu_cache, vmx);
6623 }
6624
6625 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6626 {
6627         int err;
6628         struct vcpu_vmx *vmx;
6629         unsigned long *msr_bitmap;
6630         int cpu;
6631
6632         BUILD_BUG_ON_MSG(offsetof(struct vcpu_vmx, vcpu) != 0,
6633                 "struct kvm_vcpu must be at offset 0 for arch usercopy region");
6634
6635         vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
6636         if (!vmx)
6637                 return ERR_PTR(-ENOMEM);
6638
6639         vmx->vcpu.arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
6640                         GFP_KERNEL_ACCOUNT);
6641         if (!vmx->vcpu.arch.user_fpu) {
6642                 printk(KERN_ERR "kvm: failed to allocate kvm userspace's fpu\n");
6643                 err = -ENOMEM;
6644                 goto free_partial_vcpu;
6645         }
6646
6647         vmx->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
6648                         GFP_KERNEL_ACCOUNT);
6649         if (!vmx->vcpu.arch.guest_fpu) {
6650                 printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
6651                 err = -ENOMEM;
6652                 goto free_user_fpu;
6653         }
6654
6655         vmx->vpid = allocate_vpid();
6656
6657         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6658         if (err)
6659                 goto free_vcpu;
6660
6661         err = -ENOMEM;
6662
6663         /*
6664          * If PML is turned on, failure on enabling PML just results in failure
6665          * of creating the vcpu, therefore we can simplify PML logic (by
6666          * avoiding dealing with cases, such as enabling PML partially on vcpus
6667          * for the guest, etc.
6668          */
6669         if (enable_pml) {
6670                 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6671                 if (!vmx->pml_pg)
6672                         goto uninit_vcpu;
6673         }
6674
6675         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
6676         BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
6677                      > PAGE_SIZE);
6678
6679         if (!vmx->guest_msrs)
6680                 goto free_pml;
6681
6682         err = alloc_loaded_vmcs(&vmx->vmcs01);
6683         if (err < 0)
6684                 goto free_msrs;
6685
6686         msr_bitmap = vmx->vmcs01.msr_bitmap;
6687         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R);
6688         vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
6689         vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
6690         vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6691         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6692         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6693         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6694         if (kvm_cstate_in_guest(kvm)) {
6695                 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C1_RES, MSR_TYPE_R);
6696                 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6697                 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6698                 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6699         }
6700         vmx->msr_bitmap_mode = 0;
6701
6702         vmx->loaded_vmcs = &vmx->vmcs01;
6703         cpu = get_cpu();
6704         vmx_vcpu_load(&vmx->vcpu, cpu);
6705         vmx->vcpu.cpu = cpu;
6706         vmx_vcpu_setup(vmx);
6707         vmx_vcpu_put(&vmx->vcpu);
6708         put_cpu();
6709         if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
6710                 err = alloc_apic_access_page(kvm);
6711                 if (err)
6712                         goto free_vmcs;
6713         }
6714
6715         if (enable_ept && !enable_unrestricted_guest) {
6716                 err = init_rmode_identity_map(kvm);
6717                 if (err)
6718                         goto free_vmcs;
6719         }
6720
6721         if (nested)
6722                 nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
6723                                            vmx_capability.ept,
6724                                            kvm_vcpu_apicv_active(&vmx->vcpu));
6725         else
6726                 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6727
6728         vmx->nested.posted_intr_nv = -1;
6729         vmx->nested.current_vmptr = -1ull;
6730
6731         vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
6732
6733         /*
6734          * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6735          * or POSTED_INTR_WAKEUP_VECTOR.
6736          */
6737         vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6738         vmx->pi_desc.sn = 1;
6739
6740         vmx->ept_pointer = INVALID_PAGE;
6741
6742         return &vmx->vcpu;
6743
6744 free_vmcs:
6745         free_loaded_vmcs(vmx->loaded_vmcs);
6746 free_msrs:
6747         kfree(vmx->guest_msrs);
6748 free_pml:
6749         vmx_destroy_pml_buffer(vmx);
6750 uninit_vcpu:
6751         kvm_vcpu_uninit(&vmx->vcpu);
6752 free_vcpu:
6753         free_vpid(vmx->vpid);
6754         kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6755 free_user_fpu:
6756         kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu);
6757 free_partial_vcpu:
6758         kmem_cache_free(kvm_vcpu_cache, vmx);
6759         return ERR_PTR(err);
6760 }
6761
6762 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6763 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6764
6765 static int vmx_vm_init(struct kvm *kvm)
6766 {
6767         spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
6768
6769         if (!ple_gap)
6770                 kvm->arch.pause_in_guest = true;
6771
6772         if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6773                 switch (l1tf_mitigation) {
6774                 case L1TF_MITIGATION_OFF:
6775                 case L1TF_MITIGATION_FLUSH_NOWARN:
6776                         /* 'I explicitly don't care' is set */
6777                         break;
6778                 case L1TF_MITIGATION_FLUSH:
6779                 case L1TF_MITIGATION_FLUSH_NOSMT:
6780                 case L1TF_MITIGATION_FULL:
6781                         /*
6782                          * Warn upon starting the first VM in a potentially
6783                          * insecure environment.
6784                          */
6785                         if (sched_smt_active())
6786                                 pr_warn_once(L1TF_MSG_SMT);
6787                         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6788                                 pr_warn_once(L1TF_MSG_L1D);
6789                         break;
6790                 case L1TF_MITIGATION_FULL_FORCE:
6791                         /* Flush is enforced */
6792                         break;
6793                 }
6794         }
6795         return 0;
6796 }
6797
6798 static int __init vmx_check_processor_compat(void)
6799 {
6800         struct vmcs_config vmcs_conf;
6801         struct vmx_capability vmx_cap;
6802
6803         if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6804                 return -EIO;
6805         if (nested)
6806                 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept,
6807                                            enable_apicv);
6808         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6809                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6810                                 smp_processor_id());
6811                 return -EIO;
6812         }
6813         return 0;
6814 }
6815
6816 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6817 {
6818         u8 cache;
6819         u64 ipat = 0;
6820
6821         /* For VT-d and EPT combination
6822          * 1. MMIO: always map as UC
6823          * 2. EPT with VT-d:
6824          *   a. VT-d without snooping control feature: can't guarantee the
6825          *      result, try to trust guest.
6826          *   b. VT-d with snooping control feature: snooping control feature of
6827          *      VT-d engine can guarantee the cache correctness. Just set it
6828          *      to WB to keep consistent with host. So the same as item 3.
6829          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6830          *    consistent with host MTRR
6831          */
6832         if (is_mmio) {
6833                 cache = MTRR_TYPE_UNCACHABLE;
6834                 goto exit;
6835         }
6836
6837         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
6838                 ipat = VMX_EPT_IPAT_BIT;
6839                 cache = MTRR_TYPE_WRBACK;
6840                 goto exit;
6841         }
6842
6843         if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
6844                 ipat = VMX_EPT_IPAT_BIT;
6845                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
6846                         cache = MTRR_TYPE_WRBACK;
6847                 else
6848                         cache = MTRR_TYPE_UNCACHABLE;
6849                 goto exit;
6850         }
6851
6852         cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
6853
6854 exit:
6855         return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
6856 }
6857
6858 static int vmx_get_lpage_level(void)
6859 {
6860         if (enable_ept && !cpu_has_vmx_ept_1g_page())
6861                 return PT_DIRECTORY_LEVEL;
6862         else
6863                 /* For shadow and EPT supported 1GB page */
6864                 return PT_PDPE_LEVEL;
6865 }
6866
6867 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
6868 {
6869         /*
6870          * These bits in the secondary execution controls field
6871          * are dynamic, the others are mostly based on the hypervisor
6872          * architecture and the guest's CPUID.  Do not touch the
6873          * dynamic bits.
6874          */
6875         u32 mask =
6876                 SECONDARY_EXEC_SHADOW_VMCS |
6877                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6878                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6879                 SECONDARY_EXEC_DESC;
6880
6881         u32 new_ctl = vmx->secondary_exec_control;
6882         u32 cur_ctl = secondary_exec_controls_get(vmx);
6883
6884         secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
6885 }
6886
6887 /*
6888  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
6889  * (indicating "allowed-1") if they are supported in the guest's CPUID.
6890  */
6891 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
6892 {
6893         struct vcpu_vmx *vmx = to_vmx(vcpu);
6894         struct kvm_cpuid_entry2 *entry;
6895
6896         vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
6897         vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
6898
6899 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
6900         if (entry && (entry->_reg & (_cpuid_mask)))                     \
6901                 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);     \
6902 } while (0)
6903
6904         entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
6905         cr4_fixed1_update(X86_CR4_VME,        edx, bit(X86_FEATURE_VME));
6906         cr4_fixed1_update(X86_CR4_PVI,        edx, bit(X86_FEATURE_VME));
6907         cr4_fixed1_update(X86_CR4_TSD,        edx, bit(X86_FEATURE_TSC));
6908         cr4_fixed1_update(X86_CR4_DE,         edx, bit(X86_FEATURE_DE));
6909         cr4_fixed1_update(X86_CR4_PSE,        edx, bit(X86_FEATURE_PSE));
6910         cr4_fixed1_update(X86_CR4_PAE,        edx, bit(X86_FEATURE_PAE));
6911         cr4_fixed1_update(X86_CR4_MCE,        edx, bit(X86_FEATURE_MCE));
6912         cr4_fixed1_update(X86_CR4_PGE,        edx, bit(X86_FEATURE_PGE));
6913         cr4_fixed1_update(X86_CR4_OSFXSR,     edx, bit(X86_FEATURE_FXSR));
6914         cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
6915         cr4_fixed1_update(X86_CR4_VMXE,       ecx, bit(X86_FEATURE_VMX));
6916         cr4_fixed1_update(X86_CR4_SMXE,       ecx, bit(X86_FEATURE_SMX));
6917         cr4_fixed1_update(X86_CR4_PCIDE,      ecx, bit(X86_FEATURE_PCID));
6918         cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, bit(X86_FEATURE_XSAVE));
6919
6920         entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
6921         cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, bit(X86_FEATURE_FSGSBASE));
6922         cr4_fixed1_update(X86_CR4_SMEP,       ebx, bit(X86_FEATURE_SMEP));
6923         cr4_fixed1_update(X86_CR4_SMAP,       ebx, bit(X86_FEATURE_SMAP));
6924         cr4_fixed1_update(X86_CR4_PKE,        ecx, bit(X86_FEATURE_PKU));
6925         cr4_fixed1_update(X86_CR4_UMIP,       ecx, bit(X86_FEATURE_UMIP));
6926
6927 #undef cr4_fixed1_update
6928 }
6929
6930 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
6931 {
6932         struct vcpu_vmx *vmx = to_vmx(vcpu);
6933
6934         if (kvm_mpx_supported()) {
6935                 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
6936
6937                 if (mpx_enabled) {
6938                         vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
6939                         vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
6940                 } else {
6941                         vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
6942                         vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
6943                 }
6944         }
6945 }
6946
6947 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
6948 {
6949         struct vcpu_vmx *vmx = to_vmx(vcpu);
6950         struct kvm_cpuid_entry2 *best = NULL;
6951         int i;
6952
6953         for (i = 0; i < PT_CPUID_LEAVES; i++) {
6954                 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
6955                 if (!best)
6956                         return;
6957                 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
6958                 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
6959                 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
6960                 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
6961         }
6962
6963         /* Get the number of configurable Address Ranges for filtering */
6964         vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
6965                                                 PT_CAP_num_address_ranges);
6966
6967         /* Initialize and clear the no dependency bits */
6968         vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
6969                         RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
6970
6971         /*
6972          * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
6973          * will inject an #GP
6974          */
6975         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
6976                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
6977
6978         /*
6979          * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
6980          * PSBFreq can be set
6981          */
6982         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
6983                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
6984                                 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
6985
6986         /*
6987          * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
6988          * MTCFreq can be set
6989          */
6990         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
6991                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
6992                                 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
6993
6994         /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
6995         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
6996                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
6997                                                         RTIT_CTL_PTW_EN);
6998
6999         /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7000         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7001                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7002
7003         /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7004         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7005                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7006
7007         /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
7008         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7009                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7010
7011         /* unmask address range configure area */
7012         for (i = 0; i < vmx->pt_desc.addr_range; i++)
7013                 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7014 }
7015
7016 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7017 {
7018         struct vcpu_vmx *vmx = to_vmx(vcpu);
7019
7020         if (cpu_has_secondary_exec_ctrls()) {
7021                 vmx_compute_secondary_exec_control(vmx);
7022                 vmcs_set_secondary_exec_control(vmx);
7023         }
7024
7025         if (nested_vmx_allowed(vcpu))
7026                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7027                         FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7028         else
7029                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7030                         ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7031
7032         if (nested_vmx_allowed(vcpu)) {
7033                 nested_vmx_cr_fixed1_bits_update(vcpu);
7034                 nested_vmx_entry_exit_ctls_update(vcpu);
7035         }
7036
7037         if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7038                         guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7039                 update_intel_pt_cfg(vcpu);
7040 }
7041
7042 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7043 {
7044         if (func == 1 && nested)
7045                 entry->ecx |= bit(X86_FEATURE_VMX);
7046 }
7047
7048 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7049 {
7050         to_vmx(vcpu)->req_immediate_exit = true;
7051 }
7052
7053 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7054                                struct x86_instruction_info *info,
7055                                enum x86_intercept_stage stage)
7056 {
7057         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7058         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7059
7060         /*
7061          * RDPID causes #UD if disabled through secondary execution controls.
7062          * Because it is marked as EmulateOnUD, we need to intercept it here.
7063          */
7064         if (info->intercept == x86_intercept_rdtscp &&
7065             !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
7066                 ctxt->exception.vector = UD_VECTOR;
7067                 ctxt->exception.error_code_valid = false;
7068                 return X86EMUL_PROPAGATE_FAULT;
7069         }
7070
7071         /* TODO: check more intercepts... */
7072         return X86EMUL_CONTINUE;
7073 }
7074
7075 #ifdef CONFIG_X86_64
7076 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7077 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7078                                   u64 divisor, u64 *result)
7079 {
7080         u64 low = a << shift, high = a >> (64 - shift);
7081
7082         /* To avoid the overflow on divq */
7083         if (high >= divisor)
7084                 return 1;
7085
7086         /* Low hold the result, high hold rem which is discarded */
7087         asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7088             "rm" (divisor), "0" (low), "1" (high));
7089         *result = low;
7090
7091         return 0;
7092 }
7093
7094 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7095                             bool *expired)
7096 {
7097         struct vcpu_vmx *vmx;
7098         u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7099         struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7100
7101         if (kvm_mwait_in_guest(vcpu->kvm) ||
7102                 kvm_can_post_timer_interrupt(vcpu))
7103                 return -EOPNOTSUPP;
7104
7105         vmx = to_vmx(vcpu);
7106         tscl = rdtsc();
7107         guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7108         delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7109         lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7110                                                     ktimer->timer_advance_ns);
7111
7112         if (delta_tsc > lapic_timer_advance_cycles)
7113                 delta_tsc -= lapic_timer_advance_cycles;
7114         else
7115                 delta_tsc = 0;
7116
7117         /* Convert to host delta tsc if tsc scaling is enabled */
7118         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7119             delta_tsc && u64_shl_div_u64(delta_tsc,
7120                                 kvm_tsc_scaling_ratio_frac_bits,
7121                                 vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7122                 return -ERANGE;
7123
7124         /*
7125          * If the delta tsc can't fit in the 32 bit after the multi shift,
7126          * we can't use the preemption timer.
7127          * It's possible that it fits on later vmentries, but checking
7128          * on every vmentry is costly so we just use an hrtimer.
7129          */
7130         if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7131                 return -ERANGE;
7132
7133         vmx->hv_deadline_tsc = tscl + delta_tsc;
7134         *expired = !delta_tsc;
7135         return 0;
7136 }
7137
7138 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7139 {
7140         to_vmx(vcpu)->hv_deadline_tsc = -1;
7141 }
7142 #endif
7143
7144 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7145 {
7146         if (!kvm_pause_in_guest(vcpu->kvm))
7147                 shrink_ple_window(vcpu);
7148 }
7149
7150 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7151                                      struct kvm_memory_slot *slot)
7152 {
7153         kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7154         kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7155 }
7156
7157 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7158                                        struct kvm_memory_slot *slot)
7159 {
7160         kvm_mmu_slot_set_dirty(kvm, slot);
7161 }
7162
7163 static void vmx_flush_log_dirty(struct kvm *kvm)
7164 {
7165         kvm_flush_pml_buffers(kvm);
7166 }
7167
7168 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
7169 {
7170         struct vmcs12 *vmcs12;
7171         struct vcpu_vmx *vmx = to_vmx(vcpu);
7172         gpa_t gpa, dst;
7173
7174         if (is_guest_mode(vcpu)) {
7175                 WARN_ON_ONCE(vmx->nested.pml_full);
7176
7177                 /*
7178                  * Check if PML is enabled for the nested guest.
7179                  * Whether eptp bit 6 is set is already checked
7180                  * as part of A/D emulation.
7181                  */
7182                 vmcs12 = get_vmcs12(vcpu);
7183                 if (!nested_cpu_has_pml(vmcs12))
7184                         return 0;
7185
7186                 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
7187                         vmx->nested.pml_full = true;
7188                         return 1;
7189                 }
7190
7191                 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
7192                 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
7193
7194                 if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
7195                                          offset_in_page(dst), sizeof(gpa)))
7196                         return 0;
7197
7198                 vmcs12->guest_pml_index--;
7199         }
7200
7201         return 0;
7202 }
7203
7204 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7205                                            struct kvm_memory_slot *memslot,
7206                                            gfn_t offset, unsigned long mask)
7207 {
7208         kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7209 }
7210
7211 static void __pi_post_block(struct kvm_vcpu *vcpu)
7212 {
7213         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7214         struct pi_desc old, new;
7215         unsigned int dest;
7216
7217         do {
7218                 old.control = new.control = pi_desc->control;
7219                 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
7220                      "Wakeup handler not enabled while the VCPU is blocked\n");
7221
7222                 dest = cpu_physical_id(vcpu->cpu);
7223
7224                 if (x2apic_enabled())
7225                         new.ndst = dest;
7226                 else
7227                         new.ndst = (dest << 8) & 0xFF00;
7228
7229                 /* set 'NV' to 'notification vector' */
7230                 new.nv = POSTED_INTR_VECTOR;
7231         } while (cmpxchg64(&pi_desc->control, old.control,
7232                            new.control) != old.control);
7233
7234         if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
7235                 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7236                 list_del(&vcpu->blocked_vcpu_list);
7237                 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7238                 vcpu->pre_pcpu = -1;
7239         }
7240 }
7241
7242 /*
7243  * This routine does the following things for vCPU which is going
7244  * to be blocked if VT-d PI is enabled.
7245  * - Store the vCPU to the wakeup list, so when interrupts happen
7246  *   we can find the right vCPU to wake up.
7247  * - Change the Posted-interrupt descriptor as below:
7248  *      'NDST' <-- vcpu->pre_pcpu
7249  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
7250  * - If 'ON' is set during this process, which means at least one
7251  *   interrupt is posted for this vCPU, we cannot block it, in
7252  *   this case, return 1, otherwise, return 0.
7253  *
7254  */
7255 static int pi_pre_block(struct kvm_vcpu *vcpu)
7256 {
7257         unsigned int dest;
7258         struct pi_desc old, new;
7259         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7260
7261         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
7262                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
7263                 !kvm_vcpu_apicv_active(vcpu))
7264                 return 0;
7265
7266         WARN_ON(irqs_disabled());
7267         local_irq_disable();
7268         if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
7269                 vcpu->pre_pcpu = vcpu->cpu;
7270                 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7271                 list_add_tail(&vcpu->blocked_vcpu_list,
7272                               &per_cpu(blocked_vcpu_on_cpu,
7273                                        vcpu->pre_pcpu));
7274                 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7275         }
7276
7277         do {
7278                 old.control = new.control = pi_desc->control;
7279
7280                 WARN((pi_desc->sn == 1),
7281                      "Warning: SN field of posted-interrupts "
7282                      "is set before blocking\n");
7283
7284                 /*
7285                  * Since vCPU can be preempted during this process,
7286                  * vcpu->cpu could be different with pre_pcpu, we
7287                  * need to set pre_pcpu as the destination of wakeup
7288                  * notification event, then we can find the right vCPU
7289                  * to wakeup in wakeup handler if interrupts happen
7290                  * when the vCPU is in blocked state.
7291                  */
7292                 dest = cpu_physical_id(vcpu->pre_pcpu);
7293
7294                 if (x2apic_enabled())
7295                         new.ndst = dest;
7296                 else
7297                         new.ndst = (dest << 8) & 0xFF00;
7298
7299                 /* set 'NV' to 'wakeup vector' */
7300                 new.nv = POSTED_INTR_WAKEUP_VECTOR;
7301         } while (cmpxchg64(&pi_desc->control, old.control,
7302                            new.control) != old.control);
7303
7304         /* We should not block the vCPU if an interrupt is posted for it.  */
7305         if (pi_test_on(pi_desc) == 1)
7306                 __pi_post_block(vcpu);
7307
7308         local_irq_enable();
7309         return (vcpu->pre_pcpu == -1);
7310 }
7311
7312 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7313 {
7314         if (pi_pre_block(vcpu))
7315                 return 1;
7316
7317         if (kvm_lapic_hv_timer_in_use(vcpu))
7318                 kvm_lapic_switch_to_sw_timer(vcpu);
7319
7320         return 0;
7321 }
7322
7323 static void pi_post_block(struct kvm_vcpu *vcpu)
7324 {
7325         if (vcpu->pre_pcpu == -1)
7326                 return;
7327
7328         WARN_ON(irqs_disabled());
7329         local_irq_disable();
7330         __pi_post_block(vcpu);
7331         local_irq_enable();
7332 }
7333
7334 static void vmx_post_block(struct kvm_vcpu *vcpu)
7335 {
7336         if (kvm_x86_ops->set_hv_timer)
7337                 kvm_lapic_switch_to_hv_timer(vcpu);
7338
7339         pi_post_block(vcpu);
7340 }
7341
7342 /*
7343  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
7344  *
7345  * @kvm: kvm
7346  * @host_irq: host irq of the interrupt
7347  * @guest_irq: gsi of the interrupt
7348  * @set: set or unset PI
7349  * returns 0 on success, < 0 on failure
7350  */
7351 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
7352                               uint32_t guest_irq, bool set)
7353 {
7354         struct kvm_kernel_irq_routing_entry *e;
7355         struct kvm_irq_routing_table *irq_rt;
7356         struct kvm_lapic_irq irq;
7357         struct kvm_vcpu *vcpu;
7358         struct vcpu_data vcpu_info;
7359         int idx, ret = 0;
7360
7361         if (!kvm_arch_has_assigned_device(kvm) ||
7362                 !irq_remapping_cap(IRQ_POSTING_CAP) ||
7363                 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
7364                 return 0;
7365
7366         idx = srcu_read_lock(&kvm->irq_srcu);
7367         irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
7368         if (guest_irq >= irq_rt->nr_rt_entries ||
7369             hlist_empty(&irq_rt->map[guest_irq])) {
7370                 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
7371                              guest_irq, irq_rt->nr_rt_entries);
7372                 goto out;
7373         }
7374
7375         hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
7376                 if (e->type != KVM_IRQ_ROUTING_MSI)
7377                         continue;
7378                 /*
7379                  * VT-d PI cannot support posting multicast/broadcast
7380                  * interrupts to a vCPU, we still use interrupt remapping
7381                  * for these kind of interrupts.
7382                  *
7383                  * For lowest-priority interrupts, we only support
7384                  * those with single CPU as the destination, e.g. user
7385                  * configures the interrupts via /proc/irq or uses
7386                  * irqbalance to make the interrupts single-CPU.
7387                  *
7388                  * We will support full lowest-priority interrupt later.
7389                  *
7390                  * In addition, we can only inject generic interrupts using
7391                  * the PI mechanism, refuse to route others through it.
7392                  */
7393
7394                 kvm_set_msi_irq(kvm, e, &irq);
7395                 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
7396                     !kvm_irq_is_postable(&irq)) {
7397                         /*
7398                          * Make sure the IRTE is in remapped mode if
7399                          * we don't handle it in posted mode.
7400                          */
7401                         ret = irq_set_vcpu_affinity(host_irq, NULL);
7402                         if (ret < 0) {
7403                                 printk(KERN_INFO
7404                                    "failed to back to remapped mode, irq: %u\n",
7405                                    host_irq);
7406                                 goto out;
7407                         }
7408
7409                         continue;
7410                 }
7411
7412                 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
7413                 vcpu_info.vector = irq.vector;
7414
7415                 trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
7416                                 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
7417
7418                 if (set)
7419                         ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
7420                 else
7421                         ret = irq_set_vcpu_affinity(host_irq, NULL);
7422
7423                 if (ret < 0) {
7424                         printk(KERN_INFO "%s: failed to update PI IRTE\n",
7425                                         __func__);
7426                         goto out;
7427                 }
7428         }
7429
7430         ret = 0;
7431 out:
7432         srcu_read_unlock(&kvm->irq_srcu, idx);
7433         return ret;
7434 }
7435
7436 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7437 {
7438         if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7439                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7440                         FEATURE_CONTROL_LMCE;
7441         else
7442                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7443                         ~FEATURE_CONTROL_LMCE;
7444 }
7445
7446 static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
7447 {
7448         /* we need a nested vmexit to enter SMM, postpone if run is pending */
7449         if (to_vmx(vcpu)->nested.nested_run_pending)
7450                 return 0;
7451         return 1;
7452 }
7453
7454 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7455 {
7456         struct vcpu_vmx *vmx = to_vmx(vcpu);
7457
7458         vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7459         if (vmx->nested.smm.guest_mode)
7460                 nested_vmx_vmexit(vcpu, -1, 0, 0);
7461
7462         vmx->nested.smm.vmxon = vmx->nested.vmxon;
7463         vmx->nested.vmxon = false;
7464         vmx_clear_hlt(vcpu);
7465         return 0;
7466 }
7467
7468 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7469 {
7470         struct vcpu_vmx *vmx = to_vmx(vcpu);
7471         int ret;
7472
7473         if (vmx->nested.smm.vmxon) {
7474                 vmx->nested.vmxon = true;
7475                 vmx->nested.smm.vmxon = false;
7476         }
7477
7478         if (vmx->nested.smm.guest_mode) {
7479                 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7480                 if (ret)
7481                         return ret;
7482
7483                 vmx->nested.smm.guest_mode = false;
7484         }
7485         return 0;
7486 }
7487
7488 static int enable_smi_window(struct kvm_vcpu *vcpu)
7489 {
7490         return 0;
7491 }
7492
7493 static bool vmx_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7494 {
7495         return false;
7496 }
7497
7498 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7499 {
7500         return to_vmx(vcpu)->nested.vmxon;
7501 }
7502
7503 static __init int hardware_setup(void)
7504 {
7505         unsigned long host_bndcfgs;
7506         struct desc_ptr dt;
7507         int r, i;
7508
7509         rdmsrl_safe(MSR_EFER, &host_efer);
7510
7511         store_idt(&dt);
7512         host_idt_base = dt.address;
7513
7514         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
7515                 kvm_define_shared_msr(i, vmx_msr_index[i]);
7516
7517         if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7518                 return -EIO;
7519
7520         if (boot_cpu_has(X86_FEATURE_NX))
7521                 kvm_enable_efer_bits(EFER_NX);
7522
7523         if (boot_cpu_has(X86_FEATURE_MPX)) {
7524                 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7525                 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7526         }
7527
7528         if (boot_cpu_has(X86_FEATURE_XSAVES))
7529                 rdmsrl(MSR_IA32_XSS, host_xss);
7530
7531         if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7532             !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7533                 enable_vpid = 0;
7534
7535         if (!cpu_has_vmx_ept() ||
7536             !cpu_has_vmx_ept_4levels() ||
7537             !cpu_has_vmx_ept_mt_wb() ||
7538             !cpu_has_vmx_invept_global())
7539                 enable_ept = 0;
7540
7541         if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7542                 enable_ept_ad_bits = 0;
7543
7544         if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7545                 enable_unrestricted_guest = 0;
7546
7547         if (!cpu_has_vmx_flexpriority())
7548                 flexpriority_enabled = 0;
7549
7550         if (!cpu_has_virtual_nmis())
7551                 enable_vnmi = 0;
7552
7553         /*
7554          * set_apic_access_page_addr() is used to reload apic access
7555          * page upon invalidation.  No need to do anything if not
7556          * using the APIC_ACCESS_ADDR VMCS field.
7557          */
7558         if (!flexpriority_enabled)
7559                 kvm_x86_ops->set_apic_access_page_addr = NULL;
7560
7561         if (!cpu_has_vmx_tpr_shadow())
7562                 kvm_x86_ops->update_cr8_intercept = NULL;
7563
7564         if (enable_ept && !cpu_has_vmx_ept_2m_page())
7565                 kvm_disable_largepages();
7566
7567 #if IS_ENABLED(CONFIG_HYPERV)
7568         if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7569             && enable_ept) {
7570                 kvm_x86_ops->tlb_remote_flush = hv_remote_flush_tlb;
7571                 kvm_x86_ops->tlb_remote_flush_with_range =
7572                                 hv_remote_flush_tlb_with_range;
7573         }
7574 #endif
7575
7576         if (!cpu_has_vmx_ple()) {
7577                 ple_gap = 0;
7578                 ple_window = 0;
7579                 ple_window_grow = 0;
7580                 ple_window_max = 0;
7581                 ple_window_shrink = 0;
7582         }
7583
7584         if (!cpu_has_vmx_apicv()) {
7585                 enable_apicv = 0;
7586                 kvm_x86_ops->sync_pir_to_irr = NULL;
7587         }
7588
7589         if (cpu_has_vmx_tsc_scaling()) {
7590                 kvm_has_tsc_control = true;
7591                 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7592                 kvm_tsc_scaling_ratio_frac_bits = 48;
7593         }
7594
7595         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7596
7597         if (enable_ept)
7598                 vmx_enable_tdp();
7599         else
7600                 kvm_disable_tdp();
7601
7602         /*
7603          * Only enable PML when hardware supports PML feature, and both EPT
7604          * and EPT A/D bit features are enabled -- PML depends on them to work.
7605          */
7606         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7607                 enable_pml = 0;
7608
7609         if (!enable_pml) {
7610                 kvm_x86_ops->slot_enable_log_dirty = NULL;
7611                 kvm_x86_ops->slot_disable_log_dirty = NULL;
7612                 kvm_x86_ops->flush_log_dirty = NULL;
7613                 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
7614         }
7615
7616         if (!cpu_has_vmx_preemption_timer())
7617                 enable_preemption_timer = false;
7618
7619         if (enable_preemption_timer) {
7620                 u64 use_timer_freq = 5000ULL * 1000 * 1000;
7621                 u64 vmx_msr;
7622
7623                 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7624                 cpu_preemption_timer_multi =
7625                         vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7626
7627                 if (tsc_khz)
7628                         use_timer_freq = (u64)tsc_khz * 1000;
7629                 use_timer_freq >>= cpu_preemption_timer_multi;
7630
7631                 /*
7632                  * KVM "disables" the preemption timer by setting it to its max
7633                  * value.  Don't use the timer if it might cause spurious exits
7634                  * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7635                  */
7636                 if (use_timer_freq > 0xffffffffu / 10)
7637                         enable_preemption_timer = false;
7638         }
7639
7640         if (!enable_preemption_timer) {
7641                 kvm_x86_ops->set_hv_timer = NULL;
7642                 kvm_x86_ops->cancel_hv_timer = NULL;
7643                 kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit;
7644         }
7645
7646         kvm_set_posted_intr_wakeup_handler(wakeup_handler);
7647
7648         kvm_mce_cap_supported |= MCG_LMCE_P;
7649
7650         if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7651                 return -EINVAL;
7652         if (!enable_ept || !cpu_has_vmx_intel_pt())
7653                 pt_mode = PT_MODE_SYSTEM;
7654
7655         if (nested) {
7656                 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7657                                            vmx_capability.ept, enable_apicv);
7658
7659                 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7660                 if (r)
7661                         return r;
7662         }
7663
7664         r = alloc_kvm_area();
7665         if (r)
7666                 nested_vmx_hardware_unsetup();
7667         return r;
7668 }
7669
7670 static __exit void hardware_unsetup(void)
7671 {
7672         if (nested)
7673                 nested_vmx_hardware_unsetup();
7674
7675         free_kvm_area();
7676 }
7677
7678 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
7679         .cpu_has_kvm_support = cpu_has_kvm_support,
7680         .disabled_by_bios = vmx_disabled_by_bios,
7681         .hardware_setup = hardware_setup,
7682         .hardware_unsetup = hardware_unsetup,
7683         .check_processor_compatibility = vmx_check_processor_compat,
7684         .hardware_enable = hardware_enable,
7685         .hardware_disable = hardware_disable,
7686         .cpu_has_accelerated_tpr = report_flexpriority,
7687         .has_emulated_msr = vmx_has_emulated_msr,
7688
7689         .vm_init = vmx_vm_init,
7690         .vm_alloc = vmx_vm_alloc,
7691         .vm_free = vmx_vm_free,
7692
7693         .vcpu_create = vmx_create_vcpu,
7694         .vcpu_free = vmx_free_vcpu,
7695         .vcpu_reset = vmx_vcpu_reset,
7696
7697         .prepare_guest_switch = vmx_prepare_switch_to_guest,
7698         .vcpu_load = vmx_vcpu_load,
7699         .vcpu_put = vmx_vcpu_put,
7700
7701         .update_bp_intercept = update_exception_bitmap,
7702         .get_msr_feature = vmx_get_msr_feature,
7703         .get_msr = vmx_get_msr,
7704         .set_msr = vmx_set_msr,
7705         .get_segment_base = vmx_get_segment_base,
7706         .get_segment = vmx_get_segment,
7707         .set_segment = vmx_set_segment,
7708         .get_cpl = vmx_get_cpl,
7709         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7710         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7711         .decache_cr3 = vmx_decache_cr3,
7712         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7713         .set_cr0 = vmx_set_cr0,
7714         .set_cr3 = vmx_set_cr3,
7715         .set_cr4 = vmx_set_cr4,
7716         .set_efer = vmx_set_efer,
7717         .get_idt = vmx_get_idt,
7718         .set_idt = vmx_set_idt,
7719         .get_gdt = vmx_get_gdt,
7720         .set_gdt = vmx_set_gdt,
7721         .get_dr6 = vmx_get_dr6,
7722         .set_dr6 = vmx_set_dr6,
7723         .set_dr7 = vmx_set_dr7,
7724         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7725         .cache_reg = vmx_cache_reg,
7726         .get_rflags = vmx_get_rflags,
7727         .set_rflags = vmx_set_rflags,
7728
7729         .tlb_flush = vmx_flush_tlb,
7730         .tlb_flush_gva = vmx_flush_tlb_gva,
7731
7732         .run = vmx_vcpu_run,
7733         .handle_exit = vmx_handle_exit,
7734         .skip_emulated_instruction = __skip_emulated_instruction,
7735         .set_interrupt_shadow = vmx_set_interrupt_shadow,
7736         .get_interrupt_shadow = vmx_get_interrupt_shadow,
7737         .patch_hypercall = vmx_patch_hypercall,
7738         .set_irq = vmx_inject_irq,
7739         .set_nmi = vmx_inject_nmi,
7740         .queue_exception = vmx_queue_exception,
7741         .cancel_injection = vmx_cancel_injection,
7742         .interrupt_allowed = vmx_interrupt_allowed,
7743         .nmi_allowed = vmx_nmi_allowed,
7744         .get_nmi_mask = vmx_get_nmi_mask,
7745         .set_nmi_mask = vmx_set_nmi_mask,
7746         .enable_nmi_window = enable_nmi_window,
7747         .enable_irq_window = enable_irq_window,
7748         .update_cr8_intercept = update_cr8_intercept,
7749         .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7750         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7751         .get_enable_apicv = vmx_get_enable_apicv,
7752         .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7753         .load_eoi_exitmap = vmx_load_eoi_exitmap,
7754         .apicv_post_state_restore = vmx_apicv_post_state_restore,
7755         .hwapic_irr_update = vmx_hwapic_irr_update,
7756         .hwapic_isr_update = vmx_hwapic_isr_update,
7757         .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7758         .sync_pir_to_irr = vmx_sync_pir_to_irr,
7759         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7760         .dy_apicv_has_pending_interrupt = vmx_dy_apicv_has_pending_interrupt,
7761
7762         .set_tss_addr = vmx_set_tss_addr,
7763         .set_identity_map_addr = vmx_set_identity_map_addr,
7764         .get_tdp_level = get_ept_level,
7765         .get_mt_mask = vmx_get_mt_mask,
7766
7767         .get_exit_info = vmx_get_exit_info,
7768
7769         .get_lpage_level = vmx_get_lpage_level,
7770
7771         .cpuid_update = vmx_cpuid_update,
7772
7773         .rdtscp_supported = vmx_rdtscp_supported,
7774         .invpcid_supported = vmx_invpcid_supported,
7775
7776         .set_supported_cpuid = vmx_set_supported_cpuid,
7777
7778         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7779
7780         .read_l1_tsc_offset = vmx_read_l1_tsc_offset,
7781         .write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7782
7783         .set_tdp_cr3 = vmx_set_cr3,
7784
7785         .check_intercept = vmx_check_intercept,
7786         .handle_exit_irqoff = vmx_handle_exit_irqoff,
7787         .mpx_supported = vmx_mpx_supported,
7788         .xsaves_supported = vmx_xsaves_supported,
7789         .umip_emulated = vmx_umip_emulated,
7790         .pt_supported = vmx_pt_supported,
7791
7792         .request_immediate_exit = vmx_request_immediate_exit,
7793
7794         .sched_in = vmx_sched_in,
7795
7796         .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7797         .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7798         .flush_log_dirty = vmx_flush_log_dirty,
7799         .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7800         .write_log_dirty = vmx_write_pml_buffer,
7801
7802         .pre_block = vmx_pre_block,
7803         .post_block = vmx_post_block,
7804
7805         .pmu_ops = &intel_pmu_ops,
7806
7807         .update_pi_irte = vmx_update_pi_irte,
7808
7809 #ifdef CONFIG_X86_64
7810         .set_hv_timer = vmx_set_hv_timer,
7811         .cancel_hv_timer = vmx_cancel_hv_timer,
7812 #endif
7813
7814         .setup_mce = vmx_setup_mce,
7815
7816         .smi_allowed = vmx_smi_allowed,
7817         .pre_enter_smm = vmx_pre_enter_smm,
7818         .pre_leave_smm = vmx_pre_leave_smm,
7819         .enable_smi_window = enable_smi_window,
7820
7821         .check_nested_events = NULL,
7822         .get_nested_state = NULL,
7823         .set_nested_state = NULL,
7824         .get_vmcs12_pages = NULL,
7825         .nested_enable_evmcs = NULL,
7826         .nested_get_evmcs_version = NULL,
7827         .need_emulation_on_page_fault = vmx_need_emulation_on_page_fault,
7828         .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7829 };
7830
7831 static void vmx_cleanup_l1d_flush(void)
7832 {
7833         if (vmx_l1d_flush_pages) {
7834                 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7835                 vmx_l1d_flush_pages = NULL;
7836         }
7837         /* Restore state so sysfs ignores VMX */
7838         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7839 }
7840
7841 static void vmx_exit(void)
7842 {
7843 #ifdef CONFIG_KEXEC_CORE
7844         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7845         synchronize_rcu();
7846 #endif
7847
7848         kvm_exit();
7849
7850 #if IS_ENABLED(CONFIG_HYPERV)
7851         if (static_branch_unlikely(&enable_evmcs)) {
7852                 int cpu;
7853                 struct hv_vp_assist_page *vp_ap;
7854                 /*
7855                  * Reset everything to support using non-enlightened VMCS
7856                  * access later (e.g. when we reload the module with
7857                  * enlightened_vmcs=0)
7858                  */
7859                 for_each_online_cpu(cpu) {
7860                         vp_ap = hv_get_vp_assist_page(cpu);
7861
7862                         if (!vp_ap)
7863                                 continue;
7864
7865                         vp_ap->nested_control.features.directhypercall = 0;
7866                         vp_ap->current_nested_vmcs = 0;
7867                         vp_ap->enlighten_vmentry = 0;
7868                 }
7869
7870                 static_branch_disable(&enable_evmcs);
7871         }
7872 #endif
7873         vmx_cleanup_l1d_flush();
7874 }
7875 module_exit(vmx_exit);
7876
7877 static int __init vmx_init(void)
7878 {
7879         int r;
7880
7881 #if IS_ENABLED(CONFIG_HYPERV)
7882         /*
7883          * Enlightened VMCS usage should be recommended and the host needs
7884          * to support eVMCS v1 or above. We can also disable eVMCS support
7885          * with module parameter.
7886          */
7887         if (enlightened_vmcs &&
7888             ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
7889             (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
7890             KVM_EVMCS_VERSION) {
7891                 int cpu;
7892
7893                 /* Check that we have assist pages on all online CPUs */
7894                 for_each_online_cpu(cpu) {
7895                         if (!hv_get_vp_assist_page(cpu)) {
7896                                 enlightened_vmcs = false;
7897                                 break;
7898                         }
7899                 }
7900
7901                 if (enlightened_vmcs) {
7902                         pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
7903                         static_branch_enable(&enable_evmcs);
7904                 }
7905
7906                 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
7907                         vmx_x86_ops.enable_direct_tlbflush
7908                                 = hv_enable_direct_tlbflush;
7909
7910         } else {
7911                 enlightened_vmcs = false;
7912         }
7913 #endif
7914
7915         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7916                      __alignof__(struct vcpu_vmx), THIS_MODULE);
7917         if (r)
7918                 return r;
7919
7920         /*
7921          * Must be called after kvm_init() so enable_ept is properly set
7922          * up. Hand the parameter mitigation value in which was stored in
7923          * the pre module init parser. If no parameter was given, it will
7924          * contain 'auto' which will be turned into the default 'cond'
7925          * mitigation mode.
7926          */
7927         if (boot_cpu_has(X86_BUG_L1TF)) {
7928                 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
7929                 if (r) {
7930                         vmx_exit();
7931                         return r;
7932                 }
7933         }
7934
7935 #ifdef CONFIG_KEXEC_CORE
7936         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
7937                            crash_vmclear_local_loaded_vmcss);
7938 #endif
7939         vmx_check_vmcs12_offsets();
7940
7941         return 0;
7942 }
7943 module_init(vmx_init);