]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/vmx.c
Merge tag 'mips_fixes_4.16_2' of git://git.kernel.org/pub/scm/linux/kernel/git/jhogan...
[linux.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22 #include "lapic.h"
23
24 #include <linux/kvm_host.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/sched.h>
30 #include <linux/moduleparam.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/tboot.h>
35 #include <linux/hrtimer.h>
36 #include <linux/frame.h>
37 #include <linux/nospec.h>
38 #include "kvm_cache_regs.h"
39 #include "x86.h"
40
41 #include <asm/cpu.h>
42 #include <asm/io.h>
43 #include <asm/desc.h>
44 #include <asm/vmx.h>
45 #include <asm/virtext.h>
46 #include <asm/mce.h>
47 #include <asm/fpu/internal.h>
48 #include <asm/perf_event.h>
49 #include <asm/debugreg.h>
50 #include <asm/kexec.h>
51 #include <asm/apic.h>
52 #include <asm/irq_remapping.h>
53 #include <asm/mmu_context.h>
54 #include <asm/nospec-branch.h>
55
56 #include "trace.h"
57 #include "pmu.h"
58
59 #define __ex(x) __kvm_handle_fault_on_reboot(x)
60 #define __ex_clear(x, reg) \
61         ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
62
63 MODULE_AUTHOR("Qumranet");
64 MODULE_LICENSE("GPL");
65
66 static const struct x86_cpu_id vmx_cpu_id[] = {
67         X86_FEATURE_MATCH(X86_FEATURE_VMX),
68         {}
69 };
70 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
71
72 static bool __read_mostly enable_vpid = 1;
73 module_param_named(vpid, enable_vpid, bool, 0444);
74
75 static bool __read_mostly enable_vnmi = 1;
76 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
77
78 static bool __read_mostly flexpriority_enabled = 1;
79 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
80
81 static bool __read_mostly enable_ept = 1;
82 module_param_named(ept, enable_ept, bool, S_IRUGO);
83
84 static bool __read_mostly enable_unrestricted_guest = 1;
85 module_param_named(unrestricted_guest,
86                         enable_unrestricted_guest, bool, S_IRUGO);
87
88 static bool __read_mostly enable_ept_ad_bits = 1;
89 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
90
91 static bool __read_mostly emulate_invalid_guest_state = true;
92 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
93
94 static bool __read_mostly fasteoi = 1;
95 module_param(fasteoi, bool, S_IRUGO);
96
97 static bool __read_mostly enable_apicv = 1;
98 module_param(enable_apicv, bool, S_IRUGO);
99
100 static bool __read_mostly enable_shadow_vmcs = 1;
101 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
102 /*
103  * If nested=1, nested virtualization is supported, i.e., guests may use
104  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
105  * use VMX instructions.
106  */
107 static bool __read_mostly nested = 0;
108 module_param(nested, bool, S_IRUGO);
109
110 static u64 __read_mostly host_xss;
111
112 static bool __read_mostly enable_pml = 1;
113 module_param_named(pml, enable_pml, bool, S_IRUGO);
114
115 #define MSR_TYPE_R      1
116 #define MSR_TYPE_W      2
117 #define MSR_TYPE_RW     3
118
119 #define MSR_BITMAP_MODE_X2APIC          1
120 #define MSR_BITMAP_MODE_X2APIC_APICV    2
121 #define MSR_BITMAP_MODE_LM              4
122
123 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
124
125 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
126 static int __read_mostly cpu_preemption_timer_multi;
127 static bool __read_mostly enable_preemption_timer = 1;
128 #ifdef CONFIG_X86_64
129 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
130 #endif
131
132 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
133 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
134 #define KVM_VM_CR0_ALWAYS_ON                                            \
135         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
136 #define KVM_CR4_GUEST_OWNED_BITS                                      \
137         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
138          | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
139
140 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
141 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
142
143 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
144
145 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
146
147 /*
148  * Hyper-V requires all of these, so mark them as supported even though
149  * they are just treated the same as all-context.
150  */
151 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
152         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
153         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
154         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
155         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
156
157 /*
158  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
159  * ple_gap:    upper bound on the amount of time between two successive
160  *             executions of PAUSE in a loop. Also indicate if ple enabled.
161  *             According to test, this time is usually smaller than 128 cycles.
162  * ple_window: upper bound on the amount of time a guest is allowed to execute
163  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
164  *             less than 2^12 cycles
165  * Time is measured based on a counter that runs at the same rate as the TSC,
166  * refer SDM volume 3b section 21.6.13 & 22.1.3.
167  */
168 #define KVM_VMX_DEFAULT_PLE_GAP           128
169 #define KVM_VMX_DEFAULT_PLE_WINDOW        4096
170 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW   2
171 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
172 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX    \
173                 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
174
175 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
176 module_param(ple_gap, int, S_IRUGO);
177
178 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
179 module_param(ple_window, int, S_IRUGO);
180
181 /* Default doubles per-vcpu window every exit. */
182 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
183 module_param(ple_window_grow, int, S_IRUGO);
184
185 /* Default resets per-vcpu window every exit to ple_window. */
186 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
187 module_param(ple_window_shrink, int, S_IRUGO);
188
189 /* Default is to compute the maximum so we can never overflow. */
190 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
191 static int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
192 module_param(ple_window_max, int, S_IRUGO);
193
194 extern const ulong vmx_return;
195
196 #define NR_AUTOLOAD_MSRS 8
197
198 struct vmcs {
199         u32 revision_id;
200         u32 abort;
201         char data[0];
202 };
203
204 /*
205  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
206  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
207  * loaded on this CPU (so we can clear them if the CPU goes down).
208  */
209 struct loaded_vmcs {
210         struct vmcs *vmcs;
211         struct vmcs *shadow_vmcs;
212         int cpu;
213         bool launched;
214         bool nmi_known_unmasked;
215         unsigned long vmcs_host_cr3;    /* May not match real cr3 */
216         unsigned long vmcs_host_cr4;    /* May not match real cr4 */
217         /* Support for vnmi-less CPUs */
218         int soft_vnmi_blocked;
219         ktime_t entry_time;
220         s64 vnmi_blocked_time;
221         unsigned long *msr_bitmap;
222         struct list_head loaded_vmcss_on_cpu_link;
223 };
224
225 struct shared_msr_entry {
226         unsigned index;
227         u64 data;
228         u64 mask;
229 };
230
231 /*
232  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
233  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
234  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
235  * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
236  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
237  * More than one of these structures may exist, if L1 runs multiple L2 guests.
238  * nested_vmx_run() will use the data here to build the vmcs02: a VMCS for the
239  * underlying hardware which will be used to run L2.
240  * This structure is packed to ensure that its layout is identical across
241  * machines (necessary for live migration).
242  * If there are changes in this struct, VMCS12_REVISION must be changed.
243  */
244 typedef u64 natural_width;
245 struct __packed vmcs12 {
246         /* According to the Intel spec, a VMCS region must start with the
247          * following two fields. Then follow implementation-specific data.
248          */
249         u32 revision_id;
250         u32 abort;
251
252         u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
253         u32 padding[7]; /* room for future expansion */
254
255         u64 io_bitmap_a;
256         u64 io_bitmap_b;
257         u64 msr_bitmap;
258         u64 vm_exit_msr_store_addr;
259         u64 vm_exit_msr_load_addr;
260         u64 vm_entry_msr_load_addr;
261         u64 tsc_offset;
262         u64 virtual_apic_page_addr;
263         u64 apic_access_addr;
264         u64 posted_intr_desc_addr;
265         u64 vm_function_control;
266         u64 ept_pointer;
267         u64 eoi_exit_bitmap0;
268         u64 eoi_exit_bitmap1;
269         u64 eoi_exit_bitmap2;
270         u64 eoi_exit_bitmap3;
271         u64 eptp_list_address;
272         u64 xss_exit_bitmap;
273         u64 guest_physical_address;
274         u64 vmcs_link_pointer;
275         u64 pml_address;
276         u64 guest_ia32_debugctl;
277         u64 guest_ia32_pat;
278         u64 guest_ia32_efer;
279         u64 guest_ia32_perf_global_ctrl;
280         u64 guest_pdptr0;
281         u64 guest_pdptr1;
282         u64 guest_pdptr2;
283         u64 guest_pdptr3;
284         u64 guest_bndcfgs;
285         u64 host_ia32_pat;
286         u64 host_ia32_efer;
287         u64 host_ia32_perf_global_ctrl;
288         u64 padding64[8]; /* room for future expansion */
289         /*
290          * To allow migration of L1 (complete with its L2 guests) between
291          * machines of different natural widths (32 or 64 bit), we cannot have
292          * unsigned long fields with no explict size. We use u64 (aliased
293          * natural_width) instead. Luckily, x86 is little-endian.
294          */
295         natural_width cr0_guest_host_mask;
296         natural_width cr4_guest_host_mask;
297         natural_width cr0_read_shadow;
298         natural_width cr4_read_shadow;
299         natural_width cr3_target_value0;
300         natural_width cr3_target_value1;
301         natural_width cr3_target_value2;
302         natural_width cr3_target_value3;
303         natural_width exit_qualification;
304         natural_width guest_linear_address;
305         natural_width guest_cr0;
306         natural_width guest_cr3;
307         natural_width guest_cr4;
308         natural_width guest_es_base;
309         natural_width guest_cs_base;
310         natural_width guest_ss_base;
311         natural_width guest_ds_base;
312         natural_width guest_fs_base;
313         natural_width guest_gs_base;
314         natural_width guest_ldtr_base;
315         natural_width guest_tr_base;
316         natural_width guest_gdtr_base;
317         natural_width guest_idtr_base;
318         natural_width guest_dr7;
319         natural_width guest_rsp;
320         natural_width guest_rip;
321         natural_width guest_rflags;
322         natural_width guest_pending_dbg_exceptions;
323         natural_width guest_sysenter_esp;
324         natural_width guest_sysenter_eip;
325         natural_width host_cr0;
326         natural_width host_cr3;
327         natural_width host_cr4;
328         natural_width host_fs_base;
329         natural_width host_gs_base;
330         natural_width host_tr_base;
331         natural_width host_gdtr_base;
332         natural_width host_idtr_base;
333         natural_width host_ia32_sysenter_esp;
334         natural_width host_ia32_sysenter_eip;
335         natural_width host_rsp;
336         natural_width host_rip;
337         natural_width paddingl[8]; /* room for future expansion */
338         u32 pin_based_vm_exec_control;
339         u32 cpu_based_vm_exec_control;
340         u32 exception_bitmap;
341         u32 page_fault_error_code_mask;
342         u32 page_fault_error_code_match;
343         u32 cr3_target_count;
344         u32 vm_exit_controls;
345         u32 vm_exit_msr_store_count;
346         u32 vm_exit_msr_load_count;
347         u32 vm_entry_controls;
348         u32 vm_entry_msr_load_count;
349         u32 vm_entry_intr_info_field;
350         u32 vm_entry_exception_error_code;
351         u32 vm_entry_instruction_len;
352         u32 tpr_threshold;
353         u32 secondary_vm_exec_control;
354         u32 vm_instruction_error;
355         u32 vm_exit_reason;
356         u32 vm_exit_intr_info;
357         u32 vm_exit_intr_error_code;
358         u32 idt_vectoring_info_field;
359         u32 idt_vectoring_error_code;
360         u32 vm_exit_instruction_len;
361         u32 vmx_instruction_info;
362         u32 guest_es_limit;
363         u32 guest_cs_limit;
364         u32 guest_ss_limit;
365         u32 guest_ds_limit;
366         u32 guest_fs_limit;
367         u32 guest_gs_limit;
368         u32 guest_ldtr_limit;
369         u32 guest_tr_limit;
370         u32 guest_gdtr_limit;
371         u32 guest_idtr_limit;
372         u32 guest_es_ar_bytes;
373         u32 guest_cs_ar_bytes;
374         u32 guest_ss_ar_bytes;
375         u32 guest_ds_ar_bytes;
376         u32 guest_fs_ar_bytes;
377         u32 guest_gs_ar_bytes;
378         u32 guest_ldtr_ar_bytes;
379         u32 guest_tr_ar_bytes;
380         u32 guest_interruptibility_info;
381         u32 guest_activity_state;
382         u32 guest_sysenter_cs;
383         u32 host_ia32_sysenter_cs;
384         u32 vmx_preemption_timer_value;
385         u32 padding32[7]; /* room for future expansion */
386         u16 virtual_processor_id;
387         u16 posted_intr_nv;
388         u16 guest_es_selector;
389         u16 guest_cs_selector;
390         u16 guest_ss_selector;
391         u16 guest_ds_selector;
392         u16 guest_fs_selector;
393         u16 guest_gs_selector;
394         u16 guest_ldtr_selector;
395         u16 guest_tr_selector;
396         u16 guest_intr_status;
397         u16 guest_pml_index;
398         u16 host_es_selector;
399         u16 host_cs_selector;
400         u16 host_ss_selector;
401         u16 host_ds_selector;
402         u16 host_fs_selector;
403         u16 host_gs_selector;
404         u16 host_tr_selector;
405 };
406
407 /*
408  * VMCS12_REVISION is an arbitrary id that should be changed if the content or
409  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
410  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
411  */
412 #define VMCS12_REVISION 0x11e57ed0
413
414 /*
415  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
416  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
417  * current implementation, 4K are reserved to avoid future complications.
418  */
419 #define VMCS12_SIZE 0x1000
420
421 /*
422  * VMCS12_MAX_FIELD_INDEX is the highest index value used in any
423  * supported VMCS12 field encoding.
424  */
425 #define VMCS12_MAX_FIELD_INDEX 0x17
426
427 /*
428  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
429  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
430  */
431 struct nested_vmx {
432         /* Has the level1 guest done vmxon? */
433         bool vmxon;
434         gpa_t vmxon_ptr;
435         bool pml_full;
436
437         /* The guest-physical address of the current VMCS L1 keeps for L2 */
438         gpa_t current_vmptr;
439         /*
440          * Cache of the guest's VMCS, existing outside of guest memory.
441          * Loaded from guest memory during VMPTRLD. Flushed to guest
442          * memory during VMCLEAR and VMPTRLD.
443          */
444         struct vmcs12 *cached_vmcs12;
445         /*
446          * Indicates if the shadow vmcs must be updated with the
447          * data hold by vmcs12
448          */
449         bool sync_shadow_vmcs;
450         bool dirty_vmcs12;
451
452         bool change_vmcs01_virtual_x2apic_mode;
453         /* L2 must run next, and mustn't decide to exit to L1. */
454         bool nested_run_pending;
455
456         struct loaded_vmcs vmcs02;
457
458         /*
459          * Guest pages referred to in the vmcs02 with host-physical
460          * pointers, so we must keep them pinned while L2 runs.
461          */
462         struct page *apic_access_page;
463         struct page *virtual_apic_page;
464         struct page *pi_desc_page;
465         struct pi_desc *pi_desc;
466         bool pi_pending;
467         u16 posted_intr_nv;
468
469         struct hrtimer preemption_timer;
470         bool preemption_timer_expired;
471
472         /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
473         u64 vmcs01_debugctl;
474
475         u16 vpid02;
476         u16 last_vpid;
477
478         /*
479          * We only store the "true" versions of the VMX capability MSRs. We
480          * generate the "non-true" versions by setting the must-be-1 bits
481          * according to the SDM.
482          */
483         u32 nested_vmx_procbased_ctls_low;
484         u32 nested_vmx_procbased_ctls_high;
485         u32 nested_vmx_secondary_ctls_low;
486         u32 nested_vmx_secondary_ctls_high;
487         u32 nested_vmx_pinbased_ctls_low;
488         u32 nested_vmx_pinbased_ctls_high;
489         u32 nested_vmx_exit_ctls_low;
490         u32 nested_vmx_exit_ctls_high;
491         u32 nested_vmx_entry_ctls_low;
492         u32 nested_vmx_entry_ctls_high;
493         u32 nested_vmx_misc_low;
494         u32 nested_vmx_misc_high;
495         u32 nested_vmx_ept_caps;
496         u32 nested_vmx_vpid_caps;
497         u64 nested_vmx_basic;
498         u64 nested_vmx_cr0_fixed0;
499         u64 nested_vmx_cr0_fixed1;
500         u64 nested_vmx_cr4_fixed0;
501         u64 nested_vmx_cr4_fixed1;
502         u64 nested_vmx_vmcs_enum;
503         u64 nested_vmx_vmfunc_controls;
504
505         /* SMM related state */
506         struct {
507                 /* in VMX operation on SMM entry? */
508                 bool vmxon;
509                 /* in guest mode on SMM entry? */
510                 bool guest_mode;
511         } smm;
512 };
513
514 #define POSTED_INTR_ON  0
515 #define POSTED_INTR_SN  1
516
517 /* Posted-Interrupt Descriptor */
518 struct pi_desc {
519         u32 pir[8];     /* Posted interrupt requested */
520         union {
521                 struct {
522                                 /* bit 256 - Outstanding Notification */
523                         u16     on      : 1,
524                                 /* bit 257 - Suppress Notification */
525                                 sn      : 1,
526                                 /* bit 271:258 - Reserved */
527                                 rsvd_1  : 14;
528                                 /* bit 279:272 - Notification Vector */
529                         u8      nv;
530                                 /* bit 287:280 - Reserved */
531                         u8      rsvd_2;
532                                 /* bit 319:288 - Notification Destination */
533                         u32     ndst;
534                 };
535                 u64 control;
536         };
537         u32 rsvd[6];
538 } __aligned(64);
539
540 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
541 {
542         return test_and_set_bit(POSTED_INTR_ON,
543                         (unsigned long *)&pi_desc->control);
544 }
545
546 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
547 {
548         return test_and_clear_bit(POSTED_INTR_ON,
549                         (unsigned long *)&pi_desc->control);
550 }
551
552 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
553 {
554         return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
555 }
556
557 static inline void pi_clear_sn(struct pi_desc *pi_desc)
558 {
559         return clear_bit(POSTED_INTR_SN,
560                         (unsigned long *)&pi_desc->control);
561 }
562
563 static inline void pi_set_sn(struct pi_desc *pi_desc)
564 {
565         return set_bit(POSTED_INTR_SN,
566                         (unsigned long *)&pi_desc->control);
567 }
568
569 static inline void pi_clear_on(struct pi_desc *pi_desc)
570 {
571         clear_bit(POSTED_INTR_ON,
572                   (unsigned long *)&pi_desc->control);
573 }
574
575 static inline int pi_test_on(struct pi_desc *pi_desc)
576 {
577         return test_bit(POSTED_INTR_ON,
578                         (unsigned long *)&pi_desc->control);
579 }
580
581 static inline int pi_test_sn(struct pi_desc *pi_desc)
582 {
583         return test_bit(POSTED_INTR_SN,
584                         (unsigned long *)&pi_desc->control);
585 }
586
587 struct vcpu_vmx {
588         struct kvm_vcpu       vcpu;
589         unsigned long         host_rsp;
590         u8                    fail;
591         u8                    msr_bitmap_mode;
592         u32                   exit_intr_info;
593         u32                   idt_vectoring_info;
594         ulong                 rflags;
595         struct shared_msr_entry *guest_msrs;
596         int                   nmsrs;
597         int                   save_nmsrs;
598         unsigned long         host_idt_base;
599 #ifdef CONFIG_X86_64
600         u64                   msr_host_kernel_gs_base;
601         u64                   msr_guest_kernel_gs_base;
602 #endif
603
604         u64                   arch_capabilities;
605         u64                   spec_ctrl;
606
607         u32 vm_entry_controls_shadow;
608         u32 vm_exit_controls_shadow;
609         u32 secondary_exec_control;
610
611         /*
612          * loaded_vmcs points to the VMCS currently used in this vcpu. For a
613          * non-nested (L1) guest, it always points to vmcs01. For a nested
614          * guest (L2), it points to a different VMCS.
615          */
616         struct loaded_vmcs    vmcs01;
617         struct loaded_vmcs   *loaded_vmcs;
618         bool                  __launched; /* temporary, used in vmx_vcpu_run */
619         struct msr_autoload {
620                 unsigned nr;
621                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
622                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
623         } msr_autoload;
624         struct {
625                 int           loaded;
626                 u16           fs_sel, gs_sel, ldt_sel;
627 #ifdef CONFIG_X86_64
628                 u16           ds_sel, es_sel;
629 #endif
630                 int           gs_ldt_reload_needed;
631                 int           fs_reload_needed;
632                 u64           msr_host_bndcfgs;
633         } host_state;
634         struct {
635                 int vm86_active;
636                 ulong save_rflags;
637                 struct kvm_segment segs[8];
638         } rmode;
639         struct {
640                 u32 bitmask; /* 4 bits per segment (1 bit per field) */
641                 struct kvm_save_segment {
642                         u16 selector;
643                         unsigned long base;
644                         u32 limit;
645                         u32 ar;
646                 } seg[8];
647         } segment_cache;
648         int vpid;
649         bool emulation_required;
650
651         u32 exit_reason;
652
653         /* Posted interrupt descriptor */
654         struct pi_desc pi_desc;
655
656         /* Support for a guest hypervisor (nested VMX) */
657         struct nested_vmx nested;
658
659         /* Dynamic PLE window. */
660         int ple_window;
661         bool ple_window_dirty;
662
663         /* Support for PML */
664 #define PML_ENTITY_NUM          512
665         struct page *pml_pg;
666
667         /* apic deadline value in host tsc */
668         u64 hv_deadline_tsc;
669
670         u64 current_tsc_ratio;
671
672         u32 host_pkru;
673
674         unsigned long host_debugctlmsr;
675
676         /*
677          * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
678          * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
679          * in msr_ia32_feature_control_valid_bits.
680          */
681         u64 msr_ia32_feature_control;
682         u64 msr_ia32_feature_control_valid_bits;
683 };
684
685 enum segment_cache_field {
686         SEG_FIELD_SEL = 0,
687         SEG_FIELD_BASE = 1,
688         SEG_FIELD_LIMIT = 2,
689         SEG_FIELD_AR = 3,
690
691         SEG_FIELD_NR = 4
692 };
693
694 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
695 {
696         return container_of(vcpu, struct vcpu_vmx, vcpu);
697 }
698
699 static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
700 {
701         return &(to_vmx(vcpu)->pi_desc);
702 }
703
704 #define ROL16(val, n) ((u16)(((u16)(val) << (n)) | ((u16)(val) >> (16 - (n)))))
705 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
706 #define FIELD(number, name)     [ROL16(number, 6)] = VMCS12_OFFSET(name)
707 #define FIELD64(number, name)                                           \
708         FIELD(number, name),                                            \
709         [ROL16(number##_HIGH, 6)] = VMCS12_OFFSET(name) + sizeof(u32)
710
711
712 static u16 shadow_read_only_fields[] = {
713 #define SHADOW_FIELD_RO(x) x,
714 #include "vmx_shadow_fields.h"
715 };
716 static int max_shadow_read_only_fields =
717         ARRAY_SIZE(shadow_read_only_fields);
718
719 static u16 shadow_read_write_fields[] = {
720 #define SHADOW_FIELD_RW(x) x,
721 #include "vmx_shadow_fields.h"
722 };
723 static int max_shadow_read_write_fields =
724         ARRAY_SIZE(shadow_read_write_fields);
725
726 static const unsigned short vmcs_field_to_offset_table[] = {
727         FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
728         FIELD(POSTED_INTR_NV, posted_intr_nv),
729         FIELD(GUEST_ES_SELECTOR, guest_es_selector),
730         FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
731         FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
732         FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
733         FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
734         FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
735         FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
736         FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
737         FIELD(GUEST_INTR_STATUS, guest_intr_status),
738         FIELD(GUEST_PML_INDEX, guest_pml_index),
739         FIELD(HOST_ES_SELECTOR, host_es_selector),
740         FIELD(HOST_CS_SELECTOR, host_cs_selector),
741         FIELD(HOST_SS_SELECTOR, host_ss_selector),
742         FIELD(HOST_DS_SELECTOR, host_ds_selector),
743         FIELD(HOST_FS_SELECTOR, host_fs_selector),
744         FIELD(HOST_GS_SELECTOR, host_gs_selector),
745         FIELD(HOST_TR_SELECTOR, host_tr_selector),
746         FIELD64(IO_BITMAP_A, io_bitmap_a),
747         FIELD64(IO_BITMAP_B, io_bitmap_b),
748         FIELD64(MSR_BITMAP, msr_bitmap),
749         FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
750         FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
751         FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
752         FIELD64(TSC_OFFSET, tsc_offset),
753         FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
754         FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
755         FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
756         FIELD64(VM_FUNCTION_CONTROL, vm_function_control),
757         FIELD64(EPT_POINTER, ept_pointer),
758         FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
759         FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
760         FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
761         FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
762         FIELD64(EPTP_LIST_ADDRESS, eptp_list_address),
763         FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
764         FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
765         FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
766         FIELD64(PML_ADDRESS, pml_address),
767         FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
768         FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
769         FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
770         FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
771         FIELD64(GUEST_PDPTR0, guest_pdptr0),
772         FIELD64(GUEST_PDPTR1, guest_pdptr1),
773         FIELD64(GUEST_PDPTR2, guest_pdptr2),
774         FIELD64(GUEST_PDPTR3, guest_pdptr3),
775         FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
776         FIELD64(HOST_IA32_PAT, host_ia32_pat),
777         FIELD64(HOST_IA32_EFER, host_ia32_efer),
778         FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
779         FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
780         FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
781         FIELD(EXCEPTION_BITMAP, exception_bitmap),
782         FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
783         FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
784         FIELD(CR3_TARGET_COUNT, cr3_target_count),
785         FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
786         FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
787         FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
788         FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
789         FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
790         FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
791         FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
792         FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
793         FIELD(TPR_THRESHOLD, tpr_threshold),
794         FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
795         FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
796         FIELD(VM_EXIT_REASON, vm_exit_reason),
797         FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
798         FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
799         FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
800         FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
801         FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
802         FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
803         FIELD(GUEST_ES_LIMIT, guest_es_limit),
804         FIELD(GUEST_CS_LIMIT, guest_cs_limit),
805         FIELD(GUEST_SS_LIMIT, guest_ss_limit),
806         FIELD(GUEST_DS_LIMIT, guest_ds_limit),
807         FIELD(GUEST_FS_LIMIT, guest_fs_limit),
808         FIELD(GUEST_GS_LIMIT, guest_gs_limit),
809         FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
810         FIELD(GUEST_TR_LIMIT, guest_tr_limit),
811         FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
812         FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
813         FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
814         FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
815         FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
816         FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
817         FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
818         FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
819         FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
820         FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
821         FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
822         FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
823         FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
824         FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
825         FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
826         FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
827         FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
828         FIELD(CR0_READ_SHADOW, cr0_read_shadow),
829         FIELD(CR4_READ_SHADOW, cr4_read_shadow),
830         FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
831         FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
832         FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
833         FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
834         FIELD(EXIT_QUALIFICATION, exit_qualification),
835         FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
836         FIELD(GUEST_CR0, guest_cr0),
837         FIELD(GUEST_CR3, guest_cr3),
838         FIELD(GUEST_CR4, guest_cr4),
839         FIELD(GUEST_ES_BASE, guest_es_base),
840         FIELD(GUEST_CS_BASE, guest_cs_base),
841         FIELD(GUEST_SS_BASE, guest_ss_base),
842         FIELD(GUEST_DS_BASE, guest_ds_base),
843         FIELD(GUEST_FS_BASE, guest_fs_base),
844         FIELD(GUEST_GS_BASE, guest_gs_base),
845         FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
846         FIELD(GUEST_TR_BASE, guest_tr_base),
847         FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
848         FIELD(GUEST_IDTR_BASE, guest_idtr_base),
849         FIELD(GUEST_DR7, guest_dr7),
850         FIELD(GUEST_RSP, guest_rsp),
851         FIELD(GUEST_RIP, guest_rip),
852         FIELD(GUEST_RFLAGS, guest_rflags),
853         FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
854         FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
855         FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
856         FIELD(HOST_CR0, host_cr0),
857         FIELD(HOST_CR3, host_cr3),
858         FIELD(HOST_CR4, host_cr4),
859         FIELD(HOST_FS_BASE, host_fs_base),
860         FIELD(HOST_GS_BASE, host_gs_base),
861         FIELD(HOST_TR_BASE, host_tr_base),
862         FIELD(HOST_GDTR_BASE, host_gdtr_base),
863         FIELD(HOST_IDTR_BASE, host_idtr_base),
864         FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
865         FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
866         FIELD(HOST_RSP, host_rsp),
867         FIELD(HOST_RIP, host_rip),
868 };
869
870 static inline short vmcs_field_to_offset(unsigned long field)
871 {
872         const size_t size = ARRAY_SIZE(vmcs_field_to_offset_table);
873         unsigned short offset;
874         unsigned index;
875
876         if (field >> 15)
877                 return -ENOENT;
878
879         index = ROL16(field, 6);
880         if (index >= size)
881                 return -ENOENT;
882
883         index = array_index_nospec(index, size);
884         offset = vmcs_field_to_offset_table[index];
885         if (offset == 0)
886                 return -ENOENT;
887         return offset;
888 }
889
890 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
891 {
892         return to_vmx(vcpu)->nested.cached_vmcs12;
893 }
894
895 static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu);
896 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
897 static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
898 static bool vmx_xsaves_supported(void);
899 static void vmx_set_segment(struct kvm_vcpu *vcpu,
900                             struct kvm_segment *var, int seg);
901 static void vmx_get_segment(struct kvm_vcpu *vcpu,
902                             struct kvm_segment *var, int seg);
903 static bool guest_state_valid(struct kvm_vcpu *vcpu);
904 static u32 vmx_segment_access_rights(struct kvm_segment *var);
905 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
906 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
907 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
908 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
909                                             u16 error_code);
910 static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu);
911 static void __always_inline vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
912                                                           u32 msr, int type);
913
914 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
915 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
916 /*
917  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
918  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
919  */
920 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
921
922 /*
923  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
924  * can find which vCPU should be waken up.
925  */
926 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
927 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
928
929 enum {
930         VMX_VMREAD_BITMAP,
931         VMX_VMWRITE_BITMAP,
932         VMX_BITMAP_NR
933 };
934
935 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
936
937 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
938 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
939
940 static bool cpu_has_load_ia32_efer;
941 static bool cpu_has_load_perf_global_ctrl;
942
943 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
944 static DEFINE_SPINLOCK(vmx_vpid_lock);
945
946 static struct vmcs_config {
947         int size;
948         int order;
949         u32 basic_cap;
950         u32 revision_id;
951         u32 pin_based_exec_ctrl;
952         u32 cpu_based_exec_ctrl;
953         u32 cpu_based_2nd_exec_ctrl;
954         u32 vmexit_ctrl;
955         u32 vmentry_ctrl;
956 } vmcs_config;
957
958 static struct vmx_capability {
959         u32 ept;
960         u32 vpid;
961 } vmx_capability;
962
963 #define VMX_SEGMENT_FIELD(seg)                                  \
964         [VCPU_SREG_##seg] = {                                   \
965                 .selector = GUEST_##seg##_SELECTOR,             \
966                 .base = GUEST_##seg##_BASE,                     \
967                 .limit = GUEST_##seg##_LIMIT,                   \
968                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
969         }
970
971 static const struct kvm_vmx_segment_field {
972         unsigned selector;
973         unsigned base;
974         unsigned limit;
975         unsigned ar_bytes;
976 } kvm_vmx_segment_fields[] = {
977         VMX_SEGMENT_FIELD(CS),
978         VMX_SEGMENT_FIELD(DS),
979         VMX_SEGMENT_FIELD(ES),
980         VMX_SEGMENT_FIELD(FS),
981         VMX_SEGMENT_FIELD(GS),
982         VMX_SEGMENT_FIELD(SS),
983         VMX_SEGMENT_FIELD(TR),
984         VMX_SEGMENT_FIELD(LDTR),
985 };
986
987 static u64 host_efer;
988
989 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
990
991 /*
992  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
993  * away by decrementing the array size.
994  */
995 static const u32 vmx_msr_index[] = {
996 #ifdef CONFIG_X86_64
997         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
998 #endif
999         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
1000 };
1001
1002 static inline bool is_exception_n(u32 intr_info, u8 vector)
1003 {
1004         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1005                              INTR_INFO_VALID_MASK)) ==
1006                 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
1007 }
1008
1009 static inline bool is_debug(u32 intr_info)
1010 {
1011         return is_exception_n(intr_info, DB_VECTOR);
1012 }
1013
1014 static inline bool is_breakpoint(u32 intr_info)
1015 {
1016         return is_exception_n(intr_info, BP_VECTOR);
1017 }
1018
1019 static inline bool is_page_fault(u32 intr_info)
1020 {
1021         return is_exception_n(intr_info, PF_VECTOR);
1022 }
1023
1024 static inline bool is_no_device(u32 intr_info)
1025 {
1026         return is_exception_n(intr_info, NM_VECTOR);
1027 }
1028
1029 static inline bool is_invalid_opcode(u32 intr_info)
1030 {
1031         return is_exception_n(intr_info, UD_VECTOR);
1032 }
1033
1034 static inline bool is_external_interrupt(u32 intr_info)
1035 {
1036         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1037                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1038 }
1039
1040 static inline bool is_machine_check(u32 intr_info)
1041 {
1042         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1043                              INTR_INFO_VALID_MASK)) ==
1044                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1045 }
1046
1047 static inline bool cpu_has_vmx_msr_bitmap(void)
1048 {
1049         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
1050 }
1051
1052 static inline bool cpu_has_vmx_tpr_shadow(void)
1053 {
1054         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
1055 }
1056
1057 static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
1058 {
1059         return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
1060 }
1061
1062 static inline bool cpu_has_secondary_exec_ctrls(void)
1063 {
1064         return vmcs_config.cpu_based_exec_ctrl &
1065                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1066 }
1067
1068 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1069 {
1070         return vmcs_config.cpu_based_2nd_exec_ctrl &
1071                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1072 }
1073
1074 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1075 {
1076         return vmcs_config.cpu_based_2nd_exec_ctrl &
1077                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1078 }
1079
1080 static inline bool cpu_has_vmx_apic_register_virt(void)
1081 {
1082         return vmcs_config.cpu_based_2nd_exec_ctrl &
1083                 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1084 }
1085
1086 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1087 {
1088         return vmcs_config.cpu_based_2nd_exec_ctrl &
1089                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1090 }
1091
1092 /*
1093  * Comment's format: document - errata name - stepping - processor name.
1094  * Refer from
1095  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1096  */
1097 static u32 vmx_preemption_cpu_tfms[] = {
1098 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
1099 0x000206E6,
1100 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
1101 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1102 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
1103 0x00020652,
1104 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
1105 0x00020655,
1106 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
1107 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
1108 /*
1109  * 320767.pdf - AAP86  - B1 -
1110  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1111  */
1112 0x000106E5,
1113 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
1114 0x000106A0,
1115 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
1116 0x000106A1,
1117 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
1118 0x000106A4,
1119  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1120  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1121  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
1122 0x000106A5,
1123 };
1124
1125 static inline bool cpu_has_broken_vmx_preemption_timer(void)
1126 {
1127         u32 eax = cpuid_eax(0x00000001), i;
1128
1129         /* Clear the reserved bits */
1130         eax &= ~(0x3U << 14 | 0xfU << 28);
1131         for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
1132                 if (eax == vmx_preemption_cpu_tfms[i])
1133                         return true;
1134
1135         return false;
1136 }
1137
1138 static inline bool cpu_has_vmx_preemption_timer(void)
1139 {
1140         return vmcs_config.pin_based_exec_ctrl &
1141                 PIN_BASED_VMX_PREEMPTION_TIMER;
1142 }
1143
1144 static inline bool cpu_has_vmx_posted_intr(void)
1145 {
1146         return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1147                 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
1148 }
1149
1150 static inline bool cpu_has_vmx_apicv(void)
1151 {
1152         return cpu_has_vmx_apic_register_virt() &&
1153                 cpu_has_vmx_virtual_intr_delivery() &&
1154                 cpu_has_vmx_posted_intr();
1155 }
1156
1157 static inline bool cpu_has_vmx_flexpriority(void)
1158 {
1159         return cpu_has_vmx_tpr_shadow() &&
1160                 cpu_has_vmx_virtualize_apic_accesses();
1161 }
1162
1163 static inline bool cpu_has_vmx_ept_execute_only(void)
1164 {
1165         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1166 }
1167
1168 static inline bool cpu_has_vmx_ept_2m_page(void)
1169 {
1170         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1171 }
1172
1173 static inline bool cpu_has_vmx_ept_1g_page(void)
1174 {
1175         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1176 }
1177
1178 static inline bool cpu_has_vmx_ept_4levels(void)
1179 {
1180         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1181 }
1182
1183 static inline bool cpu_has_vmx_ept_mt_wb(void)
1184 {
1185         return vmx_capability.ept & VMX_EPTP_WB_BIT;
1186 }
1187
1188 static inline bool cpu_has_vmx_ept_5levels(void)
1189 {
1190         return vmx_capability.ept & VMX_EPT_PAGE_WALK_5_BIT;
1191 }
1192
1193 static inline bool cpu_has_vmx_ept_ad_bits(void)
1194 {
1195         return vmx_capability.ept & VMX_EPT_AD_BIT;
1196 }
1197
1198 static inline bool cpu_has_vmx_invept_context(void)
1199 {
1200         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1201 }
1202
1203 static inline bool cpu_has_vmx_invept_global(void)
1204 {
1205         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1206 }
1207
1208 static inline bool cpu_has_vmx_invvpid_single(void)
1209 {
1210         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1211 }
1212
1213 static inline bool cpu_has_vmx_invvpid_global(void)
1214 {
1215         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1216 }
1217
1218 static inline bool cpu_has_vmx_invvpid(void)
1219 {
1220         return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
1221 }
1222
1223 static inline bool cpu_has_vmx_ept(void)
1224 {
1225         return vmcs_config.cpu_based_2nd_exec_ctrl &
1226                 SECONDARY_EXEC_ENABLE_EPT;
1227 }
1228
1229 static inline bool cpu_has_vmx_unrestricted_guest(void)
1230 {
1231         return vmcs_config.cpu_based_2nd_exec_ctrl &
1232                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1233 }
1234
1235 static inline bool cpu_has_vmx_ple(void)
1236 {
1237         return vmcs_config.cpu_based_2nd_exec_ctrl &
1238                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1239 }
1240
1241 static inline bool cpu_has_vmx_basic_inout(void)
1242 {
1243         return  (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
1244 }
1245
1246 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
1247 {
1248         return flexpriority_enabled && lapic_in_kernel(vcpu);
1249 }
1250
1251 static inline bool cpu_has_vmx_vpid(void)
1252 {
1253         return vmcs_config.cpu_based_2nd_exec_ctrl &
1254                 SECONDARY_EXEC_ENABLE_VPID;
1255 }
1256
1257 static inline bool cpu_has_vmx_rdtscp(void)
1258 {
1259         return vmcs_config.cpu_based_2nd_exec_ctrl &
1260                 SECONDARY_EXEC_RDTSCP;
1261 }
1262
1263 static inline bool cpu_has_vmx_invpcid(void)
1264 {
1265         return vmcs_config.cpu_based_2nd_exec_ctrl &
1266                 SECONDARY_EXEC_ENABLE_INVPCID;
1267 }
1268
1269 static inline bool cpu_has_virtual_nmis(void)
1270 {
1271         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1272 }
1273
1274 static inline bool cpu_has_vmx_wbinvd_exit(void)
1275 {
1276         return vmcs_config.cpu_based_2nd_exec_ctrl &
1277                 SECONDARY_EXEC_WBINVD_EXITING;
1278 }
1279
1280 static inline bool cpu_has_vmx_shadow_vmcs(void)
1281 {
1282         u64 vmx_msr;
1283         rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1284         /* check if the cpu supports writing r/o exit information fields */
1285         if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1286                 return false;
1287
1288         return vmcs_config.cpu_based_2nd_exec_ctrl &
1289                 SECONDARY_EXEC_SHADOW_VMCS;
1290 }
1291
1292 static inline bool cpu_has_vmx_pml(void)
1293 {
1294         return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1295 }
1296
1297 static inline bool cpu_has_vmx_tsc_scaling(void)
1298 {
1299         return vmcs_config.cpu_based_2nd_exec_ctrl &
1300                 SECONDARY_EXEC_TSC_SCALING;
1301 }
1302
1303 static inline bool cpu_has_vmx_vmfunc(void)
1304 {
1305         return vmcs_config.cpu_based_2nd_exec_ctrl &
1306                 SECONDARY_EXEC_ENABLE_VMFUNC;
1307 }
1308
1309 static inline bool report_flexpriority(void)
1310 {
1311         return flexpriority_enabled;
1312 }
1313
1314 static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
1315 {
1316         return vmx_misc_cr3_count(to_vmx(vcpu)->nested.nested_vmx_misc_low);
1317 }
1318
1319 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1320 {
1321         return vmcs12->cpu_based_vm_exec_control & bit;
1322 }
1323
1324 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1325 {
1326         return (vmcs12->cpu_based_vm_exec_control &
1327                         CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1328                 (vmcs12->secondary_vm_exec_control & bit);
1329 }
1330
1331 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1332 {
1333         return vmcs12->pin_based_vm_exec_control &
1334                 PIN_BASED_VMX_PREEMPTION_TIMER;
1335 }
1336
1337 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1338 {
1339         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1340 }
1341
1342 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1343 {
1344         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
1345 }
1346
1347 static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
1348 {
1349         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
1350 }
1351
1352 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1353 {
1354         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1355 }
1356
1357 static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1358 {
1359         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1360 }
1361
1362 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1363 {
1364         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1365 }
1366
1367 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1368 {
1369         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1370 }
1371
1372 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1373 {
1374         return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1375 }
1376
1377 static inline bool nested_cpu_has_vmfunc(struct vmcs12 *vmcs12)
1378 {
1379         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VMFUNC);
1380 }
1381
1382 static inline bool nested_cpu_has_eptp_switching(struct vmcs12 *vmcs12)
1383 {
1384         return nested_cpu_has_vmfunc(vmcs12) &&
1385                 (vmcs12->vm_function_control &
1386                  VMX_VMFUNC_EPTP_SWITCHING);
1387 }
1388
1389 static inline bool is_nmi(u32 intr_info)
1390 {
1391         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1392                 == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
1393 }
1394
1395 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1396                               u32 exit_intr_info,
1397                               unsigned long exit_qualification);
1398 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1399                         struct vmcs12 *vmcs12,
1400                         u32 reason, unsigned long qualification);
1401
1402 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1403 {
1404         int i;
1405
1406         for (i = 0; i < vmx->nmsrs; ++i)
1407                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1408                         return i;
1409         return -1;
1410 }
1411
1412 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1413 {
1414     struct {
1415         u64 vpid : 16;
1416         u64 rsvd : 48;
1417         u64 gva;
1418     } operand = { vpid, 0, gva };
1419
1420     asm volatile (__ex(ASM_VMX_INVVPID)
1421                   /* CF==1 or ZF==1 --> rc = -1 */
1422                   "; ja 1f ; ud2 ; 1:"
1423                   : : "a"(&operand), "c"(ext) : "cc", "memory");
1424 }
1425
1426 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1427 {
1428         struct {
1429                 u64 eptp, gpa;
1430         } operand = {eptp, gpa};
1431
1432         asm volatile (__ex(ASM_VMX_INVEPT)
1433                         /* CF==1 or ZF==1 --> rc = -1 */
1434                         "; ja 1f ; ud2 ; 1:\n"
1435                         : : "a" (&operand), "c" (ext) : "cc", "memory");
1436 }
1437
1438 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1439 {
1440         int i;
1441
1442         i = __find_msr_index(vmx, msr);
1443         if (i >= 0)
1444                 return &vmx->guest_msrs[i];
1445         return NULL;
1446 }
1447
1448 static void vmcs_clear(struct vmcs *vmcs)
1449 {
1450         u64 phys_addr = __pa(vmcs);
1451         u8 error;
1452
1453         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1454                       : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1455                       : "cc", "memory");
1456         if (error)
1457                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1458                        vmcs, phys_addr);
1459 }
1460
1461 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1462 {
1463         vmcs_clear(loaded_vmcs->vmcs);
1464         if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
1465                 vmcs_clear(loaded_vmcs->shadow_vmcs);
1466         loaded_vmcs->cpu = -1;
1467         loaded_vmcs->launched = 0;
1468 }
1469
1470 static void vmcs_load(struct vmcs *vmcs)
1471 {
1472         u64 phys_addr = __pa(vmcs);
1473         u8 error;
1474
1475         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1476                         : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1477                         : "cc", "memory");
1478         if (error)
1479                 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1480                        vmcs, phys_addr);
1481 }
1482
1483 #ifdef CONFIG_KEXEC_CORE
1484 /*
1485  * This bitmap is used to indicate whether the vmclear
1486  * operation is enabled on all cpus. All disabled by
1487  * default.
1488  */
1489 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1490
1491 static inline void crash_enable_local_vmclear(int cpu)
1492 {
1493         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1494 }
1495
1496 static inline void crash_disable_local_vmclear(int cpu)
1497 {
1498         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1499 }
1500
1501 static inline int crash_local_vmclear_enabled(int cpu)
1502 {
1503         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1504 }
1505
1506 static void crash_vmclear_local_loaded_vmcss(void)
1507 {
1508         int cpu = raw_smp_processor_id();
1509         struct loaded_vmcs *v;
1510
1511         if (!crash_local_vmclear_enabled(cpu))
1512                 return;
1513
1514         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1515                             loaded_vmcss_on_cpu_link)
1516                 vmcs_clear(v->vmcs);
1517 }
1518 #else
1519 static inline void crash_enable_local_vmclear(int cpu) { }
1520 static inline void crash_disable_local_vmclear(int cpu) { }
1521 #endif /* CONFIG_KEXEC_CORE */
1522
1523 static void __loaded_vmcs_clear(void *arg)
1524 {
1525         struct loaded_vmcs *loaded_vmcs = arg;
1526         int cpu = raw_smp_processor_id();
1527
1528         if (loaded_vmcs->cpu != cpu)
1529                 return; /* vcpu migration can race with cpu offline */
1530         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1531                 per_cpu(current_vmcs, cpu) = NULL;
1532         crash_disable_local_vmclear(cpu);
1533         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1534
1535         /*
1536          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1537          * is before setting loaded_vmcs->vcpu to -1 which is done in
1538          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1539          * then adds the vmcs into percpu list before it is deleted.
1540          */
1541         smp_wmb();
1542
1543         loaded_vmcs_init(loaded_vmcs);
1544         crash_enable_local_vmclear(cpu);
1545 }
1546
1547 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1548 {
1549         int cpu = loaded_vmcs->cpu;
1550
1551         if (cpu != -1)
1552                 smp_call_function_single(cpu,
1553                          __loaded_vmcs_clear, loaded_vmcs, 1);
1554 }
1555
1556 static inline void vpid_sync_vcpu_single(int vpid)
1557 {
1558         if (vpid == 0)
1559                 return;
1560
1561         if (cpu_has_vmx_invvpid_single())
1562                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
1563 }
1564
1565 static inline void vpid_sync_vcpu_global(void)
1566 {
1567         if (cpu_has_vmx_invvpid_global())
1568                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1569 }
1570
1571 static inline void vpid_sync_context(int vpid)
1572 {
1573         if (cpu_has_vmx_invvpid_single())
1574                 vpid_sync_vcpu_single(vpid);
1575         else
1576                 vpid_sync_vcpu_global();
1577 }
1578
1579 static inline void ept_sync_global(void)
1580 {
1581         __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1582 }
1583
1584 static inline void ept_sync_context(u64 eptp)
1585 {
1586         if (cpu_has_vmx_invept_context())
1587                 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1588         else
1589                 ept_sync_global();
1590 }
1591
1592 static __always_inline void vmcs_check16(unsigned long field)
1593 {
1594         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1595                          "16-bit accessor invalid for 64-bit field");
1596         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1597                          "16-bit accessor invalid for 64-bit high field");
1598         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1599                          "16-bit accessor invalid for 32-bit high field");
1600         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1601                          "16-bit accessor invalid for natural width field");
1602 }
1603
1604 static __always_inline void vmcs_check32(unsigned long field)
1605 {
1606         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1607                          "32-bit accessor invalid for 16-bit field");
1608         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1609                          "32-bit accessor invalid for natural width field");
1610 }
1611
1612 static __always_inline void vmcs_check64(unsigned long field)
1613 {
1614         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1615                          "64-bit accessor invalid for 16-bit field");
1616         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1617                          "64-bit accessor invalid for 64-bit high field");
1618         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1619                          "64-bit accessor invalid for 32-bit field");
1620         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1621                          "64-bit accessor invalid for natural width field");
1622 }
1623
1624 static __always_inline void vmcs_checkl(unsigned long field)
1625 {
1626         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1627                          "Natural width accessor invalid for 16-bit field");
1628         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1629                          "Natural width accessor invalid for 64-bit field");
1630         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1631                          "Natural width accessor invalid for 64-bit high field");
1632         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1633                          "Natural width accessor invalid for 32-bit field");
1634 }
1635
1636 static __always_inline unsigned long __vmcs_readl(unsigned long field)
1637 {
1638         unsigned long value;
1639
1640         asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1641                       : "=a"(value) : "d"(field) : "cc");
1642         return value;
1643 }
1644
1645 static __always_inline u16 vmcs_read16(unsigned long field)
1646 {
1647         vmcs_check16(field);
1648         return __vmcs_readl(field);
1649 }
1650
1651 static __always_inline u32 vmcs_read32(unsigned long field)
1652 {
1653         vmcs_check32(field);
1654         return __vmcs_readl(field);
1655 }
1656
1657 static __always_inline u64 vmcs_read64(unsigned long field)
1658 {
1659         vmcs_check64(field);
1660 #ifdef CONFIG_X86_64
1661         return __vmcs_readl(field);
1662 #else
1663         return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
1664 #endif
1665 }
1666
1667 static __always_inline unsigned long vmcs_readl(unsigned long field)
1668 {
1669         vmcs_checkl(field);
1670         return __vmcs_readl(field);
1671 }
1672
1673 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1674 {
1675         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1676                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1677         dump_stack();
1678 }
1679
1680 static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
1681 {
1682         u8 error;
1683
1684         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1685                        : "=q"(error) : "a"(value), "d"(field) : "cc");
1686         if (unlikely(error))
1687                 vmwrite_error(field, value);
1688 }
1689
1690 static __always_inline void vmcs_write16(unsigned long field, u16 value)
1691 {
1692         vmcs_check16(field);
1693         __vmcs_writel(field, value);
1694 }
1695
1696 static __always_inline void vmcs_write32(unsigned long field, u32 value)
1697 {
1698         vmcs_check32(field);
1699         __vmcs_writel(field, value);
1700 }
1701
1702 static __always_inline void vmcs_write64(unsigned long field, u64 value)
1703 {
1704         vmcs_check64(field);
1705         __vmcs_writel(field, value);
1706 #ifndef CONFIG_X86_64
1707         asm volatile ("");
1708         __vmcs_writel(field+1, value >> 32);
1709 #endif
1710 }
1711
1712 static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
1713 {
1714         vmcs_checkl(field);
1715         __vmcs_writel(field, value);
1716 }
1717
1718 static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
1719 {
1720         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1721                          "vmcs_clear_bits does not support 64-bit fields");
1722         __vmcs_writel(field, __vmcs_readl(field) & ~mask);
1723 }
1724
1725 static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
1726 {
1727         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1728                          "vmcs_set_bits does not support 64-bit fields");
1729         __vmcs_writel(field, __vmcs_readl(field) | mask);
1730 }
1731
1732 static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
1733 {
1734         vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
1735 }
1736
1737 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1738 {
1739         vmcs_write32(VM_ENTRY_CONTROLS, val);
1740         vmx->vm_entry_controls_shadow = val;
1741 }
1742
1743 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1744 {
1745         if (vmx->vm_entry_controls_shadow != val)
1746                 vm_entry_controls_init(vmx, val);
1747 }
1748
1749 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1750 {
1751         return vmx->vm_entry_controls_shadow;
1752 }
1753
1754
1755 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1756 {
1757         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1758 }
1759
1760 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1761 {
1762         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1763 }
1764
1765 static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
1766 {
1767         vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
1768 }
1769
1770 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1771 {
1772         vmcs_write32(VM_EXIT_CONTROLS, val);
1773         vmx->vm_exit_controls_shadow = val;
1774 }
1775
1776 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1777 {
1778         if (vmx->vm_exit_controls_shadow != val)
1779                 vm_exit_controls_init(vmx, val);
1780 }
1781
1782 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1783 {
1784         return vmx->vm_exit_controls_shadow;
1785 }
1786
1787
1788 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1789 {
1790         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1791 }
1792
1793 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1794 {
1795         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1796 }
1797
1798 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1799 {
1800         vmx->segment_cache.bitmask = 0;
1801 }
1802
1803 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1804                                        unsigned field)
1805 {
1806         bool ret;
1807         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1808
1809         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1810                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1811                 vmx->segment_cache.bitmask = 0;
1812         }
1813         ret = vmx->segment_cache.bitmask & mask;
1814         vmx->segment_cache.bitmask |= mask;
1815         return ret;
1816 }
1817
1818 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1819 {
1820         u16 *p = &vmx->segment_cache.seg[seg].selector;
1821
1822         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1823                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1824         return *p;
1825 }
1826
1827 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1828 {
1829         ulong *p = &vmx->segment_cache.seg[seg].base;
1830
1831         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1832                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1833         return *p;
1834 }
1835
1836 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1837 {
1838         u32 *p = &vmx->segment_cache.seg[seg].limit;
1839
1840         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1841                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1842         return *p;
1843 }
1844
1845 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1846 {
1847         u32 *p = &vmx->segment_cache.seg[seg].ar;
1848
1849         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1850                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1851         return *p;
1852 }
1853
1854 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1855 {
1856         u32 eb;
1857
1858         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1859              (1u << DB_VECTOR) | (1u << AC_VECTOR);
1860         if ((vcpu->guest_debug &
1861              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1862             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1863                 eb |= 1u << BP_VECTOR;
1864         if (to_vmx(vcpu)->rmode.vm86_active)
1865                 eb = ~0;
1866         if (enable_ept)
1867                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1868
1869         /* When we are running a nested L2 guest and L1 specified for it a
1870          * certain exception bitmap, we must trap the same exceptions and pass
1871          * them to L1. When running L2, we will only handle the exceptions
1872          * specified above if L1 did not want them.
1873          */
1874         if (is_guest_mode(vcpu))
1875                 eb |= get_vmcs12(vcpu)->exception_bitmap;
1876
1877         vmcs_write32(EXCEPTION_BITMAP, eb);
1878 }
1879
1880 /*
1881  * Check if MSR is intercepted for currently loaded MSR bitmap.
1882  */
1883 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
1884 {
1885         unsigned long *msr_bitmap;
1886         int f = sizeof(unsigned long);
1887
1888         if (!cpu_has_vmx_msr_bitmap())
1889                 return true;
1890
1891         msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
1892
1893         if (msr <= 0x1fff) {
1894                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
1895         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
1896                 msr &= 0x1fff;
1897                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
1898         }
1899
1900         return true;
1901 }
1902
1903 /*
1904  * Check if MSR is intercepted for L01 MSR bitmap.
1905  */
1906 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
1907 {
1908         unsigned long *msr_bitmap;
1909         int f = sizeof(unsigned long);
1910
1911         if (!cpu_has_vmx_msr_bitmap())
1912                 return true;
1913
1914         msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
1915
1916         if (msr <= 0x1fff) {
1917                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
1918         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
1919                 msr &= 0x1fff;
1920                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
1921         }
1922
1923         return true;
1924 }
1925
1926 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1927                 unsigned long entry, unsigned long exit)
1928 {
1929         vm_entry_controls_clearbit(vmx, entry);
1930         vm_exit_controls_clearbit(vmx, exit);
1931 }
1932
1933 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1934 {
1935         unsigned i;
1936         struct msr_autoload *m = &vmx->msr_autoload;
1937
1938         switch (msr) {
1939         case MSR_EFER:
1940                 if (cpu_has_load_ia32_efer) {
1941                         clear_atomic_switch_msr_special(vmx,
1942                                         VM_ENTRY_LOAD_IA32_EFER,
1943                                         VM_EXIT_LOAD_IA32_EFER);
1944                         return;
1945                 }
1946                 break;
1947         case MSR_CORE_PERF_GLOBAL_CTRL:
1948                 if (cpu_has_load_perf_global_ctrl) {
1949                         clear_atomic_switch_msr_special(vmx,
1950                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1951                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1952                         return;
1953                 }
1954                 break;
1955         }
1956
1957         for (i = 0; i < m->nr; ++i)
1958                 if (m->guest[i].index == msr)
1959                         break;
1960
1961         if (i == m->nr)
1962                 return;
1963         --m->nr;
1964         m->guest[i] = m->guest[m->nr];
1965         m->host[i] = m->host[m->nr];
1966         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1967         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1968 }
1969
1970 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1971                 unsigned long entry, unsigned long exit,
1972                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1973                 u64 guest_val, u64 host_val)
1974 {
1975         vmcs_write64(guest_val_vmcs, guest_val);
1976         vmcs_write64(host_val_vmcs, host_val);
1977         vm_entry_controls_setbit(vmx, entry);
1978         vm_exit_controls_setbit(vmx, exit);
1979 }
1980
1981 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1982                                   u64 guest_val, u64 host_val)
1983 {
1984         unsigned i;
1985         struct msr_autoload *m = &vmx->msr_autoload;
1986
1987         switch (msr) {
1988         case MSR_EFER:
1989                 if (cpu_has_load_ia32_efer) {
1990                         add_atomic_switch_msr_special(vmx,
1991                                         VM_ENTRY_LOAD_IA32_EFER,
1992                                         VM_EXIT_LOAD_IA32_EFER,
1993                                         GUEST_IA32_EFER,
1994                                         HOST_IA32_EFER,
1995                                         guest_val, host_val);
1996                         return;
1997                 }
1998                 break;
1999         case MSR_CORE_PERF_GLOBAL_CTRL:
2000                 if (cpu_has_load_perf_global_ctrl) {
2001                         add_atomic_switch_msr_special(vmx,
2002                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
2003                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
2004                                         GUEST_IA32_PERF_GLOBAL_CTRL,
2005                                         HOST_IA32_PERF_GLOBAL_CTRL,
2006                                         guest_val, host_val);
2007                         return;
2008                 }
2009                 break;
2010         case MSR_IA32_PEBS_ENABLE:
2011                 /* PEBS needs a quiescent period after being disabled (to write
2012                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
2013                  * provide that period, so a CPU could write host's record into
2014                  * guest's memory.
2015                  */
2016                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
2017         }
2018
2019         for (i = 0; i < m->nr; ++i)
2020                 if (m->guest[i].index == msr)
2021                         break;
2022
2023         if (i == NR_AUTOLOAD_MSRS) {
2024                 printk_once(KERN_WARNING "Not enough msr switch entries. "
2025                                 "Can't add msr %x\n", msr);
2026                 return;
2027         } else if (i == m->nr) {
2028                 ++m->nr;
2029                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
2030                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
2031         }
2032
2033         m->guest[i].index = msr;
2034         m->guest[i].value = guest_val;
2035         m->host[i].index = msr;
2036         m->host[i].value = host_val;
2037 }
2038
2039 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2040 {
2041         u64 guest_efer = vmx->vcpu.arch.efer;
2042         u64 ignore_bits = 0;
2043
2044         if (!enable_ept) {
2045                 /*
2046                  * NX is needed to handle CR0.WP=1, CR4.SMEP=1.  Testing
2047                  * host CPUID is more efficient than testing guest CPUID
2048                  * or CR4.  Host SMEP is anyway a requirement for guest SMEP.
2049                  */
2050                 if (boot_cpu_has(X86_FEATURE_SMEP))
2051                         guest_efer |= EFER_NX;
2052                 else if (!(guest_efer & EFER_NX))
2053                         ignore_bits |= EFER_NX;
2054         }
2055
2056         /*
2057          * LMA and LME handled by hardware; SCE meaningless outside long mode.
2058          */
2059         ignore_bits |= EFER_SCE;
2060 #ifdef CONFIG_X86_64
2061         ignore_bits |= EFER_LMA | EFER_LME;
2062         /* SCE is meaningful only in long mode on Intel */
2063         if (guest_efer & EFER_LMA)
2064                 ignore_bits &= ~(u64)EFER_SCE;
2065 #endif
2066
2067         clear_atomic_switch_msr(vmx, MSR_EFER);
2068
2069         /*
2070          * On EPT, we can't emulate NX, so we must switch EFER atomically.
2071          * On CPUs that support "load IA32_EFER", always switch EFER
2072          * atomically, since it's faster than switching it manually.
2073          */
2074         if (cpu_has_load_ia32_efer ||
2075             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
2076                 if (!(guest_efer & EFER_LMA))
2077                         guest_efer &= ~EFER_LME;
2078                 if (guest_efer != host_efer)
2079                         add_atomic_switch_msr(vmx, MSR_EFER,
2080                                               guest_efer, host_efer);
2081                 return false;
2082         } else {
2083                 guest_efer &= ~ignore_bits;
2084                 guest_efer |= host_efer & ignore_bits;
2085
2086                 vmx->guest_msrs[efer_offset].data = guest_efer;
2087                 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
2088
2089                 return true;
2090         }
2091 }
2092
2093 #ifdef CONFIG_X86_32
2094 /*
2095  * On 32-bit kernels, VM exits still load the FS and GS bases from the
2096  * VMCS rather than the segment table.  KVM uses this helper to figure
2097  * out the current bases to poke them into the VMCS before entry.
2098  */
2099 static unsigned long segment_base(u16 selector)
2100 {
2101         struct desc_struct *table;
2102         unsigned long v;
2103
2104         if (!(selector & ~SEGMENT_RPL_MASK))
2105                 return 0;
2106
2107         table = get_current_gdt_ro();
2108
2109         if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2110                 u16 ldt_selector = kvm_read_ldt();
2111
2112                 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
2113                         return 0;
2114
2115                 table = (struct desc_struct *)segment_base(ldt_selector);
2116         }
2117         v = get_desc_base(&table[selector >> 3]);
2118         return v;
2119 }
2120 #endif
2121
2122 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
2123 {
2124         struct vcpu_vmx *vmx = to_vmx(vcpu);
2125         int i;
2126
2127         if (vmx->host_state.loaded)
2128                 return;
2129
2130         vmx->host_state.loaded = 1;
2131         /*
2132          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
2133          * allow segment selectors with cpl > 0 or ti == 1.
2134          */
2135         vmx->host_state.ldt_sel = kvm_read_ldt();
2136         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
2137         savesegment(fs, vmx->host_state.fs_sel);
2138         if (!(vmx->host_state.fs_sel & 7)) {
2139                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
2140                 vmx->host_state.fs_reload_needed = 0;
2141         } else {
2142                 vmcs_write16(HOST_FS_SELECTOR, 0);
2143                 vmx->host_state.fs_reload_needed = 1;
2144         }
2145         savesegment(gs, vmx->host_state.gs_sel);
2146         if (!(vmx->host_state.gs_sel & 7))
2147                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
2148         else {
2149                 vmcs_write16(HOST_GS_SELECTOR, 0);
2150                 vmx->host_state.gs_ldt_reload_needed = 1;
2151         }
2152
2153 #ifdef CONFIG_X86_64
2154         savesegment(ds, vmx->host_state.ds_sel);
2155         savesegment(es, vmx->host_state.es_sel);
2156 #endif
2157
2158 #ifdef CONFIG_X86_64
2159         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2160         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2161 #else
2162         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2163         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
2164 #endif
2165
2166 #ifdef CONFIG_X86_64
2167         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2168         if (is_long_mode(&vmx->vcpu))
2169                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2170 #endif
2171         if (boot_cpu_has(X86_FEATURE_MPX))
2172                 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2173         for (i = 0; i < vmx->save_nmsrs; ++i)
2174                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
2175                                    vmx->guest_msrs[i].data,
2176                                    vmx->guest_msrs[i].mask);
2177 }
2178
2179 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
2180 {
2181         if (!vmx->host_state.loaded)
2182                 return;
2183
2184         ++vmx->vcpu.stat.host_state_reload;
2185         vmx->host_state.loaded = 0;
2186 #ifdef CONFIG_X86_64
2187         if (is_long_mode(&vmx->vcpu))
2188                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2189 #endif
2190         if (vmx->host_state.gs_ldt_reload_needed) {
2191                 kvm_load_ldt(vmx->host_state.ldt_sel);
2192 #ifdef CONFIG_X86_64
2193                 load_gs_index(vmx->host_state.gs_sel);
2194 #else
2195                 loadsegment(gs, vmx->host_state.gs_sel);
2196 #endif
2197         }
2198         if (vmx->host_state.fs_reload_needed)
2199                 loadsegment(fs, vmx->host_state.fs_sel);
2200 #ifdef CONFIG_X86_64
2201         if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2202                 loadsegment(ds, vmx->host_state.ds_sel);
2203                 loadsegment(es, vmx->host_state.es_sel);
2204         }
2205 #endif
2206         invalidate_tss_limit();
2207 #ifdef CONFIG_X86_64
2208         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2209 #endif
2210         if (vmx->host_state.msr_host_bndcfgs)
2211                 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2212         load_fixmap_gdt(raw_smp_processor_id());
2213 }
2214
2215 static void vmx_load_host_state(struct vcpu_vmx *vmx)
2216 {
2217         preempt_disable();
2218         __vmx_load_host_state(vmx);
2219         preempt_enable();
2220 }
2221
2222 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2223 {
2224         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2225         struct pi_desc old, new;
2226         unsigned int dest;
2227
2228         /*
2229          * In case of hot-plug or hot-unplug, we may have to undo
2230          * vmx_vcpu_pi_put even if there is no assigned device.  And we
2231          * always keep PI.NDST up to date for simplicity: it makes the
2232          * code easier, and CPU migration is not a fast path.
2233          */
2234         if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
2235                 return;
2236
2237         /*
2238          * First handle the simple case where no cmpxchg is necessary; just
2239          * allow posting non-urgent interrupts.
2240          *
2241          * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
2242          * PI.NDST: pi_post_block will do it for us and the wakeup_handler
2243          * expects the VCPU to be on the blocked_vcpu_list that matches
2244          * PI.NDST.
2245          */
2246         if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR ||
2247             vcpu->cpu == cpu) {
2248                 pi_clear_sn(pi_desc);
2249                 return;
2250         }
2251
2252         /* The full case.  */
2253         do {
2254                 old.control = new.control = pi_desc->control;
2255
2256                 dest = cpu_physical_id(cpu);
2257
2258                 if (x2apic_enabled())
2259                         new.ndst = dest;
2260                 else
2261                         new.ndst = (dest << 8) & 0xFF00;
2262
2263                 new.sn = 0;
2264         } while (cmpxchg64(&pi_desc->control, old.control,
2265                            new.control) != old.control);
2266 }
2267
2268 static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
2269 {
2270         vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
2271         vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2272 }
2273
2274 /*
2275  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2276  * vcpu mutex is already taken.
2277  */
2278 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2279 {
2280         struct vcpu_vmx *vmx = to_vmx(vcpu);
2281         bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
2282
2283         if (!already_loaded) {
2284                 loaded_vmcs_clear(vmx->loaded_vmcs);
2285                 local_irq_disable();
2286                 crash_disable_local_vmclear(cpu);
2287
2288                 /*
2289                  * Read loaded_vmcs->cpu should be before fetching
2290                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
2291                  * See the comments in __loaded_vmcs_clear().
2292                  */
2293                 smp_rmb();
2294
2295                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2296                          &per_cpu(loaded_vmcss_on_cpu, cpu));
2297                 crash_enable_local_vmclear(cpu);
2298                 local_irq_enable();
2299         }
2300
2301         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2302                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2303                 vmcs_load(vmx->loaded_vmcs->vmcs);
2304                 indirect_branch_prediction_barrier();
2305         }
2306
2307         if (!already_loaded) {
2308                 void *gdt = get_current_gdt_ro();
2309                 unsigned long sysenter_esp;
2310
2311                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2312
2313                 /*
2314                  * Linux uses per-cpu TSS and GDT, so set these when switching
2315                  * processors.  See 22.2.4.
2316                  */
2317                 vmcs_writel(HOST_TR_BASE,
2318                             (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
2319                 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
2320
2321                 /*
2322                  * VM exits change the host TR limit to 0x67 after a VM
2323                  * exit.  This is okay, since 0x67 covers everything except
2324                  * the IO bitmap and have have code to handle the IO bitmap
2325                  * being lost after a VM exit.
2326                  */
2327                 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
2328
2329                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2330                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
2331
2332                 vmx->loaded_vmcs->cpu = cpu;
2333         }
2334
2335         /* Setup TSC multiplier */
2336         if (kvm_has_tsc_control &&
2337             vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
2338                 decache_tsc_multiplier(vmx);
2339
2340         vmx_vcpu_pi_load(vcpu, cpu);
2341         vmx->host_pkru = read_pkru();
2342         vmx->host_debugctlmsr = get_debugctlmsr();
2343 }
2344
2345 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2346 {
2347         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2348
2349         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2350                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
2351                 !kvm_vcpu_apicv_active(vcpu))
2352                 return;
2353
2354         /* Set SN when the vCPU is preempted */
2355         if (vcpu->preempted)
2356                 pi_set_sn(pi_desc);
2357 }
2358
2359 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2360 {
2361         vmx_vcpu_pi_put(vcpu);
2362
2363         __vmx_load_host_state(to_vmx(vcpu));
2364 }
2365
2366 static bool emulation_required(struct kvm_vcpu *vcpu)
2367 {
2368         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
2369 }
2370
2371 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2372
2373 /*
2374  * Return the cr0 value that a nested guest would read. This is a combination
2375  * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2376  * its hypervisor (cr0_read_shadow).
2377  */
2378 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2379 {
2380         return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2381                 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2382 }
2383 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2384 {
2385         return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2386                 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2387 }
2388
2389 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2390 {
2391         unsigned long rflags, save_rflags;
2392
2393         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2394                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2395                 rflags = vmcs_readl(GUEST_RFLAGS);
2396                 if (to_vmx(vcpu)->rmode.vm86_active) {
2397                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2398                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2399                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2400                 }
2401                 to_vmx(vcpu)->rflags = rflags;
2402         }
2403         return to_vmx(vcpu)->rflags;
2404 }
2405
2406 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2407 {
2408         unsigned long old_rflags = vmx_get_rflags(vcpu);
2409
2410         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2411         to_vmx(vcpu)->rflags = rflags;
2412         if (to_vmx(vcpu)->rmode.vm86_active) {
2413                 to_vmx(vcpu)->rmode.save_rflags = rflags;
2414                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2415         }
2416         vmcs_writel(GUEST_RFLAGS, rflags);
2417
2418         if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
2419                 to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
2420 }
2421
2422 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2423 {
2424         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2425         int ret = 0;
2426
2427         if (interruptibility & GUEST_INTR_STATE_STI)
2428                 ret |= KVM_X86_SHADOW_INT_STI;
2429         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2430                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2431
2432         return ret;
2433 }
2434
2435 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2436 {
2437         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2438         u32 interruptibility = interruptibility_old;
2439
2440         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2441
2442         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2443                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2444         else if (mask & KVM_X86_SHADOW_INT_STI)
2445                 interruptibility |= GUEST_INTR_STATE_STI;
2446
2447         if ((interruptibility != interruptibility_old))
2448                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2449 }
2450
2451 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2452 {
2453         unsigned long rip;
2454
2455         rip = kvm_rip_read(vcpu);
2456         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2457         kvm_rip_write(vcpu, rip);
2458
2459         /* skipping an emulated instruction also counts */
2460         vmx_set_interrupt_shadow(vcpu, 0);
2461 }
2462
2463 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
2464                                                unsigned long exit_qual)
2465 {
2466         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2467         unsigned int nr = vcpu->arch.exception.nr;
2468         u32 intr_info = nr | INTR_INFO_VALID_MASK;
2469
2470         if (vcpu->arch.exception.has_error_code) {
2471                 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
2472                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2473         }
2474
2475         if (kvm_exception_is_soft(nr))
2476                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2477         else
2478                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2479
2480         if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
2481             vmx_get_nmi_mask(vcpu))
2482                 intr_info |= INTR_INFO_UNBLOCK_NMI;
2483
2484         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
2485 }
2486
2487 /*
2488  * KVM wants to inject page-faults which it got to the guest. This function
2489  * checks whether in a nested guest, we need to inject them to L1 or L2.
2490  */
2491 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
2492 {
2493         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2494         unsigned int nr = vcpu->arch.exception.nr;
2495
2496         if (nr == PF_VECTOR) {
2497                 if (vcpu->arch.exception.nested_apf) {
2498                         *exit_qual = vcpu->arch.apf.nested_apf_token;
2499                         return 1;
2500                 }
2501                 /*
2502                  * FIXME: we must not write CR2 when L1 intercepts an L2 #PF exception.
2503                  * The fix is to add the ancillary datum (CR2 or DR6) to structs
2504                  * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6
2505                  * can be written only when inject_pending_event runs.  This should be
2506                  * conditional on a new capability---if the capability is disabled,
2507                  * kvm_multiple_exception would write the ancillary information to
2508                  * CR2 or DR6, for backwards ABI-compatibility.
2509                  */
2510                 if (nested_vmx_is_page_fault_vmexit(vmcs12,
2511                                                     vcpu->arch.exception.error_code)) {
2512                         *exit_qual = vcpu->arch.cr2;
2513                         return 1;
2514                 }
2515         } else {
2516                 if (vmcs12->exception_bitmap & (1u << nr)) {
2517                         if (nr == DB_VECTOR)
2518                                 *exit_qual = vcpu->arch.dr6;
2519                         else
2520                                 *exit_qual = 0;
2521                         return 1;
2522                 }
2523         }
2524
2525         return 0;
2526 }
2527
2528 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
2529 {
2530         struct vcpu_vmx *vmx = to_vmx(vcpu);
2531         unsigned nr = vcpu->arch.exception.nr;
2532         bool has_error_code = vcpu->arch.exception.has_error_code;
2533         u32 error_code = vcpu->arch.exception.error_code;
2534         u32 intr_info = nr | INTR_INFO_VALID_MASK;
2535
2536         if (has_error_code) {
2537                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2538                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2539         }
2540
2541         if (vmx->rmode.vm86_active) {
2542                 int inc_eip = 0;
2543                 if (kvm_exception_is_soft(nr))
2544                         inc_eip = vcpu->arch.event_exit_inst_len;
2545                 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2546                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2547                 return;
2548         }
2549
2550         if (kvm_exception_is_soft(nr)) {
2551                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2552                              vmx->vcpu.arch.event_exit_inst_len);
2553                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2554         } else
2555                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2556
2557         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2558 }
2559
2560 static bool vmx_rdtscp_supported(void)
2561 {
2562         return cpu_has_vmx_rdtscp();
2563 }
2564
2565 static bool vmx_invpcid_supported(void)
2566 {
2567         return cpu_has_vmx_invpcid() && enable_ept;
2568 }
2569
2570 /*
2571  * Swap MSR entry in host/guest MSR entry array.
2572  */
2573 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2574 {
2575         struct shared_msr_entry tmp;
2576
2577         tmp = vmx->guest_msrs[to];
2578         vmx->guest_msrs[to] = vmx->guest_msrs[from];
2579         vmx->guest_msrs[from] = tmp;
2580 }
2581
2582 /*
2583  * Set up the vmcs to automatically save and restore system
2584  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
2585  * mode, as fiddling with msrs is very expensive.
2586  */
2587 static void setup_msrs(struct vcpu_vmx *vmx)
2588 {
2589         int save_nmsrs, index;
2590
2591         save_nmsrs = 0;
2592 #ifdef CONFIG_X86_64
2593         if (is_long_mode(&vmx->vcpu)) {
2594                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2595                 if (index >= 0)
2596                         move_msr_up(vmx, index, save_nmsrs++);
2597                 index = __find_msr_index(vmx, MSR_LSTAR);
2598                 if (index >= 0)
2599                         move_msr_up(vmx, index, save_nmsrs++);
2600                 index = __find_msr_index(vmx, MSR_CSTAR);
2601                 if (index >= 0)
2602                         move_msr_up(vmx, index, save_nmsrs++);
2603                 index = __find_msr_index(vmx, MSR_TSC_AUX);
2604                 if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
2605                         move_msr_up(vmx, index, save_nmsrs++);
2606                 /*
2607                  * MSR_STAR is only needed on long mode guests, and only
2608                  * if efer.sce is enabled.
2609                  */
2610                 index = __find_msr_index(vmx, MSR_STAR);
2611                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2612                         move_msr_up(vmx, index, save_nmsrs++);
2613         }
2614 #endif
2615         index = __find_msr_index(vmx, MSR_EFER);
2616         if (index >= 0 && update_transition_efer(vmx, index))
2617                 move_msr_up(vmx, index, save_nmsrs++);
2618
2619         vmx->save_nmsrs = save_nmsrs;
2620
2621         if (cpu_has_vmx_msr_bitmap())
2622                 vmx_update_msr_bitmap(&vmx->vcpu);
2623 }
2624
2625 /*
2626  * reads and returns guest's timestamp counter "register"
2627  * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2628  * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
2629  */
2630 static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
2631 {
2632         u64 host_tsc, tsc_offset;
2633
2634         host_tsc = rdtsc();
2635         tsc_offset = vmcs_read64(TSC_OFFSET);
2636         return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
2637 }
2638
2639 /*
2640  * writes 'offset' into guest's timestamp counter offset register
2641  */
2642 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2643 {
2644         if (is_guest_mode(vcpu)) {
2645                 /*
2646                  * We're here if L1 chose not to trap WRMSR to TSC. According
2647                  * to the spec, this should set L1's TSC; The offset that L1
2648                  * set for L2 remains unchanged, and still needs to be added
2649                  * to the newly set TSC to get L2's TSC.
2650                  */
2651                 struct vmcs12 *vmcs12;
2652                 /* recalculate vmcs02.TSC_OFFSET: */
2653                 vmcs12 = get_vmcs12(vcpu);
2654                 vmcs_write64(TSC_OFFSET, offset +
2655                         (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2656                          vmcs12->tsc_offset : 0));
2657         } else {
2658                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2659                                            vmcs_read64(TSC_OFFSET), offset);
2660                 vmcs_write64(TSC_OFFSET, offset);
2661         }
2662 }
2663
2664 /*
2665  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2666  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2667  * all guests if the "nested" module option is off, and can also be disabled
2668  * for a single guest by disabling its VMX cpuid bit.
2669  */
2670 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2671 {
2672         return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
2673 }
2674
2675 /*
2676  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2677  * returned for the various VMX controls MSRs when nested VMX is enabled.
2678  * The same values should also be used to verify that vmcs12 control fields are
2679  * valid during nested entry from L1 to L2.
2680  * Each of these control msrs has a low and high 32-bit half: A low bit is on
2681  * if the corresponding bit in the (32-bit) control field *must* be on, and a
2682  * bit in the high half is on if the corresponding bit in the control field
2683  * may be on. See also vmx_control_verify().
2684  */
2685 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2686 {
2687         /*
2688          * Note that as a general rule, the high half of the MSRs (bits in
2689          * the control fields which may be 1) should be initialized by the
2690          * intersection of the underlying hardware's MSR (i.e., features which
2691          * can be supported) and the list of features we want to expose -
2692          * because they are known to be properly supported in our code.
2693          * Also, usually, the low half of the MSRs (bits which must be 1) can
2694          * be set to 0, meaning that L1 may turn off any of these bits. The
2695          * reason is that if one of these bits is necessary, it will appear
2696          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2697          * fields of vmcs01 and vmcs02, will turn these bits off - and
2698          * nested_vmx_exit_reflected() will not pass related exits to L1.
2699          * These rules have exceptions below.
2700          */
2701
2702         /* pin-based controls */
2703         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2704                 vmx->nested.nested_vmx_pinbased_ctls_low,
2705                 vmx->nested.nested_vmx_pinbased_ctls_high);
2706         vmx->nested.nested_vmx_pinbased_ctls_low |=
2707                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2708         vmx->nested.nested_vmx_pinbased_ctls_high &=
2709                 PIN_BASED_EXT_INTR_MASK |
2710                 PIN_BASED_NMI_EXITING |
2711                 PIN_BASED_VIRTUAL_NMIS;
2712         vmx->nested.nested_vmx_pinbased_ctls_high |=
2713                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2714                 PIN_BASED_VMX_PREEMPTION_TIMER;
2715         if (kvm_vcpu_apicv_active(&vmx->vcpu))
2716                 vmx->nested.nested_vmx_pinbased_ctls_high |=
2717                         PIN_BASED_POSTED_INTR;
2718
2719         /* exit controls */
2720         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2721                 vmx->nested.nested_vmx_exit_ctls_low,
2722                 vmx->nested.nested_vmx_exit_ctls_high);
2723         vmx->nested.nested_vmx_exit_ctls_low =
2724                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2725
2726         vmx->nested.nested_vmx_exit_ctls_high &=
2727 #ifdef CONFIG_X86_64
2728                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2729 #endif
2730                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2731         vmx->nested.nested_vmx_exit_ctls_high |=
2732                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2733                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2734                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2735
2736         if (kvm_mpx_supported())
2737                 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2738
2739         /* We support free control of debug control saving. */
2740         vmx->nested.nested_vmx_exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2741
2742         /* entry controls */
2743         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2744                 vmx->nested.nested_vmx_entry_ctls_low,
2745                 vmx->nested.nested_vmx_entry_ctls_high);
2746         vmx->nested.nested_vmx_entry_ctls_low =
2747                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2748         vmx->nested.nested_vmx_entry_ctls_high &=
2749 #ifdef CONFIG_X86_64
2750                 VM_ENTRY_IA32E_MODE |
2751 #endif
2752                 VM_ENTRY_LOAD_IA32_PAT;
2753         vmx->nested.nested_vmx_entry_ctls_high |=
2754                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2755         if (kvm_mpx_supported())
2756                 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2757
2758         /* We support free control of debug control loading. */
2759         vmx->nested.nested_vmx_entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2760
2761         /* cpu-based controls */
2762         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2763                 vmx->nested.nested_vmx_procbased_ctls_low,
2764                 vmx->nested.nested_vmx_procbased_ctls_high);
2765         vmx->nested.nested_vmx_procbased_ctls_low =
2766                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2767         vmx->nested.nested_vmx_procbased_ctls_high &=
2768                 CPU_BASED_VIRTUAL_INTR_PENDING |
2769                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2770                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2771                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2772                 CPU_BASED_CR3_STORE_EXITING |
2773 #ifdef CONFIG_X86_64
2774                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2775 #endif
2776                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2777                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2778                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2779                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2780                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2781         /*
2782          * We can allow some features even when not supported by the
2783          * hardware. For example, L1 can specify an MSR bitmap - and we
2784          * can use it to avoid exits to L1 - even when L0 runs L2
2785          * without MSR bitmaps.
2786          */
2787         vmx->nested.nested_vmx_procbased_ctls_high |=
2788                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2789                 CPU_BASED_USE_MSR_BITMAPS;
2790
2791         /* We support free control of CR3 access interception. */
2792         vmx->nested.nested_vmx_procbased_ctls_low &=
2793                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2794
2795         /*
2796          * secondary cpu-based controls.  Do not include those that
2797          * depend on CPUID bits, they are added later by vmx_cpuid_update.
2798          */
2799         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2800                 vmx->nested.nested_vmx_secondary_ctls_low,
2801                 vmx->nested.nested_vmx_secondary_ctls_high);
2802         vmx->nested.nested_vmx_secondary_ctls_low = 0;
2803         vmx->nested.nested_vmx_secondary_ctls_high &=
2804                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2805                 SECONDARY_EXEC_DESC |
2806                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2807                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2808                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2809                 SECONDARY_EXEC_WBINVD_EXITING;
2810
2811         if (enable_ept) {
2812                 /* nested EPT: emulate EPT also to L1 */
2813                 vmx->nested.nested_vmx_secondary_ctls_high |=
2814                         SECONDARY_EXEC_ENABLE_EPT;
2815                 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2816                          VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
2817                 if (cpu_has_vmx_ept_execute_only())
2818                         vmx->nested.nested_vmx_ept_caps |=
2819                                 VMX_EPT_EXECUTE_ONLY_BIT;
2820                 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2821                 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
2822                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
2823                         VMX_EPT_1GB_PAGE_BIT;
2824                 if (enable_ept_ad_bits) {
2825                         vmx->nested.nested_vmx_secondary_ctls_high |=
2826                                 SECONDARY_EXEC_ENABLE_PML;
2827                         vmx->nested.nested_vmx_ept_caps |= VMX_EPT_AD_BIT;
2828                 }
2829         }
2830
2831         if (cpu_has_vmx_vmfunc()) {
2832                 vmx->nested.nested_vmx_secondary_ctls_high |=
2833                         SECONDARY_EXEC_ENABLE_VMFUNC;
2834                 /*
2835                  * Advertise EPTP switching unconditionally
2836                  * since we emulate it
2837                  */
2838                 if (enable_ept)
2839                         vmx->nested.nested_vmx_vmfunc_controls =
2840                                 VMX_VMFUNC_EPTP_SWITCHING;
2841         }
2842
2843         /*
2844          * Old versions of KVM use the single-context version without
2845          * checking for support, so declare that it is supported even
2846          * though it is treated as global context.  The alternative is
2847          * not failing the single-context invvpid, and it is worse.
2848          */
2849         if (enable_vpid) {
2850                 vmx->nested.nested_vmx_secondary_ctls_high |=
2851                         SECONDARY_EXEC_ENABLE_VPID;
2852                 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
2853                         VMX_VPID_EXTENT_SUPPORTED_MASK;
2854         }
2855
2856         if (enable_unrestricted_guest)
2857                 vmx->nested.nested_vmx_secondary_ctls_high |=
2858                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
2859
2860         /* miscellaneous data */
2861         rdmsr(MSR_IA32_VMX_MISC,
2862                 vmx->nested.nested_vmx_misc_low,
2863                 vmx->nested.nested_vmx_misc_high);
2864         vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2865         vmx->nested.nested_vmx_misc_low |=
2866                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2867                 VMX_MISC_ACTIVITY_HLT;
2868         vmx->nested.nested_vmx_misc_high = 0;
2869
2870         /*
2871          * This MSR reports some information about VMX support. We
2872          * should return information about the VMX we emulate for the
2873          * guest, and the VMCS structure we give it - not about the
2874          * VMX support of the underlying hardware.
2875          */
2876         vmx->nested.nested_vmx_basic =
2877                 VMCS12_REVISION |
2878                 VMX_BASIC_TRUE_CTLS |
2879                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2880                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2881
2882         if (cpu_has_vmx_basic_inout())
2883                 vmx->nested.nested_vmx_basic |= VMX_BASIC_INOUT;
2884
2885         /*
2886          * These MSRs specify bits which the guest must keep fixed on
2887          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2888          * We picked the standard core2 setting.
2889          */
2890 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2891 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
2892         vmx->nested.nested_vmx_cr0_fixed0 = VMXON_CR0_ALWAYSON;
2893         vmx->nested.nested_vmx_cr4_fixed0 = VMXON_CR4_ALWAYSON;
2894
2895         /* These MSRs specify bits which the guest must keep fixed off. */
2896         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, vmx->nested.nested_vmx_cr0_fixed1);
2897         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, vmx->nested.nested_vmx_cr4_fixed1);
2898
2899         /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2900         vmx->nested.nested_vmx_vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
2901 }
2902
2903 /*
2904  * if fixed0[i] == 1: val[i] must be 1
2905  * if fixed1[i] == 0: val[i] must be 0
2906  */
2907 static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
2908 {
2909         return ((val & fixed1) | fixed0) == val;
2910 }
2911
2912 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2913 {
2914         return fixed_bits_valid(control, low, high);
2915 }
2916
2917 static inline u64 vmx_control_msr(u32 low, u32 high)
2918 {
2919         return low | ((u64)high << 32);
2920 }
2921
2922 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
2923 {
2924         superset &= mask;
2925         subset &= mask;
2926
2927         return (superset | subset) == superset;
2928 }
2929
2930 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
2931 {
2932         const u64 feature_and_reserved =
2933                 /* feature (except bit 48; see below) */
2934                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
2935                 /* reserved */
2936                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
2937         u64 vmx_basic = vmx->nested.nested_vmx_basic;
2938
2939         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
2940                 return -EINVAL;
2941
2942         /*
2943          * KVM does not emulate a version of VMX that constrains physical
2944          * addresses of VMX structures (e.g. VMCS) to 32-bits.
2945          */
2946         if (data & BIT_ULL(48))
2947                 return -EINVAL;
2948
2949         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
2950             vmx_basic_vmcs_revision_id(data))
2951                 return -EINVAL;
2952
2953         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
2954                 return -EINVAL;
2955
2956         vmx->nested.nested_vmx_basic = data;
2957         return 0;
2958 }
2959
2960 static int
2961 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
2962 {
2963         u64 supported;
2964         u32 *lowp, *highp;
2965
2966         switch (msr_index) {
2967         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2968                 lowp = &vmx->nested.nested_vmx_pinbased_ctls_low;
2969                 highp = &vmx->nested.nested_vmx_pinbased_ctls_high;
2970                 break;
2971         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2972                 lowp = &vmx->nested.nested_vmx_procbased_ctls_low;
2973                 highp = &vmx->nested.nested_vmx_procbased_ctls_high;
2974                 break;
2975         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2976                 lowp = &vmx->nested.nested_vmx_exit_ctls_low;
2977                 highp = &vmx->nested.nested_vmx_exit_ctls_high;
2978                 break;
2979         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2980                 lowp = &vmx->nested.nested_vmx_entry_ctls_low;
2981                 highp = &vmx->nested.nested_vmx_entry_ctls_high;
2982                 break;
2983         case MSR_IA32_VMX_PROCBASED_CTLS2:
2984                 lowp = &vmx->nested.nested_vmx_secondary_ctls_low;
2985                 highp = &vmx->nested.nested_vmx_secondary_ctls_high;
2986                 break;
2987         default:
2988                 BUG();
2989         }
2990
2991         supported = vmx_control_msr(*lowp, *highp);
2992
2993         /* Check must-be-1 bits are still 1. */
2994         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
2995                 return -EINVAL;
2996
2997         /* Check must-be-0 bits are still 0. */
2998         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
2999                 return -EINVAL;
3000
3001         *lowp = data;
3002         *highp = data >> 32;
3003         return 0;
3004 }
3005
3006 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
3007 {
3008         const u64 feature_and_reserved_bits =
3009                 /* feature */
3010                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
3011                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
3012                 /* reserved */
3013                 GENMASK_ULL(13, 9) | BIT_ULL(31);
3014         u64 vmx_misc;
3015
3016         vmx_misc = vmx_control_msr(vmx->nested.nested_vmx_misc_low,
3017                                    vmx->nested.nested_vmx_misc_high);
3018
3019         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
3020                 return -EINVAL;
3021
3022         if ((vmx->nested.nested_vmx_pinbased_ctls_high &
3023              PIN_BASED_VMX_PREEMPTION_TIMER) &&
3024             vmx_misc_preemption_timer_rate(data) !=
3025             vmx_misc_preemption_timer_rate(vmx_misc))
3026                 return -EINVAL;
3027
3028         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
3029                 return -EINVAL;
3030
3031         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
3032                 return -EINVAL;
3033
3034         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
3035                 return -EINVAL;
3036
3037         vmx->nested.nested_vmx_misc_low = data;
3038         vmx->nested.nested_vmx_misc_high = data >> 32;
3039         return 0;
3040 }
3041
3042 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
3043 {
3044         u64 vmx_ept_vpid_cap;
3045
3046         vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.nested_vmx_ept_caps,
3047                                            vmx->nested.nested_vmx_vpid_caps);
3048
3049         /* Every bit is either reserved or a feature bit. */
3050         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
3051                 return -EINVAL;
3052
3053         vmx->nested.nested_vmx_ept_caps = data;
3054         vmx->nested.nested_vmx_vpid_caps = data >> 32;
3055         return 0;
3056 }
3057
3058 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
3059 {
3060         u64 *msr;
3061
3062         switch (msr_index) {
3063         case MSR_IA32_VMX_CR0_FIXED0:
3064                 msr = &vmx->nested.nested_vmx_cr0_fixed0;
3065                 break;
3066         case MSR_IA32_VMX_CR4_FIXED0:
3067                 msr = &vmx->nested.nested_vmx_cr4_fixed0;
3068                 break;
3069         default:
3070                 BUG();
3071         }
3072
3073         /*
3074          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
3075          * must be 1 in the restored value.
3076          */
3077         if (!is_bitwise_subset(data, *msr, -1ULL))
3078                 return -EINVAL;
3079
3080         *msr = data;
3081         return 0;
3082 }
3083
3084 /*
3085  * Called when userspace is restoring VMX MSRs.
3086  *
3087  * Returns 0 on success, non-0 otherwise.
3088  */
3089 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
3090 {
3091         struct vcpu_vmx *vmx = to_vmx(vcpu);
3092
3093         switch (msr_index) {
3094         case MSR_IA32_VMX_BASIC:
3095                 return vmx_restore_vmx_basic(vmx, data);
3096         case MSR_IA32_VMX_PINBASED_CTLS:
3097         case MSR_IA32_VMX_PROCBASED_CTLS:
3098         case MSR_IA32_VMX_EXIT_CTLS:
3099         case MSR_IA32_VMX_ENTRY_CTLS:
3100                 /*
3101                  * The "non-true" VMX capability MSRs are generated from the
3102                  * "true" MSRs, so we do not support restoring them directly.
3103                  *
3104                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
3105                  * should restore the "true" MSRs with the must-be-1 bits
3106                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
3107                  * DEFAULT SETTINGS".
3108                  */
3109                 return -EINVAL;
3110         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3111         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3112         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3113         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3114         case MSR_IA32_VMX_PROCBASED_CTLS2:
3115                 return vmx_restore_control_msr(vmx, msr_index, data);
3116         case MSR_IA32_VMX_MISC:
3117                 return vmx_restore_vmx_misc(vmx, data);
3118         case MSR_IA32_VMX_CR0_FIXED0:
3119         case MSR_IA32_VMX_CR4_FIXED0:
3120                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
3121         case MSR_IA32_VMX_CR0_FIXED1:
3122         case MSR_IA32_VMX_CR4_FIXED1:
3123                 /*
3124                  * These MSRs are generated based on the vCPU's CPUID, so we
3125                  * do not support restoring them directly.
3126                  */
3127                 return -EINVAL;
3128         case MSR_IA32_VMX_EPT_VPID_CAP:
3129                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
3130         case MSR_IA32_VMX_VMCS_ENUM:
3131                 vmx->nested.nested_vmx_vmcs_enum = data;
3132                 return 0;
3133         default:
3134                 /*
3135                  * The rest of the VMX capability MSRs do not support restore.
3136                  */
3137                 return -EINVAL;
3138         }
3139 }
3140
3141 /* Returns 0 on success, non-0 otherwise. */
3142 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
3143 {
3144         struct vcpu_vmx *vmx = to_vmx(vcpu);
3145
3146         switch (msr_index) {
3147         case MSR_IA32_VMX_BASIC:
3148                 *pdata = vmx->nested.nested_vmx_basic;
3149                 break;
3150         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3151         case MSR_IA32_VMX_PINBASED_CTLS:
3152                 *pdata = vmx_control_msr(
3153                         vmx->nested.nested_vmx_pinbased_ctls_low,
3154                         vmx->nested.nested_vmx_pinbased_ctls_high);
3155                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
3156                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3157                 break;
3158         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3159         case MSR_IA32_VMX_PROCBASED_CTLS:
3160                 *pdata = vmx_control_msr(
3161                         vmx->nested.nested_vmx_procbased_ctls_low,
3162                         vmx->nested.nested_vmx_procbased_ctls_high);
3163                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
3164                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3165                 break;
3166         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3167         case MSR_IA32_VMX_EXIT_CTLS:
3168                 *pdata = vmx_control_msr(
3169                         vmx->nested.nested_vmx_exit_ctls_low,
3170                         vmx->nested.nested_vmx_exit_ctls_high);
3171                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
3172                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
3173                 break;
3174         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3175         case MSR_IA32_VMX_ENTRY_CTLS:
3176                 *pdata = vmx_control_msr(
3177                         vmx->nested.nested_vmx_entry_ctls_low,
3178                         vmx->nested.nested_vmx_entry_ctls_high);
3179                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
3180                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
3181                 break;
3182         case MSR_IA32_VMX_MISC:
3183                 *pdata = vmx_control_msr(
3184                         vmx->nested.nested_vmx_misc_low,
3185                         vmx->nested.nested_vmx_misc_high);
3186                 break;
3187         case MSR_IA32_VMX_CR0_FIXED0:
3188                 *pdata = vmx->nested.nested_vmx_cr0_fixed0;
3189                 break;
3190         case MSR_IA32_VMX_CR0_FIXED1:
3191                 *pdata = vmx->nested.nested_vmx_cr0_fixed1;
3192                 break;
3193         case MSR_IA32_VMX_CR4_FIXED0:
3194                 *pdata = vmx->nested.nested_vmx_cr4_fixed0;
3195                 break;
3196         case MSR_IA32_VMX_CR4_FIXED1:
3197                 *pdata = vmx->nested.nested_vmx_cr4_fixed1;
3198                 break;
3199         case MSR_IA32_VMX_VMCS_ENUM:
3200                 *pdata = vmx->nested.nested_vmx_vmcs_enum;
3201                 break;
3202         case MSR_IA32_VMX_PROCBASED_CTLS2:
3203                 *pdata = vmx_control_msr(
3204                         vmx->nested.nested_vmx_secondary_ctls_low,
3205                         vmx->nested.nested_vmx_secondary_ctls_high);
3206                 break;
3207         case MSR_IA32_VMX_EPT_VPID_CAP:
3208                 *pdata = vmx->nested.nested_vmx_ept_caps |
3209                         ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
3210                 break;
3211         case MSR_IA32_VMX_VMFUNC:
3212                 *pdata = vmx->nested.nested_vmx_vmfunc_controls;
3213                 break;
3214         default:
3215                 return 1;
3216         }
3217
3218         return 0;
3219 }
3220
3221 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
3222                                                  uint64_t val)
3223 {
3224         uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
3225
3226         return !(val & ~valid_bits);
3227 }
3228
3229 /*
3230  * Reads an msr value (of 'msr_index') into 'pdata'.
3231  * Returns 0 on success, non-0 otherwise.
3232  * Assumes vcpu_load() was already called.
3233  */
3234 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3235 {
3236         struct vcpu_vmx *vmx = to_vmx(vcpu);
3237         struct shared_msr_entry *msr;
3238
3239         switch (msr_info->index) {
3240 #ifdef CONFIG_X86_64
3241         case MSR_FS_BASE:
3242                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
3243                 break;
3244         case MSR_GS_BASE:
3245                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
3246                 break;
3247         case MSR_KERNEL_GS_BASE:
3248                 vmx_load_host_state(vmx);
3249                 msr_info->data = vmx->msr_guest_kernel_gs_base;
3250                 break;
3251 #endif
3252         case MSR_EFER:
3253                 return kvm_get_msr_common(vcpu, msr_info);
3254         case MSR_IA32_TSC:
3255                 msr_info->data = guest_read_tsc(vcpu);
3256                 break;
3257         case MSR_IA32_SPEC_CTRL:
3258                 if (!msr_info->host_initiated &&
3259                     !guest_cpuid_has(vcpu, X86_FEATURE_IBRS) &&
3260                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
3261                         return 1;
3262
3263                 msr_info->data = to_vmx(vcpu)->spec_ctrl;
3264                 break;
3265         case MSR_IA32_ARCH_CAPABILITIES:
3266                 if (!msr_info->host_initiated &&
3267                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3268                         return 1;
3269                 msr_info->data = to_vmx(vcpu)->arch_capabilities;
3270                 break;
3271         case MSR_IA32_SYSENTER_CS:
3272                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
3273                 break;
3274         case MSR_IA32_SYSENTER_EIP:
3275                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
3276                 break;
3277         case MSR_IA32_SYSENTER_ESP:
3278                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
3279                 break;
3280         case MSR_IA32_BNDCFGS:
3281                 if (!kvm_mpx_supported() ||
3282                     (!msr_info->host_initiated &&
3283                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
3284                         return 1;
3285                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
3286                 break;
3287         case MSR_IA32_MCG_EXT_CTL:
3288                 if (!msr_info->host_initiated &&
3289                     !(vmx->msr_ia32_feature_control &
3290                       FEATURE_CONTROL_LMCE))
3291                         return 1;
3292                 msr_info->data = vcpu->arch.mcg_ext_ctl;
3293                 break;
3294         case MSR_IA32_FEATURE_CONTROL:
3295                 msr_info->data = vmx->msr_ia32_feature_control;
3296                 break;
3297         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3298                 if (!nested_vmx_allowed(vcpu))
3299                         return 1;
3300                 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
3301         case MSR_IA32_XSS:
3302                 if (!vmx_xsaves_supported())
3303                         return 1;
3304                 msr_info->data = vcpu->arch.ia32_xss;
3305                 break;
3306         case MSR_TSC_AUX:
3307                 if (!msr_info->host_initiated &&
3308                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
3309                         return 1;
3310                 /* Otherwise falls through */
3311         default:
3312                 msr = find_msr_entry(vmx, msr_info->index);
3313                 if (msr) {
3314                         msr_info->data = msr->data;
3315                         break;
3316                 }
3317                 return kvm_get_msr_common(vcpu, msr_info);
3318         }
3319
3320         return 0;
3321 }
3322
3323 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
3324
3325 /*
3326  * Writes msr value into into the appropriate "register".
3327  * Returns 0 on success, non-0 otherwise.
3328  * Assumes vcpu_load() was already called.
3329  */
3330 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3331 {
3332         struct vcpu_vmx *vmx = to_vmx(vcpu);
3333         struct shared_msr_entry *msr;
3334         int ret = 0;
3335         u32 msr_index = msr_info->index;
3336         u64 data = msr_info->data;
3337
3338         switch (msr_index) {
3339         case MSR_EFER:
3340                 ret = kvm_set_msr_common(vcpu, msr_info);
3341                 break;
3342 #ifdef CONFIG_X86_64
3343         case MSR_FS_BASE:
3344                 vmx_segment_cache_clear(vmx);
3345                 vmcs_writel(GUEST_FS_BASE, data);
3346                 break;
3347         case MSR_GS_BASE:
3348                 vmx_segment_cache_clear(vmx);
3349                 vmcs_writel(GUEST_GS_BASE, data);
3350                 break;
3351         case MSR_KERNEL_GS_BASE:
3352                 vmx_load_host_state(vmx);
3353                 vmx->msr_guest_kernel_gs_base = data;
3354                 break;
3355 #endif
3356         case MSR_IA32_SYSENTER_CS:
3357                 vmcs_write32(GUEST_SYSENTER_CS, data);
3358                 break;
3359         case MSR_IA32_SYSENTER_EIP:
3360                 vmcs_writel(GUEST_SYSENTER_EIP, data);
3361                 break;
3362         case MSR_IA32_SYSENTER_ESP:
3363                 vmcs_writel(GUEST_SYSENTER_ESP, data);
3364                 break;
3365         case MSR_IA32_BNDCFGS:
3366                 if (!kvm_mpx_supported() ||
3367                     (!msr_info->host_initiated &&
3368                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
3369                         return 1;
3370                 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
3371                     (data & MSR_IA32_BNDCFGS_RSVD))
3372                         return 1;
3373                 vmcs_write64(GUEST_BNDCFGS, data);
3374                 break;
3375         case MSR_IA32_TSC:
3376                 kvm_write_tsc(vcpu, msr_info);
3377                 break;
3378         case MSR_IA32_SPEC_CTRL:
3379                 if (!msr_info->host_initiated &&
3380                     !guest_cpuid_has(vcpu, X86_FEATURE_IBRS) &&
3381                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
3382                         return 1;
3383
3384                 /* The STIBP bit doesn't fault even if it's not advertised */
3385                 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP))
3386                         return 1;
3387
3388                 vmx->spec_ctrl = data;
3389
3390                 if (!data)
3391                         break;
3392
3393                 /*
3394                  * For non-nested:
3395                  * When it's written (to non-zero) for the first time, pass
3396                  * it through.
3397                  *
3398                  * For nested:
3399                  * The handling of the MSR bitmap for L2 guests is done in
3400                  * nested_vmx_merge_msr_bitmap. We should not touch the
3401                  * vmcs02.msr_bitmap here since it gets completely overwritten
3402                  * in the merging. We update the vmcs01 here for L1 as well
3403                  * since it will end up touching the MSR anyway now.
3404                  */
3405                 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
3406                                               MSR_IA32_SPEC_CTRL,
3407                                               MSR_TYPE_RW);
3408                 break;
3409         case MSR_IA32_PRED_CMD:
3410                 if (!msr_info->host_initiated &&
3411                     !guest_cpuid_has(vcpu, X86_FEATURE_IBPB) &&
3412                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
3413                         return 1;
3414
3415                 if (data & ~PRED_CMD_IBPB)
3416                         return 1;
3417
3418                 if (!data)
3419                         break;
3420
3421                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
3422
3423                 /*
3424                  * For non-nested:
3425                  * When it's written (to non-zero) for the first time, pass
3426                  * it through.
3427                  *
3428                  * For nested:
3429                  * The handling of the MSR bitmap for L2 guests is done in
3430                  * nested_vmx_merge_msr_bitmap. We should not touch the
3431                  * vmcs02.msr_bitmap here since it gets completely overwritten
3432                  * in the merging.
3433                  */
3434                 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
3435                                               MSR_TYPE_W);
3436                 break;
3437         case MSR_IA32_ARCH_CAPABILITIES:
3438                 if (!msr_info->host_initiated)
3439                         return 1;
3440                 vmx->arch_capabilities = data;
3441                 break;
3442         case MSR_IA32_CR_PAT:
3443                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3444                         if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3445                                 return 1;
3446                         vmcs_write64(GUEST_IA32_PAT, data);
3447                         vcpu->arch.pat = data;
3448                         break;
3449                 }
3450                 ret = kvm_set_msr_common(vcpu, msr_info);
3451                 break;
3452         case MSR_IA32_TSC_ADJUST:
3453                 ret = kvm_set_msr_common(vcpu, msr_info);
3454                 break;
3455         case MSR_IA32_MCG_EXT_CTL:
3456                 if ((!msr_info->host_initiated &&
3457                      !(to_vmx(vcpu)->msr_ia32_feature_control &
3458                        FEATURE_CONTROL_LMCE)) ||
3459                     (data & ~MCG_EXT_CTL_LMCE_EN))
3460                         return 1;
3461                 vcpu->arch.mcg_ext_ctl = data;
3462                 break;
3463         case MSR_IA32_FEATURE_CONTROL:
3464                 if (!vmx_feature_control_msr_valid(vcpu, data) ||
3465                     (to_vmx(vcpu)->msr_ia32_feature_control &
3466                      FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3467                         return 1;
3468                 vmx->msr_ia32_feature_control = data;
3469                 if (msr_info->host_initiated && data == 0)
3470                         vmx_leave_nested(vcpu);
3471                 break;
3472         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3473                 if (!msr_info->host_initiated)
3474                         return 1; /* they are read-only */
3475                 if (!nested_vmx_allowed(vcpu))
3476                         return 1;
3477                 return vmx_set_vmx_msr(vcpu, msr_index, data);
3478         case MSR_IA32_XSS:
3479                 if (!vmx_xsaves_supported())
3480                         return 1;
3481                 /*
3482                  * The only supported bit as of Skylake is bit 8, but
3483                  * it is not supported on KVM.
3484                  */
3485                 if (data != 0)
3486                         return 1;
3487                 vcpu->arch.ia32_xss = data;
3488                 if (vcpu->arch.ia32_xss != host_xss)
3489                         add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3490                                 vcpu->arch.ia32_xss, host_xss);
3491                 else
3492                         clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3493                 break;
3494         case MSR_TSC_AUX:
3495                 if (!msr_info->host_initiated &&
3496                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
3497                         return 1;
3498                 /* Check reserved bit, higher 32 bits should be zero */
3499                 if ((data >> 32) != 0)
3500                         return 1;
3501                 /* Otherwise falls through */
3502         default:
3503                 msr = find_msr_entry(vmx, msr_index);
3504                 if (msr) {
3505                         u64 old_msr_data = msr->data;
3506                         msr->data = data;
3507                         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3508                                 preempt_disable();
3509                                 ret = kvm_set_shared_msr(msr->index, msr->data,
3510                                                          msr->mask);
3511                                 preempt_enable();
3512                                 if (ret)
3513                                         msr->data = old_msr_data;
3514                         }
3515                         break;
3516                 }
3517                 ret = kvm_set_msr_common(vcpu, msr_info);
3518         }
3519
3520         return ret;
3521 }
3522
3523 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
3524 {
3525         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3526         switch (reg) {
3527         case VCPU_REGS_RSP:
3528                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3529                 break;
3530         case VCPU_REGS_RIP:
3531                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3532                 break;
3533         case VCPU_EXREG_PDPTR:
3534                 if (enable_ept)
3535                         ept_save_pdptrs(vcpu);
3536                 break;
3537         default:
3538                 break;
3539         }
3540 }
3541
3542 static __init int cpu_has_kvm_support(void)
3543 {
3544         return cpu_has_vmx();
3545 }
3546
3547 static __init int vmx_disabled_by_bios(void)
3548 {
3549         u64 msr;
3550
3551         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
3552         if (msr & FEATURE_CONTROL_LOCKED) {
3553                 /* launched w/ TXT and VMX disabled */
3554                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3555                         && tboot_enabled())
3556                         return 1;
3557                 /* launched w/o TXT and VMX only enabled w/ TXT */
3558                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3559                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3560                         && !tboot_enabled()) {
3561                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
3562                                 "activate TXT before enabling KVM\n");
3563                         return 1;
3564                 }
3565                 /* launched w/o TXT and VMX disabled */
3566                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3567                         && !tboot_enabled())
3568                         return 1;
3569         }
3570
3571         return 0;
3572 }
3573
3574 static void kvm_cpu_vmxon(u64 addr)
3575 {
3576         cr4_set_bits(X86_CR4_VMXE);
3577         intel_pt_handle_vmx(1);
3578
3579         asm volatile (ASM_VMX_VMXON_RAX
3580                         : : "a"(&addr), "m"(addr)
3581                         : "memory", "cc");
3582 }
3583
3584 static int hardware_enable(void)
3585 {
3586         int cpu = raw_smp_processor_id();
3587         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
3588         u64 old, test_bits;
3589
3590         if (cr4_read_shadow() & X86_CR4_VMXE)
3591                 return -EBUSY;
3592
3593         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
3594         INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3595         spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
3596
3597         /*
3598          * Now we can enable the vmclear operation in kdump
3599          * since the loaded_vmcss_on_cpu list on this cpu
3600          * has been initialized.
3601          *
3602          * Though the cpu is not in VMX operation now, there
3603          * is no problem to enable the vmclear operation
3604          * for the loaded_vmcss_on_cpu list is empty!
3605          */
3606         crash_enable_local_vmclear(cpu);
3607
3608         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
3609
3610         test_bits = FEATURE_CONTROL_LOCKED;
3611         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3612         if (tboot_enabled())
3613                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3614
3615         if ((old & test_bits) != test_bits) {
3616                 /* enable and lock */
3617                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3618         }
3619         kvm_cpu_vmxon(phys_addr);
3620         if (enable_ept)
3621                 ept_sync_global();
3622
3623         return 0;
3624 }
3625
3626 static void vmclear_local_loaded_vmcss(void)
3627 {
3628         int cpu = raw_smp_processor_id();
3629         struct loaded_vmcs *v, *n;
3630
3631         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3632                                  loaded_vmcss_on_cpu_link)
3633                 __loaded_vmcs_clear(v);
3634 }
3635
3636
3637 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3638  * tricks.
3639  */
3640 static void kvm_cpu_vmxoff(void)
3641 {
3642         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
3643
3644         intel_pt_handle_vmx(0);
3645         cr4_clear_bits(X86_CR4_VMXE);
3646 }
3647
3648 static void hardware_disable(void)
3649 {
3650         vmclear_local_loaded_vmcss();
3651         kvm_cpu_vmxoff();
3652 }
3653
3654 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
3655                                       u32 msr, u32 *result)
3656 {
3657         u32 vmx_msr_low, vmx_msr_high;
3658         u32 ctl = ctl_min | ctl_opt;
3659
3660         rdmsr(msr, vmx_msr_low, vmx_msr_high);
3661
3662         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3663         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
3664
3665         /* Ensure minimum (required) set of control bits are supported. */
3666         if (ctl_min & ~ctl)
3667                 return -EIO;
3668
3669         *result = ctl;
3670         return 0;
3671 }
3672
3673 static __init bool allow_1_setting(u32 msr, u32 ctl)
3674 {
3675         u32 vmx_msr_low, vmx_msr_high;
3676
3677         rdmsr(msr, vmx_msr_low, vmx_msr_high);
3678         return vmx_msr_high & ctl;
3679 }
3680
3681 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
3682 {
3683         u32 vmx_msr_low, vmx_msr_high;
3684         u32 min, opt, min2, opt2;
3685         u32 _pin_based_exec_control = 0;
3686         u32 _cpu_based_exec_control = 0;
3687         u32 _cpu_based_2nd_exec_control = 0;
3688         u32 _vmexit_control = 0;
3689         u32 _vmentry_control = 0;
3690
3691         min = CPU_BASED_HLT_EXITING |
3692 #ifdef CONFIG_X86_64
3693               CPU_BASED_CR8_LOAD_EXITING |
3694               CPU_BASED_CR8_STORE_EXITING |
3695 #endif
3696               CPU_BASED_CR3_LOAD_EXITING |
3697               CPU_BASED_CR3_STORE_EXITING |
3698               CPU_BASED_UNCOND_IO_EXITING |
3699               CPU_BASED_MOV_DR_EXITING |
3700               CPU_BASED_USE_TSC_OFFSETING |
3701               CPU_BASED_INVLPG_EXITING |
3702               CPU_BASED_RDPMC_EXITING;
3703
3704         if (!kvm_mwait_in_guest())
3705                 min |= CPU_BASED_MWAIT_EXITING |
3706                         CPU_BASED_MONITOR_EXITING;
3707
3708         opt = CPU_BASED_TPR_SHADOW |
3709               CPU_BASED_USE_MSR_BITMAPS |
3710               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
3711         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3712                                 &_cpu_based_exec_control) < 0)
3713                 return -EIO;
3714 #ifdef CONFIG_X86_64
3715         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3716                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3717                                            ~CPU_BASED_CR8_STORE_EXITING;
3718 #endif
3719         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3720                 min2 = 0;
3721                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3722                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3723                         SECONDARY_EXEC_WBINVD_EXITING |
3724                         SECONDARY_EXEC_ENABLE_VPID |
3725                         SECONDARY_EXEC_ENABLE_EPT |
3726                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
3727                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3728                         SECONDARY_EXEC_DESC |
3729                         SECONDARY_EXEC_RDTSCP |
3730                         SECONDARY_EXEC_ENABLE_INVPCID |
3731                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
3732                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3733                         SECONDARY_EXEC_SHADOW_VMCS |
3734                         SECONDARY_EXEC_XSAVES |
3735                         SECONDARY_EXEC_RDSEED_EXITING |
3736                         SECONDARY_EXEC_RDRAND_EXITING |
3737                         SECONDARY_EXEC_ENABLE_PML |
3738                         SECONDARY_EXEC_TSC_SCALING |
3739                         SECONDARY_EXEC_ENABLE_VMFUNC;
3740                 if (adjust_vmx_controls(min2, opt2,
3741                                         MSR_IA32_VMX_PROCBASED_CTLS2,
3742                                         &_cpu_based_2nd_exec_control) < 0)
3743                         return -EIO;
3744         }
3745 #ifndef CONFIG_X86_64
3746         if (!(_cpu_based_2nd_exec_control &
3747                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3748                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3749 #endif
3750
3751         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3752                 _cpu_based_2nd_exec_control &= ~(
3753                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3754                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3755                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3756
3757         rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
3758                 &vmx_capability.ept, &vmx_capability.vpid);
3759
3760         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3761                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3762                    enabled */
3763                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3764                                              CPU_BASED_CR3_STORE_EXITING |
3765                                              CPU_BASED_INVLPG_EXITING);
3766         } else if (vmx_capability.ept) {
3767                 vmx_capability.ept = 0;
3768                 pr_warn_once("EPT CAP should not exist if not support "
3769                                 "1-setting enable EPT VM-execution control\n");
3770         }
3771         if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
3772                 vmx_capability.vpid) {
3773                 vmx_capability.vpid = 0;
3774                 pr_warn_once("VPID CAP should not exist if not support "
3775                                 "1-setting enable VPID VM-execution control\n");
3776         }
3777
3778         min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
3779 #ifdef CONFIG_X86_64
3780         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3781 #endif
3782         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3783                 VM_EXIT_CLEAR_BNDCFGS;
3784         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3785                                 &_vmexit_control) < 0)
3786                 return -EIO;
3787
3788         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
3789         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
3790                  PIN_BASED_VMX_PREEMPTION_TIMER;
3791         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3792                                 &_pin_based_exec_control) < 0)
3793                 return -EIO;
3794
3795         if (cpu_has_broken_vmx_preemption_timer())
3796                 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3797         if (!(_cpu_based_2nd_exec_control &
3798                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
3799                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3800
3801         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3802         opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3803         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3804                                 &_vmentry_control) < 0)
3805                 return -EIO;
3806
3807         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3808
3809         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3810         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3811                 return -EIO;
3812
3813 #ifdef CONFIG_X86_64
3814         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3815         if (vmx_msr_high & (1u<<16))
3816                 return -EIO;
3817 #endif
3818
3819         /* Require Write-Back (WB) memory type for VMCS accesses. */
3820         if (((vmx_msr_high >> 18) & 15) != 6)
3821                 return -EIO;
3822
3823         vmcs_conf->size = vmx_msr_high & 0x1fff;
3824         vmcs_conf->order = get_order(vmcs_conf->size);
3825         vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
3826         vmcs_conf->revision_id = vmx_msr_low;
3827
3828         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3829         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3830         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3831         vmcs_conf->vmexit_ctrl         = _vmexit_control;
3832         vmcs_conf->vmentry_ctrl        = _vmentry_control;
3833
3834         cpu_has_load_ia32_efer =
3835                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3836                                 VM_ENTRY_LOAD_IA32_EFER)
3837                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3838                                    VM_EXIT_LOAD_IA32_EFER);
3839
3840         cpu_has_load_perf_global_ctrl =
3841                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3842                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3843                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3844                                    VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3845
3846         /*
3847          * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3848          * but due to errata below it can't be used. Workaround is to use
3849          * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3850          *
3851          * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3852          *
3853          * AAK155             (model 26)
3854          * AAP115             (model 30)
3855          * AAT100             (model 37)
3856          * BC86,AAY89,BD102   (model 44)
3857          * BA97               (model 46)
3858          *
3859          */
3860         if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3861                 switch (boot_cpu_data.x86_model) {
3862                 case 26:
3863                 case 30:
3864                 case 37:
3865                 case 44:
3866                 case 46:
3867                         cpu_has_load_perf_global_ctrl = false;
3868                         printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3869                                         "does not work properly. Using workaround\n");
3870                         break;
3871                 default:
3872                         break;
3873                 }
3874         }
3875
3876         if (boot_cpu_has(X86_FEATURE_XSAVES))
3877                 rdmsrl(MSR_IA32_XSS, host_xss);
3878
3879         return 0;
3880 }
3881
3882 static struct vmcs *alloc_vmcs_cpu(int cpu)
3883 {
3884         int node = cpu_to_node(cpu);
3885         struct page *pages;
3886         struct vmcs *vmcs;
3887
3888         pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
3889         if (!pages)
3890                 return NULL;
3891         vmcs = page_address(pages);
3892         memset(vmcs, 0, vmcs_config.size);
3893         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3894         return vmcs;
3895 }
3896
3897 static void free_vmcs(struct vmcs *vmcs)
3898 {
3899         free_pages((unsigned long)vmcs, vmcs_config.order);
3900 }
3901
3902 /*
3903  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3904  */
3905 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3906 {
3907         if (!loaded_vmcs->vmcs)
3908                 return;
3909         loaded_vmcs_clear(loaded_vmcs);
3910         free_vmcs(loaded_vmcs->vmcs);
3911         loaded_vmcs->vmcs = NULL;
3912         if (loaded_vmcs->msr_bitmap)
3913                 free_page((unsigned long)loaded_vmcs->msr_bitmap);
3914         WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
3915 }
3916
3917 static struct vmcs *alloc_vmcs(void)
3918 {
3919         return alloc_vmcs_cpu(raw_smp_processor_id());
3920 }
3921
3922 static int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3923 {
3924         loaded_vmcs->vmcs = alloc_vmcs();
3925         if (!loaded_vmcs->vmcs)
3926                 return -ENOMEM;
3927
3928         loaded_vmcs->shadow_vmcs = NULL;
3929         loaded_vmcs_init(loaded_vmcs);
3930
3931         if (cpu_has_vmx_msr_bitmap()) {
3932                 loaded_vmcs->msr_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
3933                 if (!loaded_vmcs->msr_bitmap)
3934                         goto out_vmcs;
3935                 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
3936         }
3937         return 0;
3938
3939 out_vmcs:
3940         free_loaded_vmcs(loaded_vmcs);
3941         return -ENOMEM;
3942 }
3943
3944 static void free_kvm_area(void)
3945 {
3946         int cpu;
3947
3948         for_each_possible_cpu(cpu) {
3949                 free_vmcs(per_cpu(vmxarea, cpu));
3950                 per_cpu(vmxarea, cpu) = NULL;
3951         }
3952 }
3953
3954 enum vmcs_field_width {
3955         VMCS_FIELD_WIDTH_U16 = 0,
3956         VMCS_FIELD_WIDTH_U64 = 1,
3957         VMCS_FIELD_WIDTH_U32 = 2,
3958         VMCS_FIELD_WIDTH_NATURAL_WIDTH = 3
3959 };
3960
3961 static inline int vmcs_field_width(unsigned long field)
3962 {
3963         if (0x1 & field)        /* the *_HIGH fields are all 32 bit */
3964                 return VMCS_FIELD_WIDTH_U32;
3965         return (field >> 13) & 0x3 ;
3966 }
3967
3968 static inline int vmcs_field_readonly(unsigned long field)
3969 {
3970         return (((field >> 10) & 0x3) == 1);
3971 }
3972
3973 static void init_vmcs_shadow_fields(void)
3974 {
3975         int i, j;
3976
3977         for (i = j = 0; i < max_shadow_read_only_fields; i++) {
3978                 u16 field = shadow_read_only_fields[i];
3979                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
3980                     (i + 1 == max_shadow_read_only_fields ||
3981                      shadow_read_only_fields[i + 1] != field + 1))
3982                         pr_err("Missing field from shadow_read_only_field %x\n",
3983                                field + 1);
3984
3985                 clear_bit(field, vmx_vmread_bitmap);
3986 #ifdef CONFIG_X86_64
3987                 if (field & 1)
3988                         continue;
3989 #endif
3990                 if (j < i)
3991                         shadow_read_only_fields[j] = field;
3992                 j++;
3993         }
3994         max_shadow_read_only_fields = j;
3995
3996         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3997                 u16 field = shadow_read_write_fields[i];
3998                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
3999                     (i + 1 == max_shadow_read_write_fields ||
4000                      shadow_read_write_fields[i + 1] != field + 1))
4001                         pr_err("Missing field from shadow_read_write_field %x\n",
4002                                field + 1);
4003
4004                 /*
4005                  * PML and the preemption timer can be emulated, but the
4006                  * processor cannot vmwrite to fields that don't exist
4007                  * on bare metal.
4008                  */
4009                 switch (field) {
4010                 case GUEST_PML_INDEX:
4011                         if (!cpu_has_vmx_pml())
4012                                 continue;
4013                         break;
4014                 case VMX_PREEMPTION_TIMER_VALUE:
4015                         if (!cpu_has_vmx_preemption_timer())
4016                                 continue;
4017                         break;
4018                 case GUEST_INTR_STATUS:
4019                         if (!cpu_has_vmx_apicv())
4020                                 continue;
4021                         break;
4022                 default:
4023                         break;
4024                 }
4025
4026                 clear_bit(field, vmx_vmwrite_bitmap);
4027                 clear_bit(field, vmx_vmread_bitmap);
4028 #ifdef CONFIG_X86_64
4029                 if (field & 1)
4030                         continue;
4031 #endif
4032                 if (j < i)
4033                         shadow_read_write_fields[j] = field;
4034                 j++;
4035         }
4036         max_shadow_read_write_fields = j;
4037 }
4038
4039 static __init int alloc_kvm_area(void)
4040 {
4041         int cpu;
4042
4043         for_each_possible_cpu(cpu) {
4044                 struct vmcs *vmcs;
4045
4046                 vmcs = alloc_vmcs_cpu(cpu);
4047                 if (!vmcs) {
4048                         free_kvm_area();
4049                         return -ENOMEM;
4050                 }
4051
4052                 per_cpu(vmxarea, cpu) = vmcs;
4053         }
4054         return 0;
4055 }
4056
4057 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
4058                 struct kvm_segment *save)
4059 {
4060         if (!emulate_invalid_guest_state) {
4061                 /*
4062                  * CS and SS RPL should be equal during guest entry according
4063                  * to VMX spec, but in reality it is not always so. Since vcpu
4064                  * is in the middle of the transition from real mode to
4065                  * protected mode it is safe to assume that RPL 0 is a good
4066                  * default value.
4067                  */
4068                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
4069                         save->selector &= ~SEGMENT_RPL_MASK;
4070                 save->dpl = save->selector & SEGMENT_RPL_MASK;
4071                 save->s = 1;
4072         }
4073         vmx_set_segment(vcpu, save, seg);
4074 }
4075
4076 static void enter_pmode(struct kvm_vcpu *vcpu)
4077 {
4078         unsigned long flags;
4079         struct vcpu_vmx *vmx = to_vmx(vcpu);
4080
4081         /*
4082          * Update real mode segment cache. It may be not up-to-date if sement
4083          * register was written while vcpu was in a guest mode.
4084          */
4085         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
4086         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
4087         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
4088         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
4089         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
4090         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
4091
4092         vmx->rmode.vm86_active = 0;
4093
4094         vmx_segment_cache_clear(vmx);
4095
4096         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
4097
4098         flags = vmcs_readl(GUEST_RFLAGS);
4099         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
4100         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
4101         vmcs_writel(GUEST_RFLAGS, flags);
4102
4103         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
4104                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
4105
4106         update_exception_bitmap(vcpu);
4107
4108         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
4109         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
4110         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
4111         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
4112         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
4113         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
4114 }
4115
4116 static void fix_rmode_seg(int seg, struct kvm_segment *save)
4117 {
4118         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4119         struct kvm_segment var = *save;
4120
4121         var.dpl = 0x3;
4122         if (seg == VCPU_SREG_CS)
4123                 var.type = 0x3;
4124
4125         if (!emulate_invalid_guest_state) {
4126                 var.selector = var.base >> 4;
4127                 var.base = var.base & 0xffff0;
4128                 var.limit = 0xffff;
4129                 var.g = 0;
4130                 var.db = 0;
4131                 var.present = 1;
4132                 var.s = 1;
4133                 var.l = 0;
4134                 var.unusable = 0;
4135                 var.type = 0x3;
4136                 var.avl = 0;
4137                 if (save->base & 0xf)
4138                         printk_once(KERN_WARNING "kvm: segment base is not "
4139                                         "paragraph aligned when entering "
4140                                         "protected mode (seg=%d)", seg);
4141         }
4142
4143         vmcs_write16(sf->selector, var.selector);
4144         vmcs_writel(sf->base, var.base);
4145         vmcs_write32(sf->limit, var.limit);
4146         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
4147 }
4148
4149 static void enter_rmode(struct kvm_vcpu *vcpu)
4150 {
4151         unsigned long flags;
4152         struct vcpu_vmx *vmx = to_vmx(vcpu);
4153
4154         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
4155         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
4156         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
4157         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
4158         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
4159         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
4160         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
4161
4162         vmx->rmode.vm86_active = 1;
4163
4164         /*
4165          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4166          * vcpu. Warn the user that an update is overdue.
4167          */
4168         if (!vcpu->kvm->arch.tss_addr)
4169                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
4170                              "called before entering vcpu\n");
4171
4172         vmx_segment_cache_clear(vmx);
4173
4174         vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
4175         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
4176         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4177
4178         flags = vmcs_readl(GUEST_RFLAGS);
4179         vmx->rmode.save_rflags = flags;
4180
4181         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
4182
4183         vmcs_writel(GUEST_RFLAGS, flags);
4184         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
4185         update_exception_bitmap(vcpu);
4186
4187         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
4188         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
4189         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
4190         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
4191         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
4192         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
4193
4194         kvm_mmu_reset_context(vcpu);
4195 }
4196
4197 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
4198 {
4199         struct vcpu_vmx *vmx = to_vmx(vcpu);
4200         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
4201
4202         if (!msr)
4203                 return;
4204
4205         /*
4206          * Force kernel_gs_base reloading before EFER changes, as control
4207          * of this msr depends on is_long_mode().
4208          */
4209         vmx_load_host_state(to_vmx(vcpu));
4210         vcpu->arch.efer = efer;
4211         if (efer & EFER_LMA) {
4212                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4213                 msr->data = efer;
4214         } else {
4215                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4216
4217                 msr->data = efer & ~EFER_LME;
4218         }
4219         setup_msrs(vmx);
4220 }
4221
4222 #ifdef CONFIG_X86_64
4223
4224 static void enter_lmode(struct kvm_vcpu *vcpu)
4225 {
4226         u32 guest_tr_ar;
4227
4228         vmx_segment_cache_clear(to_vmx(vcpu));
4229
4230         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
4231         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
4232                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
4233                                      __func__);
4234                 vmcs_write32(GUEST_TR_AR_BYTES,
4235                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
4236                              | VMX_AR_TYPE_BUSY_64_TSS);
4237         }
4238         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
4239 }
4240
4241 static void exit_lmode(struct kvm_vcpu *vcpu)
4242 {
4243         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4244         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
4245 }
4246
4247 #endif
4248
4249 static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid,
4250                                 bool invalidate_gpa)
4251 {
4252         if (enable_ept && (invalidate_gpa || !enable_vpid)) {
4253                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4254                         return;
4255                 ept_sync_context(construct_eptp(vcpu, vcpu->arch.mmu.root_hpa));
4256         } else {
4257                 vpid_sync_context(vpid);
4258         }
4259 }
4260
4261 static void vmx_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
4262 {
4263         __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid, invalidate_gpa);
4264 }
4265
4266 static void vmx_flush_tlb_ept_only(struct kvm_vcpu *vcpu)
4267 {
4268         if (enable_ept)
4269                 vmx_flush_tlb(vcpu, true);
4270 }
4271
4272 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
4273 {
4274         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
4275
4276         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
4277         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
4278 }
4279
4280 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
4281 {
4282         if (enable_ept && is_paging(vcpu))
4283                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4284         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
4285 }
4286
4287 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
4288 {
4289         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
4290
4291         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
4292         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
4293 }
4294
4295 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
4296 {
4297         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4298
4299         if (!test_bit(VCPU_EXREG_PDPTR,
4300                       (unsigned long *)&vcpu->arch.regs_dirty))
4301                 return;
4302
4303         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
4304                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
4305                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
4306                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
4307                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
4308         }
4309 }
4310
4311 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
4312 {
4313         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4314
4315         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
4316                 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
4317                 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
4318                 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
4319                 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
4320         }
4321
4322         __set_bit(VCPU_EXREG_PDPTR,
4323                   (unsigned long *)&vcpu->arch.regs_avail);
4324         __set_bit(VCPU_EXREG_PDPTR,
4325                   (unsigned long *)&vcpu->arch.regs_dirty);
4326 }
4327
4328 static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4329 {
4330         u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4331         u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4332         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4333
4334         if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
4335                 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4336             nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4337                 fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
4338
4339         return fixed_bits_valid(val, fixed0, fixed1);
4340 }
4341
4342 static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4343 {
4344         u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4345         u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4346
4347         return fixed_bits_valid(val, fixed0, fixed1);
4348 }
4349
4350 static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
4351 {
4352         u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed0;
4353         u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed1;
4354
4355         return fixed_bits_valid(val, fixed0, fixed1);
4356 }
4357
4358 /* No difference in the restrictions on guest and host CR4 in VMX operation. */
4359 #define nested_guest_cr4_valid  nested_cr4_valid
4360 #define nested_host_cr4_valid   nested_cr4_valid
4361
4362 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
4363
4364 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
4365                                         unsigned long cr0,
4366                                         struct kvm_vcpu *vcpu)
4367 {
4368         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
4369                 vmx_decache_cr3(vcpu);
4370         if (!(cr0 & X86_CR0_PG)) {
4371                 /* From paging/starting to nonpaging */
4372                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4373                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
4374                              (CPU_BASED_CR3_LOAD_EXITING |
4375                               CPU_BASED_CR3_STORE_EXITING));
4376                 vcpu->arch.cr0 = cr0;
4377                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4378         } else if (!is_paging(vcpu)) {
4379                 /* From nonpaging to paging */
4380                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4381                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
4382                              ~(CPU_BASED_CR3_LOAD_EXITING |
4383                                CPU_BASED_CR3_STORE_EXITING));
4384                 vcpu->arch.cr0 = cr0;
4385                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4386         }
4387
4388         if (!(cr0 & X86_CR0_WP))
4389                 *hw_cr0 &= ~X86_CR0_WP;
4390 }
4391
4392 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
4393 {
4394         struct vcpu_vmx *vmx = to_vmx(vcpu);
4395         unsigned long hw_cr0;
4396
4397         hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
4398         if (enable_unrestricted_guest)
4399                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
4400         else {
4401                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
4402
4403                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
4404                         enter_pmode(vcpu);
4405
4406                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
4407                         enter_rmode(vcpu);
4408         }
4409
4410 #ifdef CONFIG_X86_64
4411         if (vcpu->arch.efer & EFER_LME) {
4412                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
4413                         enter_lmode(vcpu);
4414                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
4415                         exit_lmode(vcpu);
4416         }
4417 #endif
4418
4419         if (enable_ept)
4420                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
4421
4422         vmcs_writel(CR0_READ_SHADOW, cr0);
4423         vmcs_writel(GUEST_CR0, hw_cr0);
4424         vcpu->arch.cr0 = cr0;
4425
4426         /* depends on vcpu->arch.cr0 to be set to a new value */
4427         vmx->emulation_required = emulation_required(vcpu);
4428 }
4429
4430 static int get_ept_level(struct kvm_vcpu *vcpu)
4431 {
4432         if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
4433                 return 5;
4434         return 4;
4435 }
4436
4437 static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
4438 {
4439         u64 eptp = VMX_EPTP_MT_WB;
4440
4441         eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
4442
4443         if (enable_ept_ad_bits &&
4444             (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
4445                 eptp |= VMX_EPTP_AD_ENABLE_BIT;
4446         eptp |= (root_hpa & PAGE_MASK);
4447
4448         return eptp;
4449 }
4450
4451 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
4452 {
4453         unsigned long guest_cr3;
4454         u64 eptp;
4455
4456         guest_cr3 = cr3;
4457         if (enable_ept) {
4458                 eptp = construct_eptp(vcpu, cr3);
4459                 vmcs_write64(EPT_POINTER, eptp);
4460                 if (is_paging(vcpu) || is_guest_mode(vcpu))
4461                         guest_cr3 = kvm_read_cr3(vcpu);
4462                 else
4463                         guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
4464                 ept_load_pdptrs(vcpu);
4465         }
4466
4467         vmx_flush_tlb(vcpu, true);
4468         vmcs_writel(GUEST_CR3, guest_cr3);
4469 }
4470
4471 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
4472 {
4473         /*
4474          * Pass through host's Machine Check Enable value to hw_cr4, which
4475          * is in force while we are in guest mode.  Do not let guests control
4476          * this bit, even if host CR4.MCE == 0.
4477          */
4478         unsigned long hw_cr4 =
4479                 (cr4_read_shadow() & X86_CR4_MCE) |
4480                 (cr4 & ~X86_CR4_MCE) |
4481                 (to_vmx(vcpu)->rmode.vm86_active ?
4482                  KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
4483
4484         if ((cr4 & X86_CR4_UMIP) && !boot_cpu_has(X86_FEATURE_UMIP)) {
4485                 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
4486                               SECONDARY_EXEC_DESC);
4487                 hw_cr4 &= ~X86_CR4_UMIP;
4488         } else
4489                 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
4490                                 SECONDARY_EXEC_DESC);
4491
4492         if (cr4 & X86_CR4_VMXE) {
4493                 /*
4494                  * To use VMXON (and later other VMX instructions), a guest
4495                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
4496                  * So basically the check on whether to allow nested VMX
4497                  * is here.
4498                  */
4499                 if (!nested_vmx_allowed(vcpu))
4500                         return 1;
4501         }
4502
4503         if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
4504                 return 1;
4505
4506         vcpu->arch.cr4 = cr4;
4507         if (enable_ept) {
4508                 if (!is_paging(vcpu)) {
4509                         hw_cr4 &= ~X86_CR4_PAE;
4510                         hw_cr4 |= X86_CR4_PSE;
4511                 } else if (!(cr4 & X86_CR4_PAE)) {
4512                         hw_cr4 &= ~X86_CR4_PAE;
4513                 }
4514         }
4515
4516         if (!enable_unrestricted_guest && !is_paging(vcpu))
4517                 /*
4518                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
4519                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
4520                  * to be manually disabled when guest switches to non-paging
4521                  * mode.
4522                  *
4523                  * If !enable_unrestricted_guest, the CPU is always running
4524                  * with CR0.PG=1 and CR4 needs to be modified.
4525                  * If enable_unrestricted_guest, the CPU automatically
4526                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
4527                  */
4528                 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
4529
4530         vmcs_writel(CR4_READ_SHADOW, cr4);
4531         vmcs_writel(GUEST_CR4, hw_cr4);
4532         return 0;
4533 }
4534
4535 static void vmx_get_segment(struct kvm_vcpu *vcpu,
4536                             struct kvm_segment *var, int seg)
4537 {
4538         struct vcpu_vmx *vmx = to_vmx(vcpu);
4539         u32 ar;
4540
4541         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4542                 *var = vmx->rmode.segs[seg];
4543                 if (seg == VCPU_SREG_TR
4544                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
4545                         return;
4546                 var->base = vmx_read_guest_seg_base(vmx, seg);
4547                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4548                 return;
4549         }
4550         var->base = vmx_read_guest_seg_base(vmx, seg);
4551         var->limit = vmx_read_guest_seg_limit(vmx, seg);
4552         var->selector = vmx_read_guest_seg_selector(vmx, seg);
4553         ar = vmx_read_guest_seg_ar(vmx, seg);
4554         var->unusable = (ar >> 16) & 1;
4555         var->type = ar & 15;
4556         var->s = (ar >> 4) & 1;
4557         var->dpl = (ar >> 5) & 3;
4558         /*
4559          * Some userspaces do not preserve unusable property. Since usable
4560          * segment has to be present according to VMX spec we can use present
4561          * property to amend userspace bug by making unusable segment always
4562          * nonpresent. vmx_segment_access_rights() already marks nonpresent
4563          * segment as unusable.
4564          */
4565         var->present = !var->unusable;
4566         var->avl = (ar >> 12) & 1;
4567         var->l = (ar >> 13) & 1;
4568         var->db = (ar >> 14) & 1;
4569         var->g = (ar >> 15) & 1;
4570 }
4571
4572 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
4573 {
4574         struct kvm_segment s;
4575
4576         if (to_vmx(vcpu)->rmode.vm86_active) {
4577                 vmx_get_segment(vcpu, &s, seg);
4578                 return s.base;
4579         }
4580         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
4581 }
4582
4583 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
4584 {
4585         struct vcpu_vmx *vmx = to_vmx(vcpu);
4586
4587         if (unlikely(vmx->rmode.vm86_active))
4588                 return 0;
4589         else {
4590                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4591                 return VMX_AR_DPL(ar);
4592         }
4593 }
4594
4595 static u32 vmx_segment_access_rights(struct kvm_segment *var)
4596 {
4597         u32 ar;
4598
4599         if (var->unusable || !var->present)
4600                 ar = 1 << 16;
4601         else {
4602                 ar = var->type & 15;
4603                 ar |= (var->s & 1) << 4;
4604                 ar |= (var->dpl & 3) << 5;
4605                 ar |= (var->present & 1) << 7;
4606                 ar |= (var->avl & 1) << 12;
4607                 ar |= (var->l & 1) << 13;
4608                 ar |= (var->db & 1) << 14;
4609                 ar |= (var->g & 1) << 15;
4610         }
4611
4612         return ar;
4613 }
4614
4615 static void vmx_set_segment(struct kvm_vcpu *vcpu,
4616                             struct kvm_segment *var, int seg)
4617 {
4618         struct vcpu_vmx *vmx = to_vmx(vcpu);
4619         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4620
4621         vmx_segment_cache_clear(vmx);
4622
4623         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4624                 vmx->rmode.segs[seg] = *var;
4625                 if (seg == VCPU_SREG_TR)
4626                         vmcs_write16(sf->selector, var->selector);
4627                 else if (var->s)
4628                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
4629                 goto out;
4630         }
4631
4632         vmcs_writel(sf->base, var->base);
4633         vmcs_write32(sf->limit, var->limit);
4634         vmcs_write16(sf->selector, var->selector);
4635
4636         /*
4637          *   Fix the "Accessed" bit in AR field of segment registers for older
4638          * qemu binaries.
4639          *   IA32 arch specifies that at the time of processor reset the
4640          * "Accessed" bit in the AR field of segment registers is 1. And qemu
4641          * is setting it to 0 in the userland code. This causes invalid guest
4642          * state vmexit when "unrestricted guest" mode is turned on.
4643          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
4644          * tree. Newer qemu binaries with that qemu fix would not need this
4645          * kvm hack.
4646          */
4647         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
4648                 var->type |= 0x1; /* Accessed */
4649
4650         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
4651
4652 out:
4653         vmx->emulation_required = emulation_required(vcpu);
4654 }
4655
4656 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4657 {
4658         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
4659
4660         *db = (ar >> 14) & 1;
4661         *l = (ar >> 13) & 1;
4662 }
4663
4664 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4665 {
4666         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4667         dt->address = vmcs_readl(GUEST_IDTR_BASE);
4668 }
4669
4670 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4671 {
4672         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4673         vmcs_writel(GUEST_IDTR_BASE, dt->address);
4674 }
4675
4676 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4677 {
4678         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4679         dt->address = vmcs_readl(GUEST_GDTR_BASE);
4680 }
4681
4682 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4683 {
4684         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4685         vmcs_writel(GUEST_GDTR_BASE, dt->address);
4686 }
4687
4688 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4689 {
4690         struct kvm_segment var;
4691         u32 ar;
4692
4693         vmx_get_segment(vcpu, &var, seg);
4694         var.dpl = 0x3;
4695         if (seg == VCPU_SREG_CS)
4696                 var.type = 0x3;
4697         ar = vmx_segment_access_rights(&var);
4698
4699         if (var.base != (var.selector << 4))
4700                 return false;
4701         if (var.limit != 0xffff)
4702                 return false;
4703         if (ar != 0xf3)
4704                 return false;
4705
4706         return true;
4707 }
4708
4709 static bool code_segment_valid(struct kvm_vcpu *vcpu)
4710 {
4711         struct kvm_segment cs;
4712         unsigned int cs_rpl;
4713
4714         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4715         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
4716
4717         if (cs.unusable)
4718                 return false;
4719         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
4720                 return false;
4721         if (!cs.s)
4722                 return false;
4723         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
4724                 if (cs.dpl > cs_rpl)
4725                         return false;
4726         } else {
4727                 if (cs.dpl != cs_rpl)
4728                         return false;
4729         }
4730         if (!cs.present)
4731                 return false;
4732
4733         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4734         return true;
4735 }
4736
4737 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4738 {
4739         struct kvm_segment ss;
4740         unsigned int ss_rpl;
4741
4742         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4743         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
4744
4745         if (ss.unusable)
4746                 return true;
4747         if (ss.type != 3 && ss.type != 7)
4748                 return false;
4749         if (!ss.s)
4750                 return false;
4751         if (ss.dpl != ss_rpl) /* DPL != RPL */
4752                 return false;
4753         if (!ss.present)
4754                 return false;
4755
4756         return true;
4757 }
4758
4759 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4760 {
4761         struct kvm_segment var;
4762         unsigned int rpl;
4763
4764         vmx_get_segment(vcpu, &var, seg);
4765         rpl = var.selector & SEGMENT_RPL_MASK;
4766
4767         if (var.unusable)
4768                 return true;
4769         if (!var.s)
4770                 return false;
4771         if (!var.present)
4772                 return false;
4773         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
4774                 if (var.dpl < rpl) /* DPL < RPL */
4775                         return false;
4776         }
4777
4778         /* TODO: Add other members to kvm_segment_field to allow checking for other access
4779          * rights flags
4780          */
4781         return true;
4782 }
4783
4784 static bool tr_valid(struct kvm_vcpu *vcpu)
4785 {
4786         struct kvm_segment tr;
4787
4788         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4789
4790         if (tr.unusable)
4791                 return false;
4792         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
4793                 return false;
4794         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
4795                 return false;
4796         if (!tr.present)
4797                 return false;
4798
4799         return true;
4800 }
4801
4802 static bool ldtr_valid(struct kvm_vcpu *vcpu)
4803 {
4804         struct kvm_segment ldtr;
4805
4806         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4807
4808         if (ldtr.unusable)
4809                 return true;
4810         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
4811                 return false;
4812         if (ldtr.type != 2)
4813                 return false;
4814         if (!ldtr.present)
4815                 return false;
4816
4817         return true;
4818 }
4819
4820 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4821 {
4822         struct kvm_segment cs, ss;
4823
4824         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4825         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4826
4827         return ((cs.selector & SEGMENT_RPL_MASK) ==
4828                  (ss.selector & SEGMENT_RPL_MASK));
4829 }
4830
4831 /*
4832  * Check if guest state is valid. Returns true if valid, false if
4833  * not.
4834  * We assume that registers are always usable
4835  */
4836 static bool guest_state_valid(struct kvm_vcpu *vcpu)
4837 {
4838         if (enable_unrestricted_guest)
4839                 return true;
4840
4841         /* real mode guest state checks */
4842         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4843                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4844                         return false;
4845                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4846                         return false;
4847                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4848                         return false;
4849                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4850                         return false;
4851                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4852                         return false;
4853                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4854                         return false;
4855         } else {
4856         /* protected mode guest state checks */
4857                 if (!cs_ss_rpl_check(vcpu))
4858                         return false;
4859                 if (!code_segment_valid(vcpu))
4860                         return false;
4861                 if (!stack_segment_valid(vcpu))
4862                         return false;
4863                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4864                         return false;
4865                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4866                         return false;
4867                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4868                         return false;
4869                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4870                         return false;
4871                 if (!tr_valid(vcpu))
4872                         return false;
4873                 if (!ldtr_valid(vcpu))
4874                         return false;
4875         }
4876         /* TODO:
4877          * - Add checks on RIP
4878          * - Add checks on RFLAGS
4879          */
4880
4881         return true;
4882 }
4883
4884 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
4885 {
4886         return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
4887 }
4888
4889 static int init_rmode_tss(struct kvm *kvm)
4890 {
4891         gfn_t fn;
4892         u16 data = 0;
4893         int idx, r;
4894
4895         idx = srcu_read_lock(&kvm->srcu);
4896         fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4897         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4898         if (r < 0)
4899                 goto out;
4900         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4901         r = kvm_write_guest_page(kvm, fn++, &data,
4902                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
4903         if (r < 0)
4904                 goto out;
4905         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4906         if (r < 0)
4907                 goto out;
4908         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4909         if (r < 0)
4910                 goto out;
4911         data = ~0;
4912         r = kvm_write_guest_page(kvm, fn, &data,
4913                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4914                                  sizeof(u8));
4915 out:
4916         srcu_read_unlock(&kvm->srcu, idx);
4917         return r;
4918 }
4919
4920 static int init_rmode_identity_map(struct kvm *kvm)
4921 {
4922         int i, idx, r = 0;
4923         kvm_pfn_t identity_map_pfn;
4924         u32 tmp;
4925
4926         /* Protect kvm->arch.ept_identity_pagetable_done. */
4927         mutex_lock(&kvm->slots_lock);
4928
4929         if (likely(kvm->arch.ept_identity_pagetable_done))
4930                 goto out2;
4931
4932         if (!kvm->arch.ept_identity_map_addr)
4933                 kvm->arch.ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
4934         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4935
4936         r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4937                                     kvm->arch.ept_identity_map_addr, PAGE_SIZE);
4938         if (r < 0)
4939                 goto out2;
4940
4941         idx = srcu_read_lock(&kvm->srcu);
4942         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4943         if (r < 0)
4944                 goto out;
4945         /* Set up identity-mapping pagetable for EPT in real mode */
4946         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4947                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4948                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4949                 r = kvm_write_guest_page(kvm, identity_map_pfn,
4950                                 &tmp, i * sizeof(tmp), sizeof(tmp));
4951                 if (r < 0)
4952                         goto out;
4953         }
4954         kvm->arch.ept_identity_pagetable_done = true;
4955
4956 out:
4957         srcu_read_unlock(&kvm->srcu, idx);
4958
4959 out2:
4960         mutex_unlock(&kvm->slots_lock);
4961         return r;
4962 }
4963
4964 static void seg_setup(int seg)
4965 {
4966         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4967         unsigned int ar;
4968
4969         vmcs_write16(sf->selector, 0);
4970         vmcs_writel(sf->base, 0);
4971         vmcs_write32(sf->limit, 0xffff);
4972         ar = 0x93;
4973         if (seg == VCPU_SREG_CS)
4974                 ar |= 0x08; /* code segment */
4975
4976         vmcs_write32(sf->ar_bytes, ar);
4977 }
4978
4979 static int alloc_apic_access_page(struct kvm *kvm)
4980 {
4981         struct page *page;
4982         int r = 0;
4983
4984         mutex_lock(&kvm->slots_lock);
4985         if (kvm->arch.apic_access_page_done)
4986                 goto out;
4987         r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4988                                     APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
4989         if (r)
4990                 goto out;
4991
4992         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4993         if (is_error_page(page)) {
4994                 r = -EFAULT;
4995                 goto out;
4996         }
4997
4998         /*
4999          * Do not pin the page in memory, so that memory hot-unplug
5000          * is able to migrate it.
5001          */
5002         put_page(page);
5003         kvm->arch.apic_access_page_done = true;
5004 out:
5005         mutex_unlock(&kvm->slots_lock);
5006         return r;
5007 }
5008
5009 static int allocate_vpid(void)
5010 {
5011         int vpid;
5012
5013         if (!enable_vpid)
5014                 return 0;
5015         spin_lock(&vmx_vpid_lock);
5016         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
5017         if (vpid < VMX_NR_VPIDS)
5018                 __set_bit(vpid, vmx_vpid_bitmap);
5019         else
5020                 vpid = 0;
5021         spin_unlock(&vmx_vpid_lock);
5022         return vpid;
5023 }
5024
5025 static void free_vpid(int vpid)
5026 {
5027         if (!enable_vpid || vpid == 0)
5028                 return;
5029         spin_lock(&vmx_vpid_lock);
5030         __clear_bit(vpid, vmx_vpid_bitmap);
5031         spin_unlock(&vmx_vpid_lock);
5032 }
5033
5034 static void __always_inline vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
5035                                                           u32 msr, int type)
5036 {
5037         int f = sizeof(unsigned long);
5038
5039         if (!cpu_has_vmx_msr_bitmap())
5040                 return;
5041
5042         /*
5043          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
5044          * have the write-low and read-high bitmap offsets the wrong way round.
5045          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
5046          */
5047         if (msr <= 0x1fff) {
5048                 if (type & MSR_TYPE_R)
5049                         /* read-low */
5050                         __clear_bit(msr, msr_bitmap + 0x000 / f);
5051
5052                 if (type & MSR_TYPE_W)
5053                         /* write-low */
5054                         __clear_bit(msr, msr_bitmap + 0x800 / f);
5055
5056         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
5057                 msr &= 0x1fff;
5058                 if (type & MSR_TYPE_R)
5059                         /* read-high */
5060                         __clear_bit(msr, msr_bitmap + 0x400 / f);
5061
5062                 if (type & MSR_TYPE_W)
5063                         /* write-high */
5064                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
5065
5066         }
5067 }
5068
5069 static void __always_inline vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
5070                                                          u32 msr, int type)
5071 {
5072         int f = sizeof(unsigned long);
5073
5074         if (!cpu_has_vmx_msr_bitmap())
5075                 return;
5076
5077         /*
5078          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
5079          * have the write-low and read-high bitmap offsets the wrong way round.
5080          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
5081          */
5082         if (msr <= 0x1fff) {
5083                 if (type & MSR_TYPE_R)
5084                         /* read-low */
5085                         __set_bit(msr, msr_bitmap + 0x000 / f);
5086
5087                 if (type & MSR_TYPE_W)
5088                         /* write-low */
5089                         __set_bit(msr, msr_bitmap + 0x800 / f);
5090
5091         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
5092                 msr &= 0x1fff;
5093                 if (type & MSR_TYPE_R)
5094                         /* read-high */
5095                         __set_bit(msr, msr_bitmap + 0x400 / f);
5096
5097                 if (type & MSR_TYPE_W)
5098                         /* write-high */
5099                         __set_bit(msr, msr_bitmap + 0xc00 / f);
5100
5101         }
5102 }
5103
5104 static void __always_inline vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
5105                                                       u32 msr, int type, bool value)
5106 {
5107         if (value)
5108                 vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
5109         else
5110                 vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
5111 }
5112
5113 /*
5114  * If a msr is allowed by L0, we should check whether it is allowed by L1.
5115  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
5116  */
5117 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
5118                                                unsigned long *msr_bitmap_nested,
5119                                                u32 msr, int type)
5120 {
5121         int f = sizeof(unsigned long);
5122
5123         /*
5124          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
5125          * have the write-low and read-high bitmap offsets the wrong way round.
5126          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
5127          */
5128         if (msr <= 0x1fff) {
5129                 if (type & MSR_TYPE_R &&
5130                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
5131                         /* read-low */
5132                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
5133
5134                 if (type & MSR_TYPE_W &&
5135                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
5136                         /* write-low */
5137                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
5138
5139         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
5140                 msr &= 0x1fff;
5141                 if (type & MSR_TYPE_R &&
5142                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
5143                         /* read-high */
5144                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
5145
5146                 if (type & MSR_TYPE_W &&
5147                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
5148                         /* write-high */
5149                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
5150
5151         }
5152 }
5153
5154 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
5155 {
5156         u8 mode = 0;
5157
5158         if (cpu_has_secondary_exec_ctrls() &&
5159             (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
5160              SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
5161                 mode |= MSR_BITMAP_MODE_X2APIC;
5162                 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
5163                         mode |= MSR_BITMAP_MODE_X2APIC_APICV;
5164         }
5165
5166         if (is_long_mode(vcpu))
5167                 mode |= MSR_BITMAP_MODE_LM;
5168
5169         return mode;
5170 }
5171
5172 #define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
5173
5174 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
5175                                          u8 mode)
5176 {
5177         int msr;
5178
5179         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
5180                 unsigned word = msr / BITS_PER_LONG;
5181                 msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
5182                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
5183         }
5184
5185         if (mode & MSR_BITMAP_MODE_X2APIC) {
5186                 /*
5187                  * TPR reads and writes can be virtualized even if virtual interrupt
5188                  * delivery is not in use.
5189                  */
5190                 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
5191                 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
5192                         vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
5193                         vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
5194                         vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
5195                 }
5196         }
5197 }
5198
5199 static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
5200 {
5201         struct vcpu_vmx *vmx = to_vmx(vcpu);
5202         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
5203         u8 mode = vmx_msr_bitmap_mode(vcpu);
5204         u8 changed = mode ^ vmx->msr_bitmap_mode;
5205
5206         if (!changed)
5207                 return;
5208
5209         vmx_set_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW,
5210                                   !(mode & MSR_BITMAP_MODE_LM));
5211
5212         if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
5213                 vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
5214
5215         vmx->msr_bitmap_mode = mode;
5216 }
5217
5218 static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
5219 {
5220         return enable_apicv;
5221 }
5222
5223 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
5224 {
5225         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5226         gfn_t gfn;
5227
5228         /*
5229          * Don't need to mark the APIC access page dirty; it is never
5230          * written to by the CPU during APIC virtualization.
5231          */
5232
5233         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
5234                 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
5235                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
5236         }
5237
5238         if (nested_cpu_has_posted_intr(vmcs12)) {
5239                 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
5240                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
5241         }
5242 }
5243
5244
5245 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
5246 {
5247         struct vcpu_vmx *vmx = to_vmx(vcpu);
5248         int max_irr;
5249         void *vapic_page;
5250         u16 status;
5251
5252         if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
5253                 return;
5254
5255         vmx->nested.pi_pending = false;
5256         if (!pi_test_and_clear_on(vmx->nested.pi_desc))
5257                 return;
5258
5259         max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
5260         if (max_irr != 256) {
5261                 vapic_page = kmap(vmx->nested.virtual_apic_page);
5262                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
5263                         vapic_page, &max_irr);
5264                 kunmap(vmx->nested.virtual_apic_page);
5265
5266                 status = vmcs_read16(GUEST_INTR_STATUS);
5267                 if ((u8)max_irr > ((u8)status & 0xff)) {
5268                         status &= ~0xff;
5269                         status |= (u8)max_irr;
5270                         vmcs_write16(GUEST_INTR_STATUS, status);
5271                 }
5272         }
5273
5274         nested_mark_vmcs12_pages_dirty(vcpu);
5275 }
5276
5277 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
5278                                                      bool nested)
5279 {
5280 #ifdef CONFIG_SMP
5281         int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
5282
5283         if (vcpu->mode == IN_GUEST_MODE) {
5284                 /*
5285                  * The vector of interrupt to be delivered to vcpu had
5286                  * been set in PIR before this function.
5287                  *
5288                  * Following cases will be reached in this block, and
5289                  * we always send a notification event in all cases as
5290                  * explained below.
5291                  *
5292                  * Case 1: vcpu keeps in non-root mode. Sending a
5293                  * notification event posts the interrupt to vcpu.
5294                  *
5295                  * Case 2: vcpu exits to root mode and is still
5296                  * runnable. PIR will be synced to vIRR before the
5297                  * next vcpu entry. Sending a notification event in
5298                  * this case has no effect, as vcpu is not in root
5299                  * mode.
5300                  *
5301                  * Case 3: vcpu exits to root mode and is blocked.
5302                  * vcpu_block() has already synced PIR to vIRR and
5303                  * never blocks vcpu if vIRR is not cleared. Therefore,
5304                  * a blocked vcpu here does not wait for any requested
5305                  * interrupts in PIR, and sending a notification event
5306                  * which has no effect is safe here.
5307                  */
5308
5309                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
5310                 return true;
5311         }
5312 #endif
5313         return false;
5314 }
5315
5316 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
5317                                                 int vector)
5318 {
5319         struct vcpu_vmx *vmx = to_vmx(vcpu);
5320
5321         if (is_guest_mode(vcpu) &&
5322             vector == vmx->nested.posted_intr_nv) {
5323                 /*
5324                  * If a posted intr is not recognized by hardware,
5325                  * we will accomplish it in the next vmentry.
5326                  */
5327                 vmx->nested.pi_pending = true;
5328                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5329                 /* the PIR and ON have been set by L1. */
5330                 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
5331                         kvm_vcpu_kick(vcpu);
5332                 return 0;
5333         }
5334         return -1;
5335 }
5336 /*
5337  * Send interrupt to vcpu via posted interrupt way.
5338  * 1. If target vcpu is running(non-root mode), send posted interrupt
5339  * notification to vcpu and hardware will sync PIR to vIRR atomically.
5340  * 2. If target vcpu isn't running(root mode), kick it to pick up the
5341  * interrupt from PIR in next vmentry.
5342  */
5343 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
5344 {
5345         struct vcpu_vmx *vmx = to_vmx(vcpu);
5346         int r;
5347
5348         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
5349         if (!r)
5350                 return;
5351
5352         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
5353                 return;
5354
5355         /* If a previous notification has sent the IPI, nothing to do.  */
5356         if (pi_test_and_set_on(&vmx->pi_desc))
5357                 return;
5358
5359         if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
5360                 kvm_vcpu_kick(vcpu);
5361 }
5362
5363 /*
5364  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
5365  * will not change in the lifetime of the guest.
5366  * Note that host-state that does change is set elsewhere. E.g., host-state
5367  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
5368  */
5369 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
5370 {
5371         u32 low32, high32;
5372         unsigned long tmpl;
5373         struct desc_ptr dt;
5374         unsigned long cr0, cr3, cr4;
5375
5376         cr0 = read_cr0();
5377         WARN_ON(cr0 & X86_CR0_TS);
5378         vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
5379
5380         /*
5381          * Save the most likely value for this task's CR3 in the VMCS.
5382          * We can't use __get_current_cr3_fast() because we're not atomic.
5383          */
5384         cr3 = __read_cr3();
5385         vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
5386         vmx->loaded_vmcs->vmcs_host_cr3 = cr3;
5387
5388         /* Save the most likely value for this task's CR4 in the VMCS. */
5389         cr4 = cr4_read_shadow();
5390         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
5391         vmx->loaded_vmcs->vmcs_host_cr4 = cr4;
5392
5393         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
5394 #ifdef CONFIG_X86_64
5395         /*
5396          * Load null selectors, so we can avoid reloading them in
5397          * __vmx_load_host_state(), in case userspace uses the null selectors
5398          * too (the expected case).
5399          */
5400         vmcs_write16(HOST_DS_SELECTOR, 0);
5401         vmcs_write16(HOST_ES_SELECTOR, 0);
5402 #else
5403         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
5404         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
5405 #endif
5406         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
5407         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
5408
5409         store_idt(&dt);
5410         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
5411         vmx->host_idt_base = dt.address;
5412
5413         vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
5414
5415         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
5416         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
5417         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
5418         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
5419
5420         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
5421                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
5422                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
5423         }
5424 }
5425
5426 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
5427 {
5428         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
5429         if (enable_ept)
5430                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
5431         if (is_guest_mode(&vmx->vcpu))
5432                 vmx->vcpu.arch.cr4_guest_owned_bits &=
5433                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
5434         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
5435 }
5436
5437 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
5438 {
5439         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
5440
5441         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
5442                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
5443
5444         if (!enable_vnmi)
5445                 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
5446
5447         /* Enable the preemption timer dynamically */
5448         pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
5449         return pin_based_exec_ctrl;
5450 }
5451
5452 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5453 {
5454         struct vcpu_vmx *vmx = to_vmx(vcpu);
5455
5456         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5457         if (cpu_has_secondary_exec_ctrls()) {
5458                 if (kvm_vcpu_apicv_active(vcpu))
5459                         vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
5460                                       SECONDARY_EXEC_APIC_REGISTER_VIRT |
5461                                       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5462                 else
5463                         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
5464                                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
5465                                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5466         }
5467
5468         if (cpu_has_vmx_msr_bitmap())
5469                 vmx_update_msr_bitmap(vcpu);
5470 }
5471
5472 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
5473 {
5474         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
5475
5476         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
5477                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5478
5479         if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
5480                 exec_control &= ~CPU_BASED_TPR_SHADOW;
5481 #ifdef CONFIG_X86_64
5482                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
5483                                 CPU_BASED_CR8_LOAD_EXITING;
5484 #endif
5485         }
5486         if (!enable_ept)
5487                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
5488                                 CPU_BASED_CR3_LOAD_EXITING  |
5489                                 CPU_BASED_INVLPG_EXITING;
5490         return exec_control;
5491 }
5492
5493 static bool vmx_rdrand_supported(void)
5494 {
5495         return vmcs_config.cpu_based_2nd_exec_ctrl &
5496                 SECONDARY_EXEC_RDRAND_EXITING;
5497 }
5498
5499 static bool vmx_rdseed_supported(void)
5500 {
5501         return vmcs_config.cpu_based_2nd_exec_ctrl &
5502                 SECONDARY_EXEC_RDSEED_EXITING;
5503 }
5504
5505 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
5506 {
5507         struct kvm_vcpu *vcpu = &vmx->vcpu;
5508
5509         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
5510
5511         if (!cpu_need_virtualize_apic_accesses(vcpu))
5512                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5513         if (vmx->vpid == 0)
5514                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
5515         if (!enable_ept) {
5516                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
5517                 enable_unrestricted_guest = 0;
5518                 /* Enable INVPCID for non-ept guests may cause performance regression. */
5519                 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
5520         }
5521         if (!enable_unrestricted_guest)
5522                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
5523         if (!ple_gap)
5524                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
5525         if (!kvm_vcpu_apicv_active(vcpu))
5526                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
5527                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5528         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
5529
5530         /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
5531          * in vmx_set_cr4.  */
5532         exec_control &= ~SECONDARY_EXEC_DESC;
5533
5534         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
5535            (handle_vmptrld).
5536            We can NOT enable shadow_vmcs here because we don't have yet
5537            a current VMCS12
5538         */
5539         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
5540
5541         if (!enable_pml)
5542                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
5543
5544         if (vmx_xsaves_supported()) {
5545                 /* Exposing XSAVES only when XSAVE is exposed */
5546                 bool xsaves_enabled =
5547                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
5548                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
5549
5550                 if (!xsaves_enabled)
5551                         exec_control &= ~SECONDARY_EXEC_XSAVES;
5552
5553                 if (nested) {
5554                         if (xsaves_enabled)
5555                                 vmx->nested.nested_vmx_secondary_ctls_high |=
5556                                         SECONDARY_EXEC_XSAVES;
5557                         else
5558                                 vmx->nested.nested_vmx_secondary_ctls_high &=
5559                                         ~SECONDARY_EXEC_XSAVES;
5560                 }
5561         }
5562
5563         if (vmx_rdtscp_supported()) {
5564                 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
5565                 if (!rdtscp_enabled)
5566                         exec_control &= ~SECONDARY_EXEC_RDTSCP;
5567
5568                 if (nested) {
5569                         if (rdtscp_enabled)
5570                                 vmx->nested.nested_vmx_secondary_ctls_high |=
5571                                         SECONDARY_EXEC_RDTSCP;
5572                         else
5573                                 vmx->nested.nested_vmx_secondary_ctls_high &=
5574                                         ~SECONDARY_EXEC_RDTSCP;
5575                 }
5576         }
5577
5578         if (vmx_invpcid_supported()) {
5579                 /* Exposing INVPCID only when PCID is exposed */
5580                 bool invpcid_enabled =
5581                         guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
5582                         guest_cpuid_has(vcpu, X86_FEATURE_PCID);
5583
5584                 if (!invpcid_enabled) {
5585                         exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
5586                         guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
5587                 }
5588
5589                 if (nested) {
5590                         if (invpcid_enabled)
5591                                 vmx->nested.nested_vmx_secondary_ctls_high |=
5592                                         SECONDARY_EXEC_ENABLE_INVPCID;
5593                         else
5594                                 vmx->nested.nested_vmx_secondary_ctls_high &=
5595                                         ~SECONDARY_EXEC_ENABLE_INVPCID;
5596                 }
5597         }
5598
5599         if (vmx_rdrand_supported()) {
5600                 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
5601                 if (rdrand_enabled)
5602                         exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
5603
5604                 if (nested) {
5605                         if (rdrand_enabled)
5606                                 vmx->nested.nested_vmx_secondary_ctls_high |=
5607                                         SECONDARY_EXEC_RDRAND_EXITING;
5608                         else
5609                                 vmx->nested.nested_vmx_secondary_ctls_high &=
5610                                         ~SECONDARY_EXEC_RDRAND_EXITING;
5611                 }
5612         }
5613
5614         if (vmx_rdseed_supported()) {
5615                 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
5616                 if (rdseed_enabled)
5617                         exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
5618
5619                 if (nested) {
5620                         if (rdseed_enabled)
5621                                 vmx->nested.nested_vmx_secondary_ctls_high |=
5622                                         SECONDARY_EXEC_RDSEED_EXITING;
5623                         else
5624                                 vmx->nested.nested_vmx_secondary_ctls_high &=
5625                                         ~SECONDARY_EXEC_RDSEED_EXITING;
5626                 }
5627         }
5628
5629         vmx->secondary_exec_control = exec_control;
5630 }
5631
5632 static void ept_set_mmio_spte_mask(void)
5633 {
5634         /*
5635          * EPT Misconfigurations can be generated if the value of bits 2:0
5636          * of an EPT paging-structure entry is 110b (write/execute).
5637          */
5638         kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
5639                                    VMX_EPT_MISCONFIG_WX_VALUE);
5640 }
5641
5642 #define VMX_XSS_EXIT_BITMAP 0
5643 /*
5644  * Sets up the vmcs for emulated real mode.
5645  */
5646 static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
5647 {
5648 #ifdef CONFIG_X86_64
5649         unsigned long a;
5650 #endif
5651         int i;
5652
5653         if (enable_shadow_vmcs) {
5654                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5655                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5656         }
5657         if (cpu_has_vmx_msr_bitmap())
5658                 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
5659
5660         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
5661
5662         /* Control */
5663         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5664         vmx->hv_deadline_tsc = -1;
5665
5666         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
5667
5668         if (cpu_has_secondary_exec_ctrls()) {
5669                 vmx_compute_secondary_exec_control(vmx);
5670                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
5671                              vmx->secondary_exec_control);
5672         }
5673
5674         if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
5675                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
5676                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
5677                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
5678                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
5679
5680                 vmcs_write16(GUEST_INTR_STATUS, 0);
5681
5682                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
5683                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
5684         }
5685
5686         if (ple_gap) {
5687                 vmcs_write32(PLE_GAP, ple_gap);
5688                 vmx->ple_window = ple_window;
5689                 vmx->ple_window_dirty = true;
5690         }
5691
5692         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
5693         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
5694         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
5695
5696         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
5697         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
5698         vmx_set_constant_host_state(vmx);
5699 #ifdef CONFIG_X86_64
5700         rdmsrl(MSR_FS_BASE, a);
5701         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
5702         rdmsrl(MSR_GS_BASE, a);
5703         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
5704 #else
5705         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
5706         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
5707 #endif
5708
5709         if (cpu_has_vmx_vmfunc())
5710                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
5711
5712         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
5713         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
5714         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
5715         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
5716         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
5717
5718         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
5719                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
5720
5721         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
5722                 u32 index = vmx_msr_index[i];
5723                 u32 data_low, data_high;
5724                 int j = vmx->nmsrs;
5725
5726                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
5727                         continue;
5728                 if (wrmsr_safe(index, data_low, data_high) < 0)
5729                         continue;
5730                 vmx->guest_msrs[j].index = i;
5731                 vmx->guest_msrs[j].data = 0;
5732                 vmx->guest_msrs[j].mask = -1ull;
5733                 ++vmx->nmsrs;
5734         }
5735
5736         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
5737                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, vmx->arch_capabilities);
5738
5739         vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
5740
5741         /* 22.2.1, 20.8.1 */
5742         vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
5743
5744         vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
5745         vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
5746
5747         set_cr4_guest_host_mask(vmx);
5748
5749         if (vmx_xsaves_supported())
5750                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
5751
5752         if (enable_pml) {
5753                 ASSERT(vmx->pml_pg);
5754                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
5755                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5756         }
5757 }
5758
5759 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
5760 {
5761         struct vcpu_vmx *vmx = to_vmx(vcpu);
5762         struct msr_data apic_base_msr;
5763         u64 cr0;
5764
5765         vmx->rmode.vm86_active = 0;
5766         vmx->spec_ctrl = 0;
5767
5768         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
5769         kvm_set_cr8(vcpu, 0);
5770
5771         if (!init_event) {
5772                 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
5773                                      MSR_IA32_APICBASE_ENABLE;
5774                 if (kvm_vcpu_is_reset_bsp(vcpu))
5775                         apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
5776                 apic_base_msr.host_initiated = true;
5777                 kvm_set_apic_base(vcpu, &apic_base_msr);
5778         }
5779
5780         vmx_segment_cache_clear(vmx);
5781
5782         seg_setup(VCPU_SREG_CS);
5783         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
5784         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
5785
5786         seg_setup(VCPU_SREG_DS);
5787         seg_setup(VCPU_SREG_ES);
5788         seg_setup(VCPU_SREG_FS);
5789         seg_setup(VCPU_SREG_GS);
5790         seg_setup(VCPU_SREG_SS);
5791
5792         vmcs_write16(GUEST_TR_SELECTOR, 0);
5793         vmcs_writel(GUEST_TR_BASE, 0);
5794         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5795         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5796
5797         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5798         vmcs_writel(GUEST_LDTR_BASE, 0);
5799         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5800         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5801
5802         if (!init_event) {
5803                 vmcs_write32(GUEST_SYSENTER_CS, 0);
5804                 vmcs_writel(GUEST_SYSENTER_ESP, 0);
5805                 vmcs_writel(GUEST_SYSENTER_EIP, 0);
5806                 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5807         }
5808
5809         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
5810         kvm_rip_write(vcpu, 0xfff0);
5811
5812         vmcs_writel(GUEST_GDTR_BASE, 0);
5813         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5814
5815         vmcs_writel(GUEST_IDTR_BASE, 0);
5816         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5817
5818         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
5819         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
5820         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
5821         if (kvm_mpx_supported())
5822                 vmcs_write64(GUEST_BNDCFGS, 0);
5823
5824         setup_msrs(vmx);
5825
5826         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
5827
5828         if (cpu_has_vmx_tpr_shadow() && !init_event) {
5829                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
5830                 if (cpu_need_tpr_shadow(vcpu))
5831                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
5832                                      __pa(vcpu->arch.apic->regs));
5833                 vmcs_write32(TPR_THRESHOLD, 0);
5834         }
5835
5836         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
5837
5838         if (vmx->vpid != 0)
5839                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5840
5841         cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
5842         vmx->vcpu.arch.cr0 = cr0;
5843         vmx_set_cr0(vcpu, cr0); /* enter rmode */
5844         vmx_set_cr4(vcpu, 0);
5845         vmx_set_efer(vcpu, 0);
5846
5847         update_exception_bitmap(vcpu);
5848
5849         vpid_sync_context(vmx->vpid);
5850 }
5851
5852 /*
5853  * In nested virtualization, check if L1 asked to exit on external interrupts.
5854  * For most existing hypervisors, this will always return true.
5855  */
5856 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5857 {
5858         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5859                 PIN_BASED_EXT_INTR_MASK;
5860 }
5861
5862 /*
5863  * In nested virtualization, check if L1 has set
5864  * VM_EXIT_ACK_INTR_ON_EXIT
5865  */
5866 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5867 {
5868         return get_vmcs12(vcpu)->vm_exit_controls &
5869                 VM_EXIT_ACK_INTR_ON_EXIT;
5870 }
5871
5872 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5873 {
5874         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5875                 PIN_BASED_NMI_EXITING;
5876 }
5877
5878 static void enable_irq_window(struct kvm_vcpu *vcpu)
5879 {
5880         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5881                       CPU_BASED_VIRTUAL_INTR_PENDING);
5882 }
5883
5884 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5885 {
5886         if (!enable_vnmi ||
5887             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
5888                 enable_irq_window(vcpu);
5889                 return;
5890         }
5891
5892         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5893                       CPU_BASED_VIRTUAL_NMI_PENDING);
5894 }
5895
5896 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
5897 {
5898         struct vcpu_vmx *vmx = to_vmx(vcpu);
5899         uint32_t intr;
5900         int irq = vcpu->arch.interrupt.nr;
5901
5902         trace_kvm_inj_virq(irq);
5903
5904         ++vcpu->stat.irq_injections;
5905         if (vmx->rmode.vm86_active) {
5906                 int inc_eip = 0;
5907                 if (vcpu->arch.interrupt.soft)
5908                         inc_eip = vcpu->arch.event_exit_inst_len;
5909                 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
5910                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5911                 return;
5912         }
5913         intr = irq | INTR_INFO_VALID_MASK;
5914         if (vcpu->arch.interrupt.soft) {
5915                 intr |= INTR_TYPE_SOFT_INTR;
5916                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5917                              vmx->vcpu.arch.event_exit_inst_len);
5918         } else
5919                 intr |= INTR_TYPE_EXT_INTR;
5920         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
5921 }
5922
5923 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5924 {
5925         struct vcpu_vmx *vmx = to_vmx(vcpu);
5926
5927         if (!enable_vnmi) {
5928                 /*
5929                  * Tracking the NMI-blocked state in software is built upon
5930                  * finding the next open IRQ window. This, in turn, depends on
5931                  * well-behaving guests: They have to keep IRQs disabled at
5932                  * least as long as the NMI handler runs. Otherwise we may
5933                  * cause NMI nesting, maybe breaking the guest. But as this is
5934                  * highly unlikely, we can live with the residual risk.
5935                  */
5936                 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
5937                 vmx->loaded_vmcs->vnmi_blocked_time = 0;
5938         }
5939
5940         ++vcpu->stat.nmi_injections;
5941         vmx->loaded_vmcs->nmi_known_unmasked = false;
5942
5943         if (vmx->rmode.vm86_active) {
5944                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
5945                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5946                 return;
5947         }
5948
5949         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5950                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5951 }
5952
5953 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5954 {
5955         struct vcpu_vmx *vmx = to_vmx(vcpu);
5956         bool masked;
5957
5958         if (!enable_vnmi)
5959                 return vmx->loaded_vmcs->soft_vnmi_blocked;
5960         if (vmx->loaded_vmcs->nmi_known_unmasked)
5961                 return false;
5962         masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5963         vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5964         return masked;
5965 }
5966
5967 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5968 {
5969         struct vcpu_vmx *vmx = to_vmx(vcpu);
5970
5971         if (!enable_vnmi) {
5972                 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
5973                         vmx->loaded_vmcs->soft_vnmi_blocked = masked;
5974                         vmx->loaded_vmcs->vnmi_blocked_time = 0;
5975                 }
5976         } else {
5977                 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5978                 if (masked)
5979                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5980                                       GUEST_INTR_STATE_NMI);
5981                 else
5982                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5983                                         GUEST_INTR_STATE_NMI);
5984         }
5985 }
5986
5987 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5988 {
5989         if (to_vmx(vcpu)->nested.nested_run_pending)
5990                 return 0;
5991
5992         if (!enable_vnmi &&
5993             to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
5994                 return 0;
5995
5996         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5997                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5998                    | GUEST_INTR_STATE_NMI));
5999 }
6000
6001 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
6002 {
6003         return (!to_vmx(vcpu)->nested.nested_run_pending &&
6004                 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
6005                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
6006                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
6007 }
6008
6009 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
6010 {
6011         int ret;
6012
6013         ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
6014                                     PAGE_SIZE * 3);
6015         if (ret)
6016                 return ret;
6017         kvm->arch.tss_addr = addr;
6018         return init_rmode_tss(kvm);
6019 }
6020
6021 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
6022 {
6023         switch (vec) {
6024         case BP_VECTOR:
6025                 /*
6026                  * Update instruction length as we may reinject the exception
6027                  * from user space while in guest debugging mode.
6028                  */
6029                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
6030                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6031                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
6032                         return false;
6033                 /* fall through */
6034         case DB_VECTOR:
6035                 if (vcpu->guest_debug &
6036                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
6037                         return false;
6038                 /* fall through */
6039         case DE_VECTOR:
6040         case OF_VECTOR:
6041         case BR_VECTOR:
6042         case UD_VECTOR:
6043         case DF_VECTOR:
6044         case SS_VECTOR:
6045         case GP_VECTOR:
6046         case MF_VECTOR:
6047                 return true;
6048         break;
6049         }
6050         return false;
6051 }
6052
6053 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
6054                                   int vec, u32 err_code)
6055 {
6056         /*
6057          * Instruction with address size override prefix opcode 0x67
6058          * Cause the #SS fault with 0 error code in VM86 mode.
6059          */
6060         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
6061                 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
6062                         if (vcpu->arch.halt_request) {
6063                                 vcpu->arch.halt_request = 0;
6064                                 return kvm_vcpu_halt(vcpu);
6065                         }
6066                         return 1;
6067                 }
6068                 return 0;
6069         }
6070
6071         /*
6072          * Forward all other exceptions that are valid in real mode.
6073          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
6074          *        the required debugging infrastructure rework.
6075          */
6076         kvm_queue_exception(vcpu, vec);
6077         return 1;
6078 }
6079
6080 /*
6081  * Trigger machine check on the host. We assume all the MSRs are already set up
6082  * by the CPU and that we still run on the same CPU as the MCE occurred on.
6083  * We pass a fake environment to the machine check handler because we want
6084  * the guest to be always treated like user space, no matter what context
6085  * it used internally.
6086  */
6087 static void kvm_machine_check(void)
6088 {
6089 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
6090         struct pt_regs regs = {
6091                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
6092                 .flags = X86_EFLAGS_IF,
6093         };
6094
6095         do_machine_check(&regs, 0);
6096 #endif
6097 }
6098
6099 static int handle_machine_check(struct kvm_vcpu *vcpu)
6100 {
6101         /* already handled by vcpu_run */
6102         return 1;
6103 }
6104
6105 static int handle_exception(struct kvm_vcpu *vcpu)
6106 {
6107         struct vcpu_vmx *vmx = to_vmx(vcpu);
6108         struct kvm_run *kvm_run = vcpu->run;
6109         u32 intr_info, ex_no, error_code;
6110         unsigned long cr2, rip, dr6;
6111         u32 vect_info;
6112         enum emulation_result er;
6113
6114         vect_info = vmx->idt_vectoring_info;
6115         intr_info = vmx->exit_intr_info;
6116
6117         if (is_machine_check(intr_info))
6118                 return handle_machine_check(vcpu);
6119
6120         if (is_nmi(intr_info))
6121                 return 1;  /* already handled by vmx_vcpu_run() */
6122
6123         if (is_invalid_opcode(intr_info)) {
6124                 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
6125                 if (er == EMULATE_USER_EXIT)
6126                         return 0;
6127                 if (er != EMULATE_DONE)
6128                         kvm_queue_exception(vcpu, UD_VECTOR);
6129                 return 1;
6130         }
6131
6132         error_code = 0;
6133         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6134                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6135
6136         /*
6137          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
6138          * MMIO, it is better to report an internal error.
6139          * See the comments in vmx_handle_exit.
6140          */
6141         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
6142             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
6143                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6144                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
6145                 vcpu->run->internal.ndata = 3;
6146                 vcpu->run->internal.data[0] = vect_info;
6147                 vcpu->run->internal.data[1] = intr_info;
6148                 vcpu->run->internal.data[2] = error_code;
6149                 return 0;
6150         }
6151
6152         if (is_page_fault(intr_info)) {
6153                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
6154                 /* EPT won't cause page fault directly */
6155                 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
6156                 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
6157         }
6158
6159         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
6160
6161         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
6162                 return handle_rmode_exception(vcpu, ex_no, error_code);
6163
6164         switch (ex_no) {
6165         case AC_VECTOR:
6166                 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
6167                 return 1;
6168         case DB_VECTOR:
6169                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
6170                 if (!(vcpu->guest_debug &
6171                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
6172                         vcpu->arch.dr6 &= ~15;
6173                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
6174                         if (!(dr6 & ~DR6_RESERVED)) /* icebp */
6175                                 skip_emulated_instruction(vcpu);
6176
6177                         kvm_queue_exception(vcpu, DB_VECTOR);
6178                         return 1;
6179                 }
6180                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
6181                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
6182                 /* fall through */
6183         case BP_VECTOR:
6184                 /*
6185                  * Update instruction length as we may reinject #BP from
6186                  * user space while in guest debugging mode. Reading it for
6187                  * #DB as well causes no harm, it is not used in that case.
6188                  */
6189                 vmx->vcpu.arch.event_exit_inst_len =
6190                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6191                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6192                 rip = kvm_rip_read(vcpu);
6193                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
6194                 kvm_run->debug.arch.exception = ex_no;
6195                 break;
6196         default:
6197                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
6198                 kvm_run->ex.exception = ex_no;
6199                 kvm_run->ex.error_code = error_code;
6200                 break;
6201         }
6202         return 0;
6203 }
6204
6205 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6206 {
6207         ++vcpu->stat.irq_exits;
6208         return 1;
6209 }
6210
6211 static int handle_triple_fault(struct kvm_vcpu *vcpu)
6212 {
6213         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6214         vcpu->mmio_needed = 0;
6215         return 0;
6216 }
6217
6218 static int handle_io(struct kvm_vcpu *vcpu)
6219 {
6220         unsigned long exit_qualification;
6221         int size, in, string, ret;
6222         unsigned port;
6223
6224         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6225         string = (exit_qualification & 16) != 0;
6226         in = (exit_qualification & 8) != 0;
6227
6228         ++vcpu->stat.io_exits;
6229
6230         if (string || in)
6231                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6232
6233         port = exit_qualification >> 16;
6234         size = (exit_qualification & 7) + 1;
6235
6236         ret = kvm_skip_emulated_instruction(vcpu);
6237
6238         /*
6239          * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
6240          * KVM_EXIT_DEBUG here.
6241          */
6242         return kvm_fast_pio_out(vcpu, size, port) && ret;
6243 }
6244
6245 static void
6246 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
6247 {
6248         /*
6249          * Patch in the VMCALL instruction:
6250          */
6251         hypercall[0] = 0x0f;
6252         hypercall[1] = 0x01;
6253         hypercall[2] = 0xc1;
6254 }
6255
6256 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
6257 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
6258 {
6259         if (is_guest_mode(vcpu)) {
6260                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6261                 unsigned long orig_val = val;
6262
6263                 /*
6264                  * We get here when L2 changed cr0 in a way that did not change
6265                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
6266                  * but did change L0 shadowed bits. So we first calculate the
6267                  * effective cr0 value that L1 would like to write into the
6268                  * hardware. It consists of the L2-owned bits from the new
6269                  * value combined with the L1-owned bits from L1's guest_cr0.
6270                  */
6271                 val = (val & ~vmcs12->cr0_guest_host_mask) |
6272                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
6273
6274                 if (!nested_guest_cr0_valid(vcpu, val))
6275                         return 1;
6276
6277                 if (kvm_set_cr0(vcpu, val))
6278                         return 1;
6279                 vmcs_writel(CR0_READ_SHADOW, orig_val);
6280                 return 0;
6281         } else {
6282                 if (to_vmx(vcpu)->nested.vmxon &&
6283                     !nested_host_cr0_valid(vcpu, val))
6284                         return 1;
6285
6286                 return kvm_set_cr0(vcpu, val);
6287         }
6288 }
6289
6290 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
6291 {
6292         if (is_guest_mode(vcpu)) {
6293                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6294                 unsigned long orig_val = val;
6295
6296                 /* analogously to handle_set_cr0 */
6297                 val = (val & ~vmcs12->cr4_guest_host_mask) |
6298                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
6299                 if (kvm_set_cr4(vcpu, val))
6300                         return 1;
6301                 vmcs_writel(CR4_READ_SHADOW, orig_val);
6302                 return 0;
6303         } else
6304                 return kvm_set_cr4(vcpu, val);
6305 }
6306
6307 static int handle_desc(struct kvm_vcpu *vcpu)
6308 {
6309         WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
6310         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6311 }
6312
6313 static int handle_cr(struct kvm_vcpu *vcpu)
6314 {
6315         unsigned long exit_qualification, val;
6316         int cr;
6317         int reg;
6318         int err;
6319         int ret;
6320
6321         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6322         cr = exit_qualification & 15;
6323         reg = (exit_qualification >> 8) & 15;
6324         switch ((exit_qualification >> 4) & 3) {
6325         case 0: /* mov to cr */
6326                 val = kvm_register_readl(vcpu, reg);
6327                 trace_kvm_cr_write(cr, val);
6328                 switch (cr) {
6329                 case 0:
6330                         err = handle_set_cr0(vcpu, val);
6331                         return kvm_complete_insn_gp(vcpu, err);
6332                 case 3:
6333                         err = kvm_set_cr3(vcpu, val);
6334                         return kvm_complete_insn_gp(vcpu, err);
6335                 case 4:
6336                         err = handle_set_cr4(vcpu, val);
6337                         return kvm_complete_insn_gp(vcpu, err);
6338                 case 8: {
6339                                 u8 cr8_prev = kvm_get_cr8(vcpu);
6340                                 u8 cr8 = (u8)val;
6341                                 err = kvm_set_cr8(vcpu, cr8);
6342                                 ret = kvm_complete_insn_gp(vcpu, err);
6343                                 if (lapic_in_kernel(vcpu))
6344                                         return ret;
6345                                 if (cr8_prev <= cr8)
6346                                         return ret;
6347                                 /*
6348                                  * TODO: we might be squashing a
6349                                  * KVM_GUESTDBG_SINGLESTEP-triggered
6350                                  * KVM_EXIT_DEBUG here.
6351                                  */
6352                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
6353                                 return 0;
6354                         }
6355                 }
6356                 break;
6357         case 2: /* clts */
6358                 WARN_ONCE(1, "Guest should always own CR0.TS");
6359                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
6360                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
6361                 return kvm_skip_emulated_instruction(vcpu);
6362         case 1: /*mov from cr*/
6363                 switch (cr) {
6364                 case 3:
6365                         val = kvm_read_cr3(vcpu);
6366                         kvm_register_write(vcpu, reg, val);
6367                         trace_kvm_cr_read(cr, val);
6368                         return kvm_skip_emulated_instruction(vcpu);
6369                 case 8:
6370                         val = kvm_get_cr8(vcpu);
6371                         kvm_register_write(vcpu, reg, val);
6372                         trace_kvm_cr_read(cr, val);
6373                         return kvm_skip_emulated_instruction(vcpu);
6374                 }
6375                 break;
6376         case 3: /* lmsw */
6377                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
6378                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
6379                 kvm_lmsw(vcpu, val);
6380
6381                 return kvm_skip_emulated_instruction(vcpu);
6382         default:
6383                 break;
6384         }
6385         vcpu->run->exit_reason = 0;
6386         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6387                (int)(exit_qualification >> 4) & 3, cr);
6388         return 0;
6389 }
6390
6391 static int handle_dr(struct kvm_vcpu *vcpu)
6392 {
6393         unsigned long exit_qualification;
6394         int dr, dr7, reg;
6395
6396         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6397         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
6398
6399         /* First, if DR does not exist, trigger UD */
6400         if (!kvm_require_dr(vcpu, dr))
6401                 return 1;
6402
6403         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
6404         if (!kvm_require_cpl(vcpu, 0))
6405                 return 1;
6406         dr7 = vmcs_readl(GUEST_DR7);
6407         if (dr7 & DR7_GD) {
6408                 /*
6409                  * As the vm-exit takes precedence over the debug trap, we
6410                  * need to emulate the latter, either for the host or the
6411                  * guest debugging itself.
6412                  */
6413                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6414                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
6415                         vcpu->run->debug.arch.dr7 = dr7;
6416                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
6417                         vcpu->run->debug.arch.exception = DB_VECTOR;
6418                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
6419                         return 0;
6420                 } else {
6421                         vcpu->arch.dr6 &= ~15;
6422                         vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
6423                         kvm_queue_exception(vcpu, DB_VECTOR);
6424                         return 1;
6425                 }
6426         }
6427
6428         if (vcpu->guest_debug == 0) {
6429                 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6430                                 CPU_BASED_MOV_DR_EXITING);
6431
6432                 /*
6433                  * No more DR vmexits; force a reload of the debug registers
6434                  * and reenter on this instruction.  The next vmexit will
6435                  * retrieve the full state of the debug registers.
6436                  */
6437                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
6438                 return 1;
6439         }
6440
6441         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
6442         if (exit_qualification & TYPE_MOV_FROM_DR) {
6443                 unsigned long val;
6444
6445                 if (kvm_get_dr(vcpu, dr, &val))
6446                         return 1;
6447                 kvm_register_write(vcpu, reg, val);
6448         } else
6449                 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
6450                         return 1;
6451
6452         return kvm_skip_emulated_instruction(vcpu);
6453 }
6454
6455 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
6456 {
6457         return vcpu->arch.dr6;
6458 }
6459
6460 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
6461 {
6462 }
6463
6464 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
6465 {
6466         get_debugreg(vcpu->arch.db[0], 0);
6467         get_debugreg(vcpu->arch.db[1], 1);
6468         get_debugreg(vcpu->arch.db[2], 2);
6469         get_debugreg(vcpu->arch.db[3], 3);
6470         get_debugreg(vcpu->arch.dr6, 6);
6471         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
6472
6473         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
6474         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
6475 }
6476
6477 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
6478 {
6479         vmcs_writel(GUEST_DR7, val);
6480 }
6481
6482 static int handle_cpuid(struct kvm_vcpu *vcpu)
6483 {
6484         return kvm_emulate_cpuid(vcpu);
6485 }
6486
6487 static int handle_rdmsr(struct kvm_vcpu *vcpu)
6488 {
6489         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6490         struct msr_data msr_info;
6491
6492         msr_info.index = ecx;
6493         msr_info.host_initiated = false;
6494         if (vmx_get_msr(vcpu, &msr_info)) {
6495                 trace_kvm_msr_read_ex(ecx);
6496                 kvm_inject_gp(vcpu, 0);
6497                 return 1;
6498         }
6499
6500         trace_kvm_msr_read(ecx, msr_info.data);
6501
6502         /* FIXME: handling of bits 32:63 of rax, rdx */
6503         vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
6504         vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
6505         return kvm_skip_emulated_instruction(vcpu);
6506 }
6507
6508 static int handle_wrmsr(struct kvm_vcpu *vcpu)
6509 {
6510         struct msr_data msr;
6511         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6512         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
6513                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6514
6515         msr.data = data;
6516         msr.index = ecx;
6517         msr.host_initiated = false;
6518         if (kvm_set_msr(vcpu, &msr) != 0) {
6519                 trace_kvm_msr_write_ex(ecx, data);
6520                 kvm_inject_gp(vcpu, 0);
6521                 return 1;
6522         }
6523
6524         trace_kvm_msr_write(ecx, data);
6525         return kvm_skip_emulated_instruction(vcpu);
6526 }
6527
6528 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6529 {
6530         kvm_apic_update_ppr(vcpu);
6531         return 1;
6532 }
6533
6534 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6535 {
6536         vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6537                         CPU_BASED_VIRTUAL_INTR_PENDING);
6538
6539         kvm_make_request(KVM_REQ_EVENT, vcpu);
6540
6541         ++vcpu->stat.irq_window_exits;
6542         return 1;
6543 }
6544
6545 static int handle_halt(struct kvm_vcpu *vcpu)
6546 {
6547         return kvm_emulate_halt(vcpu);
6548 }
6549
6550 static int handle_vmcall(struct kvm_vcpu *vcpu)
6551 {
6552         return kvm_emulate_hypercall(vcpu);
6553 }
6554
6555 static int handle_invd(struct kvm_vcpu *vcpu)
6556 {
6557         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6558 }
6559
6560 static int handle_invlpg(struct kvm_vcpu *vcpu)
6561 {
6562         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6563
6564         kvm_mmu_invlpg(vcpu, exit_qualification);
6565         return kvm_skip_emulated_instruction(vcpu);
6566 }
6567
6568 static int handle_rdpmc(struct kvm_vcpu *vcpu)
6569 {
6570         int err;
6571
6572         err = kvm_rdpmc(vcpu);
6573         return kvm_complete_insn_gp(vcpu, err);
6574 }
6575
6576 static int handle_wbinvd(struct kvm_vcpu *vcpu)
6577 {
6578         return kvm_emulate_wbinvd(vcpu);
6579 }
6580
6581 static int handle_xsetbv(struct kvm_vcpu *vcpu)
6582 {
6583         u64 new_bv = kvm_read_edx_eax(vcpu);
6584         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
6585
6586         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
6587                 return kvm_skip_emulated_instruction(vcpu);
6588         return 1;
6589 }
6590
6591 static int handle_xsaves(struct kvm_vcpu *vcpu)
6592 {
6593         kvm_skip_emulated_instruction(vcpu);
6594         WARN(1, "this should never happen\n");
6595         return 1;
6596 }
6597
6598 static int handle_xrstors(struct kvm_vcpu *vcpu)
6599 {
6600         kvm_skip_emulated_instruction(vcpu);
6601         WARN(1, "this should never happen\n");
6602         return 1;
6603 }
6604
6605 static int handle_apic_access(struct kvm_vcpu *vcpu)
6606 {
6607         if (likely(fasteoi)) {
6608                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6609                 int access_type, offset;
6610
6611                 access_type = exit_qualification & APIC_ACCESS_TYPE;
6612                 offset = exit_qualification & APIC_ACCESS_OFFSET;
6613                 /*
6614                  * Sane guest uses MOV to write EOI, with written value
6615                  * not cared. So make a short-circuit here by avoiding
6616                  * heavy instruction emulation.
6617                  */
6618                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
6619                     (offset == APIC_EOI)) {
6620                         kvm_lapic_set_eoi(vcpu);
6621                         return kvm_skip_emulated_instruction(vcpu);
6622                 }
6623         }
6624         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6625 }
6626
6627 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
6628 {
6629         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6630         int vector = exit_qualification & 0xff;
6631
6632         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6633         kvm_apic_set_eoi_accelerated(vcpu, vector);
6634         return 1;
6635 }
6636
6637 static int handle_apic_write(struct kvm_vcpu *vcpu)
6638 {
6639         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6640         u32 offset = exit_qualification & 0xfff;
6641
6642         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6643         kvm_apic_write_nodecode(vcpu, offset);
6644         return 1;
6645 }
6646
6647 static int handle_task_switch(struct kvm_vcpu *vcpu)
6648 {
6649         struct vcpu_vmx *vmx = to_vmx(vcpu);
6650         unsigned long exit_qualification;
6651         bool has_error_code = false;
6652         u32 error_code = 0;
6653         u16 tss_selector;
6654         int reason, type, idt_v, idt_index;
6655
6656         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
6657         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
6658         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
6659
6660         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6661
6662         reason = (u32)exit_qualification >> 30;
6663         if (reason == TASK_SWITCH_GATE && idt_v) {
6664                 switch (type) {
6665                 case INTR_TYPE_NMI_INTR:
6666                         vcpu->arch.nmi_injected = false;
6667                         vmx_set_nmi_mask(vcpu, true);
6668                         break;
6669                 case INTR_TYPE_EXT_INTR:
6670                 case INTR_TYPE_SOFT_INTR:
6671                         kvm_clear_interrupt_queue(vcpu);
6672                         break;
6673                 case INTR_TYPE_HARD_EXCEPTION:
6674                         if (vmx->idt_vectoring_info &
6675                             VECTORING_INFO_DELIVER_CODE_MASK) {
6676                                 has_error_code = true;
6677                                 error_code =
6678                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
6679                         }
6680                         /* fall through */
6681                 case INTR_TYPE_SOFT_EXCEPTION:
6682                         kvm_clear_exception_queue(vcpu);
6683                         break;
6684                 default:
6685                         break;
6686                 }
6687         }
6688         tss_selector = exit_qualification;
6689
6690         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
6691                        type != INTR_TYPE_EXT_INTR &&
6692                        type != INTR_TYPE_NMI_INTR))
6693                 skip_emulated_instruction(vcpu);
6694
6695         if (kvm_task_switch(vcpu, tss_selector,
6696                             type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
6697                             has_error_code, error_code) == EMULATE_FAIL) {
6698                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6699                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6700                 vcpu->run->internal.ndata = 0;
6701                 return 0;
6702         }
6703
6704         /*
6705          * TODO: What about debug traps on tss switch?
6706          *       Are we supposed to inject them and update dr6?
6707          */
6708
6709         return 1;
6710 }
6711
6712 static int handle_ept_violation(struct kvm_vcpu *vcpu)
6713 {
6714         unsigned long exit_qualification;
6715         gpa_t gpa;
6716         u64 error_code;
6717
6718         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6719
6720         /*
6721          * EPT violation happened while executing iret from NMI,
6722          * "blocked by NMI" bit has to be set before next VM entry.
6723          * There are errata that may cause this bit to not be set:
6724          * AAK134, BY25.
6725          */
6726         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
6727                         enable_vnmi &&
6728                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
6729                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6730
6731         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6732         trace_kvm_page_fault(gpa, exit_qualification);
6733
6734         /* Is it a read fault? */
6735         error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
6736                      ? PFERR_USER_MASK : 0;
6737         /* Is it a write fault? */
6738         error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
6739                       ? PFERR_WRITE_MASK : 0;
6740         /* Is it a fetch fault? */
6741         error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
6742                       ? PFERR_FETCH_MASK : 0;
6743         /* ept page table entry is present? */
6744         error_code |= (exit_qualification &
6745                        (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
6746                         EPT_VIOLATION_EXECUTABLE))
6747                       ? PFERR_PRESENT_MASK : 0;
6748
6749         error_code |= (exit_qualification & 0x100) != 0 ?
6750                PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
6751
6752         vcpu->arch.exit_qualification = exit_qualification;
6753         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
6754 }
6755
6756 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
6757 {
6758         int ret;
6759         gpa_t gpa;
6760
6761         /*
6762          * A nested guest cannot optimize MMIO vmexits, because we have an
6763          * nGPA here instead of the required GPA.
6764          */
6765         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6766         if (!is_guest_mode(vcpu) &&
6767             !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
6768                 trace_kvm_fast_mmio(gpa);
6769                 /*
6770                  * Doing kvm_skip_emulated_instruction() depends on undefined
6771                  * behavior: Intel's manual doesn't mandate
6772                  * VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG
6773                  * occurs and while on real hardware it was observed to be set,
6774                  * other hypervisors (namely Hyper-V) don't set it, we end up
6775                  * advancing IP with some random value. Disable fast mmio when
6776                  * running nested and keep it for real hardware in hope that
6777                  * VM_EXIT_INSTRUCTION_LEN will always be set correctly.
6778                  */
6779                 if (!static_cpu_has(X86_FEATURE_HYPERVISOR))
6780                         return kvm_skip_emulated_instruction(vcpu);
6781                 else
6782                         return x86_emulate_instruction(vcpu, gpa, EMULTYPE_SKIP,
6783                                                        NULL, 0) == EMULATE_DONE;
6784         }
6785
6786         ret = kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
6787         if (ret >= 0)
6788                 return ret;
6789
6790         /* It is the real ept misconfig */
6791         WARN_ON(1);
6792
6793         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6794         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
6795
6796         return 0;
6797 }
6798
6799 static int handle_nmi_window(struct kvm_vcpu *vcpu)
6800 {
6801         WARN_ON_ONCE(!enable_vnmi);
6802         vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6803                         CPU_BASED_VIRTUAL_NMI_PENDING);
6804         ++vcpu->stat.nmi_window_exits;
6805         kvm_make_request(KVM_REQ_EVENT, vcpu);
6806
6807         return 1;
6808 }
6809
6810 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
6811 {
6812         struct vcpu_vmx *vmx = to_vmx(vcpu);
6813         enum emulation_result err = EMULATE_DONE;
6814         int ret = 1;
6815         u32 cpu_exec_ctrl;
6816         bool intr_window_requested;
6817         unsigned count = 130;
6818
6819         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6820         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
6821
6822         while (vmx->emulation_required && count-- != 0) {
6823                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
6824                         return handle_interrupt_window(&vmx->vcpu);
6825
6826                 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
6827                         return 1;
6828
6829                 err = emulate_instruction(vcpu, 0);
6830
6831                 if (err == EMULATE_USER_EXIT) {
6832                         ++vcpu->stat.mmio_exits;
6833                         ret = 0;
6834                         goto out;
6835                 }
6836
6837                 if (err != EMULATE_DONE) {
6838                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6839                         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6840                         vcpu->run->internal.ndata = 0;
6841                         return 0;
6842                 }
6843
6844                 if (vcpu->arch.halt_request) {
6845                         vcpu->arch.halt_request = 0;
6846                         ret = kvm_vcpu_halt(vcpu);
6847                         goto out;
6848                 }
6849
6850                 if (signal_pending(current))
6851                         goto out;
6852                 if (need_resched())
6853                         schedule();
6854         }
6855
6856 out:
6857         return ret;
6858 }
6859
6860 static int __grow_ple_window(int val)
6861 {
6862         if (ple_window_grow < 1)
6863                 return ple_window;
6864
6865         val = min(val, ple_window_actual_max);
6866
6867         if (ple_window_grow < ple_window)
6868                 val *= ple_window_grow;
6869         else
6870                 val += ple_window_grow;
6871
6872         return val;
6873 }
6874
6875 static int __shrink_ple_window(int val, int modifier, int minimum)
6876 {
6877         if (modifier < 1)
6878                 return ple_window;
6879
6880         if (modifier < ple_window)
6881                 val /= modifier;
6882         else
6883                 val -= modifier;
6884
6885         return max(val, minimum);
6886 }
6887
6888 static void grow_ple_window(struct kvm_vcpu *vcpu)
6889 {
6890         struct vcpu_vmx *vmx = to_vmx(vcpu);
6891         int old = vmx->ple_window;
6892
6893         vmx->ple_window = __grow_ple_window(old);
6894
6895         if (vmx->ple_window != old)
6896                 vmx->ple_window_dirty = true;
6897
6898         trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
6899 }
6900
6901 static void shrink_ple_window(struct kvm_vcpu *vcpu)
6902 {
6903         struct vcpu_vmx *vmx = to_vmx(vcpu);
6904         int old = vmx->ple_window;
6905
6906         vmx->ple_window = __shrink_ple_window(old,
6907                                               ple_window_shrink, ple_window);
6908
6909         if (vmx->ple_window != old)
6910                 vmx->ple_window_dirty = true;
6911
6912         trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
6913 }
6914
6915 /*
6916  * ple_window_actual_max is computed to be one grow_ple_window() below
6917  * ple_window_max. (See __grow_ple_window for the reason.)
6918  * This prevents overflows, because ple_window_max is int.
6919  * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6920  * this process.
6921  * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6922  */
6923 static void update_ple_window_actual_max(void)
6924 {
6925         ple_window_actual_max =
6926                         __shrink_ple_window(max(ple_window_max, ple_window),
6927                                             ple_window_grow, INT_MIN);
6928 }
6929
6930 /*
6931  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6932  */
6933 static void wakeup_handler(void)
6934 {
6935         struct kvm_vcpu *vcpu;
6936         int cpu = smp_processor_id();
6937
6938         spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6939         list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6940                         blocked_vcpu_list) {
6941                 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6942
6943                 if (pi_test_on(pi_desc) == 1)
6944                         kvm_vcpu_kick(vcpu);
6945         }
6946         spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6947 }
6948
6949 void vmx_enable_tdp(void)
6950 {
6951         kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
6952                 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
6953                 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
6954                 0ull, VMX_EPT_EXECUTABLE_MASK,
6955                 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
6956                 VMX_EPT_RWX_MASK, 0ull);
6957
6958         ept_set_mmio_spte_mask();
6959         kvm_enable_tdp();
6960 }
6961
6962 static __init int hardware_setup(void)
6963 {
6964         int r = -ENOMEM, i;
6965
6966         rdmsrl_safe(MSR_EFER, &host_efer);
6967
6968         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6969                 kvm_define_shared_msr(i, vmx_msr_index[i]);
6970
6971         for (i = 0; i < VMX_BITMAP_NR; i++) {
6972                 vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
6973                 if (!vmx_bitmap[i])
6974                         goto out;
6975         }
6976
6977         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6978         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6979
6980         if (setup_vmcs_config(&vmcs_config) < 0) {
6981                 r = -EIO;
6982                 goto out;
6983         }
6984
6985         if (boot_cpu_has(X86_FEATURE_NX))
6986                 kvm_enable_efer_bits(EFER_NX);
6987
6988         if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
6989                 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
6990                 enable_vpid = 0;
6991
6992         if (!cpu_has_vmx_ept() ||
6993             !cpu_has_vmx_ept_4levels() ||
6994             !cpu_has_vmx_ept_mt_wb() ||
6995             !cpu_has_vmx_invept_global())
6996                 enable_ept = 0;
6997
6998         if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
6999                 enable_ept_ad_bits = 0;
7000
7001         if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7002                 enable_unrestricted_guest = 0;
7003
7004         if (!cpu_has_vmx_flexpriority())
7005                 flexpriority_enabled = 0;
7006
7007         if (!cpu_has_virtual_nmis())
7008                 enable_vnmi = 0;
7009
7010         /*
7011          * set_apic_access_page_addr() is used to reload apic access
7012          * page upon invalidation.  No need to do anything if not
7013          * using the APIC_ACCESS_ADDR VMCS field.
7014          */
7015         if (!flexpriority_enabled)
7016                 kvm_x86_ops->set_apic_access_page_addr = NULL;
7017
7018         if (!cpu_has_vmx_tpr_shadow())
7019                 kvm_x86_ops->update_cr8_intercept = NULL;
7020
7021         if (enable_ept && !cpu_has_vmx_ept_2m_page())
7022                 kvm_disable_largepages();
7023
7024         if (!cpu_has_vmx_ple()) {
7025                 ple_gap = 0;
7026                 ple_window = 0;
7027                 ple_window_grow = 0;
7028                 ple_window_max = 0;
7029                 ple_window_shrink = 0;
7030         }
7031
7032         if (!cpu_has_vmx_apicv()) {
7033                 enable_apicv = 0;
7034                 kvm_x86_ops->sync_pir_to_irr = NULL;
7035         }
7036
7037         if (cpu_has_vmx_tsc_scaling()) {
7038                 kvm_has_tsc_control = true;
7039                 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7040                 kvm_tsc_scaling_ratio_frac_bits = 48;
7041         }
7042
7043         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7044
7045         if (enable_ept)
7046                 vmx_enable_tdp();
7047         else
7048                 kvm_disable_tdp();
7049
7050         update_ple_window_actual_max();
7051
7052         /*
7053          * Only enable PML when hardware supports PML feature, and both EPT
7054          * and EPT A/D bit features are enabled -- PML depends on them to work.
7055          */
7056         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7057                 enable_pml = 0;
7058
7059         if (!enable_pml) {
7060                 kvm_x86_ops->slot_enable_log_dirty = NULL;
7061                 kvm_x86_ops->slot_disable_log_dirty = NULL;
7062                 kvm_x86_ops->flush_log_dirty = NULL;
7063                 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
7064         }
7065
7066         if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
7067                 u64 vmx_msr;
7068
7069                 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7070                 cpu_preemption_timer_multi =
7071                          vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7072         } else {
7073                 kvm_x86_ops->set_hv_timer = NULL;
7074                 kvm_x86_ops->cancel_hv_timer = NULL;
7075         }
7076
7077         if (!cpu_has_vmx_shadow_vmcs())
7078                 enable_shadow_vmcs = 0;
7079         if (enable_shadow_vmcs)
7080                 init_vmcs_shadow_fields();
7081
7082         kvm_set_posted_intr_wakeup_handler(wakeup_handler);
7083
7084         kvm_mce_cap_supported |= MCG_LMCE_P;
7085
7086         return alloc_kvm_area();
7087
7088 out:
7089         for (i = 0; i < VMX_BITMAP_NR; i++)
7090                 free_page((unsigned long)vmx_bitmap[i]);
7091
7092     return r;
7093 }
7094
7095 static __exit void hardware_unsetup(void)
7096 {
7097         int i;
7098
7099         for (i = 0; i < VMX_BITMAP_NR; i++)
7100                 free_page((unsigned long)vmx_bitmap[i]);
7101
7102         free_kvm_area();
7103 }
7104
7105 /*
7106  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
7107  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
7108  */
7109 static int handle_pause(struct kvm_vcpu *vcpu)
7110 {
7111         if (ple_gap)
7112                 grow_ple_window(vcpu);
7113
7114         /*
7115          * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
7116          * VM-execution control is ignored if CPL > 0. OTOH, KVM
7117          * never set PAUSE_EXITING and just set PLE if supported,
7118          * so the vcpu must be CPL=0 if it gets a PAUSE exit.
7119          */
7120         kvm_vcpu_on_spin(vcpu, true);
7121         return kvm_skip_emulated_instruction(vcpu);
7122 }
7123
7124 static int handle_nop(struct kvm_vcpu *vcpu)
7125 {
7126         return kvm_skip_emulated_instruction(vcpu);
7127 }
7128
7129 static int handle_mwait(struct kvm_vcpu *vcpu)
7130 {
7131         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
7132         return handle_nop(vcpu);
7133 }
7134
7135 static int handle_invalid_op(struct kvm_vcpu *vcpu)
7136 {
7137         kvm_queue_exception(vcpu, UD_VECTOR);
7138         return 1;
7139 }
7140
7141 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
7142 {
7143         return 1;
7144 }
7145
7146 static int handle_monitor(struct kvm_vcpu *vcpu)
7147 {
7148         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
7149         return handle_nop(vcpu);
7150 }
7151
7152 /*
7153  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
7154  * set the success or error code of an emulated VMX instruction, as specified
7155  * by Vol 2B, VMX Instruction Reference, "Conventions".
7156  */
7157 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
7158 {
7159         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
7160                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
7161                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
7162 }
7163
7164 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
7165 {
7166         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
7167                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
7168                             X86_EFLAGS_SF | X86_EFLAGS_OF))
7169                         | X86_EFLAGS_CF);
7170 }
7171
7172 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
7173                                         u32 vm_instruction_error)
7174 {
7175         if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
7176                 /*
7177                  * failValid writes the error number to the current VMCS, which
7178                  * can't be done there isn't a current VMCS.
7179                  */
7180                 nested_vmx_failInvalid(vcpu);
7181                 return;
7182         }
7183         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
7184                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
7185                             X86_EFLAGS_SF | X86_EFLAGS_OF))
7186                         | X86_EFLAGS_ZF);
7187         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
7188         /*
7189          * We don't need to force a shadow sync because
7190          * VM_INSTRUCTION_ERROR is not shadowed
7191          */
7192 }
7193
7194 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
7195 {
7196         /* TODO: not to reset guest simply here. */
7197         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7198         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
7199 }
7200
7201 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
7202 {
7203         struct vcpu_vmx *vmx =
7204                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
7205
7206         vmx->nested.preemption_timer_expired = true;
7207         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
7208         kvm_vcpu_kick(&vmx->vcpu);
7209
7210         return HRTIMER_NORESTART;
7211 }
7212
7213 /*
7214  * Decode the memory-address operand of a vmx instruction, as recorded on an
7215  * exit caused by such an instruction (run by a guest hypervisor).
7216  * On success, returns 0. When the operand is invalid, returns 1 and throws
7217  * #UD or #GP.
7218  */
7219 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
7220                                  unsigned long exit_qualification,
7221                                  u32 vmx_instruction_info, bool wr, gva_t *ret)
7222 {
7223         gva_t off;
7224         bool exn;
7225         struct kvm_segment s;
7226
7227         /*
7228          * According to Vol. 3B, "Information for VM Exits Due to Instruction
7229          * Execution", on an exit, vmx_instruction_info holds most of the
7230          * addressing components of the operand. Only the displacement part
7231          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
7232          * For how an actual address is calculated from all these components,
7233          * refer to Vol. 1, "Operand Addressing".
7234          */
7235         int  scaling = vmx_instruction_info & 3;
7236         int  addr_size = (vmx_instruction_info >> 7) & 7;
7237         bool is_reg = vmx_instruction_info & (1u << 10);
7238         int  seg_reg = (vmx_instruction_info >> 15) & 7;
7239         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
7240         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
7241         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
7242         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
7243
7244         if (is_reg) {
7245                 kvm_queue_exception(vcpu, UD_VECTOR);
7246                 return 1;
7247         }
7248
7249         /* Addr = segment_base + offset */
7250         /* offset = base + [index * scale] + displacement */
7251         off = exit_qualification; /* holds the displacement */
7252         if (base_is_valid)
7253                 off += kvm_register_read(vcpu, base_reg);
7254         if (index_is_valid)
7255                 off += kvm_register_read(vcpu, index_reg)<<scaling;
7256         vmx_get_segment(vcpu, &s, seg_reg);
7257         *ret = s.base + off;
7258
7259         if (addr_size == 1) /* 32 bit */
7260                 *ret &= 0xffffffff;
7261
7262         /* Checks for #GP/#SS exceptions. */
7263         exn = false;
7264         if (is_long_mode(vcpu)) {
7265                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
7266                  * non-canonical form. This is the only check on the memory
7267                  * destination for long mode!
7268                  */
7269                 exn = is_noncanonical_address(*ret, vcpu);
7270         } else if (is_protmode(vcpu)) {
7271                 /* Protected mode: apply checks for segment validity in the
7272                  * following order:
7273                  * - segment type check (#GP(0) may be thrown)
7274                  * - usability check (#GP(0)/#SS(0))
7275                  * - limit check (#GP(0)/#SS(0))
7276                  */
7277                 if (wr)
7278                         /* #GP(0) if the destination operand is located in a
7279                          * read-only data segment or any code segment.
7280                          */
7281                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
7282                 else
7283                         /* #GP(0) if the source operand is located in an
7284                          * execute-only code segment
7285                          */
7286                         exn = ((s.type & 0xa) == 8);
7287                 if (exn) {
7288                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7289                         return 1;
7290                 }
7291                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
7292                  */
7293                 exn = (s.unusable != 0);
7294                 /* Protected mode: #GP(0)/#SS(0) if the memory
7295                  * operand is outside the segment limit.
7296                  */
7297                 exn = exn || (off + sizeof(u64) > s.limit);
7298         }
7299         if (exn) {
7300                 kvm_queue_exception_e(vcpu,
7301                                       seg_reg == VCPU_SREG_SS ?
7302                                                 SS_VECTOR : GP_VECTOR,
7303                                       0);
7304                 return 1;
7305         }
7306
7307         return 0;
7308 }
7309
7310 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
7311 {
7312         gva_t gva;
7313         struct x86_exception e;
7314
7315         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7316                         vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
7317                 return 1;
7318
7319         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, vmpointer,
7320                                 sizeof(*vmpointer), &e)) {
7321                 kvm_inject_page_fault(vcpu, &e);
7322                 return 1;
7323         }
7324
7325         return 0;
7326 }
7327
7328 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
7329 {
7330         struct vcpu_vmx *vmx = to_vmx(vcpu);
7331         struct vmcs *shadow_vmcs;
7332         int r;
7333
7334         r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
7335         if (r < 0)
7336                 goto out_vmcs02;
7337
7338         vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
7339         if (!vmx->nested.cached_vmcs12)
7340                 goto out_cached_vmcs12;
7341
7342         if (enable_shadow_vmcs) {
7343                 shadow_vmcs = alloc_vmcs();
7344                 if (!shadow_vmcs)
7345                         goto out_shadow_vmcs;
7346                 /* mark vmcs as shadow */
7347                 shadow_vmcs->revision_id |= (1u << 31);
7348                 /* init shadow vmcs */
7349                 vmcs_clear(shadow_vmcs);
7350                 vmx->vmcs01.shadow_vmcs = shadow_vmcs;
7351         }
7352
7353         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
7354                      HRTIMER_MODE_REL_PINNED);
7355         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
7356
7357         vmx->nested.vmxon = true;
7358         return 0;
7359
7360 out_shadow_vmcs:
7361         kfree(vmx->nested.cached_vmcs12);
7362
7363 out_cached_vmcs12:
7364         free_loaded_vmcs(&vmx->nested.vmcs02);
7365
7366 out_vmcs02:
7367         return -ENOMEM;
7368 }
7369
7370 /*
7371  * Emulate the VMXON instruction.
7372  * Currently, we just remember that VMX is active, and do not save or even
7373  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
7374  * do not currently need to store anything in that guest-allocated memory
7375  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
7376  * argument is different from the VMXON pointer (which the spec says they do).
7377  */
7378 static int handle_vmon(struct kvm_vcpu *vcpu)
7379 {
7380         int ret;
7381         gpa_t vmptr;
7382         struct page *page;
7383         struct vcpu_vmx *vmx = to_vmx(vcpu);
7384         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
7385                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7386
7387         /*
7388          * The Intel VMX Instruction Reference lists a bunch of bits that are
7389          * prerequisite to running VMXON, most notably cr4.VMXE must be set to
7390          * 1 (see vmx_set_cr4() for when we allow the guest to set this).
7391          * Otherwise, we should fail with #UD.  But most faulting conditions
7392          * have already been checked by hardware, prior to the VM-exit for
7393          * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
7394          * that bit set to 1 in non-root mode.
7395          */
7396         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
7397                 kvm_queue_exception(vcpu, UD_VECTOR);
7398                 return 1;
7399         }
7400
7401         if (vmx->nested.vmxon) {
7402                 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
7403                 return kvm_skip_emulated_instruction(vcpu);
7404         }
7405
7406         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
7407                         != VMXON_NEEDED_FEATURES) {
7408                 kvm_inject_gp(vcpu, 0);
7409                 return 1;
7410         }
7411
7412         if (nested_vmx_get_vmptr(vcpu, &vmptr))
7413                 return 1;
7414
7415         /*
7416          * SDM 3: 24.11.5
7417          * The first 4 bytes of VMXON region contain the supported
7418          * VMCS revision identifier
7419          *
7420          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
7421          * which replaces physical address width with 32
7422          */
7423         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7424                 nested_vmx_failInvalid(vcpu);
7425                 return kvm_skip_emulated_instruction(vcpu);
7426         }
7427
7428         page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
7429         if (is_error_page(page)) {
7430                 nested_vmx_failInvalid(vcpu);
7431                 return kvm_skip_emulated_instruction(vcpu);
7432         }
7433         if (*(u32 *)kmap(page) != VMCS12_REVISION) {
7434                 kunmap(page);
7435                 kvm_release_page_clean(page);
7436                 nested_vmx_failInvalid(vcpu);
7437                 return kvm_skip_emulated_instruction(vcpu);
7438         }
7439         kunmap(page);
7440         kvm_release_page_clean(page);
7441
7442         vmx->nested.vmxon_ptr = vmptr;
7443         ret = enter_vmx_operation(vcpu);
7444         if (ret)
7445                 return ret;
7446
7447         nested_vmx_succeed(vcpu);
7448         return kvm_skip_emulated_instruction(vcpu);
7449 }
7450
7451 /*
7452  * Intel's VMX Instruction Reference specifies a common set of prerequisites
7453  * for running VMX instructions (except VMXON, whose prerequisites are
7454  * slightly different). It also specifies what exception to inject otherwise.
7455  * Note that many of these exceptions have priority over VM exits, so they
7456  * don't have to be checked again here.
7457  */
7458 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
7459 {
7460         if (!to_vmx(vcpu)->nested.vmxon) {
7461                 kvm_queue_exception(vcpu, UD_VECTOR);
7462                 return 0;
7463         }
7464         return 1;
7465 }
7466
7467 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
7468 {
7469         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
7470         vmcs_write64(VMCS_LINK_POINTER, -1ull);
7471 }
7472
7473 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
7474 {
7475         if (vmx->nested.current_vmptr == -1ull)
7476                 return;
7477
7478         if (enable_shadow_vmcs) {
7479                 /* copy to memory all shadowed fields in case
7480                    they were modified */
7481                 copy_shadow_to_vmcs12(vmx);
7482                 vmx->nested.sync_shadow_vmcs = false;
7483                 vmx_disable_shadow_vmcs(vmx);
7484         }
7485         vmx->nested.posted_intr_nv = -1;
7486
7487         /* Flush VMCS12 to guest memory */
7488         kvm_vcpu_write_guest_page(&vmx->vcpu,
7489                                   vmx->nested.current_vmptr >> PAGE_SHIFT,
7490                                   vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
7491
7492         vmx->nested.current_vmptr = -1ull;
7493 }
7494
7495 /*
7496  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7497  * just stops using VMX.
7498  */
7499 static void free_nested(struct vcpu_vmx *vmx)
7500 {
7501         if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
7502                 return;
7503
7504         vmx->nested.vmxon = false;
7505         vmx->nested.smm.vmxon = false;
7506         free_vpid(vmx->nested.vpid02);
7507         vmx->nested.posted_intr_nv = -1;
7508         vmx->nested.current_vmptr = -1ull;
7509         if (enable_shadow_vmcs) {
7510                 vmx_disable_shadow_vmcs(vmx);
7511                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
7512                 free_vmcs(vmx->vmcs01.shadow_vmcs);
7513                 vmx->vmcs01.shadow_vmcs = NULL;
7514         }
7515         kfree(vmx->nested.cached_vmcs12);
7516         /* Unpin physical memory we referred to in the vmcs02 */
7517         if (vmx->nested.apic_access_page) {
7518                 kvm_release_page_dirty(vmx->nested.apic_access_page);
7519                 vmx->nested.apic_access_page = NULL;
7520         }
7521         if (vmx->nested.virtual_apic_page) {
7522                 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
7523                 vmx->nested.virtual_apic_page = NULL;
7524         }
7525         if (vmx->nested.pi_desc_page) {
7526                 kunmap(vmx->nested.pi_desc_page);
7527                 kvm_release_page_dirty(vmx->nested.pi_desc_page);
7528                 vmx->nested.pi_desc_page = NULL;
7529                 vmx->nested.pi_desc = NULL;
7530         }
7531
7532         free_loaded_vmcs(&vmx->nested.vmcs02);
7533 }
7534
7535 /* Emulate the VMXOFF instruction */
7536 static int handle_vmoff(struct kvm_vcpu *vcpu)
7537 {
7538         if (!nested_vmx_check_permission(vcpu))
7539                 return 1;
7540         free_nested(to_vmx(vcpu));
7541         nested_vmx_succeed(vcpu);
7542         return kvm_skip_emulated_instruction(vcpu);
7543 }
7544
7545 /* Emulate the VMCLEAR instruction */
7546 static int handle_vmclear(struct kvm_vcpu *vcpu)
7547 {
7548         struct vcpu_vmx *vmx = to_vmx(vcpu);
7549         u32 zero = 0;
7550         gpa_t vmptr;
7551
7552         if (!nested_vmx_check_permission(vcpu))
7553                 return 1;
7554
7555         if (nested_vmx_get_vmptr(vcpu, &vmptr))
7556                 return 1;
7557
7558         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7559                 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
7560                 return kvm_skip_emulated_instruction(vcpu);
7561         }
7562
7563         if (vmptr == vmx->nested.vmxon_ptr) {
7564                 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
7565                 return kvm_skip_emulated_instruction(vcpu);
7566         }
7567
7568         if (vmptr == vmx->nested.current_vmptr)
7569                 nested_release_vmcs12(vmx);
7570
7571         kvm_vcpu_write_guest(vcpu,
7572                         vmptr + offsetof(struct vmcs12, launch_state),
7573                         &zero, sizeof(zero));
7574
7575         nested_vmx_succeed(vcpu);
7576         return kvm_skip_emulated_instruction(vcpu);
7577 }
7578
7579 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7580
7581 /* Emulate the VMLAUNCH instruction */
7582 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7583 {
7584         return nested_vmx_run(vcpu, true);
7585 }
7586
7587 /* Emulate the VMRESUME instruction */
7588 static int handle_vmresume(struct kvm_vcpu *vcpu)
7589 {
7590
7591         return nested_vmx_run(vcpu, false);
7592 }
7593
7594 /*
7595  * Read a vmcs12 field. Since these can have varying lengths and we return
7596  * one type, we chose the biggest type (u64) and zero-extend the return value
7597  * to that size. Note that the caller, handle_vmread, might need to use only
7598  * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7599  * 64-bit fields are to be returned).
7600  */
7601 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7602                                   unsigned long field, u64 *ret)
7603 {
7604         short offset = vmcs_field_to_offset(field);
7605         char *p;
7606
7607         if (offset < 0)
7608                 return offset;
7609
7610         p = ((char *)(get_vmcs12(vcpu))) + offset;
7611
7612         switch (vmcs_field_width(field)) {
7613         case VMCS_FIELD_WIDTH_NATURAL_WIDTH:
7614                 *ret = *((natural_width *)p);
7615                 return 0;
7616         case VMCS_FIELD_WIDTH_U16:
7617                 *ret = *((u16 *)p);
7618                 return 0;
7619         case VMCS_FIELD_WIDTH_U32:
7620                 *ret = *((u32 *)p);
7621                 return 0;
7622         case VMCS_FIELD_WIDTH_U64:
7623                 *ret = *((u64 *)p);
7624                 return 0;
7625         default:
7626                 WARN_ON(1);
7627                 return -ENOENT;
7628         }
7629 }
7630
7631
7632 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7633                                    unsigned long field, u64 field_value){
7634         short offset = vmcs_field_to_offset(field);
7635         char *p = ((char *) get_vmcs12(vcpu)) + offset;
7636         if (offset < 0)
7637                 return offset;
7638
7639         switch (vmcs_field_width(field)) {
7640         case VMCS_FIELD_WIDTH_U16:
7641                 *(u16 *)p = field_value;
7642                 return 0;
7643         case VMCS_FIELD_WIDTH_U32:
7644                 *(u32 *)p = field_value;
7645                 return 0;
7646         case VMCS_FIELD_WIDTH_U64:
7647                 *(u64 *)p = field_value;
7648                 return 0;
7649         case VMCS_FIELD_WIDTH_NATURAL_WIDTH:
7650                 *(natural_width *)p = field_value;
7651                 return 0;
7652         default:
7653                 WARN_ON(1);
7654                 return -ENOENT;
7655         }
7656
7657 }
7658
7659 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7660 {
7661         int i;
7662         unsigned long field;
7663         u64 field_value;
7664         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
7665         const u16 *fields = shadow_read_write_fields;
7666         const int num_fields = max_shadow_read_write_fields;
7667
7668         preempt_disable();
7669
7670         vmcs_load(shadow_vmcs);
7671
7672         for (i = 0; i < num_fields; i++) {
7673                 field = fields[i];
7674                 field_value = __vmcs_readl(field);
7675                 vmcs12_write_any(&vmx->vcpu, field, field_value);
7676         }
7677
7678         vmcs_clear(shadow_vmcs);
7679         vmcs_load(vmx->loaded_vmcs->vmcs);
7680
7681         preempt_enable();
7682 }
7683
7684 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7685 {
7686         const u16 *fields[] = {
7687                 shadow_read_write_fields,
7688                 shadow_read_only_fields
7689         };
7690         const int max_fields[] = {
7691                 max_shadow_read_write_fields,
7692                 max_shadow_read_only_fields
7693         };
7694         int i, q;
7695         unsigned long field;
7696         u64 field_value = 0;
7697         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
7698
7699         vmcs_load(shadow_vmcs);
7700
7701         for (q = 0; q < ARRAY_SIZE(fields); q++) {
7702                 for (i = 0; i < max_fields[q]; i++) {
7703                         field = fields[q][i];
7704                         vmcs12_read_any(&vmx->vcpu, field, &field_value);
7705                         __vmcs_writel(field, field_value);
7706                 }
7707         }
7708
7709         vmcs_clear(shadow_vmcs);
7710         vmcs_load(vmx->loaded_vmcs->vmcs);
7711 }
7712
7713 /*
7714  * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7715  * used before) all generate the same failure when it is missing.
7716  */
7717 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7718 {
7719         struct vcpu_vmx *vmx = to_vmx(vcpu);
7720         if (vmx->nested.current_vmptr == -1ull) {
7721                 nested_vmx_failInvalid(vcpu);
7722                 return 0;
7723         }
7724         return 1;
7725 }
7726
7727 static int handle_vmread(struct kvm_vcpu *vcpu)
7728 {
7729         unsigned long field;
7730         u64 field_value;
7731         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7732         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7733         gva_t gva = 0;
7734
7735         if (!nested_vmx_check_permission(vcpu))
7736                 return 1;
7737
7738         if (!nested_vmx_check_vmcs12(vcpu))
7739                 return kvm_skip_emulated_instruction(vcpu);
7740
7741         /* Decode instruction info and find the field to read */
7742         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7743         /* Read the field, zero-extended to a u64 field_value */
7744         if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
7745                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7746                 return kvm_skip_emulated_instruction(vcpu);
7747         }
7748         /*
7749          * Now copy part of this value to register or memory, as requested.
7750          * Note that the number of bits actually copied is 32 or 64 depending
7751          * on the guest's mode (32 or 64 bit), not on the given field's length.
7752          */
7753         if (vmx_instruction_info & (1u << 10)) {
7754                 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
7755                         field_value);
7756         } else {
7757                 if (get_vmx_mem_address(vcpu, exit_qualification,
7758                                 vmx_instruction_info, true, &gva))
7759                         return 1;
7760                 /* _system ok, as hardware has verified cpl=0 */
7761                 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7762                              &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7763         }
7764
7765         nested_vmx_succeed(vcpu);
7766         return kvm_skip_emulated_instruction(vcpu);
7767 }
7768
7769
7770 static int handle_vmwrite(struct kvm_vcpu *vcpu)
7771 {
7772         unsigned long field;
7773         gva_t gva;
7774         struct vcpu_vmx *vmx = to_vmx(vcpu);
7775         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7776         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7777
7778         /* The value to write might be 32 or 64 bits, depending on L1's long
7779          * mode, and eventually we need to write that into a field of several
7780          * possible lengths. The code below first zero-extends the value to 64
7781          * bit (field_value), and then copies only the appropriate number of
7782          * bits into the vmcs12 field.
7783          */
7784         u64 field_value = 0;
7785         struct x86_exception e;
7786
7787         if (!nested_vmx_check_permission(vcpu))
7788                 return 1;
7789
7790         if (!nested_vmx_check_vmcs12(vcpu))
7791                 return kvm_skip_emulated_instruction(vcpu);
7792
7793         if (vmx_instruction_info & (1u << 10))
7794                 field_value = kvm_register_readl(vcpu,
7795                         (((vmx_instruction_info) >> 3) & 0xf));
7796         else {
7797                 if (get_vmx_mem_address(vcpu, exit_qualification,
7798                                 vmx_instruction_info, false, &gva))
7799                         return 1;
7800                 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
7801                            &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7802                         kvm_inject_page_fault(vcpu, &e);
7803                         return 1;
7804                 }
7805         }
7806
7807
7808         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7809         if (vmcs_field_readonly(field)) {
7810                 nested_vmx_failValid(vcpu,
7811                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7812                 return kvm_skip_emulated_instruction(vcpu);
7813         }
7814
7815         if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7816                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7817                 return kvm_skip_emulated_instruction(vcpu);
7818         }
7819
7820         switch (field) {
7821 #define SHADOW_FIELD_RW(x) case x:
7822 #include "vmx_shadow_fields.h"
7823                 /*
7824                  * The fields that can be updated by L1 without a vmexit are
7825                  * always updated in the vmcs02, the others go down the slow
7826                  * path of prepare_vmcs02.
7827                  */
7828                 break;
7829         default:
7830                 vmx->nested.dirty_vmcs12 = true;
7831                 break;
7832         }
7833
7834         nested_vmx_succeed(vcpu);
7835         return kvm_skip_emulated_instruction(vcpu);
7836 }
7837
7838 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
7839 {
7840         vmx->nested.current_vmptr = vmptr;
7841         if (enable_shadow_vmcs) {
7842                 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7843                               SECONDARY_EXEC_SHADOW_VMCS);
7844                 vmcs_write64(VMCS_LINK_POINTER,
7845                              __pa(vmx->vmcs01.shadow_vmcs));
7846                 vmx->nested.sync_shadow_vmcs = true;
7847         }
7848         vmx->nested.dirty_vmcs12 = true;
7849 }
7850
7851 /* Emulate the VMPTRLD instruction */
7852 static int handle_vmptrld(struct kvm_vcpu *vcpu)
7853 {
7854         struct vcpu_vmx *vmx = to_vmx(vcpu);
7855         gpa_t vmptr;
7856
7857         if (!nested_vmx_check_permission(vcpu))
7858                 return 1;
7859
7860         if (nested_vmx_get_vmptr(vcpu, &vmptr))
7861                 return 1;
7862
7863         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7864                 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
7865                 return kvm_skip_emulated_instruction(vcpu);
7866         }
7867
7868         if (vmptr == vmx->nested.vmxon_ptr) {
7869                 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
7870                 return kvm_skip_emulated_instruction(vcpu);
7871         }
7872
7873         if (vmx->nested.current_vmptr != vmptr) {
7874                 struct vmcs12 *new_vmcs12;
7875                 struct page *page;
7876                 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
7877                 if (is_error_page(page)) {
7878                         nested_vmx_failInvalid(vcpu);
7879                         return kvm_skip_emulated_instruction(vcpu);
7880                 }
7881                 new_vmcs12 = kmap(page);
7882                 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7883                         kunmap(page);
7884                         kvm_release_page_clean(page);
7885                         nested_vmx_failValid(vcpu,
7886                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7887                         return kvm_skip_emulated_instruction(vcpu);
7888                 }
7889
7890                 nested_release_vmcs12(vmx);
7891                 /*
7892                  * Load VMCS12 from guest memory since it is not already
7893                  * cached.
7894                  */
7895                 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
7896                 kunmap(page);
7897                 kvm_release_page_clean(page);
7898
7899                 set_current_vmptr(vmx, vmptr);
7900         }
7901
7902         nested_vmx_succeed(vcpu);
7903         return kvm_skip_emulated_instruction(vcpu);
7904 }
7905
7906 /* Emulate the VMPTRST instruction */
7907 static int handle_vmptrst(struct kvm_vcpu *vcpu)
7908 {
7909         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7910         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7911         gva_t vmcs_gva;
7912         struct x86_exception e;
7913
7914         if (!nested_vmx_check_permission(vcpu))
7915                 return 1;
7916
7917         if (get_vmx_mem_address(vcpu, exit_qualification,
7918                         vmx_instruction_info, true, &vmcs_gva))
7919                 return 1;
7920         /* ok to use *_system, as hardware has verified cpl=0 */
7921         if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7922                                  (void *)&to_vmx(vcpu)->nested.current_vmptr,
7923                                  sizeof(u64), &e)) {
7924                 kvm_inject_page_fault(vcpu, &e);
7925                 return 1;
7926         }
7927         nested_vmx_succeed(vcpu);
7928         return kvm_skip_emulated_instruction(vcpu);
7929 }
7930
7931 /* Emulate the INVEPT instruction */
7932 static int handle_invept(struct kvm_vcpu *vcpu)
7933 {
7934         struct vcpu_vmx *vmx = to_vmx(vcpu);
7935         u32 vmx_instruction_info, types;
7936         unsigned long type;
7937         gva_t gva;
7938         struct x86_exception e;
7939         struct {
7940                 u64 eptp, gpa;
7941         } operand;
7942
7943         if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7944               SECONDARY_EXEC_ENABLE_EPT) ||
7945             !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
7946                 kvm_queue_exception(vcpu, UD_VECTOR);
7947                 return 1;
7948         }
7949
7950         if (!nested_vmx_check_permission(vcpu))
7951                 return 1;
7952
7953         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7954         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7955
7956         types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
7957
7958         if (type >= 32 || !(types & (1 << type))) {
7959                 nested_vmx_failValid(vcpu,
7960                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7961                 return kvm_skip_emulated_instruction(vcpu);
7962         }
7963
7964         /* According to the Intel VMX instruction reference, the memory
7965          * operand is read even if it isn't needed (e.g., for type==global)
7966          */
7967         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7968                         vmx_instruction_info, false, &gva))
7969                 return 1;
7970         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7971                                 sizeof(operand), &e)) {
7972                 kvm_inject_page_fault(vcpu, &e);
7973                 return 1;
7974         }
7975
7976         switch (type) {
7977         case VMX_EPT_EXTENT_GLOBAL:
7978         /*
7979          * TODO: track mappings and invalidate
7980          * single context requests appropriately
7981          */
7982         case VMX_EPT_EXTENT_CONTEXT:
7983                 kvm_mmu_sync_roots(vcpu);
7984                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
7985                 nested_vmx_succeed(vcpu);
7986                 break;
7987         default:
7988                 BUG_ON(1);
7989                 break;
7990         }
7991
7992         return kvm_skip_emulated_instruction(vcpu);
7993 }
7994
7995 static int handle_invvpid(struct kvm_vcpu *vcpu)
7996 {
7997         struct vcpu_vmx *vmx = to_vmx(vcpu);
7998         u32 vmx_instruction_info;
7999         unsigned long type, types;
8000         gva_t gva;
8001         struct x86_exception e;
8002         struct {
8003                 u64 vpid;
8004                 u64 gla;
8005         } operand;
8006
8007         if (!(vmx->nested.nested_vmx_secondary_ctls_high &
8008               SECONDARY_EXEC_ENABLE_VPID) ||
8009                         !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
8010                 kvm_queue_exception(vcpu, UD_VECTOR);
8011                 return 1;
8012         }
8013
8014         if (!nested_vmx_check_permission(vcpu))
8015                 return 1;
8016
8017         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8018         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
8019
8020         types = (vmx->nested.nested_vmx_vpid_caps &
8021                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
8022
8023         if (type >= 32 || !(types & (1 << type))) {
8024                 nested_vmx_failValid(vcpu,
8025                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
8026                 return kvm_skip_emulated_instruction(vcpu);
8027         }
8028
8029         /* according to the intel vmx instruction reference, the memory
8030          * operand is read even if it isn't needed (e.g., for type==global)
8031          */
8032         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
8033                         vmx_instruction_info, false, &gva))
8034                 return 1;
8035         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
8036                                 sizeof(operand), &e)) {
8037                 kvm_inject_page_fault(vcpu, &e);
8038                 return 1;
8039         }
8040         if (operand.vpid >> 16) {
8041                 nested_vmx_failValid(vcpu,
8042                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
8043                 return kvm_skip_emulated_instruction(vcpu);
8044         }
8045
8046         switch (type) {
8047         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
8048                 if (is_noncanonical_address(operand.gla, vcpu)) {
8049                         nested_vmx_failValid(vcpu,
8050                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
8051                         return kvm_skip_emulated_instruction(vcpu);
8052                 }
8053                 /* fall through */
8054         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
8055         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
8056                 if (!operand.vpid) {
8057                         nested_vmx_failValid(vcpu,
8058                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
8059                         return kvm_skip_emulated_instruction(vcpu);
8060                 }
8061                 break;
8062         case VMX_VPID_EXTENT_ALL_CONTEXT:
8063                 break;
8064         default:
8065                 WARN_ON_ONCE(1);
8066                 return kvm_skip_emulated_instruction(vcpu);
8067         }
8068
8069         __vmx_flush_tlb(vcpu, vmx->nested.vpid02, true);
8070         nested_vmx_succeed(vcpu);
8071
8072         return kvm_skip_emulated_instruction(vcpu);
8073 }
8074
8075 static int handle_pml_full(struct kvm_vcpu *vcpu)
8076 {
8077         unsigned long exit_qualification;
8078
8079         trace_kvm_pml_full(vcpu->vcpu_id);
8080
8081         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8082
8083         /*
8084          * PML buffer FULL happened while executing iret from NMI,
8085          * "blocked by NMI" bit has to be set before next VM entry.
8086          */
8087         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
8088                         enable_vnmi &&
8089                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
8090                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8091                                 GUEST_INTR_STATE_NMI);
8092
8093         /*
8094          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
8095          * here.., and there's no userspace involvement needed for PML.
8096          */
8097         return 1;
8098 }
8099
8100 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
8101 {
8102         kvm_lapic_expired_hv_timer(vcpu);
8103         return 1;
8104 }
8105
8106 static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
8107 {
8108         struct vcpu_vmx *vmx = to_vmx(vcpu);
8109         int maxphyaddr = cpuid_maxphyaddr(vcpu);
8110
8111         /* Check for memory type validity */
8112         switch (address & VMX_EPTP_MT_MASK) {
8113         case VMX_EPTP_MT_UC:
8114                 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPTP_UC_BIT))
8115                         return false;
8116                 break;
8117         case VMX_EPTP_MT_WB:
8118                 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPTP_WB_BIT))
8119                         return false;
8120                 break;
8121         default:
8122                 return false;
8123         }
8124
8125         /* only 4 levels page-walk length are valid */
8126         if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
8127                 return false;
8128
8129         /* Reserved bits should not be set */
8130         if (address >> maxphyaddr || ((address >> 7) & 0x1f))
8131                 return false;
8132
8133         /* AD, if set, should be supported */
8134         if (address & VMX_EPTP_AD_ENABLE_BIT) {
8135                 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPT_AD_BIT))
8136                         return false;
8137         }
8138
8139         return true;
8140 }
8141
8142 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
8143                                      struct vmcs12 *vmcs12)
8144 {
8145         u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
8146         u64 address;
8147         bool accessed_dirty;
8148         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
8149
8150         if (!nested_cpu_has_eptp_switching(vmcs12) ||
8151             !nested_cpu_has_ept(vmcs12))
8152                 return 1;
8153
8154         if (index >= VMFUNC_EPTP_ENTRIES)
8155                 return 1;
8156
8157
8158         if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
8159                                      &address, index * 8, 8))
8160                 return 1;
8161
8162         accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
8163
8164         /*
8165          * If the (L2) guest does a vmfunc to the currently
8166          * active ept pointer, we don't have to do anything else
8167          */
8168         if (vmcs12->ept_pointer != address) {
8169                 if (!valid_ept_address(vcpu, address))
8170                         return 1;
8171
8172                 kvm_mmu_unload(vcpu);
8173                 mmu->ept_ad = accessed_dirty;
8174                 mmu->base_role.ad_disabled = !accessed_dirty;
8175                 vmcs12->ept_pointer = address;
8176                 /*
8177                  * TODO: Check what's the correct approach in case
8178                  * mmu reload fails. Currently, we just let the next
8179                  * reload potentially fail
8180                  */
8181                 kvm_mmu_reload(vcpu);
8182         }
8183
8184         return 0;
8185 }
8186
8187 static int handle_vmfunc(struct kvm_vcpu *vcpu)
8188 {
8189         struct vcpu_vmx *vmx = to_vmx(vcpu);
8190         struct vmcs12 *vmcs12;
8191         u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
8192
8193         /*
8194          * VMFUNC is only supported for nested guests, but we always enable the
8195          * secondary control for simplicity; for non-nested mode, fake that we
8196          * didn't by injecting #UD.
8197          */
8198         if (!is_guest_mode(vcpu)) {
8199                 kvm_queue_exception(vcpu, UD_VECTOR);
8200                 return 1;
8201         }
8202
8203         vmcs12 = get_vmcs12(vcpu);
8204         if ((vmcs12->vm_function_control & (1 << function)) == 0)
8205                 goto fail;
8206
8207         switch (function) {
8208         case 0:
8209                 if (nested_vmx_eptp_switching(vcpu, vmcs12))
8210                         goto fail;
8211                 break;
8212         default:
8213                 goto fail;
8214         }
8215         return kvm_skip_emulated_instruction(vcpu);
8216
8217 fail:
8218         nested_vmx_vmexit(vcpu, vmx->exit_reason,
8219                           vmcs_read32(VM_EXIT_INTR_INFO),
8220                           vmcs_readl(EXIT_QUALIFICATION));
8221         return 1;
8222 }
8223
8224 /*
8225  * The exit handlers return 1 if the exit was handled fully and guest execution
8226  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
8227  * to be done to userspace and return 0.
8228  */
8229 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
8230         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
8231         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
8232         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
8233         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
8234         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
8235         [EXIT_REASON_CR_ACCESS]               = handle_cr,
8236         [EXIT_REASON_DR_ACCESS]               = handle_dr,
8237         [EXIT_REASON_CPUID]                   = handle_cpuid,
8238         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
8239         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
8240         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
8241         [EXIT_REASON_HLT]                     = handle_halt,
8242         [EXIT_REASON_INVD]                    = handle_invd,
8243         [EXIT_REASON_INVLPG]                  = handle_invlpg,
8244         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
8245         [EXIT_REASON_VMCALL]                  = handle_vmcall,
8246         [EXIT_REASON_VMCLEAR]                 = handle_vmclear,
8247         [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
8248         [EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
8249         [EXIT_REASON_VMPTRST]                 = handle_vmptrst,
8250         [EXIT_REASON_VMREAD]                  = handle_vmread,
8251         [EXIT_REASON_VMRESUME]                = handle_vmresume,
8252         [EXIT_REASON_VMWRITE]                 = handle_vmwrite,
8253         [EXIT_REASON_VMOFF]                   = handle_vmoff,
8254         [EXIT_REASON_VMON]                    = handle_vmon,
8255         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
8256         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
8257         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
8258         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
8259         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
8260         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
8261         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
8262         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
8263         [EXIT_REASON_GDTR_IDTR]               = handle_desc,
8264         [EXIT_REASON_LDTR_TR]                 = handle_desc,
8265         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
8266         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
8267         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
8268         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
8269         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
8270         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
8271         [EXIT_REASON_INVEPT]                  = handle_invept,
8272         [EXIT_REASON_INVVPID]                 = handle_invvpid,
8273         [EXIT_REASON_RDRAND]                  = handle_invalid_op,
8274         [EXIT_REASON_RDSEED]                  = handle_invalid_op,
8275         [EXIT_REASON_XSAVES]                  = handle_xsaves,
8276         [EXIT_REASON_XRSTORS]                 = handle_xrstors,
8277         [EXIT_REASON_PML_FULL]                = handle_pml_full,
8278         [EXIT_REASON_VMFUNC]                  = handle_vmfunc,
8279         [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
8280 };
8281
8282 static const int kvm_vmx_max_exit_handlers =
8283         ARRAY_SIZE(kvm_vmx_exit_handlers);
8284
8285 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
8286                                        struct vmcs12 *vmcs12)
8287 {
8288         unsigned long exit_qualification;
8289         gpa_t bitmap, last_bitmap;
8290         unsigned int port;
8291         int size;
8292         u8 b;
8293
8294         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
8295                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
8296
8297         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8298
8299         port = exit_qualification >> 16;
8300         size = (exit_qualification & 7) + 1;
8301
8302         last_bitmap = (gpa_t)-1;
8303         b = -1;
8304
8305         while (size > 0) {
8306                 if (port < 0x8000)
8307                         bitmap = vmcs12->io_bitmap_a;
8308                 else if (port < 0x10000)
8309                         bitmap = vmcs12->io_bitmap_b;
8310                 else
8311                         return true;
8312                 bitmap += (port & 0x7fff) / 8;
8313
8314                 if (last_bitmap != bitmap)
8315                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
8316                                 return true;
8317                 if (b & (1 << (port & 7)))
8318                         return true;
8319
8320                 port++;
8321                 size--;
8322                 last_bitmap = bitmap;
8323         }
8324
8325         return false;
8326 }
8327
8328 /*
8329  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
8330  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
8331  * disinterest in the current event (read or write a specific MSR) by using an
8332  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
8333  */
8334 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
8335         struct vmcs12 *vmcs12, u32 exit_reason)
8336 {
8337         u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
8338         gpa_t bitmap;
8339
8340         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
8341                 return true;
8342
8343         /*
8344          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
8345          * for the four combinations of read/write and low/high MSR numbers.
8346          * First we need to figure out which of the four to use:
8347          */
8348         bitmap = vmcs12->msr_bitmap;
8349         if (exit_reason == EXIT_REASON_MSR_WRITE)
8350                 bitmap += 2048;
8351         if (msr_index >= 0xc0000000) {
8352                 msr_index -= 0xc0000000;
8353                 bitmap += 1024;
8354         }
8355
8356         /* Then read the msr_index'th bit from this bitmap: */
8357         if (msr_index < 1024*8) {
8358                 unsigned char b;
8359                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
8360                         return true;
8361                 return 1 & (b >> (msr_index & 7));
8362         } else
8363                 return true; /* let L1 handle the wrong parameter */
8364 }
8365
8366 /*
8367  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
8368  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
8369  * intercept (via guest_host_mask etc.) the current event.
8370  */
8371 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
8372         struct vmcs12 *vmcs12)
8373 {
8374         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8375         int cr = exit_qualification & 15;
8376         int reg;
8377         unsigned long val;
8378
8379         switch ((exit_qualification >> 4) & 3) {
8380         case 0: /* mov to cr */
8381                 reg = (exit_qualification >> 8) & 15;
8382                 val = kvm_register_readl(vcpu, reg);
8383                 switch (cr) {
8384                 case 0:
8385                         if (vmcs12->cr0_guest_host_mask &
8386                             (val ^ vmcs12->cr0_read_shadow))
8387                                 return true;
8388                         break;
8389                 case 3:
8390                         if ((vmcs12->cr3_target_count >= 1 &&
8391                                         vmcs12->cr3_target_value0 == val) ||
8392                                 (vmcs12->cr3_target_count >= 2 &&
8393                                         vmcs12->cr3_target_value1 == val) ||
8394                                 (vmcs12->cr3_target_count >= 3 &&
8395                                         vmcs12->cr3_target_value2 == val) ||
8396                                 (vmcs12->cr3_target_count >= 4 &&
8397                                         vmcs12->cr3_target_value3 == val))
8398                                 return false;
8399                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
8400                                 return true;
8401                         break;
8402                 case 4:
8403                         if (vmcs12->cr4_guest_host_mask &
8404                             (vmcs12->cr4_read_shadow ^ val))
8405                                 return true;
8406                         break;
8407                 case 8:
8408                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
8409                                 return true;
8410                         break;
8411                 }
8412                 break;
8413         case 2: /* clts */
8414                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
8415                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
8416                         return true;
8417                 break;
8418         case 1: /* mov from cr */
8419                 switch (cr) {
8420                 case 3:
8421                         if (vmcs12->cpu_based_vm_exec_control &
8422                             CPU_BASED_CR3_STORE_EXITING)
8423                                 return true;
8424                         break;
8425                 case 8:
8426                         if (vmcs12->cpu_based_vm_exec_control &
8427                             CPU_BASED_CR8_STORE_EXITING)
8428                                 return true;
8429                         break;
8430                 }
8431                 break;
8432         case 3: /* lmsw */
8433                 /*
8434                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
8435                  * cr0. Other attempted changes are ignored, with no exit.
8436                  */
8437                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
8438                 if (vmcs12->cr0_guest_host_mask & 0xe &
8439                     (val ^ vmcs12->cr0_read_shadow))
8440                         return true;
8441                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
8442                     !(vmcs12->cr0_read_shadow & 0x1) &&
8443                     (val & 0x1))
8444                         return true;
8445                 break;
8446         }
8447         return false;
8448 }
8449
8450 /*
8451  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
8452  * should handle it ourselves in L0 (and then continue L2). Only call this
8453  * when in is_guest_mode (L2).
8454  */
8455 static bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
8456 {
8457         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8458         struct vcpu_vmx *vmx = to_vmx(vcpu);
8459         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8460
8461         if (vmx->nested.nested_run_pending)
8462                 return false;
8463
8464         if (unlikely(vmx->fail)) {
8465                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
8466                                     vmcs_read32(VM_INSTRUCTION_ERROR));
8467                 return true;
8468         }
8469
8470         /*
8471          * The host physical addresses of some pages of guest memory
8472          * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
8473          * Page). The CPU may write to these pages via their host
8474          * physical address while L2 is running, bypassing any
8475          * address-translation-based dirty tracking (e.g. EPT write
8476          * protection).
8477          *
8478          * Mark them dirty on every exit from L2 to prevent them from
8479          * getting out of sync with dirty tracking.
8480          */
8481         nested_mark_vmcs12_pages_dirty(vcpu);
8482
8483         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
8484                                 vmcs_readl(EXIT_QUALIFICATION),
8485                                 vmx->idt_vectoring_info,
8486                                 intr_info,
8487                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8488                                 KVM_ISA_VMX);
8489
8490         switch (exit_reason) {
8491         case EXIT_REASON_EXCEPTION_NMI:
8492                 if (is_nmi(intr_info))
8493                         return false;
8494                 else if (is_page_fault(intr_info))
8495                         return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
8496                 else if (is_no_device(intr_info) &&
8497                          !(vmcs12->guest_cr0 & X86_CR0_TS))
8498                         return false;
8499                 else if (is_debug(intr_info) &&
8500                          vcpu->guest_debug &
8501                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
8502                         return false;
8503                 else if (is_breakpoint(intr_info) &&
8504                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
8505                         return false;
8506                 return vmcs12->exception_bitmap &
8507                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
8508         case EXIT_REASON_EXTERNAL_INTERRUPT:
8509                 return false;
8510         case EXIT_REASON_TRIPLE_FAULT:
8511                 return true;
8512         case EXIT_REASON_PENDING_INTERRUPT:
8513                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
8514         case EXIT_REASON_NMI_WINDOW:
8515                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
8516         case EXIT_REASON_TASK_SWITCH:
8517                 return true;
8518         case EXIT_REASON_CPUID:
8519                 return true;
8520         case EXIT_REASON_HLT:
8521                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
8522         case EXIT_REASON_INVD:
8523                 return true;
8524         case EXIT_REASON_INVLPG:
8525                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8526         case EXIT_REASON_RDPMC:
8527                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
8528         case EXIT_REASON_RDRAND:
8529                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
8530         case EXIT_REASON_RDSEED:
8531                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
8532         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
8533                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
8534         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
8535         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
8536         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
8537         case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
8538         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
8539         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
8540                 /*
8541                  * VMX instructions trap unconditionally. This allows L1 to
8542                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
8543                  */
8544                 return true;
8545         case EXIT_REASON_CR_ACCESS:
8546                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
8547         case EXIT_REASON_DR_ACCESS:
8548                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
8549         case EXIT_REASON_IO_INSTRUCTION:
8550                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
8551         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
8552                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
8553         case EXIT_REASON_MSR_READ:
8554         case EXIT_REASON_MSR_WRITE:
8555                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
8556         case EXIT_REASON_INVALID_STATE:
8557                 return true;
8558         case EXIT_REASON_MWAIT_INSTRUCTION:
8559                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
8560         case EXIT_REASON_MONITOR_TRAP_FLAG:
8561                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
8562         case EXIT_REASON_MONITOR_INSTRUCTION:
8563                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
8564         case EXIT_REASON_PAUSE_INSTRUCTION:
8565                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
8566                         nested_cpu_has2(vmcs12,
8567                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
8568         case EXIT_REASON_MCE_DURING_VMENTRY:
8569                 return false;
8570         case EXIT_REASON_TPR_BELOW_THRESHOLD:
8571                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
8572         case EXIT_REASON_APIC_ACCESS:
8573                 return nested_cpu_has2(vmcs12,
8574                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
8575         case EXIT_REASON_APIC_WRITE:
8576         case EXIT_REASON_EOI_INDUCED:
8577                 /* apic_write and eoi_induced should exit unconditionally. */
8578                 return true;
8579         case EXIT_REASON_EPT_VIOLATION:
8580                 /*
8581                  * L0 always deals with the EPT violation. If nested EPT is
8582                  * used, and the nested mmu code discovers that the address is
8583                  * missing in the guest EPT table (EPT12), the EPT violation
8584                  * will be injected with nested_ept_inject_page_fault()
8585                  */
8586                 return false;
8587         case EXIT_REASON_EPT_MISCONFIG:
8588                 /*
8589                  * L2 never uses directly L1's EPT, but rather L0's own EPT
8590                  * table (shadow on EPT) or a merged EPT table that L0 built
8591                  * (EPT on EPT). So any problems with the structure of the
8592                  * table is L0's fault.
8593                  */
8594                 return false;
8595         case EXIT_REASON_INVPCID:
8596                 return
8597                         nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
8598                         nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8599         case EXIT_REASON_WBINVD:
8600                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
8601         case EXIT_REASON_XSETBV:
8602                 return true;
8603         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
8604                 /*
8605                  * This should never happen, since it is not possible to
8606                  * set XSS to a non-zero value---neither in L1 nor in L2.
8607                  * If if it were, XSS would have to be checked against
8608                  * the XSS exit bitmap in vmcs12.
8609                  */
8610                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
8611         case EXIT_REASON_PREEMPTION_TIMER:
8612                 return false;
8613         case EXIT_REASON_PML_FULL:
8614                 /* We emulate PML support to L1. */
8615                 return false;
8616         case EXIT_REASON_VMFUNC:
8617                 /* VM functions are emulated through L2->L0 vmexits. */
8618                 return false;
8619         default:
8620                 return true;
8621         }
8622 }
8623
8624 static int nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason)
8625 {
8626         u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8627
8628         /*
8629          * At this point, the exit interruption info in exit_intr_info
8630          * is only valid for EXCEPTION_NMI exits.  For EXTERNAL_INTERRUPT
8631          * we need to query the in-kernel LAPIC.
8632          */
8633         WARN_ON(exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT);
8634         if ((exit_intr_info &
8635              (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8636             (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) {
8637                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8638                 vmcs12->vm_exit_intr_error_code =
8639                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
8640         }
8641
8642         nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info,
8643                           vmcs_readl(EXIT_QUALIFICATION));
8644         return 1;
8645 }
8646
8647 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
8648 {
8649         *info1 = vmcs_readl(EXIT_QUALIFICATION);
8650         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
8651 }
8652
8653 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
8654 {
8655         if (vmx->pml_pg) {
8656                 __free_page(vmx->pml_pg);
8657                 vmx->pml_pg = NULL;
8658         }
8659 }
8660
8661 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
8662 {
8663         struct vcpu_vmx *vmx = to_vmx(vcpu);
8664         u64 *pml_buf;
8665         u16 pml_idx;
8666
8667         pml_idx = vmcs_read16(GUEST_PML_INDEX);
8668
8669         /* Do nothing if PML buffer is empty */
8670         if (pml_idx == (PML_ENTITY_NUM - 1))
8671                 return;
8672
8673         /* PML index always points to next available PML buffer entity */
8674         if (pml_idx >= PML_ENTITY_NUM)
8675                 pml_idx = 0;
8676         else
8677                 pml_idx++;
8678
8679         pml_buf = page_address(vmx->pml_pg);
8680         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
8681                 u64 gpa;
8682
8683                 gpa = pml_buf[pml_idx];
8684                 WARN_ON(gpa & (PAGE_SIZE - 1));
8685                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
8686         }
8687
8688         /* reset PML index */
8689         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8690 }
8691
8692 /*
8693  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8694  * Called before reporting dirty_bitmap to userspace.
8695  */
8696 static void kvm_flush_pml_buffers(struct kvm *kvm)
8697 {
8698         int i;
8699         struct kvm_vcpu *vcpu;
8700         /*
8701          * We only need to kick vcpu out of guest mode here, as PML buffer
8702          * is flushed at beginning of all VMEXITs, and it's obvious that only
8703          * vcpus running in guest are possible to have unflushed GPAs in PML
8704          * buffer.
8705          */
8706         kvm_for_each_vcpu(i, vcpu, kvm)
8707                 kvm_vcpu_kick(vcpu);
8708 }
8709
8710 static void vmx_dump_sel(char *name, uint32_t sel)
8711 {
8712         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
8713                name, vmcs_read16(sel),
8714                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8715                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8716                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8717 }
8718
8719 static void vmx_dump_dtsel(char *name, uint32_t limit)
8720 {
8721         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
8722                name, vmcs_read32(limit),
8723                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8724 }
8725
8726 static void dump_vmcs(void)
8727 {
8728         u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8729         u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8730         u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8731         u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8732         u32 secondary_exec_control = 0;
8733         unsigned long cr4 = vmcs_readl(GUEST_CR4);
8734         u64 efer = vmcs_read64(GUEST_IA32_EFER);
8735         int i, n;
8736
8737         if (cpu_has_secondary_exec_ctrls())
8738                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8739
8740         pr_err("*** Guest State ***\n");
8741         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8742                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8743                vmcs_readl(CR0_GUEST_HOST_MASK));
8744         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8745                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8746         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8747         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8748             (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8749         {
8750                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
8751                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8752                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
8753                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
8754         }
8755         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
8756                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8757         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
8758                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8759         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8760                vmcs_readl(GUEST_SYSENTER_ESP),
8761                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8762         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
8763         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
8764         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
8765         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
8766         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
8767         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
8768         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8769         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8770         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8771         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
8772         if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8773             (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
8774                 pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
8775                        efer, vmcs_read64(GUEST_IA32_PAT));
8776         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
8777                vmcs_read64(GUEST_IA32_DEBUGCTL),
8778                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8779         if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
8780                 pr_err("PerfGlobCtl = 0x%016llx\n",
8781                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
8782         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
8783                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
8784         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
8785                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8786                vmcs_read32(GUEST_ACTIVITY_STATE));
8787         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8788                 pr_err("InterruptStatus = %04x\n",
8789                        vmcs_read16(GUEST_INTR_STATUS));
8790
8791         pr_err("*** Host State ***\n");
8792         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
8793                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8794         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8795                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8796                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8797                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8798                vmcs_read16(HOST_TR_SELECTOR));
8799         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8800                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8801                vmcs_readl(HOST_TR_BASE));
8802         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8803                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8804         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8805                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8806                vmcs_readl(HOST_CR4));
8807         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8808                vmcs_readl(HOST_IA32_SYSENTER_ESP),
8809                vmcs_read32(HOST_IA32_SYSENTER_CS),
8810                vmcs_readl(HOST_IA32_SYSENTER_EIP));
8811         if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
8812                 pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
8813                        vmcs_read64(HOST_IA32_EFER),
8814                        vmcs_read64(HOST_IA32_PAT));
8815         if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8816                 pr_err("PerfGlobCtl = 0x%016llx\n",
8817                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
8818
8819         pr_err("*** Control State ***\n");
8820         pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8821                pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8822         pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8823         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8824                vmcs_read32(EXCEPTION_BITMAP),
8825                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8826                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8827         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8828                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8829                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8830                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8831         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8832                vmcs_read32(VM_EXIT_INTR_INFO),
8833                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8834                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8835         pr_err("        reason=%08x qualification=%016lx\n",
8836                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8837         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8838                vmcs_read32(IDT_VECTORING_INFO_FIELD),
8839                vmcs_read32(IDT_VECTORING_ERROR_CODE));
8840         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8841         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
8842                 pr_err("TSC Multiplier = 0x%016llx\n",
8843                        vmcs_read64(TSC_MULTIPLIER));
8844         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8845                 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8846         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8847                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8848         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
8849                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
8850         n = vmcs_read32(CR3_TARGET_COUNT);
8851         for (i = 0; i + 1 < n; i += 4)
8852                 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8853                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8854                        i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8855         if (i < n)
8856                 pr_err("CR3 target%u=%016lx\n",
8857                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8858         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8859                 pr_err("PLE Gap=%08x Window=%08x\n",
8860                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8861         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8862                 pr_err("Virtual processor ID = 0x%04x\n",
8863                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
8864 }
8865
8866 /*
8867  * The guest has exited.  See if we can fix it or if we need userspace
8868  * assistance.
8869  */
8870 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
8871 {
8872         struct vcpu_vmx *vmx = to_vmx(vcpu);
8873         u32 exit_reason = vmx->exit_reason;
8874         u32 vectoring_info = vmx->idt_vectoring_info;
8875
8876         trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8877
8878         /*
8879          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8880          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8881          * querying dirty_bitmap, we only need to kick all vcpus out of guest
8882          * mode as if vcpus is in root mode, the PML buffer must has been
8883          * flushed already.
8884          */
8885         if (enable_pml)
8886                 vmx_flush_pml_buffer(vcpu);
8887
8888         /* If guest state is invalid, start emulating */
8889         if (vmx->emulation_required)
8890                 return handle_invalid_guest_state(vcpu);
8891
8892         if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
8893                 return nested_vmx_reflect_vmexit(vcpu, exit_reason);
8894
8895         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
8896                 dump_vmcs();
8897                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8898                 vcpu->run->fail_entry.hardware_entry_failure_reason
8899                         = exit_reason;
8900                 return 0;
8901         }
8902
8903         if (unlikely(vmx->fail)) {
8904                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8905                 vcpu->run->fail_entry.hardware_entry_failure_reason
8906                         = vmcs_read32(VM_INSTRUCTION_ERROR);
8907                 return 0;
8908         }
8909
8910         /*
8911          * Note:
8912          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8913          * delivery event since it indicates guest is accessing MMIO.
8914          * The vm-exit can be triggered again after return to guest that
8915          * will cause infinite loop.
8916          */
8917         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
8918                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
8919                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
8920                         exit_reason != EXIT_REASON_PML_FULL &&
8921                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
8922                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8923                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8924                 vcpu->run->internal.ndata = 3;
8925                 vcpu->run->internal.data[0] = vectoring_info;
8926                 vcpu->run->internal.data[1] = exit_reason;
8927                 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
8928                 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
8929                         vcpu->run->internal.ndata++;
8930                         vcpu->run->internal.data[3] =
8931                                 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
8932                 }
8933                 return 0;
8934         }
8935
8936         if (unlikely(!enable_vnmi &&
8937                      vmx->loaded_vmcs->soft_vnmi_blocked)) {
8938                 if (vmx_interrupt_allowed(vcpu)) {
8939                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
8940                 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
8941                            vcpu->arch.nmi_pending) {
8942                         /*
8943                          * This CPU don't support us in finding the end of an
8944                          * NMI-blocked window if the guest runs with IRQs
8945                          * disabled. So we pull the trigger after 1 s of
8946                          * futile waiting, but inform the user about this.
8947                          */
8948                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
8949                                "state on VCPU %d after 1 s timeout\n",
8950                                __func__, vcpu->vcpu_id);
8951                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
8952                 }
8953         }
8954
8955         if (exit_reason < kvm_vmx_max_exit_handlers
8956             && kvm_vmx_exit_handlers[exit_reason])
8957                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
8958         else {
8959                 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
8960                                 exit_reason);
8961                 kvm_queue_exception(vcpu, UD_VECTOR);
8962                 return 1;
8963         }
8964 }
8965
8966 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
8967 {
8968         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8969
8970         if (is_guest_mode(vcpu) &&
8971                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8972                 return;
8973
8974         if (irr == -1 || tpr < irr) {
8975                 vmcs_write32(TPR_THRESHOLD, 0);
8976                 return;
8977         }
8978
8979         vmcs_write32(TPR_THRESHOLD, irr);
8980 }
8981
8982 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8983 {
8984         u32 sec_exec_control;
8985
8986         /* Postpone execution until vmcs01 is the current VMCS. */
8987         if (is_guest_mode(vcpu)) {
8988                 to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
8989                 return;
8990         }
8991
8992         if (!cpu_has_vmx_virtualize_x2apic_mode())
8993                 return;
8994
8995         if (!cpu_need_tpr_shadow(vcpu))
8996                 return;
8997
8998         sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8999
9000         if (set) {
9001                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9002                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
9003         } else {
9004                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
9005                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9006                 vmx_flush_tlb_ept_only(vcpu);
9007         }
9008         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
9009
9010         vmx_update_msr_bitmap(vcpu);
9011 }
9012
9013 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
9014 {
9015         struct vcpu_vmx *vmx = to_vmx(vcpu);
9016
9017         /*
9018          * Currently we do not handle the nested case where L2 has an
9019          * APIC access page of its own; that page is still pinned.
9020          * Hence, we skip the case where the VCPU is in guest mode _and_
9021          * L1 prepared an APIC access page for L2.
9022          *
9023          * For the case where L1 and L2 share the same APIC access page
9024          * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
9025          * in the vmcs12), this function will only update either the vmcs01
9026          * or the vmcs02.  If the former, the vmcs02 will be updated by
9027          * prepare_vmcs02.  If the latter, the vmcs01 will be updated in
9028          * the next L2->L1 exit.
9029          */
9030         if (!is_guest_mode(vcpu) ||
9031             !nested_cpu_has2(get_vmcs12(&vmx->vcpu),
9032                              SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9033                 vmcs_write64(APIC_ACCESS_ADDR, hpa);
9034                 vmx_flush_tlb_ept_only(vcpu);
9035         }
9036 }
9037
9038 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
9039 {
9040         u16 status;
9041         u8 old;
9042
9043         if (max_isr == -1)
9044                 max_isr = 0;
9045
9046         status = vmcs_read16(GUEST_INTR_STATUS);
9047         old = status >> 8;
9048         if (max_isr != old) {
9049                 status &= 0xff;
9050                 status |= max_isr << 8;
9051                 vmcs_write16(GUEST_INTR_STATUS, status);
9052         }
9053 }
9054
9055 static void vmx_set_rvi(int vector)
9056 {
9057         u16 status;
9058         u8 old;
9059
9060         if (vector == -1)
9061                 vector = 0;
9062
9063         status = vmcs_read16(GUEST_INTR_STATUS);
9064         old = (u8)status & 0xff;
9065         if ((u8)vector != old) {
9066                 status &= ~0xff;
9067                 status |= (u8)vector;
9068                 vmcs_write16(GUEST_INTR_STATUS, status);
9069         }
9070 }
9071
9072 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
9073 {
9074         /*
9075          * When running L2, updating RVI is only relevant when
9076          * vmcs12 virtual-interrupt-delivery enabled.
9077          * However, it can be enabled only when L1 also
9078          * intercepts external-interrupts and in that case
9079          * we should not update vmcs02 RVI but instead intercept
9080          * interrupt. Therefore, do nothing when running L2.
9081          */
9082         if (!is_guest_mode(vcpu))
9083                 vmx_set_rvi(max_irr);
9084 }
9085
9086 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
9087 {
9088         struct vcpu_vmx *vmx = to_vmx(vcpu);
9089         int max_irr;
9090         bool max_irr_updated;
9091
9092         WARN_ON(!vcpu->arch.apicv_active);
9093         if (pi_test_on(&vmx->pi_desc)) {
9094                 pi_clear_on(&vmx->pi_desc);
9095                 /*
9096                  * IOMMU can write to PIR.ON, so the barrier matters even on UP.
9097                  * But on x86 this is just a compiler barrier anyway.
9098                  */
9099                 smp_mb__after_atomic();
9100                 max_irr_updated =
9101                         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
9102
9103                 /*
9104                  * If we are running L2 and L1 has a new pending interrupt
9105                  * which can be injected, we should re-evaluate
9106                  * what should be done with this new L1 interrupt.
9107                  * If L1 intercepts external-interrupts, we should
9108                  * exit from L2 to L1. Otherwise, interrupt should be
9109                  * delivered directly to L2.
9110                  */
9111                 if (is_guest_mode(vcpu) && max_irr_updated) {
9112                         if (nested_exit_on_intr(vcpu))
9113                                 kvm_vcpu_exiting_guest_mode(vcpu);
9114                         else
9115                                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9116                 }
9117         } else {
9118                 max_irr = kvm_lapic_find_highest_irr(vcpu);
9119         }
9120         vmx_hwapic_irr_update(vcpu, max_irr);
9121         return max_irr;
9122 }
9123
9124 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
9125 {
9126         if (!kvm_vcpu_apicv_active(vcpu))
9127                 return;
9128
9129         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
9130         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
9131         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
9132         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
9133 }
9134
9135 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
9136 {
9137         struct vcpu_vmx *vmx = to_vmx(vcpu);
9138
9139         pi_clear_on(&vmx->pi_desc);
9140         memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
9141 }
9142
9143 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
9144 {
9145         u32 exit_intr_info = 0;
9146         u16 basic_exit_reason = (u16)vmx->exit_reason;
9147
9148         if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
9149               || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI))
9150                 return;
9151
9152         if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
9153                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9154         vmx->exit_intr_info = exit_intr_info;
9155
9156         /* if exit due to PF check for async PF */
9157         if (is_page_fault(exit_intr_info))
9158                 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
9159
9160         /* Handle machine checks before interrupts are enabled */
9161         if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY ||
9162             is_machine_check(exit_intr_info))
9163                 kvm_machine_check();
9164
9165         /* We need to handle NMIs before interrupts are enabled */
9166         if (is_nmi(exit_intr_info)) {
9167                 kvm_before_handle_nmi(&vmx->vcpu);
9168                 asm("int $2");
9169                 kvm_after_handle_nmi(&vmx->vcpu);
9170         }
9171 }
9172
9173 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
9174 {
9175         u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9176
9177         if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
9178                         == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
9179                 unsigned int vector;
9180                 unsigned long entry;
9181                 gate_desc *desc;
9182                 struct vcpu_vmx *vmx = to_vmx(vcpu);
9183 #ifdef CONFIG_X86_64
9184                 unsigned long tmp;
9185 #endif
9186
9187                 vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
9188                 desc = (gate_desc *)vmx->host_idt_base + vector;
9189                 entry = gate_offset(desc);
9190                 asm volatile(
9191 #ifdef CONFIG_X86_64
9192                         "mov %%" _ASM_SP ", %[sp]\n\t"
9193                         "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
9194                         "push $%c[ss]\n\t"
9195                         "push %[sp]\n\t"
9196 #endif
9197                         "pushf\n\t"
9198                         __ASM_SIZE(push) " $%c[cs]\n\t"
9199                         CALL_NOSPEC
9200                         :
9201 #ifdef CONFIG_X86_64
9202                         [sp]"=&r"(tmp),
9203 #endif
9204                         ASM_CALL_CONSTRAINT
9205                         :
9206                         THUNK_TARGET(entry),
9207                         [ss]"i"(__KERNEL_DS),
9208                         [cs]"i"(__KERNEL_CS)
9209                         );
9210         }
9211 }
9212 STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
9213
9214 static bool vmx_has_high_real_mode_segbase(void)
9215 {
9216         return enable_unrestricted_guest || emulate_invalid_guest_state;
9217 }
9218
9219 static bool vmx_mpx_supported(void)
9220 {
9221         return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
9222                 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
9223 }
9224
9225 static bool vmx_xsaves_supported(void)
9226 {
9227         return vmcs_config.cpu_based_2nd_exec_ctrl &
9228                 SECONDARY_EXEC_XSAVES;
9229 }
9230
9231 static bool vmx_umip_emulated(void)
9232 {
9233         return vmcs_config.cpu_based_2nd_exec_ctrl &
9234                 SECONDARY_EXEC_DESC;
9235 }
9236
9237 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
9238 {
9239         u32 exit_intr_info;
9240         bool unblock_nmi;
9241         u8 vector;
9242         bool idtv_info_valid;
9243
9244         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
9245
9246         if (enable_vnmi) {
9247                 if (vmx->loaded_vmcs->nmi_known_unmasked)
9248                         return;
9249                 /*
9250                  * Can't use vmx->exit_intr_info since we're not sure what
9251                  * the exit reason is.
9252                  */
9253                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9254                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
9255                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
9256                 /*
9257                  * SDM 3: 27.7.1.2 (September 2008)
9258                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
9259                  * a guest IRET fault.
9260                  * SDM 3: 23.2.2 (September 2008)
9261                  * Bit 12 is undefined in any of the following cases:
9262                  *  If the VM exit sets the valid bit in the IDT-vectoring
9263                  *   information field.
9264                  *  If the VM exit is due to a double fault.
9265                  */
9266                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
9267                     vector != DF_VECTOR && !idtv_info_valid)
9268                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
9269                                       GUEST_INTR_STATE_NMI);
9270                 else
9271                         vmx->loaded_vmcs->nmi_known_unmasked =
9272                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
9273                                   & GUEST_INTR_STATE_NMI);
9274         } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
9275                 vmx->loaded_vmcs->vnmi_blocked_time +=
9276                         ktime_to_ns(ktime_sub(ktime_get(),
9277                                               vmx->loaded_vmcs->entry_time));
9278 }
9279
9280 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
9281                                       u32 idt_vectoring_info,
9282                                       int instr_len_field,
9283                                       int error_code_field)
9284 {
9285         u8 vector;
9286         int type;
9287         bool idtv_info_valid;
9288
9289         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
9290
9291         vcpu->arch.nmi_injected = false;
9292         kvm_clear_exception_queue(vcpu);
9293         kvm_clear_interrupt_queue(vcpu);
9294
9295         if (!idtv_info_valid)
9296                 return;
9297
9298         kvm_make_request(KVM_REQ_EVENT, vcpu);
9299
9300         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
9301         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
9302
9303         switch (type) {
9304         case INTR_TYPE_NMI_INTR:
9305                 vcpu->arch.nmi_injected = true;
9306                 /*
9307                  * SDM 3: 27.7.1.2 (September 2008)
9308                  * Clear bit "block by NMI" before VM entry if a NMI
9309                  * delivery faulted.
9310                  */
9311                 vmx_set_nmi_mask(vcpu, false);
9312                 break;
9313         case INTR_TYPE_SOFT_EXCEPTION:
9314                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
9315                 /* fall through */
9316         case INTR_TYPE_HARD_EXCEPTION:
9317                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
9318                         u32 err = vmcs_read32(error_code_field);
9319                         kvm_requeue_exception_e(vcpu, vector, err);
9320                 } else
9321                         kvm_requeue_exception(vcpu, vector);
9322                 break;
9323         case INTR_TYPE_SOFT_INTR:
9324                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
9325                 /* fall through */
9326         case INTR_TYPE_EXT_INTR:
9327                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
9328                 break;
9329         default:
9330                 break;
9331         }
9332 }
9333
9334 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
9335 {
9336         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
9337                                   VM_EXIT_INSTRUCTION_LEN,
9338                                   IDT_VECTORING_ERROR_CODE);
9339 }
9340
9341 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
9342 {
9343         __vmx_complete_interrupts(vcpu,
9344                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
9345                                   VM_ENTRY_INSTRUCTION_LEN,
9346                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
9347
9348         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
9349 }
9350
9351 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
9352 {
9353         int i, nr_msrs;
9354         struct perf_guest_switch_msr *msrs;
9355
9356         msrs = perf_guest_get_msrs(&nr_msrs);
9357
9358         if (!msrs)
9359                 return;
9360
9361         for (i = 0; i < nr_msrs; i++)
9362                 if (msrs[i].host == msrs[i].guest)
9363                         clear_atomic_switch_msr(vmx, msrs[i].msr);
9364                 else
9365                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
9366                                         msrs[i].host);
9367 }
9368
9369 static void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
9370 {
9371         struct vcpu_vmx *vmx = to_vmx(vcpu);
9372         u64 tscl;
9373         u32 delta_tsc;
9374
9375         if (vmx->hv_deadline_tsc == -1)
9376                 return;
9377
9378         tscl = rdtsc();
9379         if (vmx->hv_deadline_tsc > tscl)
9380                 /* sure to be 32 bit only because checked on set_hv_timer */
9381                 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
9382                         cpu_preemption_timer_multi);
9383         else
9384                 delta_tsc = 0;
9385
9386         vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
9387 }
9388
9389 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
9390 {
9391         struct vcpu_vmx *vmx = to_vmx(vcpu);
9392         unsigned long cr3, cr4;
9393
9394         /* Record the guest's net vcpu time for enforced NMI injections. */
9395         if (unlikely(!enable_vnmi &&
9396                      vmx->loaded_vmcs->soft_vnmi_blocked))
9397                 vmx->loaded_vmcs->entry_time = ktime_get();
9398
9399         /* Don't enter VMX if guest state is invalid, let the exit handler
9400            start emulation until we arrive back to a valid state */
9401         if (vmx->emulation_required)
9402                 return;
9403
9404         if (vmx->ple_window_dirty) {
9405                 vmx->ple_window_dirty = false;
9406                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
9407         }
9408
9409         if (vmx->nested.sync_shadow_vmcs) {
9410                 copy_vmcs12_to_shadow(vmx);
9411                 vmx->nested.sync_shadow_vmcs = false;
9412         }
9413
9414         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
9415                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
9416         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
9417                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
9418
9419         cr3 = __get_current_cr3_fast();
9420         if (unlikely(cr3 != vmx->loaded_vmcs->vmcs_host_cr3)) {
9421                 vmcs_writel(HOST_CR3, cr3);
9422                 vmx->loaded_vmcs->vmcs_host_cr3 = cr3;
9423         }
9424
9425         cr4 = cr4_read_shadow();
9426         if (unlikely(cr4 != vmx->loaded_vmcs->vmcs_host_cr4)) {
9427                 vmcs_writel(HOST_CR4, cr4);
9428                 vmx->loaded_vmcs->vmcs_host_cr4 = cr4;
9429         }
9430
9431         /* When single-stepping over STI and MOV SS, we must clear the
9432          * corresponding interruptibility bits in the guest state. Otherwise
9433          * vmentry fails as it then expects bit 14 (BS) in pending debug
9434          * exceptions being set, but that's not correct for the guest debugging
9435          * case. */
9436         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9437                 vmx_set_interrupt_shadow(vcpu, 0);
9438
9439         if (static_cpu_has(X86_FEATURE_PKU) &&
9440             kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
9441             vcpu->arch.pkru != vmx->host_pkru)
9442                 __write_pkru(vcpu->arch.pkru);
9443
9444         atomic_switch_perf_msrs(vmx);
9445
9446         vmx_arm_hv_timer(vcpu);
9447
9448         /*
9449          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
9450          * it's non-zero. Since vmentry is serialising on affected CPUs, there
9451          * is no need to worry about the conditional branch over the wrmsr
9452          * being speculatively taken.
9453          */
9454         if (vmx->spec_ctrl)
9455                 wrmsrl(MSR_IA32_SPEC_CTRL, vmx->spec_ctrl);
9456
9457         vmx->__launched = vmx->loaded_vmcs->launched;
9458         asm(
9459                 /* Store host registers */
9460                 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
9461                 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
9462                 "push %%" _ASM_CX " \n\t"
9463                 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
9464                 "je 1f \n\t"
9465                 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
9466                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
9467                 "1: \n\t"
9468                 /* Reload cr2 if changed */
9469                 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
9470                 "mov %%cr2, %%" _ASM_DX " \n\t"
9471                 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
9472                 "je 2f \n\t"
9473                 "mov %%" _ASM_AX", %%cr2 \n\t"
9474                 "2: \n\t"
9475                 /* Check if vmlaunch of vmresume is needed */
9476                 "cmpl $0, %c[launched](%0) \n\t"
9477                 /* Load guest registers.  Don't clobber flags. */
9478                 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
9479                 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
9480                 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
9481                 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
9482                 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
9483                 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
9484 #ifdef CONFIG_X86_64
9485                 "mov %c[r8](%0),  %%r8  \n\t"
9486                 "mov %c[r9](%0),  %%r9  \n\t"
9487                 "mov %c[r10](%0), %%r10 \n\t"
9488                 "mov %c[r11](%0), %%r11 \n\t"
9489                 "mov %c[r12](%0), %%r12 \n\t"
9490                 "mov %c[r13](%0), %%r13 \n\t"
9491                 "mov %c[r14](%0), %%r14 \n\t"
9492                 "mov %c[r15](%0), %%r15 \n\t"
9493 #endif
9494                 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
9495
9496                 /* Enter guest mode */
9497                 "jne 1f \n\t"
9498                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
9499                 "jmp 2f \n\t"
9500                 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
9501                 "2: "
9502                 /* Save guest registers, load host registers, keep flags */
9503                 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
9504                 "pop %0 \n\t"
9505                 "setbe %c[fail](%0)\n\t"
9506                 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
9507                 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
9508                 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
9509                 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
9510                 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
9511                 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
9512                 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
9513 #ifdef CONFIG_X86_64
9514                 "mov %%r8,  %c[r8](%0) \n\t"
9515                 "mov %%r9,  %c[r9](%0) \n\t"
9516                 "mov %%r10, %c[r10](%0) \n\t"
9517                 "mov %%r11, %c[r11](%0) \n\t"
9518                 "mov %%r12, %c[r12](%0) \n\t"
9519                 "mov %%r13, %c[r13](%0) \n\t"
9520                 "mov %%r14, %c[r14](%0) \n\t"
9521                 "mov %%r15, %c[r15](%0) \n\t"
9522                 "xor %%r8d,  %%r8d \n\t"
9523                 "xor %%r9d,  %%r9d \n\t"
9524                 "xor %%r10d, %%r10d \n\t"
9525                 "xor %%r11d, %%r11d \n\t"
9526                 "xor %%r12d, %%r12d \n\t"
9527                 "xor %%r13d, %%r13d \n\t"
9528                 "xor %%r14d, %%r14d \n\t"
9529                 "xor %%r15d, %%r15d \n\t"
9530 #endif
9531                 "mov %%cr2, %%" _ASM_AX "   \n\t"
9532                 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
9533
9534                 "xor %%eax, %%eax \n\t"
9535                 "xor %%ebx, %%ebx \n\t"
9536                 "xor %%esi, %%esi \n\t"
9537                 "xor %%edi, %%edi \n\t"
9538                 "pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
9539                 ".pushsection .rodata \n\t"
9540                 ".global vmx_return \n\t"
9541                 "vmx_return: " _ASM_PTR " 2b \n\t"
9542                 ".popsection"
9543               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
9544                 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
9545                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
9546                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
9547                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
9548                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
9549                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
9550                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
9551                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
9552                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
9553                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
9554 #ifdef CONFIG_X86_64
9555                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
9556                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
9557                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
9558                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
9559                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
9560                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
9561                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
9562                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
9563 #endif
9564                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
9565                 [wordsize]"i"(sizeof(ulong))
9566               : "cc", "memory"
9567 #ifdef CONFIG_X86_64
9568                 , "rax", "rbx", "rdi", "rsi"
9569                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
9570 #else
9571                 , "eax", "ebx", "edi", "esi"
9572 #endif
9573               );
9574
9575         /*
9576          * We do not use IBRS in the kernel. If this vCPU has used the
9577          * SPEC_CTRL MSR it may have left it on; save the value and
9578          * turn it off. This is much more efficient than blindly adding
9579          * it to the atomic save/restore list. Especially as the former
9580          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
9581          *
9582          * For non-nested case:
9583          * If the L01 MSR bitmap does not intercept the MSR, then we need to
9584          * save it.
9585          *
9586          * For nested case:
9587          * If the L02 MSR bitmap does not intercept the MSR, then we need to
9588          * save it.
9589          */
9590         if (!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))
9591                 rdmsrl(MSR_IA32_SPEC_CTRL, vmx->spec_ctrl);
9592
9593         if (vmx->spec_ctrl)
9594                 wrmsrl(MSR_IA32_SPEC_CTRL, 0);
9595
9596         /* Eliminate branch target predictions from guest mode */
9597         vmexit_fill_RSB();
9598
9599         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
9600         if (vmx->host_debugctlmsr)
9601                 update_debugctlmsr(vmx->host_debugctlmsr);
9602
9603 #ifndef CONFIG_X86_64
9604         /*
9605          * The sysexit path does not restore ds/es, so we must set them to
9606          * a reasonable value ourselves.
9607          *
9608          * We can't defer this to vmx_load_host_state() since that function
9609          * may be executed in interrupt context, which saves and restore segments
9610          * around it, nullifying its effect.
9611          */
9612         loadsegment(ds, __USER_DS);
9613         loadsegment(es, __USER_DS);
9614 #endif
9615
9616         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
9617                                   | (1 << VCPU_EXREG_RFLAGS)
9618                                   | (1 << VCPU_EXREG_PDPTR)
9619                                   | (1 << VCPU_EXREG_SEGMENTS)
9620                                   | (1 << VCPU_EXREG_CR3));
9621         vcpu->arch.regs_dirty = 0;
9622
9623         /*
9624          * eager fpu is enabled if PKEY is supported and CR4 is switched
9625          * back on host, so it is safe to read guest PKRU from current
9626          * XSAVE.
9627          */
9628         if (static_cpu_has(X86_FEATURE_PKU) &&
9629             kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
9630                 vcpu->arch.pkru = __read_pkru();
9631                 if (vcpu->arch.pkru != vmx->host_pkru)
9632                         __write_pkru(vmx->host_pkru);
9633         }
9634
9635         /*
9636          * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
9637          * we did not inject a still-pending event to L1 now because of
9638          * nested_run_pending, we need to re-enable this bit.
9639          */
9640         if (vmx->nested.nested_run_pending)
9641                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9642
9643         vmx->nested.nested_run_pending = 0;
9644         vmx->idt_vectoring_info = 0;
9645
9646         vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
9647         if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
9648                 return;
9649
9650         vmx->loaded_vmcs->launched = 1;
9651         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
9652
9653         vmx_complete_atomic_exit(vmx);
9654         vmx_recover_nmi_blocking(vmx);
9655         vmx_complete_interrupts(vmx);
9656 }
9657 STACK_FRAME_NON_STANDARD(vmx_vcpu_run);
9658
9659 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
9660 {
9661         struct vcpu_vmx *vmx = to_vmx(vcpu);
9662         int cpu;
9663
9664         if (vmx->loaded_vmcs == vmcs)
9665                 return;
9666
9667         cpu = get_cpu();
9668         vmx->loaded_vmcs = vmcs;
9669         vmx_vcpu_put(vcpu);
9670         vmx_vcpu_load(vcpu, cpu);
9671         put_cpu();
9672 }
9673
9674 /*
9675  * Ensure that the current vmcs of the logical processor is the
9676  * vmcs01 of the vcpu before calling free_nested().
9677  */
9678 static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
9679 {
9680        struct vcpu_vmx *vmx = to_vmx(vcpu);
9681
9682        vcpu_load(vcpu);
9683        vmx_switch_vmcs(vcpu, &vmx->vmcs01);
9684        free_nested(vmx);
9685        vcpu_put(vcpu);
9686 }
9687
9688 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
9689 {
9690         struct vcpu_vmx *vmx = to_vmx(vcpu);
9691
9692         if (enable_pml)
9693                 vmx_destroy_pml_buffer(vmx);
9694         free_vpid(vmx->vpid);
9695         leave_guest_mode(vcpu);
9696         vmx_free_vcpu_nested(vcpu);
9697         free_loaded_vmcs(vmx->loaded_vmcs);
9698         kfree(vmx->guest_msrs);
9699         kvm_vcpu_uninit(vcpu);
9700         kmem_cache_free(kvm_vcpu_cache, vmx);
9701 }
9702
9703 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
9704 {
9705         int err;
9706         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
9707         unsigned long *msr_bitmap;
9708         int cpu;
9709
9710         if (!vmx)
9711                 return ERR_PTR(-ENOMEM);
9712
9713         vmx->vpid = allocate_vpid();
9714
9715         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
9716         if (err)
9717                 goto free_vcpu;
9718
9719         err = -ENOMEM;
9720
9721         /*
9722          * If PML is turned on, failure on enabling PML just results in failure
9723          * of creating the vcpu, therefore we can simplify PML logic (by
9724          * avoiding dealing with cases, such as enabling PML partially on vcpus
9725          * for the guest, etc.
9726          */
9727         if (enable_pml) {
9728                 vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
9729                 if (!vmx->pml_pg)
9730                         goto uninit_vcpu;
9731         }
9732
9733         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
9734         BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
9735                      > PAGE_SIZE);
9736
9737         if (!vmx->guest_msrs)
9738                 goto free_pml;
9739
9740         err = alloc_loaded_vmcs(&vmx->vmcs01);
9741         if (err < 0)
9742                 goto free_msrs;
9743
9744         msr_bitmap = vmx->vmcs01.msr_bitmap;
9745         vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
9746         vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
9747         vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
9748         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
9749         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
9750         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
9751         vmx->msr_bitmap_mode = 0;
9752
9753         vmx->loaded_vmcs = &vmx->vmcs01;
9754         cpu = get_cpu();
9755         vmx_vcpu_load(&vmx->vcpu, cpu);
9756         vmx->vcpu.cpu = cpu;
9757         vmx_vcpu_setup(vmx);
9758         vmx_vcpu_put(&vmx->vcpu);
9759         put_cpu();
9760         if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9761                 err = alloc_apic_access_page(kvm);
9762                 if (err)
9763                         goto free_vmcs;
9764         }
9765
9766         if (enable_ept) {
9767                 err = init_rmode_identity_map(kvm);
9768                 if (err)
9769                         goto free_vmcs;
9770         }
9771
9772         if (nested) {
9773                 nested_vmx_setup_ctls_msrs(vmx);
9774                 vmx->nested.vpid02 = allocate_vpid();
9775         }
9776
9777         vmx->nested.posted_intr_nv = -1;
9778         vmx->nested.current_vmptr = -1ull;
9779
9780         vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
9781
9782         /*
9783          * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
9784          * or POSTED_INTR_WAKEUP_VECTOR.
9785          */
9786         vmx->pi_desc.nv = POSTED_INTR_VECTOR;
9787         vmx->pi_desc.sn = 1;
9788
9789         return &vmx->vcpu;
9790
9791 free_vmcs:
9792         free_vpid(vmx->nested.vpid02);
9793         free_loaded_vmcs(vmx->loaded_vmcs);
9794 free_msrs:
9795         kfree(vmx->guest_msrs);
9796 free_pml:
9797         vmx_destroy_pml_buffer(vmx);
9798 uninit_vcpu:
9799         kvm_vcpu_uninit(&vmx->vcpu);
9800 free_vcpu:
9801         free_vpid(vmx->vpid);
9802         kmem_cache_free(kvm_vcpu_cache, vmx);
9803         return ERR_PTR(err);
9804 }
9805
9806 static void __init vmx_check_processor_compat(void *rtn)
9807 {
9808         struct vmcs_config vmcs_conf;
9809
9810         *(int *)rtn = 0;
9811         if (setup_vmcs_config(&vmcs_conf) < 0)
9812                 *(int *)rtn = -EIO;
9813         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
9814                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
9815                                 smp_processor_id());
9816                 *(int *)rtn = -EIO;
9817         }
9818 }
9819
9820 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
9821 {
9822         u8 cache;
9823         u64 ipat = 0;
9824
9825         /* For VT-d and EPT combination
9826          * 1. MMIO: always map as UC
9827          * 2. EPT with VT-d:
9828          *   a. VT-d without snooping control feature: can't guarantee the
9829          *      result, try to trust guest.
9830          *   b. VT-d with snooping control feature: snooping control feature of
9831          *      VT-d engine can guarantee the cache correctness. Just set it
9832          *      to WB to keep consistent with host. So the same as item 3.
9833          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
9834          *    consistent with host MTRR
9835          */
9836         if (is_mmio) {
9837                 cache = MTRR_TYPE_UNCACHABLE;
9838                 goto exit;
9839         }
9840
9841         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
9842                 ipat = VMX_EPT_IPAT_BIT;
9843                 cache = MTRR_TYPE_WRBACK;
9844                 goto exit;
9845         }
9846
9847         if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9848                 ipat = VMX_EPT_IPAT_BIT;
9849                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
9850                         cache = MTRR_TYPE_WRBACK;
9851                 else
9852                         cache = MTRR_TYPE_UNCACHABLE;
9853                 goto exit;
9854         }
9855
9856         cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
9857
9858 exit:
9859         return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
9860 }
9861
9862 static int vmx_get_lpage_level(void)
9863 {
9864         if (enable_ept && !cpu_has_vmx_ept_1g_page())
9865                 return PT_DIRECTORY_LEVEL;
9866         else
9867                 /* For shadow and EPT supported 1GB page */
9868                 return PT_PDPE_LEVEL;
9869 }
9870
9871 static void vmcs_set_secondary_exec_control(u32 new_ctl)
9872 {
9873         /*
9874          * These bits in the secondary execution controls field
9875          * are dynamic, the others are mostly based on the hypervisor
9876          * architecture and the guest's CPUID.  Do not touch the
9877          * dynamic bits.
9878          */
9879         u32 mask =
9880                 SECONDARY_EXEC_SHADOW_VMCS |
9881                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9882                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
9883                 SECONDARY_EXEC_DESC;
9884
9885         u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9886
9887         vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9888                      (new_ctl & ~mask) | (cur_ctl & mask));
9889 }
9890
9891 /*
9892  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
9893  * (indicating "allowed-1") if they are supported in the guest's CPUID.
9894  */
9895 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
9896 {
9897         struct vcpu_vmx *vmx = to_vmx(vcpu);
9898         struct kvm_cpuid_entry2 *entry;
9899
9900         vmx->nested.nested_vmx_cr0_fixed1 = 0xffffffff;
9901         vmx->nested.nested_vmx_cr4_fixed1 = X86_CR4_PCE;
9902
9903 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
9904         if (entry && (entry->_reg & (_cpuid_mask)))                     \
9905                 vmx->nested.nested_vmx_cr4_fixed1 |= (_cr4_mask);       \
9906 } while (0)
9907
9908         entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
9909         cr4_fixed1_update(X86_CR4_VME,        edx, bit(X86_FEATURE_VME));
9910         cr4_fixed1_update(X86_CR4_PVI,        edx, bit(X86_FEATURE_VME));
9911         cr4_fixed1_update(X86_CR4_TSD,        edx, bit(X86_FEATURE_TSC));
9912         cr4_fixed1_update(X86_CR4_DE,         edx, bit(X86_FEATURE_DE));
9913         cr4_fixed1_update(X86_CR4_PSE,        edx, bit(X86_FEATURE_PSE));
9914         cr4_fixed1_update(X86_CR4_PAE,        edx, bit(X86_FEATURE_PAE));
9915         cr4_fixed1_update(X86_CR4_MCE,        edx, bit(X86_FEATURE_MCE));
9916         cr4_fixed1_update(X86_CR4_PGE,        edx, bit(X86_FEATURE_PGE));
9917         cr4_fixed1_update(X86_CR4_OSFXSR,     edx, bit(X86_FEATURE_FXSR));
9918         cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
9919         cr4_fixed1_update(X86_CR4_VMXE,       ecx, bit(X86_FEATURE_VMX));
9920         cr4_fixed1_update(X86_CR4_SMXE,       ecx, bit(X86_FEATURE_SMX));
9921         cr4_fixed1_update(X86_CR4_PCIDE,      ecx, bit(X86_FEATURE_PCID));
9922         cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, bit(X86_FEATURE_XSAVE));
9923
9924         entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9925         cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, bit(X86_FEATURE_FSGSBASE));
9926         cr4_fixed1_update(X86_CR4_SMEP,       ebx, bit(X86_FEATURE_SMEP));
9927         cr4_fixed1_update(X86_CR4_SMAP,       ebx, bit(X86_FEATURE_SMAP));
9928         cr4_fixed1_update(X86_CR4_PKE,        ecx, bit(X86_FEATURE_PKU));
9929         cr4_fixed1_update(X86_CR4_UMIP,       ecx, bit(X86_FEATURE_UMIP));
9930
9931 #undef cr4_fixed1_update
9932 }
9933
9934 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9935 {
9936         struct vcpu_vmx *vmx = to_vmx(vcpu);
9937
9938         if (cpu_has_secondary_exec_ctrls()) {
9939                 vmx_compute_secondary_exec_control(vmx);
9940                 vmcs_set_secondary_exec_control(vmx->secondary_exec_control);
9941         }
9942
9943         if (nested_vmx_allowed(vcpu))
9944                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
9945                         FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9946         else
9947                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
9948                         ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9949
9950         if (nested_vmx_allowed(vcpu))
9951                 nested_vmx_cr_fixed1_bits_update(vcpu);
9952 }
9953
9954 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9955 {
9956         if (func == 1 && nested)
9957                 entry->ecx |= bit(X86_FEATURE_VMX);
9958 }
9959
9960 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9961                 struct x86_exception *fault)
9962 {
9963         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9964         struct vcpu_vmx *vmx = to_vmx(vcpu);
9965         u32 exit_reason;
9966         unsigned long exit_qualification = vcpu->arch.exit_qualification;
9967
9968         if (vmx->nested.pml_full) {
9969                 exit_reason = EXIT_REASON_PML_FULL;
9970                 vmx->nested.pml_full = false;
9971                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
9972         } else if (fault->error_code & PFERR_RSVD_MASK)
9973                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
9974         else
9975                 exit_reason = EXIT_REASON_EPT_VIOLATION;
9976
9977         nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
9978         vmcs12->guest_physical_address = fault->address;
9979 }
9980
9981 static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu)
9982 {
9983         return nested_ept_get_cr3(vcpu) & VMX_EPTP_AD_ENABLE_BIT;
9984 }
9985
9986 /* Callbacks for nested_ept_init_mmu_context: */
9987
9988 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9989 {
9990         /* return the page table to be shadowed - in our case, EPT12 */
9991         return get_vmcs12(vcpu)->ept_pointer;
9992 }
9993
9994 static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
9995 {
9996         WARN_ON(mmu_is_nested(vcpu));
9997         if (!valid_ept_address(vcpu, nested_ept_get_cr3(vcpu)))
9998                 return 1;
9999
10000         kvm_mmu_unload(vcpu);
10001         kvm_init_shadow_ept_mmu(vcpu,
10002                         to_vmx(vcpu)->nested.nested_vmx_ept_caps &
10003                         VMX_EPT_EXECUTE_ONLY_BIT,
10004                         nested_ept_ad_enabled(vcpu));
10005         vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
10006         vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
10007         vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
10008
10009         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
10010         return 0;
10011 }
10012
10013 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
10014 {
10015         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
10016 }
10017
10018 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
10019                                             u16 error_code)
10020 {
10021         bool inequality, bit;
10022
10023         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
10024         inequality =
10025                 (error_code & vmcs12->page_fault_error_code_mask) !=
10026                  vmcs12->page_fault_error_code_match;
10027         return inequality ^ bit;
10028 }
10029
10030 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
10031                 struct x86_exception *fault)
10032 {
10033         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10034
10035         WARN_ON(!is_guest_mode(vcpu));
10036
10037         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
10038                 !to_vmx(vcpu)->nested.nested_run_pending) {
10039                 vmcs12->vm_exit_intr_error_code = fault->error_code;
10040                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10041                                   PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
10042                                   INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
10043                                   fault->address);
10044         } else {
10045                 kvm_inject_page_fault(vcpu, fault);
10046         }
10047 }
10048
10049 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
10050                                                  struct vmcs12 *vmcs12);
10051
10052 static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
10053                                         struct vmcs12 *vmcs12)
10054 {
10055         struct vcpu_vmx *vmx = to_vmx(vcpu);
10056         struct page *page;
10057         u64 hpa;
10058
10059         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
10060                 /*
10061                  * Translate L1 physical address to host physical
10062                  * address for vmcs02. Keep the page pinned, so this
10063                  * physical address remains valid. We keep a reference
10064                  * to it so we can release it later.
10065                  */
10066                 if (vmx->nested.apic_access_page) { /* shouldn't happen */
10067                         kvm_release_page_dirty(vmx->nested.apic_access_page);
10068                         vmx->nested.apic_access_page = NULL;
10069                 }
10070                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
10071                 /*
10072                  * If translation failed, no matter: This feature asks
10073                  * to exit when accessing the given address, and if it
10074                  * can never be accessed, this feature won't do
10075                  * anything anyway.
10076                  */
10077                 if (!is_error_page(page)) {
10078                         vmx->nested.apic_access_page = page;
10079                         hpa = page_to_phys(vmx->nested.apic_access_page);
10080                         vmcs_write64(APIC_ACCESS_ADDR, hpa);
10081                 } else {
10082                         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
10083                                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
10084                 }
10085         } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
10086                    cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
10087                 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
10088                               SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
10089                 kvm_vcpu_reload_apic_access_page(vcpu);
10090         }
10091
10092         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
10093                 if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
10094                         kvm_release_page_dirty(vmx->nested.virtual_apic_page);
10095                         vmx->nested.virtual_apic_page = NULL;
10096                 }
10097                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
10098
10099                 /*
10100                  * If translation failed, VM entry will fail because
10101                  * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
10102                  * Failing the vm entry is _not_ what the processor
10103                  * does but it's basically the only possibility we
10104                  * have.  We could still enter the guest if CR8 load
10105                  * exits are enabled, CR8 store exits are enabled, and
10106                  * virtualize APIC access is disabled; in this case
10107                  * the processor would never use the TPR shadow and we
10108                  * could simply clear the bit from the execution
10109                  * control.  But such a configuration is useless, so
10110                  * let's keep the code simple.
10111                  */
10112                 if (!is_error_page(page)) {
10113                         vmx->nested.virtual_apic_page = page;
10114                         hpa = page_to_phys(vmx->nested.virtual_apic_page);
10115                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
10116                 }
10117         }
10118
10119         if (nested_cpu_has_posted_intr(vmcs12)) {
10120                 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
10121                         kunmap(vmx->nested.pi_desc_page);
10122                         kvm_release_page_dirty(vmx->nested.pi_desc_page);
10123                         vmx->nested.pi_desc_page = NULL;
10124                 }
10125                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
10126                 if (is_error_page(page))
10127                         return;
10128                 vmx->nested.pi_desc_page = page;
10129                 vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
10130                 vmx->nested.pi_desc =
10131                         (struct pi_desc *)((void *)vmx->nested.pi_desc +
10132                         (unsigned long)(vmcs12->posted_intr_desc_addr &
10133                         (PAGE_SIZE - 1)));
10134                 vmcs_write64(POSTED_INTR_DESC_ADDR,
10135                         page_to_phys(vmx->nested.pi_desc_page) +
10136                         (unsigned long)(vmcs12->posted_intr_desc_addr &
10137                         (PAGE_SIZE - 1)));
10138         }
10139         if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
10140                 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
10141                               CPU_BASED_USE_MSR_BITMAPS);
10142         else
10143                 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
10144                                 CPU_BASED_USE_MSR_BITMAPS);
10145 }
10146
10147 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
10148 {
10149         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
10150         struct vcpu_vmx *vmx = to_vmx(vcpu);
10151
10152         if (vcpu->arch.virtual_tsc_khz == 0)
10153                 return;
10154
10155         /* Make sure short timeouts reliably trigger an immediate vmexit.
10156          * hrtimer_start does not guarantee this. */
10157         if (preemption_timeout <= 1) {
10158                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
10159                 return;
10160         }
10161
10162         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10163         preemption_timeout *= 1000000;
10164         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
10165         hrtimer_start(&vmx->nested.preemption_timer,
10166                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
10167 }
10168
10169 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
10170                                                struct vmcs12 *vmcs12)
10171 {
10172         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
10173                 return 0;
10174
10175         if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
10176             !page_address_valid(vcpu, vmcs12->io_bitmap_b))
10177                 return -EINVAL;
10178
10179         return 0;
10180 }
10181
10182 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
10183                                                 struct vmcs12 *vmcs12)
10184 {
10185         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
10186                 return 0;
10187
10188         if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
10189                 return -EINVAL;
10190
10191         return 0;
10192 }
10193
10194 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
10195                                                 struct vmcs12 *vmcs12)
10196 {
10197         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
10198                 return 0;
10199
10200         if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
10201                 return -EINVAL;
10202
10203         return 0;
10204 }
10205
10206 /*
10207  * Merge L0's and L1's MSR bitmap, return false to indicate that
10208  * we do not use the hardware.
10209  */
10210 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
10211                                                  struct vmcs12 *vmcs12)
10212 {
10213         int msr;
10214         struct page *page;
10215         unsigned long *msr_bitmap_l1;
10216         unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
10217         /*
10218          * pred_cmd & spec_ctrl are trying to verify two things:
10219          *
10220          * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
10221          *    ensures that we do not accidentally generate an L02 MSR bitmap
10222          *    from the L12 MSR bitmap that is too permissive.
10223          * 2. That L1 or L2s have actually used the MSR. This avoids
10224          *    unnecessarily merging of the bitmap if the MSR is unused. This
10225          *    works properly because we only update the L01 MSR bitmap lazily.
10226          *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
10227          *    updated to reflect this when L1 (or its L2s) actually write to
10228          *    the MSR.
10229          */
10230         bool pred_cmd = !msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD);
10231         bool spec_ctrl = !msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL);
10232
10233         /* Nothing to do if the MSR bitmap is not in use.  */
10234         if (!cpu_has_vmx_msr_bitmap() ||
10235             !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
10236                 return false;
10237
10238         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
10239             !pred_cmd && !spec_ctrl)
10240                 return false;
10241
10242         page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
10243         if (is_error_page(page))
10244                 return false;
10245
10246         msr_bitmap_l1 = (unsigned long *)kmap(page);
10247         if (nested_cpu_has_apic_reg_virt(vmcs12)) {
10248                 /*
10249                  * L0 need not intercept reads for MSRs between 0x800 and 0x8ff, it
10250                  * just lets the processor take the value from the virtual-APIC page;
10251                  * take those 256 bits directly from the L1 bitmap.
10252                  */
10253                 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
10254                         unsigned word = msr / BITS_PER_LONG;
10255                         msr_bitmap_l0[word] = msr_bitmap_l1[word];
10256                         msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
10257                 }
10258         } else {
10259                 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
10260                         unsigned word = msr / BITS_PER_LONG;
10261                         msr_bitmap_l0[word] = ~0;
10262                         msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
10263                 }
10264         }
10265
10266         nested_vmx_disable_intercept_for_msr(
10267                 msr_bitmap_l1, msr_bitmap_l0,
10268                 X2APIC_MSR(APIC_TASKPRI),
10269                 MSR_TYPE_W);
10270
10271         if (nested_cpu_has_vid(vmcs12)) {
10272                 nested_vmx_disable_intercept_for_msr(
10273                         msr_bitmap_l1, msr_bitmap_l0,
10274                         X2APIC_MSR(APIC_EOI),
10275                         MSR_TYPE_W);
10276                 nested_vmx_disable_intercept_for_msr(
10277                         msr_bitmap_l1, msr_bitmap_l0,
10278                         X2APIC_MSR(APIC_SELF_IPI),
10279                         MSR_TYPE_W);
10280         }
10281
10282         if (spec_ctrl)
10283                 nested_vmx_disable_intercept_for_msr(
10284                                         msr_bitmap_l1, msr_bitmap_l0,
10285                                         MSR_IA32_SPEC_CTRL,
10286                                         MSR_TYPE_R | MSR_TYPE_W);
10287
10288         if (pred_cmd)
10289                 nested_vmx_disable_intercept_for_msr(
10290                                         msr_bitmap_l1, msr_bitmap_l0,
10291                                         MSR_IA32_PRED_CMD,
10292                                         MSR_TYPE_W);
10293
10294         kunmap(page);
10295         kvm_release_page_clean(page);
10296
10297         return true;
10298 }
10299
10300 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
10301                                            struct vmcs12 *vmcs12)
10302 {
10303         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
10304             !nested_cpu_has_apic_reg_virt(vmcs12) &&
10305             !nested_cpu_has_vid(vmcs12) &&
10306             !nested_cpu_has_posted_intr(vmcs12))
10307                 return 0;
10308
10309         /*
10310          * If virtualize x2apic mode is enabled,
10311          * virtualize apic access must be disabled.
10312          */
10313         if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
10314             nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
10315                 return -EINVAL;
10316
10317         /*
10318          * If virtual interrupt delivery is enabled,
10319          * we must exit on external interrupts.
10320          */
10321         if (nested_cpu_has_vid(vmcs12) &&
10322            !nested_exit_on_intr(vcpu))
10323                 return -EINVAL;
10324
10325         /*
10326          * bits 15:8 should be zero in posted_intr_nv,
10327          * the descriptor address has been already checked
10328          * in nested_get_vmcs12_pages.
10329          */
10330         if (nested_cpu_has_posted_intr(vmcs12) &&
10331            (!nested_cpu_has_vid(vmcs12) ||
10332             !nested_exit_intr_ack_set(vcpu) ||
10333             vmcs12->posted_intr_nv & 0xff00))
10334                 return -EINVAL;
10335
10336         /* tpr shadow is needed by all apicv features. */
10337         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
10338                 return -EINVAL;
10339
10340         return 0;
10341 }
10342
10343 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
10344                                        unsigned long count_field,
10345                                        unsigned long addr_field)
10346 {
10347         int maxphyaddr;
10348         u64 count, addr;
10349
10350         if (vmcs12_read_any(vcpu, count_field, &count) ||
10351             vmcs12_read_any(vcpu, addr_field, &addr)) {
10352                 WARN_ON(1);
10353                 return -EINVAL;
10354         }
10355         if (count == 0)
10356                 return 0;
10357         maxphyaddr = cpuid_maxphyaddr(vcpu);
10358         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
10359             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
10360                 pr_debug_ratelimited(
10361                         "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
10362                         addr_field, maxphyaddr, count, addr);
10363                 return -EINVAL;
10364         }
10365         return 0;
10366 }
10367
10368 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
10369                                                 struct vmcs12 *vmcs12)
10370 {
10371         if (vmcs12->vm_exit_msr_load_count == 0 &&
10372             vmcs12->vm_exit_msr_store_count == 0 &&
10373             vmcs12->vm_entry_msr_load_count == 0)
10374                 return 0; /* Fast path */
10375         if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
10376                                         VM_EXIT_MSR_LOAD_ADDR) ||
10377             nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
10378                                         VM_EXIT_MSR_STORE_ADDR) ||
10379             nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
10380                                         VM_ENTRY_MSR_LOAD_ADDR))
10381                 return -EINVAL;
10382         return 0;
10383 }
10384
10385 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
10386                                          struct vmcs12 *vmcs12)
10387 {
10388         u64 address = vmcs12->pml_address;
10389         int maxphyaddr = cpuid_maxphyaddr(vcpu);
10390
10391         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML)) {
10392                 if (!nested_cpu_has_ept(vmcs12) ||
10393                     !IS_ALIGNED(address, 4096)  ||
10394                     address >> maxphyaddr)
10395                         return -EINVAL;
10396         }
10397
10398         return 0;
10399 }
10400
10401 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
10402                                        struct vmx_msr_entry *e)
10403 {
10404         /* x2APIC MSR accesses are not allowed */
10405         if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
10406                 return -EINVAL;
10407         if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
10408             e->index == MSR_IA32_UCODE_REV)
10409                 return -EINVAL;
10410         if (e->reserved != 0)
10411                 return -EINVAL;
10412         return 0;
10413 }
10414
10415 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
10416                                      struct vmx_msr_entry *e)
10417 {
10418         if (e->index == MSR_FS_BASE ||
10419             e->index == MSR_GS_BASE ||
10420             e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
10421             nested_vmx_msr_check_common(vcpu, e))
10422                 return -EINVAL;
10423         return 0;
10424 }
10425
10426 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
10427                                       struct vmx_msr_entry *e)
10428 {
10429         if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
10430             nested_vmx_msr_check_common(vcpu, e))
10431                 return -EINVAL;
10432         return 0;
10433 }
10434
10435 /*
10436  * Load guest's/host's msr at nested entry/exit.
10437  * return 0 for success, entry index for failure.
10438  */
10439 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
10440 {
10441         u32 i;
10442         struct vmx_msr_entry e;
10443         struct msr_data msr;
10444
10445         msr.host_initiated = false;
10446         for (i = 0; i < count; i++) {
10447                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
10448                                         &e, sizeof(e))) {
10449                         pr_debug_ratelimited(
10450                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
10451                                 __func__, i, gpa + i * sizeof(e));
10452                         goto fail;
10453                 }
10454                 if (nested_vmx_load_msr_check(vcpu, &e)) {
10455                         pr_debug_ratelimited(
10456                                 "%s check failed (%u, 0x%x, 0x%x)\n",
10457                                 __func__, i, e.index, e.reserved);
10458                         goto fail;
10459                 }
10460                 msr.index = e.index;
10461                 msr.data = e.value;
10462                 if (kvm_set_msr(vcpu, &msr)) {
10463                         pr_debug_ratelimited(
10464                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
10465                                 __func__, i, e.index, e.value);
10466                         goto fail;
10467                 }
10468         }
10469         return 0;
10470 fail:
10471         return i + 1;
10472 }
10473
10474 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
10475 {
10476         u32 i;
10477         struct vmx_msr_entry e;
10478
10479         for (i = 0; i < count; i++) {
10480                 struct msr_data msr_info;
10481                 if (kvm_vcpu_read_guest(vcpu,
10482                                         gpa + i * sizeof(e),
10483                                         &e, 2 * sizeof(u32))) {
10484                         pr_debug_ratelimited(
10485                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
10486                                 __func__, i, gpa + i * sizeof(e));
10487                         return -EINVAL;
10488                 }
10489                 if (nested_vmx_store_msr_check(vcpu, &e)) {
10490                         pr_debug_ratelimited(
10491                                 "%s check failed (%u, 0x%x, 0x%x)\n",
10492                                 __func__, i, e.index, e.reserved);
10493                         return -EINVAL;
10494                 }
10495                 msr_info.host_initiated = false;
10496                 msr_info.index = e.index;
10497                 if (kvm_get_msr(vcpu, &msr_info)) {
10498                         pr_debug_ratelimited(
10499                                 "%s cannot read MSR (%u, 0x%x)\n",
10500                                 __func__, i, e.index);
10501                         return -EINVAL;
10502                 }
10503                 if (kvm_vcpu_write_guest(vcpu,
10504                                          gpa + i * sizeof(e) +
10505                                              offsetof(struct vmx_msr_entry, value),
10506                                          &msr_info.data, sizeof(msr_info.data))) {
10507                         pr_debug_ratelimited(
10508                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
10509                                 __func__, i, e.index, msr_info.data);
10510                         return -EINVAL;
10511                 }
10512         }
10513         return 0;
10514 }
10515
10516 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
10517 {
10518         unsigned long invalid_mask;
10519
10520         invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
10521         return (val & invalid_mask) == 0;
10522 }
10523
10524 /*
10525  * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
10526  * emulating VM entry into a guest with EPT enabled.
10527  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10528  * is assigned to entry_failure_code on failure.
10529  */
10530 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
10531                                u32 *entry_failure_code)
10532 {
10533         if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
10534                 if (!nested_cr3_valid(vcpu, cr3)) {
10535                         *entry_failure_code = ENTRY_FAIL_DEFAULT;
10536                         return 1;
10537                 }
10538
10539                 /*
10540                  * If PAE paging and EPT are both on, CR3 is not used by the CPU and
10541                  * must not be dereferenced.
10542                  */
10543                 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
10544                     !nested_ept) {
10545                         if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
10546                                 *entry_failure_code = ENTRY_FAIL_PDPTE;
10547                                 return 1;
10548                         }
10549                 }
10550
10551                 vcpu->arch.cr3 = cr3;
10552                 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
10553         }
10554
10555         kvm_mmu_reset_context(vcpu);
10556         return 0;
10557 }
10558
10559 static void prepare_vmcs02_full(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10560                                bool from_vmentry)
10561 {
10562         struct vcpu_vmx *vmx = to_vmx(vcpu);
10563
10564         vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
10565         vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
10566         vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
10567         vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
10568         vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
10569         vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
10570         vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
10571         vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
10572         vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
10573         vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
10574         vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
10575         vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
10576         vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
10577         vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
10578         vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
10579         vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
10580         vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
10581         vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
10582         vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
10583         vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
10584         vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
10585         vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
10586         vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
10587         vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
10588         vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
10589         vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
10590         vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
10591         vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
10592         vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
10593         vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
10594         vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
10595
10596         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
10597         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
10598                 vmcs12->guest_pending_dbg_exceptions);
10599         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
10600         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
10601
10602         if (nested_cpu_has_xsaves(vmcs12))
10603                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
10604         vmcs_write64(VMCS_LINK_POINTER, -1ull);
10605
10606         if (cpu_has_vmx_posted_intr())
10607                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
10608
10609         /*
10610          * Whether page-faults are trapped is determined by a combination of
10611          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
10612          * If enable_ept, L0 doesn't care about page faults and we should
10613          * set all of these to L1's desires. However, if !enable_ept, L0 does
10614          * care about (at least some) page faults, and because it is not easy
10615          * (if at all possible?) to merge L0 and L1's desires, we simply ask
10616          * to exit on each and every L2 page fault. This is done by setting
10617          * MASK=MATCH=0 and (see below) EB.PF=1.
10618          * Note that below we don't need special code to set EB.PF beyond the
10619          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
10620          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
10621          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
10622          */
10623         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
10624                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
10625         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
10626                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
10627
10628         /* All VMFUNCs are currently emulated through L0 vmexits.  */
10629         if (cpu_has_vmx_vmfunc())
10630                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
10631
10632         if (cpu_has_vmx_apicv()) {
10633                 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
10634                 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
10635                 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
10636                 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
10637         }
10638
10639         /*
10640          * Set host-state according to L0's settings (vmcs12 is irrelevant here)
10641          * Some constant fields are set here by vmx_set_constant_host_state().
10642          * Other fields are different per CPU, and will be set later when
10643          * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
10644          */
10645         vmx_set_constant_host_state(vmx);
10646
10647         /*
10648          * Set the MSR load/store lists to match L0's settings.
10649          */
10650         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
10651         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10652         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
10653         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10654         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
10655
10656         set_cr4_guest_host_mask(vmx);
10657
10658         if (vmx_mpx_supported())
10659                 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
10660
10661         if (enable_vpid) {
10662                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
10663                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
10664                 else
10665                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
10666         }
10667
10668         /*
10669          * L1 may access the L2's PDPTR, so save them to construct vmcs12
10670          */
10671         if (enable_ept) {
10672                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
10673                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
10674                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
10675                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
10676         }
10677
10678         if (cpu_has_vmx_msr_bitmap())
10679                 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
10680 }
10681
10682 /*
10683  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
10684  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
10685  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
10686  * guest in a way that will both be appropriate to L1's requests, and our
10687  * needs. In addition to modifying the active vmcs (which is vmcs02), this
10688  * function also has additional necessary side-effects, like setting various
10689  * vcpu->arch fields.
10690  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10691  * is assigned to entry_failure_code on failure.
10692  */
10693 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10694                           bool from_vmentry, u32 *entry_failure_code)
10695 {
10696         struct vcpu_vmx *vmx = to_vmx(vcpu);
10697         u32 exec_control, vmcs12_exec_ctrl;
10698
10699         /*
10700          * First, the fields that are shadowed.  This must be kept in sync
10701          * with vmx_shadow_fields.h.
10702          */
10703
10704         vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
10705         vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
10706         vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
10707         vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
10708         vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
10709
10710         /*
10711          * Not in vmcs02: GUEST_PML_INDEX, HOST_FS_SELECTOR, HOST_GS_SELECTOR,
10712          * HOST_FS_BASE, HOST_GS_BASE.
10713          */
10714
10715         if (from_vmentry &&
10716             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
10717                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
10718                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
10719         } else {
10720                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
10721                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
10722         }
10723         if (from_vmentry) {
10724                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
10725                              vmcs12->vm_entry_intr_info_field);
10726                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
10727                              vmcs12->vm_entry_exception_error_code);
10728                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
10729                              vmcs12->vm_entry_instruction_len);
10730                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
10731                              vmcs12->guest_interruptibility_info);
10732                 vmx->loaded_vmcs->nmi_known_unmasked =
10733                         !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
10734         } else {
10735                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
10736         }
10737         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
10738
10739         exec_control = vmcs12->pin_based_vm_exec_control;
10740
10741         /* Preemption timer setting is only taken from vmcs01.  */
10742         exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
10743         exec_control |= vmcs_config.pin_based_exec_ctrl;
10744         if (vmx->hv_deadline_tsc == -1)
10745                 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
10746
10747         /* Posted interrupts setting is only taken from vmcs12.  */
10748         if (nested_cpu_has_posted_intr(vmcs12)) {
10749                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
10750                 vmx->nested.pi_pending = false;
10751         } else {
10752                 exec_control &= ~PIN_BASED_POSTED_INTR;
10753         }
10754
10755         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
10756
10757         vmx->nested.preemption_timer_expired = false;
10758         if (nested_cpu_has_preemption_timer(vmcs12))
10759                 vmx_start_preemption_timer(vcpu);
10760
10761         if (cpu_has_secondary_exec_ctrls()) {
10762                 exec_control = vmx->secondary_exec_control;
10763
10764                 /* Take the following fields only from vmcs12 */
10765                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
10766                                   SECONDARY_EXEC_ENABLE_INVPCID |
10767                                   SECONDARY_EXEC_RDTSCP |
10768                                   SECONDARY_EXEC_XSAVES |
10769                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
10770                                   SECONDARY_EXEC_APIC_REGISTER_VIRT |
10771                                   SECONDARY_EXEC_ENABLE_VMFUNC);
10772                 if (nested_cpu_has(vmcs12,
10773                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
10774                         vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
10775                                 ~SECONDARY_EXEC_ENABLE_PML;
10776                         exec_control |= vmcs12_exec_ctrl;
10777                 }
10778
10779                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
10780                         vmcs_write16(GUEST_INTR_STATUS,
10781                                 vmcs12->guest_intr_status);
10782
10783                 /*
10784                  * Write an illegal value to APIC_ACCESS_ADDR. Later,
10785                  * nested_get_vmcs12_pages will either fix it up or
10786                  * remove the VM execution control.
10787                  */
10788                 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
10789                         vmcs_write64(APIC_ACCESS_ADDR, -1ull);
10790
10791                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
10792         }
10793
10794         /*
10795          * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
10796          * entry, but only if the current (host) sp changed from the value
10797          * we wrote last (vmx->host_rsp). This cache is no longer relevant
10798          * if we switch vmcs, and rather than hold a separate cache per vmcs,
10799          * here we just force the write to happen on entry.
10800          */
10801         vmx->host_rsp = 0;
10802
10803         exec_control = vmx_exec_control(vmx); /* L0's desires */
10804         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
10805         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
10806         exec_control &= ~CPU_BASED_TPR_SHADOW;
10807         exec_control |= vmcs12->cpu_based_vm_exec_control;
10808
10809         /*
10810          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
10811          * nested_get_vmcs12_pages can't fix it up, the illegal value
10812          * will result in a VM entry failure.
10813          */
10814         if (exec_control & CPU_BASED_TPR_SHADOW) {
10815                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
10816                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
10817         } else {
10818 #ifdef CONFIG_X86_64
10819                 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
10820                                 CPU_BASED_CR8_STORE_EXITING;
10821 #endif
10822         }
10823
10824         /*
10825          * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
10826          * for I/O port accesses.
10827          */
10828         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
10829         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
10830
10831         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
10832
10833         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
10834          * bitwise-or of what L1 wants to trap for L2, and what we want to
10835          * trap. Note that CR0.TS also needs updating - we do this later.
10836          */
10837         update_exception_bitmap(vcpu);
10838         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
10839         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10840
10841         /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
10842          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
10843          * bits are further modified by vmx_set_efer() below.
10844          */
10845         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
10846
10847         /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
10848          * emulated by vmx_set_efer(), below.
10849          */
10850         vm_entry_controls_init(vmx, 
10851                 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
10852                         ~VM_ENTRY_IA32E_MODE) |
10853                 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
10854
10855         if (from_vmentry &&
10856             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
10857                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
10858                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
10859         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
10860                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
10861         }
10862
10863         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
10864                 vmcs_write64(TSC_OFFSET,
10865                         vcpu->arch.tsc_offset + vmcs12->tsc_offset);
10866         else
10867                 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
10868         if (kvm_has_tsc_control)
10869                 decache_tsc_multiplier(vmx);
10870
10871         if (enable_vpid) {
10872                 /*
10873                  * There is no direct mapping between vpid02 and vpid12, the
10874                  * vpid02 is per-vCPU for L0 and reused while the value of
10875                  * vpid12 is changed w/ one invvpid during nested vmentry.
10876                  * The vpid12 is allocated by L1 for L2, so it will not
10877                  * influence global bitmap(for vpid01 and vpid02 allocation)
10878                  * even if spawn a lot of nested vCPUs.
10879                  */
10880                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
10881                         if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
10882                                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
10883                                 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02, true);
10884                         }
10885                 } else {
10886                         vmx_flush_tlb(vcpu, true);
10887                 }
10888         }
10889
10890         if (enable_pml) {
10891                 /*
10892                  * Conceptually we want to copy the PML address and index from
10893                  * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
10894                  * since we always flush the log on each vmexit, this happens
10895                  * to be equivalent to simply resetting the fields in vmcs02.
10896                  */
10897                 ASSERT(vmx->pml_pg);
10898                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
10899                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
10900         }
10901
10902         if (nested_cpu_has_ept(vmcs12)) {
10903                 if (nested_ept_init_mmu_context(vcpu)) {
10904                         *entry_failure_code = ENTRY_FAIL_DEFAULT;
10905                         return 1;
10906                 }
10907         } else if (nested_cpu_has2(vmcs12,
10908                                    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
10909                 vmx_flush_tlb_ept_only(vcpu);
10910         }
10911
10912         /*
10913          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
10914          * bits which we consider mandatory enabled.
10915          * The CR0_READ_SHADOW is what L2 should have expected to read given
10916          * the specifications by L1; It's not enough to take
10917          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
10918          * have more bits than L1 expected.
10919          */
10920         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
10921         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
10922
10923         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
10924         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
10925
10926         if (from_vmentry &&
10927             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
10928                 vcpu->arch.efer = vmcs12->guest_ia32_efer;
10929         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
10930                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10931         else
10932                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10933         /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
10934         vmx_set_efer(vcpu, vcpu->arch.efer);
10935
10936         if (vmx->nested.dirty_vmcs12) {
10937                 prepare_vmcs02_full(vcpu, vmcs12, from_vmentry);
10938                 vmx->nested.dirty_vmcs12 = false;
10939         }
10940
10941         /* Shadow page tables on either EPT or shadow page tables. */
10942         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
10943                                 entry_failure_code))
10944                 return 1;
10945
10946         if (!enable_ept)
10947                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
10948
10949         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
10950         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
10951         return 0;
10952 }
10953
10954 static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10955 {
10956         struct vcpu_vmx *vmx = to_vmx(vcpu);
10957
10958         if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
10959             vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
10960                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10961
10962         if (nested_vmx_check_io_bitmap_controls(vcpu, vmcs12))
10963                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10964
10965         if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
10966                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10967
10968         if (nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12))
10969                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10970
10971         if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
10972                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10973
10974         if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
10975                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10976
10977         if (nested_vmx_check_pml_controls(vcpu, vmcs12))
10978                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10979
10980         if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
10981                                 vmx->nested.nested_vmx_procbased_ctls_low,
10982                                 vmx->nested.nested_vmx_procbased_ctls_high) ||
10983             (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
10984              !vmx_control_verify(vmcs12->secondary_vm_exec_control,
10985                                  vmx->nested.nested_vmx_secondary_ctls_low,
10986                                  vmx->nested.nested_vmx_secondary_ctls_high)) ||
10987             !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
10988                                 vmx->nested.nested_vmx_pinbased_ctls_low,
10989                                 vmx->nested.nested_vmx_pinbased_ctls_high) ||
10990             !vmx_control_verify(vmcs12->vm_exit_controls,
10991                                 vmx->nested.nested_vmx_exit_ctls_low,
10992                                 vmx->nested.nested_vmx_exit_ctls_high) ||
10993             !vmx_control_verify(vmcs12->vm_entry_controls,
10994                                 vmx->nested.nested_vmx_entry_ctls_low,
10995                                 vmx->nested.nested_vmx_entry_ctls_high))
10996                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10997
10998         if (nested_cpu_has_vmfunc(vmcs12)) {
10999                 if (vmcs12->vm_function_control &
11000                     ~vmx->nested.nested_vmx_vmfunc_controls)
11001                         return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11002
11003                 if (nested_cpu_has_eptp_switching(vmcs12)) {
11004                         if (!nested_cpu_has_ept(vmcs12) ||
11005                             !page_address_valid(vcpu, vmcs12->eptp_list_address))
11006                                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11007                 }
11008         }
11009
11010         if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu))
11011                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11012
11013         if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
11014             !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
11015             !nested_cr3_valid(vcpu, vmcs12->host_cr3))
11016                 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
11017
11018         return 0;
11019 }
11020
11021 static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
11022                                   u32 *exit_qual)
11023 {
11024         bool ia32e;
11025
11026         *exit_qual = ENTRY_FAIL_DEFAULT;
11027
11028         if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
11029             !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
11030                 return 1;
11031
11032         if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS) &&
11033             vmcs12->vmcs_link_pointer != -1ull) {
11034                 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
11035                 return 1;
11036         }
11037
11038         /*
11039          * If the load IA32_EFER VM-entry control is 1, the following checks
11040          * are performed on the field for the IA32_EFER MSR:
11041          * - Bits reserved in the IA32_EFER MSR must be 0.
11042          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
11043          *   the IA-32e mode guest VM-exit control. It must also be identical
11044          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
11045          *   CR0.PG) is 1.
11046          */
11047         if (to_vmx(vcpu)->nested.nested_run_pending &&
11048             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
11049                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
11050                 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
11051                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
11052                     ((vmcs12->guest_cr0 & X86_CR0_PG) &&
11053                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
11054                         return 1;
11055         }
11056
11057         /*
11058          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
11059          * IA32_EFER MSR must be 0 in the field for that register. In addition,
11060          * the values of the LMA and LME bits in the field must each be that of
11061          * the host address-space size VM-exit control.
11062          */
11063         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
11064                 ia32e = (vmcs12->vm_exit_controls &
11065                          VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
11066                 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
11067                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
11068                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
11069                         return 1;
11070         }
11071
11072         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
11073                 (is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) ||
11074                 (vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD)))
11075                         return 1;
11076
11077         return 0;
11078 }
11079
11080 static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
11081 {
11082         struct vcpu_vmx *vmx = to_vmx(vcpu);
11083         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
11084         u32 msr_entry_idx;
11085         u32 exit_qual;
11086
11087         enter_guest_mode(vcpu);
11088
11089         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
11090                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
11091
11092         vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
11093         vmx_segment_cache_clear(vmx);
11094
11095         if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &exit_qual)) {
11096                 leave_guest_mode(vcpu);
11097                 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
11098                 nested_vmx_entry_failure(vcpu, vmcs12,
11099                                          EXIT_REASON_INVALID_STATE, exit_qual);
11100                 return 1;
11101         }
11102
11103         nested_get_vmcs12_pages(vcpu, vmcs12);
11104
11105         msr_entry_idx = nested_vmx_load_msr(vcpu,
11106                                             vmcs12->vm_entry_msr_load_addr,
11107                                             vmcs12->vm_entry_msr_load_count);
11108         if (msr_entry_idx) {
11109                 leave_guest_mode(vcpu);
11110                 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
11111                 nested_vmx_entry_failure(vcpu, vmcs12,
11112                                 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
11113                 return 1;
11114         }
11115
11116         /*
11117          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
11118          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
11119          * returned as far as L1 is concerned. It will only return (and set
11120          * the success flag) when L2 exits (see nested_vmx_vmexit()).
11121          */
11122         return 0;
11123 }
11124
11125 /*
11126  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
11127  * for running an L2 nested guest.
11128  */
11129 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
11130 {
11131         struct vmcs12 *vmcs12;
11132         struct vcpu_vmx *vmx = to_vmx(vcpu);
11133         u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
11134         u32 exit_qual;
11135         int ret;
11136
11137         if (!nested_vmx_check_permission(vcpu))
11138                 return 1;
11139
11140         if (!nested_vmx_check_vmcs12(vcpu))
11141                 goto out;
11142
11143         vmcs12 = get_vmcs12(vcpu);
11144
11145         if (enable_shadow_vmcs)
11146                 copy_shadow_to_vmcs12(vmx);
11147
11148         /*
11149          * The nested entry process starts with enforcing various prerequisites
11150          * on vmcs12 as required by the Intel SDM, and act appropriately when
11151          * they fail: As the SDM explains, some conditions should cause the
11152          * instruction to fail, while others will cause the instruction to seem
11153          * to succeed, but return an EXIT_REASON_INVALID_STATE.
11154          * To speed up the normal (success) code path, we should avoid checking
11155          * for misconfigurations which will anyway be caught by the processor
11156          * when using the merged vmcs02.
11157          */
11158         if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS) {
11159                 nested_vmx_failValid(vcpu,
11160                                      VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
11161                 goto out;
11162         }
11163
11164         if (vmcs12->launch_state == launch) {
11165                 nested_vmx_failValid(vcpu,
11166                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
11167                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
11168                 goto out;
11169         }
11170
11171         ret = check_vmentry_prereqs(vcpu, vmcs12);
11172         if (ret) {
11173                 nested_vmx_failValid(vcpu, ret);
11174                 goto out;
11175         }
11176
11177         /*
11178          * After this point, the trap flag no longer triggers a singlestep trap
11179          * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
11180          * This is not 100% correct; for performance reasons, we delegate most
11181          * of the checks on host state to the processor.  If those fail,
11182          * the singlestep trap is missed.
11183          */
11184         skip_emulated_instruction(vcpu);
11185
11186         ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
11187         if (ret) {
11188                 nested_vmx_entry_failure(vcpu, vmcs12,
11189                                          EXIT_REASON_INVALID_STATE, exit_qual);
11190                 return 1;
11191         }
11192
11193         /*
11194          * We're finally done with prerequisite checking, and can start with
11195          * the nested entry.
11196          */
11197
11198         ret = enter_vmx_non_root_mode(vcpu, true);
11199         if (ret)
11200                 return ret;
11201
11202         if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
11203                 return kvm_vcpu_halt(vcpu);
11204
11205         vmx->nested.nested_run_pending = 1;
11206
11207         return 1;
11208
11209 out:
11210         return kvm_skip_emulated_instruction(vcpu);
11211 }
11212
11213 /*
11214  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
11215  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
11216  * This function returns the new value we should put in vmcs12.guest_cr0.
11217  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
11218  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
11219  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
11220  *     didn't trap the bit, because if L1 did, so would L0).
11221  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
11222  *     been modified by L2, and L1 knows it. So just leave the old value of
11223  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
11224  *     isn't relevant, because if L0 traps this bit it can set it to anything.
11225  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
11226  *     changed these bits, and therefore they need to be updated, but L0
11227  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
11228  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
11229  */
11230 static inline unsigned long
11231 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
11232 {
11233         return
11234         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
11235         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
11236         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
11237                         vcpu->arch.cr0_guest_owned_bits));
11238 }
11239
11240 static inline unsigned long
11241 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
11242 {
11243         return
11244         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
11245         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
11246         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
11247                         vcpu->arch.cr4_guest_owned_bits));
11248 }
11249
11250 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
11251                                        struct vmcs12 *vmcs12)
11252 {
11253         u32 idt_vectoring;
11254         unsigned int nr;
11255
11256         if (vcpu->arch.exception.injected) {
11257                 nr = vcpu->arch.exception.nr;
11258                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
11259
11260                 if (kvm_exception_is_soft(nr)) {
11261                         vmcs12->vm_exit_instruction_len =
11262                                 vcpu->arch.event_exit_inst_len;
11263                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
11264                 } else
11265                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
11266
11267                 if (vcpu->arch.exception.has_error_code) {
11268                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
11269                         vmcs12->idt_vectoring_error_code =
11270                                 vcpu->arch.exception.error_code;
11271                 }
11272
11273                 vmcs12->idt_vectoring_info_field = idt_vectoring;
11274         } else if (vcpu->arch.nmi_injected) {
11275                 vmcs12->idt_vectoring_info_field =
11276                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
11277         } else if (vcpu->arch.interrupt.pending) {
11278                 nr = vcpu->arch.interrupt.nr;
11279                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
11280
11281                 if (vcpu->arch.interrupt.soft) {
11282                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
11283                         vmcs12->vm_entry_instruction_len =
11284                                 vcpu->arch.event_exit_inst_len;
11285                 } else
11286                         idt_vectoring |= INTR_TYPE_EXT_INTR;
11287
11288                 vmcs12->idt_vectoring_info_field = idt_vectoring;
11289         }
11290 }
11291
11292 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
11293 {
11294         struct vcpu_vmx *vmx = to_vmx(vcpu);
11295         unsigned long exit_qual;
11296         bool block_nested_events =
11297             vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
11298
11299         if (vcpu->arch.exception.pending &&
11300                 nested_vmx_check_exception(vcpu, &exit_qual)) {
11301                 if (block_nested_events)
11302                         return -EBUSY;
11303                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
11304                 return 0;
11305         }
11306
11307         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
11308             vmx->nested.preemption_timer_expired) {
11309                 if (block_nested_events)
11310                         return -EBUSY;
11311                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
11312                 return 0;
11313         }
11314
11315         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
11316                 if (block_nested_events)
11317                         return -EBUSY;
11318                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
11319                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
11320                                   INTR_INFO_VALID_MASK, 0);
11321                 /*
11322                  * The NMI-triggered VM exit counts as injection:
11323                  * clear this one and block further NMIs.
11324                  */
11325                 vcpu->arch.nmi_pending = 0;
11326                 vmx_set_nmi_mask(vcpu, true);
11327                 return 0;
11328         }
11329
11330         if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
11331             nested_exit_on_intr(vcpu)) {
11332                 if (block_nested_events)
11333                         return -EBUSY;
11334                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
11335                 return 0;
11336         }
11337
11338         vmx_complete_nested_posted_interrupt(vcpu);
11339         return 0;
11340 }
11341
11342 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
11343 {
11344         ktime_t remaining =
11345                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
11346         u64 value;
11347
11348         if (ktime_to_ns(remaining) <= 0)
11349                 return 0;
11350
11351         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
11352         do_div(value, 1000000);
11353         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
11354 }
11355
11356 /*
11357  * Update the guest state fields of vmcs12 to reflect changes that
11358  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
11359  * VM-entry controls is also updated, since this is really a guest
11360  * state bit.)
11361  */
11362 static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
11363 {
11364         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
11365         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
11366
11367         vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
11368         vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
11369         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
11370
11371         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
11372         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
11373         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
11374         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
11375         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
11376         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
11377         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
11378         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
11379         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
11380         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
11381         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
11382         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
11383         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
11384         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
11385         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
11386         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
11387         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
11388         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
11389         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
11390         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
11391         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
11392         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
11393         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
11394         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
11395         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
11396         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
11397         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
11398         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
11399         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
11400         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
11401         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
11402         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
11403         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
11404         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
11405         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
11406         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
11407
11408         vmcs12->guest_interruptibility_info =
11409                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
11410         vmcs12->guest_pending_dbg_exceptions =
11411                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
11412         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11413                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
11414         else
11415                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
11416
11417         if (nested_cpu_has_preemption_timer(vmcs12)) {
11418                 if (vmcs12->vm_exit_controls &
11419                     VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
11420                         vmcs12->vmx_preemption_timer_value =
11421                                 vmx_get_preemption_timer_value(vcpu);
11422                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
11423         }
11424
11425         /*
11426          * In some cases (usually, nested EPT), L2 is allowed to change its
11427          * own CR3 without exiting. If it has changed it, we must keep it.
11428          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
11429          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
11430          *
11431          * Additionally, restore L2's PDPTR to vmcs12.
11432          */
11433         if (enable_ept) {
11434                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
11435                 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
11436                 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
11437                 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
11438                 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
11439         }
11440
11441         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
11442
11443         if (nested_cpu_has_vid(vmcs12))
11444                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
11445
11446         vmcs12->vm_entry_controls =
11447                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
11448                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
11449
11450         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
11451                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
11452                 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
11453         }
11454
11455         /* TODO: These cannot have changed unless we have MSR bitmaps and
11456          * the relevant bit asks not to trap the change */
11457         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
11458                 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
11459         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
11460                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
11461         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
11462         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
11463         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
11464         if (kvm_mpx_supported())
11465                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
11466 }
11467
11468 /*
11469  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
11470  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
11471  * and this function updates it to reflect the changes to the guest state while
11472  * L2 was running (and perhaps made some exits which were handled directly by L0
11473  * without going back to L1), and to reflect the exit reason.
11474  * Note that we do not have to copy here all VMCS fields, just those that
11475  * could have changed by the L2 guest or the exit - i.e., the guest-state and
11476  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
11477  * which already writes to vmcs12 directly.
11478  */
11479 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
11480                            u32 exit_reason, u32 exit_intr_info,
11481                            unsigned long exit_qualification)
11482 {
11483         /* update guest state fields: */
11484         sync_vmcs12(vcpu, vmcs12);
11485
11486         /* update exit information fields: */
11487
11488         vmcs12->vm_exit_reason = exit_reason;
11489         vmcs12->exit_qualification = exit_qualification;
11490         vmcs12->vm_exit_intr_info = exit_intr_info;
11491
11492         vmcs12->idt_vectoring_info_field = 0;
11493         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
11494         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
11495
11496         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
11497                 vmcs12->launch_state = 1;
11498
11499                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
11500                  * instead of reading the real value. */
11501                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
11502
11503                 /*
11504                  * Transfer the event that L0 or L1 may wanted to inject into
11505                  * L2 to IDT_VECTORING_INFO_FIELD.
11506                  */
11507                 vmcs12_save_pending_event(vcpu, vmcs12);
11508         }
11509
11510         /*
11511          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
11512          * preserved above and would only end up incorrectly in L1.
11513          */
11514         vcpu->arch.nmi_injected = false;
11515         kvm_clear_exception_queue(vcpu);
11516         kvm_clear_interrupt_queue(vcpu);
11517 }
11518
11519 static void load_vmcs12_mmu_host_state(struct kvm_vcpu *vcpu,
11520                         struct vmcs12 *vmcs12)
11521 {
11522         u32 entry_failure_code;
11523
11524         nested_ept_uninit_mmu_context(vcpu);
11525
11526         /*
11527          * Only PDPTE load can fail as the value of cr3 was checked on entry and
11528          * couldn't have changed.
11529          */
11530         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
11531                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
11532
11533         if (!enable_ept)
11534                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
11535 }
11536
11537 /*
11538  * A part of what we need to when the nested L2 guest exits and we want to
11539  * run its L1 parent, is to reset L1's guest state to the host state specified
11540  * in vmcs12.
11541  * This function is to be called not only on normal nested exit, but also on
11542  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
11543  * Failures During or After Loading Guest State").
11544  * This function should be called when the active VMCS is L1's (vmcs01).
11545  */
11546 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
11547                                    struct vmcs12 *vmcs12)
11548 {
11549         struct kvm_segment seg;
11550
11551         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
11552                 vcpu->arch.efer = vmcs12->host_ia32_efer;
11553         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
11554                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
11555         else
11556                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
11557         vmx_set_efer(vcpu, vcpu->arch.efer);
11558
11559         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
11560         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
11561         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
11562         /*
11563          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
11564          * actually changed, because vmx_set_cr0 refers to efer set above.
11565          *
11566          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
11567          * (KVM doesn't change it);
11568          */
11569         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
11570         vmx_set_cr0(vcpu, vmcs12->host_cr0);
11571
11572         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
11573         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
11574         vmx_set_cr4(vcpu, vmcs12->host_cr4);
11575
11576         load_vmcs12_mmu_host_state(vcpu, vmcs12);
11577
11578         if (enable_vpid) {
11579                 /*
11580                  * Trivially support vpid by letting L2s share their parent
11581                  * L1's vpid. TODO: move to a more elaborate solution, giving
11582                  * each L2 its own vpid and exposing the vpid feature to L1.
11583                  */
11584                 vmx_flush_tlb(vcpu, true);
11585         }
11586
11587         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
11588         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
11589         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
11590         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
11591         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
11592         vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
11593         vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
11594
11595         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
11596         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
11597                 vmcs_write64(GUEST_BNDCFGS, 0);
11598
11599         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
11600                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
11601                 vcpu->arch.pat = vmcs12->host_ia32_pat;
11602         }
11603         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
11604                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
11605                         vmcs12->host_ia32_perf_global_ctrl);
11606
11607         /* Set L1 segment info according to Intel SDM
11608             27.5.2 Loading Host Segment and Descriptor-Table Registers */
11609         seg = (struct kvm_segment) {
11610                 .base = 0,
11611                 .limit = 0xFFFFFFFF,
11612                 .selector = vmcs12->host_cs_selector,
11613                 .type = 11,
11614                 .present = 1,
11615                 .s = 1,
11616                 .g = 1
11617         };
11618         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
11619                 seg.l = 1;
11620         else
11621                 seg.db = 1;
11622         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
11623         seg = (struct kvm_segment) {
11624                 .base = 0,
11625                 .limit = 0xFFFFFFFF,
11626                 .type = 3,
11627                 .present = 1,
11628                 .s = 1,
11629                 .db = 1,
11630                 .g = 1
11631         };
11632         seg.selector = vmcs12->host_ds_selector;
11633         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
11634         seg.selector = vmcs12->host_es_selector;
11635         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
11636         seg.selector = vmcs12->host_ss_selector;
11637         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
11638         seg.selector = vmcs12->host_fs_selector;
11639         seg.base = vmcs12->host_fs_base;
11640         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
11641         seg.selector = vmcs12->host_gs_selector;
11642         seg.base = vmcs12->host_gs_base;
11643         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
11644         seg = (struct kvm_segment) {
11645                 .base = vmcs12->host_tr_base,
11646                 .limit = 0x67,
11647                 .selector = vmcs12->host_tr_selector,
11648                 .type = 11,
11649                 .present = 1
11650         };
11651         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
11652
11653         kvm_set_dr(vcpu, 7, 0x400);
11654         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
11655
11656         if (cpu_has_vmx_msr_bitmap())
11657                 vmx_update_msr_bitmap(vcpu);
11658
11659         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
11660                                 vmcs12->vm_exit_msr_load_count))
11661                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
11662 }
11663
11664 /*
11665  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
11666  * and modify vmcs12 to make it see what it would expect to see there if
11667  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
11668  */
11669 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
11670                               u32 exit_intr_info,
11671                               unsigned long exit_qualification)
11672 {
11673         struct vcpu_vmx *vmx = to_vmx(vcpu);
11674         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
11675
11676         /* trying to cancel vmlaunch/vmresume is a bug */
11677         WARN_ON_ONCE(vmx->nested.nested_run_pending);
11678
11679         /*
11680          * The only expected VM-instruction error is "VM entry with
11681          * invalid control field(s)." Anything else indicates a
11682          * problem with L0.
11683          */
11684         WARN_ON_ONCE(vmx->fail && (vmcs_read32(VM_INSTRUCTION_ERROR) !=
11685                                    VMXERR_ENTRY_INVALID_CONTROL_FIELD));
11686
11687         leave_guest_mode(vcpu);
11688
11689         if (likely(!vmx->fail)) {
11690                 if (exit_reason == -1)
11691                         sync_vmcs12(vcpu, vmcs12);
11692                 else
11693                         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
11694                                        exit_qualification);
11695
11696                 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
11697                                          vmcs12->vm_exit_msr_store_count))
11698                         nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
11699         }
11700
11701         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
11702         vm_entry_controls_reset_shadow(vmx);
11703         vm_exit_controls_reset_shadow(vmx);
11704         vmx_segment_cache_clear(vmx);
11705
11706         /* Update any VMCS fields that might have changed while L2 ran */
11707         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11708         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11709         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
11710         if (vmx->hv_deadline_tsc == -1)
11711                 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11712                                 PIN_BASED_VMX_PREEMPTION_TIMER);
11713         else
11714                 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11715                               PIN_BASED_VMX_PREEMPTION_TIMER);
11716         if (kvm_has_tsc_control)
11717                 decache_tsc_multiplier(vmx);
11718
11719         if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
11720                 vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
11721                 vmx_set_virtual_x2apic_mode(vcpu,
11722                                 vcpu->arch.apic_base & X2APIC_ENABLE);
11723         } else if (!nested_cpu_has_ept(vmcs12) &&
11724                    nested_cpu_has2(vmcs12,
11725                                    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
11726                 vmx_flush_tlb_ept_only(vcpu);
11727         }
11728
11729         /* This is needed for same reason as it was needed in prepare_vmcs02 */
11730         vmx->host_rsp = 0;
11731
11732         /* Unpin physical memory we referred to in vmcs02 */
11733         if (vmx->nested.apic_access_page) {
11734                 kvm_release_page_dirty(vmx->nested.apic_access_page);
11735                 vmx->nested.apic_access_page = NULL;
11736         }
11737         if (vmx->nested.virtual_apic_page) {
11738                 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
11739                 vmx->nested.virtual_apic_page = NULL;
11740         }
11741         if (vmx->nested.pi_desc_page) {
11742                 kunmap(vmx->nested.pi_desc_page);
11743                 kvm_release_page_dirty(vmx->nested.pi_desc_page);
11744                 vmx->nested.pi_desc_page = NULL;
11745                 vmx->nested.pi_desc = NULL;
11746         }
11747
11748         /*
11749          * We are now running in L2, mmu_notifier will force to reload the
11750          * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
11751          */
11752         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
11753
11754         if (enable_shadow_vmcs && exit_reason != -1)
11755                 vmx->nested.sync_shadow_vmcs = true;
11756
11757         /* in case we halted in L2 */
11758         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11759
11760         if (likely(!vmx->fail)) {
11761                 /*
11762                  * TODO: SDM says that with acknowledge interrupt on
11763                  * exit, bit 31 of the VM-exit interrupt information
11764                  * (valid interrupt) is always set to 1 on
11765                  * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
11766                  * need kvm_cpu_has_interrupt().  See the commit
11767                  * message for details.
11768                  */
11769                 if (nested_exit_intr_ack_set(vcpu) &&
11770                     exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
11771                     kvm_cpu_has_interrupt(vcpu)) {
11772                         int irq = kvm_cpu_get_interrupt(vcpu);
11773                         WARN_ON(irq < 0);
11774                         vmcs12->vm_exit_intr_info = irq |
11775                                 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
11776                 }
11777
11778                 if (exit_reason != -1)
11779                         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
11780                                                        vmcs12->exit_qualification,
11781                                                        vmcs12->idt_vectoring_info_field,
11782                                                        vmcs12->vm_exit_intr_info,
11783                                                        vmcs12->vm_exit_intr_error_code,
11784                                                        KVM_ISA_VMX);
11785
11786                 load_vmcs12_host_state(vcpu, vmcs12);
11787
11788                 return;
11789         }
11790         
11791         /*
11792          * After an early L2 VM-entry failure, we're now back
11793          * in L1 which thinks it just finished a VMLAUNCH or
11794          * VMRESUME instruction, so we need to set the failure
11795          * flag and the VM-instruction error field of the VMCS
11796          * accordingly.
11797          */
11798         nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
11799
11800         load_vmcs12_mmu_host_state(vcpu, vmcs12);
11801
11802         /*
11803          * The emulated instruction was already skipped in
11804          * nested_vmx_run, but the updated RIP was never
11805          * written back to the vmcs01.
11806          */
11807         skip_emulated_instruction(vcpu);
11808         vmx->fail = 0;
11809 }
11810
11811 /*
11812  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
11813  */
11814 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
11815 {
11816         if (is_guest_mode(vcpu)) {
11817                 to_vmx(vcpu)->nested.nested_run_pending = 0;
11818                 nested_vmx_vmexit(vcpu, -1, 0, 0);
11819         }
11820         free_nested(to_vmx(vcpu));
11821 }
11822
11823 /*
11824  * L1's failure to enter L2 is a subset of a normal exit, as explained in
11825  * 23.7 "VM-entry failures during or after loading guest state" (this also
11826  * lists the acceptable exit-reason and exit-qualification parameters).
11827  * It should only be called before L2 actually succeeded to run, and when
11828  * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
11829  */
11830 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
11831                         struct vmcs12 *vmcs12,
11832                         u32 reason, unsigned long qualification)
11833 {
11834         load_vmcs12_host_state(vcpu, vmcs12);
11835         vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
11836         vmcs12->exit_qualification = qualification;
11837         nested_vmx_succeed(vcpu);
11838         if (enable_shadow_vmcs)
11839                 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
11840 }
11841
11842 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
11843                                struct x86_instruction_info *info,
11844                                enum x86_intercept_stage stage)
11845 {
11846         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
11847         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
11848
11849         /*
11850          * RDPID causes #UD if disabled through secondary execution controls.
11851          * Because it is marked as EmulateOnUD, we need to intercept it here.
11852          */
11853         if (info->intercept == x86_intercept_rdtscp &&
11854             !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
11855                 ctxt->exception.vector = UD_VECTOR;
11856                 ctxt->exception.error_code_valid = false;
11857                 return X86EMUL_PROPAGATE_FAULT;
11858         }
11859
11860         /* TODO: check more intercepts... */
11861         return X86EMUL_CONTINUE;
11862 }
11863
11864 #ifdef CONFIG_X86_64
11865 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
11866 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
11867                                   u64 divisor, u64 *result)
11868 {
11869         u64 low = a << shift, high = a >> (64 - shift);
11870
11871         /* To avoid the overflow on divq */
11872         if (high >= divisor)
11873                 return 1;
11874
11875         /* Low hold the result, high hold rem which is discarded */
11876         asm("divq %2\n\t" : "=a" (low), "=d" (high) :
11877             "rm" (divisor), "0" (low), "1" (high));
11878         *result = low;
11879
11880         return 0;
11881 }
11882
11883 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
11884 {
11885         struct vcpu_vmx *vmx = to_vmx(vcpu);
11886         u64 tscl = rdtsc();
11887         u64 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
11888         u64 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
11889
11890         /* Convert to host delta tsc if tsc scaling is enabled */
11891         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
11892                         u64_shl_div_u64(delta_tsc,
11893                                 kvm_tsc_scaling_ratio_frac_bits,
11894                                 vcpu->arch.tsc_scaling_ratio,
11895                                 &delta_tsc))
11896                 return -ERANGE;
11897
11898         /*
11899          * If the delta tsc can't fit in the 32 bit after the multi shift,
11900          * we can't use the preemption timer.
11901          * It's possible that it fits on later vmentries, but checking
11902          * on every vmentry is costly so we just use an hrtimer.
11903          */
11904         if (delta_tsc >> (cpu_preemption_timer_multi + 32))
11905                 return -ERANGE;
11906
11907         vmx->hv_deadline_tsc = tscl + delta_tsc;
11908         vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11909                         PIN_BASED_VMX_PREEMPTION_TIMER);
11910
11911         return delta_tsc == 0;
11912 }
11913
11914 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
11915 {
11916         struct vcpu_vmx *vmx = to_vmx(vcpu);
11917         vmx->hv_deadline_tsc = -1;
11918         vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11919                         PIN_BASED_VMX_PREEMPTION_TIMER);
11920 }
11921 #endif
11922
11923 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
11924 {
11925         if (ple_gap)
11926                 shrink_ple_window(vcpu);
11927 }
11928
11929 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
11930                                      struct kvm_memory_slot *slot)
11931 {
11932         kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
11933         kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
11934 }
11935
11936 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
11937                                        struct kvm_memory_slot *slot)
11938 {
11939         kvm_mmu_slot_set_dirty(kvm, slot);
11940 }
11941
11942 static void vmx_flush_log_dirty(struct kvm *kvm)
11943 {
11944         kvm_flush_pml_buffers(kvm);
11945 }
11946
11947 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
11948 {
11949         struct vmcs12 *vmcs12;
11950         struct vcpu_vmx *vmx = to_vmx(vcpu);
11951         gpa_t gpa;
11952         struct page *page = NULL;
11953         u64 *pml_address;
11954
11955         if (is_guest_mode(vcpu)) {
11956                 WARN_ON_ONCE(vmx->nested.pml_full);
11957
11958                 /*
11959                  * Check if PML is enabled for the nested guest.
11960                  * Whether eptp bit 6 is set is already checked
11961                  * as part of A/D emulation.
11962                  */
11963                 vmcs12 = get_vmcs12(vcpu);
11964                 if (!nested_cpu_has_pml(vmcs12))
11965                         return 0;
11966
11967                 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
11968                         vmx->nested.pml_full = true;
11969                         return 1;
11970                 }
11971
11972                 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
11973
11974                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address);
11975                 if (is_error_page(page))
11976                         return 0;
11977
11978                 pml_address = kmap(page);
11979                 pml_address[vmcs12->guest_pml_index--] = gpa;
11980                 kunmap(page);
11981                 kvm_release_page_clean(page);
11982         }
11983
11984         return 0;
11985 }
11986
11987 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
11988                                            struct kvm_memory_slot *memslot,
11989                                            gfn_t offset, unsigned long mask)
11990 {
11991         kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
11992 }
11993
11994 static void __pi_post_block(struct kvm_vcpu *vcpu)
11995 {
11996         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11997         struct pi_desc old, new;
11998         unsigned int dest;
11999
12000         do {
12001                 old.control = new.control = pi_desc->control;
12002                 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
12003                      "Wakeup handler not enabled while the VCPU is blocked\n");
12004
12005                 dest = cpu_physical_id(vcpu->cpu);
12006
12007                 if (x2apic_enabled())
12008                         new.ndst = dest;
12009                 else
12010                         new.ndst = (dest << 8) & 0xFF00;
12011
12012                 /* set 'NV' to 'notification vector' */
12013                 new.nv = POSTED_INTR_VECTOR;
12014         } while (cmpxchg64(&pi_desc->control, old.control,
12015                            new.control) != old.control);
12016
12017         if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
12018                 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
12019                 list_del(&vcpu->blocked_vcpu_list);
12020                 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
12021                 vcpu->pre_pcpu = -1;
12022         }
12023 }
12024
12025 /*
12026  * This routine does the following things for vCPU which is going
12027  * to be blocked if VT-d PI is enabled.
12028  * - Store the vCPU to the wakeup list, so when interrupts happen
12029  *   we can find the right vCPU to wake up.
12030  * - Change the Posted-interrupt descriptor as below:
12031  *      'NDST' <-- vcpu->pre_pcpu
12032  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
12033  * - If 'ON' is set during this process, which means at least one
12034  *   interrupt is posted for this vCPU, we cannot block it, in
12035  *   this case, return 1, otherwise, return 0.
12036  *
12037  */
12038 static int pi_pre_block(struct kvm_vcpu *vcpu)
12039 {
12040         unsigned int dest;
12041         struct pi_desc old, new;
12042         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
12043
12044         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
12045                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
12046                 !kvm_vcpu_apicv_active(vcpu))
12047                 return 0;
12048
12049         WARN_ON(irqs_disabled());
12050         local_irq_disable();
12051         if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
12052                 vcpu->pre_pcpu = vcpu->cpu;
12053                 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
12054                 list_add_tail(&vcpu->blocked_vcpu_list,
12055                               &per_cpu(blocked_vcpu_on_cpu,
12056                                        vcpu->pre_pcpu));
12057                 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
12058         }
12059
12060         do {
12061                 old.control = new.control = pi_desc->control;
12062
12063                 WARN((pi_desc->sn == 1),
12064                      "Warning: SN field of posted-interrupts "
12065                      "is set before blocking\n");
12066
12067                 /*
12068                  * Since vCPU can be preempted during this process,
12069                  * vcpu->cpu could be different with pre_pcpu, we
12070                  * need to set pre_pcpu as the destination of wakeup
12071                  * notification event, then we can find the right vCPU
12072                  * to wakeup in wakeup handler if interrupts happen
12073                  * when the vCPU is in blocked state.
12074                  */
12075                 dest = cpu_physical_id(vcpu->pre_pcpu);
12076
12077                 if (x2apic_enabled())
12078                         new.ndst = dest;
12079                 else
12080                         new.ndst = (dest << 8) & 0xFF00;
12081
12082                 /* set 'NV' to 'wakeup vector' */
12083                 new.nv = POSTED_INTR_WAKEUP_VECTOR;
12084         } while (cmpxchg64(&pi_desc->control, old.control,
12085                            new.control) != old.control);
12086
12087         /* We should not block the vCPU if an interrupt is posted for it.  */
12088         if (pi_test_on(pi_desc) == 1)
12089                 __pi_post_block(vcpu);
12090
12091         local_irq_enable();
12092         return (vcpu->pre_pcpu == -1);
12093 }
12094
12095 static int vmx_pre_block(struct kvm_vcpu *vcpu)
12096 {
12097         if (pi_pre_block(vcpu))
12098                 return 1;
12099
12100         if (kvm_lapic_hv_timer_in_use(vcpu))
12101                 kvm_lapic_switch_to_sw_timer(vcpu);
12102
12103         return 0;
12104 }
12105
12106 static void pi_post_block(struct kvm_vcpu *vcpu)
12107 {
12108         if (vcpu->pre_pcpu == -1)
12109                 return;
12110
12111         WARN_ON(irqs_disabled());
12112         local_irq_disable();
12113         __pi_post_block(vcpu);
12114         local_irq_enable();
12115 }
12116
12117 static void vmx_post_block(struct kvm_vcpu *vcpu)
12118 {
12119         if (kvm_x86_ops->set_hv_timer)
12120                 kvm_lapic_switch_to_hv_timer(vcpu);
12121
12122         pi_post_block(vcpu);
12123 }
12124
12125 /*
12126  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
12127  *
12128  * @kvm: kvm
12129  * @host_irq: host irq of the interrupt
12130  * @guest_irq: gsi of the interrupt
12131  * @set: set or unset PI
12132  * returns 0 on success, < 0 on failure
12133  */
12134 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
12135                               uint32_t guest_irq, bool set)
12136 {
12137         struct kvm_kernel_irq_routing_entry *e;
12138         struct kvm_irq_routing_table *irq_rt;
12139         struct kvm_lapic_irq irq;
12140         struct kvm_vcpu *vcpu;
12141         struct vcpu_data vcpu_info;
12142         int idx, ret = 0;
12143
12144         if (!kvm_arch_has_assigned_device(kvm) ||
12145                 !irq_remapping_cap(IRQ_POSTING_CAP) ||
12146                 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
12147                 return 0;
12148
12149         idx = srcu_read_lock(&kvm->irq_srcu);
12150         irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
12151         if (guest_irq >= irq_rt->nr_rt_entries ||
12152             hlist_empty(&irq_rt->map[guest_irq])) {
12153                 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
12154                              guest_irq, irq_rt->nr_rt_entries);
12155                 goto out;
12156         }
12157
12158         hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
12159                 if (e->type != KVM_IRQ_ROUTING_MSI)
12160                         continue;
12161                 /*
12162                  * VT-d PI cannot support posting multicast/broadcast
12163                  * interrupts to a vCPU, we still use interrupt remapping
12164                  * for these kind of interrupts.
12165                  *
12166                  * For lowest-priority interrupts, we only support
12167                  * those with single CPU as the destination, e.g. user
12168                  * configures the interrupts via /proc/irq or uses
12169                  * irqbalance to make the interrupts single-CPU.
12170                  *
12171                  * We will support full lowest-priority interrupt later.
12172                  */
12173
12174                 kvm_set_msi_irq(kvm, e, &irq);
12175                 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
12176                         /*
12177                          * Make sure the IRTE is in remapped mode if
12178                          * we don't handle it in posted mode.
12179                          */
12180                         ret = irq_set_vcpu_affinity(host_irq, NULL);
12181                         if (ret < 0) {
12182                                 printk(KERN_INFO
12183                                    "failed to back to remapped mode, irq: %u\n",
12184                                    host_irq);
12185                                 goto out;
12186                         }
12187
12188                         continue;
12189                 }
12190
12191                 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
12192                 vcpu_info.vector = irq.vector;
12193
12194                 trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
12195                                 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
12196
12197                 if (set)
12198                         ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
12199                 else
12200                         ret = irq_set_vcpu_affinity(host_irq, NULL);
12201
12202                 if (ret < 0) {
12203                         printk(KERN_INFO "%s: failed to update PI IRTE\n",
12204                                         __func__);
12205                         goto out;
12206                 }
12207         }
12208
12209         ret = 0;
12210 out:
12211         srcu_read_unlock(&kvm->irq_srcu, idx);
12212         return ret;
12213 }
12214
12215 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
12216 {
12217         if (vcpu->arch.mcg_cap & MCG_LMCE_P)
12218                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
12219                         FEATURE_CONTROL_LMCE;
12220         else
12221                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
12222                         ~FEATURE_CONTROL_LMCE;
12223 }
12224
12225 static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
12226 {
12227         /* we need a nested vmexit to enter SMM, postpone if run is pending */
12228         if (to_vmx(vcpu)->nested.nested_run_pending)
12229                 return 0;
12230         return 1;
12231 }
12232
12233 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
12234 {
12235         struct vcpu_vmx *vmx = to_vmx(vcpu);
12236
12237         vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
12238         if (vmx->nested.smm.guest_mode)
12239                 nested_vmx_vmexit(vcpu, -1, 0, 0);
12240
12241         vmx->nested.smm.vmxon = vmx->nested.vmxon;
12242         vmx->nested.vmxon = false;
12243         return 0;
12244 }
12245
12246 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
12247 {
12248         struct vcpu_vmx *vmx = to_vmx(vcpu);
12249         int ret;
12250
12251         if (vmx->nested.smm.vmxon) {
12252                 vmx->nested.vmxon = true;
12253                 vmx->nested.smm.vmxon = false;
12254         }
12255
12256         if (vmx->nested.smm.guest_mode) {
12257                 vcpu->arch.hflags &= ~HF_SMM_MASK;
12258                 ret = enter_vmx_non_root_mode(vcpu, false);
12259                 vcpu->arch.hflags |= HF_SMM_MASK;
12260                 if (ret)
12261                         return ret;
12262
12263                 vmx->nested.smm.guest_mode = false;
12264         }
12265         return 0;
12266 }
12267
12268 static int enable_smi_window(struct kvm_vcpu *vcpu)
12269 {
12270         return 0;
12271 }
12272
12273 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
12274         .cpu_has_kvm_support = cpu_has_kvm_support,
12275         .disabled_by_bios = vmx_disabled_by_bios,
12276         .hardware_setup = hardware_setup,
12277         .hardware_unsetup = hardware_unsetup,
12278         .check_processor_compatibility = vmx_check_processor_compat,
12279         .hardware_enable = hardware_enable,
12280         .hardware_disable = hardware_disable,
12281         .cpu_has_accelerated_tpr = report_flexpriority,
12282         .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
12283
12284         .vcpu_create = vmx_create_vcpu,
12285         .vcpu_free = vmx_free_vcpu,
12286         .vcpu_reset = vmx_vcpu_reset,
12287
12288         .prepare_guest_switch = vmx_save_host_state,
12289         .vcpu_load = vmx_vcpu_load,
12290         .vcpu_put = vmx_vcpu_put,
12291
12292         .update_bp_intercept = update_exception_bitmap,
12293         .get_msr = vmx_get_msr,
12294         .set_msr = vmx_set_msr,
12295         .get_segment_base = vmx_get_segment_base,
12296         .get_segment = vmx_get_segment,
12297         .set_segment = vmx_set_segment,
12298         .get_cpl = vmx_get_cpl,
12299         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
12300         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
12301         .decache_cr3 = vmx_decache_cr3,
12302         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
12303         .set_cr0 = vmx_set_cr0,
12304         .set_cr3 = vmx_set_cr3,
12305         .set_cr4 = vmx_set_cr4,
12306         .set_efer = vmx_set_efer,
12307         .get_idt = vmx_get_idt,
12308         .set_idt = vmx_set_idt,
12309         .get_gdt = vmx_get_gdt,
12310         .set_gdt = vmx_set_gdt,
12311         .get_dr6 = vmx_get_dr6,
12312         .set_dr6 = vmx_set_dr6,
12313         .set_dr7 = vmx_set_dr7,
12314         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
12315         .cache_reg = vmx_cache_reg,
12316         .get_rflags = vmx_get_rflags,
12317         .set_rflags = vmx_set_rflags,
12318
12319         .tlb_flush = vmx_flush_tlb,
12320
12321         .run = vmx_vcpu_run,
12322         .handle_exit = vmx_handle_exit,
12323         .skip_emulated_instruction = skip_emulated_instruction,
12324         .set_interrupt_shadow = vmx_set_interrupt_shadow,
12325         .get_interrupt_shadow = vmx_get_interrupt_shadow,
12326         .patch_hypercall = vmx_patch_hypercall,
12327         .set_irq = vmx_inject_irq,
12328         .set_nmi = vmx_inject_nmi,
12329         .queue_exception = vmx_queue_exception,
12330         .cancel_injection = vmx_cancel_injection,
12331         .interrupt_allowed = vmx_interrupt_allowed,
12332         .nmi_allowed = vmx_nmi_allowed,
12333         .get_nmi_mask = vmx_get_nmi_mask,
12334         .set_nmi_mask = vmx_set_nmi_mask,
12335         .enable_nmi_window = enable_nmi_window,
12336         .enable_irq_window = enable_irq_window,
12337         .update_cr8_intercept = update_cr8_intercept,
12338         .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
12339         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
12340         .get_enable_apicv = vmx_get_enable_apicv,
12341         .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
12342         .load_eoi_exitmap = vmx_load_eoi_exitmap,
12343         .apicv_post_state_restore = vmx_apicv_post_state_restore,
12344         .hwapic_irr_update = vmx_hwapic_irr_update,
12345         .hwapic_isr_update = vmx_hwapic_isr_update,
12346         .sync_pir_to_irr = vmx_sync_pir_to_irr,
12347         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
12348
12349         .set_tss_addr = vmx_set_tss_addr,
12350         .get_tdp_level = get_ept_level,
12351         .get_mt_mask = vmx_get_mt_mask,
12352
12353         .get_exit_info = vmx_get_exit_info,
12354
12355         .get_lpage_level = vmx_get_lpage_level,
12356
12357         .cpuid_update = vmx_cpuid_update,
12358
12359         .rdtscp_supported = vmx_rdtscp_supported,
12360         .invpcid_supported = vmx_invpcid_supported,
12361
12362         .set_supported_cpuid = vmx_set_supported_cpuid,
12363
12364         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
12365
12366         .write_tsc_offset = vmx_write_tsc_offset,
12367
12368         .set_tdp_cr3 = vmx_set_cr3,
12369
12370         .check_intercept = vmx_check_intercept,
12371         .handle_external_intr = vmx_handle_external_intr,
12372         .mpx_supported = vmx_mpx_supported,
12373         .xsaves_supported = vmx_xsaves_supported,
12374         .umip_emulated = vmx_umip_emulated,
12375
12376         .check_nested_events = vmx_check_nested_events,
12377
12378         .sched_in = vmx_sched_in,
12379
12380         .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
12381         .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
12382         .flush_log_dirty = vmx_flush_log_dirty,
12383         .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
12384         .write_log_dirty = vmx_write_pml_buffer,
12385
12386         .pre_block = vmx_pre_block,
12387         .post_block = vmx_post_block,
12388
12389         .pmu_ops = &intel_pmu_ops,
12390
12391         .update_pi_irte = vmx_update_pi_irte,
12392
12393 #ifdef CONFIG_X86_64
12394         .set_hv_timer = vmx_set_hv_timer,
12395         .cancel_hv_timer = vmx_cancel_hv_timer,
12396 #endif
12397
12398         .setup_mce = vmx_setup_mce,
12399
12400         .smi_allowed = vmx_smi_allowed,
12401         .pre_enter_smm = vmx_pre_enter_smm,
12402         .pre_leave_smm = vmx_pre_leave_smm,
12403         .enable_smi_window = enable_smi_window,
12404 };
12405
12406 static int __init vmx_init(void)
12407 {
12408         int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
12409                      __alignof__(struct vcpu_vmx), THIS_MODULE);
12410         if (r)
12411                 return r;
12412
12413 #ifdef CONFIG_KEXEC_CORE
12414         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
12415                            crash_vmclear_local_loaded_vmcss);
12416 #endif
12417
12418         return 0;
12419 }
12420
12421 static void __exit vmx_exit(void)
12422 {
12423 #ifdef CONFIG_KEXEC_CORE
12424         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
12425         synchronize_rcu();
12426 #endif
12427
12428         kvm_exit();
12429 }
12430
12431 module_init(vmx_init)
12432 module_exit(vmx_exit)