]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/vmx.c
5a5ab2062cb55689f2f63a362589eee9ae53ad33
[linux.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22 #include "lapic.h"
23
24 #include <linux/kvm_host.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/sched.h>
30 #include <linux/moduleparam.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/tboot.h>
35 #include <linux/hrtimer.h>
36 #include "kvm_cache_regs.h"
37 #include "x86.h"
38
39 #include <asm/cpu.h>
40 #include <asm/io.h>
41 #include <asm/desc.h>
42 #include <asm/vmx.h>
43 #include <asm/virtext.h>
44 #include <asm/mce.h>
45 #include <asm/fpu/internal.h>
46 #include <asm/perf_event.h>
47 #include <asm/debugreg.h>
48 #include <asm/kexec.h>
49 #include <asm/apic.h>
50 #include <asm/irq_remapping.h>
51
52 #include "trace.h"
53 #include "pmu.h"
54
55 #define __ex(x) __kvm_handle_fault_on_reboot(x)
56 #define __ex_clear(x, reg) \
57         ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
58
59 MODULE_AUTHOR("Qumranet");
60 MODULE_LICENSE("GPL");
61
62 static const struct x86_cpu_id vmx_cpu_id[] = {
63         X86_FEATURE_MATCH(X86_FEATURE_VMX),
64         {}
65 };
66 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
67
68 static bool __read_mostly enable_vpid = 1;
69 module_param_named(vpid, enable_vpid, bool, 0444);
70
71 static bool __read_mostly flexpriority_enabled = 1;
72 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
73
74 static bool __read_mostly enable_ept = 1;
75 module_param_named(ept, enable_ept, bool, S_IRUGO);
76
77 static bool __read_mostly enable_unrestricted_guest = 1;
78 module_param_named(unrestricted_guest,
79                         enable_unrestricted_guest, bool, S_IRUGO);
80
81 static bool __read_mostly enable_ept_ad_bits = 1;
82 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
83
84 static bool __read_mostly emulate_invalid_guest_state = true;
85 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
86
87 static bool __read_mostly vmm_exclusive = 1;
88 module_param(vmm_exclusive, bool, S_IRUGO);
89
90 static bool __read_mostly fasteoi = 1;
91 module_param(fasteoi, bool, S_IRUGO);
92
93 static bool __read_mostly enable_apicv = 1;
94 module_param(enable_apicv, bool, S_IRUGO);
95
96 static bool __read_mostly enable_shadow_vmcs = 1;
97 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
98 /*
99  * If nested=1, nested virtualization is supported, i.e., guests may use
100  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
101  * use VMX instructions.
102  */
103 static bool __read_mostly nested = 0;
104 module_param(nested, bool, S_IRUGO);
105
106 static u64 __read_mostly host_xss;
107
108 static bool __read_mostly enable_pml = 1;
109 module_param_named(pml, enable_pml, bool, S_IRUGO);
110
111 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
112
113 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
114 static int __read_mostly cpu_preemption_timer_multi;
115 static bool __read_mostly enable_preemption_timer = 1;
116 #ifdef CONFIG_X86_64
117 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
118 #endif
119
120 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
121 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
122 #define KVM_VM_CR0_ALWAYS_ON                                            \
123         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
124 #define KVM_CR4_GUEST_OWNED_BITS                                      \
125         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
126          | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
127
128 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
129 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
130
131 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
132
133 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
134
135 /*
136  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
137  * ple_gap:    upper bound on the amount of time between two successive
138  *             executions of PAUSE in a loop. Also indicate if ple enabled.
139  *             According to test, this time is usually smaller than 128 cycles.
140  * ple_window: upper bound on the amount of time a guest is allowed to execute
141  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
142  *             less than 2^12 cycles
143  * Time is measured based on a counter that runs at the same rate as the TSC,
144  * refer SDM volume 3b section 21.6.13 & 22.1.3.
145  */
146 #define KVM_VMX_DEFAULT_PLE_GAP           128
147 #define KVM_VMX_DEFAULT_PLE_WINDOW        4096
148 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW   2
149 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
150 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX    \
151                 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
152
153 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
154 module_param(ple_gap, int, S_IRUGO);
155
156 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
157 module_param(ple_window, int, S_IRUGO);
158
159 /* Default doubles per-vcpu window every exit. */
160 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
161 module_param(ple_window_grow, int, S_IRUGO);
162
163 /* Default resets per-vcpu window every exit to ple_window. */
164 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
165 module_param(ple_window_shrink, int, S_IRUGO);
166
167 /* Default is to compute the maximum so we can never overflow. */
168 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
169 static int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
170 module_param(ple_window_max, int, S_IRUGO);
171
172 extern const ulong vmx_return;
173
174 #define NR_AUTOLOAD_MSRS 8
175 #define VMCS02_POOL_SIZE 1
176
177 struct vmcs {
178         u32 revision_id;
179         u32 abort;
180         char data[0];
181 };
182
183 /*
184  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
185  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
186  * loaded on this CPU (so we can clear them if the CPU goes down).
187  */
188 struct loaded_vmcs {
189         struct vmcs *vmcs;
190         int cpu;
191         int launched;
192         struct list_head loaded_vmcss_on_cpu_link;
193 };
194
195 struct shared_msr_entry {
196         unsigned index;
197         u64 data;
198         u64 mask;
199 };
200
201 /*
202  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
203  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
204  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
205  * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
206  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
207  * More than one of these structures may exist, if L1 runs multiple L2 guests.
208  * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
209  * underlying hardware which will be used to run L2.
210  * This structure is packed to ensure that its layout is identical across
211  * machines (necessary for live migration).
212  * If there are changes in this struct, VMCS12_REVISION must be changed.
213  */
214 typedef u64 natural_width;
215 struct __packed vmcs12 {
216         /* According to the Intel spec, a VMCS region must start with the
217          * following two fields. Then follow implementation-specific data.
218          */
219         u32 revision_id;
220         u32 abort;
221
222         u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
223         u32 padding[7]; /* room for future expansion */
224
225         u64 io_bitmap_a;
226         u64 io_bitmap_b;
227         u64 msr_bitmap;
228         u64 vm_exit_msr_store_addr;
229         u64 vm_exit_msr_load_addr;
230         u64 vm_entry_msr_load_addr;
231         u64 tsc_offset;
232         u64 virtual_apic_page_addr;
233         u64 apic_access_addr;
234         u64 posted_intr_desc_addr;
235         u64 ept_pointer;
236         u64 eoi_exit_bitmap0;
237         u64 eoi_exit_bitmap1;
238         u64 eoi_exit_bitmap2;
239         u64 eoi_exit_bitmap3;
240         u64 xss_exit_bitmap;
241         u64 guest_physical_address;
242         u64 vmcs_link_pointer;
243         u64 guest_ia32_debugctl;
244         u64 guest_ia32_pat;
245         u64 guest_ia32_efer;
246         u64 guest_ia32_perf_global_ctrl;
247         u64 guest_pdptr0;
248         u64 guest_pdptr1;
249         u64 guest_pdptr2;
250         u64 guest_pdptr3;
251         u64 guest_bndcfgs;
252         u64 host_ia32_pat;
253         u64 host_ia32_efer;
254         u64 host_ia32_perf_global_ctrl;
255         u64 padding64[8]; /* room for future expansion */
256         /*
257          * To allow migration of L1 (complete with its L2 guests) between
258          * machines of different natural widths (32 or 64 bit), we cannot have
259          * unsigned long fields with no explict size. We use u64 (aliased
260          * natural_width) instead. Luckily, x86 is little-endian.
261          */
262         natural_width cr0_guest_host_mask;
263         natural_width cr4_guest_host_mask;
264         natural_width cr0_read_shadow;
265         natural_width cr4_read_shadow;
266         natural_width cr3_target_value0;
267         natural_width cr3_target_value1;
268         natural_width cr3_target_value2;
269         natural_width cr3_target_value3;
270         natural_width exit_qualification;
271         natural_width guest_linear_address;
272         natural_width guest_cr0;
273         natural_width guest_cr3;
274         natural_width guest_cr4;
275         natural_width guest_es_base;
276         natural_width guest_cs_base;
277         natural_width guest_ss_base;
278         natural_width guest_ds_base;
279         natural_width guest_fs_base;
280         natural_width guest_gs_base;
281         natural_width guest_ldtr_base;
282         natural_width guest_tr_base;
283         natural_width guest_gdtr_base;
284         natural_width guest_idtr_base;
285         natural_width guest_dr7;
286         natural_width guest_rsp;
287         natural_width guest_rip;
288         natural_width guest_rflags;
289         natural_width guest_pending_dbg_exceptions;
290         natural_width guest_sysenter_esp;
291         natural_width guest_sysenter_eip;
292         natural_width host_cr0;
293         natural_width host_cr3;
294         natural_width host_cr4;
295         natural_width host_fs_base;
296         natural_width host_gs_base;
297         natural_width host_tr_base;
298         natural_width host_gdtr_base;
299         natural_width host_idtr_base;
300         natural_width host_ia32_sysenter_esp;
301         natural_width host_ia32_sysenter_eip;
302         natural_width host_rsp;
303         natural_width host_rip;
304         natural_width paddingl[8]; /* room for future expansion */
305         u32 pin_based_vm_exec_control;
306         u32 cpu_based_vm_exec_control;
307         u32 exception_bitmap;
308         u32 page_fault_error_code_mask;
309         u32 page_fault_error_code_match;
310         u32 cr3_target_count;
311         u32 vm_exit_controls;
312         u32 vm_exit_msr_store_count;
313         u32 vm_exit_msr_load_count;
314         u32 vm_entry_controls;
315         u32 vm_entry_msr_load_count;
316         u32 vm_entry_intr_info_field;
317         u32 vm_entry_exception_error_code;
318         u32 vm_entry_instruction_len;
319         u32 tpr_threshold;
320         u32 secondary_vm_exec_control;
321         u32 vm_instruction_error;
322         u32 vm_exit_reason;
323         u32 vm_exit_intr_info;
324         u32 vm_exit_intr_error_code;
325         u32 idt_vectoring_info_field;
326         u32 idt_vectoring_error_code;
327         u32 vm_exit_instruction_len;
328         u32 vmx_instruction_info;
329         u32 guest_es_limit;
330         u32 guest_cs_limit;
331         u32 guest_ss_limit;
332         u32 guest_ds_limit;
333         u32 guest_fs_limit;
334         u32 guest_gs_limit;
335         u32 guest_ldtr_limit;
336         u32 guest_tr_limit;
337         u32 guest_gdtr_limit;
338         u32 guest_idtr_limit;
339         u32 guest_es_ar_bytes;
340         u32 guest_cs_ar_bytes;
341         u32 guest_ss_ar_bytes;
342         u32 guest_ds_ar_bytes;
343         u32 guest_fs_ar_bytes;
344         u32 guest_gs_ar_bytes;
345         u32 guest_ldtr_ar_bytes;
346         u32 guest_tr_ar_bytes;
347         u32 guest_interruptibility_info;
348         u32 guest_activity_state;
349         u32 guest_sysenter_cs;
350         u32 host_ia32_sysenter_cs;
351         u32 vmx_preemption_timer_value;
352         u32 padding32[7]; /* room for future expansion */
353         u16 virtual_processor_id;
354         u16 posted_intr_nv;
355         u16 guest_es_selector;
356         u16 guest_cs_selector;
357         u16 guest_ss_selector;
358         u16 guest_ds_selector;
359         u16 guest_fs_selector;
360         u16 guest_gs_selector;
361         u16 guest_ldtr_selector;
362         u16 guest_tr_selector;
363         u16 guest_intr_status;
364         u16 host_es_selector;
365         u16 host_cs_selector;
366         u16 host_ss_selector;
367         u16 host_ds_selector;
368         u16 host_fs_selector;
369         u16 host_gs_selector;
370         u16 host_tr_selector;
371 };
372
373 /*
374  * VMCS12_REVISION is an arbitrary id that should be changed if the content or
375  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
376  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
377  */
378 #define VMCS12_REVISION 0x11e57ed0
379
380 /*
381  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
382  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
383  * current implementation, 4K are reserved to avoid future complications.
384  */
385 #define VMCS12_SIZE 0x1000
386
387 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
388 struct vmcs02_list {
389         struct list_head list;
390         gpa_t vmptr;
391         struct loaded_vmcs vmcs02;
392 };
393
394 /*
395  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
396  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
397  */
398 struct nested_vmx {
399         /* Has the level1 guest done vmxon? */
400         bool vmxon;
401         gpa_t vmxon_ptr;
402
403         /* The guest-physical address of the current VMCS L1 keeps for L2 */
404         gpa_t current_vmptr;
405         /* The host-usable pointer to the above */
406         struct page *current_vmcs12_page;
407         struct vmcs12 *current_vmcs12;
408         /*
409          * Cache of the guest's VMCS, existing outside of guest memory.
410          * Loaded from guest memory during VMPTRLD. Flushed to guest
411          * memory during VMXOFF, VMCLEAR, VMPTRLD.
412          */
413         struct vmcs12 *cached_vmcs12;
414         struct vmcs *current_shadow_vmcs;
415         /*
416          * Indicates if the shadow vmcs must be updated with the
417          * data hold by vmcs12
418          */
419         bool sync_shadow_vmcs;
420
421         /* vmcs02_list cache of VMCSs recently used to run L2 guests */
422         struct list_head vmcs02_pool;
423         int vmcs02_num;
424         u64 vmcs01_tsc_offset;
425         bool change_vmcs01_virtual_x2apic_mode;
426         /* L2 must run next, and mustn't decide to exit to L1. */
427         bool nested_run_pending;
428         /*
429          * Guest pages referred to in vmcs02 with host-physical pointers, so
430          * we must keep them pinned while L2 runs.
431          */
432         struct page *apic_access_page;
433         struct page *virtual_apic_page;
434         struct page *pi_desc_page;
435         struct pi_desc *pi_desc;
436         bool pi_pending;
437         u16 posted_intr_nv;
438
439         unsigned long *msr_bitmap;
440
441         struct hrtimer preemption_timer;
442         bool preemption_timer_expired;
443
444         /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
445         u64 vmcs01_debugctl;
446
447         u16 vpid02;
448         u16 last_vpid;
449
450         u32 nested_vmx_procbased_ctls_low;
451         u32 nested_vmx_procbased_ctls_high;
452         u32 nested_vmx_true_procbased_ctls_low;
453         u32 nested_vmx_secondary_ctls_low;
454         u32 nested_vmx_secondary_ctls_high;
455         u32 nested_vmx_pinbased_ctls_low;
456         u32 nested_vmx_pinbased_ctls_high;
457         u32 nested_vmx_exit_ctls_low;
458         u32 nested_vmx_exit_ctls_high;
459         u32 nested_vmx_true_exit_ctls_low;
460         u32 nested_vmx_entry_ctls_low;
461         u32 nested_vmx_entry_ctls_high;
462         u32 nested_vmx_true_entry_ctls_low;
463         u32 nested_vmx_misc_low;
464         u32 nested_vmx_misc_high;
465         u32 nested_vmx_ept_caps;
466         u32 nested_vmx_vpid_caps;
467 };
468
469 #define POSTED_INTR_ON  0
470 #define POSTED_INTR_SN  1
471
472 /* Posted-Interrupt Descriptor */
473 struct pi_desc {
474         u32 pir[8];     /* Posted interrupt requested */
475         union {
476                 struct {
477                                 /* bit 256 - Outstanding Notification */
478                         u16     on      : 1,
479                                 /* bit 257 - Suppress Notification */
480                                 sn      : 1,
481                                 /* bit 271:258 - Reserved */
482                                 rsvd_1  : 14;
483                                 /* bit 279:272 - Notification Vector */
484                         u8      nv;
485                                 /* bit 287:280 - Reserved */
486                         u8      rsvd_2;
487                                 /* bit 319:288 - Notification Destination */
488                         u32     ndst;
489                 };
490                 u64 control;
491         };
492         u32 rsvd[6];
493 } __aligned(64);
494
495 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
496 {
497         return test_and_set_bit(POSTED_INTR_ON,
498                         (unsigned long *)&pi_desc->control);
499 }
500
501 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
502 {
503         return test_and_clear_bit(POSTED_INTR_ON,
504                         (unsigned long *)&pi_desc->control);
505 }
506
507 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
508 {
509         return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
510 }
511
512 static inline void pi_clear_sn(struct pi_desc *pi_desc)
513 {
514         return clear_bit(POSTED_INTR_SN,
515                         (unsigned long *)&pi_desc->control);
516 }
517
518 static inline void pi_set_sn(struct pi_desc *pi_desc)
519 {
520         return set_bit(POSTED_INTR_SN,
521                         (unsigned long *)&pi_desc->control);
522 }
523
524 static inline int pi_test_on(struct pi_desc *pi_desc)
525 {
526         return test_bit(POSTED_INTR_ON,
527                         (unsigned long *)&pi_desc->control);
528 }
529
530 static inline int pi_test_sn(struct pi_desc *pi_desc)
531 {
532         return test_bit(POSTED_INTR_SN,
533                         (unsigned long *)&pi_desc->control);
534 }
535
536 struct vcpu_vmx {
537         struct kvm_vcpu       vcpu;
538         unsigned long         host_rsp;
539         u8                    fail;
540         bool                  nmi_known_unmasked;
541         u32                   exit_intr_info;
542         u32                   idt_vectoring_info;
543         ulong                 rflags;
544         struct shared_msr_entry *guest_msrs;
545         int                   nmsrs;
546         int                   save_nmsrs;
547         unsigned long         host_idt_base;
548 #ifdef CONFIG_X86_64
549         u64                   msr_host_kernel_gs_base;
550         u64                   msr_guest_kernel_gs_base;
551 #endif
552         u32 vm_entry_controls_shadow;
553         u32 vm_exit_controls_shadow;
554         /*
555          * loaded_vmcs points to the VMCS currently used in this vcpu. For a
556          * non-nested (L1) guest, it always points to vmcs01. For a nested
557          * guest (L2), it points to a different VMCS.
558          */
559         struct loaded_vmcs    vmcs01;
560         struct loaded_vmcs   *loaded_vmcs;
561         bool                  __launched; /* temporary, used in vmx_vcpu_run */
562         struct msr_autoload {
563                 unsigned nr;
564                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
565                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
566         } msr_autoload;
567         struct {
568                 int           loaded;
569                 u16           fs_sel, gs_sel, ldt_sel;
570 #ifdef CONFIG_X86_64
571                 u16           ds_sel, es_sel;
572 #endif
573                 int           gs_ldt_reload_needed;
574                 int           fs_reload_needed;
575                 u64           msr_host_bndcfgs;
576                 unsigned long vmcs_host_cr4;    /* May not match real cr4 */
577         } host_state;
578         struct {
579                 int vm86_active;
580                 ulong save_rflags;
581                 struct kvm_segment segs[8];
582         } rmode;
583         struct {
584                 u32 bitmask; /* 4 bits per segment (1 bit per field) */
585                 struct kvm_save_segment {
586                         u16 selector;
587                         unsigned long base;
588                         u32 limit;
589                         u32 ar;
590                 } seg[8];
591         } segment_cache;
592         int vpid;
593         bool emulation_required;
594
595         /* Support for vnmi-less CPUs */
596         int soft_vnmi_blocked;
597         ktime_t entry_time;
598         s64 vnmi_blocked_time;
599         u32 exit_reason;
600
601         /* Posted interrupt descriptor */
602         struct pi_desc pi_desc;
603
604         /* Support for a guest hypervisor (nested VMX) */
605         struct nested_vmx nested;
606
607         /* Dynamic PLE window. */
608         int ple_window;
609         bool ple_window_dirty;
610
611         /* Support for PML */
612 #define PML_ENTITY_NUM          512
613         struct page *pml_pg;
614
615         /* apic deadline value in host tsc */
616         u64 hv_deadline_tsc;
617
618         u64 current_tsc_ratio;
619
620         bool guest_pkru_valid;
621         u32 guest_pkru;
622         u32 host_pkru;
623
624         /*
625          * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
626          * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
627          * in msr_ia32_feature_control_valid_bits.
628          */
629         u64 msr_ia32_feature_control;
630         u64 msr_ia32_feature_control_valid_bits;
631 };
632
633 enum segment_cache_field {
634         SEG_FIELD_SEL = 0,
635         SEG_FIELD_BASE = 1,
636         SEG_FIELD_LIMIT = 2,
637         SEG_FIELD_AR = 3,
638
639         SEG_FIELD_NR = 4
640 };
641
642 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
643 {
644         return container_of(vcpu, struct vcpu_vmx, vcpu);
645 }
646
647 static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
648 {
649         return &(to_vmx(vcpu)->pi_desc);
650 }
651
652 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
653 #define FIELD(number, name)     [number] = VMCS12_OFFSET(name)
654 #define FIELD64(number, name)   [number] = VMCS12_OFFSET(name), \
655                                 [number##_HIGH] = VMCS12_OFFSET(name)+4
656
657
658 static unsigned long shadow_read_only_fields[] = {
659         /*
660          * We do NOT shadow fields that are modified when L0
661          * traps and emulates any vmx instruction (e.g. VMPTRLD,
662          * VMXON...) executed by L1.
663          * For example, VM_INSTRUCTION_ERROR is read
664          * by L1 if a vmx instruction fails (part of the error path).
665          * Note the code assumes this logic. If for some reason
666          * we start shadowing these fields then we need to
667          * force a shadow sync when L0 emulates vmx instructions
668          * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
669          * by nested_vmx_failValid)
670          */
671         VM_EXIT_REASON,
672         VM_EXIT_INTR_INFO,
673         VM_EXIT_INSTRUCTION_LEN,
674         IDT_VECTORING_INFO_FIELD,
675         IDT_VECTORING_ERROR_CODE,
676         VM_EXIT_INTR_ERROR_CODE,
677         EXIT_QUALIFICATION,
678         GUEST_LINEAR_ADDRESS,
679         GUEST_PHYSICAL_ADDRESS
680 };
681 static int max_shadow_read_only_fields =
682         ARRAY_SIZE(shadow_read_only_fields);
683
684 static unsigned long shadow_read_write_fields[] = {
685         TPR_THRESHOLD,
686         GUEST_RIP,
687         GUEST_RSP,
688         GUEST_CR0,
689         GUEST_CR3,
690         GUEST_CR4,
691         GUEST_INTERRUPTIBILITY_INFO,
692         GUEST_RFLAGS,
693         GUEST_CS_SELECTOR,
694         GUEST_CS_AR_BYTES,
695         GUEST_CS_LIMIT,
696         GUEST_CS_BASE,
697         GUEST_ES_BASE,
698         GUEST_BNDCFGS,
699         CR0_GUEST_HOST_MASK,
700         CR0_READ_SHADOW,
701         CR4_READ_SHADOW,
702         TSC_OFFSET,
703         EXCEPTION_BITMAP,
704         CPU_BASED_VM_EXEC_CONTROL,
705         VM_ENTRY_EXCEPTION_ERROR_CODE,
706         VM_ENTRY_INTR_INFO_FIELD,
707         VM_ENTRY_INSTRUCTION_LEN,
708         VM_ENTRY_EXCEPTION_ERROR_CODE,
709         HOST_FS_BASE,
710         HOST_GS_BASE,
711         HOST_FS_SELECTOR,
712         HOST_GS_SELECTOR
713 };
714 static int max_shadow_read_write_fields =
715         ARRAY_SIZE(shadow_read_write_fields);
716
717 static const unsigned short vmcs_field_to_offset_table[] = {
718         FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
719         FIELD(POSTED_INTR_NV, posted_intr_nv),
720         FIELD(GUEST_ES_SELECTOR, guest_es_selector),
721         FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
722         FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
723         FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
724         FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
725         FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
726         FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
727         FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
728         FIELD(GUEST_INTR_STATUS, guest_intr_status),
729         FIELD(HOST_ES_SELECTOR, host_es_selector),
730         FIELD(HOST_CS_SELECTOR, host_cs_selector),
731         FIELD(HOST_SS_SELECTOR, host_ss_selector),
732         FIELD(HOST_DS_SELECTOR, host_ds_selector),
733         FIELD(HOST_FS_SELECTOR, host_fs_selector),
734         FIELD(HOST_GS_SELECTOR, host_gs_selector),
735         FIELD(HOST_TR_SELECTOR, host_tr_selector),
736         FIELD64(IO_BITMAP_A, io_bitmap_a),
737         FIELD64(IO_BITMAP_B, io_bitmap_b),
738         FIELD64(MSR_BITMAP, msr_bitmap),
739         FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
740         FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
741         FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
742         FIELD64(TSC_OFFSET, tsc_offset),
743         FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
744         FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
745         FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
746         FIELD64(EPT_POINTER, ept_pointer),
747         FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
748         FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
749         FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
750         FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
751         FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
752         FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
753         FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
754         FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
755         FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
756         FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
757         FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
758         FIELD64(GUEST_PDPTR0, guest_pdptr0),
759         FIELD64(GUEST_PDPTR1, guest_pdptr1),
760         FIELD64(GUEST_PDPTR2, guest_pdptr2),
761         FIELD64(GUEST_PDPTR3, guest_pdptr3),
762         FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
763         FIELD64(HOST_IA32_PAT, host_ia32_pat),
764         FIELD64(HOST_IA32_EFER, host_ia32_efer),
765         FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
766         FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
767         FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
768         FIELD(EXCEPTION_BITMAP, exception_bitmap),
769         FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
770         FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
771         FIELD(CR3_TARGET_COUNT, cr3_target_count),
772         FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
773         FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
774         FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
775         FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
776         FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
777         FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
778         FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
779         FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
780         FIELD(TPR_THRESHOLD, tpr_threshold),
781         FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
782         FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
783         FIELD(VM_EXIT_REASON, vm_exit_reason),
784         FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
785         FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
786         FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
787         FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
788         FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
789         FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
790         FIELD(GUEST_ES_LIMIT, guest_es_limit),
791         FIELD(GUEST_CS_LIMIT, guest_cs_limit),
792         FIELD(GUEST_SS_LIMIT, guest_ss_limit),
793         FIELD(GUEST_DS_LIMIT, guest_ds_limit),
794         FIELD(GUEST_FS_LIMIT, guest_fs_limit),
795         FIELD(GUEST_GS_LIMIT, guest_gs_limit),
796         FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
797         FIELD(GUEST_TR_LIMIT, guest_tr_limit),
798         FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
799         FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
800         FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
801         FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
802         FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
803         FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
804         FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
805         FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
806         FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
807         FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
808         FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
809         FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
810         FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
811         FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
812         FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
813         FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
814         FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
815         FIELD(CR0_READ_SHADOW, cr0_read_shadow),
816         FIELD(CR4_READ_SHADOW, cr4_read_shadow),
817         FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
818         FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
819         FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
820         FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
821         FIELD(EXIT_QUALIFICATION, exit_qualification),
822         FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
823         FIELD(GUEST_CR0, guest_cr0),
824         FIELD(GUEST_CR3, guest_cr3),
825         FIELD(GUEST_CR4, guest_cr4),
826         FIELD(GUEST_ES_BASE, guest_es_base),
827         FIELD(GUEST_CS_BASE, guest_cs_base),
828         FIELD(GUEST_SS_BASE, guest_ss_base),
829         FIELD(GUEST_DS_BASE, guest_ds_base),
830         FIELD(GUEST_FS_BASE, guest_fs_base),
831         FIELD(GUEST_GS_BASE, guest_gs_base),
832         FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
833         FIELD(GUEST_TR_BASE, guest_tr_base),
834         FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
835         FIELD(GUEST_IDTR_BASE, guest_idtr_base),
836         FIELD(GUEST_DR7, guest_dr7),
837         FIELD(GUEST_RSP, guest_rsp),
838         FIELD(GUEST_RIP, guest_rip),
839         FIELD(GUEST_RFLAGS, guest_rflags),
840         FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
841         FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
842         FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
843         FIELD(HOST_CR0, host_cr0),
844         FIELD(HOST_CR3, host_cr3),
845         FIELD(HOST_CR4, host_cr4),
846         FIELD(HOST_FS_BASE, host_fs_base),
847         FIELD(HOST_GS_BASE, host_gs_base),
848         FIELD(HOST_TR_BASE, host_tr_base),
849         FIELD(HOST_GDTR_BASE, host_gdtr_base),
850         FIELD(HOST_IDTR_BASE, host_idtr_base),
851         FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
852         FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
853         FIELD(HOST_RSP, host_rsp),
854         FIELD(HOST_RIP, host_rip),
855 };
856
857 static inline short vmcs_field_to_offset(unsigned long field)
858 {
859         BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
860
861         if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
862             vmcs_field_to_offset_table[field] == 0)
863                 return -ENOENT;
864
865         return vmcs_field_to_offset_table[field];
866 }
867
868 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
869 {
870         return to_vmx(vcpu)->nested.cached_vmcs12;
871 }
872
873 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
874 {
875         struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
876         if (is_error_page(page))
877                 return NULL;
878
879         return page;
880 }
881
882 static void nested_release_page(struct page *page)
883 {
884         kvm_release_page_dirty(page);
885 }
886
887 static void nested_release_page_clean(struct page *page)
888 {
889         kvm_release_page_clean(page);
890 }
891
892 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
893 static u64 construct_eptp(unsigned long root_hpa);
894 static void kvm_cpu_vmxon(u64 addr);
895 static void kvm_cpu_vmxoff(void);
896 static bool vmx_xsaves_supported(void);
897 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
898 static void vmx_set_segment(struct kvm_vcpu *vcpu,
899                             struct kvm_segment *var, int seg);
900 static void vmx_get_segment(struct kvm_vcpu *vcpu,
901                             struct kvm_segment *var, int seg);
902 static bool guest_state_valid(struct kvm_vcpu *vcpu);
903 static u32 vmx_segment_access_rights(struct kvm_segment *var);
904 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
905 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
906 static int alloc_identity_pagetable(struct kvm *kvm);
907
908 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
909 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
910 /*
911  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
912  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
913  */
914 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
915 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
916
917 /*
918  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
919  * can find which vCPU should be waken up.
920  */
921 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
922 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
923
924 static unsigned long *vmx_io_bitmap_a;
925 static unsigned long *vmx_io_bitmap_b;
926 static unsigned long *vmx_msr_bitmap_legacy;
927 static unsigned long *vmx_msr_bitmap_longmode;
928 static unsigned long *vmx_msr_bitmap_legacy_x2apic;
929 static unsigned long *vmx_msr_bitmap_longmode_x2apic;
930 static unsigned long *vmx_msr_bitmap_legacy_x2apic_apicv_inactive;
931 static unsigned long *vmx_msr_bitmap_longmode_x2apic_apicv_inactive;
932 static unsigned long *vmx_vmread_bitmap;
933 static unsigned long *vmx_vmwrite_bitmap;
934
935 static bool cpu_has_load_ia32_efer;
936 static bool cpu_has_load_perf_global_ctrl;
937
938 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
939 static DEFINE_SPINLOCK(vmx_vpid_lock);
940
941 static struct vmcs_config {
942         int size;
943         int order;
944         u32 basic_cap;
945         u32 revision_id;
946         u32 pin_based_exec_ctrl;
947         u32 cpu_based_exec_ctrl;
948         u32 cpu_based_2nd_exec_ctrl;
949         u32 vmexit_ctrl;
950         u32 vmentry_ctrl;
951 } vmcs_config;
952
953 static struct vmx_capability {
954         u32 ept;
955         u32 vpid;
956 } vmx_capability;
957
958 #define VMX_SEGMENT_FIELD(seg)                                  \
959         [VCPU_SREG_##seg] = {                                   \
960                 .selector = GUEST_##seg##_SELECTOR,             \
961                 .base = GUEST_##seg##_BASE,                     \
962                 .limit = GUEST_##seg##_LIMIT,                   \
963                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
964         }
965
966 static const struct kvm_vmx_segment_field {
967         unsigned selector;
968         unsigned base;
969         unsigned limit;
970         unsigned ar_bytes;
971 } kvm_vmx_segment_fields[] = {
972         VMX_SEGMENT_FIELD(CS),
973         VMX_SEGMENT_FIELD(DS),
974         VMX_SEGMENT_FIELD(ES),
975         VMX_SEGMENT_FIELD(FS),
976         VMX_SEGMENT_FIELD(GS),
977         VMX_SEGMENT_FIELD(SS),
978         VMX_SEGMENT_FIELD(TR),
979         VMX_SEGMENT_FIELD(LDTR),
980 };
981
982 static u64 host_efer;
983
984 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
985
986 /*
987  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
988  * away by decrementing the array size.
989  */
990 static const u32 vmx_msr_index[] = {
991 #ifdef CONFIG_X86_64
992         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
993 #endif
994         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
995 };
996
997 static inline bool is_exception_n(u32 intr_info, u8 vector)
998 {
999         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1000                              INTR_INFO_VALID_MASK)) ==
1001                 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
1002 }
1003
1004 static inline bool is_debug(u32 intr_info)
1005 {
1006         return is_exception_n(intr_info, DB_VECTOR);
1007 }
1008
1009 static inline bool is_breakpoint(u32 intr_info)
1010 {
1011         return is_exception_n(intr_info, BP_VECTOR);
1012 }
1013
1014 static inline bool is_page_fault(u32 intr_info)
1015 {
1016         return is_exception_n(intr_info, PF_VECTOR);
1017 }
1018
1019 static inline bool is_no_device(u32 intr_info)
1020 {
1021         return is_exception_n(intr_info, NM_VECTOR);
1022 }
1023
1024 static inline bool is_invalid_opcode(u32 intr_info)
1025 {
1026         return is_exception_n(intr_info, UD_VECTOR);
1027 }
1028
1029 static inline bool is_external_interrupt(u32 intr_info)
1030 {
1031         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1032                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1033 }
1034
1035 static inline bool is_machine_check(u32 intr_info)
1036 {
1037         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1038                              INTR_INFO_VALID_MASK)) ==
1039                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1040 }
1041
1042 static inline bool cpu_has_vmx_msr_bitmap(void)
1043 {
1044         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
1045 }
1046
1047 static inline bool cpu_has_vmx_tpr_shadow(void)
1048 {
1049         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
1050 }
1051
1052 static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
1053 {
1054         return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
1055 }
1056
1057 static inline bool cpu_has_secondary_exec_ctrls(void)
1058 {
1059         return vmcs_config.cpu_based_exec_ctrl &
1060                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1061 }
1062
1063 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1064 {
1065         return vmcs_config.cpu_based_2nd_exec_ctrl &
1066                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1067 }
1068
1069 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1070 {
1071         return vmcs_config.cpu_based_2nd_exec_ctrl &
1072                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1073 }
1074
1075 static inline bool cpu_has_vmx_apic_register_virt(void)
1076 {
1077         return vmcs_config.cpu_based_2nd_exec_ctrl &
1078                 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1079 }
1080
1081 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1082 {
1083         return vmcs_config.cpu_based_2nd_exec_ctrl &
1084                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1085 }
1086
1087 /*
1088  * Comment's format: document - errata name - stepping - processor name.
1089  * Refer from
1090  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1091  */
1092 static u32 vmx_preemption_cpu_tfms[] = {
1093 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
1094 0x000206E6,
1095 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
1096 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1097 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
1098 0x00020652,
1099 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
1100 0x00020655,
1101 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
1102 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
1103 /*
1104  * 320767.pdf - AAP86  - B1 -
1105  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1106  */
1107 0x000106E5,
1108 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
1109 0x000106A0,
1110 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
1111 0x000106A1,
1112 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
1113 0x000106A4,
1114  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1115  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1116  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
1117 0x000106A5,
1118 };
1119
1120 static inline bool cpu_has_broken_vmx_preemption_timer(void)
1121 {
1122         u32 eax = cpuid_eax(0x00000001), i;
1123
1124         /* Clear the reserved bits */
1125         eax &= ~(0x3U << 14 | 0xfU << 28);
1126         for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
1127                 if (eax == vmx_preemption_cpu_tfms[i])
1128                         return true;
1129
1130         return false;
1131 }
1132
1133 static inline bool cpu_has_vmx_preemption_timer(void)
1134 {
1135         return vmcs_config.pin_based_exec_ctrl &
1136                 PIN_BASED_VMX_PREEMPTION_TIMER;
1137 }
1138
1139 static inline bool cpu_has_vmx_posted_intr(void)
1140 {
1141         return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1142                 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
1143 }
1144
1145 static inline bool cpu_has_vmx_apicv(void)
1146 {
1147         return cpu_has_vmx_apic_register_virt() &&
1148                 cpu_has_vmx_virtual_intr_delivery() &&
1149                 cpu_has_vmx_posted_intr();
1150 }
1151
1152 static inline bool cpu_has_vmx_flexpriority(void)
1153 {
1154         return cpu_has_vmx_tpr_shadow() &&
1155                 cpu_has_vmx_virtualize_apic_accesses();
1156 }
1157
1158 static inline bool cpu_has_vmx_ept_execute_only(void)
1159 {
1160         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1161 }
1162
1163 static inline bool cpu_has_vmx_ept_2m_page(void)
1164 {
1165         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1166 }
1167
1168 static inline bool cpu_has_vmx_ept_1g_page(void)
1169 {
1170         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1171 }
1172
1173 static inline bool cpu_has_vmx_ept_4levels(void)
1174 {
1175         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1176 }
1177
1178 static inline bool cpu_has_vmx_ept_ad_bits(void)
1179 {
1180         return vmx_capability.ept & VMX_EPT_AD_BIT;
1181 }
1182
1183 static inline bool cpu_has_vmx_invept_context(void)
1184 {
1185         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1186 }
1187
1188 static inline bool cpu_has_vmx_invept_global(void)
1189 {
1190         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1191 }
1192
1193 static inline bool cpu_has_vmx_invvpid_single(void)
1194 {
1195         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1196 }
1197
1198 static inline bool cpu_has_vmx_invvpid_global(void)
1199 {
1200         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1201 }
1202
1203 static inline bool cpu_has_vmx_ept(void)
1204 {
1205         return vmcs_config.cpu_based_2nd_exec_ctrl &
1206                 SECONDARY_EXEC_ENABLE_EPT;
1207 }
1208
1209 static inline bool cpu_has_vmx_unrestricted_guest(void)
1210 {
1211         return vmcs_config.cpu_based_2nd_exec_ctrl &
1212                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1213 }
1214
1215 static inline bool cpu_has_vmx_ple(void)
1216 {
1217         return vmcs_config.cpu_based_2nd_exec_ctrl &
1218                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1219 }
1220
1221 static inline bool cpu_has_vmx_basic_inout(void)
1222 {
1223         return  (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
1224 }
1225
1226 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
1227 {
1228         return flexpriority_enabled && lapic_in_kernel(vcpu);
1229 }
1230
1231 static inline bool cpu_has_vmx_vpid(void)
1232 {
1233         return vmcs_config.cpu_based_2nd_exec_ctrl &
1234                 SECONDARY_EXEC_ENABLE_VPID;
1235 }
1236
1237 static inline bool cpu_has_vmx_rdtscp(void)
1238 {
1239         return vmcs_config.cpu_based_2nd_exec_ctrl &
1240                 SECONDARY_EXEC_RDTSCP;
1241 }
1242
1243 static inline bool cpu_has_vmx_invpcid(void)
1244 {
1245         return vmcs_config.cpu_based_2nd_exec_ctrl &
1246                 SECONDARY_EXEC_ENABLE_INVPCID;
1247 }
1248
1249 static inline bool cpu_has_virtual_nmis(void)
1250 {
1251         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1252 }
1253
1254 static inline bool cpu_has_vmx_wbinvd_exit(void)
1255 {
1256         return vmcs_config.cpu_based_2nd_exec_ctrl &
1257                 SECONDARY_EXEC_WBINVD_EXITING;
1258 }
1259
1260 static inline bool cpu_has_vmx_shadow_vmcs(void)
1261 {
1262         u64 vmx_msr;
1263         rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1264         /* check if the cpu supports writing r/o exit information fields */
1265         if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1266                 return false;
1267
1268         return vmcs_config.cpu_based_2nd_exec_ctrl &
1269                 SECONDARY_EXEC_SHADOW_VMCS;
1270 }
1271
1272 static inline bool cpu_has_vmx_pml(void)
1273 {
1274         return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1275 }
1276
1277 static inline bool cpu_has_vmx_tsc_scaling(void)
1278 {
1279         return vmcs_config.cpu_based_2nd_exec_ctrl &
1280                 SECONDARY_EXEC_TSC_SCALING;
1281 }
1282
1283 static inline bool report_flexpriority(void)
1284 {
1285         return flexpriority_enabled;
1286 }
1287
1288 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1289 {
1290         return vmcs12->cpu_based_vm_exec_control & bit;
1291 }
1292
1293 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1294 {
1295         return (vmcs12->cpu_based_vm_exec_control &
1296                         CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1297                 (vmcs12->secondary_vm_exec_control & bit);
1298 }
1299
1300 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1301 {
1302         return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1303 }
1304
1305 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1306 {
1307         return vmcs12->pin_based_vm_exec_control &
1308                 PIN_BASED_VMX_PREEMPTION_TIMER;
1309 }
1310
1311 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1312 {
1313         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1314 }
1315
1316 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1317 {
1318         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1319                 vmx_xsaves_supported();
1320 }
1321
1322 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1323 {
1324         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1325 }
1326
1327 static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1328 {
1329         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1330 }
1331
1332 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1333 {
1334         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1335 }
1336
1337 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1338 {
1339         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1340 }
1341
1342 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1343 {
1344         return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1345 }
1346
1347 static inline bool is_exception(u32 intr_info)
1348 {
1349         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1350                 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1351 }
1352
1353 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1354                               u32 exit_intr_info,
1355                               unsigned long exit_qualification);
1356 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1357                         struct vmcs12 *vmcs12,
1358                         u32 reason, unsigned long qualification);
1359
1360 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1361 {
1362         int i;
1363
1364         for (i = 0; i < vmx->nmsrs; ++i)
1365                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1366                         return i;
1367         return -1;
1368 }
1369
1370 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1371 {
1372     struct {
1373         u64 vpid : 16;
1374         u64 rsvd : 48;
1375         u64 gva;
1376     } operand = { vpid, 0, gva };
1377
1378     asm volatile (__ex(ASM_VMX_INVVPID)
1379                   /* CF==1 or ZF==1 --> rc = -1 */
1380                   "; ja 1f ; ud2 ; 1:"
1381                   : : "a"(&operand), "c"(ext) : "cc", "memory");
1382 }
1383
1384 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1385 {
1386         struct {
1387                 u64 eptp, gpa;
1388         } operand = {eptp, gpa};
1389
1390         asm volatile (__ex(ASM_VMX_INVEPT)
1391                         /* CF==1 or ZF==1 --> rc = -1 */
1392                         "; ja 1f ; ud2 ; 1:\n"
1393                         : : "a" (&operand), "c" (ext) : "cc", "memory");
1394 }
1395
1396 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1397 {
1398         int i;
1399
1400         i = __find_msr_index(vmx, msr);
1401         if (i >= 0)
1402                 return &vmx->guest_msrs[i];
1403         return NULL;
1404 }
1405
1406 static void vmcs_clear(struct vmcs *vmcs)
1407 {
1408         u64 phys_addr = __pa(vmcs);
1409         u8 error;
1410
1411         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1412                       : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1413                       : "cc", "memory");
1414         if (error)
1415                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1416                        vmcs, phys_addr);
1417 }
1418
1419 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1420 {
1421         vmcs_clear(loaded_vmcs->vmcs);
1422         loaded_vmcs->cpu = -1;
1423         loaded_vmcs->launched = 0;
1424 }
1425
1426 static void vmcs_load(struct vmcs *vmcs)
1427 {
1428         u64 phys_addr = __pa(vmcs);
1429         u8 error;
1430
1431         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1432                         : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1433                         : "cc", "memory");
1434         if (error)
1435                 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1436                        vmcs, phys_addr);
1437 }
1438
1439 #ifdef CONFIG_KEXEC_CORE
1440 /*
1441  * This bitmap is used to indicate whether the vmclear
1442  * operation is enabled on all cpus. All disabled by
1443  * default.
1444  */
1445 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1446
1447 static inline void crash_enable_local_vmclear(int cpu)
1448 {
1449         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1450 }
1451
1452 static inline void crash_disable_local_vmclear(int cpu)
1453 {
1454         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1455 }
1456
1457 static inline int crash_local_vmclear_enabled(int cpu)
1458 {
1459         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1460 }
1461
1462 static void crash_vmclear_local_loaded_vmcss(void)
1463 {
1464         int cpu = raw_smp_processor_id();
1465         struct loaded_vmcs *v;
1466
1467         if (!crash_local_vmclear_enabled(cpu))
1468                 return;
1469
1470         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1471                             loaded_vmcss_on_cpu_link)
1472                 vmcs_clear(v->vmcs);
1473 }
1474 #else
1475 static inline void crash_enable_local_vmclear(int cpu) { }
1476 static inline void crash_disable_local_vmclear(int cpu) { }
1477 #endif /* CONFIG_KEXEC_CORE */
1478
1479 static void __loaded_vmcs_clear(void *arg)
1480 {
1481         struct loaded_vmcs *loaded_vmcs = arg;
1482         int cpu = raw_smp_processor_id();
1483
1484         if (loaded_vmcs->cpu != cpu)
1485                 return; /* vcpu migration can race with cpu offline */
1486         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1487                 per_cpu(current_vmcs, cpu) = NULL;
1488         crash_disable_local_vmclear(cpu);
1489         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1490
1491         /*
1492          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1493          * is before setting loaded_vmcs->vcpu to -1 which is done in
1494          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1495          * then adds the vmcs into percpu list before it is deleted.
1496          */
1497         smp_wmb();
1498
1499         loaded_vmcs_init(loaded_vmcs);
1500         crash_enable_local_vmclear(cpu);
1501 }
1502
1503 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1504 {
1505         int cpu = loaded_vmcs->cpu;
1506
1507         if (cpu != -1)
1508                 smp_call_function_single(cpu,
1509                          __loaded_vmcs_clear, loaded_vmcs, 1);
1510 }
1511
1512 static inline void vpid_sync_vcpu_single(int vpid)
1513 {
1514         if (vpid == 0)
1515                 return;
1516
1517         if (cpu_has_vmx_invvpid_single())
1518                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
1519 }
1520
1521 static inline void vpid_sync_vcpu_global(void)
1522 {
1523         if (cpu_has_vmx_invvpid_global())
1524                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1525 }
1526
1527 static inline void vpid_sync_context(int vpid)
1528 {
1529         if (cpu_has_vmx_invvpid_single())
1530                 vpid_sync_vcpu_single(vpid);
1531         else
1532                 vpid_sync_vcpu_global();
1533 }
1534
1535 static inline void ept_sync_global(void)
1536 {
1537         if (cpu_has_vmx_invept_global())
1538                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1539 }
1540
1541 static inline void ept_sync_context(u64 eptp)
1542 {
1543         if (enable_ept) {
1544                 if (cpu_has_vmx_invept_context())
1545                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1546                 else
1547                         ept_sync_global();
1548         }
1549 }
1550
1551 static __always_inline void vmcs_check16(unsigned long field)
1552 {
1553         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1554                          "16-bit accessor invalid for 64-bit field");
1555         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1556                          "16-bit accessor invalid for 64-bit high field");
1557         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1558                          "16-bit accessor invalid for 32-bit high field");
1559         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1560                          "16-bit accessor invalid for natural width field");
1561 }
1562
1563 static __always_inline void vmcs_check32(unsigned long field)
1564 {
1565         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1566                          "32-bit accessor invalid for 16-bit field");
1567         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1568                          "32-bit accessor invalid for natural width field");
1569 }
1570
1571 static __always_inline void vmcs_check64(unsigned long field)
1572 {
1573         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1574                          "64-bit accessor invalid for 16-bit field");
1575         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1576                          "64-bit accessor invalid for 64-bit high field");
1577         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1578                          "64-bit accessor invalid for 32-bit field");
1579         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1580                          "64-bit accessor invalid for natural width field");
1581 }
1582
1583 static __always_inline void vmcs_checkl(unsigned long field)
1584 {
1585         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1586                          "Natural width accessor invalid for 16-bit field");
1587         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1588                          "Natural width accessor invalid for 64-bit field");
1589         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1590                          "Natural width accessor invalid for 64-bit high field");
1591         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1592                          "Natural width accessor invalid for 32-bit field");
1593 }
1594
1595 static __always_inline unsigned long __vmcs_readl(unsigned long field)
1596 {
1597         unsigned long value;
1598
1599         asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1600                       : "=a"(value) : "d"(field) : "cc");
1601         return value;
1602 }
1603
1604 static __always_inline u16 vmcs_read16(unsigned long field)
1605 {
1606         vmcs_check16(field);
1607         return __vmcs_readl(field);
1608 }
1609
1610 static __always_inline u32 vmcs_read32(unsigned long field)
1611 {
1612         vmcs_check32(field);
1613         return __vmcs_readl(field);
1614 }
1615
1616 static __always_inline u64 vmcs_read64(unsigned long field)
1617 {
1618         vmcs_check64(field);
1619 #ifdef CONFIG_X86_64
1620         return __vmcs_readl(field);
1621 #else
1622         return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
1623 #endif
1624 }
1625
1626 static __always_inline unsigned long vmcs_readl(unsigned long field)
1627 {
1628         vmcs_checkl(field);
1629         return __vmcs_readl(field);
1630 }
1631
1632 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1633 {
1634         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1635                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1636         dump_stack();
1637 }
1638
1639 static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
1640 {
1641         u8 error;
1642
1643         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1644                        : "=q"(error) : "a"(value), "d"(field) : "cc");
1645         if (unlikely(error))
1646                 vmwrite_error(field, value);
1647 }
1648
1649 static __always_inline void vmcs_write16(unsigned long field, u16 value)
1650 {
1651         vmcs_check16(field);
1652         __vmcs_writel(field, value);
1653 }
1654
1655 static __always_inline void vmcs_write32(unsigned long field, u32 value)
1656 {
1657         vmcs_check32(field);
1658         __vmcs_writel(field, value);
1659 }
1660
1661 static __always_inline void vmcs_write64(unsigned long field, u64 value)
1662 {
1663         vmcs_check64(field);
1664         __vmcs_writel(field, value);
1665 #ifndef CONFIG_X86_64
1666         asm volatile ("");
1667         __vmcs_writel(field+1, value >> 32);
1668 #endif
1669 }
1670
1671 static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
1672 {
1673         vmcs_checkl(field);
1674         __vmcs_writel(field, value);
1675 }
1676
1677 static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
1678 {
1679         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1680                          "vmcs_clear_bits does not support 64-bit fields");
1681         __vmcs_writel(field, __vmcs_readl(field) & ~mask);
1682 }
1683
1684 static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
1685 {
1686         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1687                          "vmcs_set_bits does not support 64-bit fields");
1688         __vmcs_writel(field, __vmcs_readl(field) | mask);
1689 }
1690
1691 static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
1692 {
1693         vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
1694 }
1695
1696 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1697 {
1698         vmcs_write32(VM_ENTRY_CONTROLS, val);
1699         vmx->vm_entry_controls_shadow = val;
1700 }
1701
1702 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1703 {
1704         if (vmx->vm_entry_controls_shadow != val)
1705                 vm_entry_controls_init(vmx, val);
1706 }
1707
1708 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1709 {
1710         return vmx->vm_entry_controls_shadow;
1711 }
1712
1713
1714 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1715 {
1716         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1717 }
1718
1719 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1720 {
1721         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1722 }
1723
1724 static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
1725 {
1726         vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
1727 }
1728
1729 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1730 {
1731         vmcs_write32(VM_EXIT_CONTROLS, val);
1732         vmx->vm_exit_controls_shadow = val;
1733 }
1734
1735 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1736 {
1737         if (vmx->vm_exit_controls_shadow != val)
1738                 vm_exit_controls_init(vmx, val);
1739 }
1740
1741 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1742 {
1743         return vmx->vm_exit_controls_shadow;
1744 }
1745
1746
1747 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1748 {
1749         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1750 }
1751
1752 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1753 {
1754         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1755 }
1756
1757 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1758 {
1759         vmx->segment_cache.bitmask = 0;
1760 }
1761
1762 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1763                                        unsigned field)
1764 {
1765         bool ret;
1766         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1767
1768         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1769                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1770                 vmx->segment_cache.bitmask = 0;
1771         }
1772         ret = vmx->segment_cache.bitmask & mask;
1773         vmx->segment_cache.bitmask |= mask;
1774         return ret;
1775 }
1776
1777 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1778 {
1779         u16 *p = &vmx->segment_cache.seg[seg].selector;
1780
1781         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1782                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1783         return *p;
1784 }
1785
1786 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1787 {
1788         ulong *p = &vmx->segment_cache.seg[seg].base;
1789
1790         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1791                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1792         return *p;
1793 }
1794
1795 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1796 {
1797         u32 *p = &vmx->segment_cache.seg[seg].limit;
1798
1799         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1800                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1801         return *p;
1802 }
1803
1804 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1805 {
1806         u32 *p = &vmx->segment_cache.seg[seg].ar;
1807
1808         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1809                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1810         return *p;
1811 }
1812
1813 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1814 {
1815         u32 eb;
1816
1817         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1818              (1u << NM_VECTOR) | (1u << DB_VECTOR) | (1u << AC_VECTOR);
1819         if ((vcpu->guest_debug &
1820              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1821             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1822                 eb |= 1u << BP_VECTOR;
1823         if (to_vmx(vcpu)->rmode.vm86_active)
1824                 eb = ~0;
1825         if (enable_ept)
1826                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1827         if (vcpu->fpu_active)
1828                 eb &= ~(1u << NM_VECTOR);
1829
1830         /* When we are running a nested L2 guest and L1 specified for it a
1831          * certain exception bitmap, we must trap the same exceptions and pass
1832          * them to L1. When running L2, we will only handle the exceptions
1833          * specified above if L1 did not want them.
1834          */
1835         if (is_guest_mode(vcpu))
1836                 eb |= get_vmcs12(vcpu)->exception_bitmap;
1837
1838         vmcs_write32(EXCEPTION_BITMAP, eb);
1839 }
1840
1841 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1842                 unsigned long entry, unsigned long exit)
1843 {
1844         vm_entry_controls_clearbit(vmx, entry);
1845         vm_exit_controls_clearbit(vmx, exit);
1846 }
1847
1848 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1849 {
1850         unsigned i;
1851         struct msr_autoload *m = &vmx->msr_autoload;
1852
1853         switch (msr) {
1854         case MSR_EFER:
1855                 if (cpu_has_load_ia32_efer) {
1856                         clear_atomic_switch_msr_special(vmx,
1857                                         VM_ENTRY_LOAD_IA32_EFER,
1858                                         VM_EXIT_LOAD_IA32_EFER);
1859                         return;
1860                 }
1861                 break;
1862         case MSR_CORE_PERF_GLOBAL_CTRL:
1863                 if (cpu_has_load_perf_global_ctrl) {
1864                         clear_atomic_switch_msr_special(vmx,
1865                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1866                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1867                         return;
1868                 }
1869                 break;
1870         }
1871
1872         for (i = 0; i < m->nr; ++i)
1873                 if (m->guest[i].index == msr)
1874                         break;
1875
1876         if (i == m->nr)
1877                 return;
1878         --m->nr;
1879         m->guest[i] = m->guest[m->nr];
1880         m->host[i] = m->host[m->nr];
1881         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1882         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1883 }
1884
1885 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1886                 unsigned long entry, unsigned long exit,
1887                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1888                 u64 guest_val, u64 host_val)
1889 {
1890         vmcs_write64(guest_val_vmcs, guest_val);
1891         vmcs_write64(host_val_vmcs, host_val);
1892         vm_entry_controls_setbit(vmx, entry);
1893         vm_exit_controls_setbit(vmx, exit);
1894 }
1895
1896 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1897                                   u64 guest_val, u64 host_val)
1898 {
1899         unsigned i;
1900         struct msr_autoload *m = &vmx->msr_autoload;
1901
1902         switch (msr) {
1903         case MSR_EFER:
1904                 if (cpu_has_load_ia32_efer) {
1905                         add_atomic_switch_msr_special(vmx,
1906                                         VM_ENTRY_LOAD_IA32_EFER,
1907                                         VM_EXIT_LOAD_IA32_EFER,
1908                                         GUEST_IA32_EFER,
1909                                         HOST_IA32_EFER,
1910                                         guest_val, host_val);
1911                         return;
1912                 }
1913                 break;
1914         case MSR_CORE_PERF_GLOBAL_CTRL:
1915                 if (cpu_has_load_perf_global_ctrl) {
1916                         add_atomic_switch_msr_special(vmx,
1917                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1918                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1919                                         GUEST_IA32_PERF_GLOBAL_CTRL,
1920                                         HOST_IA32_PERF_GLOBAL_CTRL,
1921                                         guest_val, host_val);
1922                         return;
1923                 }
1924                 break;
1925         case MSR_IA32_PEBS_ENABLE:
1926                 /* PEBS needs a quiescent period after being disabled (to write
1927                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
1928                  * provide that period, so a CPU could write host's record into
1929                  * guest's memory.
1930                  */
1931                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1932         }
1933
1934         for (i = 0; i < m->nr; ++i)
1935                 if (m->guest[i].index == msr)
1936                         break;
1937
1938         if (i == NR_AUTOLOAD_MSRS) {
1939                 printk_once(KERN_WARNING "Not enough msr switch entries. "
1940                                 "Can't add msr %x\n", msr);
1941                 return;
1942         } else if (i == m->nr) {
1943                 ++m->nr;
1944                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1945                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1946         }
1947
1948         m->guest[i].index = msr;
1949         m->guest[i].value = guest_val;
1950         m->host[i].index = msr;
1951         m->host[i].value = host_val;
1952 }
1953
1954 static void reload_tss(void)
1955 {
1956         /*
1957          * VT restores TR but not its size.  Useless.
1958          */
1959         struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1960         struct desc_struct *descs;
1961
1962         descs = (void *)gdt->address;
1963         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1964         load_TR_desc();
1965 }
1966
1967 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1968 {
1969         u64 guest_efer = vmx->vcpu.arch.efer;
1970         u64 ignore_bits = 0;
1971
1972         if (!enable_ept) {
1973                 /*
1974                  * NX is needed to handle CR0.WP=1, CR4.SMEP=1.  Testing
1975                  * host CPUID is more efficient than testing guest CPUID
1976                  * or CR4.  Host SMEP is anyway a requirement for guest SMEP.
1977                  */
1978                 if (boot_cpu_has(X86_FEATURE_SMEP))
1979                         guest_efer |= EFER_NX;
1980                 else if (!(guest_efer & EFER_NX))
1981                         ignore_bits |= EFER_NX;
1982         }
1983
1984         /*
1985          * LMA and LME handled by hardware; SCE meaningless outside long mode.
1986          */
1987         ignore_bits |= EFER_SCE;
1988 #ifdef CONFIG_X86_64
1989         ignore_bits |= EFER_LMA | EFER_LME;
1990         /* SCE is meaningful only in long mode on Intel */
1991         if (guest_efer & EFER_LMA)
1992                 ignore_bits &= ~(u64)EFER_SCE;
1993 #endif
1994
1995         clear_atomic_switch_msr(vmx, MSR_EFER);
1996
1997         /*
1998          * On EPT, we can't emulate NX, so we must switch EFER atomically.
1999          * On CPUs that support "load IA32_EFER", always switch EFER
2000          * atomically, since it's faster than switching it manually.
2001          */
2002         if (cpu_has_load_ia32_efer ||
2003             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
2004                 if (!(guest_efer & EFER_LMA))
2005                         guest_efer &= ~EFER_LME;
2006                 if (guest_efer != host_efer)
2007                         add_atomic_switch_msr(vmx, MSR_EFER,
2008                                               guest_efer, host_efer);
2009                 return false;
2010         } else {
2011                 guest_efer &= ~ignore_bits;
2012                 guest_efer |= host_efer & ignore_bits;
2013
2014                 vmx->guest_msrs[efer_offset].data = guest_efer;
2015                 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
2016
2017                 return true;
2018         }
2019 }
2020
2021 static unsigned long segment_base(u16 selector)
2022 {
2023         struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2024         struct desc_struct *d;
2025         unsigned long table_base;
2026         unsigned long v;
2027
2028         if (!(selector & ~3))
2029                 return 0;
2030
2031         table_base = gdt->address;
2032
2033         if (selector & 4) {           /* from ldt */
2034                 u16 ldt_selector = kvm_read_ldt();
2035
2036                 if (!(ldt_selector & ~3))
2037                         return 0;
2038
2039                 table_base = segment_base(ldt_selector);
2040         }
2041         d = (struct desc_struct *)(table_base + (selector & ~7));
2042         v = get_desc_base(d);
2043 #ifdef CONFIG_X86_64
2044        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
2045                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
2046 #endif
2047         return v;
2048 }
2049
2050 static inline unsigned long kvm_read_tr_base(void)
2051 {
2052         u16 tr;
2053         asm("str %0" : "=g"(tr));
2054         return segment_base(tr);
2055 }
2056
2057 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
2058 {
2059         struct vcpu_vmx *vmx = to_vmx(vcpu);
2060         int i;
2061
2062         if (vmx->host_state.loaded)
2063                 return;
2064
2065         vmx->host_state.loaded = 1;
2066         /*
2067          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
2068          * allow segment selectors with cpl > 0 or ti == 1.
2069          */
2070         vmx->host_state.ldt_sel = kvm_read_ldt();
2071         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
2072         savesegment(fs, vmx->host_state.fs_sel);
2073         if (!(vmx->host_state.fs_sel & 7)) {
2074                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
2075                 vmx->host_state.fs_reload_needed = 0;
2076         } else {
2077                 vmcs_write16(HOST_FS_SELECTOR, 0);
2078                 vmx->host_state.fs_reload_needed = 1;
2079         }
2080         savesegment(gs, vmx->host_state.gs_sel);
2081         if (!(vmx->host_state.gs_sel & 7))
2082                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
2083         else {
2084                 vmcs_write16(HOST_GS_SELECTOR, 0);
2085                 vmx->host_state.gs_ldt_reload_needed = 1;
2086         }
2087
2088 #ifdef CONFIG_X86_64
2089         savesegment(ds, vmx->host_state.ds_sel);
2090         savesegment(es, vmx->host_state.es_sel);
2091 #endif
2092
2093 #ifdef CONFIG_X86_64
2094         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2095         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2096 #else
2097         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2098         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
2099 #endif
2100
2101 #ifdef CONFIG_X86_64
2102         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2103         if (is_long_mode(&vmx->vcpu))
2104                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2105 #endif
2106         if (boot_cpu_has(X86_FEATURE_MPX))
2107                 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2108         for (i = 0; i < vmx->save_nmsrs; ++i)
2109                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
2110                                    vmx->guest_msrs[i].data,
2111                                    vmx->guest_msrs[i].mask);
2112 }
2113
2114 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
2115 {
2116         if (!vmx->host_state.loaded)
2117                 return;
2118
2119         ++vmx->vcpu.stat.host_state_reload;
2120         vmx->host_state.loaded = 0;
2121 #ifdef CONFIG_X86_64
2122         if (is_long_mode(&vmx->vcpu))
2123                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2124 #endif
2125         if (vmx->host_state.gs_ldt_reload_needed) {
2126                 kvm_load_ldt(vmx->host_state.ldt_sel);
2127 #ifdef CONFIG_X86_64
2128                 load_gs_index(vmx->host_state.gs_sel);
2129 #else
2130                 loadsegment(gs, vmx->host_state.gs_sel);
2131 #endif
2132         }
2133         if (vmx->host_state.fs_reload_needed)
2134                 loadsegment(fs, vmx->host_state.fs_sel);
2135 #ifdef CONFIG_X86_64
2136         if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2137                 loadsegment(ds, vmx->host_state.ds_sel);
2138                 loadsegment(es, vmx->host_state.es_sel);
2139         }
2140 #endif
2141         reload_tss();
2142 #ifdef CONFIG_X86_64
2143         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2144 #endif
2145         if (vmx->host_state.msr_host_bndcfgs)
2146                 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2147         /*
2148          * If the FPU is not active (through the host task or
2149          * the guest vcpu), then restore the cr0.TS bit.
2150          */
2151         if (!fpregs_active() && !vmx->vcpu.guest_fpu_loaded)
2152                 stts();
2153         load_gdt(this_cpu_ptr(&host_gdt));
2154 }
2155
2156 static void vmx_load_host_state(struct vcpu_vmx *vmx)
2157 {
2158         preempt_disable();
2159         __vmx_load_host_state(vmx);
2160         preempt_enable();
2161 }
2162
2163 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2164 {
2165         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2166         struct pi_desc old, new;
2167         unsigned int dest;
2168
2169         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2170                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
2171                 !kvm_vcpu_apicv_active(vcpu))
2172                 return;
2173
2174         do {
2175                 old.control = new.control = pi_desc->control;
2176
2177                 /*
2178                  * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
2179                  * are two possible cases:
2180                  * 1. After running 'pre_block', context switch
2181                  *    happened. For this case, 'sn' was set in
2182                  *    vmx_vcpu_put(), so we need to clear it here.
2183                  * 2. After running 'pre_block', we were blocked,
2184                  *    and woken up by some other guy. For this case,
2185                  *    we don't need to do anything, 'pi_post_block'
2186                  *    will do everything for us. However, we cannot
2187                  *    check whether it is case #1 or case #2 here
2188                  *    (maybe, not needed), so we also clear sn here,
2189                  *    I think it is not a big deal.
2190                  */
2191                 if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
2192                         if (vcpu->cpu != cpu) {
2193                                 dest = cpu_physical_id(cpu);
2194
2195                                 if (x2apic_enabled())
2196                                         new.ndst = dest;
2197                                 else
2198                                         new.ndst = (dest << 8) & 0xFF00;
2199                         }
2200
2201                         /* set 'NV' to 'notification vector' */
2202                         new.nv = POSTED_INTR_VECTOR;
2203                 }
2204
2205                 /* Allow posting non-urgent interrupts */
2206                 new.sn = 0;
2207         } while (cmpxchg(&pi_desc->control, old.control,
2208                         new.control) != old.control);
2209 }
2210
2211 static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
2212 {
2213         vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
2214         vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2215 }
2216
2217 /*
2218  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2219  * vcpu mutex is already taken.
2220  */
2221 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2222 {
2223         struct vcpu_vmx *vmx = to_vmx(vcpu);
2224         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2225         bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
2226
2227         if (!vmm_exclusive)
2228                 kvm_cpu_vmxon(phys_addr);
2229         else if (!already_loaded)
2230                 loaded_vmcs_clear(vmx->loaded_vmcs);
2231
2232         if (!already_loaded) {
2233                 local_irq_disable();
2234                 crash_disable_local_vmclear(cpu);
2235
2236                 /*
2237                  * Read loaded_vmcs->cpu should be before fetching
2238                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
2239                  * See the comments in __loaded_vmcs_clear().
2240                  */
2241                 smp_rmb();
2242
2243                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2244                          &per_cpu(loaded_vmcss_on_cpu, cpu));
2245                 crash_enable_local_vmclear(cpu);
2246                 local_irq_enable();
2247         }
2248
2249         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2250                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2251                 vmcs_load(vmx->loaded_vmcs->vmcs);
2252         }
2253
2254         if (!already_loaded) {
2255                 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2256                 unsigned long sysenter_esp;
2257
2258                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2259
2260                 /*
2261                  * Linux uses per-cpu TSS and GDT, so set these when switching
2262                  * processors.
2263                  */
2264                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
2265                 vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
2266
2267                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2268                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
2269
2270                 vmx->loaded_vmcs->cpu = cpu;
2271         }
2272
2273         /* Setup TSC multiplier */
2274         if (kvm_has_tsc_control &&
2275             vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
2276                 decache_tsc_multiplier(vmx);
2277
2278         vmx_vcpu_pi_load(vcpu, cpu);
2279         vmx->host_pkru = read_pkru();
2280 }
2281
2282 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2283 {
2284         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2285
2286         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2287                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
2288                 !kvm_vcpu_apicv_active(vcpu))
2289                 return;
2290
2291         /* Set SN when the vCPU is preempted */
2292         if (vcpu->preempted)
2293                 pi_set_sn(pi_desc);
2294 }
2295
2296 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2297 {
2298         vmx_vcpu_pi_put(vcpu);
2299
2300         __vmx_load_host_state(to_vmx(vcpu));
2301         if (!vmm_exclusive) {
2302                 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
2303                 vcpu->cpu = -1;
2304                 kvm_cpu_vmxoff();
2305         }
2306 }
2307
2308 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
2309 {
2310         ulong cr0;
2311
2312         if (vcpu->fpu_active)
2313                 return;
2314         vcpu->fpu_active = 1;
2315         cr0 = vmcs_readl(GUEST_CR0);
2316         cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
2317         cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
2318         vmcs_writel(GUEST_CR0, cr0);
2319         update_exception_bitmap(vcpu);
2320         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
2321         if (is_guest_mode(vcpu))
2322                 vcpu->arch.cr0_guest_owned_bits &=
2323                         ~get_vmcs12(vcpu)->cr0_guest_host_mask;
2324         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2325 }
2326
2327 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2328
2329 /*
2330  * Return the cr0 value that a nested guest would read. This is a combination
2331  * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2332  * its hypervisor (cr0_read_shadow).
2333  */
2334 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2335 {
2336         return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2337                 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2338 }
2339 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2340 {
2341         return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2342                 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2343 }
2344
2345 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
2346 {
2347         /* Note that there is no vcpu->fpu_active = 0 here. The caller must
2348          * set this *before* calling this function.
2349          */
2350         vmx_decache_cr0_guest_bits(vcpu);
2351         vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
2352         update_exception_bitmap(vcpu);
2353         vcpu->arch.cr0_guest_owned_bits = 0;
2354         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2355         if (is_guest_mode(vcpu)) {
2356                 /*
2357                  * L1's specified read shadow might not contain the TS bit,
2358                  * so now that we turned on shadowing of this bit, we need to
2359                  * set this bit of the shadow. Like in nested_vmx_run we need
2360                  * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
2361                  * up-to-date here because we just decached cr0.TS (and we'll
2362                  * only update vmcs12->guest_cr0 on nested exit).
2363                  */
2364                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2365                 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
2366                         (vcpu->arch.cr0 & X86_CR0_TS);
2367                 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2368         } else
2369                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2370 }
2371
2372 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2373 {
2374         unsigned long rflags, save_rflags;
2375
2376         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2377                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2378                 rflags = vmcs_readl(GUEST_RFLAGS);
2379                 if (to_vmx(vcpu)->rmode.vm86_active) {
2380                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2381                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2382                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2383                 }
2384                 to_vmx(vcpu)->rflags = rflags;
2385         }
2386         return to_vmx(vcpu)->rflags;
2387 }
2388
2389 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2390 {
2391         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2392         to_vmx(vcpu)->rflags = rflags;
2393         if (to_vmx(vcpu)->rmode.vm86_active) {
2394                 to_vmx(vcpu)->rmode.save_rflags = rflags;
2395                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2396         }
2397         vmcs_writel(GUEST_RFLAGS, rflags);
2398 }
2399
2400 static u32 vmx_get_pkru(struct kvm_vcpu *vcpu)
2401 {
2402         return to_vmx(vcpu)->guest_pkru;
2403 }
2404
2405 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2406 {
2407         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2408         int ret = 0;
2409
2410         if (interruptibility & GUEST_INTR_STATE_STI)
2411                 ret |= KVM_X86_SHADOW_INT_STI;
2412         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2413                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2414
2415         return ret;
2416 }
2417
2418 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2419 {
2420         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2421         u32 interruptibility = interruptibility_old;
2422
2423         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2424
2425         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2426                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2427         else if (mask & KVM_X86_SHADOW_INT_STI)
2428                 interruptibility |= GUEST_INTR_STATE_STI;
2429
2430         if ((interruptibility != interruptibility_old))
2431                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2432 }
2433
2434 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2435 {
2436         unsigned long rip;
2437
2438         rip = kvm_rip_read(vcpu);
2439         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2440         kvm_rip_write(vcpu, rip);
2441
2442         /* skipping an emulated instruction also counts */
2443         vmx_set_interrupt_shadow(vcpu, 0);
2444 }
2445
2446 /*
2447  * KVM wants to inject page-faults which it got to the guest. This function
2448  * checks whether in a nested guest, we need to inject them to L1 or L2.
2449  */
2450 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
2451 {
2452         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2453
2454         if (!(vmcs12->exception_bitmap & (1u << nr)))
2455                 return 0;
2456
2457         nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2458                           vmcs_read32(VM_EXIT_INTR_INFO),
2459                           vmcs_readl(EXIT_QUALIFICATION));
2460         return 1;
2461 }
2462
2463 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
2464                                 bool has_error_code, u32 error_code,
2465                                 bool reinject)
2466 {
2467         struct vcpu_vmx *vmx = to_vmx(vcpu);
2468         u32 intr_info = nr | INTR_INFO_VALID_MASK;
2469
2470         if (!reinject && is_guest_mode(vcpu) &&
2471             nested_vmx_check_exception(vcpu, nr))
2472                 return;
2473
2474         if (has_error_code) {
2475                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2476                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2477         }
2478
2479         if (vmx->rmode.vm86_active) {
2480                 int inc_eip = 0;
2481                 if (kvm_exception_is_soft(nr))
2482                         inc_eip = vcpu->arch.event_exit_inst_len;
2483                 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2484                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2485                 return;
2486         }
2487
2488         if (kvm_exception_is_soft(nr)) {
2489                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2490                              vmx->vcpu.arch.event_exit_inst_len);
2491                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2492         } else
2493                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2494
2495         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2496 }
2497
2498 static bool vmx_rdtscp_supported(void)
2499 {
2500         return cpu_has_vmx_rdtscp();
2501 }
2502
2503 static bool vmx_invpcid_supported(void)
2504 {
2505         return cpu_has_vmx_invpcid() && enable_ept;
2506 }
2507
2508 /*
2509  * Swap MSR entry in host/guest MSR entry array.
2510  */
2511 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2512 {
2513         struct shared_msr_entry tmp;
2514
2515         tmp = vmx->guest_msrs[to];
2516         vmx->guest_msrs[to] = vmx->guest_msrs[from];
2517         vmx->guest_msrs[from] = tmp;
2518 }
2519
2520 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2521 {
2522         unsigned long *msr_bitmap;
2523
2524         if (is_guest_mode(vcpu))
2525                 msr_bitmap = to_vmx(vcpu)->nested.msr_bitmap;
2526         else if (cpu_has_secondary_exec_ctrls() &&
2527                  (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
2528                   SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
2529                 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) {
2530                         if (is_long_mode(vcpu))
2531                                 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2532                         else
2533                                 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2534                 } else {
2535                         if (is_long_mode(vcpu))
2536                                 msr_bitmap = vmx_msr_bitmap_longmode_x2apic_apicv_inactive;
2537                         else
2538                                 msr_bitmap = vmx_msr_bitmap_legacy_x2apic_apicv_inactive;
2539                 }
2540         } else {
2541                 if (is_long_mode(vcpu))
2542                         msr_bitmap = vmx_msr_bitmap_longmode;
2543                 else
2544                         msr_bitmap = vmx_msr_bitmap_legacy;
2545         }
2546
2547         vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2548 }
2549
2550 /*
2551  * Set up the vmcs to automatically save and restore system
2552  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
2553  * mode, as fiddling with msrs is very expensive.
2554  */
2555 static void setup_msrs(struct vcpu_vmx *vmx)
2556 {
2557         int save_nmsrs, index;
2558
2559         save_nmsrs = 0;
2560 #ifdef CONFIG_X86_64
2561         if (is_long_mode(&vmx->vcpu)) {
2562                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2563                 if (index >= 0)
2564                         move_msr_up(vmx, index, save_nmsrs++);
2565                 index = __find_msr_index(vmx, MSR_LSTAR);
2566                 if (index >= 0)
2567                         move_msr_up(vmx, index, save_nmsrs++);
2568                 index = __find_msr_index(vmx, MSR_CSTAR);
2569                 if (index >= 0)
2570                         move_msr_up(vmx, index, save_nmsrs++);
2571                 index = __find_msr_index(vmx, MSR_TSC_AUX);
2572                 if (index >= 0 && guest_cpuid_has_rdtscp(&vmx->vcpu))
2573                         move_msr_up(vmx, index, save_nmsrs++);
2574                 /*
2575                  * MSR_STAR is only needed on long mode guests, and only
2576                  * if efer.sce is enabled.
2577                  */
2578                 index = __find_msr_index(vmx, MSR_STAR);
2579                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2580                         move_msr_up(vmx, index, save_nmsrs++);
2581         }
2582 #endif
2583         index = __find_msr_index(vmx, MSR_EFER);
2584         if (index >= 0 && update_transition_efer(vmx, index))
2585                 move_msr_up(vmx, index, save_nmsrs++);
2586
2587         vmx->save_nmsrs = save_nmsrs;
2588
2589         if (cpu_has_vmx_msr_bitmap())
2590                 vmx_set_msr_bitmap(&vmx->vcpu);
2591 }
2592
2593 /*
2594  * reads and returns guest's timestamp counter "register"
2595  * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2596  * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
2597  */
2598 static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
2599 {
2600         u64 host_tsc, tsc_offset;
2601
2602         host_tsc = rdtsc();
2603         tsc_offset = vmcs_read64(TSC_OFFSET);
2604         return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
2605 }
2606
2607 /*
2608  * Like guest_read_tsc, but always returns L1's notion of the timestamp
2609  * counter, even if a nested guest (L2) is currently running.
2610  */
2611 static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2612 {
2613         u64 tsc_offset;
2614
2615         tsc_offset = is_guest_mode(vcpu) ?
2616                 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2617                 vmcs_read64(TSC_OFFSET);
2618         return host_tsc + tsc_offset;
2619 }
2620
2621 /*
2622  * writes 'offset' into guest's timestamp counter offset register
2623  */
2624 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2625 {
2626         if (is_guest_mode(vcpu)) {
2627                 /*
2628                  * We're here if L1 chose not to trap WRMSR to TSC. According
2629                  * to the spec, this should set L1's TSC; The offset that L1
2630                  * set for L2 remains unchanged, and still needs to be added
2631                  * to the newly set TSC to get L2's TSC.
2632                  */
2633                 struct vmcs12 *vmcs12;
2634                 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2635                 /* recalculate vmcs02.TSC_OFFSET: */
2636                 vmcs12 = get_vmcs12(vcpu);
2637                 vmcs_write64(TSC_OFFSET, offset +
2638                         (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2639                          vmcs12->tsc_offset : 0));
2640         } else {
2641                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2642                                            vmcs_read64(TSC_OFFSET), offset);
2643                 vmcs_write64(TSC_OFFSET, offset);
2644         }
2645 }
2646
2647 static void vmx_adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, s64 adjustment)
2648 {
2649         u64 offset = vmcs_read64(TSC_OFFSET);
2650
2651         vmcs_write64(TSC_OFFSET, offset + adjustment);
2652         if (is_guest_mode(vcpu)) {
2653                 /* Even when running L2, the adjustment needs to apply to L1 */
2654                 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2655         } else
2656                 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2657                                            offset + adjustment);
2658 }
2659
2660 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2661 {
2662         struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2663         return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2664 }
2665
2666 /*
2667  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2668  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2669  * all guests if the "nested" module option is off, and can also be disabled
2670  * for a single guest by disabling its VMX cpuid bit.
2671  */
2672 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2673 {
2674         return nested && guest_cpuid_has_vmx(vcpu);
2675 }
2676
2677 /*
2678  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2679  * returned for the various VMX controls MSRs when nested VMX is enabled.
2680  * The same values should also be used to verify that vmcs12 control fields are
2681  * valid during nested entry from L1 to L2.
2682  * Each of these control msrs has a low and high 32-bit half: A low bit is on
2683  * if the corresponding bit in the (32-bit) control field *must* be on, and a
2684  * bit in the high half is on if the corresponding bit in the control field
2685  * may be on. See also vmx_control_verify().
2686  */
2687 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2688 {
2689         /*
2690          * Note that as a general rule, the high half of the MSRs (bits in
2691          * the control fields which may be 1) should be initialized by the
2692          * intersection of the underlying hardware's MSR (i.e., features which
2693          * can be supported) and the list of features we want to expose -
2694          * because they are known to be properly supported in our code.
2695          * Also, usually, the low half of the MSRs (bits which must be 1) can
2696          * be set to 0, meaning that L1 may turn off any of these bits. The
2697          * reason is that if one of these bits is necessary, it will appear
2698          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2699          * fields of vmcs01 and vmcs02, will turn these bits off - and
2700          * nested_vmx_exit_handled() will not pass related exits to L1.
2701          * These rules have exceptions below.
2702          */
2703
2704         /* pin-based controls */
2705         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2706                 vmx->nested.nested_vmx_pinbased_ctls_low,
2707                 vmx->nested.nested_vmx_pinbased_ctls_high);
2708         vmx->nested.nested_vmx_pinbased_ctls_low |=
2709                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2710         vmx->nested.nested_vmx_pinbased_ctls_high &=
2711                 PIN_BASED_EXT_INTR_MASK |
2712                 PIN_BASED_NMI_EXITING |
2713                 PIN_BASED_VIRTUAL_NMIS;
2714         vmx->nested.nested_vmx_pinbased_ctls_high |=
2715                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2716                 PIN_BASED_VMX_PREEMPTION_TIMER;
2717         if (kvm_vcpu_apicv_active(&vmx->vcpu))
2718                 vmx->nested.nested_vmx_pinbased_ctls_high |=
2719                         PIN_BASED_POSTED_INTR;
2720
2721         /* exit controls */
2722         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2723                 vmx->nested.nested_vmx_exit_ctls_low,
2724                 vmx->nested.nested_vmx_exit_ctls_high);
2725         vmx->nested.nested_vmx_exit_ctls_low =
2726                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2727
2728         vmx->nested.nested_vmx_exit_ctls_high &=
2729 #ifdef CONFIG_X86_64
2730                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2731 #endif
2732                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2733         vmx->nested.nested_vmx_exit_ctls_high |=
2734                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2735                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2736                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2737
2738         if (kvm_mpx_supported())
2739                 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2740
2741         /* We support free control of debug control saving. */
2742         vmx->nested.nested_vmx_true_exit_ctls_low =
2743                 vmx->nested.nested_vmx_exit_ctls_low &
2744                 ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2745
2746         /* entry controls */
2747         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2748                 vmx->nested.nested_vmx_entry_ctls_low,
2749                 vmx->nested.nested_vmx_entry_ctls_high);
2750         vmx->nested.nested_vmx_entry_ctls_low =
2751                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2752         vmx->nested.nested_vmx_entry_ctls_high &=
2753 #ifdef CONFIG_X86_64
2754                 VM_ENTRY_IA32E_MODE |
2755 #endif
2756                 VM_ENTRY_LOAD_IA32_PAT;
2757         vmx->nested.nested_vmx_entry_ctls_high |=
2758                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2759         if (kvm_mpx_supported())
2760                 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2761
2762         /* We support free control of debug control loading. */
2763         vmx->nested.nested_vmx_true_entry_ctls_low =
2764                 vmx->nested.nested_vmx_entry_ctls_low &
2765                 ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2766
2767         /* cpu-based controls */
2768         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2769                 vmx->nested.nested_vmx_procbased_ctls_low,
2770                 vmx->nested.nested_vmx_procbased_ctls_high);
2771         vmx->nested.nested_vmx_procbased_ctls_low =
2772                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2773         vmx->nested.nested_vmx_procbased_ctls_high &=
2774                 CPU_BASED_VIRTUAL_INTR_PENDING |
2775                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2776                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2777                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2778                 CPU_BASED_CR3_STORE_EXITING |
2779 #ifdef CONFIG_X86_64
2780                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2781 #endif
2782                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2783                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2784                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2785                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2786                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2787         /*
2788          * We can allow some features even when not supported by the
2789          * hardware. For example, L1 can specify an MSR bitmap - and we
2790          * can use it to avoid exits to L1 - even when L0 runs L2
2791          * without MSR bitmaps.
2792          */
2793         vmx->nested.nested_vmx_procbased_ctls_high |=
2794                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2795                 CPU_BASED_USE_MSR_BITMAPS;
2796
2797         /* We support free control of CR3 access interception. */
2798         vmx->nested.nested_vmx_true_procbased_ctls_low =
2799                 vmx->nested.nested_vmx_procbased_ctls_low &
2800                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2801
2802         /* secondary cpu-based controls */
2803         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2804                 vmx->nested.nested_vmx_secondary_ctls_low,
2805                 vmx->nested.nested_vmx_secondary_ctls_high);
2806         vmx->nested.nested_vmx_secondary_ctls_low = 0;
2807         vmx->nested.nested_vmx_secondary_ctls_high &=
2808                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2809                 SECONDARY_EXEC_RDTSCP |
2810                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2811                 SECONDARY_EXEC_ENABLE_VPID |
2812                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2813                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2814                 SECONDARY_EXEC_WBINVD_EXITING |
2815                 SECONDARY_EXEC_XSAVES;
2816
2817         if (enable_ept) {
2818                 /* nested EPT: emulate EPT also to L1 */
2819                 vmx->nested.nested_vmx_secondary_ctls_high |=
2820                         SECONDARY_EXEC_ENABLE_EPT;
2821                 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2822                          VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2823                          VMX_EPT_INVEPT_BIT;
2824                 if (cpu_has_vmx_ept_execute_only())
2825                         vmx->nested.nested_vmx_ept_caps |=
2826                                 VMX_EPT_EXECUTE_ONLY_BIT;
2827                 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2828                 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
2829                         VMX_EPT_EXTENT_CONTEXT_BIT;
2830         } else
2831                 vmx->nested.nested_vmx_ept_caps = 0;
2832
2833         /*
2834          * Old versions of KVM use the single-context version without
2835          * checking for support, so declare that it is supported even
2836          * though it is treated as global context.  The alternative is
2837          * not failing the single-context invvpid, and it is worse.
2838          */
2839         if (enable_vpid)
2840                 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
2841                                 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |
2842                                 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
2843         else
2844                 vmx->nested.nested_vmx_vpid_caps = 0;
2845
2846         if (enable_unrestricted_guest)
2847                 vmx->nested.nested_vmx_secondary_ctls_high |=
2848                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
2849
2850         /* miscellaneous data */
2851         rdmsr(MSR_IA32_VMX_MISC,
2852                 vmx->nested.nested_vmx_misc_low,
2853                 vmx->nested.nested_vmx_misc_high);
2854         vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2855         vmx->nested.nested_vmx_misc_low |=
2856                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2857                 VMX_MISC_ACTIVITY_HLT;
2858         vmx->nested.nested_vmx_misc_high = 0;
2859 }
2860
2861 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2862 {
2863         /*
2864          * Bits 0 in high must be 0, and bits 1 in low must be 1.
2865          */
2866         return ((control & high) | low) == control;
2867 }
2868
2869 static inline u64 vmx_control_msr(u32 low, u32 high)
2870 {
2871         return low | ((u64)high << 32);
2872 }
2873
2874 /* Returns 0 on success, non-0 otherwise. */
2875 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2876 {
2877         struct vcpu_vmx *vmx = to_vmx(vcpu);
2878
2879         switch (msr_index) {
2880         case MSR_IA32_VMX_BASIC:
2881                 /*
2882                  * This MSR reports some information about VMX support. We
2883                  * should return information about the VMX we emulate for the
2884                  * guest, and the VMCS structure we give it - not about the
2885                  * VMX support of the underlying hardware.
2886                  */
2887                 *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
2888                            ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2889                            (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2890                 if (cpu_has_vmx_basic_inout())
2891                         *pdata |= VMX_BASIC_INOUT;
2892                 break;
2893         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2894         case MSR_IA32_VMX_PINBASED_CTLS:
2895                 *pdata = vmx_control_msr(
2896                         vmx->nested.nested_vmx_pinbased_ctls_low,
2897                         vmx->nested.nested_vmx_pinbased_ctls_high);
2898                 break;
2899         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2900                 *pdata = vmx_control_msr(
2901                         vmx->nested.nested_vmx_true_procbased_ctls_low,
2902                         vmx->nested.nested_vmx_procbased_ctls_high);
2903                 break;
2904         case MSR_IA32_VMX_PROCBASED_CTLS:
2905                 *pdata = vmx_control_msr(
2906                         vmx->nested.nested_vmx_procbased_ctls_low,
2907                         vmx->nested.nested_vmx_procbased_ctls_high);
2908                 break;
2909         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2910                 *pdata = vmx_control_msr(
2911                         vmx->nested.nested_vmx_true_exit_ctls_low,
2912                         vmx->nested.nested_vmx_exit_ctls_high);
2913                 break;
2914         case MSR_IA32_VMX_EXIT_CTLS:
2915                 *pdata = vmx_control_msr(
2916                         vmx->nested.nested_vmx_exit_ctls_low,
2917                         vmx->nested.nested_vmx_exit_ctls_high);
2918                 break;
2919         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2920                 *pdata = vmx_control_msr(
2921                         vmx->nested.nested_vmx_true_entry_ctls_low,
2922                         vmx->nested.nested_vmx_entry_ctls_high);
2923                 break;
2924         case MSR_IA32_VMX_ENTRY_CTLS:
2925                 *pdata = vmx_control_msr(
2926                         vmx->nested.nested_vmx_entry_ctls_low,
2927                         vmx->nested.nested_vmx_entry_ctls_high);
2928                 break;
2929         case MSR_IA32_VMX_MISC:
2930                 *pdata = vmx_control_msr(
2931                         vmx->nested.nested_vmx_misc_low,
2932                         vmx->nested.nested_vmx_misc_high);
2933                 break;
2934         /*
2935          * These MSRs specify bits which the guest must keep fixed (on or off)
2936          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2937          * We picked the standard core2 setting.
2938          */
2939 #define VMXON_CR0_ALWAYSON      (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2940 #define VMXON_CR4_ALWAYSON      X86_CR4_VMXE
2941         case MSR_IA32_VMX_CR0_FIXED0:
2942                 *pdata = VMXON_CR0_ALWAYSON;
2943                 break;
2944         case MSR_IA32_VMX_CR0_FIXED1:
2945                 *pdata = -1ULL;
2946                 break;
2947         case MSR_IA32_VMX_CR4_FIXED0:
2948                 *pdata = VMXON_CR4_ALWAYSON;
2949                 break;
2950         case MSR_IA32_VMX_CR4_FIXED1:
2951                 *pdata = -1ULL;
2952                 break;
2953         case MSR_IA32_VMX_VMCS_ENUM:
2954                 *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2955                 break;
2956         case MSR_IA32_VMX_PROCBASED_CTLS2:
2957                 *pdata = vmx_control_msr(
2958                         vmx->nested.nested_vmx_secondary_ctls_low,
2959                         vmx->nested.nested_vmx_secondary_ctls_high);
2960                 break;
2961         case MSR_IA32_VMX_EPT_VPID_CAP:
2962                 *pdata = vmx->nested.nested_vmx_ept_caps |
2963                         ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
2964                 break;
2965         default:
2966                 return 1;
2967         }
2968
2969         return 0;
2970 }
2971
2972 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
2973                                                  uint64_t val)
2974 {
2975         uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
2976
2977         return !(val & ~valid_bits);
2978 }
2979
2980 /*
2981  * Reads an msr value (of 'msr_index') into 'pdata'.
2982  * Returns 0 on success, non-0 otherwise.
2983  * Assumes vcpu_load() was already called.
2984  */
2985 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2986 {
2987         struct shared_msr_entry *msr;
2988
2989         switch (msr_info->index) {
2990 #ifdef CONFIG_X86_64
2991         case MSR_FS_BASE:
2992                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
2993                 break;
2994         case MSR_GS_BASE:
2995                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
2996                 break;
2997         case MSR_KERNEL_GS_BASE:
2998                 vmx_load_host_state(to_vmx(vcpu));
2999                 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
3000                 break;
3001 #endif
3002         case MSR_EFER:
3003                 return kvm_get_msr_common(vcpu, msr_info);
3004         case MSR_IA32_TSC:
3005                 msr_info->data = guest_read_tsc(vcpu);
3006                 break;
3007         case MSR_IA32_SYSENTER_CS:
3008                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
3009                 break;
3010         case MSR_IA32_SYSENTER_EIP:
3011                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
3012                 break;
3013         case MSR_IA32_SYSENTER_ESP:
3014                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
3015                 break;
3016         case MSR_IA32_BNDCFGS:
3017                 if (!kvm_mpx_supported())
3018                         return 1;
3019                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
3020                 break;
3021         case MSR_IA32_MCG_EXT_CTL:
3022                 if (!msr_info->host_initiated &&
3023                     !(to_vmx(vcpu)->msr_ia32_feature_control &
3024                       FEATURE_CONTROL_LMCE))
3025                         return 1;
3026                 msr_info->data = vcpu->arch.mcg_ext_ctl;
3027                 break;
3028         case MSR_IA32_FEATURE_CONTROL:
3029                 msr_info->data = to_vmx(vcpu)->msr_ia32_feature_control;
3030                 break;
3031         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3032                 if (!nested_vmx_allowed(vcpu))
3033                         return 1;
3034                 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
3035         case MSR_IA32_XSS:
3036                 if (!vmx_xsaves_supported())
3037                         return 1;
3038                 msr_info->data = vcpu->arch.ia32_xss;
3039                 break;
3040         case MSR_TSC_AUX:
3041                 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
3042                         return 1;
3043                 /* Otherwise falls through */
3044         default:
3045                 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3046                 if (msr) {
3047                         msr_info->data = msr->data;
3048                         break;
3049                 }
3050                 return kvm_get_msr_common(vcpu, msr_info);
3051         }
3052
3053         return 0;
3054 }
3055
3056 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
3057
3058 /*
3059  * Writes msr value into into the appropriate "register".
3060  * Returns 0 on success, non-0 otherwise.
3061  * Assumes vcpu_load() was already called.
3062  */
3063 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3064 {
3065         struct vcpu_vmx *vmx = to_vmx(vcpu);
3066         struct shared_msr_entry *msr;
3067         int ret = 0;
3068         u32 msr_index = msr_info->index;
3069         u64 data = msr_info->data;
3070
3071         switch (msr_index) {
3072         case MSR_EFER:
3073                 ret = kvm_set_msr_common(vcpu, msr_info);
3074                 break;
3075 #ifdef CONFIG_X86_64
3076         case MSR_FS_BASE:
3077                 vmx_segment_cache_clear(vmx);
3078                 vmcs_writel(GUEST_FS_BASE, data);
3079                 break;
3080         case MSR_GS_BASE:
3081                 vmx_segment_cache_clear(vmx);
3082                 vmcs_writel(GUEST_GS_BASE, data);
3083                 break;
3084         case MSR_KERNEL_GS_BASE:
3085                 vmx_load_host_state(vmx);
3086                 vmx->msr_guest_kernel_gs_base = data;
3087                 break;
3088 #endif
3089         case MSR_IA32_SYSENTER_CS:
3090                 vmcs_write32(GUEST_SYSENTER_CS, data);
3091                 break;
3092         case MSR_IA32_SYSENTER_EIP:
3093                 vmcs_writel(GUEST_SYSENTER_EIP, data);
3094                 break;
3095         case MSR_IA32_SYSENTER_ESP:
3096                 vmcs_writel(GUEST_SYSENTER_ESP, data);
3097                 break;
3098         case MSR_IA32_BNDCFGS:
3099                 if (!kvm_mpx_supported())
3100                         return 1;
3101                 vmcs_write64(GUEST_BNDCFGS, data);
3102                 break;
3103         case MSR_IA32_TSC:
3104                 kvm_write_tsc(vcpu, msr_info);
3105                 break;
3106         case MSR_IA32_CR_PAT:
3107                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3108                         if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3109                                 return 1;
3110                         vmcs_write64(GUEST_IA32_PAT, data);
3111                         vcpu->arch.pat = data;
3112                         break;
3113                 }
3114                 ret = kvm_set_msr_common(vcpu, msr_info);
3115                 break;
3116         case MSR_IA32_TSC_ADJUST:
3117                 ret = kvm_set_msr_common(vcpu, msr_info);
3118                 break;
3119         case MSR_IA32_MCG_EXT_CTL:
3120                 if ((!msr_info->host_initiated &&
3121                      !(to_vmx(vcpu)->msr_ia32_feature_control &
3122                        FEATURE_CONTROL_LMCE)) ||
3123                     (data & ~MCG_EXT_CTL_LMCE_EN))
3124                         return 1;
3125                 vcpu->arch.mcg_ext_ctl = data;
3126                 break;
3127         case MSR_IA32_FEATURE_CONTROL:
3128                 if (!vmx_feature_control_msr_valid(vcpu, data) ||
3129                     (to_vmx(vcpu)->msr_ia32_feature_control &
3130                      FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3131                         return 1;
3132                 vmx->msr_ia32_feature_control = data;
3133                 if (msr_info->host_initiated && data == 0)
3134                         vmx_leave_nested(vcpu);
3135                 break;
3136         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3137                 return 1; /* they are read-only */
3138         case MSR_IA32_XSS:
3139                 if (!vmx_xsaves_supported())
3140                         return 1;
3141                 /*
3142                  * The only supported bit as of Skylake is bit 8, but
3143                  * it is not supported on KVM.
3144                  */
3145                 if (data != 0)
3146                         return 1;
3147                 vcpu->arch.ia32_xss = data;
3148                 if (vcpu->arch.ia32_xss != host_xss)
3149                         add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3150                                 vcpu->arch.ia32_xss, host_xss);
3151                 else
3152                         clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3153                 break;
3154         case MSR_TSC_AUX:
3155                 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
3156                         return 1;
3157                 /* Check reserved bit, higher 32 bits should be zero */
3158                 if ((data >> 32) != 0)
3159                         return 1;
3160                 /* Otherwise falls through */
3161         default:
3162                 msr = find_msr_entry(vmx, msr_index);
3163                 if (msr) {
3164                         u64 old_msr_data = msr->data;
3165                         msr->data = data;
3166                         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3167                                 preempt_disable();
3168                                 ret = kvm_set_shared_msr(msr->index, msr->data,
3169                                                          msr->mask);
3170                                 preempt_enable();
3171                                 if (ret)
3172                                         msr->data = old_msr_data;
3173                         }
3174                         break;
3175                 }
3176                 ret = kvm_set_msr_common(vcpu, msr_info);
3177         }
3178
3179         return ret;
3180 }
3181
3182 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
3183 {
3184         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3185         switch (reg) {
3186         case VCPU_REGS_RSP:
3187                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3188                 break;
3189         case VCPU_REGS_RIP:
3190                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3191                 break;
3192         case VCPU_EXREG_PDPTR:
3193                 if (enable_ept)
3194                         ept_save_pdptrs(vcpu);
3195                 break;
3196         default:
3197                 break;
3198         }
3199 }
3200
3201 static __init int cpu_has_kvm_support(void)
3202 {
3203         return cpu_has_vmx();
3204 }
3205
3206 static __init int vmx_disabled_by_bios(void)
3207 {
3208         u64 msr;
3209
3210         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
3211         if (msr & FEATURE_CONTROL_LOCKED) {
3212                 /* launched w/ TXT and VMX disabled */
3213                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3214                         && tboot_enabled())
3215                         return 1;
3216                 /* launched w/o TXT and VMX only enabled w/ TXT */
3217                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3218                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3219                         && !tboot_enabled()) {
3220                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
3221                                 "activate TXT before enabling KVM\n");
3222                         return 1;
3223                 }
3224                 /* launched w/o TXT and VMX disabled */
3225                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3226                         && !tboot_enabled())
3227                         return 1;
3228         }
3229
3230         return 0;
3231 }
3232
3233 static void kvm_cpu_vmxon(u64 addr)
3234 {
3235         intel_pt_handle_vmx(1);
3236
3237         asm volatile (ASM_VMX_VMXON_RAX
3238                         : : "a"(&addr), "m"(addr)
3239                         : "memory", "cc");
3240 }
3241
3242 static int hardware_enable(void)
3243 {
3244         int cpu = raw_smp_processor_id();
3245         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
3246         u64 old, test_bits;
3247
3248         if (cr4_read_shadow() & X86_CR4_VMXE)
3249                 return -EBUSY;
3250
3251         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
3252         INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3253         spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
3254
3255         /*
3256          * Now we can enable the vmclear operation in kdump
3257          * since the loaded_vmcss_on_cpu list on this cpu
3258          * has been initialized.
3259          *
3260          * Though the cpu is not in VMX operation now, there
3261          * is no problem to enable the vmclear operation
3262          * for the loaded_vmcss_on_cpu list is empty!
3263          */
3264         crash_enable_local_vmclear(cpu);
3265
3266         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
3267
3268         test_bits = FEATURE_CONTROL_LOCKED;
3269         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3270         if (tboot_enabled())
3271                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3272
3273         if ((old & test_bits) != test_bits) {
3274                 /* enable and lock */
3275                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3276         }
3277         cr4_set_bits(X86_CR4_VMXE);
3278
3279         if (vmm_exclusive) {
3280                 kvm_cpu_vmxon(phys_addr);
3281                 ept_sync_global();
3282         }
3283
3284         native_store_gdt(this_cpu_ptr(&host_gdt));
3285
3286         return 0;
3287 }
3288
3289 static void vmclear_local_loaded_vmcss(void)
3290 {
3291         int cpu = raw_smp_processor_id();
3292         struct loaded_vmcs *v, *n;
3293
3294         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3295                                  loaded_vmcss_on_cpu_link)
3296                 __loaded_vmcs_clear(v);
3297 }
3298
3299
3300 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3301  * tricks.
3302  */
3303 static void kvm_cpu_vmxoff(void)
3304 {
3305         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
3306
3307         intel_pt_handle_vmx(0);
3308 }
3309
3310 static void hardware_disable(void)
3311 {
3312         if (vmm_exclusive) {
3313                 vmclear_local_loaded_vmcss();
3314                 kvm_cpu_vmxoff();
3315         }
3316         cr4_clear_bits(X86_CR4_VMXE);
3317 }
3318
3319 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
3320                                       u32 msr, u32 *result)
3321 {
3322         u32 vmx_msr_low, vmx_msr_high;
3323         u32 ctl = ctl_min | ctl_opt;
3324
3325         rdmsr(msr, vmx_msr_low, vmx_msr_high);
3326
3327         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3328         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
3329
3330         /* Ensure minimum (required) set of control bits are supported. */
3331         if (ctl_min & ~ctl)
3332                 return -EIO;
3333
3334         *result = ctl;
3335         return 0;
3336 }
3337
3338 static __init bool allow_1_setting(u32 msr, u32 ctl)
3339 {
3340         u32 vmx_msr_low, vmx_msr_high;
3341
3342         rdmsr(msr, vmx_msr_low, vmx_msr_high);
3343         return vmx_msr_high & ctl;
3344 }
3345
3346 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
3347 {
3348         u32 vmx_msr_low, vmx_msr_high;
3349         u32 min, opt, min2, opt2;
3350         u32 _pin_based_exec_control = 0;
3351         u32 _cpu_based_exec_control = 0;
3352         u32 _cpu_based_2nd_exec_control = 0;
3353         u32 _vmexit_control = 0;
3354         u32 _vmentry_control = 0;
3355
3356         min = CPU_BASED_HLT_EXITING |
3357 #ifdef CONFIG_X86_64
3358               CPU_BASED_CR8_LOAD_EXITING |
3359               CPU_BASED_CR8_STORE_EXITING |
3360 #endif
3361               CPU_BASED_CR3_LOAD_EXITING |
3362               CPU_BASED_CR3_STORE_EXITING |
3363               CPU_BASED_USE_IO_BITMAPS |
3364               CPU_BASED_MOV_DR_EXITING |
3365               CPU_BASED_USE_TSC_OFFSETING |
3366               CPU_BASED_MWAIT_EXITING |
3367               CPU_BASED_MONITOR_EXITING |
3368               CPU_BASED_INVLPG_EXITING |
3369               CPU_BASED_RDPMC_EXITING;
3370
3371         opt = CPU_BASED_TPR_SHADOW |
3372               CPU_BASED_USE_MSR_BITMAPS |
3373               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
3374         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3375                                 &_cpu_based_exec_control) < 0)
3376                 return -EIO;
3377 #ifdef CONFIG_X86_64
3378         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3379                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3380                                            ~CPU_BASED_CR8_STORE_EXITING;
3381 #endif
3382         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3383                 min2 = 0;
3384                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3385                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3386                         SECONDARY_EXEC_WBINVD_EXITING |
3387                         SECONDARY_EXEC_ENABLE_VPID |
3388                         SECONDARY_EXEC_ENABLE_EPT |
3389                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
3390                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3391                         SECONDARY_EXEC_RDTSCP |
3392                         SECONDARY_EXEC_ENABLE_INVPCID |
3393                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
3394                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3395                         SECONDARY_EXEC_SHADOW_VMCS |
3396                         SECONDARY_EXEC_XSAVES |
3397                         SECONDARY_EXEC_ENABLE_PML |
3398                         SECONDARY_EXEC_TSC_SCALING;
3399                 if (adjust_vmx_controls(min2, opt2,
3400                                         MSR_IA32_VMX_PROCBASED_CTLS2,
3401                                         &_cpu_based_2nd_exec_control) < 0)
3402                         return -EIO;
3403         }
3404 #ifndef CONFIG_X86_64
3405         if (!(_cpu_based_2nd_exec_control &
3406                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3407                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3408 #endif
3409
3410         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3411                 _cpu_based_2nd_exec_control &= ~(
3412                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3413                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3414                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3415
3416         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3417                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3418                    enabled */
3419                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3420                                              CPU_BASED_CR3_STORE_EXITING |
3421                                              CPU_BASED_INVLPG_EXITING);
3422                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3423                       vmx_capability.ept, vmx_capability.vpid);
3424         }
3425
3426         min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
3427 #ifdef CONFIG_X86_64
3428         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3429 #endif
3430         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3431                 VM_EXIT_CLEAR_BNDCFGS;
3432         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3433                                 &_vmexit_control) < 0)
3434                 return -EIO;
3435
3436         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
3437         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
3438                  PIN_BASED_VMX_PREEMPTION_TIMER;
3439         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3440                                 &_pin_based_exec_control) < 0)
3441                 return -EIO;
3442
3443         if (cpu_has_broken_vmx_preemption_timer())
3444                 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3445         if (!(_cpu_based_2nd_exec_control &
3446                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
3447                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3448
3449         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3450         opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3451         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3452                                 &_vmentry_control) < 0)
3453                 return -EIO;
3454
3455         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3456
3457         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3458         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3459                 return -EIO;
3460
3461 #ifdef CONFIG_X86_64
3462         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3463         if (vmx_msr_high & (1u<<16))
3464                 return -EIO;
3465 #endif
3466
3467         /* Require Write-Back (WB) memory type for VMCS accesses. */
3468         if (((vmx_msr_high >> 18) & 15) != 6)
3469                 return -EIO;
3470
3471         vmcs_conf->size = vmx_msr_high & 0x1fff;
3472         vmcs_conf->order = get_order(vmcs_conf->size);
3473         vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
3474         vmcs_conf->revision_id = vmx_msr_low;
3475
3476         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3477         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3478         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3479         vmcs_conf->vmexit_ctrl         = _vmexit_control;
3480         vmcs_conf->vmentry_ctrl        = _vmentry_control;
3481
3482         cpu_has_load_ia32_efer =
3483                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3484                                 VM_ENTRY_LOAD_IA32_EFER)
3485                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3486                                    VM_EXIT_LOAD_IA32_EFER);
3487
3488         cpu_has_load_perf_global_ctrl =
3489                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3490                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3491                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3492                                    VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3493
3494         /*
3495          * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3496          * but due to errata below it can't be used. Workaround is to use
3497          * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3498          *
3499          * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3500          *
3501          * AAK155             (model 26)
3502          * AAP115             (model 30)
3503          * AAT100             (model 37)
3504          * BC86,AAY89,BD102   (model 44)
3505          * BA97               (model 46)
3506          *
3507          */
3508         if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3509                 switch (boot_cpu_data.x86_model) {
3510                 case 26:
3511                 case 30:
3512                 case 37:
3513                 case 44:
3514                 case 46:
3515                         cpu_has_load_perf_global_ctrl = false;
3516                         printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3517                                         "does not work properly. Using workaround\n");
3518                         break;
3519                 default:
3520                         break;
3521                 }
3522         }
3523
3524         if (boot_cpu_has(X86_FEATURE_XSAVES))
3525                 rdmsrl(MSR_IA32_XSS, host_xss);
3526
3527         return 0;
3528 }
3529
3530 static struct vmcs *alloc_vmcs_cpu(int cpu)
3531 {
3532         int node = cpu_to_node(cpu);
3533         struct page *pages;
3534         struct vmcs *vmcs;
3535
3536         pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
3537         if (!pages)
3538                 return NULL;
3539         vmcs = page_address(pages);
3540         memset(vmcs, 0, vmcs_config.size);
3541         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3542         return vmcs;
3543 }
3544
3545 static struct vmcs *alloc_vmcs(void)
3546 {
3547         return alloc_vmcs_cpu(raw_smp_processor_id());
3548 }
3549
3550 static void free_vmcs(struct vmcs *vmcs)
3551 {
3552         free_pages((unsigned long)vmcs, vmcs_config.order);
3553 }
3554
3555 /*
3556  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3557  */
3558 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3559 {
3560         if (!loaded_vmcs->vmcs)
3561                 return;
3562         loaded_vmcs_clear(loaded_vmcs);
3563         free_vmcs(loaded_vmcs->vmcs);
3564         loaded_vmcs->vmcs = NULL;
3565 }
3566
3567 static void free_kvm_area(void)
3568 {
3569         int cpu;
3570
3571         for_each_possible_cpu(cpu) {
3572                 free_vmcs(per_cpu(vmxarea, cpu));
3573                 per_cpu(vmxarea, cpu) = NULL;
3574         }
3575 }
3576
3577 static void init_vmcs_shadow_fields(void)
3578 {
3579         int i, j;
3580
3581         /* No checks for read only fields yet */
3582
3583         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3584                 switch (shadow_read_write_fields[i]) {
3585                 case GUEST_BNDCFGS:
3586                         if (!kvm_mpx_supported())
3587                                 continue;
3588                         break;
3589                 default:
3590                         break;
3591                 }
3592
3593                 if (j < i)
3594                         shadow_read_write_fields[j] =
3595                                 shadow_read_write_fields[i];
3596                 j++;
3597         }
3598         max_shadow_read_write_fields = j;
3599
3600         /* shadowed fields guest access without vmexit */
3601         for (i = 0; i < max_shadow_read_write_fields; i++) {
3602                 clear_bit(shadow_read_write_fields[i],
3603                           vmx_vmwrite_bitmap);
3604                 clear_bit(shadow_read_write_fields[i],
3605                           vmx_vmread_bitmap);
3606         }
3607         for (i = 0; i < max_shadow_read_only_fields; i++)
3608                 clear_bit(shadow_read_only_fields[i],
3609                           vmx_vmread_bitmap);
3610 }
3611
3612 static __init int alloc_kvm_area(void)
3613 {
3614         int cpu;
3615
3616         for_each_possible_cpu(cpu) {
3617                 struct vmcs *vmcs;
3618
3619                 vmcs = alloc_vmcs_cpu(cpu);
3620                 if (!vmcs) {
3621                         free_kvm_area();
3622                         return -ENOMEM;
3623                 }
3624
3625                 per_cpu(vmxarea, cpu) = vmcs;
3626         }
3627         return 0;
3628 }
3629
3630 static bool emulation_required(struct kvm_vcpu *vcpu)
3631 {
3632         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3633 }
3634
3635 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3636                 struct kvm_segment *save)
3637 {
3638         if (!emulate_invalid_guest_state) {
3639                 /*
3640                  * CS and SS RPL should be equal during guest entry according
3641                  * to VMX spec, but in reality it is not always so. Since vcpu
3642                  * is in the middle of the transition from real mode to
3643                  * protected mode it is safe to assume that RPL 0 is a good
3644                  * default value.
3645                  */
3646                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3647                         save->selector &= ~SEGMENT_RPL_MASK;
3648                 save->dpl = save->selector & SEGMENT_RPL_MASK;
3649                 save->s = 1;
3650         }
3651         vmx_set_segment(vcpu, save, seg);
3652 }
3653
3654 static void enter_pmode(struct kvm_vcpu *vcpu)
3655 {
3656         unsigned long flags;
3657         struct vcpu_vmx *vmx = to_vmx(vcpu);
3658
3659         /*
3660          * Update real mode segment cache. It may be not up-to-date if sement
3661          * register was written while vcpu was in a guest mode.
3662          */
3663         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3664         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3665         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3666         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3667         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3668         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3669
3670         vmx->rmode.vm86_active = 0;
3671
3672         vmx_segment_cache_clear(vmx);
3673
3674         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3675
3676         flags = vmcs_readl(GUEST_RFLAGS);
3677         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3678         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3679         vmcs_writel(GUEST_RFLAGS, flags);
3680
3681         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3682                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3683
3684         update_exception_bitmap(vcpu);
3685
3686         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3687         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3688         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3689         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3690         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3691         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3692 }
3693
3694 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3695 {
3696         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3697         struct kvm_segment var = *save;
3698
3699         var.dpl = 0x3;
3700         if (seg == VCPU_SREG_CS)
3701                 var.type = 0x3;
3702
3703         if (!emulate_invalid_guest_state) {
3704                 var.selector = var.base >> 4;
3705                 var.base = var.base & 0xffff0;
3706                 var.limit = 0xffff;
3707                 var.g = 0;
3708                 var.db = 0;
3709                 var.present = 1;
3710                 var.s = 1;
3711                 var.l = 0;
3712                 var.unusable = 0;
3713                 var.type = 0x3;
3714                 var.avl = 0;
3715                 if (save->base & 0xf)
3716                         printk_once(KERN_WARNING "kvm: segment base is not "
3717                                         "paragraph aligned when entering "
3718                                         "protected mode (seg=%d)", seg);
3719         }
3720
3721         vmcs_write16(sf->selector, var.selector);
3722         vmcs_write32(sf->base, var.base);
3723         vmcs_write32(sf->limit, var.limit);
3724         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3725 }
3726
3727 static void enter_rmode(struct kvm_vcpu *vcpu)
3728 {
3729         unsigned long flags;
3730         struct vcpu_vmx *vmx = to_vmx(vcpu);
3731
3732         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3733         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3734         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3735         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3736         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3737         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3738         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3739
3740         vmx->rmode.vm86_active = 1;
3741
3742         /*
3743          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3744          * vcpu. Warn the user that an update is overdue.
3745          */
3746         if (!vcpu->kvm->arch.tss_addr)
3747                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3748                              "called before entering vcpu\n");
3749
3750         vmx_segment_cache_clear(vmx);
3751
3752         vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3753         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3754         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3755
3756         flags = vmcs_readl(GUEST_RFLAGS);
3757         vmx->rmode.save_rflags = flags;
3758
3759         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3760
3761         vmcs_writel(GUEST_RFLAGS, flags);
3762         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3763         update_exception_bitmap(vcpu);
3764
3765         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3766         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3767         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3768         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3769         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3770         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3771
3772         kvm_mmu_reset_context(vcpu);
3773 }
3774
3775 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3776 {
3777         struct vcpu_vmx *vmx = to_vmx(vcpu);
3778         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3779
3780         if (!msr)
3781                 return;
3782
3783         /*
3784          * Force kernel_gs_base reloading before EFER changes, as control
3785          * of this msr depends on is_long_mode().
3786          */
3787         vmx_load_host_state(to_vmx(vcpu));
3788         vcpu->arch.efer = efer;
3789         if (efer & EFER_LMA) {
3790                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3791                 msr->data = efer;
3792         } else {
3793                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3794
3795                 msr->data = efer & ~EFER_LME;
3796         }
3797         setup_msrs(vmx);
3798 }
3799
3800 #ifdef CONFIG_X86_64
3801
3802 static void enter_lmode(struct kvm_vcpu *vcpu)
3803 {
3804         u32 guest_tr_ar;
3805
3806         vmx_segment_cache_clear(to_vmx(vcpu));
3807
3808         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3809         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3810                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3811                                      __func__);
3812                 vmcs_write32(GUEST_TR_AR_BYTES,
3813                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3814                              | VMX_AR_TYPE_BUSY_64_TSS);
3815         }
3816         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3817 }
3818
3819 static void exit_lmode(struct kvm_vcpu *vcpu)
3820 {
3821         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3822         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3823 }
3824
3825 #endif
3826
3827 static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
3828 {
3829         vpid_sync_context(vpid);
3830         if (enable_ept) {
3831                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3832                         return;
3833                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3834         }
3835 }
3836
3837 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3838 {
3839         __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
3840 }
3841
3842 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3843 {
3844         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3845
3846         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3847         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3848 }
3849
3850 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3851 {
3852         if (enable_ept && is_paging(vcpu))
3853                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3854         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3855 }
3856
3857 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3858 {
3859         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3860
3861         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3862         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3863 }
3864
3865 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3866 {
3867         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3868
3869         if (!test_bit(VCPU_EXREG_PDPTR,
3870                       (unsigned long *)&vcpu->arch.regs_dirty))
3871                 return;
3872
3873         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3874                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3875                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3876                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3877                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3878         }
3879 }
3880
3881 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3882 {
3883         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3884
3885         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3886                 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3887                 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3888                 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3889                 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3890         }
3891
3892         __set_bit(VCPU_EXREG_PDPTR,
3893                   (unsigned long *)&vcpu->arch.regs_avail);
3894         __set_bit(VCPU_EXREG_PDPTR,
3895                   (unsigned long *)&vcpu->arch.regs_dirty);
3896 }
3897
3898 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3899
3900 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3901                                         unsigned long cr0,
3902                                         struct kvm_vcpu *vcpu)
3903 {
3904         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3905                 vmx_decache_cr3(vcpu);
3906         if (!(cr0 & X86_CR0_PG)) {
3907                 /* From paging/starting to nonpaging */
3908                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3909                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3910                              (CPU_BASED_CR3_LOAD_EXITING |
3911                               CPU_BASED_CR3_STORE_EXITING));
3912                 vcpu->arch.cr0 = cr0;
3913                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3914         } else if (!is_paging(vcpu)) {
3915                 /* From nonpaging to paging */
3916                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3917                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3918                              ~(CPU_BASED_CR3_LOAD_EXITING |
3919                                CPU_BASED_CR3_STORE_EXITING));
3920                 vcpu->arch.cr0 = cr0;
3921                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3922         }
3923
3924         if (!(cr0 & X86_CR0_WP))
3925                 *hw_cr0 &= ~X86_CR0_WP;
3926 }
3927
3928 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3929 {
3930         struct vcpu_vmx *vmx = to_vmx(vcpu);
3931         unsigned long hw_cr0;
3932
3933         hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3934         if (enable_unrestricted_guest)
3935                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3936         else {
3937                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3938
3939                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3940                         enter_pmode(vcpu);
3941
3942                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3943                         enter_rmode(vcpu);
3944         }
3945
3946 #ifdef CONFIG_X86_64
3947         if (vcpu->arch.efer & EFER_LME) {
3948                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3949                         enter_lmode(vcpu);
3950                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3951                         exit_lmode(vcpu);
3952         }
3953 #endif
3954
3955         if (enable_ept)
3956                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3957
3958         if (!vcpu->fpu_active)
3959                 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3960
3961         vmcs_writel(CR0_READ_SHADOW, cr0);
3962         vmcs_writel(GUEST_CR0, hw_cr0);
3963         vcpu->arch.cr0 = cr0;
3964
3965         /* depends on vcpu->arch.cr0 to be set to a new value */
3966         vmx->emulation_required = emulation_required(vcpu);
3967 }
3968
3969 static u64 construct_eptp(unsigned long root_hpa)
3970 {
3971         u64 eptp;
3972
3973         /* TODO write the value reading from MSR */
3974         eptp = VMX_EPT_DEFAULT_MT |
3975                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3976         if (enable_ept_ad_bits)
3977                 eptp |= VMX_EPT_AD_ENABLE_BIT;
3978         eptp |= (root_hpa & PAGE_MASK);
3979
3980         return eptp;
3981 }
3982
3983 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3984 {
3985         unsigned long guest_cr3;
3986         u64 eptp;
3987
3988         guest_cr3 = cr3;
3989         if (enable_ept) {
3990                 eptp = construct_eptp(cr3);
3991                 vmcs_write64(EPT_POINTER, eptp);
3992                 if (is_paging(vcpu) || is_guest_mode(vcpu))
3993                         guest_cr3 = kvm_read_cr3(vcpu);
3994                 else
3995                         guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
3996                 ept_load_pdptrs(vcpu);
3997         }
3998
3999         vmx_flush_tlb(vcpu);
4000         vmcs_writel(GUEST_CR3, guest_cr3);
4001 }
4002
4003 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
4004 {
4005         /*
4006          * Pass through host's Machine Check Enable value to hw_cr4, which
4007          * is in force while we are in guest mode.  Do not let guests control
4008          * this bit, even if host CR4.MCE == 0.
4009          */
4010         unsigned long hw_cr4 =
4011                 (cr4_read_shadow() & X86_CR4_MCE) |
4012                 (cr4 & ~X86_CR4_MCE) |
4013                 (to_vmx(vcpu)->rmode.vm86_active ?
4014                  KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
4015
4016         if (cr4 & X86_CR4_VMXE) {
4017                 /*
4018                  * To use VMXON (and later other VMX instructions), a guest
4019                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
4020                  * So basically the check on whether to allow nested VMX
4021                  * is here.
4022                  */
4023                 if (!nested_vmx_allowed(vcpu))
4024                         return 1;
4025         }
4026         if (to_vmx(vcpu)->nested.vmxon &&
4027             ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
4028                 return 1;
4029
4030         vcpu->arch.cr4 = cr4;
4031         if (enable_ept) {
4032                 if (!is_paging(vcpu)) {
4033                         hw_cr4 &= ~X86_CR4_PAE;
4034                         hw_cr4 |= X86_CR4_PSE;
4035                 } else if (!(cr4 & X86_CR4_PAE)) {
4036                         hw_cr4 &= ~X86_CR4_PAE;
4037                 }
4038         }
4039
4040         if (!enable_unrestricted_guest && !is_paging(vcpu))
4041                 /*
4042                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
4043                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
4044                  * to be manually disabled when guest switches to non-paging
4045                  * mode.
4046                  *
4047                  * If !enable_unrestricted_guest, the CPU is always running
4048                  * with CR0.PG=1 and CR4 needs to be modified.
4049                  * If enable_unrestricted_guest, the CPU automatically
4050                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
4051                  */
4052                 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
4053
4054         vmcs_writel(CR4_READ_SHADOW, cr4);
4055         vmcs_writel(GUEST_CR4, hw_cr4);
4056         return 0;
4057 }
4058
4059 static void vmx_get_segment(struct kvm_vcpu *vcpu,
4060                             struct kvm_segment *var, int seg)
4061 {
4062         struct vcpu_vmx *vmx = to_vmx(vcpu);
4063         u32 ar;
4064
4065         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4066                 *var = vmx->rmode.segs[seg];
4067                 if (seg == VCPU_SREG_TR
4068                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
4069                         return;
4070                 var->base = vmx_read_guest_seg_base(vmx, seg);
4071                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4072                 return;
4073         }
4074         var->base = vmx_read_guest_seg_base(vmx, seg);
4075         var->limit = vmx_read_guest_seg_limit(vmx, seg);
4076         var->selector = vmx_read_guest_seg_selector(vmx, seg);
4077         ar = vmx_read_guest_seg_ar(vmx, seg);
4078         var->unusable = (ar >> 16) & 1;
4079         var->type = ar & 15;
4080         var->s = (ar >> 4) & 1;
4081         var->dpl = (ar >> 5) & 3;
4082         /*
4083          * Some userspaces do not preserve unusable property. Since usable
4084          * segment has to be present according to VMX spec we can use present
4085          * property to amend userspace bug by making unusable segment always
4086          * nonpresent. vmx_segment_access_rights() already marks nonpresent
4087          * segment as unusable.
4088          */
4089         var->present = !var->unusable;
4090         var->avl = (ar >> 12) & 1;
4091         var->l = (ar >> 13) & 1;
4092         var->db = (ar >> 14) & 1;
4093         var->g = (ar >> 15) & 1;
4094 }
4095
4096 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
4097 {
4098         struct kvm_segment s;
4099
4100         if (to_vmx(vcpu)->rmode.vm86_active) {
4101                 vmx_get_segment(vcpu, &s, seg);
4102                 return s.base;
4103         }
4104         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
4105 }
4106
4107 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
4108 {
4109         struct vcpu_vmx *vmx = to_vmx(vcpu);
4110
4111         if (unlikely(vmx->rmode.vm86_active))
4112                 return 0;
4113         else {
4114                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4115                 return VMX_AR_DPL(ar);
4116         }
4117 }
4118
4119 static u32 vmx_segment_access_rights(struct kvm_segment *var)
4120 {
4121         u32 ar;
4122
4123         if (var->unusable || !var->present)
4124                 ar = 1 << 16;
4125         else {
4126                 ar = var->type & 15;
4127                 ar |= (var->s & 1) << 4;
4128                 ar |= (var->dpl & 3) << 5;
4129                 ar |= (var->present & 1) << 7;
4130                 ar |= (var->avl & 1) << 12;
4131                 ar |= (var->l & 1) << 13;
4132                 ar |= (var->db & 1) << 14;
4133                 ar |= (var->g & 1) << 15;
4134         }
4135
4136         return ar;
4137 }
4138
4139 static void vmx_set_segment(struct kvm_vcpu *vcpu,
4140                             struct kvm_segment *var, int seg)
4141 {
4142         struct vcpu_vmx *vmx = to_vmx(vcpu);
4143         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4144
4145         vmx_segment_cache_clear(vmx);
4146
4147         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4148                 vmx->rmode.segs[seg] = *var;
4149                 if (seg == VCPU_SREG_TR)
4150                         vmcs_write16(sf->selector, var->selector);
4151                 else if (var->s)
4152                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
4153                 goto out;
4154         }
4155
4156         vmcs_writel(sf->base, var->base);
4157         vmcs_write32(sf->limit, var->limit);
4158         vmcs_write16(sf->selector, var->selector);
4159
4160         /*
4161          *   Fix the "Accessed" bit in AR field of segment registers for older
4162          * qemu binaries.
4163          *   IA32 arch specifies that at the time of processor reset the
4164          * "Accessed" bit in the AR field of segment registers is 1. And qemu
4165          * is setting it to 0 in the userland code. This causes invalid guest
4166          * state vmexit when "unrestricted guest" mode is turned on.
4167          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
4168          * tree. Newer qemu binaries with that qemu fix would not need this
4169          * kvm hack.
4170          */
4171         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
4172                 var->type |= 0x1; /* Accessed */
4173
4174         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
4175
4176 out:
4177         vmx->emulation_required = emulation_required(vcpu);
4178 }
4179
4180 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4181 {
4182         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
4183
4184         *db = (ar >> 14) & 1;
4185         *l = (ar >> 13) & 1;
4186 }
4187
4188 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4189 {
4190         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4191         dt->address = vmcs_readl(GUEST_IDTR_BASE);
4192 }
4193
4194 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4195 {
4196         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4197         vmcs_writel(GUEST_IDTR_BASE, dt->address);
4198 }
4199
4200 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4201 {
4202         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4203         dt->address = vmcs_readl(GUEST_GDTR_BASE);
4204 }
4205
4206 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4207 {
4208         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4209         vmcs_writel(GUEST_GDTR_BASE, dt->address);
4210 }
4211
4212 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4213 {
4214         struct kvm_segment var;
4215         u32 ar;
4216
4217         vmx_get_segment(vcpu, &var, seg);
4218         var.dpl = 0x3;
4219         if (seg == VCPU_SREG_CS)
4220                 var.type = 0x3;
4221         ar = vmx_segment_access_rights(&var);
4222
4223         if (var.base != (var.selector << 4))
4224                 return false;
4225         if (var.limit != 0xffff)
4226                 return false;
4227         if (ar != 0xf3)
4228                 return false;
4229
4230         return true;
4231 }
4232
4233 static bool code_segment_valid(struct kvm_vcpu *vcpu)
4234 {
4235         struct kvm_segment cs;
4236         unsigned int cs_rpl;
4237
4238         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4239         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
4240
4241         if (cs.unusable)
4242                 return false;
4243         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
4244                 return false;
4245         if (!cs.s)
4246                 return false;
4247         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
4248                 if (cs.dpl > cs_rpl)
4249                         return false;
4250         } else {
4251                 if (cs.dpl != cs_rpl)
4252                         return false;
4253         }
4254         if (!cs.present)
4255                 return false;
4256
4257         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4258         return true;
4259 }
4260
4261 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4262 {
4263         struct kvm_segment ss;
4264         unsigned int ss_rpl;
4265
4266         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4267         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
4268
4269         if (ss.unusable)
4270                 return true;
4271         if (ss.type != 3 && ss.type != 7)
4272                 return false;
4273         if (!ss.s)
4274                 return false;
4275         if (ss.dpl != ss_rpl) /* DPL != RPL */
4276                 return false;
4277         if (!ss.present)
4278                 return false;
4279
4280         return true;
4281 }
4282
4283 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4284 {
4285         struct kvm_segment var;
4286         unsigned int rpl;
4287
4288         vmx_get_segment(vcpu, &var, seg);
4289         rpl = var.selector & SEGMENT_RPL_MASK;
4290
4291         if (var.unusable)
4292                 return true;
4293         if (!var.s)
4294                 return false;
4295         if (!var.present)
4296                 return false;
4297         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
4298                 if (var.dpl < rpl) /* DPL < RPL */
4299                         return false;
4300         }
4301
4302         /* TODO: Add other members to kvm_segment_field to allow checking for other access
4303          * rights flags
4304          */
4305         return true;
4306 }
4307
4308 static bool tr_valid(struct kvm_vcpu *vcpu)
4309 {
4310         struct kvm_segment tr;
4311
4312         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4313
4314         if (tr.unusable)
4315                 return false;
4316         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
4317                 return false;
4318         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
4319                 return false;
4320         if (!tr.present)
4321                 return false;
4322
4323         return true;
4324 }
4325
4326 static bool ldtr_valid(struct kvm_vcpu *vcpu)
4327 {
4328         struct kvm_segment ldtr;
4329
4330         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4331
4332         if (ldtr.unusable)
4333                 return true;
4334         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
4335                 return false;
4336         if (ldtr.type != 2)
4337                 return false;
4338         if (!ldtr.present)
4339                 return false;
4340
4341         return true;
4342 }
4343
4344 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4345 {
4346         struct kvm_segment cs, ss;
4347
4348         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4349         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4350
4351         return ((cs.selector & SEGMENT_RPL_MASK) ==
4352                  (ss.selector & SEGMENT_RPL_MASK));
4353 }
4354
4355 /*
4356  * Check if guest state is valid. Returns true if valid, false if
4357  * not.
4358  * We assume that registers are always usable
4359  */
4360 static bool guest_state_valid(struct kvm_vcpu *vcpu)
4361 {
4362         if (enable_unrestricted_guest)
4363                 return true;
4364
4365         /* real mode guest state checks */
4366         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4367                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4368                         return false;
4369                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4370                         return false;
4371                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4372                         return false;
4373                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4374                         return false;
4375                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4376                         return false;
4377                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4378                         return false;
4379         } else {
4380         /* protected mode guest state checks */
4381                 if (!cs_ss_rpl_check(vcpu))
4382                         return false;
4383                 if (!code_segment_valid(vcpu))
4384                         return false;
4385                 if (!stack_segment_valid(vcpu))
4386                         return false;
4387                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4388                         return false;
4389                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4390                         return false;
4391                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4392                         return false;
4393                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4394                         return false;
4395                 if (!tr_valid(vcpu))
4396                         return false;
4397                 if (!ldtr_valid(vcpu))
4398                         return false;
4399         }
4400         /* TODO:
4401          * - Add checks on RIP
4402          * - Add checks on RFLAGS
4403          */
4404
4405         return true;
4406 }
4407
4408 static int init_rmode_tss(struct kvm *kvm)
4409 {
4410         gfn_t fn;
4411         u16 data = 0;
4412         int idx, r;
4413
4414         idx = srcu_read_lock(&kvm->srcu);
4415         fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4416         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4417         if (r < 0)
4418                 goto out;
4419         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4420         r = kvm_write_guest_page(kvm, fn++, &data,
4421                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
4422         if (r < 0)
4423                 goto out;
4424         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4425         if (r < 0)
4426                 goto out;
4427         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4428         if (r < 0)
4429                 goto out;
4430         data = ~0;
4431         r = kvm_write_guest_page(kvm, fn, &data,
4432                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4433                                  sizeof(u8));
4434 out:
4435         srcu_read_unlock(&kvm->srcu, idx);
4436         return r;
4437 }
4438
4439 static int init_rmode_identity_map(struct kvm *kvm)
4440 {
4441         int i, idx, r = 0;
4442         kvm_pfn_t identity_map_pfn;
4443         u32 tmp;
4444
4445         if (!enable_ept)
4446                 return 0;
4447
4448         /* Protect kvm->arch.ept_identity_pagetable_done. */
4449         mutex_lock(&kvm->slots_lock);
4450
4451         if (likely(kvm->arch.ept_identity_pagetable_done))
4452                 goto out2;
4453
4454         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4455
4456         r = alloc_identity_pagetable(kvm);
4457         if (r < 0)
4458                 goto out2;
4459
4460         idx = srcu_read_lock(&kvm->srcu);
4461         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4462         if (r < 0)
4463                 goto out;
4464         /* Set up identity-mapping pagetable for EPT in real mode */
4465         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4466                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4467                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4468                 r = kvm_write_guest_page(kvm, identity_map_pfn,
4469                                 &tmp, i * sizeof(tmp), sizeof(tmp));
4470                 if (r < 0)
4471                         goto out;
4472         }
4473         kvm->arch.ept_identity_pagetable_done = true;
4474
4475 out:
4476         srcu_read_unlock(&kvm->srcu, idx);
4477
4478 out2:
4479         mutex_unlock(&kvm->slots_lock);
4480         return r;
4481 }
4482
4483 static void seg_setup(int seg)
4484 {
4485         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4486         unsigned int ar;
4487
4488         vmcs_write16(sf->selector, 0);
4489         vmcs_writel(sf->base, 0);
4490         vmcs_write32(sf->limit, 0xffff);
4491         ar = 0x93;
4492         if (seg == VCPU_SREG_CS)
4493                 ar |= 0x08; /* code segment */
4494
4495         vmcs_write32(sf->ar_bytes, ar);
4496 }
4497
4498 static int alloc_apic_access_page(struct kvm *kvm)
4499 {
4500         struct page *page;
4501         int r = 0;
4502
4503         mutex_lock(&kvm->slots_lock);
4504         if (kvm->arch.apic_access_page_done)
4505                 goto out;
4506         r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4507                                     APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
4508         if (r)
4509                 goto out;
4510
4511         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4512         if (is_error_page(page)) {
4513                 r = -EFAULT;
4514                 goto out;
4515         }
4516
4517         /*
4518          * Do not pin the page in memory, so that memory hot-unplug
4519          * is able to migrate it.
4520          */
4521         put_page(page);
4522         kvm->arch.apic_access_page_done = true;
4523 out:
4524         mutex_unlock(&kvm->slots_lock);
4525         return r;
4526 }
4527
4528 static int alloc_identity_pagetable(struct kvm *kvm)
4529 {
4530         /* Called with kvm->slots_lock held. */
4531
4532         int r = 0;
4533
4534         BUG_ON(kvm->arch.ept_identity_pagetable_done);
4535
4536         r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4537                                     kvm->arch.ept_identity_map_addr, PAGE_SIZE);
4538
4539         return r;
4540 }
4541
4542 static int allocate_vpid(void)
4543 {
4544         int vpid;
4545
4546         if (!enable_vpid)
4547                 return 0;
4548         spin_lock(&vmx_vpid_lock);
4549         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4550         if (vpid < VMX_NR_VPIDS)
4551                 __set_bit(vpid, vmx_vpid_bitmap);
4552         else
4553                 vpid = 0;
4554         spin_unlock(&vmx_vpid_lock);
4555         return vpid;
4556 }
4557
4558 static void free_vpid(int vpid)
4559 {
4560         if (!enable_vpid || vpid == 0)
4561                 return;
4562         spin_lock(&vmx_vpid_lock);
4563         __clear_bit(vpid, vmx_vpid_bitmap);
4564         spin_unlock(&vmx_vpid_lock);
4565 }
4566
4567 #define MSR_TYPE_R      1
4568 #define MSR_TYPE_W      2
4569 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4570                                                 u32 msr, int type)
4571 {
4572         int f = sizeof(unsigned long);
4573
4574         if (!cpu_has_vmx_msr_bitmap())
4575                 return;
4576
4577         /*
4578          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4579          * have the write-low and read-high bitmap offsets the wrong way round.
4580          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4581          */
4582         if (msr <= 0x1fff) {
4583                 if (type & MSR_TYPE_R)
4584                         /* read-low */
4585                         __clear_bit(msr, msr_bitmap + 0x000 / f);
4586
4587                 if (type & MSR_TYPE_W)
4588                         /* write-low */
4589                         __clear_bit(msr, msr_bitmap + 0x800 / f);
4590
4591         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4592                 msr &= 0x1fff;
4593                 if (type & MSR_TYPE_R)
4594                         /* read-high */
4595                         __clear_bit(msr, msr_bitmap + 0x400 / f);
4596
4597                 if (type & MSR_TYPE_W)
4598                         /* write-high */
4599                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
4600
4601         }
4602 }
4603
4604 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4605                                                 u32 msr, int type)
4606 {
4607         int f = sizeof(unsigned long);
4608
4609         if (!cpu_has_vmx_msr_bitmap())
4610                 return;
4611
4612         /*
4613          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4614          * have the write-low and read-high bitmap offsets the wrong way round.
4615          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4616          */
4617         if (msr <= 0x1fff) {
4618                 if (type & MSR_TYPE_R)
4619                         /* read-low */
4620                         __set_bit(msr, msr_bitmap + 0x000 / f);
4621
4622                 if (type & MSR_TYPE_W)
4623                         /* write-low */
4624                         __set_bit(msr, msr_bitmap + 0x800 / f);
4625
4626         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4627                 msr &= 0x1fff;
4628                 if (type & MSR_TYPE_R)
4629                         /* read-high */
4630                         __set_bit(msr, msr_bitmap + 0x400 / f);
4631
4632                 if (type & MSR_TYPE_W)
4633                         /* write-high */
4634                         __set_bit(msr, msr_bitmap + 0xc00 / f);
4635
4636         }
4637 }
4638
4639 /*
4640  * If a msr is allowed by L0, we should check whether it is allowed by L1.
4641  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4642  */
4643 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4644                                                unsigned long *msr_bitmap_nested,
4645                                                u32 msr, int type)
4646 {
4647         int f = sizeof(unsigned long);
4648
4649         if (!cpu_has_vmx_msr_bitmap()) {
4650                 WARN_ON(1);
4651                 return;
4652         }
4653
4654         /*
4655          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4656          * have the write-low and read-high bitmap offsets the wrong way round.
4657          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4658          */
4659         if (msr <= 0x1fff) {
4660                 if (type & MSR_TYPE_R &&
4661                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4662                         /* read-low */
4663                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4664
4665                 if (type & MSR_TYPE_W &&
4666                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4667                         /* write-low */
4668                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4669
4670         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4671                 msr &= 0x1fff;
4672                 if (type & MSR_TYPE_R &&
4673                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4674                         /* read-high */
4675                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4676
4677                 if (type & MSR_TYPE_W &&
4678                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4679                         /* write-high */
4680                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4681
4682         }
4683 }
4684
4685 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4686 {
4687         if (!longmode_only)
4688                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4689                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4690         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4691                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4692 }
4693
4694 static void vmx_enable_intercept_msr_read_x2apic(u32 msr, bool apicv_active)
4695 {
4696         if (apicv_active) {
4697                 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4698                                 msr, MSR_TYPE_R);
4699                 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4700                                 msr, MSR_TYPE_R);
4701         } else {
4702                 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic_apicv_inactive,
4703                                 msr, MSR_TYPE_R);
4704                 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic_apicv_inactive,
4705                                 msr, MSR_TYPE_R);
4706         }
4707 }
4708
4709 static void vmx_disable_intercept_msr_read_x2apic(u32 msr, bool apicv_active)
4710 {
4711         if (apicv_active) {
4712                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4713                                 msr, MSR_TYPE_R);
4714                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4715                                 msr, MSR_TYPE_R);
4716         } else {
4717                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic_apicv_inactive,
4718                                 msr, MSR_TYPE_R);
4719                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic_apicv_inactive,
4720                                 msr, MSR_TYPE_R);
4721         }
4722 }
4723
4724 static void vmx_disable_intercept_msr_write_x2apic(u32 msr, bool apicv_active)
4725 {
4726         if (apicv_active) {
4727                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4728                                 msr, MSR_TYPE_W);
4729                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4730                                 msr, MSR_TYPE_W);
4731         } else {
4732                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic_apicv_inactive,
4733                                 msr, MSR_TYPE_W);
4734                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic_apicv_inactive,
4735                                 msr, MSR_TYPE_W);
4736         }
4737 }
4738
4739 static bool vmx_get_enable_apicv(void)
4740 {
4741         return enable_apicv;
4742 }
4743
4744 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4745 {
4746         struct vcpu_vmx *vmx = to_vmx(vcpu);
4747         int max_irr;
4748         void *vapic_page;
4749         u16 status;
4750
4751         if (vmx->nested.pi_desc &&
4752             vmx->nested.pi_pending) {
4753                 vmx->nested.pi_pending = false;
4754                 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4755                         return 0;
4756
4757                 max_irr = find_last_bit(
4758                         (unsigned long *)vmx->nested.pi_desc->pir, 256);
4759
4760                 if (max_irr == 256)
4761                         return 0;
4762
4763                 vapic_page = kmap(vmx->nested.virtual_apic_page);
4764                 if (!vapic_page) {
4765                         WARN_ON(1);
4766                         return -ENOMEM;
4767                 }
4768                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4769                 kunmap(vmx->nested.virtual_apic_page);
4770
4771                 status = vmcs_read16(GUEST_INTR_STATUS);
4772                 if ((u8)max_irr > ((u8)status & 0xff)) {
4773                         status &= ~0xff;
4774                         status |= (u8)max_irr;
4775                         vmcs_write16(GUEST_INTR_STATUS, status);
4776                 }
4777         }
4778         return 0;
4779 }
4780
4781 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4782 {
4783 #ifdef CONFIG_SMP
4784         if (vcpu->mode == IN_GUEST_MODE) {
4785                 struct vcpu_vmx *vmx = to_vmx(vcpu);
4786
4787                 /*
4788                  * Currently, we don't support urgent interrupt,
4789                  * all interrupts are recognized as non-urgent
4790                  * interrupt, so we cannot post interrupts when
4791                  * 'SN' is set.
4792                  *
4793                  * If the vcpu is in guest mode, it means it is
4794                  * running instead of being scheduled out and
4795                  * waiting in the run queue, and that's the only
4796                  * case when 'SN' is set currently, warning if
4797                  * 'SN' is set.
4798                  */
4799                 WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc));
4800
4801                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4802                                 POSTED_INTR_VECTOR);
4803                 return true;
4804         }
4805 #endif
4806         return false;
4807 }
4808
4809 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4810                                                 int vector)
4811 {
4812         struct vcpu_vmx *vmx = to_vmx(vcpu);
4813
4814         if (is_guest_mode(vcpu) &&
4815             vector == vmx->nested.posted_intr_nv) {
4816                 /* the PIR and ON have been set by L1. */
4817                 kvm_vcpu_trigger_posted_interrupt(vcpu);
4818                 /*
4819                  * If a posted intr is not recognized by hardware,
4820                  * we will accomplish it in the next vmentry.
4821                  */
4822                 vmx->nested.pi_pending = true;
4823                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4824                 return 0;
4825         }
4826         return -1;
4827 }
4828 /*
4829  * Send interrupt to vcpu via posted interrupt way.
4830  * 1. If target vcpu is running(non-root mode), send posted interrupt
4831  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4832  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4833  * interrupt from PIR in next vmentry.
4834  */
4835 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4836 {
4837         struct vcpu_vmx *vmx = to_vmx(vcpu);
4838         int r;
4839
4840         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4841         if (!r)
4842                 return;
4843
4844         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4845                 return;
4846
4847         r = pi_test_and_set_on(&vmx->pi_desc);
4848         kvm_make_request(KVM_REQ_EVENT, vcpu);
4849         if (r || !kvm_vcpu_trigger_posted_interrupt(vcpu))
4850                 kvm_vcpu_kick(vcpu);
4851 }
4852
4853 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4854 {
4855         struct vcpu_vmx *vmx = to_vmx(vcpu);
4856
4857         if (!pi_test_and_clear_on(&vmx->pi_desc))
4858                 return;
4859
4860         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4861 }
4862
4863 /*
4864  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4865  * will not change in the lifetime of the guest.
4866  * Note that host-state that does change is set elsewhere. E.g., host-state
4867  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4868  */
4869 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4870 {
4871         u32 low32, high32;
4872         unsigned long tmpl;
4873         struct desc_ptr dt;
4874         unsigned long cr4;
4875
4876         vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS);  /* 22.2.3 */
4877         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
4878
4879         /* Save the most likely value for this task's CR4 in the VMCS. */
4880         cr4 = cr4_read_shadow();
4881         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
4882         vmx->host_state.vmcs_host_cr4 = cr4;
4883
4884         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4885 #ifdef CONFIG_X86_64
4886         /*
4887          * Load null selectors, so we can avoid reloading them in
4888          * __vmx_load_host_state(), in case userspace uses the null selectors
4889          * too (the expected case).
4890          */
4891         vmcs_write16(HOST_DS_SELECTOR, 0);
4892         vmcs_write16(HOST_ES_SELECTOR, 0);
4893 #else
4894         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4895         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4896 #endif
4897         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4898         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4899
4900         native_store_idt(&dt);
4901         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
4902         vmx->host_idt_base = dt.address;
4903
4904         vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4905
4906         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4907         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4908         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4909         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4910
4911         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4912                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4913                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4914         }
4915 }
4916
4917 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4918 {
4919         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4920         if (enable_ept)
4921                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4922         if (is_guest_mode(&vmx->vcpu))
4923                 vmx->vcpu.arch.cr4_guest_owned_bits &=
4924                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4925         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4926 }
4927
4928 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4929 {
4930         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4931
4932         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4933                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4934         /* Enable the preemption timer dynamically */
4935         pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4936         return pin_based_exec_ctrl;
4937 }
4938
4939 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4940 {
4941         struct vcpu_vmx *vmx = to_vmx(vcpu);
4942
4943         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4944         if (cpu_has_secondary_exec_ctrls()) {
4945                 if (kvm_vcpu_apicv_active(vcpu))
4946                         vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
4947                                       SECONDARY_EXEC_APIC_REGISTER_VIRT |
4948                                       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4949                 else
4950                         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
4951                                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
4952                                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4953         }
4954
4955         if (cpu_has_vmx_msr_bitmap())
4956                 vmx_set_msr_bitmap(vcpu);
4957 }
4958
4959 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4960 {
4961         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4962
4963         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4964                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4965
4966         if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4967                 exec_control &= ~CPU_BASED_TPR_SHADOW;
4968 #ifdef CONFIG_X86_64
4969                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4970                                 CPU_BASED_CR8_LOAD_EXITING;
4971 #endif
4972         }
4973         if (!enable_ept)
4974                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4975                                 CPU_BASED_CR3_LOAD_EXITING  |
4976                                 CPU_BASED_INVLPG_EXITING;
4977         return exec_control;
4978 }
4979
4980 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4981 {
4982         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4983         if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu))
4984                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4985         if (vmx->vpid == 0)
4986                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4987         if (!enable_ept) {
4988                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4989                 enable_unrestricted_guest = 0;
4990                 /* Enable INVPCID for non-ept guests may cause performance regression. */
4991                 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4992         }
4993         if (!enable_unrestricted_guest)
4994                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4995         if (!ple_gap)
4996                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4997         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4998                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4999                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5000         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
5001         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
5002            (handle_vmptrld).
5003            We can NOT enable shadow_vmcs here because we don't have yet
5004            a current VMCS12
5005         */
5006         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
5007
5008         if (!enable_pml)
5009                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
5010
5011         return exec_control;
5012 }
5013
5014 static void ept_set_mmio_spte_mask(void)
5015 {
5016         /*
5017          * EPT Misconfigurations can be generated if the value of bits 2:0
5018          * of an EPT paging-structure entry is 110b (write/execute).
5019          * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
5020          * spte.
5021          */
5022         kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
5023 }
5024
5025 #define VMX_XSS_EXIT_BITMAP 0
5026 /*
5027  * Sets up the vmcs for emulated real mode.
5028  */
5029 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
5030 {
5031 #ifdef CONFIG_X86_64
5032         unsigned long a;
5033 #endif
5034         int i;
5035
5036         /* I/O */
5037         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
5038         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
5039
5040         if (enable_shadow_vmcs) {
5041                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5042                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5043         }
5044         if (cpu_has_vmx_msr_bitmap())
5045                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
5046
5047         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
5048
5049         /* Control */
5050         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5051         vmx->hv_deadline_tsc = -1;
5052
5053         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
5054
5055         if (cpu_has_secondary_exec_ctrls()) {
5056                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
5057                                 vmx_secondary_exec_control(vmx));
5058         }
5059
5060         if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
5061                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
5062                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
5063                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
5064                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
5065
5066                 vmcs_write16(GUEST_INTR_STATUS, 0);
5067
5068                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
5069                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
5070         }
5071
5072         if (ple_gap) {
5073                 vmcs_write32(PLE_GAP, ple_gap);
5074                 vmx->ple_window = ple_window;
5075                 vmx->ple_window_dirty = true;
5076         }
5077
5078         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
5079         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
5080         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
5081
5082         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
5083         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
5084         vmx_set_constant_host_state(vmx);
5085 #ifdef CONFIG_X86_64
5086         rdmsrl(MSR_FS_BASE, a);
5087         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
5088         rdmsrl(MSR_GS_BASE, a);
5089         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
5090 #else
5091         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
5092         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
5093 #endif
5094
5095         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
5096         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
5097         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
5098         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
5099         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
5100
5101         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
5102                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
5103
5104         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
5105                 u32 index = vmx_msr_index[i];
5106                 u32 data_low, data_high;
5107                 int j = vmx->nmsrs;
5108
5109                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
5110                         continue;
5111                 if (wrmsr_safe(index, data_low, data_high) < 0)
5112                         continue;
5113                 vmx->guest_msrs[j].index = i;
5114                 vmx->guest_msrs[j].data = 0;
5115                 vmx->guest_msrs[j].mask = -1ull;
5116                 ++vmx->nmsrs;
5117         }
5118
5119
5120         vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
5121
5122         /* 22.2.1, 20.8.1 */
5123         vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
5124
5125         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
5126         set_cr4_guest_host_mask(vmx);
5127
5128         if (vmx_xsaves_supported())
5129                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
5130
5131         if (enable_pml) {
5132                 ASSERT(vmx->pml_pg);
5133                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
5134                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5135         }
5136
5137         return 0;
5138 }
5139
5140 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
5141 {
5142         struct vcpu_vmx *vmx = to_vmx(vcpu);
5143         struct msr_data apic_base_msr;
5144         u64 cr0;
5145
5146         vmx->rmode.vm86_active = 0;
5147
5148         vmx->soft_vnmi_blocked = 0;
5149
5150         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
5151         kvm_set_cr8(vcpu, 0);
5152
5153         if (!init_event) {
5154                 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
5155                                      MSR_IA32_APICBASE_ENABLE;
5156                 if (kvm_vcpu_is_reset_bsp(vcpu))
5157                         apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
5158                 apic_base_msr.host_initiated = true;
5159                 kvm_set_apic_base(vcpu, &apic_base_msr);
5160         }
5161
5162         vmx_segment_cache_clear(vmx);
5163
5164         seg_setup(VCPU_SREG_CS);
5165         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
5166         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
5167
5168         seg_setup(VCPU_SREG_DS);
5169         seg_setup(VCPU_SREG_ES);
5170         seg_setup(VCPU_SREG_FS);
5171         seg_setup(VCPU_SREG_GS);
5172         seg_setup(VCPU_SREG_SS);
5173
5174         vmcs_write16(GUEST_TR_SELECTOR, 0);
5175         vmcs_writel(GUEST_TR_BASE, 0);
5176         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5177         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5178
5179         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5180         vmcs_writel(GUEST_LDTR_BASE, 0);
5181         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5182         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5183
5184         if (!init_event) {
5185                 vmcs_write32(GUEST_SYSENTER_CS, 0);
5186                 vmcs_writel(GUEST_SYSENTER_ESP, 0);
5187                 vmcs_writel(GUEST_SYSENTER_EIP, 0);
5188                 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5189         }
5190
5191         vmcs_writel(GUEST_RFLAGS, 0x02);
5192         kvm_rip_write(vcpu, 0xfff0);
5193
5194         vmcs_writel(GUEST_GDTR_BASE, 0);
5195         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5196
5197         vmcs_writel(GUEST_IDTR_BASE, 0);
5198         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5199
5200         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
5201         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
5202         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
5203
5204         setup_msrs(vmx);
5205
5206         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
5207
5208         if (cpu_has_vmx_tpr_shadow() && !init_event) {
5209                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
5210                 if (cpu_need_tpr_shadow(vcpu))
5211                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
5212                                      __pa(vcpu->arch.apic->regs));
5213                 vmcs_write32(TPR_THRESHOLD, 0);
5214         }
5215
5216         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
5217
5218         if (kvm_vcpu_apicv_active(vcpu))
5219                 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
5220
5221         if (vmx->vpid != 0)
5222                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5223
5224         cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
5225         vmx->vcpu.arch.cr0 = cr0;
5226         vmx_set_cr0(vcpu, cr0); /* enter rmode */
5227         vmx_set_cr4(vcpu, 0);
5228         vmx_set_efer(vcpu, 0);
5229         vmx_fpu_activate(vcpu);
5230         update_exception_bitmap(vcpu);
5231
5232         vpid_sync_context(vmx->vpid);
5233 }
5234
5235 /*
5236  * In nested virtualization, check if L1 asked to exit on external interrupts.
5237  * For most existing hypervisors, this will always return true.
5238  */
5239 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5240 {
5241         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5242                 PIN_BASED_EXT_INTR_MASK;
5243 }
5244
5245 /*
5246  * In nested virtualization, check if L1 has set
5247  * VM_EXIT_ACK_INTR_ON_EXIT
5248  */
5249 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5250 {
5251         return get_vmcs12(vcpu)->vm_exit_controls &
5252                 VM_EXIT_ACK_INTR_ON_EXIT;
5253 }
5254
5255 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5256 {
5257         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5258                 PIN_BASED_NMI_EXITING;
5259 }
5260
5261 static void enable_irq_window(struct kvm_vcpu *vcpu)
5262 {
5263         u32 cpu_based_vm_exec_control;
5264
5265         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5266         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
5267         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5268 }
5269
5270 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5271 {
5272         u32 cpu_based_vm_exec_control;
5273
5274         if (!cpu_has_virtual_nmis() ||
5275             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
5276                 enable_irq_window(vcpu);
5277                 return;
5278         }
5279
5280         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5281         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
5282         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5283 }
5284
5285 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
5286 {
5287         struct vcpu_vmx *vmx = to_vmx(vcpu);
5288         uint32_t intr;
5289         int irq = vcpu->arch.interrupt.nr;
5290
5291         trace_kvm_inj_virq(irq);
5292
5293         ++vcpu->stat.irq_injections;
5294         if (vmx->rmode.vm86_active) {
5295                 int inc_eip = 0;
5296                 if (vcpu->arch.interrupt.soft)
5297                         inc_eip = vcpu->arch.event_exit_inst_len;
5298                 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
5299                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5300                 return;
5301         }
5302         intr = irq | INTR_INFO_VALID_MASK;
5303         if (vcpu->arch.interrupt.soft) {
5304                 intr |= INTR_TYPE_SOFT_INTR;
5305                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5306                              vmx->vcpu.arch.event_exit_inst_len);
5307         } else
5308                 intr |= INTR_TYPE_EXT_INTR;
5309         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
5310 }
5311
5312 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5313 {
5314         struct vcpu_vmx *vmx = to_vmx(vcpu);
5315
5316         if (is_guest_mode(vcpu))
5317                 return;
5318
5319         if (!cpu_has_virtual_nmis()) {
5320                 /*
5321                  * Tracking the NMI-blocked state in software is built upon
5322                  * finding the next open IRQ window. This, in turn, depends on
5323                  * well-behaving guests: They have to keep IRQs disabled at
5324                  * least as long as the NMI handler runs. Otherwise we may
5325                  * cause NMI nesting, maybe breaking the guest. But as this is
5326                  * highly unlikely, we can live with the residual risk.
5327                  */
5328                 vmx->soft_vnmi_blocked = 1;
5329                 vmx->vnmi_blocked_time = 0;
5330         }
5331
5332         ++vcpu->stat.nmi_injections;
5333         vmx->nmi_known_unmasked = false;
5334         if (vmx->rmode.vm86_active) {
5335                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
5336                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5337                 return;
5338         }
5339         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5340                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5341 }
5342
5343 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5344 {
5345         if (!cpu_has_virtual_nmis())
5346                 return to_vmx(vcpu)->soft_vnmi_blocked;
5347         if (to_vmx(vcpu)->nmi_known_unmasked)
5348                 return false;
5349         return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5350 }
5351
5352 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5353 {
5354         struct vcpu_vmx *vmx = to_vmx(vcpu);
5355
5356         if (!cpu_has_virtual_nmis()) {
5357                 if (vmx->soft_vnmi_blocked != masked) {
5358                         vmx->soft_vnmi_blocked = masked;
5359                         vmx->vnmi_blocked_time = 0;
5360                 }
5361         } else {
5362                 vmx->nmi_known_unmasked = !masked;
5363                 if (masked)
5364                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5365                                       GUEST_INTR_STATE_NMI);
5366                 else
5367                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5368                                         GUEST_INTR_STATE_NMI);
5369         }
5370 }
5371
5372 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5373 {
5374         if (to_vmx(vcpu)->nested.nested_run_pending)
5375                 return 0;
5376
5377         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
5378                 return 0;
5379
5380         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5381                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5382                    | GUEST_INTR_STATE_NMI));
5383 }
5384
5385 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5386 {
5387         return (!to_vmx(vcpu)->nested.nested_run_pending &&
5388                 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
5389                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5390                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5391 }
5392
5393 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5394 {
5395         int ret;
5396
5397         ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5398                                     PAGE_SIZE * 3);
5399         if (ret)
5400                 return ret;
5401         kvm->arch.tss_addr = addr;
5402         return init_rmode_tss(kvm);
5403 }
5404
5405 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5406 {
5407         switch (vec) {
5408         case BP_VECTOR:
5409                 /*
5410                  * Update instruction length as we may reinject the exception
5411                  * from user space while in guest debugging mode.
5412                  */
5413                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5414                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5415                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5416                         return false;
5417                 /* fall through */
5418         case DB_VECTOR:
5419                 if (vcpu->guest_debug &
5420                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5421                         return false;
5422                 /* fall through */
5423         case DE_VECTOR:
5424         case OF_VECTOR:
5425         case BR_VECTOR:
5426         case UD_VECTOR:
5427         case DF_VECTOR:
5428         case SS_VECTOR:
5429         case GP_VECTOR:
5430         case MF_VECTOR:
5431                 return true;
5432         break;
5433         }
5434         return false;
5435 }
5436
5437 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5438                                   int vec, u32 err_code)
5439 {
5440         /*
5441          * Instruction with address size override prefix opcode 0x67
5442          * Cause the #SS fault with 0 error code in VM86 mode.
5443          */
5444         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5445                 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5446                         if (vcpu->arch.halt_request) {
5447                                 vcpu->arch.halt_request = 0;
5448                                 return kvm_vcpu_halt(vcpu);
5449                         }
5450                         return 1;
5451                 }
5452                 return 0;
5453         }
5454
5455         /*
5456          * Forward all other exceptions that are valid in real mode.
5457          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5458          *        the required debugging infrastructure rework.
5459          */
5460         kvm_queue_exception(vcpu, vec);
5461         return 1;
5462 }
5463
5464 /*
5465  * Trigger machine check on the host. We assume all the MSRs are already set up
5466  * by the CPU and that we still run on the same CPU as the MCE occurred on.
5467  * We pass a fake environment to the machine check handler because we want
5468  * the guest to be always treated like user space, no matter what context
5469  * it used internally.
5470  */
5471 static void kvm_machine_check(void)
5472 {
5473 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5474         struct pt_regs regs = {
5475                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5476                 .flags = X86_EFLAGS_IF,
5477         };
5478
5479         do_machine_check(&regs, 0);
5480 #endif
5481 }
5482
5483 static int handle_machine_check(struct kvm_vcpu *vcpu)
5484 {
5485         /* already handled by vcpu_run */
5486         return 1;
5487 }
5488
5489 static int handle_exception(struct kvm_vcpu *vcpu)
5490 {
5491         struct vcpu_vmx *vmx = to_vmx(vcpu);
5492         struct kvm_run *kvm_run = vcpu->run;
5493         u32 intr_info, ex_no, error_code;
5494         unsigned long cr2, rip, dr6;
5495         u32 vect_info;
5496         enum emulation_result er;
5497
5498         vect_info = vmx->idt_vectoring_info;
5499         intr_info = vmx->exit_intr_info;
5500
5501         if (is_machine_check(intr_info))
5502                 return handle_machine_check(vcpu);
5503
5504         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
5505                 return 1;  /* already handled by vmx_vcpu_run() */
5506
5507         if (is_no_device(intr_info)) {
5508                 vmx_fpu_activate(vcpu);
5509                 return 1;
5510         }
5511
5512         if (is_invalid_opcode(intr_info)) {
5513                 if (is_guest_mode(vcpu)) {
5514                         kvm_queue_exception(vcpu, UD_VECTOR);
5515                         return 1;
5516                 }
5517                 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
5518                 if (er != EMULATE_DONE)
5519                         kvm_queue_exception(vcpu, UD_VECTOR);
5520                 return 1;
5521         }
5522
5523         error_code = 0;
5524         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5525                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5526
5527         /*
5528          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5529          * MMIO, it is better to report an internal error.
5530          * See the comments in vmx_handle_exit.
5531          */
5532         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5533             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5534                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5535                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5536                 vcpu->run->internal.ndata = 3;
5537                 vcpu->run->internal.data[0] = vect_info;
5538                 vcpu->run->internal.data[1] = intr_info;
5539                 vcpu->run->internal.data[2] = error_code;
5540                 return 0;
5541         }
5542
5543         if (is_page_fault(intr_info)) {
5544                 /* EPT won't cause page fault directly */
5545                 BUG_ON(enable_ept);
5546                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
5547                 trace_kvm_page_fault(cr2, error_code);
5548
5549                 if (kvm_event_needs_reinjection(vcpu))
5550                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
5551                 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
5552         }
5553
5554         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5555
5556         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5557                 return handle_rmode_exception(vcpu, ex_no, error_code);
5558
5559         switch (ex_no) {
5560         case AC_VECTOR:
5561                 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5562                 return 1;
5563         case DB_VECTOR:
5564                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5565                 if (!(vcpu->guest_debug &
5566                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5567                         vcpu->arch.dr6 &= ~15;
5568                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5569                         if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5570                                 skip_emulated_instruction(vcpu);
5571
5572                         kvm_queue_exception(vcpu, DB_VECTOR);
5573                         return 1;
5574                 }
5575                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5576                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5577                 /* fall through */
5578         case BP_VECTOR:
5579                 /*
5580                  * Update instruction length as we may reinject #BP from
5581                  * user space while in guest debugging mode. Reading it for
5582                  * #DB as well causes no harm, it is not used in that case.
5583                  */
5584                 vmx->vcpu.arch.event_exit_inst_len =
5585                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5586                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5587                 rip = kvm_rip_read(vcpu);
5588                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5589                 kvm_run->debug.arch.exception = ex_no;
5590                 break;
5591         default:
5592                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5593                 kvm_run->ex.exception = ex_no;
5594                 kvm_run->ex.error_code = error_code;
5595                 break;
5596         }
5597         return 0;
5598 }
5599
5600 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
5601 {
5602         ++vcpu->stat.irq_exits;
5603         return 1;
5604 }
5605
5606 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5607 {
5608         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5609         return 0;
5610 }
5611
5612 static int handle_io(struct kvm_vcpu *vcpu)
5613 {
5614         unsigned long exit_qualification;
5615         int size, in, string;
5616         unsigned port;
5617
5618         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5619         string = (exit_qualification & 16) != 0;
5620         in = (exit_qualification & 8) != 0;
5621
5622         ++vcpu->stat.io_exits;
5623
5624         if (string || in)
5625                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5626
5627         port = exit_qualification >> 16;
5628         size = (exit_qualification & 7) + 1;
5629         skip_emulated_instruction(vcpu);
5630
5631         return kvm_fast_pio_out(vcpu, size, port);
5632 }
5633
5634 static void
5635 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5636 {
5637         /*
5638          * Patch in the VMCALL instruction:
5639          */
5640         hypercall[0] = 0x0f;
5641         hypercall[1] = 0x01;
5642         hypercall[2] = 0xc1;
5643 }
5644
5645 static bool nested_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
5646 {
5647         unsigned long always_on = VMXON_CR0_ALWAYSON;
5648         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5649
5650         if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
5651                 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
5652             nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
5653                 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
5654         return (val & always_on) == always_on;
5655 }
5656
5657 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5658 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5659 {
5660         if (is_guest_mode(vcpu)) {
5661                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5662                 unsigned long orig_val = val;
5663
5664                 /*
5665                  * We get here when L2 changed cr0 in a way that did not change
5666                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5667                  * but did change L0 shadowed bits. So we first calculate the
5668                  * effective cr0 value that L1 would like to write into the
5669                  * hardware. It consists of the L2-owned bits from the new
5670                  * value combined with the L1-owned bits from L1's guest_cr0.
5671                  */
5672                 val = (val & ~vmcs12->cr0_guest_host_mask) |
5673                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5674
5675                 if (!nested_cr0_valid(vcpu, val))
5676                         return 1;
5677
5678                 if (kvm_set_cr0(vcpu, val))
5679                         return 1;
5680                 vmcs_writel(CR0_READ_SHADOW, orig_val);
5681                 return 0;
5682         } else {
5683                 if (to_vmx(vcpu)->nested.vmxon &&
5684                     ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5685                         return 1;
5686                 return kvm_set_cr0(vcpu, val);
5687         }
5688 }
5689
5690 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5691 {
5692         if (is_guest_mode(vcpu)) {
5693                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5694                 unsigned long orig_val = val;
5695
5696                 /* analogously to handle_set_cr0 */
5697                 val = (val & ~vmcs12->cr4_guest_host_mask) |
5698                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5699                 if (kvm_set_cr4(vcpu, val))
5700                         return 1;
5701                 vmcs_writel(CR4_READ_SHADOW, orig_val);
5702                 return 0;
5703         } else
5704                 return kvm_set_cr4(vcpu, val);
5705 }
5706
5707 /* called to set cr0 as appropriate for clts instruction exit. */
5708 static void handle_clts(struct kvm_vcpu *vcpu)
5709 {
5710         if (is_guest_mode(vcpu)) {
5711                 /*
5712                  * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5713                  * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5714                  * just pretend it's off (also in arch.cr0 for fpu_activate).
5715                  */
5716                 vmcs_writel(CR0_READ_SHADOW,
5717                         vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5718                 vcpu->arch.cr0 &= ~X86_CR0_TS;
5719         } else
5720                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5721 }
5722
5723 static int handle_cr(struct kvm_vcpu *vcpu)
5724 {
5725         unsigned long exit_qualification, val;
5726         int cr;
5727         int reg;
5728         int err;
5729
5730         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5731         cr = exit_qualification & 15;
5732         reg = (exit_qualification >> 8) & 15;
5733         switch ((exit_qualification >> 4) & 3) {
5734         case 0: /* mov to cr */
5735                 val = kvm_register_readl(vcpu, reg);
5736                 trace_kvm_cr_write(cr, val);
5737                 switch (cr) {
5738                 case 0:
5739                         err = handle_set_cr0(vcpu, val);
5740                         kvm_complete_insn_gp(vcpu, err);
5741                         return 1;
5742                 case 3:
5743                         err = kvm_set_cr3(vcpu, val);
5744                         kvm_complete_insn_gp(vcpu, err);
5745                         return 1;
5746                 case 4:
5747                         err = handle_set_cr4(vcpu, val);
5748                         kvm_complete_insn_gp(vcpu, err);
5749                         return 1;
5750                 case 8: {
5751                                 u8 cr8_prev = kvm_get_cr8(vcpu);
5752                                 u8 cr8 = (u8)val;
5753                                 err = kvm_set_cr8(vcpu, cr8);
5754                                 kvm_complete_insn_gp(vcpu, err);
5755                                 if (lapic_in_kernel(vcpu))
5756                                         return 1;
5757                                 if (cr8_prev <= cr8)
5758                                         return 1;
5759                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5760                                 return 0;
5761                         }
5762                 }
5763                 break;
5764         case 2: /* clts */
5765                 handle_clts(vcpu);
5766                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5767                 skip_emulated_instruction(vcpu);
5768                 vmx_fpu_activate(vcpu);
5769                 return 1;
5770         case 1: /*mov from cr*/
5771                 switch (cr) {
5772                 case 3:
5773                         val = kvm_read_cr3(vcpu);
5774                         kvm_register_write(vcpu, reg, val);
5775                         trace_kvm_cr_read(cr, val);
5776                         skip_emulated_instruction(vcpu);
5777                         return 1;
5778                 case 8:
5779                         val = kvm_get_cr8(vcpu);
5780                         kvm_register_write(vcpu, reg, val);
5781                         trace_kvm_cr_read(cr, val);
5782                         skip_emulated_instruction(vcpu);
5783                         return 1;
5784                 }
5785                 break;
5786         case 3: /* lmsw */
5787                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5788                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5789                 kvm_lmsw(vcpu, val);
5790
5791                 skip_emulated_instruction(vcpu);
5792                 return 1;
5793         default:
5794                 break;
5795         }
5796         vcpu->run->exit_reason = 0;
5797         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5798                (int)(exit_qualification >> 4) & 3, cr);
5799         return 0;
5800 }
5801
5802 static int handle_dr(struct kvm_vcpu *vcpu)
5803 {
5804         unsigned long exit_qualification;
5805         int dr, dr7, reg;
5806
5807         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5808         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5809
5810         /* First, if DR does not exist, trigger UD */
5811         if (!kvm_require_dr(vcpu, dr))
5812                 return 1;
5813
5814         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5815         if (!kvm_require_cpl(vcpu, 0))
5816                 return 1;
5817         dr7 = vmcs_readl(GUEST_DR7);
5818         if (dr7 & DR7_GD) {
5819                 /*
5820                  * As the vm-exit takes precedence over the debug trap, we
5821                  * need to emulate the latter, either for the host or the
5822                  * guest debugging itself.
5823                  */
5824                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5825                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5826                         vcpu->run->debug.arch.dr7 = dr7;
5827                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5828                         vcpu->run->debug.arch.exception = DB_VECTOR;
5829                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5830                         return 0;
5831                 } else {
5832                         vcpu->arch.dr6 &= ~15;
5833                         vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5834                         kvm_queue_exception(vcpu, DB_VECTOR);
5835                         return 1;
5836                 }
5837         }
5838
5839         if (vcpu->guest_debug == 0) {
5840                 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
5841                                 CPU_BASED_MOV_DR_EXITING);
5842
5843                 /*
5844                  * No more DR vmexits; force a reload of the debug registers
5845                  * and reenter on this instruction.  The next vmexit will
5846                  * retrieve the full state of the debug registers.
5847                  */
5848                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5849                 return 1;
5850         }
5851
5852         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5853         if (exit_qualification & TYPE_MOV_FROM_DR) {
5854                 unsigned long val;
5855
5856                 if (kvm_get_dr(vcpu, dr, &val))
5857                         return 1;
5858                 kvm_register_write(vcpu, reg, val);
5859         } else
5860                 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5861                         return 1;
5862
5863         skip_emulated_instruction(vcpu);
5864         return 1;
5865 }
5866
5867 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5868 {
5869         return vcpu->arch.dr6;
5870 }
5871
5872 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5873 {
5874 }
5875
5876 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5877 {
5878         get_debugreg(vcpu->arch.db[0], 0);
5879         get_debugreg(vcpu->arch.db[1], 1);
5880         get_debugreg(vcpu->arch.db[2], 2);
5881         get_debugreg(vcpu->arch.db[3], 3);
5882         get_debugreg(vcpu->arch.dr6, 6);
5883         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5884
5885         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5886         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
5887 }
5888
5889 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5890 {
5891         vmcs_writel(GUEST_DR7, val);
5892 }
5893
5894 static int handle_cpuid(struct kvm_vcpu *vcpu)
5895 {
5896         kvm_emulate_cpuid(vcpu);
5897         return 1;
5898 }
5899
5900 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5901 {
5902         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5903         struct msr_data msr_info;
5904
5905         msr_info.index = ecx;
5906         msr_info.host_initiated = false;
5907         if (vmx_get_msr(vcpu, &msr_info)) {
5908                 trace_kvm_msr_read_ex(ecx);
5909                 kvm_inject_gp(vcpu, 0);
5910                 return 1;
5911         }
5912
5913         trace_kvm_msr_read(ecx, msr_info.data);
5914
5915         /* FIXME: handling of bits 32:63 of rax, rdx */
5916         vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
5917         vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
5918         skip_emulated_instruction(vcpu);
5919         return 1;
5920 }
5921
5922 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5923 {
5924         struct msr_data msr;
5925         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5926         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5927                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5928
5929         msr.data = data;
5930         msr.index = ecx;
5931         msr.host_initiated = false;
5932         if (kvm_set_msr(vcpu, &msr) != 0) {
5933                 trace_kvm_msr_write_ex(ecx, data);
5934                 kvm_inject_gp(vcpu, 0);
5935                 return 1;
5936         }
5937
5938         trace_kvm_msr_write(ecx, data);
5939         skip_emulated_instruction(vcpu);
5940         return 1;
5941 }
5942
5943 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5944 {
5945         kvm_make_request(KVM_REQ_EVENT, vcpu);
5946         return 1;
5947 }
5948
5949 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5950 {
5951         u32 cpu_based_vm_exec_control;
5952
5953         /* clear pending irq */
5954         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5955         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5956         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5957
5958         kvm_make_request(KVM_REQ_EVENT, vcpu);
5959
5960         ++vcpu->stat.irq_window_exits;
5961         return 1;
5962 }
5963
5964 static int handle_halt(struct kvm_vcpu *vcpu)
5965 {
5966         return kvm_emulate_halt(vcpu);
5967 }
5968
5969 static int handle_vmcall(struct kvm_vcpu *vcpu)
5970 {
5971         return kvm_emulate_hypercall(vcpu);
5972 }
5973
5974 static int handle_invd(struct kvm_vcpu *vcpu)
5975 {
5976         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5977 }
5978
5979 static int handle_invlpg(struct kvm_vcpu *vcpu)
5980 {
5981         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5982
5983         kvm_mmu_invlpg(vcpu, exit_qualification);
5984         skip_emulated_instruction(vcpu);
5985         return 1;
5986 }
5987
5988 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5989 {
5990         int err;
5991
5992         err = kvm_rdpmc(vcpu);
5993         kvm_complete_insn_gp(vcpu, err);
5994
5995         return 1;
5996 }
5997
5998 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5999 {
6000         kvm_emulate_wbinvd(vcpu);
6001         return 1;
6002 }
6003
6004 static int handle_xsetbv(struct kvm_vcpu *vcpu)
6005 {
6006         u64 new_bv = kvm_read_edx_eax(vcpu);
6007         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
6008
6009         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
6010                 skip_emulated_instruction(vcpu);
6011         return 1;
6012 }
6013
6014 static int handle_xsaves(struct kvm_vcpu *vcpu)
6015 {
6016         skip_emulated_instruction(vcpu);
6017         WARN(1, "this should never happen\n");
6018         return 1;
6019 }
6020
6021 static int handle_xrstors(struct kvm_vcpu *vcpu)
6022 {
6023         skip_emulated_instruction(vcpu);
6024         WARN(1, "this should never happen\n");
6025         return 1;
6026 }
6027
6028 static int handle_apic_access(struct kvm_vcpu *vcpu)
6029 {
6030         if (likely(fasteoi)) {
6031                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6032                 int access_type, offset;
6033
6034                 access_type = exit_qualification & APIC_ACCESS_TYPE;
6035                 offset = exit_qualification & APIC_ACCESS_OFFSET;
6036                 /*
6037                  * Sane guest uses MOV to write EOI, with written value
6038                  * not cared. So make a short-circuit here by avoiding
6039                  * heavy instruction emulation.
6040                  */
6041                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
6042                     (offset == APIC_EOI)) {
6043                         kvm_lapic_set_eoi(vcpu);
6044                         skip_emulated_instruction(vcpu);
6045                         return 1;
6046                 }
6047         }
6048         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6049 }
6050
6051 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
6052 {
6053         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6054         int vector = exit_qualification & 0xff;
6055
6056         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6057         kvm_apic_set_eoi_accelerated(vcpu, vector);
6058         return 1;
6059 }
6060
6061 static int handle_apic_write(struct kvm_vcpu *vcpu)
6062 {
6063         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6064         u32 offset = exit_qualification & 0xfff;
6065
6066         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6067         kvm_apic_write_nodecode(vcpu, offset);
6068         return 1;
6069 }
6070
6071 static int handle_task_switch(struct kvm_vcpu *vcpu)
6072 {
6073         struct vcpu_vmx *vmx = to_vmx(vcpu);
6074         unsigned long exit_qualification;
6075         bool has_error_code = false;
6076         u32 error_code = 0;
6077         u16 tss_selector;
6078         int reason, type, idt_v, idt_index;
6079
6080         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
6081         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
6082         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
6083
6084         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6085
6086         reason = (u32)exit_qualification >> 30;
6087         if (reason == TASK_SWITCH_GATE && idt_v) {
6088                 switch (type) {
6089                 case INTR_TYPE_NMI_INTR:
6090                         vcpu->arch.nmi_injected = false;
6091                         vmx_set_nmi_mask(vcpu, true);
6092                         break;
6093                 case INTR_TYPE_EXT_INTR:
6094                 case INTR_TYPE_SOFT_INTR:
6095                         kvm_clear_interrupt_queue(vcpu);
6096                         break;
6097                 case INTR_TYPE_HARD_EXCEPTION:
6098                         if (vmx->idt_vectoring_info &
6099                             VECTORING_INFO_DELIVER_CODE_MASK) {
6100                                 has_error_code = true;
6101                                 error_code =
6102                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
6103                         }
6104                         /* fall through */
6105                 case INTR_TYPE_SOFT_EXCEPTION:
6106                         kvm_clear_exception_queue(vcpu);
6107                         break;
6108                 default:
6109                         break;
6110                 }
6111         }
6112         tss_selector = exit_qualification;
6113
6114         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
6115                        type != INTR_TYPE_EXT_INTR &&
6116                        type != INTR_TYPE_NMI_INTR))
6117                 skip_emulated_instruction(vcpu);
6118
6119         if (kvm_task_switch(vcpu, tss_selector,
6120                             type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
6121                             has_error_code, error_code) == EMULATE_FAIL) {
6122                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6123                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6124                 vcpu->run->internal.ndata = 0;
6125                 return 0;
6126         }
6127
6128         /*
6129          * TODO: What about debug traps on tss switch?
6130          *       Are we supposed to inject them and update dr6?
6131          */
6132
6133         return 1;
6134 }
6135
6136 static int handle_ept_violation(struct kvm_vcpu *vcpu)
6137 {
6138         unsigned long exit_qualification;
6139         gpa_t gpa;
6140         u32 error_code;
6141         int gla_validity;
6142
6143         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6144
6145         gla_validity = (exit_qualification >> 7) & 0x3;
6146         if (gla_validity == 0x2) {
6147                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
6148                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
6149                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
6150                         vmcs_readl(GUEST_LINEAR_ADDRESS));
6151                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
6152                         (long unsigned int)exit_qualification);
6153                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6154                 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
6155                 return 0;
6156         }
6157
6158         /*
6159          * EPT violation happened while executing iret from NMI,
6160          * "blocked by NMI" bit has to be set before next VM entry.
6161          * There are errata that may cause this bit to not be set:
6162          * AAK134, BY25.
6163          */
6164         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
6165                         cpu_has_virtual_nmis() &&
6166                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
6167                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6168
6169         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6170         trace_kvm_page_fault(gpa, exit_qualification);
6171
6172         /* it is a read fault? */
6173         error_code = (exit_qualification << 2) & PFERR_USER_MASK;
6174         /* it is a write fault? */
6175         error_code |= exit_qualification & PFERR_WRITE_MASK;
6176         /* It is a fetch fault? */
6177         error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK;
6178         /* ept page table is present? */
6179         error_code |= (exit_qualification & 0x38) != 0;
6180
6181         vcpu->arch.exit_qualification = exit_qualification;
6182
6183         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
6184 }
6185
6186 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
6187 {
6188         int ret;
6189         gpa_t gpa;
6190
6191         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6192         if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
6193                 skip_emulated_instruction(vcpu);
6194                 trace_kvm_fast_mmio(gpa);
6195                 return 1;
6196         }
6197
6198         ret = handle_mmio_page_fault(vcpu, gpa, true);
6199         if (likely(ret == RET_MMIO_PF_EMULATE))
6200                 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
6201                                               EMULATE_DONE;
6202
6203         if (unlikely(ret == RET_MMIO_PF_INVALID))
6204                 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
6205
6206         if (unlikely(ret == RET_MMIO_PF_RETRY))
6207                 return 1;
6208
6209         /* It is the real ept misconfig */
6210         WARN_ON(1);
6211
6212         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6213         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
6214
6215         return 0;
6216 }
6217
6218 static int handle_nmi_window(struct kvm_vcpu *vcpu)
6219 {
6220         u32 cpu_based_vm_exec_control;
6221
6222         /* clear pending NMI */
6223         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6224         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
6225         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
6226         ++vcpu->stat.nmi_window_exits;
6227         kvm_make_request(KVM_REQ_EVENT, vcpu);
6228
6229         return 1;
6230 }
6231
6232 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
6233 {
6234         struct vcpu_vmx *vmx = to_vmx(vcpu);
6235         enum emulation_result err = EMULATE_DONE;
6236         int ret = 1;
6237         u32 cpu_exec_ctrl;
6238         bool intr_window_requested;
6239         unsigned count = 130;
6240
6241         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6242         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
6243
6244         while (vmx->emulation_required && count-- != 0) {
6245                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
6246                         return handle_interrupt_window(&vmx->vcpu);
6247
6248                 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
6249                         return 1;
6250
6251                 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
6252
6253                 if (err == EMULATE_USER_EXIT) {
6254                         ++vcpu->stat.mmio_exits;
6255                         ret = 0;
6256                         goto out;
6257                 }
6258
6259                 if (err != EMULATE_DONE) {
6260                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6261                         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6262                         vcpu->run->internal.ndata = 0;
6263                         return 0;
6264                 }
6265
6266                 if (vcpu->arch.halt_request) {
6267                         vcpu->arch.halt_request = 0;
6268                         ret = kvm_vcpu_halt(vcpu);
6269                         goto out;
6270                 }
6271
6272                 if (signal_pending(current))
6273                         goto out;
6274                 if (need_resched())
6275                         schedule();
6276         }
6277
6278 out:
6279         return ret;
6280 }
6281
6282 static int __grow_ple_window(int val)
6283 {
6284         if (ple_window_grow < 1)
6285                 return ple_window;
6286
6287         val = min(val, ple_window_actual_max);
6288
6289         if (ple_window_grow < ple_window)
6290                 val *= ple_window_grow;
6291         else
6292                 val += ple_window_grow;
6293
6294         return val;
6295 }
6296
6297 static int __shrink_ple_window(int val, int modifier, int minimum)
6298 {
6299         if (modifier < 1)
6300                 return ple_window;
6301
6302         if (modifier < ple_window)
6303                 val /= modifier;
6304         else
6305                 val -= modifier;
6306
6307         return max(val, minimum);
6308 }
6309
6310 static void grow_ple_window(struct kvm_vcpu *vcpu)
6311 {
6312         struct vcpu_vmx *vmx = to_vmx(vcpu);
6313         int old = vmx->ple_window;
6314
6315         vmx->ple_window = __grow_ple_window(old);
6316
6317         if (vmx->ple_window != old)
6318                 vmx->ple_window_dirty = true;
6319
6320         trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
6321 }
6322
6323 static void shrink_ple_window(struct kvm_vcpu *vcpu)
6324 {
6325         struct vcpu_vmx *vmx = to_vmx(vcpu);
6326         int old = vmx->ple_window;
6327
6328         vmx->ple_window = __shrink_ple_window(old,
6329                                               ple_window_shrink, ple_window);
6330
6331         if (vmx->ple_window != old)
6332                 vmx->ple_window_dirty = true;
6333
6334         trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
6335 }
6336
6337 /*
6338  * ple_window_actual_max is computed to be one grow_ple_window() below
6339  * ple_window_max. (See __grow_ple_window for the reason.)
6340  * This prevents overflows, because ple_window_max is int.
6341  * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6342  * this process.
6343  * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6344  */
6345 static void update_ple_window_actual_max(void)
6346 {
6347         ple_window_actual_max =
6348                         __shrink_ple_window(max(ple_window_max, ple_window),
6349                                             ple_window_grow, INT_MIN);
6350 }
6351
6352 /*
6353  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6354  */
6355 static void wakeup_handler(void)
6356 {
6357         struct kvm_vcpu *vcpu;
6358         int cpu = smp_processor_id();
6359
6360         spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6361         list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6362                         blocked_vcpu_list) {
6363                 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6364
6365                 if (pi_test_on(pi_desc) == 1)
6366                         kvm_vcpu_kick(vcpu);
6367         }
6368         spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6369 }
6370
6371 static __init int hardware_setup(void)
6372 {
6373         int r = -ENOMEM, i, msr;
6374
6375         rdmsrl_safe(MSR_EFER, &host_efer);
6376
6377         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6378                 kvm_define_shared_msr(i, vmx_msr_index[i]);
6379
6380         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
6381         if (!vmx_io_bitmap_a)
6382                 return r;
6383
6384         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
6385         if (!vmx_io_bitmap_b)
6386                 goto out;
6387
6388         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
6389         if (!vmx_msr_bitmap_legacy)
6390                 goto out1;
6391
6392         vmx_msr_bitmap_legacy_x2apic =
6393                                 (unsigned long *)__get_free_page(GFP_KERNEL);
6394         if (!vmx_msr_bitmap_legacy_x2apic)
6395                 goto out2;
6396
6397         vmx_msr_bitmap_legacy_x2apic_apicv_inactive =
6398                                 (unsigned long *)__get_free_page(GFP_KERNEL);
6399         if (!vmx_msr_bitmap_legacy_x2apic_apicv_inactive)
6400                 goto out3;
6401
6402         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
6403         if (!vmx_msr_bitmap_longmode)
6404                 goto out4;
6405
6406         vmx_msr_bitmap_longmode_x2apic =
6407                                 (unsigned long *)__get_free_page(GFP_KERNEL);
6408         if (!vmx_msr_bitmap_longmode_x2apic)
6409                 goto out5;
6410
6411         vmx_msr_bitmap_longmode_x2apic_apicv_inactive =
6412                                 (unsigned long *)__get_free_page(GFP_KERNEL);
6413         if (!vmx_msr_bitmap_longmode_x2apic_apicv_inactive)
6414                 goto out6;
6415
6416         vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6417         if (!vmx_vmread_bitmap)
6418                 goto out7;
6419
6420         vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6421         if (!vmx_vmwrite_bitmap)
6422                 goto out8;
6423
6424         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6425         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6426
6427         /*
6428          * Allow direct access to the PC debug port (it is often used for I/O
6429          * delays, but the vmexits simply slow things down).
6430          */
6431         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6432         clear_bit(0x80, vmx_io_bitmap_a);
6433
6434         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6435
6436         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6437         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6438
6439         if (setup_vmcs_config(&vmcs_config) < 0) {
6440                 r = -EIO;
6441                 goto out9;
6442         }
6443
6444         if (boot_cpu_has(X86_FEATURE_NX))
6445                 kvm_enable_efer_bits(EFER_NX);
6446
6447         if (!cpu_has_vmx_vpid())
6448                 enable_vpid = 0;
6449         if (!cpu_has_vmx_shadow_vmcs())
6450                 enable_shadow_vmcs = 0;
6451         if (enable_shadow_vmcs)
6452                 init_vmcs_shadow_fields();
6453
6454         if (!cpu_has_vmx_ept() ||
6455             !cpu_has_vmx_ept_4levels()) {
6456                 enable_ept = 0;
6457                 enable_unrestricted_guest = 0;
6458                 enable_ept_ad_bits = 0;
6459         }
6460
6461         if (!cpu_has_vmx_ept_ad_bits())
6462                 enable_ept_ad_bits = 0;
6463
6464         if (!cpu_has_vmx_unrestricted_guest())
6465                 enable_unrestricted_guest = 0;
6466
6467         if (!cpu_has_vmx_flexpriority())
6468                 flexpriority_enabled = 0;
6469
6470         /*
6471          * set_apic_access_page_addr() is used to reload apic access
6472          * page upon invalidation.  No need to do anything if not
6473          * using the APIC_ACCESS_ADDR VMCS field.
6474          */
6475         if (!flexpriority_enabled)
6476                 kvm_x86_ops->set_apic_access_page_addr = NULL;
6477
6478         if (!cpu_has_vmx_tpr_shadow())
6479                 kvm_x86_ops->update_cr8_intercept = NULL;
6480
6481         if (enable_ept && !cpu_has_vmx_ept_2m_page())
6482                 kvm_disable_largepages();
6483
6484         if (!cpu_has_vmx_ple())
6485                 ple_gap = 0;
6486
6487         if (!cpu_has_vmx_apicv())
6488                 enable_apicv = 0;
6489
6490         if (cpu_has_vmx_tsc_scaling()) {
6491                 kvm_has_tsc_control = true;
6492                 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6493                 kvm_tsc_scaling_ratio_frac_bits = 48;
6494         }
6495
6496         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6497         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6498         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6499         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6500         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6501         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6502         vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
6503
6504         memcpy(vmx_msr_bitmap_legacy_x2apic,
6505                         vmx_msr_bitmap_legacy, PAGE_SIZE);
6506         memcpy(vmx_msr_bitmap_longmode_x2apic,
6507                         vmx_msr_bitmap_longmode, PAGE_SIZE);
6508         memcpy(vmx_msr_bitmap_legacy_x2apic_apicv_inactive,
6509                         vmx_msr_bitmap_legacy, PAGE_SIZE);
6510         memcpy(vmx_msr_bitmap_longmode_x2apic_apicv_inactive,
6511                         vmx_msr_bitmap_longmode, PAGE_SIZE);
6512
6513         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6514
6515         /*
6516          * enable_apicv && kvm_vcpu_apicv_active()
6517          */
6518         for (msr = 0x800; msr <= 0x8ff; msr++)
6519                 vmx_disable_intercept_msr_read_x2apic(msr, true);
6520
6521         /* TMCCT */
6522         vmx_enable_intercept_msr_read_x2apic(0x839, true);
6523         /* TPR */
6524         vmx_disable_intercept_msr_write_x2apic(0x808, true);
6525         /* EOI */
6526         vmx_disable_intercept_msr_write_x2apic(0x80b, true);
6527         /* SELF-IPI */
6528         vmx_disable_intercept_msr_write_x2apic(0x83f, true);
6529
6530         /*
6531          * (enable_apicv && !kvm_vcpu_apicv_active()) ||
6532          *      !enable_apicv
6533          */
6534         /* TPR */
6535         vmx_disable_intercept_msr_read_x2apic(0x808, false);
6536         vmx_disable_intercept_msr_write_x2apic(0x808, false);
6537
6538         if (enable_ept) {
6539                 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
6540                         (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
6541                         (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
6542                         0ull, VMX_EPT_EXECUTABLE_MASK,
6543                         cpu_has_vmx_ept_execute_only() ?
6544                                       0ull : VMX_EPT_READABLE_MASK);
6545                 ept_set_mmio_spte_mask();
6546                 kvm_enable_tdp();
6547         } else
6548                 kvm_disable_tdp();
6549
6550         update_ple_window_actual_max();
6551
6552         /*
6553          * Only enable PML when hardware supports PML feature, and both EPT
6554          * and EPT A/D bit features are enabled -- PML depends on them to work.
6555          */
6556         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6557                 enable_pml = 0;
6558
6559         if (!enable_pml) {
6560                 kvm_x86_ops->slot_enable_log_dirty = NULL;
6561                 kvm_x86_ops->slot_disable_log_dirty = NULL;
6562                 kvm_x86_ops->flush_log_dirty = NULL;
6563                 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6564         }
6565
6566         if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
6567                 u64 vmx_msr;
6568
6569                 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
6570                 cpu_preemption_timer_multi =
6571                          vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
6572         } else {
6573                 kvm_x86_ops->set_hv_timer = NULL;
6574                 kvm_x86_ops->cancel_hv_timer = NULL;
6575         }
6576
6577         kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6578
6579         kvm_mce_cap_supported |= MCG_LMCE_P;
6580
6581         return alloc_kvm_area();
6582
6583 out9:
6584         free_page((unsigned long)vmx_vmwrite_bitmap);
6585 out8:
6586         free_page((unsigned long)vmx_vmread_bitmap);
6587 out7:
6588         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic_apicv_inactive);
6589 out6:
6590         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6591 out5:
6592         free_page((unsigned long)vmx_msr_bitmap_longmode);
6593 out4:
6594         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic_apicv_inactive);
6595 out3:
6596         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6597 out2:
6598         free_page((unsigned long)vmx_msr_bitmap_legacy);
6599 out1:
6600         free_page((unsigned long)vmx_io_bitmap_b);
6601 out:
6602         free_page((unsigned long)vmx_io_bitmap_a);
6603
6604     return r;
6605 }
6606
6607 static __exit void hardware_unsetup(void)
6608 {
6609         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6610         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic_apicv_inactive);
6611         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6612         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic_apicv_inactive);
6613         free_page((unsigned long)vmx_msr_bitmap_legacy);
6614         free_page((unsigned long)vmx_msr_bitmap_longmode);
6615         free_page((unsigned long)vmx_io_bitmap_b);
6616         free_page((unsigned long)vmx_io_bitmap_a);
6617         free_page((unsigned long)vmx_vmwrite_bitmap);
6618         free_page((unsigned long)vmx_vmread_bitmap);
6619
6620         free_kvm_area();
6621 }
6622
6623 /*
6624  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6625  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6626  */
6627 static int handle_pause(struct kvm_vcpu *vcpu)
6628 {
6629         if (ple_gap)
6630                 grow_ple_window(vcpu);
6631
6632         skip_emulated_instruction(vcpu);
6633         kvm_vcpu_on_spin(vcpu);
6634
6635         return 1;
6636 }
6637
6638 static int handle_nop(struct kvm_vcpu *vcpu)
6639 {
6640         skip_emulated_instruction(vcpu);
6641         return 1;
6642 }
6643
6644 static int handle_mwait(struct kvm_vcpu *vcpu)
6645 {
6646         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6647         return handle_nop(vcpu);
6648 }
6649
6650 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6651 {
6652         return 1;
6653 }
6654
6655 static int handle_monitor(struct kvm_vcpu *vcpu)
6656 {
6657         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6658         return handle_nop(vcpu);
6659 }
6660
6661 /*
6662  * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6663  * We could reuse a single VMCS for all the L2 guests, but we also want the
6664  * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6665  * allows keeping them loaded on the processor, and in the future will allow
6666  * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6667  * every entry if they never change.
6668  * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6669  * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6670  *
6671  * The following functions allocate and free a vmcs02 in this pool.
6672  */
6673
6674 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6675 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6676 {
6677         struct vmcs02_list *item;
6678         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6679                 if (item->vmptr == vmx->nested.current_vmptr) {
6680                         list_move(&item->list, &vmx->nested.vmcs02_pool);
6681                         return &item->vmcs02;
6682                 }
6683
6684         if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6685                 /* Recycle the least recently used VMCS. */
6686                 item = list_last_entry(&vmx->nested.vmcs02_pool,
6687                                        struct vmcs02_list, list);
6688                 item->vmptr = vmx->nested.current_vmptr;
6689                 list_move(&item->list, &vmx->nested.vmcs02_pool);
6690                 return &item->vmcs02;
6691         }
6692
6693         /* Create a new VMCS */
6694         item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
6695         if (!item)
6696                 return NULL;
6697         item->vmcs02.vmcs = alloc_vmcs();
6698         if (!item->vmcs02.vmcs) {
6699                 kfree(item);
6700                 return NULL;
6701         }
6702         loaded_vmcs_init(&item->vmcs02);
6703         item->vmptr = vmx->nested.current_vmptr;
6704         list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6705         vmx->nested.vmcs02_num++;
6706         return &item->vmcs02;
6707 }
6708
6709 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6710 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6711 {
6712         struct vmcs02_list *item;
6713         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6714                 if (item->vmptr == vmptr) {
6715                         free_loaded_vmcs(&item->vmcs02);
6716                         list_del(&item->list);
6717                         kfree(item);
6718                         vmx->nested.vmcs02_num--;
6719                         return;
6720                 }
6721 }
6722
6723 /*
6724  * Free all VMCSs saved for this vcpu, except the one pointed by
6725  * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6726  * must be &vmx->vmcs01.
6727  */
6728 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6729 {
6730         struct vmcs02_list *item, *n;
6731
6732         WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
6733         list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
6734                 /*
6735                  * Something will leak if the above WARN triggers.  Better than
6736                  * a use-after-free.
6737                  */
6738                 if (vmx->loaded_vmcs == &item->vmcs02)
6739                         continue;
6740
6741                 free_loaded_vmcs(&item->vmcs02);
6742                 list_del(&item->list);
6743                 kfree(item);
6744                 vmx->nested.vmcs02_num--;
6745         }
6746 }
6747
6748 /*
6749  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6750  * set the success or error code of an emulated VMX instruction, as specified
6751  * by Vol 2B, VMX Instruction Reference, "Conventions".
6752  */
6753 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6754 {
6755         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6756                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6757                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6758 }
6759
6760 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6761 {
6762         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6763                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6764                             X86_EFLAGS_SF | X86_EFLAGS_OF))
6765                         | X86_EFLAGS_CF);
6766 }
6767
6768 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
6769                                         u32 vm_instruction_error)
6770 {
6771         if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6772                 /*
6773                  * failValid writes the error number to the current VMCS, which
6774                  * can't be done there isn't a current VMCS.
6775                  */
6776                 nested_vmx_failInvalid(vcpu);
6777                 return;
6778         }
6779         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6780                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6781                             X86_EFLAGS_SF | X86_EFLAGS_OF))
6782                         | X86_EFLAGS_ZF);
6783         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6784         /*
6785          * We don't need to force a shadow sync because
6786          * VM_INSTRUCTION_ERROR is not shadowed
6787          */
6788 }
6789
6790 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6791 {
6792         /* TODO: not to reset guest simply here. */
6793         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6794         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
6795 }
6796
6797 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6798 {
6799         struct vcpu_vmx *vmx =
6800                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6801
6802         vmx->nested.preemption_timer_expired = true;
6803         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6804         kvm_vcpu_kick(&vmx->vcpu);
6805
6806         return HRTIMER_NORESTART;
6807 }
6808
6809 /*
6810  * Decode the memory-address operand of a vmx instruction, as recorded on an
6811  * exit caused by such an instruction (run by a guest hypervisor).
6812  * On success, returns 0. When the operand is invalid, returns 1 and throws
6813  * #UD or #GP.
6814  */
6815 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6816                                  unsigned long exit_qualification,
6817                                  u32 vmx_instruction_info, bool wr, gva_t *ret)
6818 {
6819         gva_t off;
6820         bool exn;
6821         struct kvm_segment s;
6822
6823         /*
6824          * According to Vol. 3B, "Information for VM Exits Due to Instruction
6825          * Execution", on an exit, vmx_instruction_info holds most of the
6826          * addressing components of the operand. Only the displacement part
6827          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6828          * For how an actual address is calculated from all these components,
6829          * refer to Vol. 1, "Operand Addressing".
6830          */
6831         int  scaling = vmx_instruction_info & 3;
6832         int  addr_size = (vmx_instruction_info >> 7) & 7;
6833         bool is_reg = vmx_instruction_info & (1u << 10);
6834         int  seg_reg = (vmx_instruction_info >> 15) & 7;
6835         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
6836         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6837         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
6838         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
6839
6840         if (is_reg) {
6841                 kvm_queue_exception(vcpu, UD_VECTOR);
6842                 return 1;
6843         }
6844
6845         /* Addr = segment_base + offset */
6846         /* offset = base + [index * scale] + displacement */
6847         off = exit_qualification; /* holds the displacement */
6848         if (base_is_valid)
6849                 off += kvm_register_read(vcpu, base_reg);
6850         if (index_is_valid)
6851                 off += kvm_register_read(vcpu, index_reg)<<scaling;
6852         vmx_get_segment(vcpu, &s, seg_reg);
6853         *ret = s.base + off;
6854
6855         if (addr_size == 1) /* 32 bit */
6856                 *ret &= 0xffffffff;
6857
6858         /* Checks for #GP/#SS exceptions. */
6859         exn = false;
6860         if (is_long_mode(vcpu)) {
6861                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6862                  * non-canonical form. This is the only check on the memory
6863                  * destination for long mode!
6864                  */
6865                 exn = is_noncanonical_address(*ret);
6866         } else if (is_protmode(vcpu)) {
6867                 /* Protected mode: apply checks for segment validity in the
6868                  * following order:
6869                  * - segment type check (#GP(0) may be thrown)
6870                  * - usability check (#GP(0)/#SS(0))
6871                  * - limit check (#GP(0)/#SS(0))
6872                  */
6873                 if (wr)
6874                         /* #GP(0) if the destination operand is located in a
6875                          * read-only data segment or any code segment.
6876                          */
6877                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
6878                 else
6879                         /* #GP(0) if the source operand is located in an
6880                          * execute-only code segment
6881                          */
6882                         exn = ((s.type & 0xa) == 8);
6883                 if (exn) {
6884                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6885                         return 1;
6886                 }
6887                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6888                  */
6889                 exn = (s.unusable != 0);
6890                 /* Protected mode: #GP(0)/#SS(0) if the memory
6891                  * operand is outside the segment limit.
6892                  */
6893                 exn = exn || (off + sizeof(u64) > s.limit);
6894         }
6895         if (exn) {
6896                 kvm_queue_exception_e(vcpu,
6897                                       seg_reg == VCPU_SREG_SS ?
6898                                                 SS_VECTOR : GP_VECTOR,
6899                                       0);
6900                 return 1;
6901         }
6902
6903         return 0;
6904 }
6905
6906 /*
6907  * This function performs the various checks including
6908  * - if it's 4KB aligned
6909  * - No bits beyond the physical address width are set
6910  * - Returns 0 on success or else 1
6911  * (Intel SDM Section 30.3)
6912  */
6913 static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6914                                   gpa_t *vmpointer)
6915 {
6916         gva_t gva;
6917         gpa_t vmptr;
6918         struct x86_exception e;
6919         struct page *page;
6920         struct vcpu_vmx *vmx = to_vmx(vcpu);
6921         int maxphyaddr = cpuid_maxphyaddr(vcpu);
6922
6923         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6924                         vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
6925                 return 1;
6926
6927         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6928                                 sizeof(vmptr), &e)) {
6929                 kvm_inject_page_fault(vcpu, &e);
6930                 return 1;
6931         }
6932
6933         switch (exit_reason) {
6934         case EXIT_REASON_VMON:
6935                 /*
6936                  * SDM 3: 24.11.5
6937                  * The first 4 bytes of VMXON region contain the supported
6938                  * VMCS revision identifier
6939                  *
6940                  * Note - IA32_VMX_BASIC[48] will never be 1
6941                  * for the nested case;
6942                  * which replaces physical address width with 32
6943                  *
6944                  */
6945                 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6946                         nested_vmx_failInvalid(vcpu);
6947                         skip_emulated_instruction(vcpu);
6948                         return 1;
6949                 }
6950
6951                 page = nested_get_page(vcpu, vmptr);
6952                 if (page == NULL ||
6953                     *(u32 *)kmap(page) != VMCS12_REVISION) {
6954                         nested_vmx_failInvalid(vcpu);
6955                         kunmap(page);
6956                         skip_emulated_instruction(vcpu);
6957                         return 1;
6958                 }
6959                 kunmap(page);
6960                 vmx->nested.vmxon_ptr = vmptr;
6961                 break;
6962         case EXIT_REASON_VMCLEAR:
6963                 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6964                         nested_vmx_failValid(vcpu,
6965                                              VMXERR_VMCLEAR_INVALID_ADDRESS);
6966                         skip_emulated_instruction(vcpu);
6967                         return 1;
6968                 }
6969
6970                 if (vmptr == vmx->nested.vmxon_ptr) {
6971                         nested_vmx_failValid(vcpu,
6972                                              VMXERR_VMCLEAR_VMXON_POINTER);
6973                         skip_emulated_instruction(vcpu);
6974                         return 1;
6975                 }
6976                 break;
6977         case EXIT_REASON_VMPTRLD:
6978                 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6979                         nested_vmx_failValid(vcpu,
6980                                              VMXERR_VMPTRLD_INVALID_ADDRESS);
6981                         skip_emulated_instruction(vcpu);
6982                         return 1;
6983                 }
6984
6985                 if (vmptr == vmx->nested.vmxon_ptr) {
6986                         nested_vmx_failValid(vcpu,
6987                                              VMXERR_VMCLEAR_VMXON_POINTER);
6988                         skip_emulated_instruction(vcpu);
6989                         return 1;
6990                 }
6991                 break;
6992         default:
6993                 return 1; /* shouldn't happen */
6994         }
6995
6996         if (vmpointer)
6997                 *vmpointer = vmptr;
6998         return 0;
6999 }
7000
7001 /*
7002  * Emulate the VMXON instruction.
7003  * Currently, we just remember that VMX is active, and do not save or even
7004  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
7005  * do not currently need to store anything in that guest-allocated memory
7006  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
7007  * argument is different from the VMXON pointer (which the spec says they do).
7008  */
7009 static int handle_vmon(struct kvm_vcpu *vcpu)
7010 {
7011         struct kvm_segment cs;
7012         struct vcpu_vmx *vmx = to_vmx(vcpu);
7013         struct vmcs *shadow_vmcs;
7014         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
7015                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7016
7017         /* The Intel VMX Instruction Reference lists a bunch of bits that
7018          * are prerequisite to running VMXON, most notably cr4.VMXE must be
7019          * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
7020          * Otherwise, we should fail with #UD. We test these now:
7021          */
7022         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
7023             !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
7024             (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
7025                 kvm_queue_exception(vcpu, UD_VECTOR);
7026                 return 1;
7027         }
7028
7029         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
7030         if (is_long_mode(vcpu) && !cs.l) {
7031                 kvm_queue_exception(vcpu, UD_VECTOR);
7032                 return 1;
7033         }
7034
7035         if (vmx_get_cpl(vcpu)) {
7036                 kvm_inject_gp(vcpu, 0);
7037                 return 1;
7038         }
7039
7040         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
7041                 return 1;
7042
7043         if (vmx->nested.vmxon) {
7044                 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
7045                 skip_emulated_instruction(vcpu);
7046                 return 1;
7047         }
7048
7049         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
7050                         != VMXON_NEEDED_FEATURES) {
7051                 kvm_inject_gp(vcpu, 0);
7052                 return 1;
7053         }
7054
7055         if (cpu_has_vmx_msr_bitmap()) {
7056                 vmx->nested.msr_bitmap =
7057                                 (unsigned long *)__get_free_page(GFP_KERNEL);
7058                 if (!vmx->nested.msr_bitmap)
7059                         goto out_msr_bitmap;
7060         }
7061
7062         vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
7063         if (!vmx->nested.cached_vmcs12)
7064                 goto out_cached_vmcs12;
7065
7066         if (enable_shadow_vmcs) {
7067                 shadow_vmcs = alloc_vmcs();
7068                 if (!shadow_vmcs)
7069                         goto out_shadow_vmcs;
7070                 /* mark vmcs as shadow */
7071                 shadow_vmcs->revision_id |= (1u << 31);
7072                 /* init shadow vmcs */
7073                 vmcs_clear(shadow_vmcs);
7074                 vmx->nested.current_shadow_vmcs = shadow_vmcs;
7075         }
7076
7077         INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
7078         vmx->nested.vmcs02_num = 0;
7079
7080         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
7081                      HRTIMER_MODE_REL_PINNED);
7082         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
7083
7084         vmx->nested.vmxon = true;
7085
7086         skip_emulated_instruction(vcpu);
7087         nested_vmx_succeed(vcpu);
7088         return 1;
7089
7090 out_shadow_vmcs:
7091         kfree(vmx->nested.cached_vmcs12);
7092
7093 out_cached_vmcs12:
7094         free_page((unsigned long)vmx->nested.msr_bitmap);
7095
7096 out_msr_bitmap:
7097         return -ENOMEM;
7098 }
7099
7100 /*
7101  * Intel's VMX Instruction Reference specifies a common set of prerequisites
7102  * for running VMX instructions (except VMXON, whose prerequisites are
7103  * slightly different). It also specifies what exception to inject otherwise.
7104  */
7105 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
7106 {
7107         struct kvm_segment cs;
7108         struct vcpu_vmx *vmx = to_vmx(vcpu);
7109
7110         if (!vmx->nested.vmxon) {
7111                 kvm_queue_exception(vcpu, UD_VECTOR);
7112                 return 0;
7113         }
7114
7115         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
7116         if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
7117             (is_long_mode(vcpu) && !cs.l)) {
7118                 kvm_queue_exception(vcpu, UD_VECTOR);
7119                 return 0;
7120         }
7121
7122         if (vmx_get_cpl(vcpu)) {
7123                 kvm_inject_gp(vcpu, 0);
7124                 return 0;
7125         }
7126
7127         return 1;
7128 }
7129
7130 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
7131 {
7132         if (vmx->nested.current_vmptr == -1ull)
7133                 return;
7134
7135         /* current_vmptr and current_vmcs12 are always set/reset together */
7136         if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
7137                 return;
7138
7139         if (enable_shadow_vmcs) {
7140                 /* copy to memory all shadowed fields in case
7141                    they were modified */
7142                 copy_shadow_to_vmcs12(vmx);
7143                 vmx->nested.sync_shadow_vmcs = false;
7144                 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
7145                                 SECONDARY_EXEC_SHADOW_VMCS);
7146                 vmcs_write64(VMCS_LINK_POINTER, -1ull);
7147         }
7148         vmx->nested.posted_intr_nv = -1;
7149
7150         /* Flush VMCS12 to guest memory */
7151         memcpy(vmx->nested.current_vmcs12, vmx->nested.cached_vmcs12,
7152                VMCS12_SIZE);
7153
7154         kunmap(vmx->nested.current_vmcs12_page);
7155         nested_release_page(vmx->nested.current_vmcs12_page);
7156         vmx->nested.current_vmptr = -1ull;
7157         vmx->nested.current_vmcs12 = NULL;
7158 }
7159
7160 /*
7161  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7162  * just stops using VMX.
7163  */
7164 static void free_nested(struct vcpu_vmx *vmx)
7165 {
7166         if (!vmx->nested.vmxon)
7167                 return;
7168
7169         vmx->nested.vmxon = false;
7170         free_vpid(vmx->nested.vpid02);
7171         nested_release_vmcs12(vmx);
7172         if (vmx->nested.msr_bitmap) {
7173                 free_page((unsigned long)vmx->nested.msr_bitmap);
7174                 vmx->nested.msr_bitmap = NULL;
7175         }
7176         if (enable_shadow_vmcs)
7177                 free_vmcs(vmx->nested.current_shadow_vmcs);
7178         kfree(vmx->nested.cached_vmcs12);
7179         /* Unpin physical memory we referred to in current vmcs02 */
7180         if (vmx->nested.apic_access_page) {
7181                 nested_release_page(vmx->nested.apic_access_page);
7182                 vmx->nested.apic_access_page = NULL;
7183         }
7184         if (vmx->nested.virtual_apic_page) {
7185                 nested_release_page(vmx->nested.virtual_apic_page);
7186                 vmx->nested.virtual_apic_page = NULL;
7187         }
7188         if (vmx->nested.pi_desc_page) {
7189                 kunmap(vmx->nested.pi_desc_page);
7190                 nested_release_page(vmx->nested.pi_desc_page);
7191                 vmx->nested.pi_desc_page = NULL;
7192                 vmx->nested.pi_desc = NULL;
7193         }
7194
7195         nested_free_all_saved_vmcss(vmx);
7196 }
7197
7198 /* Emulate the VMXOFF instruction */
7199 static int handle_vmoff(struct kvm_vcpu *vcpu)
7200 {
7201         if (!nested_vmx_check_permission(vcpu))
7202                 return 1;
7203         free_nested(to_vmx(vcpu));
7204         skip_emulated_instruction(vcpu);
7205         nested_vmx_succeed(vcpu);
7206         return 1;
7207 }
7208
7209 /* Emulate the VMCLEAR instruction */
7210 static int handle_vmclear(struct kvm_vcpu *vcpu)
7211 {
7212         struct vcpu_vmx *vmx = to_vmx(vcpu);
7213         gpa_t vmptr;
7214         struct vmcs12 *vmcs12;
7215         struct page *page;
7216
7217         if (!nested_vmx_check_permission(vcpu))
7218                 return 1;
7219
7220         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
7221                 return 1;
7222
7223         if (vmptr == vmx->nested.current_vmptr)
7224                 nested_release_vmcs12(vmx);
7225
7226         page = nested_get_page(vcpu, vmptr);
7227         if (page == NULL) {
7228                 /*
7229                  * For accurate processor emulation, VMCLEAR beyond available
7230                  * physical memory should do nothing at all. However, it is
7231                  * possible that a nested vmx bug, not a guest hypervisor bug,
7232                  * resulted in this case, so let's shut down before doing any
7233                  * more damage:
7234                  */
7235                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7236                 return 1;
7237         }
7238         vmcs12 = kmap(page);
7239         vmcs12->launch_state = 0;
7240         kunmap(page);
7241         nested_release_page(page);
7242
7243         nested_free_vmcs02(vmx, vmptr);
7244
7245         skip_emulated_instruction(vcpu);
7246         nested_vmx_succeed(vcpu);
7247         return 1;
7248 }
7249
7250 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7251
7252 /* Emulate the VMLAUNCH instruction */
7253 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7254 {
7255         return nested_vmx_run(vcpu, true);
7256 }
7257
7258 /* Emulate the VMRESUME instruction */
7259 static int handle_vmresume(struct kvm_vcpu *vcpu)
7260 {
7261
7262         return nested_vmx_run(vcpu, false);
7263 }
7264
7265 enum vmcs_field_type {
7266         VMCS_FIELD_TYPE_U16 = 0,
7267         VMCS_FIELD_TYPE_U64 = 1,
7268         VMCS_FIELD_TYPE_U32 = 2,
7269         VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
7270 };
7271
7272 static inline int vmcs_field_type(unsigned long field)
7273 {
7274         if (0x1 & field)        /* the *_HIGH fields are all 32 bit */
7275                 return VMCS_FIELD_TYPE_U32;
7276         return (field >> 13) & 0x3 ;
7277 }
7278
7279 static inline int vmcs_field_readonly(unsigned long field)
7280 {
7281         return (((field >> 10) & 0x3) == 1);
7282 }
7283
7284 /*
7285  * Read a vmcs12 field. Since these can have varying lengths and we return
7286  * one type, we chose the biggest type (u64) and zero-extend the return value
7287  * to that size. Note that the caller, handle_vmread, might need to use only
7288  * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7289  * 64-bit fields are to be returned).
7290  */
7291 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7292                                   unsigned long field, u64 *ret)
7293 {
7294         short offset = vmcs_field_to_offset(field);
7295         char *p;
7296
7297         if (offset < 0)
7298                 return offset;
7299
7300         p = ((char *)(get_vmcs12(vcpu))) + offset;
7301
7302         switch (vmcs_field_type(field)) {
7303         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7304                 *ret = *((natural_width *)p);
7305                 return 0;
7306         case VMCS_FIELD_TYPE_U16:
7307                 *ret = *((u16 *)p);
7308                 return 0;
7309         case VMCS_FIELD_TYPE_U32:
7310                 *ret = *((u32 *)p);
7311                 return 0;
7312         case VMCS_FIELD_TYPE_U64:
7313                 *ret = *((u64 *)p);
7314                 return 0;
7315         default:
7316                 WARN_ON(1);
7317                 return -ENOENT;
7318         }
7319 }
7320
7321
7322 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7323                                    unsigned long field, u64 field_value){
7324         short offset = vmcs_field_to_offset(field);
7325         char *p = ((char *) get_vmcs12(vcpu)) + offset;
7326         if (offset < 0)
7327                 return offset;
7328
7329         switch (vmcs_field_type(field)) {
7330         case VMCS_FIELD_TYPE_U16:
7331                 *(u16 *)p = field_value;
7332                 return 0;
7333         case VMCS_FIELD_TYPE_U32:
7334                 *(u32 *)p = field_value;
7335                 return 0;
7336         case VMCS_FIELD_TYPE_U64:
7337                 *(u64 *)p = field_value;
7338                 return 0;
7339         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7340                 *(natural_width *)p = field_value;
7341                 return 0;
7342         default:
7343                 WARN_ON(1);
7344                 return -ENOENT;
7345         }
7346
7347 }
7348
7349 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7350 {
7351         int i;
7352         unsigned long field;
7353         u64 field_value;
7354         struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
7355         const unsigned long *fields = shadow_read_write_fields;
7356         const int num_fields = max_shadow_read_write_fields;
7357
7358         preempt_disable();
7359
7360         vmcs_load(shadow_vmcs);
7361
7362         for (i = 0; i < num_fields; i++) {
7363                 field = fields[i];
7364                 switch (vmcs_field_type(field)) {
7365                 case VMCS_FIELD_TYPE_U16:
7366                         field_value = vmcs_read16(field);
7367                         break;
7368                 case VMCS_FIELD_TYPE_U32:
7369                         field_value = vmcs_read32(field);
7370                         break;
7371                 case VMCS_FIELD_TYPE_U64:
7372                         field_value = vmcs_read64(field);
7373                         break;
7374                 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7375                         field_value = vmcs_readl(field);
7376                         break;
7377                 default:
7378                         WARN_ON(1);
7379                         continue;
7380                 }
7381                 vmcs12_write_any(&vmx->vcpu, field, field_value);
7382         }
7383
7384         vmcs_clear(shadow_vmcs);
7385         vmcs_load(vmx->loaded_vmcs->vmcs);
7386
7387         preempt_enable();
7388 }
7389
7390 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7391 {
7392         const unsigned long *fields[] = {
7393                 shadow_read_write_fields,
7394                 shadow_read_only_fields
7395         };
7396         const int max_fields[] = {
7397                 max_shadow_read_write_fields,
7398                 max_shadow_read_only_fields
7399         };
7400         int i, q;
7401         unsigned long field;
7402         u64 field_value = 0;
7403         struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
7404
7405         vmcs_load(shadow_vmcs);
7406
7407         for (q = 0; q < ARRAY_SIZE(fields); q++) {
7408                 for (i = 0; i < max_fields[q]; i++) {
7409                         field = fields[q][i];
7410                         vmcs12_read_any(&vmx->vcpu, field, &field_value);
7411
7412                         switch (vmcs_field_type(field)) {
7413                         case VMCS_FIELD_TYPE_U16:
7414                                 vmcs_write16(field, (u16)field_value);
7415                                 break;
7416                         case VMCS_FIELD_TYPE_U32:
7417                                 vmcs_write32(field, (u32)field_value);
7418                                 break;
7419                         case VMCS_FIELD_TYPE_U64:
7420                                 vmcs_write64(field, (u64)field_value);
7421                                 break;
7422                         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7423                                 vmcs_writel(field, (long)field_value);
7424                                 break;
7425                         default:
7426                                 WARN_ON(1);
7427                                 break;
7428                         }
7429                 }
7430         }
7431
7432         vmcs_clear(shadow_vmcs);
7433         vmcs_load(vmx->loaded_vmcs->vmcs);
7434 }
7435
7436 /*
7437  * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7438  * used before) all generate the same failure when it is missing.
7439  */
7440 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7441 {
7442         struct vcpu_vmx *vmx = to_vmx(vcpu);
7443         if (vmx->nested.current_vmptr == -1ull) {
7444                 nested_vmx_failInvalid(vcpu);
7445                 skip_emulated_instruction(vcpu);
7446                 return 0;
7447         }
7448         return 1;
7449 }
7450
7451 static int handle_vmread(struct kvm_vcpu *vcpu)
7452 {
7453         unsigned long field;
7454         u64 field_value;
7455         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7456         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7457         gva_t gva = 0;
7458
7459         if (!nested_vmx_check_permission(vcpu) ||
7460             !nested_vmx_check_vmcs12(vcpu))
7461                 return 1;
7462
7463         /* Decode instruction info and find the field to read */
7464         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7465         /* Read the field, zero-extended to a u64 field_value */
7466         if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
7467                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7468                 skip_emulated_instruction(vcpu);
7469                 return 1;
7470         }
7471         /*
7472          * Now copy part of this value to register or memory, as requested.
7473          * Note that the number of bits actually copied is 32 or 64 depending
7474          * on the guest's mode (32 or 64 bit), not on the given field's length.
7475          */
7476         if (vmx_instruction_info & (1u << 10)) {
7477                 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
7478                         field_value);
7479         } else {
7480                 if (get_vmx_mem_address(vcpu, exit_qualification,
7481                                 vmx_instruction_info, true, &gva))
7482                         return 1;
7483                 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
7484                 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7485                              &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7486         }
7487
7488         nested_vmx_succeed(vcpu);
7489         skip_emulated_instruction(vcpu);
7490         return 1;
7491 }
7492
7493
7494 static int handle_vmwrite(struct kvm_vcpu *vcpu)
7495 {
7496         unsigned long field;
7497         gva_t gva;
7498         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7499         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7500         /* The value to write might be 32 or 64 bits, depending on L1's long
7501          * mode, and eventually we need to write that into a field of several
7502          * possible lengths. The code below first zero-extends the value to 64
7503          * bit (field_value), and then copies only the appropriate number of
7504          * bits into the vmcs12 field.
7505          */
7506         u64 field_value = 0;
7507         struct x86_exception e;
7508
7509         if (!nested_vmx_check_permission(vcpu) ||
7510             !nested_vmx_check_vmcs12(vcpu))
7511                 return 1;
7512
7513         if (vmx_instruction_info & (1u << 10))
7514                 field_value = kvm_register_readl(vcpu,
7515                         (((vmx_instruction_info) >> 3) & 0xf));
7516         else {
7517                 if (get_vmx_mem_address(vcpu, exit_qualification,
7518                                 vmx_instruction_info, false, &gva))
7519                         return 1;
7520                 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
7521                            &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7522                         kvm_inject_page_fault(vcpu, &e);
7523                         return 1;
7524                 }
7525         }
7526
7527
7528         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7529         if (vmcs_field_readonly(field)) {
7530                 nested_vmx_failValid(vcpu,
7531                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7532                 skip_emulated_instruction(vcpu);
7533                 return 1;
7534         }
7535
7536         if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7537                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7538                 skip_emulated_instruction(vcpu);
7539                 return 1;
7540         }
7541
7542         nested_vmx_succeed(vcpu);
7543         skip_emulated_instruction(vcpu);
7544         return 1;
7545 }
7546
7547 /* Emulate the VMPTRLD instruction */
7548 static int handle_vmptrld(struct kvm_vcpu *vcpu)
7549 {
7550         struct vcpu_vmx *vmx = to_vmx(vcpu);
7551         gpa_t vmptr;
7552
7553         if (!nested_vmx_check_permission(vcpu))
7554                 return 1;
7555
7556         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
7557                 return 1;
7558
7559         if (vmx->nested.current_vmptr != vmptr) {
7560                 struct vmcs12 *new_vmcs12;
7561                 struct page *page;
7562                 page = nested_get_page(vcpu, vmptr);
7563                 if (page == NULL) {
7564                         nested_vmx_failInvalid(vcpu);
7565                         skip_emulated_instruction(vcpu);
7566                         return 1;
7567                 }
7568                 new_vmcs12 = kmap(page);
7569                 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7570                         kunmap(page);
7571                         nested_release_page_clean(page);
7572                         nested_vmx_failValid(vcpu,
7573                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7574                         skip_emulated_instruction(vcpu);
7575                         return 1;
7576                 }
7577
7578                 nested_release_vmcs12(vmx);
7579                 vmx->nested.current_vmptr = vmptr;
7580                 vmx->nested.current_vmcs12 = new_vmcs12;
7581                 vmx->nested.current_vmcs12_page = page;
7582                 /*
7583                  * Load VMCS12 from guest memory since it is not already
7584                  * cached.
7585                  */
7586                 memcpy(vmx->nested.cached_vmcs12,
7587                        vmx->nested.current_vmcs12, VMCS12_SIZE);
7588
7589                 if (enable_shadow_vmcs) {
7590                         vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7591                                       SECONDARY_EXEC_SHADOW_VMCS);
7592                         vmcs_write64(VMCS_LINK_POINTER,
7593                                      __pa(vmx->nested.current_shadow_vmcs));
7594                         vmx->nested.sync_shadow_vmcs = true;
7595                 }
7596         }
7597
7598         nested_vmx_succeed(vcpu);
7599         skip_emulated_instruction(vcpu);
7600         return 1;
7601 }
7602
7603 /* Emulate the VMPTRST instruction */
7604 static int handle_vmptrst(struct kvm_vcpu *vcpu)
7605 {
7606         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7607         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7608         gva_t vmcs_gva;
7609         struct x86_exception e;
7610
7611         if (!nested_vmx_check_permission(vcpu))
7612                 return 1;
7613
7614         if (get_vmx_mem_address(vcpu, exit_qualification,
7615                         vmx_instruction_info, true, &vmcs_gva))
7616                 return 1;
7617         /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
7618         if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7619                                  (void *)&to_vmx(vcpu)->nested.current_vmptr,
7620                                  sizeof(u64), &e)) {
7621                 kvm_inject_page_fault(vcpu, &e);
7622                 return 1;
7623         }
7624         nested_vmx_succeed(vcpu);
7625         skip_emulated_instruction(vcpu);
7626         return 1;
7627 }
7628
7629 /* Emulate the INVEPT instruction */
7630 static int handle_invept(struct kvm_vcpu *vcpu)
7631 {
7632         struct vcpu_vmx *vmx = to_vmx(vcpu);
7633         u32 vmx_instruction_info, types;
7634         unsigned long type;
7635         gva_t gva;
7636         struct x86_exception e;
7637         struct {
7638                 u64 eptp, gpa;
7639         } operand;
7640
7641         if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7642               SECONDARY_EXEC_ENABLE_EPT) ||
7643             !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
7644                 kvm_queue_exception(vcpu, UD_VECTOR);
7645                 return 1;
7646         }
7647
7648         if (!nested_vmx_check_permission(vcpu))
7649                 return 1;
7650
7651         if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
7652                 kvm_queue_exception(vcpu, UD_VECTOR);
7653                 return 1;
7654         }
7655
7656         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7657         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7658
7659         types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
7660
7661         if (!(types & (1UL << type))) {
7662                 nested_vmx_failValid(vcpu,
7663                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7664                 skip_emulated_instruction(vcpu);
7665                 return 1;
7666         }
7667
7668         /* According to the Intel VMX instruction reference, the memory
7669          * operand is read even if it isn't needed (e.g., for type==global)
7670          */
7671         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7672                         vmx_instruction_info, false, &gva))
7673                 return 1;
7674         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7675                                 sizeof(operand), &e)) {
7676                 kvm_inject_page_fault(vcpu, &e);
7677                 return 1;
7678         }
7679
7680         switch (type) {
7681         case VMX_EPT_EXTENT_GLOBAL:
7682         /*
7683          * TODO: track mappings and invalidate
7684          * single context requests appropriately
7685          */
7686         case VMX_EPT_EXTENT_CONTEXT:
7687                 kvm_mmu_sync_roots(vcpu);
7688                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
7689                 nested_vmx_succeed(vcpu);
7690                 break;
7691         default:
7692                 BUG_ON(1);
7693                 break;
7694         }
7695
7696         skip_emulated_instruction(vcpu);
7697         return 1;
7698 }
7699
7700 static int handle_invvpid(struct kvm_vcpu *vcpu)
7701 {
7702         struct vcpu_vmx *vmx = to_vmx(vcpu);
7703         u32 vmx_instruction_info;
7704         unsigned long type, types;
7705         gva_t gva;
7706         struct x86_exception e;
7707         int vpid;
7708
7709         if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7710               SECONDARY_EXEC_ENABLE_VPID) ||
7711                         !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7712                 kvm_queue_exception(vcpu, UD_VECTOR);
7713                 return 1;
7714         }
7715
7716         if (!nested_vmx_check_permission(vcpu))
7717                 return 1;
7718
7719         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7720         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7721
7722         types = (vmx->nested.nested_vmx_vpid_caps >> 8) & 0x7;
7723
7724         if (!(types & (1UL << type))) {
7725                 nested_vmx_failValid(vcpu,
7726                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7727                 skip_emulated_instruction(vcpu);
7728                 return 1;
7729         }
7730
7731         /* according to the intel vmx instruction reference, the memory
7732          * operand is read even if it isn't needed (e.g., for type==global)
7733          */
7734         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7735                         vmx_instruction_info, false, &gva))
7736                 return 1;
7737         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vpid,
7738                                 sizeof(u32), &e)) {
7739                 kvm_inject_page_fault(vcpu, &e);
7740                 return 1;
7741         }
7742
7743         switch (type) {
7744         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
7745                 /*
7746                  * Old versions of KVM use the single-context version so we
7747                  * have to support it; just treat it the same as all-context.
7748                  */
7749         case VMX_VPID_EXTENT_ALL_CONTEXT:
7750                 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
7751                 nested_vmx_succeed(vcpu);
7752                 break;
7753         default:
7754                 /* Trap individual address invalidation invvpid calls */
7755                 BUG_ON(1);
7756                 break;
7757         }
7758
7759         skip_emulated_instruction(vcpu);
7760         return 1;
7761 }
7762
7763 static int handle_pml_full(struct kvm_vcpu *vcpu)
7764 {
7765         unsigned long exit_qualification;
7766
7767         trace_kvm_pml_full(vcpu->vcpu_id);
7768
7769         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7770
7771         /*
7772          * PML buffer FULL happened while executing iret from NMI,
7773          * "blocked by NMI" bit has to be set before next VM entry.
7774          */
7775         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7776                         cpu_has_virtual_nmis() &&
7777                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7778                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7779                                 GUEST_INTR_STATE_NMI);
7780
7781         /*
7782          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7783          * here.., and there's no userspace involvement needed for PML.
7784          */
7785         return 1;
7786 }
7787
7788 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
7789 {
7790         kvm_lapic_expired_hv_timer(vcpu);
7791         return 1;
7792 }
7793
7794 /*
7795  * The exit handlers return 1 if the exit was handled fully and guest execution
7796  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
7797  * to be done to userspace and return 0.
7798  */
7799 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
7800         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
7801         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
7802         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
7803         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
7804         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
7805         [EXIT_REASON_CR_ACCESS]               = handle_cr,
7806         [EXIT_REASON_DR_ACCESS]               = handle_dr,
7807         [EXIT_REASON_CPUID]                   = handle_cpuid,
7808         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
7809         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
7810         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
7811         [EXIT_REASON_HLT]                     = handle_halt,
7812         [EXIT_REASON_INVD]                    = handle_invd,
7813         [EXIT_REASON_INVLPG]                  = handle_invlpg,
7814         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
7815         [EXIT_REASON_VMCALL]                  = handle_vmcall,
7816         [EXIT_REASON_VMCLEAR]                 = handle_vmclear,
7817         [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
7818         [EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
7819         [EXIT_REASON_VMPTRST]                 = handle_vmptrst,
7820         [EXIT_REASON_VMREAD]                  = handle_vmread,
7821         [EXIT_REASON_VMRESUME]                = handle_vmresume,
7822         [EXIT_REASON_VMWRITE]                 = handle_vmwrite,
7823         [EXIT_REASON_VMOFF]                   = handle_vmoff,
7824         [EXIT_REASON_VMON]                    = handle_vmon,
7825         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
7826         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
7827         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
7828         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
7829         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
7830         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
7831         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
7832         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
7833         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
7834         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
7835         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
7836         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
7837         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
7838         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
7839         [EXIT_REASON_INVEPT]                  = handle_invept,
7840         [EXIT_REASON_INVVPID]                 = handle_invvpid,
7841         [EXIT_REASON_XSAVES]                  = handle_xsaves,
7842         [EXIT_REASON_XRSTORS]                 = handle_xrstors,
7843         [EXIT_REASON_PML_FULL]                = handle_pml_full,
7844         [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
7845 };
7846
7847 static const int kvm_vmx_max_exit_handlers =
7848         ARRAY_SIZE(kvm_vmx_exit_handlers);
7849
7850 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7851                                        struct vmcs12 *vmcs12)
7852 {
7853         unsigned long exit_qualification;
7854         gpa_t bitmap, last_bitmap;
7855         unsigned int port;
7856         int size;
7857         u8 b;
7858
7859         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7860                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
7861
7862         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7863
7864         port = exit_qualification >> 16;
7865         size = (exit_qualification & 7) + 1;
7866
7867         last_bitmap = (gpa_t)-1;
7868         b = -1;
7869
7870         while (size > 0) {
7871                 if (port < 0x8000)
7872                         bitmap = vmcs12->io_bitmap_a;
7873                 else if (port < 0x10000)
7874                         bitmap = vmcs12->io_bitmap_b;
7875                 else
7876                         return true;
7877                 bitmap += (port & 0x7fff) / 8;
7878
7879                 if (last_bitmap != bitmap)
7880                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
7881                                 return true;
7882                 if (b & (1 << (port & 7)))
7883                         return true;
7884
7885                 port++;
7886                 size--;
7887                 last_bitmap = bitmap;
7888         }
7889
7890         return false;
7891 }
7892
7893 /*
7894  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7895  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7896  * disinterest in the current event (read or write a specific MSR) by using an
7897  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7898  */
7899 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7900         struct vmcs12 *vmcs12, u32 exit_reason)
7901 {
7902         u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7903         gpa_t bitmap;
7904
7905         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
7906                 return true;
7907
7908         /*
7909          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7910          * for the four combinations of read/write and low/high MSR numbers.
7911          * First we need to figure out which of the four to use:
7912          */
7913         bitmap = vmcs12->msr_bitmap;
7914         if (exit_reason == EXIT_REASON_MSR_WRITE)
7915                 bitmap += 2048;
7916         if (msr_index >= 0xc0000000) {
7917                 msr_index -= 0xc0000000;
7918                 bitmap += 1024;
7919         }
7920
7921         /* Then read the msr_index'th bit from this bitmap: */
7922         if (msr_index < 1024*8) {
7923                 unsigned char b;
7924                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
7925                         return true;
7926                 return 1 & (b >> (msr_index & 7));
7927         } else
7928                 return true; /* let L1 handle the wrong parameter */
7929 }
7930
7931 /*
7932  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7933  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7934  * intercept (via guest_host_mask etc.) the current event.
7935  */
7936 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7937         struct vmcs12 *vmcs12)
7938 {
7939         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7940         int cr = exit_qualification & 15;
7941         int reg = (exit_qualification >> 8) & 15;
7942         unsigned long val = kvm_register_readl(vcpu, reg);
7943
7944         switch ((exit_qualification >> 4) & 3) {
7945         case 0: /* mov to cr */
7946                 switch (cr) {
7947                 case 0:
7948                         if (vmcs12->cr0_guest_host_mask &
7949                             (val ^ vmcs12->cr0_read_shadow))
7950                                 return true;
7951                         break;
7952                 case 3:
7953                         if ((vmcs12->cr3_target_count >= 1 &&
7954                                         vmcs12->cr3_target_value0 == val) ||
7955                                 (vmcs12->cr3_target_count >= 2 &&
7956                                         vmcs12->cr3_target_value1 == val) ||
7957                                 (vmcs12->cr3_target_count >= 3 &&
7958                                         vmcs12->cr3_target_value2 == val) ||
7959                                 (vmcs12->cr3_target_count >= 4 &&
7960                                         vmcs12->cr3_target_value3 == val))
7961                                 return false;
7962                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
7963                                 return true;
7964                         break;
7965                 case 4:
7966                         if (vmcs12->cr4_guest_host_mask &
7967                             (vmcs12->cr4_read_shadow ^ val))
7968                                 return true;
7969                         break;
7970                 case 8:
7971                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
7972                                 return true;
7973                         break;
7974                 }
7975                 break;
7976         case 2: /* clts */
7977                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7978                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
7979                         return true;
7980                 break;
7981         case 1: /* mov from cr */
7982                 switch (cr) {
7983                 case 3:
7984                         if (vmcs12->cpu_based_vm_exec_control &
7985                             CPU_BASED_CR3_STORE_EXITING)
7986                                 return true;
7987                         break;
7988                 case 8:
7989                         if (vmcs12->cpu_based_vm_exec_control &
7990                             CPU_BASED_CR8_STORE_EXITING)
7991                                 return true;
7992                         break;
7993                 }
7994                 break;
7995         case 3: /* lmsw */
7996                 /*
7997                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7998                  * cr0. Other attempted changes are ignored, with no exit.
7999                  */
8000                 if (vmcs12->cr0_guest_host_mask & 0xe &
8001                     (val ^ vmcs12->cr0_read_shadow))
8002                         return true;
8003                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
8004                     !(vmcs12->cr0_read_shadow & 0x1) &&
8005                     (val & 0x1))
8006                         return true;
8007                 break;
8008         }
8009         return false;
8010 }
8011
8012 /*
8013  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
8014  * should handle it ourselves in L0 (and then continue L2). Only call this
8015  * when in is_guest_mode (L2).
8016  */
8017 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
8018 {
8019         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8020         struct vcpu_vmx *vmx = to_vmx(vcpu);
8021         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8022         u32 exit_reason = vmx->exit_reason;
8023
8024         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
8025                                 vmcs_readl(EXIT_QUALIFICATION),
8026                                 vmx->idt_vectoring_info,
8027                                 intr_info,
8028                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8029                                 KVM_ISA_VMX);
8030
8031         if (vmx->nested.nested_run_pending)
8032                 return false;
8033
8034         if (unlikely(vmx->fail)) {
8035                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
8036                                     vmcs_read32(VM_INSTRUCTION_ERROR));
8037                 return true;
8038         }
8039
8040         switch (exit_reason) {
8041         case EXIT_REASON_EXCEPTION_NMI:
8042                 if (!is_exception(intr_info))
8043                         return false;
8044                 else if (is_page_fault(intr_info))
8045                         return enable_ept;
8046                 else if (is_no_device(intr_info) &&
8047                          !(vmcs12->guest_cr0 & X86_CR0_TS))
8048                         return false;
8049                 else if (is_debug(intr_info) &&
8050                          vcpu->guest_debug &
8051                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
8052                         return false;
8053                 else if (is_breakpoint(intr_info) &&
8054                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
8055                         return false;
8056                 return vmcs12->exception_bitmap &
8057                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
8058         case EXIT_REASON_EXTERNAL_INTERRUPT:
8059                 return false;
8060         case EXIT_REASON_TRIPLE_FAULT:
8061                 return true;
8062         case EXIT_REASON_PENDING_INTERRUPT:
8063                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
8064         case EXIT_REASON_NMI_WINDOW:
8065                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
8066         case EXIT_REASON_TASK_SWITCH:
8067                 return true;
8068         case EXIT_REASON_CPUID:
8069                 if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
8070                         return false;
8071                 return true;
8072         case EXIT_REASON_HLT:
8073                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
8074         case EXIT_REASON_INVD:
8075                 return true;
8076         case EXIT_REASON_INVLPG:
8077                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8078         case EXIT_REASON_RDPMC:
8079                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
8080         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
8081                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
8082         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
8083         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
8084         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
8085         case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
8086         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
8087         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
8088                 /*
8089                  * VMX instructions trap unconditionally. This allows L1 to
8090                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
8091                  */
8092                 return true;
8093         case EXIT_REASON_CR_ACCESS:
8094                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
8095         case EXIT_REASON_DR_ACCESS:
8096                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
8097         case EXIT_REASON_IO_INSTRUCTION:
8098                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
8099         case EXIT_REASON_MSR_READ:
8100         case EXIT_REASON_MSR_WRITE:
8101                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
8102         case EXIT_REASON_INVALID_STATE:
8103                 return true;
8104         case EXIT_REASON_MWAIT_INSTRUCTION:
8105                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
8106         case EXIT_REASON_MONITOR_TRAP_FLAG:
8107                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
8108         case EXIT_REASON_MONITOR_INSTRUCTION:
8109                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
8110         case EXIT_REASON_PAUSE_INSTRUCTION:
8111                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
8112                         nested_cpu_has2(vmcs12,
8113                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
8114         case EXIT_REASON_MCE_DURING_VMENTRY:
8115                 return false;
8116         case EXIT_REASON_TPR_BELOW_THRESHOLD:
8117                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
8118         case EXIT_REASON_APIC_ACCESS:
8119                 return nested_cpu_has2(vmcs12,
8120                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
8121         case EXIT_REASON_APIC_WRITE:
8122         case EXIT_REASON_EOI_INDUCED:
8123                 /* apic_write and eoi_induced should exit unconditionally. */
8124                 return true;
8125         case EXIT_REASON_EPT_VIOLATION:
8126                 /*
8127                  * L0 always deals with the EPT violation. If nested EPT is
8128                  * used, and the nested mmu code discovers that the address is
8129                  * missing in the guest EPT table (EPT12), the EPT violation
8130                  * will be injected with nested_ept_inject_page_fault()
8131                  */
8132                 return false;
8133         case EXIT_REASON_EPT_MISCONFIG:
8134                 /*
8135                  * L2 never uses directly L1's EPT, but rather L0's own EPT
8136                  * table (shadow on EPT) or a merged EPT table that L0 built
8137                  * (EPT on EPT). So any problems with the structure of the
8138                  * table is L0's fault.
8139                  */
8140                 return false;
8141         case EXIT_REASON_WBINVD:
8142                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
8143         case EXIT_REASON_XSETBV:
8144                 return true;
8145         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
8146                 /*
8147                  * This should never happen, since it is not possible to
8148                  * set XSS to a non-zero value---neither in L1 nor in L2.
8149                  * If if it were, XSS would have to be checked against
8150                  * the XSS exit bitmap in vmcs12.
8151                  */
8152                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
8153         case EXIT_REASON_PREEMPTION_TIMER:
8154                 return false;
8155         default:
8156                 return true;
8157         }
8158 }
8159
8160 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
8161 {
8162         *info1 = vmcs_readl(EXIT_QUALIFICATION);
8163         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
8164 }
8165
8166 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
8167 {
8168         if (vmx->pml_pg) {
8169                 __free_page(vmx->pml_pg);
8170                 vmx->pml_pg = NULL;
8171         }
8172 }
8173
8174 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
8175 {
8176         struct vcpu_vmx *vmx = to_vmx(vcpu);
8177         u64 *pml_buf;
8178         u16 pml_idx;
8179
8180         pml_idx = vmcs_read16(GUEST_PML_INDEX);
8181
8182         /* Do nothing if PML buffer is empty */
8183         if (pml_idx == (PML_ENTITY_NUM - 1))
8184                 return;
8185
8186         /* PML index always points to next available PML buffer entity */
8187         if (pml_idx >= PML_ENTITY_NUM)
8188                 pml_idx = 0;
8189         else
8190                 pml_idx++;
8191
8192         pml_buf = page_address(vmx->pml_pg);
8193         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
8194                 u64 gpa;
8195
8196                 gpa = pml_buf[pml_idx];
8197                 WARN_ON(gpa & (PAGE_SIZE - 1));
8198                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
8199         }
8200
8201         /* reset PML index */
8202         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8203 }
8204
8205 /*
8206  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8207  * Called before reporting dirty_bitmap to userspace.
8208  */
8209 static void kvm_flush_pml_buffers(struct kvm *kvm)
8210 {
8211         int i;
8212         struct kvm_vcpu *vcpu;
8213         /*
8214          * We only need to kick vcpu out of guest mode here, as PML buffer
8215          * is flushed at beginning of all VMEXITs, and it's obvious that only
8216          * vcpus running in guest are possible to have unflushed GPAs in PML
8217          * buffer.
8218          */
8219         kvm_for_each_vcpu(i, vcpu, kvm)
8220                 kvm_vcpu_kick(vcpu);
8221 }
8222
8223 static void vmx_dump_sel(char *name, uint32_t sel)
8224 {
8225         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
8226                name, vmcs_read32(sel),
8227                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8228                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8229                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8230 }
8231
8232 static void vmx_dump_dtsel(char *name, uint32_t limit)
8233 {
8234         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
8235                name, vmcs_read32(limit),
8236                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8237 }
8238
8239 static void dump_vmcs(void)
8240 {
8241         u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8242         u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8243         u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8244         u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8245         u32 secondary_exec_control = 0;
8246         unsigned long cr4 = vmcs_readl(GUEST_CR4);
8247         u64 efer = vmcs_read64(GUEST_IA32_EFER);
8248         int i, n;
8249
8250         if (cpu_has_secondary_exec_ctrls())
8251                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8252
8253         pr_err("*** Guest State ***\n");
8254         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8255                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8256                vmcs_readl(CR0_GUEST_HOST_MASK));
8257         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8258                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8259         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8260         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8261             (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8262         {
8263                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
8264                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8265                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
8266                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
8267         }
8268         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
8269                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8270         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
8271                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8272         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8273                vmcs_readl(GUEST_SYSENTER_ESP),
8274                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8275         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
8276         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
8277         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
8278         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
8279         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
8280         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
8281         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8282         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8283         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8284         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
8285         if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8286             (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
8287                 pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
8288                        efer, vmcs_read64(GUEST_IA32_PAT));
8289         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
8290                vmcs_read64(GUEST_IA32_DEBUGCTL),
8291                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8292         if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
8293                 pr_err("PerfGlobCtl = 0x%016llx\n",
8294                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
8295         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
8296                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
8297         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
8298                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8299                vmcs_read32(GUEST_ACTIVITY_STATE));
8300         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8301                 pr_err("InterruptStatus = %04x\n",
8302                        vmcs_read16(GUEST_INTR_STATUS));
8303
8304         pr_err("*** Host State ***\n");
8305         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
8306                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8307         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8308                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8309                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8310                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8311                vmcs_read16(HOST_TR_SELECTOR));
8312         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8313                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8314                vmcs_readl(HOST_TR_BASE));
8315         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8316                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8317         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8318                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8319                vmcs_readl(HOST_CR4));
8320         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8321                vmcs_readl(HOST_IA32_SYSENTER_ESP),
8322                vmcs_read32(HOST_IA32_SYSENTER_CS),
8323                vmcs_readl(HOST_IA32_SYSENTER_EIP));
8324         if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
8325                 pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
8326                        vmcs_read64(HOST_IA32_EFER),
8327                        vmcs_read64(HOST_IA32_PAT));
8328         if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8329                 pr_err("PerfGlobCtl = 0x%016llx\n",
8330                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
8331
8332         pr_err("*** Control State ***\n");
8333         pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8334                pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8335         pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8336         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8337                vmcs_read32(EXCEPTION_BITMAP),
8338                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8339                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8340         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8341                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8342                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8343                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8344         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8345                vmcs_read32(VM_EXIT_INTR_INFO),
8346                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8347                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8348         pr_err("        reason=%08x qualification=%016lx\n",
8349                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8350         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8351                vmcs_read32(IDT_VECTORING_INFO_FIELD),
8352                vmcs_read32(IDT_VECTORING_ERROR_CODE));
8353         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8354         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
8355                 pr_err("TSC Multiplier = 0x%016llx\n",
8356                        vmcs_read64(TSC_MULTIPLIER));
8357         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8358                 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8359         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8360                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8361         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
8362                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
8363         n = vmcs_read32(CR3_TARGET_COUNT);
8364         for (i = 0; i + 1 < n; i += 4)
8365                 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8366                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8367                        i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8368         if (i < n)
8369                 pr_err("CR3 target%u=%016lx\n",
8370                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8371         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8372                 pr_err("PLE Gap=%08x Window=%08x\n",
8373                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8374         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8375                 pr_err("Virtual processor ID = 0x%04x\n",
8376                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
8377 }
8378
8379 /*
8380  * The guest has exited.  See if we can fix it or if we need userspace
8381  * assistance.
8382  */
8383 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
8384 {
8385         struct vcpu_vmx *vmx = to_vmx(vcpu);
8386         u32 exit_reason = vmx->exit_reason;
8387         u32 vectoring_info = vmx->idt_vectoring_info;
8388
8389         trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8390
8391         /*
8392          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8393          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8394          * querying dirty_bitmap, we only need to kick all vcpus out of guest
8395          * mode as if vcpus is in root mode, the PML buffer must has been
8396          * flushed already.
8397          */
8398         if (enable_pml)
8399                 vmx_flush_pml_buffer(vcpu);
8400
8401         /* If guest state is invalid, start emulating */
8402         if (vmx->emulation_required)
8403                 return handle_invalid_guest_state(vcpu);
8404
8405         if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
8406                 nested_vmx_vmexit(vcpu, exit_reason,
8407                                   vmcs_read32(VM_EXIT_INTR_INFO),
8408                                   vmcs_readl(EXIT_QUALIFICATION));
8409                 return 1;
8410         }
8411
8412         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
8413                 dump_vmcs();
8414                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8415                 vcpu->run->fail_entry.hardware_entry_failure_reason
8416                         = exit_reason;
8417                 return 0;
8418         }
8419
8420         if (unlikely(vmx->fail)) {
8421                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8422                 vcpu->run->fail_entry.hardware_entry_failure_reason
8423                         = vmcs_read32(VM_INSTRUCTION_ERROR);
8424                 return 0;
8425         }
8426
8427         /*
8428          * Note:
8429          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8430          * delivery event since it indicates guest is accessing MMIO.
8431          * The vm-exit can be triggered again after return to guest that
8432          * will cause infinite loop.
8433          */
8434         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
8435                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
8436                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
8437                         exit_reason != EXIT_REASON_PML_FULL &&
8438                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
8439                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8440                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8441                 vcpu->run->internal.ndata = 2;
8442                 vcpu->run->internal.data[0] = vectoring_info;
8443                 vcpu->run->internal.data[1] = exit_reason;
8444                 return 0;
8445         }
8446
8447         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
8448             !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
8449                                         get_vmcs12(vcpu))))) {
8450                 if (vmx_interrupt_allowed(vcpu)) {
8451                         vmx->soft_vnmi_blocked = 0;
8452                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
8453                            vcpu->arch.nmi_pending) {
8454                         /*
8455                          * This CPU don't support us in finding the end of an
8456                          * NMI-blocked window if the guest runs with IRQs
8457                          * disabled. So we pull the trigger after 1 s of
8458                          * futile waiting, but inform the user about this.
8459                          */
8460                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
8461                                "state on VCPU %d after 1 s timeout\n",
8462                                __func__, vcpu->vcpu_id);
8463                         vmx->soft_vnmi_blocked = 0;
8464                 }
8465         }
8466
8467         if (exit_reason < kvm_vmx_max_exit_handlers
8468             && kvm_vmx_exit_handlers[exit_reason])
8469                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
8470         else {
8471                 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
8472                 kvm_queue_exception(vcpu, UD_VECTOR);
8473                 return 1;
8474         }
8475 }
8476
8477 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
8478 {
8479         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8480
8481         if (is_guest_mode(vcpu) &&
8482                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8483                 return;
8484
8485         if (irr == -1 || tpr < irr) {
8486                 vmcs_write32(TPR_THRESHOLD, 0);
8487                 return;
8488         }
8489
8490         vmcs_write32(TPR_THRESHOLD, irr);
8491 }
8492
8493 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8494 {
8495         u32 sec_exec_control;
8496
8497         /* Postpone execution until vmcs01 is the current VMCS. */
8498         if (is_guest_mode(vcpu)) {
8499                 to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
8500                 return;
8501         }
8502
8503         if (!cpu_has_vmx_virtualize_x2apic_mode())
8504                 return;
8505
8506         if (!cpu_need_tpr_shadow(vcpu))
8507                 return;
8508
8509         sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8510
8511         if (set) {
8512                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8513                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8514         } else {
8515                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8516                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8517         }
8518         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8519
8520         vmx_set_msr_bitmap(vcpu);
8521 }
8522
8523 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8524 {
8525         struct vcpu_vmx *vmx = to_vmx(vcpu);
8526
8527         /*
8528          * Currently we do not handle the nested case where L2 has an
8529          * APIC access page of its own; that page is still pinned.
8530          * Hence, we skip the case where the VCPU is in guest mode _and_
8531          * L1 prepared an APIC access page for L2.
8532          *
8533          * For the case where L1 and L2 share the same APIC access page
8534          * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8535          * in the vmcs12), this function will only update either the vmcs01
8536          * or the vmcs02.  If the former, the vmcs02 will be updated by
8537          * prepare_vmcs02.  If the latter, the vmcs01 will be updated in
8538          * the next L2->L1 exit.
8539          */
8540         if (!is_guest_mode(vcpu) ||
8541             !nested_cpu_has2(get_vmcs12(&vmx->vcpu),
8542                              SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
8543                 vmcs_write64(APIC_ACCESS_ADDR, hpa);
8544 }
8545
8546 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
8547 {
8548         u16 status;
8549         u8 old;
8550
8551         if (max_isr == -1)
8552                 max_isr = 0;
8553
8554         status = vmcs_read16(GUEST_INTR_STATUS);
8555         old = status >> 8;
8556         if (max_isr != old) {
8557                 status &= 0xff;
8558                 status |= max_isr << 8;
8559                 vmcs_write16(GUEST_INTR_STATUS, status);
8560         }
8561 }
8562
8563 static void vmx_set_rvi(int vector)
8564 {
8565         u16 status;
8566         u8 old;
8567
8568         if (vector == -1)
8569                 vector = 0;
8570
8571         status = vmcs_read16(GUEST_INTR_STATUS);
8572         old = (u8)status & 0xff;
8573         if ((u8)vector != old) {
8574                 status &= ~0xff;
8575                 status |= (u8)vector;
8576                 vmcs_write16(GUEST_INTR_STATUS, status);
8577         }
8578 }
8579
8580 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8581 {
8582         if (!is_guest_mode(vcpu)) {
8583                 vmx_set_rvi(max_irr);
8584                 return;
8585         }
8586
8587         if (max_irr == -1)
8588                 return;
8589
8590         /*
8591          * In guest mode.  If a vmexit is needed, vmx_check_nested_events
8592          * handles it.
8593          */
8594         if (nested_exit_on_intr(vcpu))
8595                 return;
8596
8597         /*
8598          * Else, fall back to pre-APICv interrupt injection since L2
8599          * is run without virtual interrupt delivery.
8600          */
8601         if (!kvm_event_needs_reinjection(vcpu) &&
8602             vmx_interrupt_allowed(vcpu)) {
8603                 kvm_queue_interrupt(vcpu, max_irr, false);
8604                 vmx_inject_irq(vcpu);
8605         }
8606 }
8607
8608 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
8609 {
8610         if (!kvm_vcpu_apicv_active(vcpu))
8611                 return;
8612
8613         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8614         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8615         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8616         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8617 }
8618
8619 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
8620 {
8621         u32 exit_intr_info;
8622
8623         if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8624               || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
8625                 return;
8626
8627         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8628         exit_intr_info = vmx->exit_intr_info;
8629
8630         /* Handle machine checks before interrupts are enabled */
8631         if (is_machine_check(exit_intr_info))
8632                 kvm_machine_check();
8633
8634         /* We need to handle NMIs before interrupts are enabled */
8635         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
8636             (exit_intr_info & INTR_INFO_VALID_MASK)) {
8637                 kvm_before_handle_nmi(&vmx->vcpu);
8638                 asm("int $2");
8639                 kvm_after_handle_nmi(&vmx->vcpu);
8640         }
8641 }
8642
8643 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8644 {
8645         u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8646         register void *__sp asm(_ASM_SP);
8647
8648         /*
8649          * If external interrupt exists, IF bit is set in rflags/eflags on the
8650          * interrupt stack frame, and interrupt will be enabled on a return
8651          * from interrupt handler.
8652          */
8653         if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8654                         == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8655                 unsigned int vector;
8656                 unsigned long entry;
8657                 gate_desc *desc;
8658                 struct vcpu_vmx *vmx = to_vmx(vcpu);
8659 #ifdef CONFIG_X86_64
8660                 unsigned long tmp;
8661 #endif
8662
8663                 vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
8664                 desc = (gate_desc *)vmx->host_idt_base + vector;
8665                 entry = gate_offset(*desc);
8666                 asm volatile(
8667 #ifdef CONFIG_X86_64
8668                         "mov %%" _ASM_SP ", %[sp]\n\t"
8669                         "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8670                         "push $%c[ss]\n\t"
8671                         "push %[sp]\n\t"
8672 #endif
8673                         "pushf\n\t"
8674                         __ASM_SIZE(push) " $%c[cs]\n\t"
8675                         "call *%[entry]\n\t"
8676                         :
8677 #ifdef CONFIG_X86_64
8678                         [sp]"=&r"(tmp),
8679 #endif
8680                         "+r"(__sp)
8681                         :
8682                         [entry]"r"(entry),
8683                         [ss]"i"(__KERNEL_DS),
8684                         [cs]"i"(__KERNEL_CS)
8685                         );
8686         }
8687 }
8688
8689 static bool vmx_has_high_real_mode_segbase(void)
8690 {
8691         return enable_unrestricted_guest || emulate_invalid_guest_state;
8692 }
8693
8694 static bool vmx_mpx_supported(void)
8695 {
8696         return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8697                 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8698 }
8699
8700 static bool vmx_xsaves_supported(void)
8701 {
8702         return vmcs_config.cpu_based_2nd_exec_ctrl &
8703                 SECONDARY_EXEC_XSAVES;
8704 }
8705
8706 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8707 {
8708         u32 exit_intr_info;
8709         bool unblock_nmi;
8710         u8 vector;
8711         bool idtv_info_valid;
8712
8713         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8714
8715         if (cpu_has_virtual_nmis()) {
8716                 if (vmx->nmi_known_unmasked)
8717                         return;
8718                 /*
8719                  * Can't use vmx->exit_intr_info since we're not sure what
8720                  * the exit reason is.
8721                  */
8722                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8723                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8724                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8725                 /*
8726                  * SDM 3: 27.7.1.2 (September 2008)
8727                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
8728                  * a guest IRET fault.
8729                  * SDM 3: 23.2.2 (September 2008)
8730                  * Bit 12 is undefined in any of the following cases:
8731                  *  If the VM exit sets the valid bit in the IDT-vectoring
8732                  *   information field.
8733                  *  If the VM exit is due to a double fault.
8734                  */
8735                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8736                     vector != DF_VECTOR && !idtv_info_valid)
8737                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8738                                       GUEST_INTR_STATE_NMI);
8739                 else
8740                         vmx->nmi_known_unmasked =
8741                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8742                                   & GUEST_INTR_STATE_NMI);
8743         } else if (unlikely(vmx->soft_vnmi_blocked))
8744                 vmx->vnmi_blocked_time +=
8745                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
8746 }
8747
8748 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
8749                                       u32 idt_vectoring_info,
8750                                       int instr_len_field,
8751                                       int error_code_field)
8752 {
8753         u8 vector;
8754         int type;
8755         bool idtv_info_valid;
8756
8757         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8758
8759         vcpu->arch.nmi_injected = false;
8760         kvm_clear_exception_queue(vcpu);
8761         kvm_clear_interrupt_queue(vcpu);
8762
8763         if (!idtv_info_valid)
8764                 return;
8765
8766         kvm_make_request(KVM_REQ_EVENT, vcpu);
8767
8768         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8769         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
8770
8771         switch (type) {
8772         case INTR_TYPE_NMI_INTR:
8773                 vcpu->arch.nmi_injected = true;
8774                 /*
8775                  * SDM 3: 27.7.1.2 (September 2008)
8776                  * Clear bit "block by NMI" before VM entry if a NMI
8777                  * delivery faulted.
8778                  */
8779                 vmx_set_nmi_mask(vcpu, false);
8780                 break;
8781         case INTR_TYPE_SOFT_EXCEPTION:
8782                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8783                 /* fall through */
8784         case INTR_TYPE_HARD_EXCEPTION:
8785                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
8786                         u32 err = vmcs_read32(error_code_field);
8787                         kvm_requeue_exception_e(vcpu, vector, err);
8788                 } else
8789                         kvm_requeue_exception(vcpu, vector);
8790                 break;
8791         case INTR_TYPE_SOFT_INTR:
8792                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8793                 /* fall through */
8794         case INTR_TYPE_EXT_INTR:
8795                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
8796                 break;
8797         default:
8798                 break;
8799         }
8800 }
8801
8802 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8803 {
8804         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
8805                                   VM_EXIT_INSTRUCTION_LEN,
8806                                   IDT_VECTORING_ERROR_CODE);
8807 }
8808
8809 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8810 {
8811         __vmx_complete_interrupts(vcpu,
8812                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8813                                   VM_ENTRY_INSTRUCTION_LEN,
8814                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
8815
8816         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8817 }
8818
8819 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8820 {
8821         int i, nr_msrs;
8822         struct perf_guest_switch_msr *msrs;
8823
8824         msrs = perf_guest_get_msrs(&nr_msrs);
8825
8826         if (!msrs)
8827                 return;
8828
8829         for (i = 0; i < nr_msrs; i++)
8830                 if (msrs[i].host == msrs[i].guest)
8831                         clear_atomic_switch_msr(vmx, msrs[i].msr);
8832                 else
8833                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8834                                         msrs[i].host);
8835 }
8836
8837 void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
8838 {
8839         struct vcpu_vmx *vmx = to_vmx(vcpu);
8840         u64 tscl;
8841         u32 delta_tsc;
8842
8843         if (vmx->hv_deadline_tsc == -1)
8844                 return;
8845
8846         tscl = rdtsc();
8847         if (vmx->hv_deadline_tsc > tscl)
8848                 /* sure to be 32 bit only because checked on set_hv_timer */
8849                 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
8850                         cpu_preemption_timer_multi);
8851         else
8852                 delta_tsc = 0;
8853
8854         vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
8855 }
8856
8857 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
8858 {
8859         struct vcpu_vmx *vmx = to_vmx(vcpu);
8860         unsigned long debugctlmsr, cr4;
8861
8862         /* Record the guest's net vcpu time for enforced NMI injections. */
8863         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
8864                 vmx->entry_time = ktime_get();
8865
8866         /* Don't enter VMX if guest state is invalid, let the exit handler
8867            start emulation until we arrive back to a valid state */
8868         if (vmx->emulation_required)
8869                 return;
8870
8871         if (vmx->ple_window_dirty) {
8872                 vmx->ple_window_dirty = false;
8873                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
8874         }
8875
8876         if (vmx->nested.sync_shadow_vmcs) {
8877                 copy_vmcs12_to_shadow(vmx);
8878                 vmx->nested.sync_shadow_vmcs = false;
8879         }
8880
8881         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8882                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8883         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8884                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8885
8886         cr4 = cr4_read_shadow();
8887         if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8888                 vmcs_writel(HOST_CR4, cr4);
8889                 vmx->host_state.vmcs_host_cr4 = cr4;
8890         }
8891
8892         /* When single-stepping over STI and MOV SS, we must clear the
8893          * corresponding interruptibility bits in the guest state. Otherwise
8894          * vmentry fails as it then expects bit 14 (BS) in pending debug
8895          * exceptions being set, but that's not correct for the guest debugging
8896          * case. */
8897         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8898                 vmx_set_interrupt_shadow(vcpu, 0);
8899
8900         if (vmx->guest_pkru_valid)
8901                 __write_pkru(vmx->guest_pkru);
8902
8903         atomic_switch_perf_msrs(vmx);
8904         debugctlmsr = get_debugctlmsr();
8905
8906         vmx_arm_hv_timer(vcpu);
8907
8908         vmx->__launched = vmx->loaded_vmcs->launched;
8909         asm(
8910                 /* Store host registers */
8911                 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8912                 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8913                 "push %%" _ASM_CX " \n\t"
8914                 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8915                 "je 1f \n\t"
8916                 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8917                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
8918                 "1: \n\t"
8919                 /* Reload cr2 if changed */
8920                 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8921                 "mov %%cr2, %%" _ASM_DX " \n\t"
8922                 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
8923                 "je 2f \n\t"
8924                 "mov %%" _ASM_AX", %%cr2 \n\t"
8925                 "2: \n\t"
8926                 /* Check if vmlaunch of vmresume is needed */
8927                 "cmpl $0, %c[launched](%0) \n\t"
8928                 /* Load guest registers.  Don't clobber flags. */
8929                 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
8930                 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8931                 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8932                 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8933                 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8934                 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
8935 #ifdef CONFIG_X86_64
8936                 "mov %c[r8](%0),  %%r8  \n\t"
8937                 "mov %c[r9](%0),  %%r9  \n\t"
8938                 "mov %c[r10](%0), %%r10 \n\t"
8939                 "mov %c[r11](%0), %%r11 \n\t"
8940                 "mov %c[r12](%0), %%r12 \n\t"
8941                 "mov %c[r13](%0), %%r13 \n\t"
8942                 "mov %c[r14](%0), %%r14 \n\t"
8943                 "mov %c[r15](%0), %%r15 \n\t"
8944 #endif
8945                 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
8946
8947                 /* Enter guest mode */
8948                 "jne 1f \n\t"
8949                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
8950                 "jmp 2f \n\t"
8951                 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
8952                 "2: "
8953                 /* Save guest registers, load host registers, keep flags */
8954                 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
8955                 "pop %0 \n\t"
8956                 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
8957                 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
8958                 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
8959                 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
8960                 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
8961                 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
8962                 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
8963 #ifdef CONFIG_X86_64
8964                 "mov %%r8,  %c[r8](%0) \n\t"
8965                 "mov %%r9,  %c[r9](%0) \n\t"
8966                 "mov %%r10, %c[r10](%0) \n\t"
8967                 "mov %%r11, %c[r11](%0) \n\t"
8968                 "mov %%r12, %c[r12](%0) \n\t"
8969                 "mov %%r13, %c[r13](%0) \n\t"
8970                 "mov %%r14, %c[r14](%0) \n\t"
8971                 "mov %%r15, %c[r15](%0) \n\t"
8972 #endif
8973                 "mov %%cr2, %%" _ASM_AX "   \n\t"
8974                 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
8975
8976                 "pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
8977                 "setbe %c[fail](%0) \n\t"
8978                 ".pushsection .rodata \n\t"
8979                 ".global vmx_return \n\t"
8980                 "vmx_return: " _ASM_PTR " 2b \n\t"
8981                 ".popsection"
8982               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
8983                 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
8984                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
8985                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
8986                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
8987                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
8988                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
8989                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
8990                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
8991                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
8992                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
8993 #ifdef CONFIG_X86_64
8994                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
8995                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
8996                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
8997                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
8998                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
8999                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
9000                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
9001                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
9002 #endif
9003                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
9004                 [wordsize]"i"(sizeof(ulong))
9005               : "cc", "memory"
9006 #ifdef CONFIG_X86_64
9007                 , "rax", "rbx", "rdi", "rsi"
9008                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
9009 #else
9010                 , "eax", "ebx", "edi", "esi"
9011 #endif
9012               );
9013
9014         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
9015         if (debugctlmsr)
9016                 update_debugctlmsr(debugctlmsr);
9017
9018 #ifndef CONFIG_X86_64
9019         /*
9020          * The sysexit path does not restore ds/es, so we must set them to
9021          * a reasonable value ourselves.
9022          *
9023          * We can't defer this to vmx_load_host_state() since that function
9024          * may be executed in interrupt context, which saves and restore segments
9025          * around it, nullifying its effect.
9026          */
9027         loadsegment(ds, __USER_DS);
9028         loadsegment(es, __USER_DS);
9029 #endif
9030
9031         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
9032                                   | (1 << VCPU_EXREG_RFLAGS)
9033                                   | (1 << VCPU_EXREG_PDPTR)
9034                                   | (1 << VCPU_EXREG_SEGMENTS)
9035                                   | (1 << VCPU_EXREG_CR3));
9036         vcpu->arch.regs_dirty = 0;
9037
9038         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
9039
9040         vmx->loaded_vmcs->launched = 1;
9041
9042         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
9043
9044         /*
9045          * eager fpu is enabled if PKEY is supported and CR4 is switched
9046          * back on host, so it is safe to read guest PKRU from current
9047          * XSAVE.
9048          */
9049         if (boot_cpu_has(X86_FEATURE_OSPKE)) {
9050                 vmx->guest_pkru = __read_pkru();
9051                 if (vmx->guest_pkru != vmx->host_pkru) {
9052                         vmx->guest_pkru_valid = true;
9053                         __write_pkru(vmx->host_pkru);
9054                 } else
9055                         vmx->guest_pkru_valid = false;
9056         }
9057
9058         /*
9059          * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
9060          * we did not inject a still-pending event to L1 now because of
9061          * nested_run_pending, we need to re-enable this bit.
9062          */
9063         if (vmx->nested.nested_run_pending)
9064                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9065
9066         vmx->nested.nested_run_pending = 0;
9067
9068         vmx_complete_atomic_exit(vmx);
9069         vmx_recover_nmi_blocking(vmx);
9070         vmx_complete_interrupts(vmx);
9071 }
9072
9073 static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
9074 {
9075         struct vcpu_vmx *vmx = to_vmx(vcpu);
9076         int cpu;
9077
9078         if (vmx->loaded_vmcs == &vmx->vmcs01)
9079                 return;
9080
9081         cpu = get_cpu();
9082         vmx->loaded_vmcs = &vmx->vmcs01;
9083         vmx_vcpu_put(vcpu);
9084         vmx_vcpu_load(vcpu, cpu);
9085         vcpu->cpu = cpu;
9086         put_cpu();
9087 }
9088
9089 /*
9090  * Ensure that the current vmcs of the logical processor is the
9091  * vmcs01 of the vcpu before calling free_nested().
9092  */
9093 static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
9094 {
9095        struct vcpu_vmx *vmx = to_vmx(vcpu);
9096        int r;
9097
9098        r = vcpu_load(vcpu);
9099        BUG_ON(r);
9100        vmx_load_vmcs01(vcpu);
9101        free_nested(vmx);
9102        vcpu_put(vcpu);
9103 }
9104
9105 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
9106 {
9107         struct vcpu_vmx *vmx = to_vmx(vcpu);
9108
9109         if (enable_pml)
9110                 vmx_destroy_pml_buffer(vmx);
9111         free_vpid(vmx->vpid);
9112         leave_guest_mode(vcpu);
9113         vmx_free_vcpu_nested(vcpu);
9114         free_loaded_vmcs(vmx->loaded_vmcs);
9115         kfree(vmx->guest_msrs);
9116         kvm_vcpu_uninit(vcpu);
9117         kmem_cache_free(kvm_vcpu_cache, vmx);
9118 }
9119
9120 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
9121 {
9122         int err;
9123         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
9124         int cpu;
9125
9126         if (!vmx)
9127                 return ERR_PTR(-ENOMEM);
9128
9129         vmx->vpid = allocate_vpid();
9130
9131         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
9132         if (err)
9133                 goto free_vcpu;
9134
9135         err = -ENOMEM;
9136
9137         /*
9138          * If PML is turned on, failure on enabling PML just results in failure
9139          * of creating the vcpu, therefore we can simplify PML logic (by
9140          * avoiding dealing with cases, such as enabling PML partially on vcpus
9141          * for the guest, etc.
9142          */
9143         if (enable_pml) {
9144                 vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
9145                 if (!vmx->pml_pg)
9146                         goto uninit_vcpu;
9147         }
9148
9149         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
9150         BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
9151                      > PAGE_SIZE);
9152
9153         if (!vmx->guest_msrs)
9154                 goto free_pml;
9155
9156         vmx->loaded_vmcs = &vmx->vmcs01;
9157         vmx->loaded_vmcs->vmcs = alloc_vmcs();
9158         if (!vmx->loaded_vmcs->vmcs)
9159                 goto free_msrs;
9160         if (!vmm_exclusive)
9161                 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
9162         loaded_vmcs_init(vmx->loaded_vmcs);
9163         if (!vmm_exclusive)
9164                 kvm_cpu_vmxoff();
9165
9166         cpu = get_cpu();
9167         vmx_vcpu_load(&vmx->vcpu, cpu);
9168         vmx->vcpu.cpu = cpu;
9169         err = vmx_vcpu_setup(vmx);
9170         vmx_vcpu_put(&vmx->vcpu);
9171         put_cpu();
9172         if (err)
9173                 goto free_vmcs;
9174         if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9175                 err = alloc_apic_access_page(kvm);
9176                 if (err)
9177                         goto free_vmcs;
9178         }
9179
9180         if (enable_ept) {
9181                 if (!kvm->arch.ept_identity_map_addr)
9182                         kvm->arch.ept_identity_map_addr =
9183                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
9184                 err = init_rmode_identity_map(kvm);
9185                 if (err)
9186                         goto free_vmcs;
9187         }
9188
9189         if (nested) {
9190                 nested_vmx_setup_ctls_msrs(vmx);
9191                 vmx->nested.vpid02 = allocate_vpid();
9192         }
9193
9194         vmx->nested.posted_intr_nv = -1;
9195         vmx->nested.current_vmptr = -1ull;
9196         vmx->nested.current_vmcs12 = NULL;
9197
9198         vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
9199
9200         return &vmx->vcpu;
9201
9202 free_vmcs:
9203         free_vpid(vmx->nested.vpid02);
9204         free_loaded_vmcs(vmx->loaded_vmcs);
9205 free_msrs:
9206         kfree(vmx->guest_msrs);
9207 free_pml:
9208         vmx_destroy_pml_buffer(vmx);
9209 uninit_vcpu:
9210         kvm_vcpu_uninit(&vmx->vcpu);
9211 free_vcpu:
9212         free_vpid(vmx->vpid);
9213         kmem_cache_free(kvm_vcpu_cache, vmx);
9214         return ERR_PTR(err);
9215 }
9216
9217 static void __init vmx_check_processor_compat(void *rtn)
9218 {
9219         struct vmcs_config vmcs_conf;
9220
9221         *(int *)rtn = 0;
9222         if (setup_vmcs_config(&vmcs_conf) < 0)
9223                 *(int *)rtn = -EIO;
9224         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
9225                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
9226                                 smp_processor_id());
9227                 *(int *)rtn = -EIO;
9228         }
9229 }
9230
9231 static int get_ept_level(void)
9232 {
9233         return VMX_EPT_DEFAULT_GAW + 1;
9234 }
9235
9236 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
9237 {
9238         u8 cache;
9239         u64 ipat = 0;
9240
9241         /* For VT-d and EPT combination
9242          * 1. MMIO: always map as UC
9243          * 2. EPT with VT-d:
9244          *   a. VT-d without snooping control feature: can't guarantee the
9245          *      result, try to trust guest.
9246          *   b. VT-d with snooping control feature: snooping control feature of
9247          *      VT-d engine can guarantee the cache correctness. Just set it
9248          *      to WB to keep consistent with host. So the same as item 3.
9249          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
9250          *    consistent with host MTRR
9251          */
9252         if (is_mmio) {
9253                 cache = MTRR_TYPE_UNCACHABLE;
9254                 goto exit;
9255         }
9256
9257         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
9258                 ipat = VMX_EPT_IPAT_BIT;
9259                 cache = MTRR_TYPE_WRBACK;
9260                 goto exit;
9261         }
9262
9263         if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9264                 ipat = VMX_EPT_IPAT_BIT;
9265                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
9266                         cache = MTRR_TYPE_WRBACK;
9267                 else
9268                         cache = MTRR_TYPE_UNCACHABLE;
9269                 goto exit;
9270         }
9271
9272         cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
9273
9274 exit:
9275         return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
9276 }
9277
9278 static int vmx_get_lpage_level(void)
9279 {
9280         if (enable_ept && !cpu_has_vmx_ept_1g_page())
9281                 return PT_DIRECTORY_LEVEL;
9282         else
9283                 /* For shadow and EPT supported 1GB page */
9284                 return PT_PDPE_LEVEL;
9285 }
9286
9287 static void vmcs_set_secondary_exec_control(u32 new_ctl)
9288 {
9289         /*
9290          * These bits in the secondary execution controls field
9291          * are dynamic, the others are mostly based on the hypervisor
9292          * architecture and the guest's CPUID.  Do not touch the
9293          * dynamic bits.
9294          */
9295         u32 mask =
9296                 SECONDARY_EXEC_SHADOW_VMCS |
9297                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9298                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9299
9300         u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9301
9302         vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9303                      (new_ctl & ~mask) | (cur_ctl & mask));
9304 }
9305
9306 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9307 {
9308         struct kvm_cpuid_entry2 *best;
9309         struct vcpu_vmx *vmx = to_vmx(vcpu);
9310         u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx);
9311
9312         if (vmx_rdtscp_supported()) {
9313                 bool rdtscp_enabled = guest_cpuid_has_rdtscp(vcpu);
9314                 if (!rdtscp_enabled)
9315                         secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP;
9316
9317                 if (nested) {
9318                         if (rdtscp_enabled)
9319                                 vmx->nested.nested_vmx_secondary_ctls_high |=
9320                                         SECONDARY_EXEC_RDTSCP;
9321                         else
9322                                 vmx->nested.nested_vmx_secondary_ctls_high &=
9323                                         ~SECONDARY_EXEC_RDTSCP;
9324                 }
9325         }
9326
9327         /* Exposing INVPCID only when PCID is exposed */
9328         best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9329         if (vmx_invpcid_supported() &&
9330             (!best || !(best->ebx & bit(X86_FEATURE_INVPCID)) ||
9331             !guest_cpuid_has_pcid(vcpu))) {
9332                 secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID;
9333
9334                 if (best)
9335                         best->ebx &= ~bit(X86_FEATURE_INVPCID);
9336         }
9337
9338         if (cpu_has_secondary_exec_ctrls())
9339                 vmcs_set_secondary_exec_control(secondary_exec_ctl);
9340
9341         if (nested_vmx_allowed(vcpu))
9342                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
9343                         FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9344         else
9345                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
9346                         ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9347 }
9348
9349 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9350 {
9351         if (func == 1 && nested)
9352                 entry->ecx |= bit(X86_FEATURE_VMX);
9353 }
9354
9355 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9356                 struct x86_exception *fault)
9357 {
9358         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9359         u32 exit_reason;
9360
9361         if (fault->error_code & PFERR_RSVD_MASK)
9362                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
9363         else
9364                 exit_reason = EXIT_REASON_EPT_VIOLATION;
9365         nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
9366         vmcs12->guest_physical_address = fault->address;
9367 }
9368
9369 /* Callbacks for nested_ept_init_mmu_context: */
9370
9371 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9372 {
9373         /* return the page table to be shadowed - in our case, EPT12 */
9374         return get_vmcs12(vcpu)->ept_pointer;
9375 }
9376
9377 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
9378 {
9379         WARN_ON(mmu_is_nested(vcpu));
9380         kvm_init_shadow_ept_mmu(vcpu,
9381                         to_vmx(vcpu)->nested.nested_vmx_ept_caps &
9382                         VMX_EPT_EXECUTE_ONLY_BIT);
9383         vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
9384         vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
9385         vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9386
9387         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
9388 }
9389
9390 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9391 {
9392         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9393 }
9394
9395 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9396                                             u16 error_code)
9397 {
9398         bool inequality, bit;
9399
9400         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9401         inequality =
9402                 (error_code & vmcs12->page_fault_error_code_mask) !=
9403                  vmcs12->page_fault_error_code_match;
9404         return inequality ^ bit;
9405 }
9406
9407 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9408                 struct x86_exception *fault)
9409 {
9410         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9411
9412         WARN_ON(!is_guest_mode(vcpu));
9413
9414         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
9415                 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
9416                                   vmcs_read32(VM_EXIT_INTR_INFO),
9417                                   vmcs_readl(EXIT_QUALIFICATION));
9418         else
9419                 kvm_inject_page_fault(vcpu, fault);
9420 }
9421
9422 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
9423                                         struct vmcs12 *vmcs12)
9424 {
9425         struct vcpu_vmx *vmx = to_vmx(vcpu);
9426         int maxphyaddr = cpuid_maxphyaddr(vcpu);
9427
9428         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9429                 if (!PAGE_ALIGNED(vmcs12->apic_access_addr) ||
9430                     vmcs12->apic_access_addr >> maxphyaddr)
9431                         return false;
9432
9433                 /*
9434                  * Translate L1 physical address to host physical
9435                  * address for vmcs02. Keep the page pinned, so this
9436                  * physical address remains valid. We keep a reference
9437                  * to it so we can release it later.
9438                  */
9439                 if (vmx->nested.apic_access_page) /* shouldn't happen */
9440                         nested_release_page(vmx->nested.apic_access_page);
9441                 vmx->nested.apic_access_page =
9442                         nested_get_page(vcpu, vmcs12->apic_access_addr);
9443         }
9444
9445         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
9446                 if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr) ||
9447                     vmcs12->virtual_apic_page_addr >> maxphyaddr)
9448                         return false;
9449
9450                 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
9451                         nested_release_page(vmx->nested.virtual_apic_page);
9452                 vmx->nested.virtual_apic_page =
9453                         nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
9454
9455                 /*
9456                  * Failing the vm entry is _not_ what the processor does
9457                  * but it's basically the only possibility we have.
9458                  * We could still enter the guest if CR8 load exits are
9459                  * enabled, CR8 store exits are enabled, and virtualize APIC
9460                  * access is disabled; in this case the processor would never
9461                  * use the TPR shadow and we could simply clear the bit from
9462                  * the execution control.  But such a configuration is useless,
9463                  * so let's keep the code simple.
9464                  */
9465                 if (!vmx->nested.virtual_apic_page)
9466                         return false;
9467         }
9468
9469         if (nested_cpu_has_posted_intr(vmcs12)) {
9470                 if (!IS_ALIGNED(vmcs12->posted_intr_desc_addr, 64) ||
9471                     vmcs12->posted_intr_desc_addr >> maxphyaddr)
9472                         return false;
9473
9474                 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9475                         kunmap(vmx->nested.pi_desc_page);
9476                         nested_release_page(vmx->nested.pi_desc_page);
9477                 }
9478                 vmx->nested.pi_desc_page =
9479                         nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
9480                 if (!vmx->nested.pi_desc_page)
9481                         return false;
9482
9483                 vmx->nested.pi_desc =
9484                         (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
9485                 if (!vmx->nested.pi_desc) {
9486                         nested_release_page_clean(vmx->nested.pi_desc_page);
9487                         return false;
9488                 }
9489                 vmx->nested.pi_desc =
9490                         (struct pi_desc *)((void *)vmx->nested.pi_desc +
9491                         (unsigned long)(vmcs12->posted_intr_desc_addr &
9492                         (PAGE_SIZE - 1)));
9493         }
9494
9495         return true;
9496 }
9497
9498 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9499 {
9500         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9501         struct vcpu_vmx *vmx = to_vmx(vcpu);
9502
9503         if (vcpu->arch.virtual_tsc_khz == 0)
9504                 return;
9505
9506         /* Make sure short timeouts reliably trigger an immediate vmexit.
9507          * hrtimer_start does not guarantee this. */
9508         if (preemption_timeout <= 1) {
9509                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9510                 return;
9511         }
9512
9513         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9514         preemption_timeout *= 1000000;
9515         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9516         hrtimer_start(&vmx->nested.preemption_timer,
9517                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9518 }
9519
9520 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9521                                                 struct vmcs12 *vmcs12)
9522 {
9523         int maxphyaddr;
9524         u64 addr;
9525
9526         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9527                 return 0;
9528
9529         if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
9530                 WARN_ON(1);
9531                 return -EINVAL;
9532         }
9533         maxphyaddr = cpuid_maxphyaddr(vcpu);
9534
9535         if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
9536            ((addr + PAGE_SIZE) >> maxphyaddr))
9537                 return -EINVAL;
9538
9539         return 0;
9540 }
9541
9542 /*
9543  * Merge L0's and L1's MSR bitmap, return false to indicate that
9544  * we do not use the hardware.
9545  */
9546 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9547                                                struct vmcs12 *vmcs12)
9548 {
9549         int msr;
9550         struct page *page;
9551         unsigned long *msr_bitmap_l1;
9552         unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.msr_bitmap;
9553
9554         /* This shortcut is ok because we support only x2APIC MSRs so far. */
9555         if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
9556                 return false;
9557
9558         page = nested_get_page(vcpu, vmcs12->msr_bitmap);
9559         if (!page) {
9560                 WARN_ON(1);
9561                 return false;
9562         }
9563         msr_bitmap_l1 = (unsigned long *)kmap(page);
9564         if (!msr_bitmap_l1) {
9565                 nested_release_page_clean(page);
9566                 WARN_ON(1);
9567                 return false;
9568         }
9569
9570         memset(msr_bitmap_l0, 0xff, PAGE_SIZE);
9571
9572         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
9573                 if (nested_cpu_has_apic_reg_virt(vmcs12))
9574                         for (msr = 0x800; msr <= 0x8ff; msr++)
9575                                 nested_vmx_disable_intercept_for_msr(
9576                                         msr_bitmap_l1, msr_bitmap_l0,
9577                                         msr, MSR_TYPE_R);
9578
9579                 nested_vmx_disable_intercept_for_msr(
9580                                 msr_bitmap_l1, msr_bitmap_l0,
9581                                 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9582                                 MSR_TYPE_R | MSR_TYPE_W);
9583
9584                 if (nested_cpu_has_vid(vmcs12)) {
9585                         nested_vmx_disable_intercept_for_msr(
9586                                 msr_bitmap_l1, msr_bitmap_l0,
9587                                 APIC_BASE_MSR + (APIC_EOI >> 4),
9588                                 MSR_TYPE_W);
9589                         nested_vmx_disable_intercept_for_msr(
9590                                 msr_bitmap_l1, msr_bitmap_l0,
9591                                 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9592                                 MSR_TYPE_W);
9593                 }
9594         }
9595         kunmap(page);
9596         nested_release_page_clean(page);
9597
9598         return true;
9599 }
9600
9601 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
9602                                            struct vmcs12 *vmcs12)
9603 {
9604         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9605             !nested_cpu_has_apic_reg_virt(vmcs12) &&
9606             !nested_cpu_has_vid(vmcs12) &&
9607             !nested_cpu_has_posted_intr(vmcs12))
9608                 return 0;
9609
9610         /*
9611          * If virtualize x2apic mode is enabled,
9612          * virtualize apic access must be disabled.
9613          */
9614         if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9615             nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
9616                 return -EINVAL;
9617
9618         /*
9619          * If virtual interrupt delivery is enabled,
9620          * we must exit on external interrupts.
9621          */
9622         if (nested_cpu_has_vid(vmcs12) &&
9623            !nested_exit_on_intr(vcpu))
9624                 return -EINVAL;
9625
9626         /*
9627          * bits 15:8 should be zero in posted_intr_nv,
9628          * the descriptor address has been already checked
9629          * in nested_get_vmcs12_pages.
9630          */
9631         if (nested_cpu_has_posted_intr(vmcs12) &&
9632            (!nested_cpu_has_vid(vmcs12) ||
9633             !nested_exit_intr_ack_set(vcpu) ||
9634             vmcs12->posted_intr_nv & 0xff00))
9635                 return -EINVAL;
9636
9637         /* tpr shadow is needed by all apicv features. */
9638         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9639                 return -EINVAL;
9640
9641         return 0;
9642 }
9643
9644 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9645                                        unsigned long count_field,
9646                                        unsigned long addr_field)
9647 {
9648         int maxphyaddr;
9649         u64 count, addr;
9650
9651         if (vmcs12_read_any(vcpu, count_field, &count) ||
9652             vmcs12_read_any(vcpu, addr_field, &addr)) {
9653                 WARN_ON(1);
9654                 return -EINVAL;
9655         }
9656         if (count == 0)
9657                 return 0;
9658         maxphyaddr = cpuid_maxphyaddr(vcpu);
9659         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9660             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
9661                 pr_debug_ratelimited(
9662                         "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9663                         addr_field, maxphyaddr, count, addr);
9664                 return -EINVAL;
9665         }
9666         return 0;
9667 }
9668
9669 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9670                                                 struct vmcs12 *vmcs12)
9671 {
9672         if (vmcs12->vm_exit_msr_load_count == 0 &&
9673             vmcs12->vm_exit_msr_store_count == 0 &&
9674             vmcs12->vm_entry_msr_load_count == 0)
9675                 return 0; /* Fast path */
9676         if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
9677                                         VM_EXIT_MSR_LOAD_ADDR) ||
9678             nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
9679                                         VM_EXIT_MSR_STORE_ADDR) ||
9680             nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
9681                                         VM_ENTRY_MSR_LOAD_ADDR))
9682                 return -EINVAL;
9683         return 0;
9684 }
9685
9686 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9687                                        struct vmx_msr_entry *e)
9688 {
9689         /* x2APIC MSR accesses are not allowed */
9690         if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
9691                 return -EINVAL;
9692         if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9693             e->index == MSR_IA32_UCODE_REV)
9694                 return -EINVAL;
9695         if (e->reserved != 0)
9696                 return -EINVAL;
9697         return 0;
9698 }
9699
9700 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9701                                      struct vmx_msr_entry *e)
9702 {
9703         if (e->index == MSR_FS_BASE ||
9704             e->index == MSR_GS_BASE ||
9705             e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9706             nested_vmx_msr_check_common(vcpu, e))
9707                 return -EINVAL;
9708         return 0;
9709 }
9710
9711 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9712                                       struct vmx_msr_entry *e)
9713 {
9714         if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9715             nested_vmx_msr_check_common(vcpu, e))
9716                 return -EINVAL;
9717         return 0;
9718 }
9719
9720 /*
9721  * Load guest's/host's msr at nested entry/exit.
9722  * return 0 for success, entry index for failure.
9723  */
9724 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9725 {
9726         u32 i;
9727         struct vmx_msr_entry e;
9728         struct msr_data msr;
9729
9730         msr.host_initiated = false;
9731         for (i = 0; i < count; i++) {
9732                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9733                                         &e, sizeof(e))) {
9734                         pr_debug_ratelimited(
9735                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9736                                 __func__, i, gpa + i * sizeof(e));
9737                         goto fail;
9738                 }
9739                 if (nested_vmx_load_msr_check(vcpu, &e)) {
9740                         pr_debug_ratelimited(
9741                                 "%s check failed (%u, 0x%x, 0x%x)\n",
9742                                 __func__, i, e.index, e.reserved);
9743                         goto fail;
9744                 }
9745                 msr.index = e.index;
9746                 msr.data = e.value;
9747                 if (kvm_set_msr(vcpu, &msr)) {
9748                         pr_debug_ratelimited(
9749                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9750                                 __func__, i, e.index, e.value);
9751                         goto fail;
9752                 }
9753         }
9754         return 0;
9755 fail:
9756         return i + 1;
9757 }
9758
9759 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9760 {
9761         u32 i;
9762         struct vmx_msr_entry e;
9763
9764         for (i = 0; i < count; i++) {
9765                 struct msr_data msr_info;
9766                 if (kvm_vcpu_read_guest(vcpu,
9767                                         gpa + i * sizeof(e),
9768                                         &e, 2 * sizeof(u32))) {
9769                         pr_debug_ratelimited(
9770                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9771                                 __func__, i, gpa + i * sizeof(e));
9772                         return -EINVAL;
9773                 }
9774                 if (nested_vmx_store_msr_check(vcpu, &e)) {
9775                         pr_debug_ratelimited(
9776                                 "%s check failed (%u, 0x%x, 0x%x)\n",
9777                                 __func__, i, e.index, e.reserved);
9778                         return -EINVAL;
9779                 }
9780                 msr_info.host_initiated = false;
9781                 msr_info.index = e.index;
9782                 if (kvm_get_msr(vcpu, &msr_info)) {
9783                         pr_debug_ratelimited(
9784                                 "%s cannot read MSR (%u, 0x%x)\n",
9785                                 __func__, i, e.index);
9786                         return -EINVAL;
9787                 }
9788                 if (kvm_vcpu_write_guest(vcpu,
9789                                          gpa + i * sizeof(e) +
9790                                              offsetof(struct vmx_msr_entry, value),
9791                                          &msr_info.data, sizeof(msr_info.data))) {
9792                         pr_debug_ratelimited(
9793                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9794                                 __func__, i, e.index, msr_info.data);
9795                         return -EINVAL;
9796                 }
9797         }
9798         return 0;
9799 }
9800
9801 /*
9802  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9803  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
9804  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
9805  * guest in a way that will both be appropriate to L1's requests, and our
9806  * needs. In addition to modifying the active vmcs (which is vmcs02), this
9807  * function also has additional necessary side-effects, like setting various
9808  * vcpu->arch fields.
9809  */
9810 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9811 {
9812         struct vcpu_vmx *vmx = to_vmx(vcpu);
9813         u32 exec_control;
9814
9815         vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
9816         vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
9817         vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
9818         vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
9819         vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
9820         vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
9821         vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
9822         vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
9823         vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
9824         vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
9825         vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
9826         vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
9827         vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
9828         vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
9829         vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
9830         vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
9831         vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
9832         vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
9833         vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
9834         vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
9835         vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
9836         vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
9837         vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
9838         vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
9839         vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
9840         vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
9841         vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
9842         vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
9843         vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
9844         vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
9845         vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
9846         vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
9847         vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
9848         vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
9849         vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
9850         vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
9851
9852         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
9853                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
9854                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
9855         } else {
9856                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
9857                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
9858         }
9859         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
9860                 vmcs12->vm_entry_intr_info_field);
9861         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
9862                 vmcs12->vm_entry_exception_error_code);
9863         vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
9864                 vmcs12->vm_entry_instruction_len);
9865         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
9866                 vmcs12->guest_interruptibility_info);
9867         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
9868         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
9869         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
9870                 vmcs12->guest_pending_dbg_exceptions);
9871         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
9872         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
9873
9874         if (nested_cpu_has_xsaves(vmcs12))
9875                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
9876         vmcs_write64(VMCS_LINK_POINTER, -1ull);
9877
9878         exec_control = vmcs12->pin_based_vm_exec_control;
9879
9880         /* Preemption timer setting is only taken from vmcs01.  */
9881         exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9882         exec_control |= vmcs_config.pin_based_exec_ctrl;
9883         if (vmx->hv_deadline_tsc == -1)
9884                 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9885
9886         /* Posted interrupts setting is only taken from vmcs12.  */
9887         if (nested_cpu_has_posted_intr(vmcs12)) {
9888                 /*
9889                  * Note that we use L0's vector here and in
9890                  * vmx_deliver_nested_posted_interrupt.
9891                  */
9892                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
9893                 vmx->nested.pi_pending = false;
9894                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
9895                 vmcs_write64(POSTED_INTR_DESC_ADDR,
9896                         page_to_phys(vmx->nested.pi_desc_page) +
9897                         (unsigned long)(vmcs12->posted_intr_desc_addr &
9898                         (PAGE_SIZE - 1)));
9899         } else
9900                 exec_control &= ~PIN_BASED_POSTED_INTR;
9901
9902         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
9903
9904         vmx->nested.preemption_timer_expired = false;
9905         if (nested_cpu_has_preemption_timer(vmcs12))
9906                 vmx_start_preemption_timer(vcpu);
9907
9908         /*
9909          * Whether page-faults are trapped is determined by a combination of
9910          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
9911          * If enable_ept, L0 doesn't care about page faults and we should
9912          * set all of these to L1's desires. However, if !enable_ept, L0 does
9913          * care about (at least some) page faults, and because it is not easy
9914          * (if at all possible?) to merge L0 and L1's desires, we simply ask
9915          * to exit on each and every L2 page fault. This is done by setting
9916          * MASK=MATCH=0 and (see below) EB.PF=1.
9917          * Note that below we don't need special code to set EB.PF beyond the
9918          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
9919          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
9920          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
9921          *
9922          * A problem with this approach (when !enable_ept) is that L1 may be
9923          * injected with more page faults than it asked for. This could have
9924          * caused problems, but in practice existing hypervisors don't care.
9925          * To fix this, we will need to emulate the PFEC checking (on the L1
9926          * page tables), using walk_addr(), when injecting PFs to L1.
9927          */
9928         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
9929                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
9930         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
9931                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
9932
9933         if (cpu_has_secondary_exec_ctrls()) {
9934                 exec_control = vmx_secondary_exec_control(vmx);
9935
9936                 /* Take the following fields only from vmcs12 */
9937                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
9938                                   SECONDARY_EXEC_RDTSCP |
9939                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
9940                                   SECONDARY_EXEC_APIC_REGISTER_VIRT);
9941                 if (nested_cpu_has(vmcs12,
9942                                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
9943                         exec_control |= vmcs12->secondary_vm_exec_control;
9944
9945                 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
9946                         /*
9947                          * If translation failed, no matter: This feature asks
9948                          * to exit when accessing the given address, and if it
9949                          * can never be accessed, this feature won't do
9950                          * anything anyway.
9951                          */
9952                         if (!vmx->nested.apic_access_page)
9953                                 exec_control &=
9954                                   ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9955                         else
9956                                 vmcs_write64(APIC_ACCESS_ADDR,
9957                                   page_to_phys(vmx->nested.apic_access_page));
9958                 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9959                             cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9960                         exec_control |=
9961                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9962                         kvm_vcpu_reload_apic_access_page(vcpu);
9963                 }
9964
9965                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
9966                         vmcs_write64(EOI_EXIT_BITMAP0,
9967                                 vmcs12->eoi_exit_bitmap0);
9968                         vmcs_write64(EOI_EXIT_BITMAP1,
9969                                 vmcs12->eoi_exit_bitmap1);
9970                         vmcs_write64(EOI_EXIT_BITMAP2,
9971                                 vmcs12->eoi_exit_bitmap2);
9972                         vmcs_write64(EOI_EXIT_BITMAP3,
9973                                 vmcs12->eoi_exit_bitmap3);
9974                         vmcs_write16(GUEST_INTR_STATUS,
9975                                 vmcs12->guest_intr_status);
9976                 }
9977
9978                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
9979         }
9980
9981
9982         /*
9983          * Set host-state according to L0's settings (vmcs12 is irrelevant here)
9984          * Some constant fields are set here by vmx_set_constant_host_state().
9985          * Other fields are different per CPU, and will be set later when
9986          * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
9987          */
9988         vmx_set_constant_host_state(vmx);
9989
9990         /*
9991          * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
9992          * entry, but only if the current (host) sp changed from the value
9993          * we wrote last (vmx->host_rsp). This cache is no longer relevant
9994          * if we switch vmcs, and rather than hold a separate cache per vmcs,
9995          * here we just force the write to happen on entry.
9996          */
9997         vmx->host_rsp = 0;
9998
9999         exec_control = vmx_exec_control(vmx); /* L0's desires */
10000         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
10001         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
10002         exec_control &= ~CPU_BASED_TPR_SHADOW;
10003         exec_control |= vmcs12->cpu_based_vm_exec_control;
10004
10005         if (exec_control & CPU_BASED_TPR_SHADOW) {
10006                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
10007                                 page_to_phys(vmx->nested.virtual_apic_page));
10008                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
10009         }
10010
10011         if (cpu_has_vmx_msr_bitmap() &&
10012             exec_control & CPU_BASED_USE_MSR_BITMAPS &&
10013             nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
10014                 ; /* MSR_BITMAP will be set by following vmx_set_efer. */
10015         else
10016                 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
10017
10018         /*
10019          * Merging of IO bitmap not currently supported.
10020          * Rather, exit every time.
10021          */
10022         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
10023         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
10024
10025         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
10026
10027         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
10028          * bitwise-or of what L1 wants to trap for L2, and what we want to
10029          * trap. Note that CR0.TS also needs updating - we do this later.
10030          */
10031         update_exception_bitmap(vcpu);
10032         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
10033         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10034
10035         /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
10036          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
10037          * bits are further modified by vmx_set_efer() below.
10038          */
10039         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
10040
10041         /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
10042          * emulated by vmx_set_efer(), below.
10043          */
10044         vm_entry_controls_init(vmx, 
10045                 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
10046                         ~VM_ENTRY_IA32E_MODE) |
10047                 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
10048
10049         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
10050                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
10051                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
10052         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
10053                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
10054
10055
10056         set_cr4_guest_host_mask(vmx);
10057
10058         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
10059                 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
10060
10061         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
10062                 vmcs_write64(TSC_OFFSET,
10063                         vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
10064         else
10065                 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
10066         if (kvm_has_tsc_control)
10067                 decache_tsc_multiplier(vmx);
10068
10069         if (enable_vpid) {
10070                 /*
10071                  * There is no direct mapping between vpid02 and vpid12, the
10072                  * vpid02 is per-vCPU for L0 and reused while the value of
10073                  * vpid12 is changed w/ one invvpid during nested vmentry.
10074                  * The vpid12 is allocated by L1 for L2, so it will not
10075                  * influence global bitmap(for vpid01 and vpid02 allocation)
10076                  * even if spawn a lot of nested vCPUs.
10077                  */
10078                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
10079                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
10080                         if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
10081                                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
10082                                 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
10083                         }
10084                 } else {
10085                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
10086                         vmx_flush_tlb(vcpu);
10087                 }
10088
10089         }
10090
10091         if (nested_cpu_has_ept(vmcs12)) {
10092                 kvm_mmu_unload(vcpu);
10093                 nested_ept_init_mmu_context(vcpu);
10094         }
10095
10096         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
10097                 vcpu->arch.efer = vmcs12->guest_ia32_efer;
10098         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
10099                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10100         else
10101                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10102         /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
10103         vmx_set_efer(vcpu, vcpu->arch.efer);
10104
10105         /*
10106          * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
10107          * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
10108          * The CR0_READ_SHADOW is what L2 should have expected to read given
10109          * the specifications by L1; It's not enough to take
10110          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
10111          * have more bits than L1 expected.
10112          */
10113         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
10114         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
10115
10116         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
10117         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
10118
10119         /* shadow page tables on either EPT or shadow page tables */
10120         kvm_set_cr3(vcpu, vmcs12->guest_cr3);
10121         kvm_mmu_reset_context(vcpu);
10122
10123         if (!enable_ept)
10124                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
10125
10126         /*
10127          * L1 may access the L2's PDPTR, so save them to construct vmcs12
10128          */
10129         if (enable_ept) {
10130                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
10131                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
10132                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
10133                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
10134         }
10135
10136         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
10137         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
10138 }
10139
10140 /*
10141  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
10142  * for running an L2 nested guest.
10143  */
10144 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
10145 {
10146         struct vmcs12 *vmcs12;
10147         struct vcpu_vmx *vmx = to_vmx(vcpu);
10148         int cpu;
10149         struct loaded_vmcs *vmcs02;
10150         bool ia32e;
10151         u32 msr_entry_idx;
10152
10153         if (!nested_vmx_check_permission(vcpu) ||
10154             !nested_vmx_check_vmcs12(vcpu))
10155                 return 1;
10156
10157         skip_emulated_instruction(vcpu);
10158         vmcs12 = get_vmcs12(vcpu);
10159
10160         if (enable_shadow_vmcs)
10161                 copy_shadow_to_vmcs12(vmx);
10162
10163         /*
10164          * The nested entry process starts with enforcing various prerequisites
10165          * on vmcs12 as required by the Intel SDM, and act appropriately when
10166          * they fail: As the SDM explains, some conditions should cause the
10167          * instruction to fail, while others will cause the instruction to seem
10168          * to succeed, but return an EXIT_REASON_INVALID_STATE.
10169          * To speed up the normal (success) code path, we should avoid checking
10170          * for misconfigurations which will anyway be caught by the processor
10171          * when using the merged vmcs02.
10172          */
10173         if (vmcs12->launch_state == launch) {
10174                 nested_vmx_failValid(vcpu,
10175                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
10176                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
10177                 return 1;
10178         }
10179
10180         if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
10181             vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
10182                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10183                 return 1;
10184         }
10185
10186         if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
10187                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10188                 return 1;
10189         }
10190
10191         if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) {
10192                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10193                 return 1;
10194         }
10195
10196         if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) {
10197                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10198                 return 1;
10199         }
10200
10201         if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) {
10202                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10203                 return 1;
10204         }
10205
10206         if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
10207                                 vmx->nested.nested_vmx_true_procbased_ctls_low,
10208                                 vmx->nested.nested_vmx_procbased_ctls_high) ||
10209             !vmx_control_verify(vmcs12->secondary_vm_exec_control,
10210                                 vmx->nested.nested_vmx_secondary_ctls_low,
10211                                 vmx->nested.nested_vmx_secondary_ctls_high) ||
10212             !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
10213                                 vmx->nested.nested_vmx_pinbased_ctls_low,
10214                                 vmx->nested.nested_vmx_pinbased_ctls_high) ||
10215             !vmx_control_verify(vmcs12->vm_exit_controls,
10216                                 vmx->nested.nested_vmx_true_exit_ctls_low,
10217                                 vmx->nested.nested_vmx_exit_ctls_high) ||
10218             !vmx_control_verify(vmcs12->vm_entry_controls,
10219                                 vmx->nested.nested_vmx_true_entry_ctls_low,
10220                                 vmx->nested.nested_vmx_entry_ctls_high))
10221         {
10222                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10223                 return 1;
10224         }
10225
10226         if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
10227             ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
10228                 nested_vmx_failValid(vcpu,
10229                         VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
10230                 return 1;
10231         }
10232
10233         if (!nested_cr0_valid(vcpu, vmcs12->guest_cr0) ||
10234             ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
10235                 nested_vmx_entry_failure(vcpu, vmcs12,
10236                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
10237                 return 1;
10238         }
10239         if (vmcs12->vmcs_link_pointer != -1ull) {
10240                 nested_vmx_entry_failure(vcpu, vmcs12,
10241                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
10242                 return 1;
10243         }
10244
10245         /*
10246          * If the load IA32_EFER VM-entry control is 1, the following checks
10247          * are performed on the field for the IA32_EFER MSR:
10248          * - Bits reserved in the IA32_EFER MSR must be 0.
10249          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10250          *   the IA-32e mode guest VM-exit control. It must also be identical
10251          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10252          *   CR0.PG) is 1.
10253          */
10254         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
10255                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10256                 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10257                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10258                     ((vmcs12->guest_cr0 & X86_CR0_PG) &&
10259                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
10260                         nested_vmx_entry_failure(vcpu, vmcs12,
10261                                 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
10262                         return 1;
10263                 }
10264         }
10265
10266         /*
10267          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10268          * IA32_EFER MSR must be 0 in the field for that register. In addition,
10269          * the values of the LMA and LME bits in the field must each be that of
10270          * the host address-space size VM-exit control.
10271          */
10272         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10273                 ia32e = (vmcs12->vm_exit_controls &
10274                          VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10275                 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10276                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
10277                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
10278                         nested_vmx_entry_failure(vcpu, vmcs12,
10279                                 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
10280                         return 1;
10281                 }
10282         }
10283
10284         /*
10285          * We're finally done with prerequisite checking, and can start with
10286          * the nested entry.
10287          */
10288
10289         vmcs02 = nested_get_current_vmcs02(vmx);
10290         if (!vmcs02)
10291                 return -ENOMEM;
10292
10293         enter_guest_mode(vcpu);
10294
10295         vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
10296
10297         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10298                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10299
10300         cpu = get_cpu();
10301         vmx->loaded_vmcs = vmcs02;
10302         vmx_vcpu_put(vcpu);
10303         vmx_vcpu_load(vcpu, cpu);
10304         vcpu->cpu = cpu;
10305         put_cpu();
10306
10307         vmx_segment_cache_clear(vmx);
10308
10309         prepare_vmcs02(vcpu, vmcs12);
10310
10311         msr_entry_idx = nested_vmx_load_msr(vcpu,
10312                                             vmcs12->vm_entry_msr_load_addr,
10313                                             vmcs12->vm_entry_msr_load_count);
10314         if (msr_entry_idx) {
10315                 leave_guest_mode(vcpu);
10316                 vmx_load_vmcs01(vcpu);
10317                 nested_vmx_entry_failure(vcpu, vmcs12,
10318                                 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10319                 return 1;
10320         }
10321
10322         vmcs12->launch_state = 1;
10323
10324         if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
10325                 return kvm_vcpu_halt(vcpu);
10326
10327         vmx->nested.nested_run_pending = 1;
10328
10329         /*
10330          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10331          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10332          * returned as far as L1 is concerned. It will only return (and set
10333          * the success flag) when L2 exits (see nested_vmx_vmexit()).
10334          */
10335         return 1;
10336 }
10337
10338 /*
10339  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10340  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10341  * This function returns the new value we should put in vmcs12.guest_cr0.
10342  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10343  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10344  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10345  *     didn't trap the bit, because if L1 did, so would L0).
10346  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10347  *     been modified by L2, and L1 knows it. So just leave the old value of
10348  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10349  *     isn't relevant, because if L0 traps this bit it can set it to anything.
10350  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10351  *     changed these bits, and therefore they need to be updated, but L0
10352  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10353  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10354  */
10355 static inline unsigned long
10356 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10357 {
10358         return
10359         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
10360         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10361         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10362                         vcpu->arch.cr0_guest_owned_bits));
10363 }
10364
10365 static inline unsigned long
10366 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10367 {
10368         return
10369         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10370         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10371         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10372                         vcpu->arch.cr4_guest_owned_bits));
10373 }
10374
10375 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10376                                        struct vmcs12 *vmcs12)
10377 {
10378         u32 idt_vectoring;
10379         unsigned int nr;
10380
10381         if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
10382                 nr = vcpu->arch.exception.nr;
10383                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10384
10385                 if (kvm_exception_is_soft(nr)) {
10386                         vmcs12->vm_exit_instruction_len =
10387                                 vcpu->arch.event_exit_inst_len;
10388                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
10389                 } else
10390                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
10391
10392                 if (vcpu->arch.exception.has_error_code) {
10393                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
10394                         vmcs12->idt_vectoring_error_code =
10395                                 vcpu->arch.exception.error_code;
10396                 }
10397
10398                 vmcs12->idt_vectoring_info_field = idt_vectoring;
10399         } else if (vcpu->arch.nmi_injected) {
10400                 vmcs12->idt_vectoring_info_field =
10401                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
10402         } else if (vcpu->arch.interrupt.pending) {
10403                 nr = vcpu->arch.interrupt.nr;
10404                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10405
10406                 if (vcpu->arch.interrupt.soft) {
10407                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
10408                         vmcs12->vm_entry_instruction_len =
10409                                 vcpu->arch.event_exit_inst_len;
10410                 } else
10411                         idt_vectoring |= INTR_TYPE_EXT_INTR;
10412
10413                 vmcs12->idt_vectoring_info_field = idt_vectoring;
10414         }
10415 }
10416
10417 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
10418 {
10419         struct vcpu_vmx *vmx = to_vmx(vcpu);
10420
10421         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
10422             vmx->nested.preemption_timer_expired) {
10423                 if (vmx->nested.nested_run_pending)
10424                         return -EBUSY;
10425                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
10426                 return 0;
10427         }
10428
10429         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
10430                 if (vmx->nested.nested_run_pending ||
10431                     vcpu->arch.interrupt.pending)
10432                         return -EBUSY;
10433                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10434                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
10435                                   INTR_INFO_VALID_MASK, 0);
10436                 /*
10437                  * The NMI-triggered VM exit counts as injection:
10438                  * clear this one and block further NMIs.
10439                  */
10440                 vcpu->arch.nmi_pending = 0;
10441                 vmx_set_nmi_mask(vcpu, true);
10442                 return 0;
10443         }
10444
10445         if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
10446             nested_exit_on_intr(vcpu)) {
10447                 if (vmx->nested.nested_run_pending)
10448                         return -EBUSY;
10449                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
10450                 return 0;
10451         }
10452
10453         return vmx_complete_nested_posted_interrupt(vcpu);
10454 }
10455
10456 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
10457 {
10458         ktime_t remaining =
10459                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
10460         u64 value;
10461
10462         if (ktime_to_ns(remaining) <= 0)
10463                 return 0;
10464
10465         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
10466         do_div(value, 1000000);
10467         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10468 }
10469
10470 /*
10471  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
10472  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
10473  * and this function updates it to reflect the changes to the guest state while
10474  * L2 was running (and perhaps made some exits which were handled directly by L0
10475  * without going back to L1), and to reflect the exit reason.
10476  * Note that we do not have to copy here all VMCS fields, just those that
10477  * could have changed by the L2 guest or the exit - i.e., the guest-state and
10478  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
10479  * which already writes to vmcs12 directly.
10480  */
10481 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10482                            u32 exit_reason, u32 exit_intr_info,
10483                            unsigned long exit_qualification)
10484 {
10485         /* update guest state fields: */
10486         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
10487         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
10488
10489         vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
10490         vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
10491         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
10492
10493         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
10494         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
10495         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
10496         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
10497         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
10498         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
10499         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
10500         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
10501         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
10502         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
10503         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
10504         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
10505         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
10506         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
10507         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
10508         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
10509         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
10510         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
10511         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
10512         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
10513         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
10514         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
10515         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
10516         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
10517         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
10518         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
10519         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
10520         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
10521         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
10522         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
10523         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
10524         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
10525         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
10526         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
10527         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
10528         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
10529
10530         vmcs12->guest_interruptibility_info =
10531                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
10532         vmcs12->guest_pending_dbg_exceptions =
10533                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
10534         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10535                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
10536         else
10537                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
10538
10539         if (nested_cpu_has_preemption_timer(vmcs12)) {
10540                 if (vmcs12->vm_exit_controls &
10541                     VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
10542                         vmcs12->vmx_preemption_timer_value =
10543                                 vmx_get_preemption_timer_value(vcpu);
10544                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
10545         }
10546
10547         /*
10548          * In some cases (usually, nested EPT), L2 is allowed to change its
10549          * own CR3 without exiting. If it has changed it, we must keep it.
10550          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
10551          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
10552          *
10553          * Additionally, restore L2's PDPTR to vmcs12.
10554          */
10555         if (enable_ept) {
10556                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
10557                 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
10558                 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
10559                 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
10560                 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
10561         }
10562
10563         if (nested_cpu_has_ept(vmcs12))
10564                 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
10565
10566         if (nested_cpu_has_vid(vmcs12))
10567                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
10568
10569         vmcs12->vm_entry_controls =
10570                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
10571                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
10572
10573         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
10574                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
10575                 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10576         }
10577
10578         /* TODO: These cannot have changed unless we have MSR bitmaps and
10579          * the relevant bit asks not to trap the change */
10580         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
10581                 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10582         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
10583                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
10584         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
10585         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
10586         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
10587         if (kvm_mpx_supported())
10588                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
10589         if (nested_cpu_has_xsaves(vmcs12))
10590                 vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
10591
10592         /* update exit information fields: */
10593
10594         vmcs12->vm_exit_reason = exit_reason;
10595         vmcs12->exit_qualification = exit_qualification;
10596
10597         vmcs12->vm_exit_intr_info = exit_intr_info;
10598         if ((vmcs12->vm_exit_intr_info &
10599              (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
10600             (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
10601                 vmcs12->vm_exit_intr_error_code =
10602                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
10603         vmcs12->idt_vectoring_info_field = 0;
10604         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
10605         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
10606
10607         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
10608                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
10609                  * instead of reading the real value. */
10610                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
10611
10612                 /*
10613                  * Transfer the event that L0 or L1 may wanted to inject into
10614                  * L2 to IDT_VECTORING_INFO_FIELD.
10615                  */
10616                 vmcs12_save_pending_event(vcpu, vmcs12);
10617         }
10618
10619         /*
10620          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
10621          * preserved above and would only end up incorrectly in L1.
10622          */
10623         vcpu->arch.nmi_injected = false;
10624         kvm_clear_exception_queue(vcpu);
10625         kvm_clear_interrupt_queue(vcpu);
10626 }
10627
10628 /*
10629  * A part of what we need to when the nested L2 guest exits and we want to
10630  * run its L1 parent, is to reset L1's guest state to the host state specified
10631  * in vmcs12.
10632  * This function is to be called not only on normal nested exit, but also on
10633  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10634  * Failures During or After Loading Guest State").
10635  * This function should be called when the active VMCS is L1's (vmcs01).
10636  */
10637 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
10638                                    struct vmcs12 *vmcs12)
10639 {
10640         struct kvm_segment seg;
10641
10642         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
10643                 vcpu->arch.efer = vmcs12->host_ia32_efer;
10644         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10645                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10646         else
10647                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10648         vmx_set_efer(vcpu, vcpu->arch.efer);
10649
10650         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10651         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
10652         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
10653         /*
10654          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10655          * actually changed, because it depends on the current state of
10656          * fpu_active (which may have changed).
10657          * Note that vmx_set_cr0 refers to efer set above.
10658          */
10659         vmx_set_cr0(vcpu, vmcs12->host_cr0);
10660         /*
10661          * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
10662          * to apply the same changes to L1's vmcs. We just set cr0 correctly,
10663          * but we also need to update cr0_guest_host_mask and exception_bitmap.
10664          */
10665         update_exception_bitmap(vcpu);
10666         vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
10667         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10668
10669         /*
10670          * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
10671          * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
10672          */
10673         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10674         kvm_set_cr4(vcpu, vmcs12->host_cr4);
10675
10676         nested_ept_uninit_mmu_context(vcpu);
10677
10678         kvm_set_cr3(vcpu, vmcs12->host_cr3);
10679         kvm_mmu_reset_context(vcpu);
10680
10681         if (!enable_ept)
10682                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
10683
10684         if (enable_vpid) {
10685                 /*
10686                  * Trivially support vpid by letting L2s share their parent
10687                  * L1's vpid. TODO: move to a more elaborate solution, giving
10688                  * each L2 its own vpid and exposing the vpid feature to L1.
10689                  */
10690                 vmx_flush_tlb(vcpu);
10691         }
10692
10693
10694         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
10695         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
10696         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
10697         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
10698         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
10699
10700         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
10701         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
10702                 vmcs_write64(GUEST_BNDCFGS, 0);
10703
10704         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
10705                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
10706                 vcpu->arch.pat = vmcs12->host_ia32_pat;
10707         }
10708         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10709                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
10710                         vmcs12->host_ia32_perf_global_ctrl);
10711
10712         /* Set L1 segment info according to Intel SDM
10713             27.5.2 Loading Host Segment and Descriptor-Table Registers */
10714         seg = (struct kvm_segment) {
10715                 .base = 0,
10716                 .limit = 0xFFFFFFFF,
10717                 .selector = vmcs12->host_cs_selector,
10718                 .type = 11,
10719                 .present = 1,
10720                 .s = 1,
10721                 .g = 1
10722         };
10723         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10724                 seg.l = 1;
10725         else
10726                 seg.db = 1;
10727         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
10728         seg = (struct kvm_segment) {
10729                 .base = 0,
10730                 .limit = 0xFFFFFFFF,
10731                 .type = 3,
10732                 .present = 1,
10733                 .s = 1,
10734                 .db = 1,
10735                 .g = 1
10736         };
10737         seg.selector = vmcs12->host_ds_selector;
10738         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
10739         seg.selector = vmcs12->host_es_selector;
10740         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
10741         seg.selector = vmcs12->host_ss_selector;
10742         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
10743         seg.selector = vmcs12->host_fs_selector;
10744         seg.base = vmcs12->host_fs_base;
10745         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
10746         seg.selector = vmcs12->host_gs_selector;
10747         seg.base = vmcs12->host_gs_base;
10748         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
10749         seg = (struct kvm_segment) {
10750                 .base = vmcs12->host_tr_base,
10751                 .limit = 0x67,
10752                 .selector = vmcs12->host_tr_selector,
10753                 .type = 11,
10754                 .present = 1
10755         };
10756         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
10757
10758         kvm_set_dr(vcpu, 7, 0x400);
10759         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
10760
10761         if (cpu_has_vmx_msr_bitmap())
10762                 vmx_set_msr_bitmap(vcpu);
10763
10764         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
10765                                 vmcs12->vm_exit_msr_load_count))
10766                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
10767 }
10768
10769 /*
10770  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
10771  * and modify vmcs12 to make it see what it would expect to see there if
10772  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
10773  */
10774 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
10775                               u32 exit_intr_info,
10776                               unsigned long exit_qualification)
10777 {
10778         struct vcpu_vmx *vmx = to_vmx(vcpu);
10779         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10780
10781         /* trying to cancel vmlaunch/vmresume is a bug */
10782         WARN_ON_ONCE(vmx->nested.nested_run_pending);
10783
10784         leave_guest_mode(vcpu);
10785         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
10786                        exit_qualification);
10787
10788         if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
10789                                  vmcs12->vm_exit_msr_store_count))
10790                 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
10791
10792         vmx_load_vmcs01(vcpu);
10793
10794         if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
10795             && nested_exit_intr_ack_set(vcpu)) {
10796                 int irq = kvm_cpu_get_interrupt(vcpu);
10797                 WARN_ON(irq < 0);
10798                 vmcs12->vm_exit_intr_info = irq |
10799                         INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
10800         }
10801
10802         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
10803                                        vmcs12->exit_qualification,
10804                                        vmcs12->idt_vectoring_info_field,
10805                                        vmcs12->vm_exit_intr_info,
10806                                        vmcs12->vm_exit_intr_error_code,
10807                                        KVM_ISA_VMX);
10808
10809         vm_entry_controls_reset_shadow(vmx);
10810         vm_exit_controls_reset_shadow(vmx);
10811         vmx_segment_cache_clear(vmx);
10812
10813         /* if no vmcs02 cache requested, remove the one we used */
10814         if (VMCS02_POOL_SIZE == 0)
10815                 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
10816
10817         load_vmcs12_host_state(vcpu, vmcs12);
10818
10819         /* Update any VMCS fields that might have changed while L2 ran */
10820         vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
10821         if (vmx->hv_deadline_tsc == -1)
10822                 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
10823                                 PIN_BASED_VMX_PREEMPTION_TIMER);
10824         else
10825                 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
10826                               PIN_BASED_VMX_PREEMPTION_TIMER);
10827         if (kvm_has_tsc_control)
10828                 decache_tsc_multiplier(vmx);
10829
10830         if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
10831                 vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
10832                 vmx_set_virtual_x2apic_mode(vcpu,
10833                                 vcpu->arch.apic_base & X2APIC_ENABLE);
10834         }
10835
10836         /* This is needed for same reason as it was needed in prepare_vmcs02 */
10837         vmx->host_rsp = 0;
10838
10839         /* Unpin physical memory we referred to in vmcs02 */
10840         if (vmx->nested.apic_access_page) {
10841                 nested_release_page(vmx->nested.apic_access_page);
10842                 vmx->nested.apic_access_page = NULL;
10843         }
10844         if (vmx->nested.virtual_apic_page) {
10845                 nested_release_page(vmx->nested.virtual_apic_page);
10846                 vmx->nested.virtual_apic_page = NULL;
10847         }
10848         if (vmx->nested.pi_desc_page) {
10849                 kunmap(vmx->nested.pi_desc_page);
10850                 nested_release_page(vmx->nested.pi_desc_page);
10851                 vmx->nested.pi_desc_page = NULL;
10852                 vmx->nested.pi_desc = NULL;
10853         }
10854
10855         /*
10856          * We are now running in L2, mmu_notifier will force to reload the
10857          * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
10858          */
10859         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
10860
10861         /*
10862          * Exiting from L2 to L1, we're now back to L1 which thinks it just
10863          * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
10864          * success or failure flag accordingly.
10865          */
10866         if (unlikely(vmx->fail)) {
10867                 vmx->fail = 0;
10868                 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
10869         } else
10870                 nested_vmx_succeed(vcpu);
10871         if (enable_shadow_vmcs)
10872                 vmx->nested.sync_shadow_vmcs = true;
10873
10874         /* in case we halted in L2 */
10875         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10876 }
10877
10878 /*
10879  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
10880  */
10881 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
10882 {
10883         if (is_guest_mode(vcpu))
10884                 nested_vmx_vmexit(vcpu, -1, 0, 0);
10885         free_nested(to_vmx(vcpu));
10886 }
10887
10888 /*
10889  * L1's failure to enter L2 is a subset of a normal exit, as explained in
10890  * 23.7 "VM-entry failures during or after loading guest state" (this also
10891  * lists the acceptable exit-reason and exit-qualification parameters).
10892  * It should only be called before L2 actually succeeded to run, and when
10893  * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
10894  */
10895 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
10896                         struct vmcs12 *vmcs12,
10897                         u32 reason, unsigned long qualification)
10898 {
10899         load_vmcs12_host_state(vcpu, vmcs12);
10900         vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
10901         vmcs12->exit_qualification = qualification;
10902         nested_vmx_succeed(vcpu);
10903         if (enable_shadow_vmcs)
10904                 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
10905 }
10906
10907 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
10908                                struct x86_instruction_info *info,
10909                                enum x86_intercept_stage stage)
10910 {
10911         return X86EMUL_CONTINUE;
10912 }
10913
10914 #ifdef CONFIG_X86_64
10915 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
10916 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
10917                                   u64 divisor, u64 *result)
10918 {
10919         u64 low = a << shift, high = a >> (64 - shift);
10920
10921         /* To avoid the overflow on divq */
10922         if (high >= divisor)
10923                 return 1;
10924
10925         /* Low hold the result, high hold rem which is discarded */
10926         asm("divq %2\n\t" : "=a" (low), "=d" (high) :
10927             "rm" (divisor), "0" (low), "1" (high));
10928         *result = low;
10929
10930         return 0;
10931 }
10932
10933 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
10934 {
10935         struct vcpu_vmx *vmx = to_vmx(vcpu);
10936         u64 tscl = rdtsc();
10937         u64 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
10938         u64 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
10939
10940         /* Convert to host delta tsc if tsc scaling is enabled */
10941         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
10942                         u64_shl_div_u64(delta_tsc,
10943                                 kvm_tsc_scaling_ratio_frac_bits,
10944                                 vcpu->arch.tsc_scaling_ratio,
10945                                 &delta_tsc))
10946                 return -ERANGE;
10947
10948         /*
10949          * If the delta tsc can't fit in the 32 bit after the multi shift,
10950          * we can't use the preemption timer.
10951          * It's possible that it fits on later vmentries, but checking
10952          * on every vmentry is costly so we just use an hrtimer.
10953          */
10954         if (delta_tsc >> (cpu_preemption_timer_multi + 32))
10955                 return -ERANGE;
10956
10957         vmx->hv_deadline_tsc = tscl + delta_tsc;
10958         vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
10959                         PIN_BASED_VMX_PREEMPTION_TIMER);
10960         return 0;
10961 }
10962
10963 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
10964 {
10965         struct vcpu_vmx *vmx = to_vmx(vcpu);
10966         vmx->hv_deadline_tsc = -1;
10967         vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
10968                         PIN_BASED_VMX_PREEMPTION_TIMER);
10969 }
10970 #endif
10971
10972 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
10973 {
10974         if (ple_gap)
10975                 shrink_ple_window(vcpu);
10976 }
10977
10978 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
10979                                      struct kvm_memory_slot *slot)
10980 {
10981         kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
10982         kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
10983 }
10984
10985 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
10986                                        struct kvm_memory_slot *slot)
10987 {
10988         kvm_mmu_slot_set_dirty(kvm, slot);
10989 }
10990
10991 static void vmx_flush_log_dirty(struct kvm *kvm)
10992 {
10993         kvm_flush_pml_buffers(kvm);
10994 }
10995
10996 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
10997                                            struct kvm_memory_slot *memslot,
10998                                            gfn_t offset, unsigned long mask)
10999 {
11000         kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
11001 }
11002
11003 /*
11004  * This routine does the following things for vCPU which is going
11005  * to be blocked if VT-d PI is enabled.
11006  * - Store the vCPU to the wakeup list, so when interrupts happen
11007  *   we can find the right vCPU to wake up.
11008  * - Change the Posted-interrupt descriptor as below:
11009  *      'NDST' <-- vcpu->pre_pcpu
11010  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
11011  * - If 'ON' is set during this process, which means at least one
11012  *   interrupt is posted for this vCPU, we cannot block it, in
11013  *   this case, return 1, otherwise, return 0.
11014  *
11015  */
11016 static int pi_pre_block(struct kvm_vcpu *vcpu)
11017 {
11018         unsigned long flags;
11019         unsigned int dest;
11020         struct pi_desc old, new;
11021         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11022
11023         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
11024                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
11025                 !kvm_vcpu_apicv_active(vcpu))
11026                 return 0;
11027
11028         vcpu->pre_pcpu = vcpu->cpu;
11029         spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11030                           vcpu->pre_pcpu), flags);
11031         list_add_tail(&vcpu->blocked_vcpu_list,
11032                       &per_cpu(blocked_vcpu_on_cpu,
11033                       vcpu->pre_pcpu));
11034         spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
11035                                vcpu->pre_pcpu), flags);
11036
11037         do {
11038                 old.control = new.control = pi_desc->control;
11039
11040                 /*
11041                  * We should not block the vCPU if
11042                  * an interrupt is posted for it.
11043                  */
11044                 if (pi_test_on(pi_desc) == 1) {
11045                         spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11046                                           vcpu->pre_pcpu), flags);
11047                         list_del(&vcpu->blocked_vcpu_list);
11048                         spin_unlock_irqrestore(
11049                                         &per_cpu(blocked_vcpu_on_cpu_lock,
11050                                         vcpu->pre_pcpu), flags);
11051                         vcpu->pre_pcpu = -1;
11052
11053                         return 1;
11054                 }
11055
11056                 WARN((pi_desc->sn == 1),
11057                      "Warning: SN field of posted-interrupts "
11058                      "is set before blocking\n");
11059
11060                 /*
11061                  * Since vCPU can be preempted during this process,
11062                  * vcpu->cpu could be different with pre_pcpu, we
11063                  * need to set pre_pcpu as the destination of wakeup
11064                  * notification event, then we can find the right vCPU
11065                  * to wakeup in wakeup handler if interrupts happen
11066                  * when the vCPU is in blocked state.
11067                  */
11068                 dest = cpu_physical_id(vcpu->pre_pcpu);
11069
11070                 if (x2apic_enabled())
11071                         new.ndst = dest;
11072                 else
11073                         new.ndst = (dest << 8) & 0xFF00;
11074
11075                 /* set 'NV' to 'wakeup vector' */
11076                 new.nv = POSTED_INTR_WAKEUP_VECTOR;
11077         } while (cmpxchg(&pi_desc->control, old.control,
11078                         new.control) != old.control);
11079
11080         return 0;
11081 }
11082
11083 static int vmx_pre_block(struct kvm_vcpu *vcpu)
11084 {
11085         if (pi_pre_block(vcpu))
11086                 return 1;
11087
11088         if (kvm_lapic_hv_timer_in_use(vcpu))
11089                 kvm_lapic_switch_to_sw_timer(vcpu);
11090
11091         return 0;
11092 }
11093
11094 static void pi_post_block(struct kvm_vcpu *vcpu)
11095 {
11096         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11097         struct pi_desc old, new;
11098         unsigned int dest;
11099         unsigned long flags;
11100
11101         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
11102                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
11103                 !kvm_vcpu_apicv_active(vcpu))
11104                 return;
11105
11106         do {
11107                 old.control = new.control = pi_desc->control;
11108
11109                 dest = cpu_physical_id(vcpu->cpu);
11110
11111                 if (x2apic_enabled())
11112                         new.ndst = dest;
11113                 else
11114                         new.ndst = (dest << 8) & 0xFF00;
11115
11116                 /* Allow posting non-urgent interrupts */
11117                 new.sn = 0;
11118
11119                 /* set 'NV' to 'notification vector' */
11120                 new.nv = POSTED_INTR_VECTOR;
11121         } while (cmpxchg(&pi_desc->control, old.control,
11122                         new.control) != old.control);
11123
11124         if(vcpu->pre_pcpu != -1) {
11125                 spin_lock_irqsave(
11126                         &per_cpu(blocked_vcpu_on_cpu_lock,
11127                         vcpu->pre_pcpu), flags);
11128                 list_del(&vcpu->blocked_vcpu_list);
11129                 spin_unlock_irqrestore(
11130                         &per_cpu(blocked_vcpu_on_cpu_lock,
11131                         vcpu->pre_pcpu), flags);
11132                 vcpu->pre_pcpu = -1;
11133         }
11134 }
11135
11136 static void vmx_post_block(struct kvm_vcpu *vcpu)
11137 {
11138         if (kvm_x86_ops->set_hv_timer)
11139                 kvm_lapic_switch_to_hv_timer(vcpu);
11140
11141         pi_post_block(vcpu);
11142 }
11143
11144 /*
11145  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
11146  *
11147  * @kvm: kvm
11148  * @host_irq: host irq of the interrupt
11149  * @guest_irq: gsi of the interrupt
11150  * @set: set or unset PI
11151  * returns 0 on success, < 0 on failure
11152  */
11153 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
11154                               uint32_t guest_irq, bool set)
11155 {
11156         struct kvm_kernel_irq_routing_entry *e;
11157         struct kvm_irq_routing_table *irq_rt;
11158         struct kvm_lapic_irq irq;
11159         struct kvm_vcpu *vcpu;
11160         struct vcpu_data vcpu_info;
11161         int idx, ret = -EINVAL;
11162
11163         if (!kvm_arch_has_assigned_device(kvm) ||
11164                 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11165                 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
11166                 return 0;
11167
11168         idx = srcu_read_lock(&kvm->irq_srcu);
11169         irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
11170         BUG_ON(guest_irq >= irq_rt->nr_rt_entries);
11171
11172         hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
11173                 if (e->type != KVM_IRQ_ROUTING_MSI)
11174                         continue;
11175                 /*
11176                  * VT-d PI cannot support posting multicast/broadcast
11177                  * interrupts to a vCPU, we still use interrupt remapping
11178                  * for these kind of interrupts.
11179                  *
11180                  * For lowest-priority interrupts, we only support
11181                  * those with single CPU as the destination, e.g. user
11182                  * configures the interrupts via /proc/irq or uses
11183                  * irqbalance to make the interrupts single-CPU.
11184                  *
11185                  * We will support full lowest-priority interrupt later.
11186                  */
11187
11188                 kvm_set_msi_irq(kvm, e, &irq);
11189                 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
11190                         /*
11191                          * Make sure the IRTE is in remapped mode if
11192                          * we don't handle it in posted mode.
11193                          */
11194                         ret = irq_set_vcpu_affinity(host_irq, NULL);
11195                         if (ret < 0) {
11196                                 printk(KERN_INFO
11197                                    "failed to back to remapped mode, irq: %u\n",
11198                                    host_irq);
11199                                 goto out;
11200                         }
11201
11202                         continue;
11203                 }
11204
11205                 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
11206                 vcpu_info.vector = irq.vector;
11207
11208                 trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
11209                                 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
11210
11211                 if (set)
11212                         ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
11213                 else {
11214                         /* suppress notification event before unposting */
11215                         pi_set_sn(vcpu_to_pi_desc(vcpu));
11216                         ret = irq_set_vcpu_affinity(host_irq, NULL);
11217                         pi_clear_sn(vcpu_to_pi_desc(vcpu));
11218                 }
11219
11220                 if (ret < 0) {
11221                         printk(KERN_INFO "%s: failed to update PI IRTE\n",
11222                                         __func__);
11223                         goto out;
11224                 }
11225         }
11226
11227         ret = 0;
11228 out:
11229         srcu_read_unlock(&kvm->irq_srcu, idx);
11230         return ret;
11231 }
11232
11233 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
11234 {
11235         if (vcpu->arch.mcg_cap & MCG_LMCE_P)
11236                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
11237                         FEATURE_CONTROL_LMCE;
11238         else
11239                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
11240                         ~FEATURE_CONTROL_LMCE;
11241 }
11242
11243 static struct kvm_x86_ops vmx_x86_ops = {
11244         .cpu_has_kvm_support = cpu_has_kvm_support,
11245         .disabled_by_bios = vmx_disabled_by_bios,
11246         .hardware_setup = hardware_setup,
11247         .hardware_unsetup = hardware_unsetup,
11248         .check_processor_compatibility = vmx_check_processor_compat,
11249         .hardware_enable = hardware_enable,
11250         .hardware_disable = hardware_disable,
11251         .cpu_has_accelerated_tpr = report_flexpriority,
11252         .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
11253
11254         .vcpu_create = vmx_create_vcpu,
11255         .vcpu_free = vmx_free_vcpu,
11256         .vcpu_reset = vmx_vcpu_reset,
11257
11258         .prepare_guest_switch = vmx_save_host_state,
11259         .vcpu_load = vmx_vcpu_load,
11260         .vcpu_put = vmx_vcpu_put,
11261
11262         .update_bp_intercept = update_exception_bitmap,
11263         .get_msr = vmx_get_msr,
11264         .set_msr = vmx_set_msr,
11265         .get_segment_base = vmx_get_segment_base,
11266         .get_segment = vmx_get_segment,
11267         .set_segment = vmx_set_segment,
11268         .get_cpl = vmx_get_cpl,
11269         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
11270         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
11271         .decache_cr3 = vmx_decache_cr3,
11272         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
11273         .set_cr0 = vmx_set_cr0,
11274         .set_cr3 = vmx_set_cr3,
11275         .set_cr4 = vmx_set_cr4,
11276         .set_efer = vmx_set_efer,
11277         .get_idt = vmx_get_idt,
11278         .set_idt = vmx_set_idt,
11279         .get_gdt = vmx_get_gdt,
11280         .set_gdt = vmx_set_gdt,
11281         .get_dr6 = vmx_get_dr6,
11282         .set_dr6 = vmx_set_dr6,
11283         .set_dr7 = vmx_set_dr7,
11284         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
11285         .cache_reg = vmx_cache_reg,
11286         .get_rflags = vmx_get_rflags,
11287         .set_rflags = vmx_set_rflags,
11288
11289         .get_pkru = vmx_get_pkru,
11290
11291         .fpu_activate = vmx_fpu_activate,
11292         .fpu_deactivate = vmx_fpu_deactivate,
11293
11294         .tlb_flush = vmx_flush_tlb,
11295
11296         .run = vmx_vcpu_run,
11297         .handle_exit = vmx_handle_exit,
11298         .skip_emulated_instruction = skip_emulated_instruction,
11299         .set_interrupt_shadow = vmx_set_interrupt_shadow,
11300         .get_interrupt_shadow = vmx_get_interrupt_shadow,
11301         .patch_hypercall = vmx_patch_hypercall,
11302         .set_irq = vmx_inject_irq,
11303         .set_nmi = vmx_inject_nmi,
11304         .queue_exception = vmx_queue_exception,
11305         .cancel_injection = vmx_cancel_injection,
11306         .interrupt_allowed = vmx_interrupt_allowed,
11307         .nmi_allowed = vmx_nmi_allowed,
11308         .get_nmi_mask = vmx_get_nmi_mask,
11309         .set_nmi_mask = vmx_set_nmi_mask,
11310         .enable_nmi_window = enable_nmi_window,
11311         .enable_irq_window = enable_irq_window,
11312         .update_cr8_intercept = update_cr8_intercept,
11313         .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
11314         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
11315         .get_enable_apicv = vmx_get_enable_apicv,
11316         .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
11317         .load_eoi_exitmap = vmx_load_eoi_exitmap,
11318         .hwapic_irr_update = vmx_hwapic_irr_update,
11319         .hwapic_isr_update = vmx_hwapic_isr_update,
11320         .sync_pir_to_irr = vmx_sync_pir_to_irr,
11321         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
11322
11323         .set_tss_addr = vmx_set_tss_addr,
11324         .get_tdp_level = get_ept_level,
11325         .get_mt_mask = vmx_get_mt_mask,
11326
11327         .get_exit_info = vmx_get_exit_info,
11328
11329         .get_lpage_level = vmx_get_lpage_level,
11330
11331         .cpuid_update = vmx_cpuid_update,
11332
11333         .rdtscp_supported = vmx_rdtscp_supported,
11334         .invpcid_supported = vmx_invpcid_supported,
11335
11336         .set_supported_cpuid = vmx_set_supported_cpuid,
11337
11338         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
11339
11340         .write_tsc_offset = vmx_write_tsc_offset,
11341         .adjust_tsc_offset_guest = vmx_adjust_tsc_offset_guest,
11342         .read_l1_tsc = vmx_read_l1_tsc,
11343
11344         .set_tdp_cr3 = vmx_set_cr3,
11345
11346         .check_intercept = vmx_check_intercept,
11347         .handle_external_intr = vmx_handle_external_intr,
11348         .mpx_supported = vmx_mpx_supported,
11349         .xsaves_supported = vmx_xsaves_supported,
11350
11351         .check_nested_events = vmx_check_nested_events,
11352
11353         .sched_in = vmx_sched_in,
11354
11355         .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
11356         .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
11357         .flush_log_dirty = vmx_flush_log_dirty,
11358         .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
11359
11360         .pre_block = vmx_pre_block,
11361         .post_block = vmx_post_block,
11362
11363         .pmu_ops = &intel_pmu_ops,
11364
11365         .update_pi_irte = vmx_update_pi_irte,
11366
11367 #ifdef CONFIG_X86_64
11368         .set_hv_timer = vmx_set_hv_timer,
11369         .cancel_hv_timer = vmx_cancel_hv_timer,
11370 #endif
11371
11372         .setup_mce = vmx_setup_mce,
11373 };
11374
11375 static int __init vmx_init(void)
11376 {
11377         int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
11378                      __alignof__(struct vcpu_vmx), THIS_MODULE);
11379         if (r)
11380                 return r;
11381
11382 #ifdef CONFIG_KEXEC_CORE
11383         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
11384                            crash_vmclear_local_loaded_vmcss);
11385 #endif
11386
11387         return 0;
11388 }
11389
11390 static void __exit vmx_exit(void)
11391 {
11392 #ifdef CONFIG_KEXEC_CORE
11393         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
11394         synchronize_rcu();
11395 #endif
11396
11397         kvm_exit();
11398 }
11399
11400 module_init(vmx_init)
11401 module_exit(vmx_exit)